
AN EFFICIENT SEARCH ALGORITHM FOR PARTIALLY ORDERED SETS

Yan Chen
Department of Computer Science

Fuzhou University
Fuzhou, Fujian, China

email: chenyan2002@gmail.com

ABSTRACT
Consider the problem of membership query for a given par-
tially ordered set. We devise a greedy algorithm which can
produce near-optimal search strategies. Rigorous analysis
has been given, which shows our algorithm can have fewer
comparisons than the best known solution by at least a fac-
tor of 0.27 under random graph model. Experimental re-
sults have also been given, which suggest the advantage of
the algorithm under other models.

KEY WORDS
algorithms and computation theories, membership query,
partial order, greedy algorithm

1 Introduction

One fundamental problem in data structures is to investi-
gate the efficiency of the membership query, when only
partial information about the ordering is known. In order
to reduce the response time of basic operations, many data
structures, such as heap, binary search tree etc, actually
store only partial information about the underlying linear
orders. It is therefore interesting to take a closer look on
the efficiency of membership query in these data structures.
More precisely, given n objects, in some underlying linear
order, with only a partial order (a subset of the linear or-
der) known to you. Your task is to answer the membership
query according to the known order, by asking a series of
questions about whether x equals to y. You will receive the
responses in one of following: x = y, x < y, x > y, be-
fore you make the next probe. How many comparisons are
needed to give the answer of the membership query in the
worst case?

One obvious example is when we know nothing about
the linear order, the O(n) exhaustive search is needed. An-
other trivial example is when the linear order is totally
known, a binary search with complexity O(log n) is the
optimal solution. The efficiency of other partial orders will
be within the range of these two extremes.

In order to study the problem in depth, we restate
the problem in a formal way. Suppose P = {p i|i =
1, 2, · · · , n} is a partially ordered set. A storage func-
tion[1] on P can be regarded as a set A = {ai|i =
1, 2, · · · , n} of n real numbers, satisfying

1. if pi <P pj then ai < aj

2. if pi �=P pj then ai �= aj

Given a real number x as input, we are to find out
whether x belongs to A or not, by making a series of tests
about the relation between x and certain a i ∈ A. We are
interested in developing an efficient algorithm that can pro-
duce the proper search sequence so that the number of com-
parisons needed is as small as possible.

The main result of this paper is to develop a greedy
algorithm which can deal with the membership query ef-
ficiently on the general partially ordered set. We analyze
the the number of comparisons needed by the algorithm in
random graph model, and prove that our algorithm requires
less comparisons than [2] by at least a constant factor of
0.27. Experimental results have also been given, which
suggest the advantage of the algorithm under other mod-
els.

The approach we consider here generalizes the way
in dealing with partial orders and the technique can be also
applied to specialized partial order problems in order to im-
prove the performance of those algorithms.

This paper is organized as follows. In Section 2,
we define some terms in order to state the problem more
clearly. In Section 3, we mention some related results about
partially ordered sets. In Section 4, we will devise a poly-
nomial time greedy search algorithm to deal with the mem-
bership query. In Section 5, we analyze the complexity un-
der random graph model and prove the algorithm requires
fewer comparisons than [2] by at least a factor of 0.27.
Some experimental results have also been reported. In Sec-
tion 6 we conclude the contributions and future work that
we are interested in. In Section 7 some acknowledgements
are made.

2 Problem and Notations

The notation for partial order and graph are standard as
stated in textbooks, see, for example, [3]. An ideal of a
poset (P, <) is a subset I such that if y ∈ I and x < y then
x ∈ I . A filter of P is the complement of an ideal. We de-
note I(p) for the minimal ideal I of P such that p ∈ I . Sim-
ilarly, F (p) for the minimal filter F of P such that p ∈ F .
Given a real number x, for any element p i ∈ P , each time
we make a comparison, we obtain the information whether
x = ai, x < ai, or x > ai. In the first case, no additional

505-157 91

bryson

elements are needed to be searched. In the second case,
since A is order preserving, we know that x < aj for all
j ∈ F (pi), so the problem reduces to finding the minimal
number of comparisons for poset P − F (p i). Similarly, if
x > ai, the problem reduces to finding the minimal num-
ber of comparisons for poset P − I(pi). Let c(P) be the
minimal number of queries needed, we get the following
recursion.

c(P) = 1 + min
1≤i≤n

max {c(P − I(pi)), c(P − F (pi))}
(1)

It is obvious that computing directly from this re-
cursion is costly. In fact, using the same argument in
[2], we can easily prove this problem is NP-hard in gen-
eral. We will present a greedy algorithm with (1 + o(1))-
approximation instead of getting the precise optimal search
sequence.

In order to make the argument more convenient, we
define some more notations. A chain in P is a set of pair-
wise comparable elements and an antichain of P is a set of
pairwise incomparable elements.

A post of P is an element that is comparable to every
element in P . Let the set of all posts of P be α, by defini-
tion, it is easy to know that,

Proposition 2.1. The set of all posts of P is a chain in P .

This proposition can help to reduce the cardinality of
the poset. In the following section, you will see that both
our algorithm and [2] make use of this proposition.

Let h(P) be the height of P which is the cardinality
of a maximum chain in P and w(P) be the width of P ,
denoting the cardinality of a maximum antichain in P . We
also define the function ι(P) be the number of ideals in P .

Please note that we write log for log2 during the
whole paper.

3 Related Work

Some special cases of the problem have been studied thor-
oughly. [1, 4] studied an efficient algorithm when the par-
tial order is the product of d chains each containing n ele-
ments. They present an O(d

d−1nd−1) algorithm, which has
proved optimal when d ≤ 4. [5] solved the partial order of
division with complexity O(cn), where c is a constant that
lies in the interval [3

4 + 17
2160 , 55

72] as n approaches infinity.
For general case, [6] studied the partial order in gen-

eral and proved that the information-theoretic bound is tight
up to a multiplicative constant. But none of these papers
present an efficient algorithm in dealing with general par-
tially ordered sets.

There are also other perspectives on this field, [7]
studied the trade-off between preprocessing and search-
ing. Let S(n) be the upper bound of comparisons needed
to answer membership queries, P (n) be the worst-case
cost of a preprocessing algorithm which builds some suit-
able partial orders, they proved the trade-off must satisfy

P (n)+n log S(n) ≥ (1+o(1))n log n for any comparison-
based algorithm.

A similar but different problem has been considered
in [2, 8]. In their problem, the query is made on the partial
order directly, not on the linear extensions of P (i.e. total
orders compatible with P as in our case). Therefore, each
time we made a query getting answer x < pi, the poset is
reduced to I(pi) rather than P−F (pi), where fewer queries
are required than our case. [2] first proved that the prob-
lem they considered is NP-hard in general, and presented
a (1 + o(1))-approximation algorithm under random graph
model, and a 6.34-approximation algorithm under uniform
model. Both of these run in polynomial time. As for tree
structures, [8] developed an O(n4(log n)3) time algorithm
for constructing the optimal search sequence. However,
the upper bound of the queries is hard to estimate in gen-
eral. Although the problem [2] considered is different from
our problem, the approximation algorithm also works in
our problem with the same complexity. We present an im-
proved version of their algorithm that requires fewer num-
ber of comparisons by a constant factor.

4 Searching Algorithm

In this section, we study the partial order in general and
present an approximation algorithm which constructs the
search strategy in polynomial time.

Consider the set α containing all the posts of P . Let
|α| = k,

Proposition 4.1. If k > 0, let d1 < d2 < · · · < dk, (di ∈
α). The poset P is divided by α into k + 1 sub-posets
Si, (0 ≤ i ≤ k), as defined in [2]

Si =

⎧⎨
⎩

I(d1) i = 0
I(di+1)− I(di) 0 < i < k
P − I(dk) i = k

(2)

According to Proposition 2.1, we can apply a bi-
nary search on chain α, and reduce the poset into one of
the Si defined above. This takes O(log n) time in the
worst case. If x is not in α, the problem becomes how
to search the poset Si. In [2], they used the decomposi-
tion of poset into chains and then using binary search to
search the chains individually, this yields an algorithm of
O(log n + w(P) log |Si|).

We observe that, by decomposing the poset into
chains, some information is lost, which makes the search
algorithm less efficient. In fact, there is no need to extract
all chains from the poset at the beginning. Each time we
probe an element in A, the poset is reduced to a smaller
one. Intuitively, we can select the element which can elim-
inate the most elements in the worst case. Consider the
following greedy algorithm.

GREEDY ALGORITHM FOR PARTIAL ORDER(P, x)
1 while |P | > 0
2 do

92

3 i← arg max1≤j≤|P | min{|I(pj)|, |F (pj)|};
4 if x = ai

5 then RETURN i;
6 if x > ai

7 then Delete(I(pi));
8 else Delete(F (pi));
9 RETURN − 1;

Before running the algorithm, we need to precalculate
I(x) and F (x) for all x ∈ P . Since the Hasse diagram of
P can be regarded as a DAG in graph, this precalculation
can be done in O(n2) time using depth-first search. Each
round, the element pi which has the largest cardinality of
all min{|I(pj)|, |F (pj)|}, (1 ≤ j ≤ |P |) is selected as the
candidate for probing. This greedy approach guarantees
that in the worst case, the maximum number of elements
can be eliminated in the current round.

5 Analysis of Algorithm

In this section, we analyze the minimal number of compar-
isons needed by the algorithm given in Section 4.

5.1 Random Graph Model

The detailed definition of Random Graph Model can be ob-
tained from [2, 9].

Let Pn,p be a random element in probability space of
all orders with n elements and choosing pairs with proba-
bility p. [2] has proved that under random graph model, by
applying the theorem in [10],

Theorem 5.1 (Kim and Pittel). Let 0 < p < 1 be fixed, and
L be a random variable with random graph distribution.
There exists a constant c = c(p) > 0 such that P(L > l) ≤
exp(−cl) for all l > 0.

They proved that w(Pn,p) ≤ c1

√
log n, where c1 is a

constant, and for all |Si| of Pn,p, |Si| ≤ c2 log n, where c2

is a constant. So the complexity of searching in |S i| in [2]
is w(P) log |Si| ≤ c1(log n)1/2 log(c2 log n). Readers can
refer to [2] for detailed proof about these results.

In our greedy algorithm, we need to first consider
ι(Si), which denotes the number of ideals in S i. We need
Dilworth’s theorem[11],

Theorem 5.2 (Dilworth). Let P denote a partial order.
Then
w(P) = {max |P ′||P ′ is an antichain} = min{k|∃ a fam-
ily of k chains that partitions P}.

From this theorem, we get the estimation of ι(Si) un-
der random graph model,

ι(Si) ≤
w(P)∑
j=1

(|Si|
j

)
≤ |Si|w(P) ≤ (c2 log n)c1

√
log n

(3)

Now consider at least how many elements will be
eliminated when the answer x < ai or x > ai is got. Here
we directly use the theorem proved in [6],

Theorem 5.3 (Linial and Saks). In any finite partially or-
dered set (P, <) there is an element x ∈ P such that the
fraction of ideals of P that contain x is between δ and 1−δ,
where δ = (3 − log 5)/4 ∼= 0.17.

Since the greedy algorithm chooses the element with
the maximal cardinality of ideal (resp. filter), this ensures
the following proposition,

Proposition 5.4. The number of ideals reduced by greedy
algorithm each round is at least δ × ι(Si).

The algorithm ends when |Si| = 0, that is ι(Si) =
0. We are now in the position to get the complexity of
our greedy algorithm. Let t be the number of comparisons
needed, obviously we have the following inequality,

(1− δ)t(c2 log n)c1
√

log n ≥ 1

t ≤ c1

√
log n log(c2 log n)
− log(1− δ)

∼= 0.27c1

√
log n log(c2 log n)

(4)
So here is our main theorem,

Theorem 5.5. The minimal number of comparisons needed
by the greedy algorithm under random graph model is
0.27c1

√
log n log(c2 log n) in the worst case.

This theorem shows that our greedy algorithm re-
quires fewer comparisons than [2] by at least a factor of
0.27.

5.2 Experimental Results

In this section, some experimental results are reported,
which suggest the advantage of the algorithm under other
models.

We implemented the greedy algorithm to solve the
membership query in d-dimension arrays with partial or-
der [1, 4]. The array can be regarded as multidimensional
Young Tableau. The partial order P is defined as follows:
if ∀k = 1, 2, · · · , d, ik < i′k then pi1,i2,··· ,id

< pi′1,i′2,··· ,i′
d
.

Obviously, the w(P) and h(P) are both O(d
√

n) in this
problem, which is different from random graph model. Let
f(n) be the maximal number of comparisons needed in the
algorithm, the following is the result of our experiment.

From the Table 1, we can see that both when d = 4,
which already has optimal solutions, and d = 5, for which
the optimal algorithm has not been found, the greedy algo-
rithm can query with the same order of the complexity as
the best known algorithm.

We also apply our algorithm to solve membership
query in division partial order[5]. This partial order sat-
isfies that pi < pj if and only if i divides j. The results are
as follows,

93

n f(n) d
d−1n

d−1
d

2× 2× 2× 2 10 11
3× 3× 3× 3 16 36
4× 4× 4× 4 74 85
5× 5× 5× 5 130 167

2× 2× 2× 2× 2 20 20
3× 3× 3× 3× 3 32 101
4× 4× 4× 4× 4 264 320
5× 5× 5× 5× 5 736 781

Table 1. Experimental results on d chain problem

n f(n) f(n)/n
1000 786 0.786
2000 1561 0.781
3000 2342 0.781
4000 3134 0.784
5000 3916 0.783
6000 4715 0.786
7000 5495 0.785
8000 6270 0.784
9000 7063 0.785

Table 2. Experimental results on division

It is known from [5] that f(n)/n lies in the interval
[0.7578, 0.7638] as n approaches infinity. We can see from
Table 2 that the greedy algorithm is also near-optimal in
this problem.

6 Conclusion

We have presented a polynomial time algorithm for con-
structing the near-optimal search strategy for partially or-
dered sets in general. The algorithm can be applied to
the membership query on various comparison-based struc-
tures, such as heap, binary search tree, etc.

However, there are still more interesting works to do
in this field. According to the experimental results, we are
interested to do more rigorous analysis of the algorithm
under other models. Besides, the tighter upper bound for
membership query in tree structures is also of our interests.
While our algorithm gives the search strategy in static par-
tial orders, it would be interesting to investigate the online
version of this problem, where we get to know more partial
orders along with the queries.

7 Acknowledgement

The author would like to thank Prof. Qingxiang Fu, for
his invaluable guidance and insightful discussion with the
author. We greatly appreciate his generous financial sup-
port, which makes this publication possible. We also like to

thank Prof. Xiaodong Wang, for his great encouragement
and support during the whole process of this research.

References

[1] N. Linial and M. Saks, Searching ordered structures,
Journal of Algorithms, volume 6, 1985, 86-103.

[2] R. Carmo, J. Donadelli, Y. Kohayakawa, E. Laber,
Searching in random partially ordered sets, Theoreti-
cal Computer Science, 321, 2004, 41-57.

[3] K.H. Rosen, Discrete Mathematics and Its Applica-
tions Fourth Edition (McGraw-Hill Press, 1998)

[4] Yongxi Cheng, Xiaoming Sun and Yiqun Lisa Yin,
Searching On Multi-Dimensional Arrays with Partial
Order, arXiv:cs.DS/0504026, Apr, 2005

[5] Yongxi Cheng, Xi Chen, Yiqun Lisa Yin,
Searching On Division Partially Ordered Set,
arXiv:cs.DM/0505075, May, 2005

[6] N. Linial and M. Saks, Every poset has a central ele-
ment, Journal of Combinatorial Theory, Series A Vol-
ume 40, 1985, 195-210.

[7] A. Borodin, L.J. Guibas, N.A. Lynch, A.C Yao, Ef-
ficient searching using partial ordering, Information
Processing Letters, Vol 12, num 2, Apr, 1981

[8] Y. Ben-Asher, E. Farchi, I. Newman, Optimal search
in trees, SIAM Journal on Computing, 28 (6), 1999,
2090-2102.

[9] G. Brightwell, Models of random partial orders, Sur-
veys in Combinatorics, Mathematical Society Lecture
Note Series, vol. 187, Cambridge University Press,
Cambridge, 1993, 53-83.

[10] J.H. Kim, B. Pittel, On tail distribution of interpose
distance, Journal of Combinatorial Theory Ser. B 80,
2000, 49-56.

[11] R.P. Dilworth, A decomposition theorem for partially
ordered sets, Ann. of Math., 51, 1950, 161-166.

94

