
Automatic Abstraction Refinement for
Generalized Symbolic Trajectory Evaluation

Yan Chen∗, Yujing He∗, Fei Xie∗ and Jin Yang†
∗Department of Computer Science, Portland State University, Portland, OR 97207. {chenyan, hey, xie}@cs.pdx.edu

†Validation Research Lab, Intel Corporation, Hillsboro, OR 97124. jin.yang@intel.com

Abstract—In this paper, we present AutoGSTE, a comprehen-
sive approach to automatic abstraction refinement for generalized
symbolic trajectory evaluation (GSTE). This approach addresses
imprecision of GSTE’s quaternary abstraction caused by under-
constrained input circuit nodes, quaternary state set unions,
and existentially quantified-out symbolic variables. It follows the
counterexample-guided abstraction refinement framework and
features an algorithm that analyzes counterexamples (symbolic
error traces) generated by GSTE to identify causes of impre-
cision and two complementary algorithms that automate model
refinement and specification refinement according to the causes
identified. AutoGSTE completely eliminates false negatives due to
imprecision of quaternary abstraction. Application of AutoGSTE
to benchmark circuits from small to large size has demonstrated
that it can quickly converge to an abstraction upon which GSTE
can either verify or falsify an assertion graph efficiently.

I. INTRODUCTION

Symbolic trajectory evaluation (STE) [1]–[3] is a powerful
model checking technique based on quaternary symbolic simu-
lation. Within its application domain, STE is often much easier
to use and less sensitive to state space explosions, compared
to classic symbolic model checking (SMC) techniques [4]–[6].
Despite its efficiency, capacity, and ease-to-use, STE is limited
in property expressiveness: properties over infinitely long time
intervals cannot be specified and verified using STE.

Generalized symbolic trajectory evaluation (GSTE) [7], [8]
represents a significant extension to STE. GSTE supports veri-
fication of properties over infinitely long time intervals, namely
ω-regular properties, thus making it as expressive as classic
SMC for linear time logics. Meanwhile, GSTE maintains the
efficiency, capacity, and ease-to-use of STE, in particular,
GSTE inherits STE’s automatic abstraction techniques.

The key to the high capacity of STE and GSTE is the
abstraction based on a quaternary state representation (a.k.a.,
quaternary abstraction) which, however, is also their weakness.
The imprecision of quaternary abstraction may lead to false
negatives: STE and GSTE may report the result of X (un-
known) instead of 0 or 1. This is worsen by the fixed-point
computation of GSTE which introduces additional possibilities
for unknowns to creep into verification. As a result, there are
three possible causes of abstraction imprecision in GSTE:

1. Under-constrained input circuit nodes.
2. Quaternary state set unions.
3. Existentially quantified-out symbolic variables.

Currently in GSTE, imprecision due to Cause 1 is addressed
by manually introducing symbolic constants or variables to

constrain input nodes. Imprecision due to Causes 2 and 3
is eliminated manually by (1) model refinement: introduc-
ing boolean variables (a.k.a., precise nodes) to represent the
state space more accurately or (2) specification refinement:
applying semantics-preserving transformations to the assertion
graph [9]. These manual refinements are often quite involved
and require in-depth knowledge of the circuit being verified.
Furthermore, the level of abstraction determines the verifica-
tion complexity of GSTE: the more detailed the abstraction,
the higher the verification complexity. Therefore, automatic
abstraction refinement algorithms that can quickly converge
to an appropriate level of abstraction are highly desired.

In this paper, we present AutoGSTE, a comprehensive
approach to automatic abstraction refinement for GSTE, which
addresses abstraction imprecision due to under-constrained
input nodes, quaternary state set unions, and quantified-out
symbolic variables. It follows the counterexample-guided ab-
straction refinement framework and features an algorithm that
analyzes the counterexample (symbolic error trace) generated
by GSTE to identify causes of imprecision and two com-
plementary algorithms that automate model refinement and
specification refinement according to the causes identified.

• The analysis algorithm identifies these causes by back-
tracking through the counterexample and conducting fan-
in analysis over the circuit.

• If imprecision is due to under-constrained input nodes,
symbolic constants are introduced on non-loop edges of
the assertion graph while symbolic variables are intro-
duced on loop edges of the assertion graph.

• Using model refinement, the circuit nodes which obtain
the unknown values due to imprecision caused by quater-
nary state set unions or quantified-out symbolic variables
are identified and marked as precise nodes in the circuit.

• Using specification refinement, according to the causes
identified, the appropriate kind of semantic-preserving
transformation is applied to the assertion graph: for
imprecision due to quaternary state set unions, loop-
unrolling is applied and for imprecision due to quantified-
out symbolic variables, case-splitting is applied.

We have implemented AutoGSTE in the Intel Forte envi-
ronment [10] and upon GSTE, and applied it to benchmark
circuits from small to large size. The experiments demonstrate
that AutoGSTE can quickly converge to an abstraction upon
which GSTE can verify or falsify an assertion graph efficiently.

Related Work. There has been much research on ab-
straction refinement for model checking of both hardware
and software. Space limitation precludes a detailed discus-
sion. Counterexample-guided abstraction refinement is a well-
known methodology in model checking to combat the state
space explosion problem [4], [11], [12]. Particularly relevant
to our research is the work on abstraction refinement for STE.
In [13], symbolic constants are automatically introduced to
constrain under-constrained input nodes of circuits based on
counterexamples from STE. In [14], a SAT-based algorithm
was developed to assist manual refinement of STE assertions.
To our best knowledge, our approach is the first automatic
abstraction refinement framework for GSTE that completely
eliminates false negatives caused by abstraction imprecision.

The rest of this paper is organized as follows. In Section II,
we introduces the basics of STE and GSTE and the quaternary
abstraction that they employ. In Section III, we discuss in
detail the potential causes for imprecision of the quaternary ab-
straction. In Section IV, we present AutoGSTE, our approach
to automatic abstraction refinement. In Section V, we evaluate
our algorithms on small to large size benchmark circuits. In
Section VI, we conclude this paper and touch on future work.

II. BACKGROUND

In this section, we introduce a simple circuit model upon
which STE and GSTE were developed, the basics of STE and
GSTE, and their quaternary abstraction. For more details on
STE and GSTE, we refer the readers to [1], [2], [7], [8].

A. A Simple Circuit Model

A circuit M consists of a set of boolean nodes N . A state
is an assignment to all the nodes in N . The node set N can
be partitioned into two disjoint sets: state nodes NS and input
nodes NI . There is a next-state function χn(N) for each state
node n ∈ NS. The set of next state functions defines how
the circuit transitions between states. The transition can also
be defined by the equivalent transition relation R(N, N ′) =∧

n∈NS
(n′ = χn(N)), where N ′ is a copy of N to hold the

values for N after the transition and n′ ∈ N ′ is the copy of n.
A trace of the circuit is a state sequence σ = [s0, s1, s2, . . .]
such that for every index i, si+1(n) = χn(si(N)) for every
state node n ∈ NS and si+1(n) is unconstrained for every
input node in n ∈ NI .

B. Symbolic Trajectory Evaluation

An STE assertion can be viewed as a labeled linear graph
representing a finite time line. Each edge in the graph repre-
sents a time unit and is labeled with two sets of circuit states
(or equivalently state predicates), one of which is called the
antecedent label and the other the consequent label.

The symbolic simulation algorithm in STE starts from the
first edge (v0, v1) in the graph and computes the set of states
sim(v0, v1) simulated by the edge. In this case, it is the set
of states satisfying the antecedent label on the edge. The
algorithm then performs a single simulation step by computing
the post-image, post(sim(v0, v1)), of this simulation state set

and intersects the result with the set of states satisfying the
antecedent label on the second edge. The result is the set of
states sim(v1, v2) simulated by the second edge. The post-
image of a state set S(N), denoted by post((S(N)), is given
by ∃N−.S(N−)∧R(N, N−), i.e., the set of states reachable
from a state in S(N) in a single state transition. The algorithm
repeats this step until it reaches the last edge in the graph. Once
the simulation is complete, the consequent label on each edge
is checked against the set of states simulated by this edge to
see if it is satisfied, i.e., the set of states simulated by the edge
is a subset of states allowed by the consequent predicate.

C. Generalized Symbolic Trajectory Evaluation

A GSTE assertion graph is defined as a quintuple G =
(V, v0, E, ant, cons), where V is a set of vertices, v0 is the
initial vertex, E is a set of directed edges, and ant and cons
are functions that map each edge to an antecedent label and a
consequent label, respectively. Every finite path in the GSTE
assertion graph from the initial vertex is an STE assertion
graph. Therefore, a circuit M satisfies a GSTE assertion graph
G if it satisfies every STE assertion graph derived from the
GSTE assertion graph by following a finite path from the
initial vertex in the graph. More formally, the circuit satisfies
the assertion graph, denoted by M |= G, if for every boolean
assignment to all the symbolic constants, every finite path in
the graph, and every finite state trace in the circuit of the same
length, the trace satisfies the antecedent sequence on the path
implies it also satisfies the consequent sequence on the path.

To model check a GSTE assertion graph against a circuit,
a symbolic simulation is performed to compute a set of states
simulated by each edge in the graph. A state is in this set
if there is a finite path from the initial vertex leading to the
edge and a finite trace leading to the state such that the trace
satisfies the sequence of the antecedent labels along the path.
Obviously, for an edge coming out of the initial vertex, any
state satisfying the antecedent label on the edge is simulated
by the edge. Further, for an edge e and a successor edge e′

of e, if s is a state simulated by e, then any next state s′

of s that satisfies the antecedent label on e′ is simulated by
e′. This leads to a GSTE model checking algorithm with an
iterative symbolic simulation phase. Since an assertion graph
may contain loops and an edge may be reached from the initial
vertex through different paths, the algorithm requires a form
of least fixed-point computation in the simulation phase [7].

D. Quaternary Abstraction

When the circuit becomes large, the likelihood for a sym-
bolic model checking algorithm to encounter the state explo-
sion problem increases drastically. To overcome the problem,
some sort of abstraction must be applied to the circuit. In
STE, it is the quaternary modeling of the circuit where each
node has the four quaternary values {0, 1, X,�} instead of
the two boolean values. There is a partial information order
among the four quaternary values as shown in Figure 1 (a). For
instance, X contains less information than either 0 or 1. Both
0 and 1 contain less information than �, which represents the

over-constrained value. Besides the quaternary generalization
of the boolean operations, two new operations are defined: the
greatest lower bound � and the least upper bound � of any
two quaternary values. Figure 1 (b) lists the truth tables for
the basic quaternary operations.

X 0 1 T

X X X T

T

T1

T

0

1

T T T

1

1

T

|

0 1X

1

X X

0

1

T T

!

1

0

X 0 1 T&

X X 0 T

0 T

T0X

T

0

1

T

0

T T

X

0

1

T

X 0 1 T

X X 0 T

T

TT

T

0

1

T T T

1

1

T

0 T0

1

X 0 1 T

X X X X

0

1X

T

0

1

T X 0

X

1

1

XX 0

X

T

0 1

X

(a) quaternary values and information ordering

(b) quaternary operations

Fig. 1. Quaternary Operations

Given such a quaternary abstraction, any state set in the
circuit can be represented either precisely or approximately by
a quaternary assignment to the nodes in the circuit. A node has
a boolean value in the quaternary assignment if it has the same
boolean value in every state of the state set. Otherwise, it has
value X . The empty set is represented by assigning � to one
or more variables depending on where the conflict occurs in
the circuit. For instance, consider a circuit with three nodes p,
q and r. The quaternary assignment for the singleton state set
{[p=1, q=0, r=1]} is [p=1, q=0, r=1], and the assignment
for the state set {[p=1, q=0, r=1], [p=1, q=1, r=1]} is
[p=1, q=X, r=1].

With this abstraction, the state space becomes much smaller.
In general, for a circuit with n boolean nodes, there are 2n

different states and thus 22n

different sets of states. On the
other hand, there are only 4n different quaternary assignments.
Furthermore, all the operations become much more efficient in
the quaternary abstraction. For instance, the intersection ∩ of
two state sets becomes a bit-wise � of the two corresponding
quaternary assignments, and the union ∪ becomes the bit-wise
�. The post-image function becomes the bit-wise quaternary
generalization of the next state functions for the state nodes
together with X for the input nodes. Instead of mapping a
state set to another state set, it maps the quaternary assignment
representing the first state set to the one representing the
second state set.

A problem with the scalar quaternary model, though, is that
it is often too coarse. This could easily lead to false negative
verification results, since many types of constraints among
nodes are lost in the abstraction. To overcome this problem,
STE uses a technique called symbolic indexing to encode a set
of quaternary assignments. For instance, for the circuit with
three nodes p, q and r, consider the following set of boolean
assignments

{[p=0, q=1, r=1], [p=1, q=0, r=0], [p=1, q=0, r=1]}.
It captures two basic boolean constraints: (1) p and q are

mutual exclusive, and (2) q is true implies r is true. These
two constraints are completely lost in the single quaternary
assignment corresponding to the set [p = X, q = X, r = X].
However, using a symbolic constant C, the two constraints
can be precisely encoded in the following symbolic indexing
expression

(!C→ [p=0, q=1, r=1])∧(C→ [p=1, q=0, r=X]),

which means that when C is 0 then the first quaternary is
chosen, and when C is 1 then the second is chosen. For
simplicity, we omit X’s in the quaternary assignments below.

When verifying an STE assertion against a circuit, any
boolean constraint in the STE assertion can be expressed as
a symbolic quaternary assignment using symbolic constants
in order to drive the symbolic quaternary simulation in STE.
Furthermore, the abstract symbolic quaternary simulation of
the circuit can be made into the precise symbolic boolean
simulation by assigning enough symbolic constants to the
circuit nodes in the antecedent of the assertion. However, the
same is no longer true in GSTE for assertion graphs with
loops. To address this problem, GSTE allows introducing sym-
bolic variables into symbolic quaternary assignments. Unlike
a symbolic constant, a symbolic variable is a boolean variable
that can change its value, and is existentially quantified out
after every single step simulation. One way to look at the
difference between symbolic variables and symbolic constants
is that symbolic variables symbolically index a set of edges
with scalar values while symbolic constants symbolically
index a set of assertion graphs with scalar values.

III. IMPRECISION OF QUATERNARY ABSTRACTION

A. Three Causes of Quaternary Abstraction Imprecision

There are three causes of imprecision in GSTE’s quaternary
abstraction: one inherited from STE and the other two new
in GSTE. In this section, we elaborate on these causes and
present a simple illustrative example.

1) Under-constrained input circuit nodes: In (G)STE, the
input nodes of a circuit are constrained by the antecedent
on each edge of an assertion graph. If an input node is
unconstrained, it will be assigned the value of X . Such X’s
may cause consequent violations in the symbolic simulation.

2) Quaternary state set union: In the fixed-point compu-
tation of GSTE, a set of circuit states simulated by each
edge in the assertion graph is computed. The set of states is
represented approximately by a quaternary assignment and the
union of two sets of states is approximated by the bit-wise �
of the two corresponding quaternary assignments. Such unions
may introduce additional X’s into the verification.

3) Existentially quantified-out symbolic variables: In
GSTE, a symbolic variable is a boolean variable that can
change its value every time the corresponding edge is visited,
and is existentially quantified out after every single step
simulation. So after leaving the edge with symbolic variables,
circuit nodes associated with these variables may become X .

dout[3:0]mux

D

D
E

din[3:0]

wr

clk

clk

D

wr

rd

clk

b

r

c

Fig. 2. Buffered Register

wr=0&rd=1 / dout=DATA

wr=1&din=DATA / true

loop

wr=0&rd=1 / dout=DATA

V1
V2

wr=0&rd=1 / dout=DATA

(b) Unrolled Assertion Graph

V0

(a) the Original Assertion Graph

V0 loop

wr=1&din=DATA / true
V1

Fig. 3. Assertion Graph for Buffered Register

TABLE I
QUATERNARY SIMULATION

(V0, V1) (V1, V1)
0 [din=DATA, wr=1] TOP
1 [din=DATA, wr=1] [b=DATA, c=0, rd=1, wr=0]
2 [din=DATA, wr=1] [b=DATA, rd=1, wr=0]
3 [din=DATA, wr=1] [b=DATA, rd=1, wr=0]

B. A Simple Illustrative Example of Imprecision

Figure 2 shows a simple buffered-register circuit: the input
to the register is first written into a buffer and then transferred
into the register in the next clock cycle after the write.
Figure 3(a) shows an assertion graph capturing a property
to be verified on the circuit: after a write, if there are only
read requests, the output is always the data accompanying the
write. We run GSTE to verify the circuit against the assertion
graph. The step-by-step result of the quaternary simulation is
listed in Table I. GSTE reports a violation of the consequent
dout = DATA on the loop edge (V 1, V 1) due to an X
assigned to dout. However, it is not difficult to observe that the
property holds on the circuit. Therefore, GSTE has reported
a false negative. The quaternary assignment of (V 1, V 1) in
Iteration 2, [b = DATA, rd = 1, wr = 0], is obtained
from the union of the assignment of (V 1, V 1) in Iteration
1, [b = DATA, c = 0, rd = 1, wr = 0], and the assignment
representing the set of new reachable states in Iteration 2,
[b = DATA, r = DATA, c = 1, rd = 1, wr = 0]. This union
introduces additional X’s, which lead to the X value of dout.

IV. ABSTRACTION REFINEMENT

In this section, we start by reviewing the state-of-art manual
abstraction refinement for GSTE and then present AutoGSTE,
our approach to automatic abstraction refinement for GSTE.
First, we give its overarching framework. Then, we introduce
our algorithm for identifying causes of abstraction imprecision
from counterexamples generated by GSTE. After that, we
discuss how we automate abstraction refinement according to
the causes identified. Finally, we discuss the correctness of
AutoGSTE.

TABLE II
QUATERNARY SIMULATION

(V0, V1) (V1, V2) (V2, V2)
0 [din=DATA, TOP TOP

wr=1]
1 [din=DATA, [b=DATA, c=0, TOP

wr=1] rd=1, wr=0]
[din=DATA, [b=DATA, c=0, [b=DATA, r=DATA, c=1,

2 wr=1] rd=1, wr=0] rd=1, wr=0]
[din=DATA, [b=DATA, c=0, [b=DATA, r=DATA, c=1,

3 wr=1] rd=1, wr=0] rd=1, wr=0]

A. Manual Abstraction Refinement

Currently in GSTE, the imprecision due to quaternary state
set unions and quantified-out symbolic variables is addressed
with two manual strategies. The first strategy is to manually
mark a set of circuit nodes as precise nodes [9]. For these
nodes, by using the parametric representation, their values and
the relationships among them are always represented exactly
by using boolean expressions as their values. In the above
example, we can mark the node c as a precise node. This will
prevent the union of [b = DATA, c = 0, rd = 1, wr = 0] and
[b = DATA, r = DATA, c = 1, rd = 1, wr = 0]. We rerun
GSTE to verify the circuit with the precise node against the
original assertion graph in Figure 3(a). GSTE reports that the
assertion graph holds on the circuit.

The second strategy is to manually apply semantics-
preserving transformations to the assertion graph. Typical
transformations include case-splitting of an edge and unrolling
of a loop. In the case of the above example, we can apply
loop-unrolling to the assertion graph in Figure 3(a) to obtain a
semantically equivalent assertion graph shown in Figure 3(b).
We run the circuit against the refined assertion graph and
the step-by-step simulation is listed in Table II. In essence,
the loop-unrolling prevents the union of [b = DATA, c =
0, rd = 1, wr = 0] and [b = DATA, r = DATA, c = 1, rd =
1, wr = 0], which are now associated with two separate edges
(V 1, V 2) and (V 2, V 2), respectively. Intuitively, this refines
the assertion graph to mimic the real computation flow of the
circuit.

Both strategies above require manual efforts. To apply these
strategies, one must have in-depth understanding of the circuit
being verified and be able to identify where the imprecision
is introduced by GSTE. Therefore, it is highly desired that
the causes for imprecision can be automatically identified
and these manual strategies can be automated. (For more
discussion of the manual strategies, we refer readers to [9]).

B. AutoGSTE: Automatic Abstraction Refinement

AutoGSTE employs a counterexample-guided abstraction
refinement loop formed by GSTE, the counterexample analysis
algorithm, and the abstraction refinement algorithms, as shown
in Figure 4. GSTE applies quaternary abstraction to verify
a circuit M against an assertion graph G. If GSTE reports
an assertion violation: a consequent in the assertion graph
is violated, it generates a counterexample (a symbolic error
trace), which is a sequence of simulation steps that lead

holds
Assertion

Abstraction
Refined

Assertion
fails Imprecision

Causes of

Counter
Example

Circuit
Assertion

Graph

GSTE

AutoGSTE

Counter Example Analysis

Refinement Algorithms

Fig. 4. Automatic Abstraction Refinement Loop for GSTE

to the consequent violation. The counterexample analysis
algorithm exams the counterexample to identify the causes of
the consequent violation. If it is caused by conflicting values
to certain circuit nodes, the assertion fails. Otherwise, the
refinement algorithms conduct abstraction refinement accord-
ing to the causes identified. The model refinement algorithm
automatically identifies precise nodes that need to be marked
in the circuit. The specification refinement algorithm applies
semantics-preserving transformations to certain edges of the
assertion graph on-the-fly in the GSTE symbolic simulation.

C. Identification of Causes for Consequent Violation

1) Counterexample Generation from GSTE: When GSTE
reports an assertion failure, it also presents a computing history
which is a symbolic searching tree of triples (e, src, dest),
where e is an edge that GSTE simulated, and src and dest
are the quaternary states before and after the simulation of
the edge e. Given the triple which causes the consequent
violation, we backtrack through the computing history to find
the occurrence of the triple (e′, src′, src), and then continue
the backtracking until we reach an edge originated from the
initial vertex in the assertion graph. The sequence of triples
traversed during the backtracking forms a counterexample CE
that leads to the consequent violation. Formally, we define the
counterexample as a sequence of triples CE = [t1, t2, . . . , tl]
such that for every index 1 ≤ i ≤ l, ti = (edgei, srci, desti),
where edgei is the edge traversed in step i and srci and desti
are the states before and after this simulation of edgei.

2) Identification of Causes: Once the counterexample is
generated, the counterexample analysis algorithm is applied
to determine the causes of the consequent violation. If the
violation is due to conflicting values to certain circuit nodes
in a circuit state and a corresponding consequent, we know the
circuit does not satisfy the assertion graph. If the violation is
caused by the unknown value of a circuit node, starting from
the circuit node, our algorithm backtracks through the error
trace and conducts fan-in analysis over the circuit to identify
the circuit nodes where the unknown values were introduced.

The analysis algorithm is shown in Figure 5. It inputs
the counterexample CE, the post-image function post and

Algorithm: AnalyzeCounterExample(CE[1 : l], post)
1: V iolators ← {n|n ∈ N, n violates cons(CE[l].edge)

due to unknown value}
2: Candidate ← ∅, Q ← ∅
3: forall n ∈ V iolators do Q.enqueue((n, l))
4: while Q
= ∅ do
5: (n, step) ← Q.dequeue()
6: if n ∈ NI then
7: add (n, step, INPUT) to Candidate
8: else if n depends on symbolic variables from

ant(CE[step − 1].edge) then
9: add (n, step, WEAK) to Candidate

10: else if n has precise value in post(CE[step −
1].dest) then

11: add (n, step, UNION) to Candidate
12: else
13: New ← {(n′, step− 1)|n′ ∈ fanin(n), n′ is un-

known in CE[step− 1].dest and may contribute
to the unknown value of n}

14: Q.enqueue(New)
15: end if
16: end while
17: return Candidate

Fig. 5. Counterexample Analysis Algorithm

outputs a set of circuit nodes Candidate which get unknown
values directly due to inputs, quaternary state set unions, and
quantified-out symbolic variables. The cause for the unknown
value is attached to each node. In this algorithm, fanin(n)
is the function that identifies all circuit nodes that affect the
value of a circuit node n.

Given the counterexample CE, we start with the time
step l at which a consequent violation is reported. We first
decide which circuit nodes have unknown values and cause
the violation. This can be done by comparing the quaternary
assignment representing the set of states simulated by the
edge, CE[l].dest, and the quaternary assignment representing
the consequent of the edge, cons(CE[l].edge). If a circuit
node n has an unknown value in CE[l].dest, while having a
boolean value in cons(CE[l].edge), we know that n violates
cons(CE[l].edge). All violating circuit nodes are put into a
queue Q (Steps 1-3).

For each node n in Q, if n is an input node, we identify n
and mark the cause as “INPUT” (Steps 4-7). If n depends on a
symbolic variable in ant(CE[l − 1].edge), we identify n and
mark the cause as “WEAK” (Steps 8-9). If n has precise value
in post(CE[l − 1].dest), we identify n and mark the cause
as “UNION” (Steps 10-11). All the identified circuit nodes are
added into the node-cause set Candidate.

If none of the above conditions holds, we backtrack to the
previous time step l − 1. We also conduct a one-level fan-in
analysis from n in the circuit to identify all nodes that affect n.
Among these nodes, for each node n′ with an unknown value
in the quaternary assignment of CE[l − 1].dest and that may

contribute to the unknown value of n in CE[l].dest, we repeat
this analysis for n′ until one of the three causes above is found
in the counterexample, by putting n′ into Q (Steps 13-14). We
improve the accuracy of this analysis through examining the
different types of gates case-by-case.

It is possible that at the same time, a circuit node can get
unknown value due to both a state set union and a quantified-
out symbolic variable. In our refinement loop, one cause is
identified at a time and eventually both causes are identified.

Using the parametric representation, a circuit node can have
a partially unknown value, i.e., under certain condition, node
n has an unknown value. In the backtracking, we keep track
of the condition under which node n has an unknown value. In
the fan-in analysis of n, the condition is propagated to n′ the
same way as backward reasoning in bidirectional GSTE [8].

D. Refinement Algorithms

1) Constraining Input Nodes: If a circuit node identified by
the analysis algorithm is an input node, a symbolic constant or
variable is introduced in the antecedent of the corresponding
edge of the assertion graph to rule out the unknown value of
this node. In STE, this type of imprecision can be addressed by
constraining the inputs using symbolic constants. In [13], an
approach to automatically constraining the input nodes with
symbolic constants has been proposed for STE. The same
heuristics can be applied in our approach. However, in GSTE,
constraining symbolic constants on loop edge may cause the
input nodes have the same input signals every time the edge
is simulated. Therefore, if the edge is on a loop, a symbolic
variable should be introduced.

2) Marking Precise Nodes: After we identify the circuit
nodes (i.e., the nodes in Candidate) that get unknown values
due to quaternary state set unions or quantified-out symbolic
variables, we can refine the circuit model M by marking these
nodes as precise nodes, and then rerun GSTE with the refined
model. The correctness of this refinement is guaranteed by
Lemma 4.1. Let precise(M, p) be the circuit model with the
circuit node p marked as a precise node in M .

Lemma 4.1: (Yang and Seger [9])
Given G, ∀p ∈ NS(M), M |= G iff precise(M, p) |= G.

There are two strategies in marking the identified nodes: we
can mark them either all at once or one at a time. It is easy
to see that there is a trade off between these two strategies.
The first strategy may converge faster while it may lead to
more precise nodes than necessary. The second approach may
find a smaller set of precise nodes while it may require more
iterations to converge. Heuristics can be applied to improve
these two strategies, for instance, an effective heuristic in
practice is to pick control nodes as precise nodes over data
nodes when using the second strategy.

3) On-the-fly Transformations of Assertion Graphs: Mak-
ing too many nodes precise may cause state space explosions.
And identifying a minimal set of circuit nodes as precise nodes
is challenging. An alternative approach to address imprecision
caused by unions or symbolic variables is to conduct on-the-
fly semantics-preserving transformations to the assertion graph

Algorithm: ExtendedGSTE(G, post, Edges)
1: for all e from v0 do Q.enqueue((e, ant(e)))
2: for all e ∈ Edges do Hash(e) ← ∅
3: while Q
= ∅ do
4: (e′, sim(e′)) ← Q.dequeue()
5: for all successor edge e of e′ do
6: NewState ← post(sim(e′)) ∩ ant(e)
7: if e ∈ Edges then
8: if e is marked UNION then
9: if NewState /∈ Hash(e) then

10: Hash(e) ← Hash(e) ∪ {NewState}
11: Q.enqueue((e, NewState))
12: end if
13: else if e is marked WEAK then
14: Weak ← {states derived from NewState

by assigning all combination of boolean val-
ues for symbolic variables in ant(e)}

15: for all s ∈ Weak do
16: if s /∈ Hash(e) then
17: Hash(e) ← Hash(e) ∪ {s}
18: Q.enqueue((e, s))
19: end if
20: end for
21: end if
22: else
23: sim(e) ← sim(e) ∪ NewState
24: if there is a change in sim(e) then

Q.enqueue(e, sim(e))
25: end if
26: end for
27: end while
28: for all e ∈ V do consequent check

Fig. 6. GSTE Extended with Semantic-Preserving Transformation

G. The motivation is that in some cases, the circuit nodes only
need to keep precise values on some assertion graph edges and
making them precise in the whole simulation is too costly.

Our algorithm for on-the-fly transformation of assertion
graphs, shown in Figure 6, extends the basic GSTE algo-
rithm to support dynamic loop-unrolling and case-splitting
of assertion graph edges in the symbolic simulation. Here
Edges =

⋃
(n,i)∈Candidate{CE[i].edge}, namely the set of

assertion edges that need to be transformed. The algorithm
includes two parts: the on-the-fly transformation (Steps 7-21)
and the normal GSTE fixed-point computation (Steps 22-25).
In the transformation, to keep precise states, we built a hash
table for each edge e in Edges (Steps 1-2). When a new
post-image NewState of edge e is generated, we first check
if edge e is marked as UNION. If yes, we exam the hash table.
If NewState is not in the hash table, NewState is added to
the hash table and the simulation continues with NewState;
otherwise, a fixed point is reached (Steps 8-12). In essence, this
realizes loop-unrolling: Loops in G are expanded to mimic the
real computation flow of the circuit. The correctness of this

loop-unrolling transformation is guaranteed by Lemma 4.2.
Let l be a set of edges forming a loop in G and unroll(G, l)
be the assertion graph with l unrolled in G.

Lemma 4.2:
Given M , for any loop l in G,
M |= G iff M |= unroll(G, l).

The key intuition of the proof for Lemma 4.2 is as follows.
For any finite path in G, there is one and only one finite path in
unroll(G, l) with the same length and labels, and vice versa.
(Space limitation precludes presentation of detailed proofs for
Lemma 4.2 and the lemmas and theorems below.)

If edge e is marked as WEAK, we generate all possible
combinations of boolean assignments to the symbolic variables
in ant(e), and apply these combinations to NewState to get a
set of states Weak. Each state in Weak which is not reached
before is put into the queue (Steps 13-21). This is equivalent
to case splitting of certain edges. The correctness of this
transformation is guaranteed by Lemma 4.3. Let split(G, e)
be the assertion graph with edge e case-split in G.

Lemma 4.3:
Given M , ∀e ∈ E(M), M |= G iff M |= split(G, e).

The key intuition of the proof for Lemma 4.3 is as follows.
As e is case-split into e1, · · · , ek, where ant(e1) ∪ · · · ∪
ant(ek) = ant(e) and cons(e1) = · · · = cons(ek) = cons(e).
In split(G, e), e1, · · · , ek cover all the possible cases which
are covered by e in G, without introducing any new cases.

E. Correctness of AutoGSTE

The abstraction-refinement loop terminates when either
GSTE reports verification success or it reports a consequent
violation due to conflicting values to certain circuit nodes. The
termination of this loop is guaranteed by Theorem 4.1.

Theorem 4.1:
AutoGSTE(M,G) terminates.

The basic idea for proving this theorem is that the circuit to
verify is finite-state. Our refinement algorithms add input node
constraints, mark precise nodes, and apply semantics preserv-
ing transformations in a monotonic fashion. The correctness
of whole AutoGSTE immediately follows from Lemma 4.1,
Lemma 4.2, Lemma 4.3, and Theorem 4.1.

Theorem 4.2:
M |= G iff AutoGSTE(M,G) returns true.

V. EXPERIMENTAL RESULTS

We have implemented AutoGSTE in the Intel Forte environ-
ment [10] and upon GSTE. We have conducted experiments on
a family of benchmark FIFO circuits from Intel, and analyzed
how our approach scale with the depth of FIFO. Figure 7
shows a simple stationary 3-entry 8-bit FIFO circuit. The as-
sertion graph for this circuit is shown in Figure 8. The assertion
graph checks whether the empty and full signals of the FIFO
circuit are set correctly. The assertion graph is independent
of the circuit implementation and data width, and exposes
imprecision of quaternary abstraction due to both state set

din[7:0]

demux
reset empty

dout[7:0]

full
enq

entry[0]

entry[1]

entry[2]

mux

deq

head[1:0]
tail[1:0]

w
rap

Fig. 7. Stationary FIFO Implementation

!empty&!full

empty&!full
enq iff deq /
!empty&!full

enq iff deq /
!empty&!full

enq /
empty&!full

enq&!deq /
!empty&!full

enq&!deq /
!empty&!full

!empty&full
deq /!enq&deq /

!empty&!full
!enq&deq /

!enq /

reset / true

init

!deq /
!empty&full

3−entry0−entry 1−entry 2−entry

Fig. 8. FIFO Assertion Graph

TABLE III
MODEL REFINEMENT RESULTS FOR 8-BIT FIFOS

Circuit Mark precise nodes all at once Mark precise nodes one a time
FIFO # of # of # of P. Time BDD Mem # of P. Time BDD Mem
Depth Nodes Iter. Nodes (Sec.) Nodes (MB) Nodes. (Sec.) Nodes (MB)

3 181 1 5 0.12 10232 17 3 0.26 8996 17
8 296 1 7 0.4 32923 19 4 0.81 26708 18
16 476 1 9 1.1 72189 22 5 2.37 58250 22
24 787 1 11 2.38 131236 24 6 6.83 104246 24

unions and quantified-out symbolic variables. All experiments
were conducted on a workstation with 3GHz Intel R© Xeon R©
processor with 2GB memory, and all verifications were done
on the original circuits with no prior abstraction.

Table III lists the verification results for model refinement.
In [9], manual analysis showed the imprecision for the sta-
tionary FIFO implementation is caused by different values
in the head and tail pointers as well as the wrap bit. Our
counter example analysis algorithm identified the same set of
potential circuit nodes. If we mark these circuit nodes all at
once, only one refinement iteration is needed, and it makes
all the non-data-path elements in the circuit precise, which
has the same effect as manual effort. If we mark precise
nodes one at a time, more iterations are needed. However,
interestingly, it finds a smaller set of precise nodes than manual
analysis. That is we only need to make the head pointer and
the first bit of tail pointer precise. This leads to a smaller
number of BDDs generated, which takes less memory than the
first strategy. Therefore, it is reasonable to conclude the first
strategy requires fewer iterations but more BDDs, while the
second strategy is more likely to converge into a smaller set of
precise nodes but take more iterations. In practice, there is no
definite evidence that which strategy would terminate more
quickly since in the first strategy, each iteration takes more
time and in the second strategy, more iterations are needed.

Table IV lists the verification results for specification re-
finement. In the stationary implementation, every assertion

TABLE IV
SPECIFICATION REFINEMENT RESULTS FOR 8-BIT FIFOS

Circuit GSTE on Original assertion graph Semantic-Preserving Transformation
FIFO # of Time BDD Mem Result # of Time BDD Mem Result
Depth Edges (Sec.) Nodes (MB) Edges (Sec.) Nodes (MB)

3 11 0.01 5 17 Unknown 31 0.23 6 17 Pass
8 26 0.02 5 17 Unknown 201 2.69 6 19 Pass
16 50 0.04 5 17 Unknown 785 17.31 6 26 Pass
24 74 0.07 5 17 Unknown 1753 54.23 6 39 Pass

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25
 15

 20

 25

 30

 35

 40

R
un

 T
im

e
(s

ec
)

M
em

or
y

(M
B

)

FIFO Depth

time for spec ref.
time for model ref.
mem for spec ref.

mem for model ref.

Fig. 9. Time and Memory for Verification of FIFOs

graph edge corresponds to several different combinations of
the head and tail pointer values, so the refined assertion
graphs grow quickly as the depth of FIFO increases. It is very
difficult to conduct this refinement manually [9]. Our counter-
example analysis algorithm identified all the edges to be
refined, and our refinement algorithm applies the appropriate
transformations. The transformations eliminate all the UNION

and WEAK cases without increasing the number of BDDs
needed. Different from the model refinement, here the memory
usage is largely dependent on the number of actual assertion
graph edges generated rather than the number of BDDs.

We plot the time and space complexity data of both model
refinement and specification refinement in Figure 9. The time
and space complexities for model refinement grow almost
linearly while those of the specification refinement grow
exponentially, with respect to the depth of FIFO. The reason
for the later case is that the symbolic variable on every loop
edge will split every state into two states carrying different
values for the symbolic variable, the verification complexity
is determined by the stationary implementation itself. In this
experiment, the model refinement approach is more favorable
than the specification refinement approach. However, in some
cases, the circuit nodes only need to keep precise values on
certain edges, or the number of different states simulated by
these edges is small, specification refinement would be more
efficient than model refinement, and is less likely to suffer
from state space explosions. Furthermore, the specification
refinement reveals the real computation flow of the circuit,
which allows the initial specification to be very high level,
and provides a good guidance for debugging in practice.

As we can observe, the verification time for our automatic
refinement approach is fairly small, and the amount of memory

used is of reasonable size. None of the two kinds of refinement
is easy to conduct manually as the sizes of the circuit and
assertion graph increase. Our experiments demonstrate the
correctness and effectiveness of our approach.

VI. CONCLUSIONS

In this paper, we have presented AutoGSTE, a comprehen-
sive approach to automatic abstraction refinement for GSTE.
It completely addresses the imprecision of GSTE’s quaternary
abstraction caused by under-constrained input circuit nodes,
quaternary state set join, and quantified-out symbolic variables.
Its application to small to large size circuits has demonstrated
that it is able to quickly converge to an abstraction upon which
GSTE can either verify or falsify an assertion graph efficiently.

Regarding model refinement, further research is needed
to explore effective methods for determining a minimal set
of circuit nodes as precise nodes in order to minimize the
state space that has to be explored. Regarding specification
refinement, further research is needed to develop heuristics that
can reduce unnecessary loop-unrollings and case-splittings. It
is also interesting to see how these two automatic refinement
approaches can be integrated to further speed up the conver-
gence of our refinement loop into the right level of abstraction.

ACKNOWLEDGMENT

The authors thank Bryant York for his support. This research
is partially supported by Intel Equipment Grant #33768.

REFERENCES

[1] S. Hazelhurst and C.-J. Seger, “A simple theorem prover based on
symbolic trajectory evaluation and OBDDs,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 14,
no. 4, pp. 413–422, April 1995.

[2] C.-J. Seger and R. Bryant, “Formal verification by symbolic evaluation
of partially-ordered trajectories,” Formal Methods in System Design,
vol. 6, no. 2, pp. 147–190, March 1995.

[3] C.-T. Chou, “The mathematical foundation of symbolic trajectory eval-
uation,” in CAV’1999, July 1999.

[4] E. Clarke, O. Grumberg, and D. Peled, Model Checking. The MIT
Press, 1999.

[5] O. Coudert, J. Madre, and C. Berthet, “Verifying temporal properties of
sequential machines without building their state diagrams,” in Proc. of
CAV’90, 1990, pp. 23–32.

[6] K. McMillan, Symbolic Model Checking: An Approach to the State
Explosion Problem. Kluwer Academic, 1993.

[7] J. Yang and C.-J. Seger, “Generalized symbolic trajectory evaluation,”
Intel SCL Technical Report, 2000.

[8] J. Yang and C.-J. H. Seger, “Introduction to generalized symbolic
trajectory evaluation,” Transaction on VLSI Systems, vol. 11, no. 3, June
2003.

[9] J. Yang and C. J. H. Seger, “Generalized symbolic trajectory evaluation
- abstraction in action,” in Proc. of FMCAD, November 2002.

[10] C.-J. Seger, R. Jones, J. O’Leary, T. Melham, M. Aagaard, C. Barrett,
and D. Syme, “An industrially effective environment for formal hardware
verification,” IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 24, no. 9, 2005.

[11] R. P. Kurshan, Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach. Princeton University Press, 1994.

[12] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement,” in Computer Aided
Verification, 2000, pp. 154–169.

[13] R. Tzoref and O. Grumberg, “Automatic refinement and vacuity detec-
tion for symbolic trajectory evaluation,” in STE Symposium, CAV, 2006,
pp. 190–204.

[14] J.-W. Roorda and K. Claessen, “Sat-based assistance to abstraction
refinement for symbolic trajectory evaluation,” in Proc. of CAV, 2006.

