Name: \qquad

Sample Exam

- The exam contains 4 questions. You need to solve all of them to get full credit.
- You can use any results that were proved in class (no need to re-prove them), as long as you state them precisely.
- Make sure that your proofs are formal and complete.

Question $1 \mathbf{(2 5 \%)}$ A sequence is palindromic if it is the same whether read left to right or right to left. An example is $m, a, l, a, y, a, l, a, m$. Given a sequence $a_{1}, a_{2}, \ldots, a_{n}$ give an $O\left(n^{2}\right)$ algorithm to compute a longest palindromic subsequence of the given sequence. Prove the algorithm's correctness. For example, the sequence below

$$
A, C, G, T, G, T, C, A, A, A, A, T, C, G
$$

has many palindromic subsequences, including A, C, G, C, A and A, A, A, A.

Question 2 (25\%) In the Minimum Dominating Set problem, we are given an undirected graph $G=(V, E)$ with non-negative weights $w(v)$ on vertices. We say that a subset $S \subseteq V$ of vertices is a dominating set iff for every vertex $u \notin S$, there is some edge $(u, v) \in E$, such that $v \in S$. The goal in the Minimum Dominating Set Problem is to find a dominating set S, minimizing $\sum_{v \in S} w(v)$.
a. Give an efficient algorithm for solving Minimum Dominating Set on trees. Prove the algorithm's correctness.
b. Prove that Minimum Dominating Set is NP-complete on general graphs.

Question 3 ($\mathbf{2 5 \%}$) Suppose you are given an $n \times n$ grid graph, as in the figure below. Associated with each node v of the grid is a non-negative integer weight $w(v)$. You may assume that the weights of all vertices are distinct. Your goal is to choose an independent set S of vertices of the grid, so that the sum of the total weight of the vertices in $S, \sum_{v \in S} w(v)$ is maximized.
Consider the following greedy algorithm.

- Start with $S=\emptyset$.
- While some node remains in G :
a. Pick a node $v \in G$ of maximum weight.
b. Add v to S.
c. Delete v and all its neighbors, together with their adjacent edges, from G.

Figure 1: An $n \times n$ grid graph

- Return S.

a. Let S be the solution returned by the above algorithm, and let T be any other independent set in G. Show that for every node $v \in T$, either $v \in S$, or there is a node $v^{\prime} \in S$, so that $w(v) \leq w\left(v^{\prime}\right)$, and v^{\prime} is a neighbor of v.
b. Show that the above greedy algorithm returns an independent set of weight at least OPT/4, where OPT is the weight of the maximum-weight independent set.
c. Show an example where the weight of the solution produced by the algorithm is at most $\frac{\mathrm{OPT}}{4}+\epsilon$, where $\epsilon=0.001$. (You are free to choose the value n that works best for your example).

Question $4 \mathbf{(2 5 \%)}$) In the k-Not-All-Equal problem, we are given a set x_{1}, \ldots, x_{n} of variables that can be assigned values 0 or 1 . Additionally, we are given a collection Σ of m constraints. Each constraint $C_{i} \in \Sigma$ is specified by a subset $x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{k}}$ of k variables. Constraint C_{i} is satisfied iff not all variables are assigned the same value. In other words, the only assignments that do not satisfy C_{i} are the ones where all variables $x_{i_{1}}, x_{i_{2}}, \ldots x_{i_{k}}$ are assigned 0 , or all these variables are assigned 1 . The goal is to find an assignment that satisfies as many constraints as possible.
a. Consider an algorithm that chooses, for every variable x_{i}, an assignment 0 or 1 independently at random, with probability $\frac{1}{2}$ each. What is the expected number of constraints satisfied by the solution the algorithm produces?
b. Assume now that the variables are allowed to take values in set $\{1, \ldots, r\}$. Extend the above randomized algorithm to this case. What is the expected number of constraints satisfied by the solution produced by the algorithm?
c. Prove that any instance of k -Not-All-Equal problem on $m=5$ constraints, where $k=4$ and $r=3$, always has a solution satisfying all constraints.

