Name:

Sample Exam

- The exam contains 4 questions. You need to solve all of them to get full credit.
- You can use any results that were proved in class (no need to re-prove them), as long as you state them precisely.
- Make sure that your proofs are formal and complete.

Question 1 (25%) A sequence is *palindromic* if it is the same whether read left to right or right to left. An example is m, a, l, a, y, a, l, a, m. Given a sequence a_1, a_2, \ldots, a_n give an $O(n^2)$ algorithm to compute a *longest* palindromic *subsequence* of the given sequence. Prove the algorithm's correctness. For example, the sequence below

$$A, C, G, T, G, T, C, A, A, A, A, T, C, G$$

has many palindromic subsequences, including A, C, G, C, A and A, A, A, A.

Question 2 (25%) In the Minimum Dominating Set problem, we are given an undirected graph G = (V, E) with non-negative weights w(v) on vertices. We say that a subset $S \subseteq V$ of vertices is a *dominating set* iff for every vertex $u \notin S$, there is some edge $(u, v) \in E$, such that $v \in S$. The goal in the Minimum Dominating Set Problem is to find a dominating set S, minimizing $\sum_{v \in S} w(v)$.

- a. Give an efficient algorithm for solving Minimum Dominating Set on trees. Prove the algorithm's correctness.
- b. Prove that Minimum Dominating Set is NP-complete on general graphs.

Question 3 (25%) Suppose you are given an $n \times n$ grid graph, as in the figure below. Associated with each node v of the grid is a non-negative integer weight w(v). You may assume that the weights of all vertices are distinct. Your goal is to choose an independent set S of vertices of the grid, so that the sum of the total weight of the vertices in S, $\sum_{v \in S} w(v)$ is maximized.

Consider the following greedy algorithm.

- Start with $S = \emptyset$.
- While some node remains in G:
 - a. Pick a node $v \in G$ of maximum weight.
 - b. Add v to S.
 - c. Delete v and all its neighbors, together with their adjacent edges, from G.

Figure 1: An $n \times n$ grid graph

- Return S.
- a. Let S be the solution returned by the above algorithm, and let T be any other independent set in G. Show that for every node $v \in T$, either $v \in S$, or there is a node $v' \in S$, so that $w(v) \leq w(v')$, and v' is a neighbor of v.
- b. Show that the above greedy algorithm returns an independent set of weight at least OPT/4, where OPT is the weight of the maximum-weight independent set.
- c. Show an example where the weight of the solution produced by the algorithm is at most $\frac{\mathsf{OPT}}{4} + \epsilon$, where $\epsilon = 0.001$. (You are free to choose the value *n* that works best for your example).

Question 4 (25%) In the k-Not-All-Equal problem, we are given a set x_1, \ldots, x_n of variables that can be assigned values 0 or 1. Additionally, we are given a collection Σ of m constraints. Each constraint $C_i \in \Sigma$ is specified by a subset $x_{i_1}, x_{i_2}, \ldots x_{i_k}$ of k variables. Constraint C_i is satisfied iff not all variables are assigned the same value. In other words, the only assignments that **do not** satisfy C_i are the ones where all variables $x_{i_1}, x_{i_2}, \ldots x_{i_k}$ are assigned 0, or all these variables are assigned 1. The goal is to find an assignment that satisfies as many constraints as possible.

- a. Consider an algorithm that chooses, for every variable x_i , an assignment 0 or 1 independently at random, with probability $\frac{1}{2}$ each. What is the expected number of constraints satisfied by the solution the algorithm produces?
- b. Assume now that the variables are allowed to take values in set $\{1, \ldots, r\}$. Extend the above randomized algorithm to this case. What is the expected number of constraints satisfied by the solution produced by the algorithm?
- c. Prove that any instance of k-Not-All-Equal problem on m = 5 constraints, where k = 4 and r = 3, always has a solution satisfying all constraints.