Algorithms Tutorial 2

January 12, 2011

Question 0.1. Given a set S of n items, where item i has weight $w_i \ge 0$, value $v_i \ge 0$, and a bound $W \ge 0$. Design an O(nW) time algorithm to select a subset T of S so that $\sum_{i\in T} w_i \le W$ and $\sum_{i\in T} v_i$ is maximized. Assume that the weights and values are integral.

This is the example on pg. 271 of the Kleinberg & Tardos book.

Question 0.2. Given a total of n courses each with a grade on a scale of [1,g] (g > 1) and a map f such that f(i,t) is the grade one obtains by studying t hours for course i. Suppose H > 0 hours are available for studying. Design a polynomial (in g, n, H) algorithm to determine the maximum average grade. Assume that f is non-decreasing w.r.t. t, also assume that g, H are integers and that you spend an integer number of hours on each course.

This is problem 20 on pg. 329 of the Kleinberg & Tardos book.