Algorithms Tutorial 8

March 2, 2011

Question 0.1. Given a set $S \subset \mathbb{Z}^{+}$of values. Design a $\frac{1}{2}$-approximation algorithm to partition S into m non-empty parts $S_{i}(1 \leq i \leq m)$ such that $\min _{i} \Sigma_{s_{j} \in S_{i}} s_{j}$ is maximized. Assume that all elements in S have value less than $\frac{\Sigma_{s_{i} \in S s_{i}}}{2 m}$.

This is problem 7 on pg. 655 of the Kleinberg \& Tardos book.
Question 0.2. Given a 3 -uniform hypergraph H, design a $\frac{1}{3}$-approximation algorithm to find the maximum matching.

This is problem 9 on pg. 657 of Kleinberg \& Tardos book.

