Algorithms Tutorial 8

March 2, 2011

Question 0.1. Given a set $S \subset \mathbb{Z}^+$ of values. Design a $\frac{1}{2}$ -approximation algorithm to partition S into m non-empty parts S_i $(1 \le i \le m)$ such that $\min_i \sum_{s_j \in S_i} s_j$ is maximized. Assume that all elements in S have value less than $\frac{\sum_{s_i \in S^{s_i}}}{2m}$.

This is problem 7 on pg. 655 of the Kleinberg & Tardos book.

Question 0.2. Given a 3-uniform hypergraph H, design a $\frac{1}{3}$ -approximation algorithm to find the maximum matching.

This is problem 9 on pg. 657 of Kleinberg & Tardos book.