Homework Assignment 2

Due: Thursday, May 15 in class.

General remark: whenever you are asked to provide an α-approximation algorithm, you need to prove that your algorithm outputs a feasible α-approximate solution.

1. Metric k-cluster In the metric k-cluster problem, we are given a complete undirected graph with non-negative weights w_{e} on edges satisfying the triangle inequality and an integer $k>0$. The goal is to partition all vertices into k clusters V_{1}, \ldots, V_{k}, while minimizing the maximum distance of any pair of points in a cluster. So we seek to minimize the maximum, over all clusters V_{i}, of $\max _{u, v \in V_{i}}\left\{w_{(u, v)}\right\}$.
(a) Show a factor-2 approximation algorithm for the problem.
(b) Prove that the problem is hard to approximate up to any factor smaller than 2. Hint: Reduction from 3-coloring.
2. k-dispersion The input to the k-dispersion problem is a complete undirected graph $G=(V, E)$ with weights $w_{e} \geq 0$ on edges $e \in E$, that obey the triangle inequality. Additionally, we are given an integer $k>0$. The goal is to choose a subset $S \subseteq V$ of k vertices that are as far apart from each other as possible. Namely, we are trying to maximize $\min _{s, s^{\prime} \in S}\left\{w_{\left(s, s^{\prime}\right)}\right\}$.

- Consider the following greedy algorithm: start with $S=\{v\}$ for an arbitrary node $v \in V$, and repeatedly add a node furthest from the nodes currently in S, until $|S|=k$. Show that this is a 2 -approximation algorithm.
- Prove that the problem is hard to approximate up to any factor smaller than 2 .

3. Multidimensional knapsack and bin packing

(a) In the multidimensional knapsack problem, the input is a set V of n non-negative integral d-dimensional vectors. Each vector $v_{i} \in V$ has a profit $w_{i} \geq 0$. Additionally, we are given a d-dimensional non-negative vector B (knapsack capacity). The goal is to find a maximum-profit subset $V^{\prime} \subseteq V$ of vectors, whose sum is bounded by B coordinate-wise.
Show a pseudo-polynomial time algorithm for multidimensional knapsack when d is a constant independent of n. What is the running time of your algorithm?
(b) In the multidimensional bin-packing problem, we are given a set V of n non-negative d dimensional vectors. The goal is to partition the vectors into minimum number of bins, such that the sum of vectors in every bin is bounded by 1 in every coordinate.
Show an $O(d)$-approximation algorithm for multidimensional bin-packing.
4. Maximum Independent Set of Disks In this problem, we are given a set S of unit-diameter disks in the plane. The goal is to find a maximum-cardinality subset $S^{\prime} \subseteq S$ of disks, such that no two disks in S^{\prime} overlap. (For convenience, assume that the discs are open, so the disc boundary is not considered a part of the disc).
(a) Consider the following greedy algorithm: start with $S^{\prime}=\emptyset$, and process the disks in S one-by-one, in any order. For each such disk C, if $S^{\prime} \cup\{C\}$ is a feasible solution, then add C to S^{\prime}. What is the approximation factor of this algorithm? (Give the best upper bound you can.)
(b) Let $\epsilon: 0<\epsilon<1$ be some constant. Assume that we are given a grid whose lines are spaced $\lceil 1 / \epsilon\rceil$ units apart. Assume further that no disk in the input set S intersects the grid lines. Give an efficient algorithm for solving the problem exactly in this case.
(c) Assume that all input discs are contained in a bounding box of size $N \times N$, whose bottom left corner has coordinates $(0,0)$. Let $k=\lceil 1 / \epsilon\rceil$. For an integer $q: 0 \leq q<k$, a collection $L_{0}, L_{1}, L_{2}, \ldots, L_{\lfloor N / k\rfloor}$ of vertical lines is called a q-shifted collection of lines, iff for all $0 \leq$ $i \leq\lfloor N / k\rfloor$, line L_{i} is the vertical line at the coordinate $k i+q$. Let OPT be any optimal solution to the problem. Prove that for some integral value $0 \leq q<k$, the corresponding q-shifted set of vertical lines intersects at most $|\mathrm{OPT}| \epsilon$ of the discs in OPT.
(d) Design a PTAS for the problem. What is the running time of your algorithm?

