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ABSTRACT

We study the decremental All-Pairs Shortest Paths (APSP) problem

in undirected edge-weighted graphs. The input to the problem is

an undirected n-vertexm-edge graph G with non-negative lengths

on edges, that undergoes an online sequence of edge deletions.

The goal is to support approximate shortest-paths queries: given a

pair x ,y of vertices of G, return a path P connecting x to y, whose
length is within factor α of the length of the shortest x-y path,

in time Õ ( |E (P ) |), where α is the approximation factor of the al-

gorithm. APSP is one of the most basic and extensively studied

dynamic graph problems. A long line of work culminated in the

algorithm of [Chechik, FOCS 2018] with near optimal guarantees:

for any constant 0 < ϵ ≤ 1 and parameter k ≥ 1, the algorithm

achieves approximation factor (2 + ϵ )k − 1, and total update time

O (mn1/k+o (1) log(nL)), where L is the ratio of longest to shortest

edge lengths. Unfortunately, as much of prior work, the algorithm

is randomized and needs to assume an oblivious adversary; that is,
the input edge-deletion sequence is fixed in advance and may not

depend on the algorithm’s behavior.

In many real-world scenarios, and in applications of APSP to static

graph problems, it is crucial that the algorithm works against an

adaptive adversary, where the edge deletion sequence may depend

on the algorithm’s past behavior arbitrarily; ideally, such an algo-

rithm should be deterministic. Unfortunately, unlike the oblivious-
adversary setting, its adaptive-adversary counterpart is still poorly

understood. For unweighted graphs, the algorithm of [Henzinger,

Krinninger and Nanongkai, FOCS ’13, SICOMP ’16] achieves a

(1 + ϵ )-approximation with total update time Õ (mn/ϵ ); the best

current total update time guarantee of n2.5+O (ϵ )
is achieved by the

recent deterministic algorithm of [Chuzhoy, Saranurak, SODA’21],

with 2
O (1/ϵ )

-multiplicative and 2
O (log3/4 n/ϵ )

-additive approxima-

tion. To the best of our knowledge, for arbitrary non-negative edge

weights, the fastest current adaptive-update algorithm has total
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update timeO (n3 logL/ϵ ), achieving a (1+ϵ )-approximation. Even

if we are willing to settle for any o(n)-approximation factor, no

currently known algorithm has a better than Θ(n3) total update
time in weighted graphs and better than Θ(n2.5) total update time

in unweighted graphs. Several conditional lower bounds suggest

that no algorithm with a sufficiently small approximation factor

can achieve an o(n3) total update time.

Our main result is a deterministic algorithm for decremental APSP

in undirected edge-weighted graphs, that, for any Ω(1/ log logm) ≤

ϵ < 1, achieves approximation factor (logm)2
O (1/ϵ )

, with total up-

date time O
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 ) · logL

)
. In particular, we ob-

tain a (poly logm)-approximation in time Õ (m1+ϵ ) for any con-

stant ϵ , and, for any slowly growing function f (m), we obtain

(logm)f (m)
-approximation in time m1+o (1)

. We also provide an

algorithm with similar guarantees for decremental Sparse Neigh-

borhood Covers.
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1 INTRODUCTION

We study the decremental All-Pairs Shortest-Paths (APSP) problem
in weighted undirected graphs. In this problem, we are given as

input an undirected graphG with lengths ℓ(e ) ≥ 1 on its edges, that

undergoes an online sequence of edge deletions. The goal is to sup-

port (approximate) shortest-path queries shortest-path-query(x ,y):
given a pair x ,y of vertices of G, return a path connecting x to y,
whose length is within factor α of the length of the shortest x-y
path in G, where α is the approximation factor of the algorithm.

We also consider approximate distance queries, dist-query(x ,y):
given a pair x ,y of vertices of G, return an estimate dist′(x ,y) on

https://doi.org/10.1145/3406325.3451025
https://doi.org/10.1145/3406325.3451025
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the distance distG (x ,y) between x and y in graph G, such that

distG (x ,y) ≤ dist′(x ,y) ≤ α · distG (x ,y). APSP is one of the most

basic and extensively studied problems in dynamic algorithms, and

in graph algorithms in general. Algorithms for this problem often

serve as building blocks in designing algorithms for other graph

problems, in both the classical static and the dynamic settings.

Throughout, we denote bym and n the number of edges and the

number of vertices in the initial graphG , respectively, and by L the

ratio of largest to smallest edge length. In addition to the approxi-

mation factor of the algorithm, two other central measures of its

performance are: query time – the time it takes to process a single

query; and total update time – the total time that the algorithm

takes, over the course of the entire update sequence, to maintain

its data structures. Ideally, we would like the total update time of

the algorithm to be close to linear in m, and the query time for

shortest-path-query to be bounded by Õ ( |E (P ) |), where P is the

path that the algorithm returns.

A straightforward algorithm for the decremental APSP problem is

the following: every time a query shortest-path-query(x ,y) arrives,
compute the shortest x-y path in G from scratch. This algorithm

solves the problem exactly, but it has query time Θ(m). Another
approach is to rely on spanners. A spanner of a dynamic graph

G is another dynamic graph H ⊆ G, with V (H ) = V (G ), such
that the distances between the vertices of G are approximately pre-

served inH ; ideally a spannerH should be very sparse. For example,

a work of [6] provides a randomized algorithm that maintains a

spanner of a fully dynamic n-vertex graph G (that may undergo

both edge deletions and edge insertions), that, for any parameter k ,
achieves approximation factor (2k − 1), has expected amortized up-

date time O (k2 log2 n) per update operation, and expected spanner

size O (kn1/k logn). A recent work of [10] provides a randomized

algorithm for maintaining a spanner of a fully dynamic n-vertex
graph G with approximation factor O (poly logn) and total update

time Õ (m∗), wherem∗ is the total number of edges ever present

in G; the number of edges in the spanner H is always bounded by

O (n poly logn). One significant advantage of this algorithm over

the algorithm of [6] in that, unlike the algorithm of [6], it can with-

stand an adaptive adversary; we provide additional discussion of

oblivious versus adaptive adversary below. An algorithm for the

APSP problem can naturally build on such constructions of span-

ners: given a query shortest-path-query(x ,y) or dist-query(x ,y),
we simply compute the shortest x-y path in the spanner H . For

example, the algorithm for graph spanners of [10] implies a ran-

domized poly logn-approximation algorithm for APSP that has

O (m poly logn) total update time. A recent work of [7] provides

additional spanner-based algorithms for APSP. Unfortunately, it
seems inevitable that this straightforward spanner-based approach

to APSP must have query time Ω(n) for both shortest-path-query
and dist-query.

In this paper, our focus is on developing algorithms for the APSP
problem, whose query time is Õ ( |E (P ) |) for shortest-path-query,
where P is the path that the query returns, and O (poly log(mL))
for dist-query. There are several reasons to strive for these faster

query times. First, we typically want responses to the queries to be

computed as fast as possible, and the above query times are close

to the fastest possible. Second, obtaining Õ ( |E (P ) |) query time for

shortest-path-query is often crucial to obtaining fast algorithms for

classical (static) graph problems that use algorithms for APSP as a

subroutine. We provide an example of such an application to (static)

Maximum Multicommodity Flow/Minimum Multicut in uncapac-

itated graphs in Section 4.

We distinguish between dynamic algorithms that work against an

oblivious adversary, where the input sequence of edge deletions

is fixed in advance and may not depend on the algorithm’s past

behavior, and algorithms that work against an adaptive adversary,
where the input update sequence may depend on the algorithm’s

past responses and inner states arbitrarily. We refer to the former

as oblivious-update and to the latter as adaptive-update algorithms.

We note that any deterministic algorithm for the APSP problem is

an adaptive-update algorithm by definition.

The classical data structure of Even and Shiloach [19, 21, 32], that

we refer to as ES-Tree throughout the paper, implies an exact

deterministic algorithm for decremental unweighted APSP with

O (mn2) total update time, and the desiredO ( |E (P ) |) query time for

shortest-path-query, where P is the returned path. Short of obtain-

ing an exact algorithm for APSP, the best possible approximation

factor one may hope for is (1 + ϵ ), for any ϵ . A long line of work

[5, 8, 30, 40] is dedicated to this direction. The fastest algorithms in

this line of work, due to Henzinger, Krinninger, and Nanongkai [30],

and due to Bernstein [8] achieve total update time Õ (mn/ϵ ); the
former algorithm is deterministic but only works in unweighted

undirected graphs, while the latter algorithm works in directed

weighted graphs, with an overhead of logL in the total update

time, but can only handle an oblivious adversary. Unfortunately,

known conditional lower bounds show that these algorithms are

likely close to the best possible. Specifically, Dor, Halperin and

Zwick [20], and Roddity and Zwick [39] showed that, assuming the

Boolean Matrix Multiplication (BMM) conjecture
1
, for any α , β ≥ 1

with 2α + β < 4, no algorithm for APSP achieves a multiplicative

α and additive β approximation, with total update time O (n3−δ )

and query time O (n1−δ ), for any constant 0 < δ < 1. Henzinger

et al. [31] generalized this result to show the same lower bounds

for all algorithms and not just combinatorial ones, assuming the

Online Boolean Matrix-Vector Multiplication (OMV) conjecture
2
.

The work of Vassilevska Williams and Williams [43], combined

with the work of Roddity and Zwick [39], implies that obtaining

such an algorithm would lead to subcubic-time algorithms for a

number of important static problems on graphs and matrices.

Due to these negative results, much work on the APSP problem

inevitably focused on higher approximation factors. In this regime,

the oblivious-update setting is now reasonably well understood.

A long line of work [1, 13, 25, 30] recently culminated with a ran-

domized algorithm of Chechik [14], that, for any integer k ≥ 1

and parameter 0 < ϵ < 1, obtains a ((2 + ϵ )k − 1)-approximation,

with total update time O (mn1/k+o (1) logL), when the input graph

1
The conjecture states that there is no “combinatorial” algorithm for multiplying two

Boolean matrices of size n × n in time n3−δ
for any constant δ > 0.

2
The conjecture assumes that there is no n3−δ

-time algorithm, for any constant

0 < δ < 1, for the OMV problem, in which the input is a Bollean (n ×n) matrix, with

n Boolean dimension-n vectors v1, . . . , vn arriving online; the algorithm needs to

output Mvi immediately after vi arrives
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is weighted and undirected. This result is near-optimal, as all its

parameters almost match the best static algorithm [42]. We note

that this result was recently slightly improved by [36], who ob-

tain total update time O (mn1/k logL), and improve query time for

dist-query.

In contrast, progress in the adaptive-update setting has been much

slower. Until recently, the fastest adaptive-update algorithm for

unweighted graphs, due to Henzinger, Krinninger, and Nanongkai

[30], only achieved an Õ (mn/ϵ ) total update time (for approxi-

mation factor (1 + ϵ )); the algorithm was recently significantly

simplified by Gutenberg and Wulff-Nilsen [29]. A recent work of

[18] provided a deterministic algorithm for unweighted undirected

graphs, that, for any parameter 1 ≤ k ≤ o(log1/8 n), in response to

query shortest-path-query(x ,y), returns a path of length at most

3 · 2k · distG (x ,y) + 2(O (k log
3/4 n)

, with query timeO ( |E (P ) | ·no (1) )

for shortest-path-query, and total update time n2.5+2/k+o (1) . To
the best of our knowledge, the fastest current adaptive-update al-

gorithm for weighted graphs has total update time O (n3 logL/ϵ )
and approximation factor (1 − ϵ ) (see [33]).

Interestingly, even if we allow an o(n)-approximation factor, no

adaptive-update algorithms with better than Θ(n3) total update
time and better than Θ(n) query time for shortest-path-query and

dist-query are currently known for weighted undirected graphs,

and no adaptive-update algorithms with better than Θ(n2.5) total
update time and better than Θ(n) query time are currently known

for unweighted undirected graphs. Moreover, even for the seem-

ingly simpler Single-Source Shortest Path problem (SSSP), where
all queries must be between a pre-specified source vertex s and
another arbitrary vertex of G, no algorithms achieving a better

than Θ(n2) total update time, and better than Θ(n) query time for

shortest-path-query are known. To summarize, ideally we would

like an algorithm for decremental APSP in weighted undirected

graphs that achieves the following properties:

• it can withstand an adaptive adversary (and is ideally determin-

istic);

• it has query time Õ ( |E (P ) |) for shortest-path-query, where P
is the returned path, and query time Õ (1) for dist-query;
• it has near-linear inm total update time; and

• it has a reasonably low approximation factor (ideally, polyloga-

rithmic or constant).

Our main result comes close to achieving all these properties. Specif-

ically, we provide a deterministic algorithm for APSP in weighted

undirected graphs. For any precision parameter Ω(1/ log logm) <

ϵ < 1, the algorithm achieves approximation factor (logm)2
O (1/ϵ )

,

with total update timeO
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 ) · logL

)
. The query

time for processing dist-query is O (logm log logL), and the query

time for shortest-path-query isO ( |E (P ) |)+O (logm log logL), where
P is the returned path. In particular, by letting ϵ be a small enough

constant, we obtain a O (poly logm)-approximation with total up-

date time time O (m1+δ ), for any constant 0 < δ < 1, and by

letting 1/ϵ be a slowly-growing function ofm (for example, 1/ϵ =

O (log(log∗m))), we obtain an approximation factor (logm)O (log∗m)
,

and total update time O (m1+o (1) ).

In fact we design an algorithm for a more general problem: dy-
namic sparse Neighborhood Covers. Given a graph G with lengths

on edges, a vertex v ∈ V (G ), and a distance parameter D, we de-
note by BG (v,D) the ball of radius D around v , that is, the set of
all vertices u with distG (v,u) ≤ D. Suppose we are given a static

graph G with non-negative edge lengths, a distance parameter D
(that we call target distance threshold), and a desired approxima-

tion factor α . A (D,α · D)-neighborhood cover for G is a collection

F of vertex-induced subgraphs of G (that we call clusters), such
that, for every vertex v ∈ V (G ), there is some cluster C ∈ F with

BG (v,D) ⊆ V (C ). Additionally, we require that for every cluster

C ∈ F , for every pair x ,y ∈ V (C ) of its vertices, distG (x ,y) ≤ α ·D;
if this property holds, then we say that F is a weak (D,α · D)-
neighborhood cover of G. If, additionally, the diameter of every

cluster C ∈ F is bounded by α · D, then we say that F is a strong
(D,α · D)-neighborhood cover of G . Ideally, it is also desirable that

the neighborhood cover is sparse, that is, every edge (or every ver-

tex) ofG only lies in a small number of clusters of F . For this static

setting of the problem, the work of [3, 4] provides a determinis-

tic algorithm that produces a strong (D,O (D logn))-neighborhood
cover of graphG , where every edge lies in at mostO (logn) clusters,

with running time Õ ( |E (G ) | + |V (G ) |).

In this paper we consider a partially dynamic version of the prob-

lem, in which the input graph G undergoes an online sequence

of edge deletions. We are required to maintain a weak (D,α · D)-
neighborhood cover F of the graph G, and we require that the

clusters in F may only be updated in a specific fashion: once an

initial neighborhood cover F ofG is computed, we are only allowed

to delete edges or vertices from clusters that lie in F , or to add a

new clusterC to F , which must be a subgraph of an existing cluster

of F . Additionally, we require that the algorithm supports queries

short-path-query(C,v,v ′): given two verticesv,v ′ ∈ V , and a clus-

terC ∈ F with v,v ′ ∈ C , return a path P in the current graphG , of
length at most α ·D connecting v to v ′ inG , in timeO ( |E (P ) |). The
algorithm must also maintain, for every vertex v ∈ V (G ), a cluster
C = CoveringCluster(v ) in F , with BG (v,D) ⊆ V (C ). Lastly, we
require that the neighborhood cover is sparse, namely, for every

vertexv ofG , the total number of clusters of F to whichv may ever

belong over the course of the algorithm is small. It is not hard to ver-

ify that an algorithm for the dynamic Sparse Neighborhood Cover

problem that we just defined immediately implies an algorithm

for decremental APSP with the same approximation factor, and

the same total update time (to within O (logL)-factor). We provide

a deterministic algorithm for the dynamic Sparse Neighborhood

Cover problem with approximation factor α = O
(
(logm)2

O (1/ϵ )
)
,

and total update time O
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 )

)
. Our algorithm

ensures that, for every vertex v ∈ V (G ), the total number of clus-

ters of F that v ever belongs to, is bounded bymO (1/ log logm)
. We

note that algorithms for static Sparse Neighborhood Covers have

found many applications in the area of graph algorithms, and so

we believe that our algorithm for dynamic Sparse Neighborhood

Cover is interesting in its own right. A Sparse Neighborhood Cover

for a dynamic graph G naturally provides an emulator for G. If
graph G is decremental, then, while the edges may sometimes be

inserted into the emulator (when a new cluster is added to the
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neighborhood cover F ), due to the restrictions that we impose on

the types of allowed updates to the clusters of F , such edge inser-

tions are limited to very specific types, and so they are relatively

easy to deal with. This allows us to compose emulators given by

the neighborhood covers recursively. We note that the idea of using

clustering of a dynamic graphG in order to construct an emulator

was used before (see e.g. the constructions of [15, 23, 24] of dynamic

low-stretch spanning trees). In several of these works, a family of

clusters of a dynamic graph G is constructed and maintained, and

the restrictions on the allowed updates to the cluster family are

similar to the ones that we impose; it is also observed in several

of these works that with such restrictions one can naturally com-

pose the resulting emulators recursively – an approach that we

follow here as well. However, neither of these algorithms provide

neighborhood covers, and in fact the clusters that are maintained at

each distance scale are disjoint (something that cannot be achieved

by neighborhood covers). Additionally, all the above-mentioned

algorithms are randomized and assume an oblivious adversary. On

the other hand, the algorithms of [29, 30] implicitly provide a de-

terministic algorithm for maintaining a neighborhood cover of a

dynamic graph. However, these algorithms have a number of draw-

backs: first, the running time for maintaining the neighborhood

cover is too prohibitive (the total update time is O (mn)). Second,
the neighborhood cover maintained is not necessarily sparse; in

fact a vertex may lie in a very large number of resulting clusters.

Lastly, clusters that join the neighborhood cover as the algorithm

progresses may be arbitrary. The restriction that, for every cluster

C added to the neighborhood cover F , there must be a cluster C ′

containing C that already belongs to F , seems crucial in order to

allow an easy recursive composition of emulators obtained from the

neighborhood covers, and the requirement that the neighborhood

cover is sparse is essential in bounding the sizes of the graphs that

arise as the result of such recursive compositions.

We provide an application of our algorithm for the APSP problem: a

deterministic algorithm forMaximum Multicommodity Flow and

Minimum Multicut in unit-capacity graphs. In both problems, the

input is an undirected n-vertexm-edge graph G, and a collection

M =
{
(s1, t1), . . . , (sk , tk )

}
of pairs of its vertices, that we call de-

mand pairs. In theMaximum Multicommodity Flow problem, the

goal is to send maximum amount of flow between the demand

pairs, such that the total amount of flow traversing each edge is

at most 1. We denote by OPTMCF the value of the optimal solu-

tion to this problem. In the Minimum Multicut problem, given a

graph G and a collectionM of demand pairs as before, the goal is

to select a minimum-cardinality subset E ′ ⊆ E (G ) of edges, such
that, for all 1 ≤ i ≤ k , vertices si and ti lie in different connected

components of G \ E ′. We use the standard primal-dual technique-

based algorithm of [22, 28], that can equivalently be viewed as

an application of the multiplicative weight update paradigm [2],

which essentially reduces the Multicommodity Flow problem to

decremental APSP; this reduction was first discovered by [38]. Plug-
ging in our algorithm for APSP, we obtain a deterministic algo-

rithm for Maximum Multicommodity Flow, that, for any 0 < ϵ <

1, achieves approximation factor O
(
(logm)2

O (1/ϵ )
)
, and has run-

ning time Õ
(
m1+O (ϵ ) (logm)2

O (1/ϵ )
+ k/ϵ

)
. The algorithm also pro-

vides an integral solution to the Maximum Multicommodity Flow
problem with congestion O (logn), and a fractional solution to

the standard LP-relaxation for Minimum Multicut. Using the stan-

dard ball-growing technique of [27, 37], we then obtain an al-

gorithm for Minimum Multicut, with the same asymptotic run-

ning time, and similar approximation factor. The fastest previous

approximation algorithms for Maximum Multicommodity Flow,
achieving (1 + ϵ )-approximation, have running times O (kO (1) ·

m4/3/ϵO (1) ) [34] and Õ (mn/ϵ2) [38]; we are not aware of any al-

gorithms that achieve a faster running time with possibly worse

approximation factors, and we are not aware of any fast algorithms

for theMinimum Multicut problem. The best polynomial-time algo-

rithm forMinimum Multicut, due to [27, 37], achieves anO (logn)-
approximation.

Before we discuss our results and techniques in more detail, we

provide some additional background on related work.

1.1 Other Related Work

APSP on Expanders. A very interesting special case of the APSP
problem is APSP on expanders. In this problem, we are given an ini-

tial graphG that is a φ-expander. GraphG undergoes a sequence of

edge deletions and isolated vertex deletions, that arrive in batches.

We are guaranteed that, after each such batch of updates, the re-

sulting graphG remains an Ω(φ)-expander. As in the general APSP
problem, the goal is to support approximate shortest-path-query
in graph G. This problem is especially interesting for several rea-

sons. First, it seems to be a relatively simple special case of the

APSP problem, and, if our goal is to obtain better algorithms for

general APSP, solving the problem in expander graphs is a natural

starting step. Second, this problem arises in various algorithms

for static cut and flow problems, and seems to be intimately con-

nected to efficient implementations of the Cut-Matching game of

[35], which is a central tool in the design of fast algorithms for

cut and flow problems (see, e.g. [16]). Third, expander graphs are

increasingly becoming a central tool for designing algorithms for

various dynamic graph problems, and obtaining good algorithms

for APSP on expanders will likely become a powerful tool in the

toolkit of algorithmic techniques in this area. A recent work of [18],

building on [16], implies a deterministic algorithm for APSP in ex-

panders with approximation factor O
(
∆2 (logn)O (1/ϵ 2 )/φ

)
, query

time O ( |E (P ) |) for shortest-path-query, where P is the returned

path, and total update time O
(
n1+O (ϵ )∆7 (logn)O (1/ϵ 2 )/φ5

)
; here,

∆ is the maximum vertex degree of G , φ is its expansion, and ϵ is a

given precision parameter
3
. In fact, algorithms in this paper also

use this algorithm for APSP in expanders as a subroutine.

Single-Source Shortest Paths. Single-Source Shortest Paths (SSSP)
is a special case of APSP, where all queries must be between a

3
The work of [18] only explicitly provides such an algorithm for a specific setting of

the parameter ϵ , but it is easy to see that the same algorithm works for the whole

range of values of ϵ ; we prove this in the full version of the paper for completeness.
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fixed source vertex s and arbitrary other vertices in the graph G.
This problem has also been studied extensively. Algorithms for

decremental SSSP are a well-established tool in the design of fast

algorithms for various variants of maximum s-t flow and minimum

s-t cut problems (see, e.g. [17, 18, 38]).

In the oblivious-adversary setting, our understanding of the prob-

lem is almost complete: a sequence of works [13, 25, 26] has led

to a (1 + ϵ )-approximation algorithm, that achieves total update

timeO (m1+o (1)
logL), which is close to the best possible. The query

time of the algorithm is also near optimal: query time for dist-query
is poly logn, and query time for shortest-path-query is Õ ( |E (P ) |),
where P is the returned path. Conditional lower bounds of [20, 39]

(that are based on the Boolean Matrix Multiplication conjecture)

and of [31] (based on the Online Matrix-vector Multiplication con-

jecture), show that no algorithm that solves the problem exactly can

simultaneously achieve an O (n1−δ ) query time, and O (n3−δ ) total
update time, for any constant δ > 0, in graphs with m = Θ(n2).
The work of Vassilevska Williams and Williams [43], combined

with the work of Roddity and Zwick [39], implies that obtaining

an exact algorithm with similar total update time and query time

would lead to subcubic-time algorithms for a number of important

static problems on graphs and matrices. This shows that the above

oblivious-update algorithm is likely close to the best possible.

For the adaptive-update setting, the progress has been slower. It is

well known that the classical ES-Tree data structure of Even and

Shiloach [19, 21, 32], combined with the standard weight round-

ing technique (e.g. [8, 44]) gives a (1 + ϵ )-approximate determin-

istic algorithm for SSSP with Õ (mn logL) total update time and

near-optimal query time. Recently, Bernstein and Chechik [9, 11,

12], provided algorithms with total update time Õ (n2 logL) and

Õ (n5/4
√
m) ≤ Õ (mn3/4), while Gutenberg and Wulff-Nielsen [29]

showed an algorithm with O (m1+o (1)√n) total update time. Un-

fortunately, all these algorithms only support distance queries,

and they cannot handle shortest-path queries. This problem was

recently addressed by [17, 18], leading to a deterministic algo-

rithm with total update time O (n2+o (1) logL/ϵ2), that achieves
a (1 + ϵ )-approximation factor, and has query time O ( |E (P ) | ·

no (1) log logL) for shortest-path-query. Lastly, the work of [10] on
dynamic spanners also provides a randomized adaptive-update (1+
ϵ )-approximation algorithm with total update time O (m

√
n), and

query time Õ (n). As mentioned already, they also provide an algo-

rithm for dynamic spanners, leading to a poly logn-approximation

algorithm with total update time O (m poly logn) for APSP, and
hence for SSSP, with query time Õ (n). To the best of our knowledge,
our result for the APSP problem is also the first adaptive-adversary

algorithm for SSSPwith near-linear total update time, that achieves

an approximation that is below Θ(n), and query time Õ ( |E (P ) |) for
shortest-path-query. We now discuss our results and techniques

in more detail.

1.2 Our Results and Techniques

Our main result is a deterministic algorithm for decremental APSP,
that is summarized in the following theorem.

Theorem 1.1. There is a deterministic algorithm, that, given an
m-edge graph G with length ℓ(e ) ≥ 1 on its edges, that under-
goes an online sequence of edge deletions, together with a parameter
c/ log logm < ϵ < 1 for some large enough constant c , supports ap-
proximate shortest-path-query queries and dist-query queries with

approximation factor O
(
(logm)2

O (1/ϵ )
)
. The query time for process-

ing dist-query isO (logm log logL), and the query time for processing
shortest-path-query isO ( |E (P ) |)+O (logm log logL), where P is the
returned path, and L is the ratio of longest to shortest edge length. The
total update time of the algorithm is bounded by:

O
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 ) · logL

)
.

Our proof exploits the decremental Sparse Neighborhood Cover

problem, for which we provide the following algorithm:

Theorem 1.2. There is a deterministic algorithm, that, given anm-
edge graph G with integral lengths ℓ(e ) ≥ 1 on its edges, that under-
goes an online sequence of edge deletions, together with parameters
c/ log logm < ϵ < 1 for some large enough constant c , and D ≥ 1,
maintains a weak (D,α · D)-neighborhood cover F of G, for α =

O
(
(logm)2

O (1/ϵ )
)
, and supports queries short-path-query(C,v,v ′):

given a cluster C ∈ F , and two vertices v,v ′ ∈ V (C ), return a path
P connecting v to v ′ in G , of length at most α · D, in time O ( |E (P ) |).
Additionally, for every vertex v ∈ V (G ), the algorithm maintains a
cluster C = CoveringCluster(v ) in F , with BG (v,D) ⊆ V (C ). The
algorithm starts with F = {G}, and the only allowed changes to the
clusters in F are: (i) delete an edge from a cluster C ∈ F ; (ii) delete
an isolated vertex from a clusterC ∈ F ; and (iii) add a new clusterC ′

to F , where C ′ ⊆ C for some cluster C ∈ F . The algorithm has total
update timeO

(
m1+O (ϵ ) · (logm)O (1/ϵ 2 )

)
and ensures that, for every

vertex v ∈ V (G ), the total number of clusters C ∈ F to which v ever
belonged over the course of the algorithm is at mostmO (1/ log logm) .

We remark that the above theorem requires that we initially set

F = {G}. Clearly, this initial cluster set F may not be a valid

neighborhood cover ofG . Therefore, before the algorithm processes

any updates of graph G, it may update this initial cluster set F ,

via changes of the types that are allowed by the theorem, until it

becomes a valid neighborhood cover. We also note that we allow

graphs to have parallel edges, som may be much larger than |V (G ) |.

Lastly, we provide an efficient algorithm for theMinimum Multicut
and Maximum Multicommodity Flow problems in unit-capacity

graphs.

Theorem 1.3. There is a deterministic algorithm, that, given an
n-vertex m-edge graph G, a collectionM =

{
(s1, t1), . . . , (sk , tk )

}
of pairs of its vertices, called demand pairs, and a precision pa-
rameter c/ log logm < ϵ < 1 for some large enough constant c ,

computes, in time Õ
(
m1+O (ϵ ) (logm)2

O (1/ϵ )
+ k/ϵ

)
, a solution to the

Maximum Multicommodity Flow instance (G,M), of value at least

Ω
(
OPTMCF/(logm)2

O (1/ϵ )
)
, and a solution to theMinimum Multicut

instance (G,M), of cost at most O
(
(logm)2

O (1/ϵ )
· OPTMM

)
, where

OPTMCF andOPTMM are optimal solution values to instance (G,M)
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ofMaximum Multicommodity Flow andMinimum Multicut, respec-
tively.

The proof of Theorem 1.3 follows immediately from the proof of

Theorem 1.2 via standard techniques; see Section 4 for more details.

It is also immediate to obtain the proof of Theorem 1.1 from Theo-

rem 1.2 using the standard approach of considering each distance

scale separately; see Section 3.3 for more details and the full ver-

sion of the paper for a formal proof. We now focus on describing

our algorithm for the Sparse Neighborhood Cover problem from

Theorem 1.2, introducing our new ideas and techniques one by one.

Recursive Dynamic Neighborhood Cover. As mentioned already, one

advantage of considering the Neighborhood Cover problem is that

its solution naturally provides an emulator for the input graph

G, which in turn can be used in order to compose algorithms

for Neighborhood Cover recursively. In fact, we initially prove a

weaker version of Theorem 1.2, by providing an algorithm (that we

denote here for brevity by Alg
′
), that achieves a similar approxima-

tion factor, but a slower running time of:

O
(
m1+O (ϵ ) · poly(D) · (logm)O (1/ϵ 2 )

)
(on the positive side, the algorithm maintains a strong neighbor-

hood cover of the graphG). Recall that we call the parameter D the

target distance threshold for the Neighborhood Cover problem in-

stance. We use the recursive composability ofNeighborhood Cover
in order to obtain the desired running time, as follows

4
. Using

standard rescaling techniques, we can assume that 1 ≤ D ≤ Θ(m).
For all 1 ≤ i ≤ ⌈1/ϵ⌉, let Di = mϵi

. We obtain an algorithm for

the Sparse Neighborhood Cover problem for each target distance

threshold Di recursively. For the base of the recursion, when i = 1,

we simply run AlgorithmAlg
′
, to obtain the desired running time of

O
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 )

)
. Assume now that we have obtained

an algorithm for target distance threshold Di , that maintains a

neighborhood cover Fi of graph G . In order to obtain an algorithm

for target distance threshold Di+1, we construct a new graph H ,

by starting with H = G, deleting all edges of length greater than

Di+1, and rounding the lengths of all remaining edges up to the

next integral multiple of Di . Additionally, for every cluster C ∈ Fi ,
we add a vertex u (C ) (called a supernode), that connects, with an

edge of length Di , to every vertex v ∈ V (C ) ∩V (G ). It is not hard
to show that this new graph H approximately preserves all dis-

tances between the vertices of G, that are in the range (Di ,Di+1].

Since the length of every edge in H is an integral multiple of Di ,

scaling all edge lengths down by factorDi does not change the prob-

lem. It is then sufficient to solve the Neighborhood Cover problem
in the resulting dynamic graph H , with target distance threshold

Di+1/Di =m
ϵ
, which can again be done via Algorithm Alg

′
, with

total update timeO
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 )

)
. The final algorithm

for Theorem 1.2 is then obtained by recursively composing Algo-

rithm Alg
′
with itself O (1/ϵ ) times.

In order to be able to compose algorithms for theNeighborhood Cover
problem using the above approach, we define the problem slightly

4
A similar approach of recursive composition of emulators was used in numerous

algorithms for APSP; see, e.g. [14].

differently, and we call the resulting variation of the problem Recur-

sive Dynamic Neighborhood Cover, or RecDynNC. We assume that

the input is a bipartite graphH = (V ,U ,E), with non-negative edge
lengths. Intuitively, the vertices in set V , that we refer to as regular
vertices, correspond to vertices of the original graph G, while the
vertices in setU , that we call supernodes, represent some neighbor-

hood cover F of the graphG that is possibly maintained recursively:

U = {u (C ) | C ∈ F }. (In order to obtain the initial graph H , we sub-

divide every edge ofG by a new regular vertex; we view the original

vertices ofG as supernodes; and for every vertex v ∈ V (G ), we add
a new regular vertex v ′ that connects to v with a length-1 edge.) In

addition to supporting standard edge-deletion and isolated vertex-

deletion updates, we require that the algorithm for the RecDynNC
problem supports a new update operation, that we call supernode
splitting5. In this operation, we are given a supernode u ∈ V (H ),
and a subset E ′ of edges that are incident to u in graph H . The

update creates a new supernode u ′ in graph H , and, for every edge

e = (u,v ) ∈ E ′, adds a new edge (u ′,v ) of length ℓ(e ) to H . The

purpose of this update operation is to mimic the addition of a new

cluster C to F , where C ⊆ C ′ for some existing cluster C ′ ∈ F .

The supernode-splitting operation is applied to supernode u (C ′),
with edge set E ′ containing all edges (v,u (C ′)) with v ∈ V (C ), and
the operation creates a new supernode u (C ). Supernode-splitting
operation, however, may insert some new edges into the graph H .

This creates several difficulties, especially in bounding total update

times in terms of number of edges. We get around this problem as

follows. Recall that the supernodes in setU generally correspond to

clusters in some dynamic neighborhood cover F , that we maintain

recursively. We ensure that this neighborhood cover is sparse, that

is, every regular vertex may only belong to a small number of such

clusters (typically, at most m1/O (log logm)
). This in turn ensures

that, in graph H , for every regular vertex v ∈ V (H ), the total num-

ber of edges incident to v that ever belong to H is also bounded by

m1/O (log logm)
. We refer to this bound as the dynamic degree bound,

and denote it by µ. Therefore, if we denote by N (H ) the number of

regular vertices that belong to the initial graph H , then the total

number of edges that ever belong toH is bounded by N (H ) · µ. This
allows us to use the number of regular vertices of H as a proxy to

bounding the number of edges in H .

To summarize, the definition of the RecDynNC problem is almost

identical to that of the Sparse Neighborhood Cover problem. The

main difference is that the input graph now has a specific structure

(that is, it is a bipartite graph), and, in addition to edge-deletions,

we also need to support isolated vertex deletions and supernode-

splitting updates. Additional minor difference is that we only re-

quire that the covering properties of the neighborhood cover hold

for the regular vertices of H (and not necessarily the supernodes),

and we only bound the number of clusters ever containing a vertex

for regular vertices (and not supernodes). These are minor technical

details that are immaterial to this high-level overview.

Procedure ProcCut and reduction to the MaintainCluster problem.
One of the main building blocks of our algorithm is Procedure

ProcCut. Suppose our goal is to design an algorithm for RecDynNC

5
We note that a similar approach to handling cluster-splitting in an emulator that is

based on clustering was used before in numerous works, including, e.g., [9, 11, 15, 17].
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problem on input graphH , with target distance threshold D, and let
F be the neighborhood cover that wemaintain.We denote byN the

number of regular vertices in the initial graph H , and, for each sub-

graph H ′ ⊆ H , we denote by N (H ′) the number of regular vertices

in H ′. Given a cluster C ∈ F , and two vertices x ,y ∈ C , such that

distC (x ,y) > Ω(D poly logN ), procedure ProcCut produces two
vertex-induced subgraphs C ′,C ′′ ⊆ C , such that N (C ′) ≤ N (C ′′),
diam(C ′) ≤ O (D poly logN ), and each of C ′,C ′′ contains exactly
one of the two vertices x ,y. Moreover, it guarantees that, for every

vertexv ∈ V (C ), either BC (v,D) ⊆ C ′, or BC (v,D) ⊆ C ′′ holds.We

then addC ′ to F , and updateC by deleting edges and vertices from

it, untilC = C ′′ holds. This procedure is exploited by our algorithm
in two ways: first, we compute an initial strong (D,D · poly logN )-
neighborhood cover F of the input graph H , before it undergoes

any updates, by repeatedly incurring this procedure. Later, as the

algorithm progresses, and update operations are applied to H , the

diameters of some clusters C ∈ F may grow. Whenever we iden-

tify such a situation, we use Procedure ProcCut in order to cut the

cluster C into smaller subclusters. We note that, if C ′ and C ′′ are
the outcome of applying Procedure ProcCut to cluster C , then we

cannot guarantee that the two clusters are disjoint, so they may

share edges and vertices. Therefore, a vertex of H may belong to a

number of clusters in F . The main challenge in designing Proce-

dure ProcCut is to ensure that every vertex of H only belongs to a

small number of clusters (at most NO (1/ log logN )
) over the course

of the entire algorithm. The procedure uses a carefully designed

modification of the ball-growing technique of [37] that allows us

to ensure this property. We note that several previous works used

the ball-growing technique in order to compute and maintain a

clustering of a graph. For example, [15] employ this technique in

order to maintain clustering at every distance scale. However, the

clusters that they maintain at each distance scale are disjoint, and

so they can use the standard ball-growing procedure of [37] in or-

der to ensure that relatively few edges have endpoints in different

clusters. In contrast, in order to maintain a neighborhood cover,

we need to allow clusters at each distance scale to overlap. While

one can easily adapt the standard ball-growing procedure of [37]

to still ensure that the total number of edges in the resulting clus-

ters is sufficiently small, this would only ensure that every vertex

belongs to relatively few clusters on average. It is the strict require-
ment that every vertex may only ever belong to few clusters in the

neighborhood cover that makes the design of Procedure ProcCut
challenging. We are not aware of any other work that adapted the

ball-growing technique to this type of requirement, except for the

algorithm of [3, 4], who did so in the static setting. It is unclear

though how to adapt their techniques to the dynamic setting.

We also use Procedure ProcCut to reduce the RecDynNC problem

to a new problem, that we callMaintainCluster. In this problem, we

are given some cluster C that was just added to the neighborhood

cover F . The goal is to support queries short-path-query(C,v,v ′):
given a pair v,v ′ ∈ V (C ) of vertices of C , return a path P con-

necting v to v ′ in C , of length at most α · D, in time O ( |E (P ) |).
However, the algorithm may, at any time, raise a flag FC , to indi-

cate that the diameter of C has become too large. When flag FC
is raised, the algorithm must provide two vertices x ,y ∈ C , with

distC (x ,y) > Ω(D poly logN ). The algorithm then obtains a se-

quence of update operations (that we call a flag-lowering sequence),
at the end of which either x or y are deleted from C , and flag FC
is lowered. Queries short-path-query may only be asked when the

flag FC is down. Once flag FC is lowered, the algorithm may raise

it again immediately, as long as it supplies a new pair x ′,y′ ∈ V (C )
of vertices with distC (x ′,y′) > Ω(D poly logN ). Intuitively, once
flag FC is raised, we will simply run Procedure ProcCut on cluster

C , with the vertices x ,y supplied by the algorithm, and obtain two

new clustersC ′,C ′′; assume thatC ′ contains fewer regular vertices
thanC ′′. We then addC ′ to F , and delete edges and vertices fromC
until C = C ′′ holds, thus creating a flag-lowering update sequence

for it. In order to obtain an algorithm for the RecDynNC problem,

it is then enough to obtain an algorithm for the MaintainCluster
problem. We focus on this problem in the remainder of this exposi-

tion.

Pseudocuts, expanders, and their embeddings. The next central tool
that we introduce is balanced pseudocuts. Consider a cluster C ,
for which we would like to solve the MaintainCluster problem, as

C undergoes a sequence of online updates, with target distance

threshold D. For a given balance parameter ρ, a standard balanced

multicut forC can be defined as a set E ′ ⊆ E (C ) of edges, such that

every connected component ofC \ E ′ contains at most N (C )/ρ reg-

ular vertices. We weaken this notion of balanced multicut, and use

instead balanced pseudocuts. Let D ′ = Θ(D poly logN ). A (D ′, ρ)-
pseudocut in cluster C is a collection E ′ of its edges, such that,

in graph C \ E ′, for every vertex v ∈ V (C ), the ball BC\E′ (v,D
′)

contains at most N (C )/ρ regular vertices. In particular, once all

edges of E ′ are deleted from C , if we compute a strong (D,D ′)-
neighborhood cover F ′ of C , then we are guaranteed that for all

C ′ ∈ F ′, N (C ′) ≤ N (C )/ρ. We note that standard balanced multi-

cuts also achieve this useful property. An advantage of using pseu-

docuts is that we can design a near-linear time algorithm that com-

putes a (D ′, ρ)-pseudocut E ′ in graph C , for ρ = N ϵ
, and addition-

ally it computes an expander X , whose vertex set is

{
ve | e ∈ E

′′}
,

where E ′′ ⊆ E ′ is a large subset of the edges of E ′, and an em-

bedding of X into C , via short embedding paths, that causes a low

edge-congestion (see the full version of the paper for details). This

allows us to build on known expander-based techniques in order

to design an efficient algorithm for theMaintainCluster problem.

Consider the following algorithm, that consists of a number of

phases. In every phase, we start by computing a (D ′, ρ)-pseudocut
E ′ of C , the corresponding expander X , and its embedding into C .
Let E ′′ ⊆ E ′ be the set of edges e , whose corresponding vertex

ve lies in the expander X , so V (X ) =
{
ve | e ∈ E

′′}
. We then use

two data structures. The first data structure is an ES-Tree τ , whose
root s is a new vertex, that connects to each endpoint of every

edge in E ′′, and has depth O (D poly logN ). This data structure al-
lows us to ensure that every vertex of C is close enough to some

edge of E ′′, and to identify when this is no longer the case, so that

flag FC is raised. Additionally, we use known algorithms for APSP
on expanders, together with the algorithm of [41] for expander

pruning, in order to maintain the expander X (under update opera-

tions performed on the cluster C), and its embedding into C . This
allows us to ensure that all edges in E ′′ remain sufficiently close

to each other. These two data structures are sufficient in order to



STOC ’21, June 21–25, 2021, Virtual, Italy Julia Chuzhoy

support the short-path-query(C,v,v ′) queries. If the initial pseu-
docut E ′ was sufficiently large, then these data structures can be

maintained over a long enough sequence of update operations to

cluster C . Once a large enough number of edges are deleted from

C , expander X can no longer be maintained, and we recompute

the whole data structure from scratch. Therefore, as long as the

pseudocut E ′ that our algorithm computes is sufficiently large (for

example, its cardinality is at least (N (C ))1−ϵ ), we can support the

short-path-query(C,v,v ′) queries as needed, with a very efficient

algorithm.

It now remains to deal with the situation where the size of the pseu-

docut E ′ is small. One simple way to handle it is to maintain 2|E ′ |
ES-Tree data structures, each of which is rooted at an endpoint of

a distinct edge of E ′, and has depth threshold Θ(D poly logN ). As
long as the root vertex of an ES-Tree τ remains in the current cluster

C , we say that the tree τ survives. As long as at least one of the

ES-Trees rooted at the endpoints of the edges in E ′ survives, we can
support the short-path-query(C,v,v ′) queries using any such tree.

We can also use such a tree in order to detect when the diameter of

the cluster becomes too large, and, when this happens, to identify

a pair x ,y of vertices of C with distC (x ,y) sufficiently large. Once

every ES-Tree that we maintain is destroyed, we are guaranteed

that all edges of E ′ are deleted fromC . We can then iteratively apply

Procedure ProcCut in order to further decompose C into a collec-

tion of low-diameter clusters (that is, we compute a collection F ′

of subgraphs ofC , such that F ′ is a (D,D ′)-neighborhood cover for
C). Since E ′ was a (D ′, ρ)-pseudocut for the original cluster C , we
are then guaranteed that every cluster in F ′ is significantly smaller

than C , and contains at most N (C )/ρ regular vertices. We can then

initialize the algorithm for solving the MaintainCluster problem
on each cluster of F ′. This approach already gives non-trivial guar-

antees (though in order to optimize it, we should choose a different

threshold for the cardinality of E ′: if |E ′ | >
√
N (C ), we should use

the expander-based approach, and otherwise we should maintain

the ES-Tree’s). Our rough estimate is that such an algorithm would

result in total update time O
(
m1.5+O (ϵ ) · (logm)O (1/ϵ 2 )

)
, but it is

still much higher than our desired update time.

In order to achieve our desired near-linear total update time, we ex-

ploit again the recursive composability properties of theRecDynNC
problem. Specifically, consider the situation where the pseudocut

E ′ that we have computed is small, that is, |E ′ | < (N (C ))1−ϵ , and
consider the graph H ′ = C \ E ′. For all 1 ≤ i ≤

⌈
logD

⌉
, we solve

the RecDynNC problem in graph H ′ with target distance thresh-

old Di = 2
i
recursively. Fix some index 1 ≤ i ≤

⌈
logD

⌉
, and let

Fi be the initial strong (Di ,Di · poly logN )-neighborhood cover

that this algorithm computes. The properties of the balanced pseu-

docut ensure that each cluster C ′ ∈ Fi is significantly smaller

that C: namely, N (C ′) ≤ N (C )/ρ ≤ (N (C ))1−ϵ . Therefore, we can
solve theMaintainCluster problem on each such cluster recursively,

and we also do so for every cluster that is later added to Fi . Let
˜F =
⋃
i Fi be the dynamic collection of clusters that we maintain.

We use the set
˜F of clusters in order to construct a contracted graph

Ĥ . The vertex set of Ĥ consists of the set S of regular vertices –

all regular vertices that serve as endpoints of the edges of E ′ (the

edges of the pseudo-cut); and the set U ′ =
{
u (C ′) | C ′ ∈ ˜F

}
of

supernodes. For every edge e = (u,v ) ∈ E ′, where v ∈ S is a

regular vertex, we add an edge connecting v to every supernode

u (C ′), such that cluster C ′ contains either v or u. The length of

the edge is Di , where i is the index for which C ′ ∈ Fi holds. It
is not hard to show that the distances between the vertices of S
are approximately preserved in graph Ĥ . As cluster C undergoes a

sequence of update operations, the neighborhood covers Fi evolve,

which in turn leads to changes in the contracted graph Ĥ . However,

we ensure that all changes to the neighborhood covers Fi are only

of the types allowed by Theorem 1.2, namely: (i) delete an edge from

a cluster of Fi ; (ii) delete an isolated vertex from a cluster of Fi ; or

(iii) add a new cluster C ′′ to Fi , where C
′′ ⊆ C ′ for some cluster

C ′ ∈ Fi . We are then guaranteed that all resulting changes to graph

Ĥ can be implemented via allowed update operations: namely edge

deletions, isolated vertex deletions, and supernode splitting.

We then construct two data structures. First, an ES-Tree τ , in the

graph obtained from C by adding a new source vertex s∗, that
connects to every vertex in S with a length-1 edge. The depth of

the tree is O (D poly logN ). This data structure allows us to ensure

that every vertex of C is sufficiently close to some vertex of S , and,
when this is no longer the case, to raise the flag FC , and to supply

two vertices x ,y ∈ V (C ) that are sufficiently far from each other.

The second data structure is obtained by applying the algorithm for

theMaintainCluster problem recursively to the contracted graph

Ĥ . This data structure allows us to ensure that all vertices of S are

sufficiently close to each other, and, when this is no longer the case,

it supplies a pair of vertices s, s ′ ∈ S , that are sufficiently far from

each other in Ĥ , and hence in C . Since we only use this algorithm

in the scenario where |E ′ | ≤ (N (C ))1−ϵ , we are guaranteed that

|S | ≤ (N (C ))1−ϵ , so graph Ĥ is significantly smaller than C .

To summarize, in order to solve the MaintainCluster problem in

graphC , we use an expander-based approach, as long as the size of

the pseudocut E ′ that our algorithm computes is above (N (C ))1−ϵ .
Once this is no longer the case, we recursively solve the problem

on clusters that are added to the neighborhood covers Fi of graph

H = C \ E ′, for 1 ≤ i ≤
⌈
logD

⌉
. This allows us to maintain the

neighborhood covers {Fi }, which, in turn, allow us to maintain the

contracted graph Ĥ . We then solve the MaintainCluster problem
recursively on the contracted graph Ĥ . Once all edges of E ′ are
deleted fromC , we start the whole algorithm from scratch. Since we

ensure that the diameter ofC is bounded by D ′, from the definition

of a balanced pseudocut, we are guaranteed thatN (C ) has decreased
by at least a factor N ϵ

.

Directions for future improvements. A major remaining open ques-

tion is whether we can obtain an algorithm for decremental APSP
with a significantly better approximation factor, while preserving

the near-linear total update time and the near-optimal query time.

While it seems plausible that the new tools presented in this paper

may lead to an improved (logm)poly(1/ϵ )-approximation algorithm

with similar running time guarantees, improving the approximation

factor beyond the (logm)poly(1/ϵ ) barrier seems quite challenging.

A necessary first step toward such an improvement is to obtain

better approximation algorithms for the decremental APSP problem



Decremental All-Pairs Shortest Paths in Deterministic Near-Linear Time STOC ’21, June 21–25, 2021, Virtual, Italy

on expanders. We believe that this is a very interesting problem

in its own right, and it is likely that better algorithms for this

problem will lead to better deterministic algorithms for basic cut

and flow problems, including Minimum Balanced Cut and Spars-

est Cut, via the techniques of [16]. This, however, is not the only

barrier to obtaining an approximation factor below (logm)poly(1/ϵ )

for decremental APSP in near-linear time. In order to bring the

running time of the algorithm for the RecDynNC problem down

fromO
(
m1+O (ϵ ) · poly(D) · (logm)O (1/ϵ 2 )

)
to the desired running

time of O
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 )

)
, we recursively compose in-

stances of RecDynNCwith each other. This leads to recursion depth

O (1/ϵ ), and unfortunately the approximation factor accumulates

with each recursive level. If the running time of our basic algo-

rithm for RecDynNC (see Theorem 3.3) can be improved to depend

linearly instead of cubically on D, it seems conceivable that one

could use the approach of [9, 11], together with Layered Core De-

composition of [18] in order to avoid this recursion (though it is

likely that, in the running time of the resulting algorithm, term

m1+O (ϵ )
will be replaced with n2+O (ϵ )

). Lastly, our algorithm for

theMaintainCluster problem needs to call to itself recursively on

the contracted graph Ĥ , which again leads to a recursion of depth

O (1/ϵ ), with the approximation factor accumulating at each recur-

sive level. One possible direction for reducing the number of the

recursive levels is designing an algorithm for computing a pseudo-

cut E ′, its corresponding expander X , and an embedding of X into

the clusterC with a better balance parameter ρ (see the full version

of the paper for details).

1.3 Organization

Due to lack of space, most of the proofs are deferred to the full

version of the paper. We start with preliminaries in Section 2. In

Section 3, we define the Recursive Dynamic Neighborhood Cover

problem, and state our main result for it. We also show that the

proofs of Theorem 1.1 and Theorem 1.2 follow from this result.

Lastly, in Section 4 we provide our algorithm for Maximum Multi-

commodity Flow andMinimum Multicut, proving Theorem 1.3.

2 PRELIMINARIES

All graphs in this paper are undirected. Graphs may have parallel

edges, except for simple graphs, that cannot have them. Throughout

the paper, we use a Õ (·) notation to hide multiplicative factors that

are polynomial in logm and logn, wherem and n are the number

of edges and vertices, respectively, in the initial input graph.

Given a graph G with lengths ℓ(e ) on edges e ∈ E (G ), for a pair
of vertices u,v ∈ V (G ), we denote by distG (u,v ) the distance be-
tween u and v in G, that is, the length of the shortest path be-

tween u and v with respect to the edge lengths ℓ(e ). For a vertex
v ∈ V (G ) and a distance parameterD ≥ 0, we denote by BG (v,D) =
{u ∈ V (G ) | distG (u,v ) ≤ D} the ball of radius D around v .

Neighborhood Covers. Neighborhood Cover is a central notion that

we use throughout the paper. We use both a strong and a weak

notion of neighborhood covers, that are defined as follows.

Definition 2.1 (Neighborhood Cover). LetG be a graph with lengths

ℓ(e ) > 0 on edges e ∈ E (G ), let S ⊆ V (G ) be a subset of its

vertices, and let D ≤ D ′ be two distance parameters. A weak
(D,D ′)-neighborhood cover for vertex set S in G is a collection

F = {C1, . . . ,Cr } of vertex-induced subgraphs of G called clusters,
such that:

• for every vertex v ∈ S , there is some index 1 ≤ i ≤ r with

BG (v,D) ⊆ V (Ci ); and

• for all 1 ≤ i ≤ r , for every pair s, s ′ ∈ S ∩ V (Ci ) of vertices,
distG (s, s ′) ≤ D ′.

A set F of subgraphs ofG is a strong (D,D ′)-neighborhood cover for
vertex set S if it is a weak (D,D ′)-neighborhood cover for S , and,
additionally, for every clusterC ∈ F , for every pair s, s ′ ∈ S ∩V (C )
of vertices, distC (s, s ′) ≤ D ′.

If the vertex set S is not specified, then we assume that S = V (G ).

3 VALID INPUT STRUCTURE, VALID UPDATE
OPERATIONS, AND THE RECURSIVE
DYNAMIC NEIGHBORHOOD COVER
PROBLEM

Throughout this paper, we will work with inputs that have a specific

structure. The structure is designed in a way that will allow us to

naturally compose different instances recursively, by exploiting the

notion of neighborhood covers. In this section, we define such in-

puts and the types of update operations that we allow for them. We

also formally define the Recursive Dynamic Neighborhood Cover

problem (RecDynNC) and state our main result for this problem.

Lastly, we show that this result immediately implies the proofs of

Theorems 1.1 and 1.2.

3.1 Valid Input Structure and Valid Update
Operations

We start by defining a valid input structure.

Definition 3.1 (Valid Input Structure). A valid input structure con-

sists of a bipartite graph H = (V ,U ,E), a distance threshold D > 0,

and integral lengths 1 ≤ ℓ(e ) ≤ D for edges e ∈ E. The ver-

tices in set V are called regular vertices and the vertices in set

U are called supernodes. We denote a valid input structure by

I =
(
H = (V ,U ,E), {ℓ(e )}e ∈E (H ) ,D

)
. If the distance threshold D

is not explicitly defined, then we set it to∞.

Intuitively, supernodes in set U correspond to clusters in a Neigh-

borhood Cover F of the vertices in V with some (smaller) distance

threshold, that is computed and maintained recursively. Given a

valid input structure I =
(
H , {ℓ(e )}e ∈E (H ) ,D

)
, we will allow the

following types of update operations, that we refer to as valid update
operations:

• Edge Deletion. Given an edge e ∈ E (H ), delete e from H .

• Isolated Vertex Deletion. Given a vertex x ∈ V (H ) that is an
isolated vertex, delete x from H ; and
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• Supernode Splitting. The input to this update operation is a

supernode u ∈ U and a non-empty subset E ′ ⊆ δH (u) of edges
incident to u. The update operation creates a new supernode

u ′, and, for every edge e = (u,v ) ∈ E ′, it adds a new edge

e ′ = (u ′,v ) of length ℓ(e ) to the graph H . We will sometimes

refer to e ′ as a copy of edge e .

We refer to edge deletion, isolated vertex deletion, and supernode

splitting operations as valid update operations. Notice that the up-
date operations may not create new regular vertices, so vertices

may be deleted from the vertex set V , but never added to it. A su-

pernode splitting operation, however, adds a new supernode to the

graph H , and also inserts edges into H . Unfortunately, this means

that the number of edges in H may grow as the result of the up-

date operations, which makes it challenging to analyze the running

times of various algorithms that we run on subgraphs C of H in

terms of |E (C ) |. In order to overcome this difficulty, we use the

notion of the dynamic degree bound.

Definition 3.2 (Dynamic Degree Bound). We say that a valid input

structure I =
(
H = (V ,U ,E), {ℓ(e )}e ∈E (H ) ,D

)
, undergoing a se-

quence Σ of valid update operations, has dynamic degree bound µ
iff for every regular vertex v ∈ V , the total number of edges inci-

dent to v that are ever present in H over the course of the update

sequence Σ is at most µ.

We will usually denote by N 0 (H ) the total number of regular ver-

tices in the initial graph H . If (I, Σ) have dynamic degree bound

µ, then we are guaranteed that the number of edges that are ever

present in H is bounded by N 0 (H ) · µ.

In general, we will always ensure that the dynamic degree bound

µ is quite low. It may be convenient to think of it asmo (1)
, where

m is the initial number of edges in the input graph G for the APSP
problem. Intuitively, every supernode of graph H represents some

clusterC in a (D̂, D̂ ′)-neighborhood cover F ofG , for some param-

eters D̂, D̂ ′ ≪ D. Typically, each regular vertex of H represents

some actual vertex of graphG , and an edge (v,u) is present in H iff

vertex v belongs to the cluster C that vertex u represents. We will

generally ensure that the neighborhood cover F ofG is constructed

and maintained in such a way that the total number of clusters of

F to which a given regular vertex v ever belongs over the course

of the algorithm is very small. This will ensure that the dynamic

degree bound for graph H is small as well.

Note that we can assume without loss of generality that every

vertex in the initial graph H0
has at least one edge incident to it,

as otherwise it is an isolated vertex, and will remain so as long as

it lies in H . Moreover, from the definition of a supernode splitting

operation, it may not be applied to an isolated vertex (as we require

that the edge set E ′ is non-empty). Therefore, any isolated vertex

of H0
can be ignored. We will therefore assume from now on that

every supernode in the original graphH0
has degree at least 1. (This

assumption is only used for convenience, so that we can bound the

total number of vertices in H0
by O ( |E (H0) |).)

3.2 The Recursive Dynamic Neighborhood
Cover (RecDynNC) Problem

In this subsection we define the Recursive Dynamic Neighbor-

hood Cover problem. The input to the Recursive Dynamic Neigh-

borhood Cover (RecDynNC) problem is a valid input structure

I =
(
H = (V ,U ,E), {ℓ(e )}e ∈E (H ) ,D

)
, where graph H undergoes a

sequence Σ of valid update operations with some given dynamic

degree bound µ. Additionally, we are given a desired approximation

factor α . We assume that we are also given some arbitrary fixed

ordering O of the vertices of H , and that any new vertex that is

inserted intoH as the result of supernode-splitting updates appears

at the end of the current ordering. The goal is to maintain the

following data structures:

• a collectionU of subsets of vertices of graph H , together with

a collection F = {H [S] | S ∈ U} of clusters of H , such that F

is a weak (D,α ·D) neighborhood cover for the setV of regular

vertices in graph H . For every set S ∈ U , the vertices of S must

be maintained in a list, sorted according to the ordering O;

• for every regular vertexv ∈ V , a clusterC = CoveringCluster(v )
in F , with BH (v,D) ⊆ V (C );
• for every vertex x ∈ V (H ), a list ClusterList(x ) ⊆ F of all

clusters containing x , and for every edge e ∈ E (H ), a list

ClusterList(e ) ⊆ F of all clusters containing e .

The setU of vertex subsets must be maintained as follows. Initially,

U =
{
V (H0)

}
, where H0

is the initial input graph H . After that,

the only allowed changes to vertex sets inU are:

• DeleteVertex(S,x ): given a vertex set S ∈ U , and a vertex x ∈ S ,
such that x is an isolated vertex in H [S], delete x from S ;
• AddSuperNode(S,u): if u is a supernode that is lying in S that

just underwent supernode splitting update, add the newly cre-

ated supernode u ′ to S ; and
• ClusterSplit(S, S ′): given a vertex set S ∈ U , and a subset S ′ ⊆
S of its vertices, add S ′ toU .

We refer to the above operations as allowed changes toU . In other

words, if we consider the sequence of changes that clusters in

F undergo over the course of the algorithm, the corresponding

sequence of changes to vertex sets of {U (C ) | C ∈ F } must obey

the above rules.

In addition to maintaining the above data structures, an algorithm

for theRecDynNC problemmust support short-path-query(C,v,v ′)
queries: given two regular vertices v,v ′ ∈ V , and a cluster C ∈ F
with v,v ′ ∈ C , return a path P in the current graph H , of length at

most α ·D connectingv tov ′ inH , in timeO ( |E (P ) |). This completes

the definition of the RecDynNC problem.

3.3 Statement of Main Technical Result and
Proofs of Theorem 1.2 and Theorem 1.1

Ourmain technical result is a dynamic algorithm for theRecDynNC
problem, that is summarized in the following theorem.
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Theorem 3.3. There is a deterministic algorithm for the RecDynNC
problem, that, on input I =

(
H = (V ,U ,E), {ℓ(e )}e ∈E (H ) ,D

)
un-

dergoing a sequence of valid update operations with dynamic degree
bound µ, and a parameter c/ log logW < ϵ < 1, for some large
enough constant c , whereW is the number of regular vertices in H
at the beginning of the algorithm, achieves approximation factor
α = (log(Wµ ))2

O (1/ϵ )
, and has total update time:

O
(
W 1+O (ϵ ) · µ2+O (ϵ ) · D3 · (log(Wµ ))O (1/ϵ 2 )

)
.

Moreover, the algorithm ensures that, for every regular vertex v ∈ V ,
the total number of clusters in the neighborhood cover F that the
algorithm maintains, to which vertex v ever belonged. is bounded by
WO (1/ log logW ) . It also ensures that the neighborhood cover F that
it maintains is a strong (D,α ·D)-neighborhood cover for the setV of
regular vertices of H .

The proof of the theorem is deferred to the full version of the paper

due to lack of space. By using recursive composition properties

of the RecDynNC problem, we then obtain a deterministic algo-

rithm Alg that has similar properties to those of the algorithm

from Theorem 3.3, except that it requires that the dynamic degree

bound of the input graph is 2, it achieves approximation factor α =

(logW )2
O (1/ϵ )

, and total update timeO
(
W 1+O (ϵ ) · (logW )O (1/ϵ 2 )

)
.

Additionally, it only provdies a weak Neighborhood Cover.

Algorithm Alg in turn implies the proof of Theorem 1.2. Indeed,

assume that we are given anm-edge graph G with integral length

ℓ(e ) ≥ 1 on its edges, that undergoes an online sequence of edge

deletions, together with parameters c ′/ log logm < ϵ < 1 for some

large enough constant c ′, and D ≥ 1. Note that we can assume that

G is a connected graph, as otherwise we can run the algorithm on

each of its connected components separately, so |V (G ) | ≤ m holds.

We construct a bipartite graph H = (V ,U ,E) as follows. We start

with the graphG, and we letU = V (G ). We then subdivide every

edge e ∈ E (G ) with a new regular vertex ve , and we set the lengths
of both new edges to be ℓ(e ). The set V of regular vertices consists

of two subsets: a set {ve | e ∈ E (G )} of vertices corresponding to

edges of G, and another subset S =
{
x ′ | x ∈ V (G )

}
of vertices

corresponding to vertices of G. Every vertex x ′ ∈ S connects to

the corresponding vertex x ∈ V (G ) with a length-1 edge. Once

we delete all edges of length greater than 3D, we obtain a valid

input structure I =
(
H = (V ,U ,E), {ℓ(e )}e ∈E (H ) , 3D

)
. Given an

online sequence Σ of edge deletions for graphG , we can produce a

corresponding online sequence Σ′ of edge deletions and isolated

vertex deletions for graphH , as follows: whenever an edge e ∈ E (G )
is deleted from G, we delete its two corresponding edges (that

are incident to ve ) from graph H , and we then delete vertex ve
that becomes an isolated vertex. We have therefore obtained an

instance of the RecDynNC problem, on valid input structure I

that undergoes a sequence of edge-deletion and isolated vertex-

deletion operations. Since the degree of every regular vertex in

H is at most 2, it is easy to see that H has dynamic degree bound

2. We let W = |V | ≤ 2m be the number of regular vertices in

H . We run Algorithm Alg for the RecDynNC problem on input I

undergoing the sequence Σ′ of update operations. Let F be the

neighborhood cover that the algorithm maintains. We then define

a neighborhood cover F ′ for graph G as follows. For every cluster

C ∈ F , there is a cluster C ′ ∈ F ′, which is a subgraph of G
induced by vertex set

{
x ∈ V (G ) | x ′ ∈ V (C )

}
. Recall that cluster

set F is initially defined to be F = {H }, so initially, F ′ = {G} holds.
After that, the only changes to vertex sets inU = {U (C ) | C ∈ F }
are the allowed changes, that include the following three types of

operations: (i) DeleteVertex(R,x ): given a vertex set R ∈ U , and

a vertex x ∈ R, such that x is an isolated vertex in H [R], delete x
from R; if x = y′ for some vertex y ∈ V (G ), then we also delete y
from C ; (ii) AddSuperNode(R,u): since we do not allow supernode

splitting operations, no such updates will be performed; and (iii)

ClusterSplit(R̃,R): given a vertex set R ∈ U , and a subset R̃ ⊆ R of

its vertices, add R̃ toU . In this case, we create a new cluster in F ′

that is a subgraph ofG, induced by the set

{
x ∈ V (G ) | x ′ ∈ R′

}
of

vertices. Additionally, when an edge e is deleted from G, we need
to delete it from every cluster of F that contains it. The time that

is needed to make all these updates to cluster set F ′ is subsumed

by the time required to maintain cluster set F .

Consider now some vertex x ∈ V (G ). Recall that the algorithm

for the RecDynNC problem maintains a cluster C ∈ F , with

BH (x ′, 3D) ⊆ V (C ). It is easy to verify that BH (x ′, 3D) contains ev-
ery vertexy′ withy ∈ BG (x ,D). We then setCoveringCluster(x ) =
C ′, where C ′ ∈ F is the cluster corresponding to C . Our algorithm
can support queries short-path-query(C ′,x ,y) by invoking a query
short-path-query(C,x ′,y′) in the data structure maintained by Al-

gorithm Alg; we omit the details and the remainder of the analysis

due to lack of space.

Lastly, we note that the proof of Theorem 1.1 easily follows from

the proof of Theorem 1.2, by using the standard technique of con-

sidering each distance scale Di = 2
i
, for 1 ≤ i ≤

⌈
logL
⌉
separately,

and using the algorithm from Theorem 1.2 in order to maintain

a neighborhood cover for each such distance scale; see the full

version of the paper for a formal proof.

4 APPLICATION: FAST ALGORITHM FOR
MAXIMUMMULTICOMMODITY FLOW AND
MINIMUMMULTICUT

In this section, we provide an algorithm for Minimum Multicut
andMaximum Multicommodity Flow, proving Theorem 1.3. Recall

that in both problems, the input is an undirected n-vertexm-edge

graph G, and a collectionM =
{
(s1, t1), . . . , (sk , tk )

}
of pairs of its

vertices, called demand pairs. In the Maximum Multicommodity

Flow problem, the goal is to sendmaximum amount of flow between

the demand pairs, such that the total amount of flow traversing any

edge is at most 1. We denote by OPTMCF the value of the optimal

solution to this problem. In the Minimum Multicut problem, the

goal is to select a minimum-cardinality subset E ′ ⊆ E (G ) of edges,
such that, for all 1 ≤ i ≤ k , vertices si and ti lie in different

connected components of G \ E ′. We denote by OPTMM the value

of the optimal solution to Minimum Multicut. We use standard

primal-dual technique-based algorithm of [22, 28] (see also [38]).

For all 1 ≤ i ≤ k , let Pi be the set of all paths in G connecting si
to ti , and let P =

⋃
i Pi . We assume that graph G is connected (as
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otherwise we can solve both problems on each of its connected com-

ponents separately), so in particular P , ∅. Below is the standard

LP-relaxation of theMaximum Multicommodity Flow problem (de-

noted by LP1), and its dual (denoted by LP2), which is a relaxation

of theMinimum Multicut problem.

LP1

Max

∑
i
∑
P ∈Pi f (P )

s.t. ∑k
i=1
∑

P∈Pi :
e ∈P

f (P ) ≤ 1 ∀e ∈ E

f (P ) ≥ 0 ∀1 ≤ i ≤ k, P ∈ Pi

LP2

Min

∑
e ∈E xe

s.t. ∑
e ∈P xe ≥ 1 ∀1 ≤ i ≤ k, P ∈ Pi

xe ≥ 0 ∀e ∈ E

We now show an algorithm that approximately solves both LP1

and LP2. Over the course of the algorithm, we maintain lengths xe
for edges e ∈ E, where at the beginning, for every edge e ∈ E (G ),
we set xe = 1/m. As the algorithm progresses, we may raise the

lengths of the edges. We also set f (P ) = 0 for every path P ∈ P.
So far we have obtained a feasible solution to LP1 of value 0, and a

(possibly infeasible) solution to LP2, of value 1. The remainder of

the algorithm consists of a number of iterations.

Assume for now, that we are given an oracle O, that, in every

iteration, either provides a simple path P ∈ P, whose length (with

respect to current edge lengths xe ) is at most 1, or certifies that

every path P ∈ P has length at least 1/α , for some approximation

factor α ≥ 1.

The iterations continue as long as the oracle provides a simple

path P ∈ P of length at most 1. The jth iteration is executed as

follows. Let Pj ∈ P be the path provided by the oracle. Then

we set f (Pj ) = 1, and we double the length xe of every edge

e ∈ E (Pj ). Notice that this increases the value of the primal solution

by (additive) 1, and it increases the value of the dual solution by

at most (additive) 1. Therefore, if we denote by c1 the cost of the
current solution to LP1, and by c2 the cost of the current solution
to LP2, then, throughout the algorithm, c1 ≥ c2 − 1 always holds.
Since we have assumed that |P | , ∅, after the first iteration, c1 ≥ 1,

and so c2 ≤ 2c1 holds for the remainder of the algorithm.

The algorithm terminates when the oracleO certifies that the length

of every path in P is at least 1/α . Note that, by setting x ′e = xe · α ,
we obtain a feasible solution to LP2, of value at most αc2 ≤ 2αc1.

The flow values

{
f (P )
}
P ∈P also provide a solution to LP1, but that

solution may be infeasible, since some edges may carry more than

one flow unit. However, since we set, at the beginning, for every

edge e ∈ E (G ), xe = 1/m, and since, whenever a path containing

e is added to P, we double the length of the edge xe , it is easy

to verify that the total flow that any edge e ∈ E (G ) carries is

bounded by

⌈
logm

⌉
. Let f ′ be the multicommodity flow obtained by

scaling the flow f down by factor 1/
⌈
logm

⌉
. Then f ′ is a feasible

fractional solution to Maximum Multicommodity Flow, of value
c ′
1
= c1/

⌈
logm

⌉
. From the above discussion, c2 ≤ 2c1 ≤ 4c ′

1
logm.

Recall that, from LP-duality, c ′
1
≤ OPTMCF = OPT

LP1

= OPT
LP2

≤

αc2. Therefore, OPTMCF ≤ αc2 ≤ O (α logm)c ′
1
, and OPTMM ≥

OPT
LP2

≥ c ′
1
≥ Ω(c2/ logm). We conclude that we have obtained a

solution to theMaximum Multicommodity Flow problem, of value

Ω(OPTMCF/(α logm)).

Additionally, we have obtained a fractional solution

{
x ′e
}
e ∈E (G ) to

LP2, of value αc2 ≤ O (α logm)OPTMM. Our last step is to trans-

form this fractional solution to the Minimum Multicut instance
(G,M) into an integral one, using the standard ball-growing tech-

nique of [27, 37]. The resulting deterministic algorithm (that is

very similar in nature to our Procedure ProcCut (see the full ver-
sion of the paper), which in fact was inspired by the algorithm

of [27, 37]), obtains an integral solution to the Minimum Multicut
problem instance (G,M), in time O ( |E (G ) |), of cost O (logm) · c ,
where c ≤ O (α logm)OPTMM is the cost of the fractional solution

to LP2.

We conclude that the above algorithm provides an O (α logm)-
approximate solution for the Maximum Multicommodity Flow

problem, and an O (α log
2m)-approximate solution for Minimum

Multicut, where α is the approximation factor of the oracle O.

Implementing the Oracle. We now show an algorithm to efficiently

implement the oracle O. One difficulty in implementing it via the al-

gorithm from Theorem 1.2 in a straightforward way is that the algo-

rithm from Theorem 1.2, in response to short-path-query(C, si , ti )
may return an si -ti path P that is non-simple, and moreover, if we

let P ′ be a simple path obtained from P by removing all cycles, then

it is possible that |E (P ) | ≫ |E (P ′) |. This is a problem because the

algorithm spends time O ( |P |) in order to process the query, but we

will only double the lengths of the edges lying on the path P ′. This
may result in a running time that is too high overall. Ideally, we

would like to ensure that, if the algorithm from Theorem 1.2 re-

turns an si -ti path P that is non-simple, and P ′ is the corresponding
simple path, then |E (P ′) | is close to |E (P ) |. We overcome this diffi-

culty as follows. Our algorithm consists of O (1/ϵ ) phases. Denote

m′ =
⌈
2m logm

⌉
. Let α∗ = O

(
(logm)2

O (1/ϵ )
)
be the approximation

factor that the algorithm from Theorem 1.2 achieves on a graph

withm′ edges. For j ≥ 0, let α j = (α∗)2j , and let Lj =m
jϵ
. We will

ensure that the following invariant holds:

(I1) For all j ≥ 0, at the beginning of Phase (j+1), every path P ∈ P
whose length is at most 1/α j contains at least Lj edges.

Notice that the invariant clearly holds at the beginning of the first

phase. We now describe the execution of the (j + 1)th phase, for

some j ≥ 0.

We construct a graph G j , whose vertex set is V (G j ) = V (G ). For
every edge e = (v,v ′) ∈ E (G ), let ie be the integer such that the

length of e inG is 2
ie /m. For every integer ie ≤ i ≤

⌈
logm

⌉
, we add
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an edge ei = (v,v ′) to G j , of length
2
i

m +
1

2α ∗ ·α j ·Lj+1 . We call edge

ei the ith copy of e . Throughout the algorithm, whenever the length

of edge e in graph G doubles, we delete from G j the lowest-length

copy of the edge e . This ensures that, if the length of e inG is 2
i/m,

then every copy of e in G j has length at least
2
i

m +
1

2α ∗ ·α j ·Lj+1 . We

the initialize the data structure from Theorem 1.2 on this new graph

G j , with target distance thresholdD = 1/(α∗ ·α j ), and we denote by
F the weak (D,α∗ ·D)-neighborhood cover ofG j that the algorithm

maintains. (Recall that the definition of the Neighborhood Cover
problem requires that the length of every edge is at least 1. In order

to achieve this, we need to scale all edge lengths so they become

integral, and we need to do the same with the parameter D. As
this does not change the problem in any way, we ignore this minor

technicality).

We mark every demand pair (si , ti ) ∈ M as unexplored. As the
algorithm progresses, we will mark some demand pairs as explored.

For each such demand pair (si , ti ), we will ensure that the distance,
in the current graph G j , between si and ti , is at least 1/(α

∗ · α j ).
We now describe a single iteration.

If every demand pair is marked as explored, then the phase termi-

nates. We are then guaranteed that every path in the current graph

G j , connecting any demand pair (si , ti ) ∈ M has length at least

1/(α∗ ·α j ) inG j . We claim that in this case, every path P ∈ P whose

length is at most 1/α j+1 (in graph G), contains at least Lj+1 edges.
Indeed, assume otherwise, and let P ∈ P be a path connecting some

demand pair (si , ti ) ∈ M, that has length ℓ ≤ 1/α j+1 in graph G,
and contains fewer than Lj+1 edges. Let P

′
be an si -ti path in graph

G j , obtained by taking, for every edge e ∈ E (P ), a copy that has

shortest length. Then the length of path P ′ in graphG j is bounded

by:

ℓ +
1

2α∗ · α j
≤

1

α j+1
+

1

2α∗ · α j
≤

1

α j · (α∗)2
+

1

2α∗ · α j
<

1

α∗ · α j
,

a contradiction to the fact that demand pair si -ti is marked as

explored. Therfore, when the phase terminates, Ivariant I1 holds.

Assume now that not every demand pair inM is marked as ex-

plored, and let (si , ti ) ∈ M be any demand pair that is not marked

as explored. Let C = CoveringCluster(si ) be the cluster of F con-

taining BG j (s,D), that the algorithm from Theorem 1.2 maintains.

We start by checking, in time Õ (1), whether ti ∈ C . If this is not the
case, thenwe are guaranteed that distG (si , ti ) > D = 1/(α∗ ·α j ). We

then mark demand pair (si , ti ) as explored, and continue to another
unexplored demand pair. Otherwise, if ti ∈ C , then we run query

short-path-query(C, si , ti ) in the data structure maintained by the

algorithm from Theorem 1.2. The algorithm is then guaranteed to

return a path connecting si to ti in graphG j , of length at most 1/α j .
We denote this path by P . From the way we set the lengths of the

edges in graphG j , we are guaranteed that |E (P ) | ≤ 2α∗ ·Lj+1. Path
P immediately gives us the corresponding (possibly non-simple)

path P ′ in graph G, whose length is at most 1/α j . Let P
′′
be a sim-

ple path that is obtained from P ′, after removing all cycles from

it. Note that we can compute P ′′ in time O ( |E (P ) |), and the query

time short-path-query(C, si , ti ) also took timeO ( |E (P ) |). Then the

length of path P ′ is bounded by 1/α j , and, from Invariant I1, path

P ′′ contains at least Lj edges. We then return the path P ′′ and
terminate the iteration.

The algorithm terminates after t = ⌈1/ϵ⌉ phases, at which time we

are guaranteed, from Invariant I1, that every path in P has length

at least 1/αt , for αt = (α∗)O (1/ϵ ) = O
(
(logm)2

O (1/ϵ )
)
. We denote

α = αt , the approximation factor of the oracle O. We now analyze

the running time of a single phase.

The time required to maintain the data structure from Theorem 1.2

is O
(
m1+O (ϵ ) · (logm)O (1/ϵ 2 )

)
. The time needed to process every

query short-path-query(C, si , ti ) is O ( |E (P ) |), where P is the re-

turned path. Recall that we have established that P contains at

most 2α∗ · Lj+1 edges, while its corresponding simple path P ′′ con-
tains at least Lj edges. Therefore, |E (P ) | ≤ 2α∗ ·mϵ |E (P ′′) |. We

charge every edge on path P ′′ for at most 2α∗ ·mϵ
edges on path

P . Since we double the length of every edge on path P ′′ in graphG ,
and since the length of every edge may only be doubled O (logm)
times, an edge of G may be charged at most O (logm) times over

the course of a single phase. Therefore, the total time for processing

all queries short-path-query(C, si , ti ) over the course of the phase,
and also for computing the corresponding simple paths, is bounded

by O
(
m1+ϵ (logm)2

O (1/ϵ )
)
. Lastly, for every demand pair (si , ti ),

we may spend additional Õ (1) time in the iteration in which the

pair is marked as explored. Therefore, the total running time of

a single phase is bounded by Õ
(
m1+O (ϵ ) (logm)2

O (1/ϵ )
+ k
)
. Since

the total number of phases is bounded byO (1/ϵ ), the total running
time of the algorithm implementing the oracle is:

Õ
(
m1+O (ϵ ) (logm)2

O (1/ϵ )
+ k/ϵ

)
.

The time required in order to implement the remainder of the

algorithm (that is, updating the flow f and the edge lengths) is

subsumed by this running time. Therefore, the total running time

of the algorithm is Õ
(
m1+O (ϵ ) (logm)2

O (1/ϵ )
+ k/ϵ

)
. Since this im-

plementation of the oracle achieves approximation factor α =

O
(
(logm)2

O (1/ϵ )
)
, the final approximation factor that we achieve

for bothMaximum Multicommodity Flow andMinimum Multicut

is O
(
(logm)2

O (1/ϵ )
)
.
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