
Pinning Down the Strong Wilber 1 Bound for1

Binary Search Trees2

Parinya Chalermsook3

Aalto University, Finland4

chalermsook@gmail.com5

Julia Chuzhoy6

Toyota Technological Institute at Chicago7

cjulia@ttic.edu8

Thatchaphol Saranurak9

Toyota Technological Institute at Chicago10

saranurak@ttic.edu11

Abstract12

The dynamic optimality conjecture, postulating the existence of an O(1)-competitive online algorithm13

for binary search trees (BSTs), is among the most fundamental open problems in dynamic data14

structures. Despite extensive work and some notable progress, including, for example, the Tango15

Trees (Demaine et al., FOCS 2004), that give the best currently known O(log logn)-competitive16

algorithm, the conjecture remains widely open. One of the main hurdles towards settling the17

conjecture is that we currently do not have approximation algorithms achieving better than an18

O(log logn)-approximation, even in the offline setting. All known non-trivial algorithms for BST’s so19

far rely on comparing the algorithm’s cost with the so-called Wilber’s first bound (WB-1). Therefore,20

establishing the worst-case relationship between this bound and the optimal solution cost appears21

crucial for further progress, and it is an interesting open question in its own right.22

Our contribution is two-fold. First, we show that the gap between the WB-1 bound and the optimal23

solution value can be as large as Ω(log logn/ log log logn); in fact, we show that the gap holds even24

for several stronger variants of the bound. Second, we provide a simple algorithm, that, given an25

integer D > 0, obtains an O(D)-approximation in time exp
(
O
(
n1/2Ω(D)

logn
))

. In particular,26

this yields a constant-factor approximation algorithm with sub-exponential running time. Moreover,27

we obtain a simpler and cleaner efficient O(log logn)-approximation algorithm that can be used28

in an online setting. Finally, we suggest a new bound, that we call the Guillotine Bound, that is29

stronger than WB-1, while maintaining its algorithm-friendly nature, that we hope will lead to30

better algorithms. All our results use the geometric interpretation of the problem, leading to cleaner31

and simpler analysis.32

2012 ACM Subject Classification Theory of computation → Data structures design and analysis33

Keywords and phrases Binary search trees, Dynamic optimality, Wilber bounds34

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.3335

Related Version A full version of the paper is available at https://arxiv.org/abs/1912.02900.36

Funding Parinya Chalermsook: Supported by European Research Council (ERC) under the37

European Union’s Horizon 2020 research and innovation programme (grant agreement No. 759557)38

and by Academy of Finland Research Fellows, under grant No. 310415.39

Julia Chuzhoy: Supported in part by NSF grant CCF-1616584. Part of the work was done while the40

© Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2020).
Editors: Jarosław Byrka and Raghu Meka; Article No. 33; pp. 33:1–33:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chalermsook@gmail.com
mailto:cjulia@ttic.edu
mailto:saranurak@ttic.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.33
https://arxiv.org/abs/1912.02900
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:1

second author was a Weston visiting professor at the Department of Computer Science and Applied41

Mathematics, Weizmann Institute of Science.42

1 Introduction43

Binary search trees (BST’s) are a fundamental data structure that has been extensively44

studied for many decades. Informally, suppose we are given as input an online access45

sequence X = {x1, . . . , xm} of keys from {1, . . . , n}, and our goal is to maintain a binary46

search tree T over the set {1, . . . , n} of keys. The algorithm is allowed to modify the tree47

T after each access; the tree obtained after the ith access is denoted by Ti+1. Each such48

modification involves a sequence of rotation operations that transform the current tree Ti into49

a new tree Ti+1. The cost of the transformation is the total number of rotations performed50

plus the depth of the key xi in the tree Ti. The total cost of the algorithm is the total cost51

of all transformations performed as the sequence X is processed. We denote by OPT(X) the52

smallest cost of any algorithm for maintaining a BST for the access sequence X, when the53

whole sequence X is known to the algorithm in advance.54

Several algorithms for BST’s, whose costs are guaranteed to be O(m logn) for any access55

sequence, such as AVL-trees [1] and red-black trees [2], are known since the 60’s. Moreover,56

it is well known that there are length-m access sequences X on n keys, for which OPT(X) =57

Ω(m logn). However, such optimal worst-case guarantees are often unsatisfactory from both58

practical and theoretical perspectives, as one can often obtain better results for “structured”59

inputs. Arguably, a better notion of the algorithm’s performance to consider is instance60

optimality, where the algorithm’s performance is compared to the optimal cost OPT(X) for61

the specific input access sequence X. This notion is naturally captured by the algorithm’s62

competitive ratio: we say that an algorithm for BST’s is α-competitive, if, for every online63

input access sequence X, the cost of the algorithm’s execution on X is at most α · OPT(X).64

Since for every length-m access sequence X, OPT(X) ≥ m, the above-mentioned algorithms65

that provide worst-case O(m logn)-cost guarantees are also O(logn)-competitive. However,66

there are many known important special cases, in which the value of the optimal solution67

is O(m), and for which the existence of an O(1)-competitive algorithm would lead to a68

much better performance, including some interesting applications, such as, for example,69

adaptive sorting [23, 6, 19, 22, 13, 20, 12, 8, 7, 3, 5, 4]. A striking conjecture of Sleator70

and Tarjan [21] from 1985, called the dynamic optimality conjecture, asserts that the Splay71

Trees provide an O(1)-competitive algorithm for BST’s. This conjecture has sparked a long72

line of research, but despite the continuing effort, and the seeming simplicity of BST’s, it73

remains widely open. In a breakthrough result, Demaine et al. [10] proposed the Tango Trees74

algorithm, that achieves an O(log logn)-competitive ratio, and has remained the best known75

algorithm for the problem, for over 15 years. A natural avenue for overcoming this barrier76

is to first consider the “easier” task of designing (offline) approximation algorithms, whose77

approximation factor is below O(log logn). Designing better approximation algorithms is78

often a precursor to obtaining better online algorithms, and it is a natural stepping stone79

towards this goal.80

The main obstacle towards designing better algorithms, both in the online and the offline81

settings, is obtaining tight lower bounds on the value OPT(X), that can be used in algorithm82

design. If the input access sequence X has length m, and it contains n keys, then it is easy83

to see that OPT(X) ≥ Ω(m), and, by using any balanced BST’s, such as AVL-trees, one84

can show that OPT(X) = O(m logn). This trivially implies an O(logn)-approximation for85

APPROX/RANDOM 2020

33:2 Pinning Down the Strong Wilber 1 Bound

both offline and online settings. However, in order to obtain better approximation, these86

simple bounds do not seem sufficient. Wilber [25] proposed two new bounds, that we refer87

to as the first Wilber Bound (WB-1) and the second Wilber Bound (WB-2). He proved that,88

for every input sequence X, the values of both these bounds on X are at most OPT(X).89

The breakthrough result of Demaine et al. [10], that gives an O(log logn)-competitive online90

algorithm, relies on the WB-1 bound. In particular, they show that the cost of the solution91

produced by their algorithm is within an O(log logn)-factor from the WB-1 bound on the92

given input sequence X, and hence from OPT(X). This in turn implies that, for every input93

sequence X, the value of the WB-1 bound is within an O(log logn) factor from OPT(X).94

Follow-up work [24, 14] improved several aspects of Tango Trees, but it did not improve95

the approximation factor. Additional lower bounds on OPT, that subsume both the WB-196

and the WB-2 bounds, were suggested in [9, 11, 15], but unfortunately it is not clear how97

to exploit them in algorithm design. To this day, the only method we have for designing98

non-trivial online or offline approximation algorithms for BST’s is by relying on the WB-199

bound, and this seems to be the most promising approach for obtaining better algorithms.100

In order to make further progress on both online and offline approximation algorithms for101

BST’s, it therefore appears crucial that we better understand the relationship between the102

WB-1 bound and the optimal solution cost.103

Informally, the WB-1 bound relies on recursive partitioning of the input key sequence, that104

can be represented by a partitioning tree. The standard WB-1 bound (that we refer to105

as the weak WB-1 bound) only considers a single such partitioning tree. It is well-known106

(see e.g. [10, 24, 16]), that the gap between OPT(X) and the weak WB-1 bound for an107

access sequence X may be as large as Ω(log logn). However, the “bad” access sequence108

X used to obtain this gap is highly dependent on the fixed partitioning tree T . It is then109

natural to consider a stronger variant of WB-1, that we refer to as strong WB-1 bound and110

denote by WB(X), that maximizes the weak WB-1 bound over all such partitioning trees. As111

suggested by Iacono [16], and by Kozma [17], this gives a promising approach for improving112

the O(log logn)-approximation factor.113

In this paper, we show that, even for this strong variant of Wilber Bound, the gap between114

OPT(X) and WB(X) may be as large as Ω(log logn/ log log logn). This negative result115

extends to an even stronger variant of the Wilber Bound that we discuss below.116

Our second set of results is algorithmic. We show an (offline) algorithm that, given an input117

sequence X and a positive integer D, obtains an O(D)-approximation, in time poly(m) ·118

exp
(
n1/2Ω(D) logn

)
. When D is constant, the algorithm obtains an O(1)-approximation119

in sub-exponential time. When D is Θ(log logn), it matches the best current efficient120

O(log logn)-approximation algorithm. In the latter case, we can also adapt the algorithm to121

the online setting, obtaining an O(log logn)-competitive online algorithm.122

All our results use the geometric interpretation of the problem, introduced by Demaine123

et al. [9], leading to clean divide-and-conquer-style arguments that avoid, for example, the124

notion of pointers and rotations. We feel that this approach, in addition to providing a cleaner125

and simpler view of the problem, is more natural to work with in the context of approximation126

algorithms, and should be more amenable to the powerful geometric techniques in the field.127

Independent Work. Independently from our work, Lecomte and Weinstein [18] showed that128

second Wilber Bound (WB-2) dominates the WB-1 bound, and moreover, they show an access129

sequence X for which the two bounds have a gap of Ω(log logn). In particular, their result130

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:3

implies that the gap between WB(X) and OPT(X) is Ω(log logn) for that access sequence.131

We note that the access sequence X that is used in our negative results also provides a132

gap of Ω(log logn/ log log logn) between the WB-2 and the WB-1 bounds, although we only133

realized this after hearing the statement of the results of [18]. Additionally, Lecomte and134

Weinstein show that the WB-2 bound is invariant under rotations, and use this to show that,135

when the WB-2 bound is constant, then the Independent Rectangle bound of [9] is linear.136

We now provide a more detailed description of our results.137

Our Results and Techniques138

We use the geometric interpretation of the problem, introduced by Demaine et al. [9], that139

we refer to as the Min-Sat problem. Let P be any set of points in the plane. We say that two140

points p, q ∈ P are collinear iff either their x-coordinates are equal, or their y-coordinates141

are equal. If p and q are non-collinear, then we let �p,q be the smallest closed rectangle142

containing both p and q; notice that p and q must be diagonally opposite corners of this143

rectangle. We say that the pair (p, q) of points is satisfied in P iff there is some additional144

point r 6= p, q in P that lies in �p,q (the point may lie on the boundary of the rectangle).145

Lastly, we say that the set P of points is satisfied iff for every pair p, q ∈ P of distinct points,146

either p and q are collinear, or they are satisfied in P .147

In the Min-Sat problem, the input is a set P of points in the plane with integral x- and148

y-coordinates; we assume that all x-coordinates are between 1 and n, and all y-coordinates149

are between 1 and m and distinct from each other, and that |P | = m. The goal is to find a150

minimum-cardinality set Y of points, such that the set P ∪ Y of points is satisfied.151

An access sequence X over keys {1, . . . , n} can be represented by a set P of points in the152

plane as follows: if a key x is accessed at time y, then add the point (x, y) to P . Demaine153

et al. [9] showed that, for every access sequence X, if we denote by P the corresponding set154

of points in the plane, then the value of the optimal solution to the Min-Sat problem on P is155

Θ(OPT(X)). They also showed that, in order to obtain an O(α)-approximation algorithm156

for BST’s, it is sufficient to obtain an α-approximation algorithm for the Min-Sat problem.157

In the online version of the Min-Sat problem, at every time step t, we discover the unique158

input point whose y-coordinate is t, and we need to decide which points with y-coordinate t159

to add to the solution. Demaine et al. [9] also showed that an α-competitive online algorithm160

for Min-Sat implies an O(α)-competitive online algorithm for BST’s. For convenience, we do161

not distinguish between the input access sequence X and the corresponding set of points in162

the plane, that we also denote by X.163

Negative Results for WB-1. We say that an input access sequence X is a permutation if164

each key in {1, . . . , n} is accessed exactly once. Equivalently, in the geometric view, every165

column with an integral x-coordinate contains exactly one input point.166

Informally, the WB-1 bound for an input sequence X is defined as follows. Let B be the167

bounding box containing all points of X, and consider any vertical line L drawn across B,168

that partitions it into two vertical strips, separating the points of X into two subsets X1 and169

X2. Assume that the points of X are ordered by their y-coordinates from smallest to largest.170

We say that a pair (x, x′) ∈ X of points cross the line L, iff x and x′ are consecutive points171

of X, and they lie on different sides of L. Let C(L) be the number of all pairs of points in X172

that cross L. We then continue this process recursively with X1 and X2, with the final value173

APPROX/RANDOM 2020

33:4 Pinning Down the Strong Wilber 1 Bound

of the WB-1 bound being the sum of the two resulting bounds obtained for X1 and X2, and174

C(L). This recursive partitioning process can be represented by a binary tree T that we call175

a partitioning tree (we note that the partitioning tree is not related to the BST tree that the176

BST algorithm maintains). Every vertex v of the partitioning tree is associated with a vertical177

strip S(v), where for the root vertex r, S(r) = B. If the partitioning algorithm uses a vertical178

line L to partition the strip S(v) into two sub-strips S1 and S2, then vertex v has two children,179

whose corresponding strips are S1 and S2. Note that every sequence of vertical lines used in180

the recursive partitioning procedure corresponds to a unique partitioning tree and vice versa.181

Given a set X of points and a partitioning tree T , we denote by WBT (X) the WB-1 bound182

obtained for X while following the partitioning scheme defined by T . Wilber [25] showed183

that, for every partitioning tree T , OPT(X) ≥ Ω(WBT (X)) holds. Moreover, Demaine et184

al. [10] showed that, if T is a balanced tree, then OPT(X) ≤ O(log logn) ·WBT (X). These185

two bounds are used to obtain the O(log logn)-competitive algorithm of [10]. We call this186

variant of WB-1, that is defined with respect to a fixed tree T , the weak WB-1 bound.187

Unfortunately, it is well-known (see e.g. [10, 24, 16]), that the gap between OPT(X) and188

the weak WB-1 bound on an input X may be as large as Ω(log logn). In other words,189

for any fixed partitioning tree T , there exists an input X (that depends on T), with190

WBT (X) ≤ O(OPT(X)/ log logn). However, the construction of this “bad” input X depends191

on the fixed partitioning tree T . We consider a stronger variant of WB-1, that we refer to as192

strong WB-1 bound and denote by WB(X), that maximizes the weak WB-1 bound over all193

such partitioning trees, that is, WB(X) = maxT {WBT (X)}. Using this stronger bound as an194

alternative to weak WB-1 in order to obtain better approximation algorithms was suggested195

by Iacono [16], and by Kozma [17].196

Our first result rules out this approach: we show that, even for the strong WB-1 bound, the197

gap between WB(X) and OPT(X) may be as large as Ω(log logn/ log log logn), even if the198

input X is a permutation.199

I Theorem 1. For every integer n′, there is an integer n ≥ n′, and an access sequence X on200

n keys with |X| = n, such that X is a permutation, OPT(X) ≥ Ω(n log logn), but WB(X) ≤201

O(n log log logn). In other words, for every partitioning tree T , OPT(X)
WBT (X) ≥ Ω

(
log logn

log log logn

)
.202

We note that it is well known (see e.g. [5]), that any c-approximation algorithm for per-203

mutation input can be turned into an O(c)-approximation algorithm for any input sequence.204

However, the known instances that achieve an Ω(log logn)-gap between the weak WB-1 bound205

and OPT are not permutations. Therefore, our result is the first to provide a super-constant206

gap between WB-1 and OPT for permutations, even for the case of weak WB-1.207

Extension of WB-1. We consider several generalizations of the WB-1 bound that allow208

partitioning the plane both horizontally and vertically. We call the new bounds the consistent209

Guillotine Bound and the Guillotine Bound. Our negative result extends to the consistent210

Guillotine Bound but not to the Guillotine Bound. The Guillotine Bound seems to maintain211

the algorithm-friendly nature of WB-1, and in particular it naturally fits into the algorithmic212

framework that we propose. We hope that this bound can lead to improved algorithms, both213

in the offline and the online settings214

Separating the Two Wilber Bounds. The sequence X given by Theorem 1 not only215

provides a separation between WB-1 and OPT, but it also provides a separation between the216

WB-1 bound and the WB-2 bound (also called the funnel bound). The latter can be defined217

in the geometric view as follows. Recall that, for a pair of points x, y ∈ X, �x,y is the smallest218

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:5

closed rectangle containing both x and y. For a point x in the access sequence X, the funnel219

of x is the set of all points y ∈ X, for which �x,y does not contain any point of X \{x, y}, and220

alt(x) is the number of alterations between the left of x and the right of x in the funnel of x.221

The second Wilber Bound for sequence X is then defined as: WB(2)(X) = |X|+
∑
x∈X alt(x).222

We show that, for the sequence X given by Theorem 1, WB(2)(X) ≥ Ω(n log logn) holds, and223

therefore WB(2)(X)/WB(X) ≥ Ω(log logn/ log log logn) for that sequence, implying that224

the gap between WB(X) and WB(2)(X) may be as large as Ω(log logn/ log log logn). We225

note that we only realized that our results provide this stronger separation between the two226

Wilber bounds after hearing the statements of the results from the independent work of227

Lecomte and Weinstein [18] mentioned above.228

Algorithmic Results. We provide new simple approximation algorithms for the problem,229

that rely on its geometric interpretation, namely the Min-Sat problem.230

I Theorem 2. There is an offline algorithm for Min-Sat, that, given any integral parameter231

D ≥ 1, and an access sequence X to n keys of length m, produces a solution of cost at232

most O(D ·OPT(X)) and has running time at most poly(m) · exp
(
O
(
n1/2Θ(D) logn

))
. For233

D = O(log logn), the algorithm’s running time is polynomial in n and m, and it can be234

adapted to the online setting, achieving an O(log logn)-competitive ratio.235

Our results show that the problem of obtaining a constant-factor approximation for Min-Sat236

cannot be NP-hard, unless NP ⊆ SUBEXP, where SUBEXP =
⋂
ε>0 DTime[2nε]. This, in237

turn, provides a positive evidence towards the dynamic optimality conjecture, as one natural238

avenue to disproving it is to show that obtaining a constant-factor approximation for BST’s is239

NP-hard. Our results rule out this possibility, unless NP ⊆ SUBEXP. While the O(log logn)-240

approximation factor achieved by our algorithm in time poly(mn) is similar to that achieved241

by other known algorithms [10, 14, 24], this is the first algorithm that relies solely on the242

geometric formulation of the problem, which is arguably cleaner, simpler, and better suited243

for exploiting the rich toolkit of algorithmic techniques developed in the areas of online and244

approximation algorithms.245

Organization. We start with preliminaries in Section 2. In Section 3, we state decomposition246

theorems which are useful for both of our negative and positive results. In Section 4, we247

provide the proof of Theorem 1, our main negative result. We discuss extensions of the248

Wilber Bound in Section 5. Lastly, we show our main positive result – the proof of Theorem 2249

– in Section 6. Due to lack of space, many of the proofs are deferred to the full version.250

2 Preliminaries251

All our results only use the geometric interpretation of the problem, that we refer to as the252

Min-Sat problem. We include the formal definition of algorithms for BST’s and formally253

state their equivalence to Min-Sat in the full version.254

2.1 The Min-Sat Problem255

For a point p ∈ R2 in the plane, we denote by p.x and p.y its x- and y-coordinates, respectively.256

Given any pair p, p′ of points, we say that they are collinear if p.x = p′.x or p.y = p′.y. If p257

APPROX/RANDOM 2020

33:6 Pinning Down the Strong Wilber 1 Bound

and p′ are not collinear, then we let �p,p′ be the smallest closed rectangle containing both p258

and p′; note that p and p′ must be diagonally opposite corners of the rectangle.259

I Definition 3. We say that a non-collinear pair p, p′ of points is satisfied by a point p′′260

if p′′ is distinct from p and p′ and p′′ ∈ �p,p′ (where p′′ may lie on the boundary of the261

rectangle). We say that a set S of points is satisfied iff for every non-collinear pair p, p′ ∈ S262

of points, there is some point p′′ ∈ S that satisfies this pair.263

We refer to horizontal and vertical lines as rows and columns respectively. For a collection264

of points X, the active rows of X are the rows that contain at least one point in X. We265

define the notion of active columns analogously. We denote by r(X) and c(X) the number266

of active rows and active columns of the point set X, respectively. We say that a point set267

X is a semi-permutation if every active row contains exactly one point of X. Note that,268

if X is a semi-permutation, then c(X) ≤ r(X). We say that X is a permutation if it is a269

semi-permutation, and additionally, every active column contains exactly one point of X.270

Clearly, if X is a permutation, then c(X) = r(X) = |X|. We denote by B the smallest closed271

rectangle containing all points of X, and call B the bounding box.272

We are now ready to define the Min-Sat problem. The input to the problem is a set X of273

points that is a semi-permutation, and the goal is to compute a minimum-cardinality set Y274

of points, such that X ∪ Y is satisfied. We say that a set Y of points is a feasible solution275

for X if X ∪ Y is satisfied. We denote by OPT(X) the minimum value |Y | of any feasible276

solution Y for X.1 In the online version of the Min-Sat problem, at every time step t, we277

discover the unique input point from X whose y-coordinate is t, and we need to decide which278

points with y-coordinate t to add to the solution Y . The Min-Sat problem is equivalent to279

the BST problem, in the following sense:280

I Theorem 4 ([9]). Any efficient α-approximation algorithm for Min-Sat can be trans-281

formed into an efficient O(α)-approximation algorithm for BST’s, and similarly any online282

α-competitive algorithm for Min-Sat can be transformed into an online O(α)-competitive283

algorithm for BST’s.284

2.2 Basic Geometric Properties285

The following observation is well known (see, e.g. Observation 2.1 from [9]).286

I Observation 5. Let Z be any satisfied point set. Then for every pair p, q ∈ Z of distinct287

points, there is a point r ∈ �p,q \ {p, q} such that r.x = p.x or r.y = p.y.288

Collapsing Sets of Columns or Rows. Assume that we are given any set X of points, and289

any collection C of consecutive active columns for X. In order to collapse the set C of columns,290

we replace C with a single representative column C (for concreteness, we use the column291

of C with minimum x-coordinate). For every point p ∈ X that lies on a column of C, we292

replace p with a new point, lying on the column C, whose y-coordinate remains the same.293

Formally, we replace point p with point (x, p.y), where x is the x-coordinate of the column294

1 We remark that in the original paper that introduced this problem [9], the value of the solution is
defined as |X ∪ Y |, while our solution value is |Y |. It is easy to see that for any semi-permutation X
and solution Y for X, |Y | ≥ Ω(|X|) must hold, so the two definitions are equivalent to within factor 2.

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:7

C. We denote by X|C the resulting new set of points. We can similarly define collapsing set295

of rows. The following useful observation is easy to verify.296

I Observation 6. Let S be any set of points, and let C be any collection of consecutive active297

columns (or rows) with respect to S. If S is a satisfied set of points, then so is S|C.298

Canonical Solutions. We say that a solution Y for input X is canonical iff every point299

p ∈ Y lies on an active row and an active column of X. It is easy to see that any solution300

can be transformed into a canonical solution, without increasing its cost (see the full version301

of the paper for the proof).302

I Observation 7. There is an efficient algorithm, that, given an instance X of Min-Sat and303

any feasible solution Y for X, computes a feasible canonical solution Ŷ for X with |Ŷ | ≤ |Y |.304

2.3 Partitioning Trees305

We now turn to define partitioning trees, that are central to both defining the WB-1 bound306

and to describing our algorithm.307

Let X be the a set of points that is a semi-permutation. We can assume without loss of308

generality that every column with an integral x-coordinate between 1 and c(X) inclusive309

contains at least one point of X. Let B be the bounding box of X. Assume that the set of310

active columns is {C1, . . . , Ca}, where a = c(X), and that for all 1 ≤ i ≤ a, the x-coordinate311

of column Ci is i. Let L be the set of all vertical lines with half-integral x-coordinates between312

1 + 1/2 and a− 1/2 (inclusive). Throughout, we refer to the vertical lines in L as auxiliary313

columns. Let σ be an arbitrary ordering of the lines of L and denote σ = (L1, L2, . . . , La−1).314

We define a hierarchical partition of the bounding box B into vertical strips using σ, as315

follows. We perform a− 1 iterations. In the first iteration, we partition the bounding box316

B, using the line L1, into two vertical strips, SL and SB. For 1 < i ≤ a− 1, in iteration i317

we consider the line Li, and we let S be the unique vertical strip in the current partition318

that contains the line Li. We then partition S into two vertical sub-strips by the line Li.319

When the partitioning algorithm terminates, every vertical strip contains exactly one active320

column.321

Figure 1 An Illustration of partitioning tree and the corresponding sequence σ = (L1, . . . , L7).
Strip S(v) corresponds to node v that owns line L6.

This partitioning process can be naturally described by a binary tree T = T (σ), that we322

call a partitioning tree associated with the ordering σ (see Figure 1). Each node v ∈ V (T)323

is associated with a vertical strip S(v) of the bounding box B. The strip S(r) of the root324

APPROX/RANDOM 2020

33:8 Pinning Down the Strong Wilber 1 Bound

vertex r of T is the bounding box B. For every inner vertex v ∈ V (T), if S = S(v) is the325

vertical strip associated with v, and if L ∈ L is the first line in σ that lies strictly in S, then326

line L partitions S into two sub-strips, that we denote by SL and SR. Vertex v then has two327

children, whose corresponding strips are SL and SR respectively. We say that v owns the328

line L, and we denote L = L(v). For each leaf node v, the corresponding strip S(v) contains329

exactly one active column of X, and v does not own any line of L. For each vertex v ∈ V (T),330

let N(v) = |X ∩ S(v)| be the number of points from X that lie in S(v), and let width(v) be331

the width of the strip S(v). Given a partition tree T for point set X, we refer to the vertical332

strips in {S(v)}v∈T as T -strips.333

2.4 The WB-1 Bound334

The WB-1 bound2 is defined with respect to an ordering (or a permutation) σ of the auxiliary335

columns, or, equivalently, with respect to the partitioning tree T (σ). It will be helpful to336

keep both these views in mind. In this paper, we will make a clear distinction between a337

weak variant of the WB-1 bound, as defined by Wilber himself in [25] and a strong variant,338

as mentioned in [16].339

Let X be a semi-permutation, and let L be the corresponding set of auxiliary columns.340

Consider an arbitrary fixed ordering σ of columns in L and its corresponding partition tree341

T = T (σ). For each inner node v ∈ V (T), consider the set X ′ = X∩S(v) of input points that342

lie in the strip S(v), and let L(v) ∈ L be the line that v owns. We denoteX ′ = {p1, p2, . . . , pk},343

where the points are indexed in the increasing order of their y-coordinates; since X is a344

semi-permutation, no two points of X may have the same y-coordinate. For 1 ≤ j < k, we345

say that the ordered pair (pj , pj+1) of points form a crossing of L(v) iff pj , pj+1 lie on the346

opposite sides of the line L(v). We let cost(v) be the total number of crossings of L(v) by347

the points of X ∩ S(v). When L = L(v), we also write cost(L) to denote cost(v). If v is a348

leaf vertex, then its cost is set to 0.349

I Definition 8 (WB-1 bound). For any semi-permutation X, an ordering σ of the auxiliary350

columns in L, and the corresponding partitioning tree T = Tσ, the (weak) WB-1 bound of X351

with respect to σ is: WBσ(X) = WBT (X) =
∑
v∈V (T) cost(v). The strong WB-1 bound of352

X is WB(X) = maxσ WBσ(X), where the maximum is taken over all permutations σ of the353

lines in L.354

It is well known that the WB-1 bound is a lower bound on the optimal solution cost:355

B Claim 9. For any semi-permutation X, WB(X) ≤ 2 · OPT(X).356

The original proof of this fact is due to Wilber [25], which was later presented in the geometric357

view by Demaine et al. [9], via the notion of independent rectangles.358

3 Geometric Decomposition Theorems359

In this section, we develop several technical tools that will allow us to decompose a given360

instance into a number of sub-instances. We then analyze the optimal solution costs and the361

2 Also called Interleaving bound [10], the first Wilber bound, “interleave lower bound” [25], or alternation
bound [16]

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:9

Wilber bound values for the resulting subinstances.362

Split Instances. Consider a semi-permutation X and its partitioning tree T . Let U ⊆ V (T)363

be a collection of vertices of the tree T , such that the strips {S(v)}v∈U partition the bounding364

box. In other words, every root-to-leaf path in T must contain exactly one vertex of U . We365

now define splitting an instance X via the set U of vertices of T .366

I Definition 10 (A Split). A split of (X,T) at U is a collection of instances {Xc, {Xs
v}v∈U},367

defined as follows.368

For each vertex v ∈ U , instance Xs
v is called a strip instance, and it contains all points369

of X that lie in the interior of the strip S(v).370

Instance Xc is called a compressed instance, and it is obtained from X by collapsing,371

for every vertex v ∈ U , all active columns in the strip S(v) into a single column.372

We also partition the tree T into sub-trees that correspond to the new instances: for every373

vertex v ∈ U , we let Tv be the sub-tree of T rooted at v. Observe that Tv is a partitioning374

tree for instance Xs
v . The tree T c is obtained from T by deleting from it, for all v ∈ U , all375

vertices of V (Tv) \ {v}. It is easy to verify that T c is a valid partitioning tree for instance Xc.376

The following observation, whose proof appears in the full version of the paper, establishes377

several basic properties of a split. Recall that, given an instance X, r(X) and c(X) denote378

the number of active rows and active columns in X, respectively.379

I Observation 11. If X is a semi-permutation, then the following properties hold for any380

(X,T)-split at U :381 ∑
v∈U r(Xs

v) = r(X)382 ∑
v∈U c(Xs

v) = c(X)383

c(Xc) ≤ |U |384 ∑
v∈U WBTv (Xs

v) + WBT c(Xc) = WBT (X).385

The first property holds since X is a semi-permutation. In order to establish the last property,386

consider any vertex x ∈ V (T), and let T ′ ∈ {T c} ∪ {Tv}v∈U be the new tree to which v387

belongs; if x ∈ U , then we set T ′ = Tx. It is easy to see that the cost of v in tree T ′ is the388

same as its cost in the tree T (recall that the cost of a leaf vertex is 0). The last property389

can be viewed as a “perfect decomposition” property of the weak WB-1 bound. We will show390

below an (approximate) decomposition property of strong WB-1 bound.391

Splitting by Lines. We can also define the splitting with respect to any subset L′ ⊆ L of392

the auxiliary columns for X, analogously: Notice that the lines in L′ partition the bounding393

box B into a collection of internally disjoint strips, that we denote by {S′1, . . . , S′k}. We can394

then define the strip instances Xs
i as containing all vertices of X ∩ Si for all 1 ≤ i ≤ k, and395

the compressed instance Xc, that is obtained by collapsing, for each 1 ≤ i ≤ k, all active396

columns that lie in strip Si, into a single column. We also call these resulting instances a397

split of X by L′.398

We can also consider an arbitrary ordering σ of the lines in L, such that the lines of L′399

appear at the beginning of σ, and let U ⊆ V (T (σ)) contain all vertices u for which the strip400

S(u) is in {Si}1≤i≤k. If we perform a split of (X,T) at U , we obtain exactly the same strip401

instances Xs
1 , . . . , X

s
k, and the same compressed instance Xc.402

APPROX/RANDOM 2020

33:10 Pinning Down the Strong Wilber 1 Bound

Decomposition Theorem for OPT. The following theorem gives a crucial decomposition403

property of OPT. The theorem is used in our algorithm for Min-Sat, and its proof appears404

in the full version of the paper.405

I Theorem 12. Let X be a semi-permutation, let T be any partitioning tree for X, let406

U ⊆ V (T) be a subset of vertices of T such that the strips in {S(v) | v ∈ U} partition the407

bounding box, and let {Xc, {Xs
v}v∈U} be an (X,T)-split at U . Then:408

∑
v∈U

OPT(Xs
v) + OPT(Xc) ≤ OPT(X).

Decomposition Theorem for the Strong WB-1 bound. We also prove, in the full version409

of the paper, the following theorem about the strong WB-1 bound, that we use several times410

in our negative result.411

I Theorem 13. Let X be a semi-permutation and let T be a partitioning tree for X. Let412

U ⊆ V (T) be a set of vertices of T such that the strips in {S(v) | v ∈ U} partition the413

bounding box. Let {Xc, {Xs
v}v∈U} be the split of (X,T) at U . Then:414

WB(X) ≤ 4WB(Xc) + 8
∑
v∈U

WB(Xs
v) +O(|X|).

This result is somewhat surprising. One can think of the expression WB(Xc)+
∑
v∈U WB(Xs

v)415

as a WB-1 bound obtained by first cutting along the lines that serve as boundaries of the416

strips S(v) for v ∈ U , and then cutting the individual strips. However, WB(X) is the417

maximum of WBT (X) obtained over all trees T , including those that do not obey this418

partitioning order. The proofs of both Theorems 12 and 13 are given in the full version.419

4 Separation of OPT and the Strong Wilber Bound420

In this section we present our negative results, proving Theorem 1. We start by defining421

several basic tools used in our construction in Section 4.1. From Section 4.2 onward, we422

describe our construction and its analysis.423

4.1 Basic Tools424

Monotonically Increasing Sequence. We say that an input set X of points is monotonically425

increasing iff X is a permutation, and moreover for every pair p, p′ ∈ X of points, if p.x < p′.x,426

then p.y < p′.y must hold. It is well known that the value of the optimal solution of427

monotonically increasing sequences is low, and we exploit this fact in our negative results.428

I Observation 14. If X is a monotonically increasing set of points, then OPT(X) ≤ |X|−1.429

Bit Reversal Sequence (BRS). We use the geometric variant of BRS, which is more intuitive430

and easier to argue about. Let R ⊆ N and C ⊆ N be sets of integers (which are supposed to431

represent sets of active rows and columns.) The instance BRS(i,R, C) is only defined when432

|R| = |C| = 2i. It contains 2i points, and it is a permutation, whose sets of active rows433

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:11

and columns are exactly R and C respectively; so |R| = |C| = 2i. We define the instance434

recursively. The base of the recursion is instance BRS(0, {C}, {R}), containing a single point435

at the intersection of row R and column C. Assume now that we have defined, for all436

1 ≤ i′ ≤ i, and any sets R′, C′ of 2i′ integers, the corresponding instance BRS(i,R′, C′). We437

define instance BRS(i+ 1,R, C), where |R| = |C| = 2i+1, as follows.438

Consider the columns in C in their natural left-to-right order, and define Cleft to be the439

first 2i columns and Cright = C \ Cleft. Denote R = {R1, . . . , R2i+1}, where the rows440

are indexed in their natural bottom to top order, and let Reven = {R2, R4, . . . , R2i+1}441

and Rodd = {R1, R3, . . . , R2i+1−1} be the sets of all even-indexed and all odd-indexed442

rows, respectively. Notice that |Cleft| = |Cright| = |Reven| = |Rodd| = 2i. The instance443

BRS(i+ 1,R, C) is defined to be BRS(i,Rodd, Cleft) ∪ BRS(i,Reven, Cright).444

For n = 2i, we denote by BRS(n) the instance BRS(i, C,R), where C contains all columns445

with integral x-coordinates from 1 to n, and R contains all rows with integral y-coordinates446

from 1 to n; see Figure 2 for an illustration.447

It is well-known that, if X is a bit-reversal sequence on n points, then OPT(X) ≥ Ω(n logn).448

B Claim 15. Let X = BRS(i, C,R), for any i ≥ 0 and any sets C and R of columns and rows,449

respectively, with |R| = |C| = 2i. Then |X| = 2i, and OPT(X) ≥ WB(X)
2 ≥ |X|(log |X|−2)+1

2 .450

Next, we present two additional technical tools that we use in our construction.451

Exponentially Spaced Columns. Recall that we defined the bit reversal instance BRS(`,R, C),452

where R and C are sets of 2` rows and columns, respectively, that serve in the resulting453

instance as the sets of active rows and columns; the instance contains n = 2` points. In454

the Exponentially-Spaced BRS instance ES-BRS(`,R), we are still given a set R of 2` rows455

that will serve as active rows in the resulting instance, but we define the set C of columns in456

a specific way. For an integer i, Ci be the column whose x-coordinate is i. We then let C457

contain, for each 0 ≤ i < 2`, the column C2i . Denoting N = 2n = 22` , the x-coordinates of458

the columns in C are {1, 2, 4, 8, . . . , N/2}. The instance is then defined to be BRS(`,R, C) for459

this specific set C of columns. Notice that the instance contains n = logN = 2` input points.460

It is easy to see that any point set X = ES-BRS(`,R) satisfies OPT(X) = Ω(n logn). We461

remark that this idea of exponentially spaced columns is inspired by the instance used by462

Iacono [16] to prove a gap between the weak WB-1 bound and OPT(X). However, Iacono’s463

instance is tailored to specific partitioning tree T , and it is clear that there is another464

partitioning tree T ′ with OPT(X) = Θ(WBT ′(X)). Therefore, this instance does not give a465

separation result for the strong WB-1 bound, and in fact it does not provide negative results466

for the weak WB-1 bound when the input point set is a permutation.467

Cyclic Shift of Columns. Suppose we are given a point set X, and let C′ = {C0, . . . , CN−1}468

be any set of columns indexed in their natural left-to-right order, such that all points of X469

lie on columns of C (but some columns may contain no points of X). Let 0 ≤ s < N be any470

integer. We denote by Xs a cyclic shift of X by s units, obtained as follows. For every point471

p ∈ X, we add a new point ps to Xs, whose y-coordinate is the same as that of p, and whose472

x-coordinate is p.x+ s mod N . In other words, we shift the point p by s steps to the right473

in a circular manner. Equivalently, we move the last s columns of C′ to the beginning of the474

instance. The following claim, whose proof appears in the full version of the paper, shows475

that the value of the optimal solution does not decrease significantly in the shifted instance.476

APPROX/RANDOM 2020

33:12 Pinning Down the Strong Wilber 1 Bound

B Claim 16. Let X be any point set that is a semi-permutation. Let 0 ≤ s < N be a shift477

value, and let X ′ = Xs be the instance obtained from X by a cyclic shift of its points by s478

units to the right. Then OPT(X ′) ≥ OPT(X)− |X|.479

4.2 Construction of the Bad Instance480

We construct two instances: instance X̂ on N∗ points, that is a semi-permutation (but is481

somewhat easier to analyze), and instance X∗ in N∗ points, which is a permutation; the482

analysis of instance X∗ heavily relies on the analysis of instance X̂. We will show that the483

optimal solution value of both instances is Ω(N∗ log logN∗), but the cost of the Wilber484

Bound is at most O(N∗ log log logN∗). Our construction uses the following three parameters.485

We let ` ≥ 1 be an integer, and we set n = 2` and N = 2n.486

First Instance. We now construct our first final instance X̂, which is a semi-permutation487

containing N columns. Intuitively, we create N instances X0, X1, . . . , XN−1, where instance488

Xs is an exponentially-spaced BRS instance that is shifted by s units. We then stack these489

instances on top of one another in this order.490

Formally, for all 0 ≤ j ≤ N − 1, we define a set Rj of n consecutive rows with integral491

coordinates, such that the rows of R0,R1, . . . ,RN−1 appear in this bottom-to-top order.492

Specifically, set Rj contains all rows whose y-coordinates are in {jn+ 1, jn+ 2, . . . , (j + 1)n}.493

For every integer 0 ≤ s ≤ N − 1, we define a set of points Xs, which is a cyclic shift of494

instance ES-BRS(`,Rs) by s units. Recall that |Xs| = 2` = n and that the points in Xs
495

appear on the rows in Rs and a set Cs of columns, whose x-coordinates are in {
(
2j + s

)
496

mod N : 0 ≤ j < n}. We then let our final instance be X̂ =
⋃N−1
s=0 Xs. From now on, we497

denote N∗ = |X̂|. Recall that |N∗| = N · n = N logN .498

Observe that the number of active columns in X̂ is N . Since the instance is symmetric499

and contains N∗ = N logN points, every column contains exactly logN points. Each row500

contains exactly one point, so X̂ is a semi-permutation. (See Figure 2 for an illustration).501

Figure 2 An illustration of our construction. The figure on the left shows the instance
BRS(2, {1, 2, 3, 4}, {1, 2, 3, 4}). The figure on the right combines three copies X0, X1, X2 of the
corresponding exponentially-spaced instance, with horizontal shifts of 0, 1, and 2, respectively. The
red points show how copies of the same point in different sub-instances.

Lastly, we need the following bound on the value of the optimal solution of instance X̂.502

I Observation 17. OPT(X̂) = Ω(N∗ log logN∗)503

Proof. From Claims 15 and 16, for each 0 ≤ s ≤ N − 1, each sub-instance Xs has504

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:13

OPT(Xs) ≥ Ω(n logn) = Ω(logN log logN). Therefore, OPT(X̂) ≥
∑N−1
s=0 OPT(Xs) =505

Ω(N logN log logN) = Ω(N∗ log logN∗) (we have used the fact that N∗ = N logN). J506

Second Instance. We now construct our second and final instance,X∗, that is a permutation.507

In order to do so, we start with the instance X̂, and, for every active column C of X̂, we508

create n = logN new columns (that we view as copies of C), C1, . . . , C logN , which replace509

the column C. We denote this set of columns by B(C), and we refer it as the block of510

columns representing C. Recall that the original column C contains logN input points of511

X̂. We place each such input point on a distinct column of B(C), so that the points form a512

monotonically increasing sequence (see the definition in Section 4.1). This completes the513

definition of the final instance X∗. We obtain the following immediate bound on the optimal514

solution cost of instance X∗.515

B Claim 18. OPT(X∗) ≥ OPT(X̂) = Ω(N∗ log logN∗).516

4.3 Upper Bound for WB(X̂)517

In this section we prove the following theorem.518

I Theorem 19. WB(X̂) ≤ O(N∗ log log logN∗).519

In order to prove the theorem, consider again the instance X̂. Recall that it consists of N520

instances X0, X1, . . . , XN−1 that are stacked on top of each other vertically in this order. We521

rename these instances as X1, X2, . . . , XN , so Xj is exactly ES-BRS(logN), that is shifted522

by (j − 1) units to the right. Recall that |X̂| = N∗ = N logN , and each instance Xs523

contains exactly logN points. We denote by C the set of N columns, whose x-coordinates524

are 1, 2, . . . , N . All points of X̂ lie on the columns of C. For convenience, for 1 ≤ j ≤ N , we525

denote by Cj the column of C whose x-coordinate is j.526

Let σ be any ordering of the auxiliary columns in L, and let T = Tσ be the corresponding527

partitioning tree. It is enough to show that, for any such ordering σ, the value of WBσ(X̂)528

is bounded by O(N∗ log log logN∗). Recall that WBσ(X̂) is the sum, over all vertices529

v ∈ V (T), of cost(v). The value of cost(v) is defined as follows. If v is a leaf vertex, then530

cost(v) = 0. Otherwise, let L = L(v) be the line of L that v owns. Index the points531

in X ∩ S(v) by q1, . . . , qz in their bottom-to-top order. A consecutive pair (qj , qj+1) of532

points is a crossing iff they lie on different sides of L(v). We distinguish between the two533

types of crossings that contribute towards cost(v). We say that the crossing (qj , qj+1) is of534

type-1 if both qj and qj+1 belong to the same shifted instance Xs for some 0 ≤ s ≤ N − 1.535

Otherwise, they are of type-2. Note that, if (qj , qj+1) is a crossing of type 2, with qj ∈ Xs536

and qj+1 ∈ Xs′ , then s, s′ are not necessarily consecutive integers, as it is possible that for537

some indices s′′, Xs′′ has no points that lie in the strip S(v). We now let cost1(v) be the538

total number of type-1 crossings of L(v), and cost2(v) the total number of type-2 crossings.539

Note that cost(v) = cost1(v) + cost2(v). We also define cost1(σ) =
∑
v∈V (T) cost1(v) and540

cost2(σ) =
∑
v∈V (T) cost2(v). Clearly, WBσ(X̂) = cost1(σ) + cost2(σ). In the full version of541

the paper, we prove the following two theorems:542

I Theorem 20. For every ordering σ of the auxiliary columns in L, cost1(σ) ≤ O(N∗ log log logN∗).543

I Theorem 21. For every vertex v ∈ V (T), cost2(v) ≤ O(logN) +O(cost1(v)).544

APPROX/RANDOM 2020

33:14 Pinning Down the Strong Wilber 1 Bound

Notice that from the latter theorem, we get that cost2(σ) ≤ O(cost1(σ))+O(|V (T)| · logN) =545

O(N∗ log log logN∗) + O(N logN) = O(N∗ log log logN∗). Combining the two theorems546

together completes the proof of Theorem 19.547

4.4 Upper Bound for WB(X∗)548

In this section we show that WB(X∗) = O(N∗ log log logN∗), completing the proof of549

Theorem 1. Recall that instance X∗ is obtained from instance X̂ by replacing every active550

column C of X∗ with a block B(C) of columns, and then placing the points of C on the551

columns of B(C) so that they form a monotone increasing sequence, while preserving their552

y-coordinates. The resulting collection of all blocks B(C) partitions the set of all active553

columns of X∗. We denote this set of blocks by B1, . . . ,BN . The idea is to use Theorem 13554

in order to bound WB(X∗).555

Consider a set of lines L′ (with half-integral x-coordinates) that partition the bounding box556

B into strips, where the ith strip contains the block Bi of columns, so |L′| = (N − 1). We557

consider a split of instance X∗ by L′: This gives us a collection of strip instances {Xs
i }1≤i≤N558

and the compressed instance Xc. Notice that the compressed instance is precisely X̂, and559

each strip instance Xs
i is a monotone increasing point set.560

Since each strip instance Xs
i is monotonously increasing, from Observation 14 and Claim561

9, for all i, WB(Xs
i) ≤ O(OPT(Xs

i)) ≤ O(|Xs
i |). From Theorem 13, we then get that:562

WB(X∗) ≤ 4WB(X̂)+8
∑
i WB(Xs

i)+O(|X∗|) ≤ 4WB(X̂)+O(|X∗|) ≤ O(N∗ log log logN∗).563

5 Guillotine Bounds564

In this section we consider an extension of the Wilber bound which we call the Guillotine565

bound. The Guillotine bound GB(X) extends WB(X) by allowing both vertical and horizontal566

partitioning lines. Specifically, given the bounding box B, we let L be any vertical or567

horizontal line crossing B, that separates X into two subsets X1 and X2. We define the568

number of crossings of L exactly as before, and then recurse on both sides of L as before.569

This partitioning scheme can be represented by a binary tree T , where every vertex of the tree570

is associated with a rectangular region of the plane. We denote the resulting bound obtained571

by using the partitioning tree T by GBT (X), and we define GB(X) = maxT GBT (X). We572

show that GB is a lower bound on the optimal solution cost in the following lemma, whose573

proof is deferred to the full version.574

I Lemma 22. For any point set X that is a permutation, GB(X) ≤ 2OPT(X).575

The Consistent Guillotine bound restricts the Guillotine bound by maximizing only over576

partitioning schemes that are “consistent” in the following sense: suppose that the current577

partition of the bounding box B, that we have obtained using previous partitioning lines, is578

a collection {R1, . . . , Rk} of rectangular regions. We need to choose a vertical or a horizontal579

line L that spans the whole bounding box B, that is, L intersects the boundary of B in two580

points. Once line L is chosen, for every rectangular region Ri that intersects L, we must581

partition Ri into two sub-regions using the line L, and then count the number of consecutive582

pairs of points in X∩Ri that cross the line L. In other words, we must partition all rectangles583

R1, . . . , Rk consistently with respect to the line L. In contrast, in the Guillotine bound, we584

are allowed to partition each area Ri independently. From the definitions, the value of the585

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:15

Guillotine bound GB(X) is always at least as large as the value of the Consistent Guillotine586

bound, denoted by cGB(X), on any input sequence X, which is at least as large as WB(X).587

We generalize our negative result to the Consistent Guillotine bound in the following theorem,588

whose proof appears in the full version of the paper.589

I Theorem 23. For every integer n′, there is an integer n ≥ n′, and a set X of points590

that is a permutation with |X| = n, such that OPT(X) ≥ Ω(n log logn) but cGB(X) ≤591

O(n log log logn).592

Our negative results do not extend to the general GB bound, while our divide-and-conquer593

framework can naturally be adapted to work with GB. We leave open an interesting question594

of establishing the worst-case gap between the value of OPT and that of the Guillotine bound,595

and we hope that combining the Guillotine bound with our algorithmic framework will lead596

to better online and offline approximation algorithms.597

6 The Algorithms598

In this section we provide the high level intuition for the proof of Theorem 2. A more detailed599

description appears in the Appendix. Both the polynomial time and the sub-exponential600

time algorithms follow the same framework. We start with a high-level overview of this601

framework. For simplicity, assume that the number of active columns in the input instance602

X is an integral power of 2. The key idea is to decompose the input instance into smaller603

sub-instances, using the split instances defined in Section 3. We solve the resulting instances604

recursively and then combine the resulting solutions.605

Suppose we are given an input point set X that is a semi-permutation, with |X| = m, such606

that the number of active columns is n. We consider a balanced partitioning tree T , where607

for every vertex v ∈ V (T), the line L(v) that v owns splits the strip S(v) in the middle,608

with respect to the active columns that are contained in S(v). Therefore, the height of the609

partitioning tree is logn.610

Consider now the set U of vertices of T that lie in the middle layer of T . We consider the611

split of (X,T) at U , obtaining a new collection of instances (Xc, {Xs
i })ki=1 where k = Θ(

√
n).612

Note that each resulting strip instance Xs
i contains Θ(

√
n) active columns, and so does the613

compressed instance Xc.614

We recursively solve each such instance and then combine the resulting solutions. The key to615

the algorithm and its analysis is to show that there is a collection Z of O(|X|) points, such616

that, if we are given any solution Y c to instance Xc, and, for all 1 ≤ i ≤ k, any solution Yi617

to instance Xs
i , then Z ∪ Y c ∪

(⋃N
i=1 Yi

)
is a feasible solution to instance X. We also show618

that the total number of input points that appear in all instances that participate in the619

same recursive level is bounded by O(OPT(X)). This ensures that in every recursive level620

we add at most O(OPT(X)) points to the solution, and the total solution cost is at most621

O(OPT(X)) times the number of the recursive levels, which is bounded by O(log logn).622

In order to obtain the sub-exponential time algorithm, we restrict the recursion to D levels,623

and then solve each resulting instance directly in time r(X)c(X)O(c(X)). This approach gives624

an O(D)-approximation algorithm with running time at most poly(m) · exp
(
n1/2Ω(D) logn

)
625

as desired. A more detailed description of the algorithm appears in the Appendix.626

APPROX/RANDOM 2020

33:16 Pinning Down the Strong Wilber 1 Bound

References627

1 G. M. Adelson-Velskĭı and E. M. Landis. An algorithm for organization of information. Dokl.628

Akad. Nauk SSSR, 146:263–266, 1962.629

2 Rudolf Bayer. Symmetric binary b-trees: Data structure and maintenance algorithms. Acta Inf.,630

1:290–306, 1972. URL: https://doi.org/10.1007/BF00289509, doi:10.1007/BF00289509.631

3 Prosenjit Bose, Karim Douïeb, John Iacono, and Stefan Langerman. The power and lim-632

itations of static binary search trees with lazy finger. In Algorithms and Computation -633

25th International Symposium, ISAAC 2014, Jeonju, Korea, December 15-17, 2014, Pro-634

ceedings, pages 181–192, 2014. URL: http://dx.doi.org/10.1007/978-3-319-13075-0_15,635

doi:10.1007/978-3-319-13075-0_15.636

4 P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, and T. Saranurak. Greedy is an637

almost optimal deque. WADS, 2015.638

5 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol639

Saranurak. Pattern-avoiding access in binary search trees. In IEEE 56th Annual Symposium640

on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,641

pages 410–423, 2015.642

6 R. Chaudhuri and H. Höft. Splaying a search tree in preorder takes linear time. SIGACT643

News, 24(2):88–93, April 1993. URL: http://doi.acm.org/10.1145/156063.156067, doi:644

10.1145/156063.156067.645

7 R. Cole. On the dynamic finger conjecture for splay trees. part ii: The proof.646

SIAM Journal on Computing, 30(1):44–85, 2000. URL: http://dx.doi.org/10.647

1137/S009753979732699X, arXiv:http://dx.doi.org/10.1137/S009753979732699X, doi:648

10.1137/S009753979732699X.649

8 Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger650

conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM J. Comput.,651

30(1):1–43, April 2000. URL: http://dx.doi.org/10.1137/S0097539797326988, doi:10.652

1137/S0097539797326988.653

9 Erik D. Demaine, Dion Harmon, John Iacono, Daniel M. Kane, and Mihai Pǎtraşcu. The654

geometry of binary search trees. In SODA 2009, pages 496–505, 2009. URL: http://dl.acm.655

org/citation.cfm?id=1496770.1496825.656

10 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu. Dynamic optimality657

- almost. SIAM J. Comput., 37(1):240–251, 2007. Announced at FOCS’04. URL: http:658

//dx.doi.org/10.1137/S0097539705447347, doi:10.1137/S0097539705447347.659

11 Jonathan Derryberry, Daniel Dominic Sleator, and Chengwen Chris Wang. A lower bound660

framework for binary search trees with rotations. 2005.661

12 Jonathan C. Derryberry and Daniel D. Sleator. Skip-splay: Toward achieving the unified662

bound in the BST model. In Frank Dehne, Marina Gavrilova, Jörg-Rüdiger Sack, and CsabaD.663

Toth, editors, Algorithms and Data Structures, volume 5664 of Lecture Notes in Computer664

Science, pages 194–205. Springer Berlin Heidelberg, 2009. URL: http://dx.doi.org/10.1007/665

978-3-642-03367-4_18, doi:10.1007/978-3-642-03367-4_18.666

13 Amr Elmasry. On the sequential access theorem and deque conjecture for splay trees. Theoretical667

Computer Science, 314(3):459 – 466, 2004. URL: http://www.sciencedirect.com/science/668

article/pii/S0304397504000696, doi:http://dx.doi.org/10.1016/j.tcs.2004.01.019.669

14 George F. Georgakopoulos. Chain-splay trees, or, how to achieve and prove loglogn-670

competitiveness by splaying. Inf. Process. Lett., 106(1):37–43, 2008.671

15 Dion Harmon. New Bounds on Optimal Binary Search Trees. PhD thesis, Massachusetts672

Institute of Technology, 2006.673

16 John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data674

Structures, Streams, and Algorithms, volume 8066 of Lecture Notes in Computer Sci-675

ence, pages 236–250. Springer Berlin Heidelberg, 2013. URL: http://dx.doi.org/10.1007/676

978-3-642-40273-9_16, doi:10.1007/978-3-642-40273-9_16.677

https://doi.org/10.1007/BF00289509
http://dx.doi.org/10.1007/BF00289509
http://dx.doi.org/10.1007/978-3-319-13075-0_15
http://dx.doi.org/10.1007/978-3-319-13075-0_15
http://doi.acm.org/10.1145/156063.156067
http://dx.doi.org/10.1145/156063.156067
http://dx.doi.org/10.1145/156063.156067
http://dx.doi.org/10.1145/156063.156067
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S009753979732699X
http://arxiv.org/abs/http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S009753979732699X
http://dx.doi.org/10.1137/S0097539797326988
http://dx.doi.org/10.1137/S0097539797326988
http://dx.doi.org/10.1137/S0097539797326988
http://dx.doi.org/10.1137/S0097539797326988
http://dl.acm.org/citation.cfm?id=1496770.1496825
http://dl.acm.org/citation.cfm?id=1496770.1496825
http://dl.acm.org/citation.cfm?id=1496770.1496825
http://dx.doi.org/10.1137/S0097539705447347
http://dx.doi.org/10.1137/S0097539705447347
http://dx.doi.org/10.1137/S0097539705447347
http://dx.doi.org/10.1137/S0097539705447347
http://dx.doi.org/10.1007/978-3-642-03367-4_18
http://dx.doi.org/10.1007/978-3-642-03367-4_18
http://dx.doi.org/10.1007/978-3-642-03367-4_18
http://dx.doi.org/10.1007/978-3-642-03367-4_18
http://www.sciencedirect.com/science/article/pii/S0304397504000696
http://www.sciencedirect.com/science/article/pii/S0304397504000696
http://www.sciencedirect.com/science/article/pii/S0304397504000696
http://dx.doi.org/http://dx.doi.org/10.1016/j.tcs.2004.01.019
http://dx.doi.org/10.1007/978-3-642-40273-9_16
http://dx.doi.org/10.1007/978-3-642-40273-9_16
http://dx.doi.org/10.1007/978-3-642-40273-9_16
http://dx.doi.org/10.1007/978-3-642-40273-9_16

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:17

17 László Kozma. Binary search trees, rectangles and patterns. PhD thesis, Saarland Univer-678

sity, Saarbrücken, Germany, 2016. URL: http://scidok.sulb.uni-saarland.de/volltexte/679

2016/6646/.680

18 Victor Lecomte and Omri Weinstein. Settling the relationship between wilber’s bounds for681

dynamic optimality. arXiv preprint arXiv:1912.02858, 2019.682

19 Joan M. Lucas. On the competitiveness of splay trees: Relations to the union-find problem.683

On-line Algorithms, DIMACS Series in Discrete Mathematics and Theoretical Computer684

Science, 7:95–124, 1991.685

20 Seth Pettie. Splay trees, Davenport-Schinzel sequences, and the deque conjecture. In Proceed-686

ings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08,687

pages 1115–1124, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.688

URL: http://dl.acm.org/citation.cfm?id=1347082.1347204.689

21 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,690

32(3):652–686, 1985. Announced at STOC’83. URL: http://doi.acm.org/10.1145/3828.691

3835, doi:10.1145/3828.3835.692

22 Rajamani Sundar. On the deque conjecture for the splay algorithm. Combinatorica, 12(1):95–693

124, 1992. URL: http://dx.doi.org/10.1007/BF01191208, doi:10.1007/BF01191208.694

23 Robert Endre Tarjan. Sequential access in splay trees takes linear time. Combinatorica, 5(4):367–695

378, 1985. URL: http://dx.doi.org/10.1007/BF02579253, doi:10.1007/BF02579253.696

24 Chengwen C. Wang, Jonathan C. Derryberry, and Daniel D. Sleator. O(log logn)-competitive697

dynamic binary search trees. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium698

on Discrete Algorithm, SODA ’06, pages 374–383, Philadelphia, PA, USA, 2006. Society for699

Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=1109557.700

1109600.701

25 R. Wilber. Lower bounds for accessing binary search trees with rotations. SIAM Journal on702

Computing, 18(1):56–67, 1989. Announced at FOCS’86. URL: http://dx.doi.org/10.1137/703

0218004, arXiv:http://dx.doi.org/10.1137/0218004, doi:10.1137/0218004.704

APPROX/RANDOM 2020

http://scidok.sulb.uni-saarland.de/volltexte/2016/6646/
http://scidok.sulb.uni-saarland.de/volltexte/2016/6646/
http://scidok.sulb.uni-saarland.de/volltexte/2016/6646/
http://dl.acm.org/citation.cfm?id=1347082.1347204
http://doi.acm.org/10.1145/3828.3835
http://doi.acm.org/10.1145/3828.3835
http://doi.acm.org/10.1145/3828.3835
http://dx.doi.org/10.1145/3828.3835
http://dx.doi.org/10.1007/BF01191208
http://dx.doi.org/10.1007/BF01191208
http://dx.doi.org/10.1007/BF02579253
http://dx.doi.org/10.1007/BF02579253
http://dl.acm.org/citation.cfm?id=1109557.1109600
http://dl.acm.org/citation.cfm?id=1109557.1109600
http://dl.acm.org/citation.cfm?id=1109557.1109600
http://dx.doi.org/10.1137/0218004
http://dx.doi.org/10.1137/0218004
http://dx.doi.org/10.1137/0218004
http://arxiv.org/abs/http://dx.doi.org/10.1137/0218004
http://dx.doi.org/10.1137/0218004

33:18 Pinning Down the Strong Wilber 1 Bound

(a) Canonical Solution (b) Special Solution

Figure 3 Canonical and T -special solutions of X. The input points are shown as circles; the
points that belong to the solution Y are shown as squares.

A A Detailed Description of the Algorithms705

In this section we provide additional details for the proof of Theorem 2. Due to lack of space,706

some of the proofs are deferred to the full version.707

A.1 Special Solutions708

Our algorithm will produce feasible solutions of a special form, that we call special solutions.709

Recall that, given a semi-permutation point set X, the auxiliary columns for X are a set L710

of vertical lines with half-integral coordinates. We say that a solution Y for X is special iff711

every point of Y lies on an row that is active for X, and on a column of L. In particular,712

special solutions are by definition non-canonical (see Figure 3 for an illustration). The main713

advantage of the special solutions is that they allow us to easily use the divide-and-conquer714

approach. We use the following observation, whose proof appears in the full version of the715

paper.716

I Observation 24. There is an algorithm, that, given a set X of points that is a semi-717

permutation, and a canonical solution Y for X, computes a special solution Y ′ for X, such718

that |Y ′| ≤ 2|X|+ 2|Y |. The running time of the algorithm is O(|X|+ |Y |).719

If σ is any ordering of the auxiliary columns in L, and T = Tσ is the corresponding partitioning720

tree, then any point set Y that is a special solution for X is also called a T -special solution721

(although the notion of the solution Y being special does not depend on the tree T , this722

notion will be useful for us later; in particular, a convenient way of thinking of a T -special723

solution is that every point of Y must lie on an active row of X, and on a column that serves724

as a boundary for some strip S(v), where v ∈ V (T).)725

A.2 Redundant Points and Reduced Point Sets726

Consider a semi-permutation X, that we think of as a potential input to the Min-Sat727

problem. We denote X = {p1, . . . , pm}, where the points are indexed in their natural728

bottom-to-top order, so (p1).y < (p2).y < . . . < (pm).y. A point pi is said to be redundant,729

iff (pi).x = (pi+1).x = (pi−1).x. We say that a semi-permutation X is in the reduced form if730

there are no redundant points in X; in other words, if pi−1, pi, pi+1 are three points lying731

on three consecutive active rows, then their x-coordinates are not all equal. We use the732

following observation and lemma, whose proofs appear in the full version of the paper.733

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:19

I Observation 25. Let X be a semi-permutation, and let X ′ ⊆ X be any point set, that is734

obtained from X by repeatedly removing redundant points. Then OPT(X ′) ≤ OPT(X).735

I Lemma 26. Let X be a semi-permutation, and let X ′ ⊆ X be any point set, that is736

obtained from X by repeatedly removing redundant points. Let Y be any feasible solution for737

X ′ such that every point of Y lies on a row that is active for X ′. Then Y is also a feasible738

solution for X.739

From Lemma 26, whenever we need to solve the Min-Sat problem on an instance X, it is740

sufficient to solve it on a sub-instance, obtained by iteratively removing redundant points741

from X. We obtain the following immediate corollary of Lemma 26.742

I Corollary 27. Let X be a semi-permutation, and let X ′ ⊆ X be any point set, that is743

obtained from X by repeatedly removing redundant points. Let Y be any special feasible744

solution for X ′. Then Y ′ is also a special feasible solution for X.745

Lastly, we need the following lemma, which is a simple application of the Wilber bound.746

I Lemma 28. Let X be a point set that is a semi-permutation in reduced form. Then747

OPT(X) ≥ |X|/4− 1.748

A.3 The Algorithm Description749

Suppose we are given an input set X of points that is a semi-permutation. Let T be any750

partitioning tree for X. We say that T is a balanced partitioning tree for X iff for every751

non-leaf vertex v ∈ V (T) the following holds. Let v′ and v′′ be the children of v in the tree T .752

Let X ′ be the set of all input points lying in strip S(v), and let X ′′, X ′′′ be defined similarly753

for S(v′) and S(v′′). Let c be the number of active columns in instance X ′, and let c′ and c′′754

be defined similarly for X ′′ and X ′′′. Then we require that c′, c′′ ≤ dc/2e.755

Given a partitioning tree T , we denote by Λi the set of all vertices of T that lie in the ith756

layer of T – that is, the vertices whose distance from the root of T is i (so the root belongs to757

Λ0). The height of the tree T , denoted by height(T), is the largest index i such that Λi 6= ∅.758

If the height of the tree T is h, then we call the set Λdh/2e of vertices the middle layer of759

T . Notice that, if T is a balanced partitioning tree for input X, then its height is at most760

2 log c(X).761

Our algorithm takes as input a set X of points that is a semi-permutation, a balanced762

partition tree T for X, and an integral parameter ρ > 0.763

Intuitively, the algorithm uses the splitting operation to partition the instance X into764

subinstances that are then solved recursively, until it obtains a collection of instances whose765

corresponding partitioning trees have height at most ρ. We then either employ dynamic766

programming, or use a trivial O(log c(X))-approximation algorithm. The algorithm returns767

a special feasible solution for the instance. Recall that the height of the tree T is bounded768

by 2 log c(X) ≤ 2 logn. The following two theorems will be used as the recursion basis.769

I Theorem 29. There is an algorithm called LeafBST-1 that, given a semi-permutation770

instance X of Min-Sat in reduced form, and a partitioning tree T for it, produces a feasible771

T -special solution for X of cost at most 2|X|+ 2OPT(X), in time |X|O(1) · c(X)O(c(X)).772

APPROX/RANDOM 2020

33:20 Pinning Down the Strong Wilber 1 Bound

I Theorem 30. There is an algorithm called LeafBST-2 that, given a semi-permutation773

instance X of Min-Sat in reduced form, and a partitioning tree T for it, produces a feasible774

T -special solution of cost at most 2|X|height(T), in time poly(|X|).775

The proofs of both theorems are deferred to the full version of the paper. We now provide776

a schematic description of our algorithm. Depending on the guarantees that we would like777

to achieve, whenever the algorithm calls procedure LeafBST, it will call either procedure778

LeafBST-1 or procedure LeafBST-2; we specify this later.779

RecursiveBST(X,T, ρ)
1. Keep removing redundant points from X until X is in reduced form.
2. IF T has height at most ρ,
3. return LeafBST(X,T)
4. Let U be the set of vertices lying in the middle layer of T .
5. Compute the split (Xc, {Xs

v}v∈U) of (X,T) at U .
6. Compute the corresponding sub-trees (T c, {T sv }v∈U) of T .
7. For each vertex v ∈ U , call to RecursiveBST with input (Xs

v , T
s
v , ρ), and let Yv be

the solution returned by it.
8. Call RecursiveBST with input (Xc, T c, ρ), and let Ŷ be the solution returned by it.
9. Let Z be a point set containing, for each vertex v ∈ U , for each point p ∈ Xs

v , two
copies p′ and p′′ of p with p′.y = p′′.y = p.y, where p′ lies on the left boundary of
S(v), and p′′ lies on the right boundary of S(v).

10. return Y ∗ = Z ∪ Ŷ ∪ (
⋃
v∈U Yv)

780

A.4 Analysis781

We start by showing that the solution that the algorithm returns is T -special in the following782

observation, whose proof appears in the full version of the paper.783

I Observation 31. Assuming that LeafBST(X,T) returns a T -special solution, the solution784

Y ∗ returned by Algorithm RecursiveBST(X,T, ρ) is a T -special solution.785

We next turn to prove that the solution Y ∗ computed by Algorithm RecursiveBST(X,T, ρ)786

is feasible. In order to do so, we will use the following immediate observation.787

I Observation 32. Let Y ∗ be the solution returned by Algorithm RecursiveBST(X,T, ρ),788

and let u ∈ U be any vertex. Then:789

Any point y ∈ Y ∗ that lies in the interior of S(u) must lie on an active row of instance790

Xs
u.791

Any point y ∈ Y ∗ that lies on the boundary of S(u) must belong to in Ŷ ∪ Z. Moreover,792

the points of Ŷ ∪ Z may not lie in the interior of S(u).793

If R is an active row for instance Xs
u, then set Z contains two points, lying on the794

intersection of R with the left and the right boundaries of S(u), respectively.795

The following theorem, whose proof is deferred to the full version of the paper, shows that796

the algorithm returns a feasible solution.797

I Theorem 33. Assume that the recursive calls to Algorithm RecursiveBST return a798

feasible special solution Ŷ for instance Xc, and for each v ∈ U , a feasible special solution Yv799

P. Chalermsook, J. Chuzhoy, and T. Saranurak 33:21

for the strip instance Xs
v . Then the point set Y ∗ = Z ∪ Ŷ ∪ (

⋃
v∈U Yv) is a feasible solution800

for instance X.801

In order to analyze the solution cost, consider the final solution Y ∗ to the input instance X.802

We distinguish between two types of pints in Y ∗: a point p ∈ Y ∗ is said to be of type 2 if it803

was added to the solution by Algorithm LeafBST, and otherwise we say that it is of type 1.804

We start by bounding the number of points of type 1 in Y ∗.805

B Claim 34. The number of points of type 1 in the solution Y ∗ to the original instance X is806

at most O(log(height(T)/ρ)) · OPT(X).807

Proof. Observe that the number of recursive levels is bounded by λ = O(log(height(T)/ρ)).808

This is since, in every recursive level, the heights of all trees decrease by a constant factor,809

and we terminate the algorithm once the tree heights are bounded by ρ. For each 1 ≤ i ≤ λ,810

let Xi be the collection of all instances in the ith recursive level, where the instances are in811

the reduced form. Notice that the only points that are added to the solution by Algorithm812

RecursiveBST directly are the points in the sets Z. The number of such points added813

at recursive level i is bounded by
∑
X′∈Xi 2|X ′|. It is now sufficient to show that for all814

1 ≤ i ≤ λ,
∑
X′∈Xi |X

′| ≤ O(OPT(X)). We do so using the following observation.815

I Observation 35. For all 1 ≤ i ≤ λ,
∑
X′∈Xi OPT(X ′) ≤ OPT(X).816

Assume first that the observation is correct. For each instance X ′ ∈ Xi, let T ′ be the817

partitioning tree associated with X ′. From Lemma 28, |X ′| ≤ O(OPT(X ′)). Therefore, the818

number of type-1 points added to the solution at recursive level i is bounded by O(OPT(X)).819

We now turn to prove Observation 35.820

Proof of Observation 35. The proof is by induction on the recursive level i. It is easy to821

see that the claim holds for i = 1, since, from Observation 25, removing redundant points822

from X to turn it into reduced form cannot increase OPT(X).823

Assume now that the claim holds for level i, and consider some level-i instance X ′ ∈ Xi.824

Let (Xc, {Xs
u}u∈U) be the split of (X ′, T ′) that we have computed. Then, from Theorem 12,825 ∑

v∈U OPT(Xs
v) + OPT(Xc) ≤ OPT(X ′). Since, from Observation 25, removing redundant826

points from an instance does not increase its optimal solution cost, the observation follows. J827

J828

In order to obtain an efficient O(log logn)-approximation algorithm, we set ρ to be a constant829

(it can even be set to 1), and we use algorithm LeafBST-2 whenever the algorithm calls to830

subroutine LeafBST. Observe that the depth of the recursion is now bounded by O(log logn),831

and so the total number of type-1 points in the solution is bounded by O(log logn) ·OPT(X).832

Let I denote the set of all instances to which Algorithm LeafBST is applied. Using the833

same arguments as in Claim 34,
∑
X′∈I |X ′| = O(OPT(X)). The number of type-2 points834

that Algorithm LeafBST adds to the solution for each instance X ′ ∈ I is bounded by835

O(|X ′| ·ρ) = O(|X ′|). Therefore, the total number of type-2 points in the solution is bounded836

by O(OPT(X)). Overall, we obtain a solution of cost at most O(log logn) · OPT(X), and837

the running time of the algorithm is polynomial in |X|.838

Finally, in order to obtain the sub-exponential time algorithm, we set the parameter ρ to be839

such that the recursion depth is bounded byD. Since the number of active columns in instance840

APPROX/RANDOM 2020

33:22 Pinning Down the Strong Wilber 1 Bound

X is c(X), and the height of the partitioning tree T is bounded by 2 log c(X), while the depth of841

the recursion is at most 2 log(height(T)/ρ), it is easy to verify that ρ = O
(

log c(X)
2D/2

)
= log c(X)

2Ω(D) .842

We use algorithm LeafBST-1 whenever the algorithm calls to subroutine LeafBST. As843

before, let I be the set of all instances to which Algorithm LeafBST is applied. Using844

the same arguments as in Claim 34,
∑
X′∈I(|X ′| + OPT(X ′)) = O(OPT(X)). For each845

such instance X ′, Algorithm LeafBST-1 produces a solution of cost O(|X ′|+ OPT(X ′)).846

Therefore, the total number of type-2 points in the final solution is bounded by O(OPT(X)).847

The total number of type-1 points in the solution is therefore bounded by O(D) ·OPT(X)848

as before. Therefore, the algorithm produces a factor-O(D)-approximate solution. Finally,849

in order to analyze the running time of the algorithm, we first bound the running time of850

all calls to procedure LeafBST-1. The number of such calls is bounded by |X|. Consider851

now some instance X ′ ∈ I, and its corresponding partitioning tree T ′. Since the height of852

T ′ is bounded by ρ, we get that c(X ′) ≤ 2ρ ≤ 2log c(X)/2Ω(D) ≤ (c(X))1/2Ω(D) . Therefore,853

the running time of LeafBST-1 on instance X ′ is bounded by |X ′|O(1) · (c(X ′))O(c(X′)) ≤854

|X ′|O(1) · exp (O(c(X ′) log c(X ′)) ≤ |X ′|O(1) · exp
(
c(X)1/2Ω(D) · log c(X)

)
.855

The running time of the remainder of the algorithm, excluding the calls to LeafBST-1, is856

bounded by poly(|X|). We conclude that the total running time of the algorithm is bounded857

by |X|O(1) · exp
(
c(X)1/2Ω(D) · log c(X)

)
≤ poly(m) · exp

(
n1/2Ω(D) · logn

)
.858

	Introduction
	Preliminaries
	The Min-Sat Problem
	Basic Geometric Properties
	Partitioning Trees
	The WB-1 Bound

	Geometric Decomposition Theorems
	Separation of OPT and the Strong Wilber Bound
	Basic Tools
	Construction of the Bad Instance
	Upper Bound for WB()
	Upper Bound for WB(X*)

	Guillotine Bounds
	The Algorithms
	A Detailed Description of the Algorithms
	Special Solutions
	Redundant Points and Reduced Point Sets
	The Algorithm Description
	Analysis

