
A New Conjecture on Hardness of Low-Degree 2-CSPs with

Implications to Hardness of Densest k-Subgraph and Other

Problems

Julia Chuzhoy∗ Mina Dalirrooyfard† Vadim Grinberg‡ Zihan Tan§

November 14, 2022

Abstract

We propose a new conjecture on hardness of low-degree 2-CSP’s, and show that new hardness
of approximation results for Densest k-Subgraph and several other problems, including a graph
partitioning problem, and a variation of the Graph Crossing Number problem, follow from this
conjecture. The conjecture can be viewed as occupying a middle ground between the d-to-1
conjecture, and hardness results for 2-CSP’s that can be obtained via standard techniques, such
as Parallel Repetition combined with standard 2-prover protocols for the 3SAT problem. We
hope that this work will motivate further exploration of hardness of 2-CSP’s in the regimes
arising from the conjecture. We believe that a positive resolution of the conjecture will provide
a good starting point for further hardness of approximation proofs.

Another contribution of our work is proving that the problems that we consider are roughly
equivalent from the approximation perspective. Some of these problems arose in previous work,
from which it appeared that they may be related to each other. We formalize this relationship
in this work.

∗Toyota Technological Institute at Chicago. Email: cjulia@ttic.edu. Supported in part by NSF grant CCF-
2006464.
†Massachusetts Institute of Technology. Email: minad@mit.edu. Part of the work was done while the author was

a summer intern at TTIC.
‡Weizmann Institute of Science. Email: vadim.grinberg@weizmann.ac.il.
§DIMACS, Rutgers University. Email: zihantan1993@gmail.com. Supported by a grant to DIMACS from the

Simons Foundation (820931). Work done while the author was a graduate student at University of Chicago.

Contents

1 Introduction 1

1.1 A More Detailed Overview of our Results and Techniques 6

2 Preliminaries 9

2.1 General Notation . 10

2.2 Problem Definitions and Additional Notation . 10

2.3 Chernoff Bound . 11

2.4 Auxiliary Lemma . 12

3 Conditional Hardness of Densest k-Subgraph 12

3.1 Low-Degree CSP Conjecture . 12

3.2 Conditional Hardness of Densest k-Subgraph . 13

3.3 Proof of Theorem 3.7 . 15

3.4 Proof of Theorem 3.8 . 21

3.4.1 Step 1: Regularization . 22

3.4.2 Step 2: Assignment Graph and Reduction to Bipartite Densest (k1, k2)-Subgraph 23

3.4.3 Step 3: Further Regularization . 24

3.4.4 Step 4: Certifying that H is a Good Graph or Computing a Subgraph of H . 27

4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph 29

4.1 An LP-Relaxation and Its Rounding . 30

4.2 Approximately Solving the LP-Relaxation . 33

5 Reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning 43

5.1 Auxiliary Graph H . 44

5.2 Completing the Reduction from Densest k-Subgraph to Dense k-Coloring 49

5.3 Completing the Reduction from Densest k-Subgraph to (r,h)-Graph Partitioning 50

6 Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph 52

6.1 Auxiliary Lemmas . 53

6.2 Reduction from Maximum Bounded-Crossing Subgraph to (r,h)-Graph Partitioning:
Proof of Theorem 6.1 . 56

6.3 Reduction from (r,h)-Graph Partitioning to Maximum Bounded-Crossing Subgraph–
Proof of Theorem 6.2 . 58

6.3.1 Case 1: C∗ ≥ 16nα(n) log7 n . 59

6.3.2 Case 2: C∗ < 16nα(n) log7 n . 61

7 Acknowledgement 64

A Proof of Lemma 2.1 65

A.1 Reduction from Bipartite Densest (k1, k2)-Subgraph to Densest k-Subgraph 65

A.2 Reduction from Densest k-Subgraph to Bipartite Densest (k1, k2)-Subgraph 66

B Reduction from (r,h)-Graph Partitioning to Densest k-Subgraph 67

B.1 Linear Programming Relaxation and an LP-Rounding Algortihm 67

B.2 Approximately Solving the LP-Relaxation . 69

1 Introduction

In this paper we consider several graph optimization problems, the most prominent and extensively
studied of which is Densest k-Subgraph. One of the main motivations of this work is to advance
our understanding of the approximability of these problems. Towards this goal, we propose a new
conjecture on the hardness of a class of 2-CSP problems, that we call Low-Degree CSP Conjecture,
and we show that new hardness of approximation results for all these problems follow from this
conjecture. We believe that the conjecture is interesting in its own right, as it can be seen as occu-
pying a middle ground between the d-to-1 conjecture, and the type of hardness of approximation
results that one can obtain for 2-CSP problems via standard methods (such as using constant-factor
hardness of approximation results for 3-SAT, combined with standard 2-prover protocols and Par-
allel Repetition). While our conditional hardness of approximation proofs are combinatorial and
algorithmic in nature, we hope that this work will inspire complexity theorists to study the con-
jecture, and also lead to other hardness of approximation proofs that combine both combinatorial
and algebraic techniques.

We prove a new conditional hardness of approximation result for Densest k-Subgraph based on
Low-Degree CSP Conjecture. In addition to the Densest k-Subgraph problem, we study three other
problems. The first problem, called (r,h)-Graph Partitioning, recently arose in the hardness of
approximation proof of the Node-Disjoint Paths problem of [CKN21], who mention that the problem
appears similar to Densest k-Subgraph, but could not formalize this intuition. We also study a new
problem that we call Dense k-Coloring, that can be viewed as a natural middle ground between
Densest k-Subgraph and (r,h)-Graph Partitioning. The fourth problem that we study is a variation
of the notoriously difficult Minimum Crossing Number problem, that we call Maximum Bounded-
Crossing Subgraph. This problem also arose implicitly in [CKN21]. We show that all four problems
are roughly equivalent from the approximation perspective, in the regime where the approximation
factors are somewhat large (but some of our reductions require quasi-polynomial time). We then
derive conditional hardness of approximation results for all these problems based on these reductions
and the conditional hardness of Densest k-Subgraph.

The main contribution of this paper is thus twofold: first, we propose a new conjecture on hardness
of CSP’s and show that a number of interesting hardness of approximation results follow from it.
Second, we establish a close connection between the four problems that we study. The remainder
of the Introduction is organized as follows. We start by providing a brief overview of the four
problems that we study in this paper. We then state the Low-Degree CSP Conjecture and put it
into context with existing results and well-known conjectures. Finally, we provide a more detailed
overview of our results and techniques.

Densest k-Subgraph. In the Densest k-Subgraph problem, given an n-vertex graph G and an
integer k > 1, the goal is to compute a subset S of k vertices of G, while maximizing the number
of edges in G[S]. Densest k-Subgraph is one of the most basic graph optimization problems that
has been studied extensively (see e.g. [KP93, FS+97, FPK01, FL01, Fei02, Kho06, GL09, BCC+10,
AAM+11, BCG+12, Bar15, BKRW17, Man17, CDK+18, Man18, Lin18, Sot20, CCH+20, Han22]). At
the same time it seems notoriously difficult, and despite this extensive work, our understanding
of its approximability is still incomplete. The best current approximation algorithm for Densest
k-Subgraph, due to [BCC+10], achieves, for every ε > 0, an O(n1/4+ε)-approximation, in time

1

nO(1/ε). Even though the problem appears to be very hard, its hardness of approximation proof
has been elusive. For example, no constant-factor hardness of approximation proofs for Densest
k-Subgraph are currently known under the standard P 6= NP assumption, or even the stronger
assumption that NP 6⊆ BPTIME(npoly logn). In a breakthrough result, Khot [Kho06] proved a
factor-c hardness of approximation for Densest k-Subgraph, for some small constant c, assuming
that NP 6⊆ ∩ε>0BPTIME(2n

ε
). Several other papers proved constant and super-constant hardness of

approximation results for Densest k-Subgraph under average-case complexity assumptions: namely
that no efficient algorithm can refute random 3-SAT or random k-AND formulas [Fei02,AAM+11].

Additionally, a factor 2Ω(log2/3 n)-hardness of approximation was shown under assumptions on solv-
ing Planted Clique [AAM+11]. In a recent breakthrough, Manurangsi [Man17] proved that, under
the Exponential Time Hypothesis (ETH), the Densest k-Subgraph problem is hard to approximate
to within factor n1/(log logn)c , for some constant c. Proving a super-constant hardness of Densest
k-Subgraph under weaker complexity assumptions remains a tantalizing open question that we at-
tempt to address in this paper. Unfortunately, it seems unlikely that the techniques of [Man17]
can yield such a result. In this paper we show that, assuming the Low-Degree CSP Conjecture that
we introduce, Densest k-Subgraph is NP-hard to approximate to within factor 2(logn)ε , for some
constant ε > 0.

The (r, h)-Graph Partitioning Problem. A recent paper [CKN21] on the hardness of approxi-
mation of the Node-Disjoint Paths (NDP) problem formulated and studied a new graph partitioning
problem, called (r,h)-Graph Partitioning. The input to the problem is a graph G, and two integers,
r and h. The goal is to compute r vertex-disjoint subgraphs H1, . . . ,Hr of G, such that for each
1 ≤ i ≤ r, |E(Hi)| ≤ h, while maximizing

∑r
i=1 |E(Hi)|. A convenient intuitive way of thinking

about this problem is that we are interested in obtaining a balanced partition of the graph G into r
vertex-disjoint subgraphs, so that the subgraphs contain sufficiently many edges. Unlike standard
graph partitioning problems, that typically aim to minimize the number of edges connecting the
different subgraphs in the solution, our goal is to maximize the total number of edges that are
contained in the subgraphs. In order to avoid trivial solutions, in which one of the subgraphs
contains almost the entire graph G, and the remaining subgraphs are almost empty, we place an
upper bound h on the number of edges that each subgraph may contribute towards the solution.
Note that the subgraphs Hi of G in the solution need not be vertex-induced subgraphs.

The work of [CKN21] attempted to use (r,h)-Graph Partitioning as a proxy problem for proving
hardness of approximation of NDP. Their results imply that NDP is at least as hard to approximate
as (r,h)-Graph Partitioning, to within polylogarithmic factors. In order to prove hardness of NDP, it
would then be sufficient to show that (r,h)-Graph Partitioning is hard to approximate. Unfortunately,
[CKN21] were unable to do so. Instead, they considered a generalization of (r,h)-Graph Partitioning,
called (r,h)-Graph Partitioning with Bundles. They showed that NDP is at least as hard as (r,h)-
Graph Partitioning with Bundles, and then proved hardness of this new problem. In the (r,h)-Graph
Partitioning with Bundles problem, the input is the same as in (r,h)-Graph Partitioning, but now
graph G must be bipartite, and, for every vertex v, we are given a partition B(v) of the set of edges
incident to v into subsets that are called bundles. We require that, in a solution (H1, . . . ,Hr) to the
problem, for every vertex v ∈ V (G), and every bundle β ∈ B(v), at most one edge of β contributes
to the solution; in other words, at most one edge of β may lie in

⋃
iE(Hi). This is a somewhat

artificial problem, but this definition allows one to bypass some of the barriers that arise when

2

trying to prove the hardness of (r,h)-Graph Partitioning from existing hardness results for CSP’s.

It was noted in [CKN21] that the (r,h)-Graph Partitioning problem resembles the Densest k-Subgraph
problem for two reasons. First, in Densest k-Subgraph, the goal is to compute a dense subgraph of
a given graph, with a prescribed number of vertices. One can think of (r,h)-Graph Partitioning as
the problem of computing many vertex-disjoint dense subgraphs of a given graph. Second, natu-
ral hardness of approximation proofs for both problems seem to run into the same barriers. It is
therefore natural to ask: (i) Can we prove that the (r,h)-Graph Partitioning problem itself is hard
to approximate? In particular, can the techniques of [CKN21] be exploited in order to obtain such
a proof? and (ii) Can we formalize this intuitive connection between (r,h)-Graph Partitioning and
Densest k-Subgraph? In this paper we make progress on both these questions. Our conditional hard-
ness result for Densest k-Subgraph indeed builds on the ideas from [CKN21] for proving hardness of
(r,h)-Graph Partitioning with Bundles. We also provide “almost” approximation-preserving reduc-
tions between (r,h)-Graph Partitioning to Densest k-Subgraph: we show that, if there is an efficient
factor α(n)-approximation algorithm for Densest k-Subgraph, then there is a randomized efficient
factor O(α(n2) · poly log n)-approximation algorithm to (r,h)-Graph Partitioning. We also provide
a reduction in the opposite direction: we prove that, if there is an efficient α(n)-approximation
algorithm for (r,h)-Graph Partitioning, then there is a randomized algorithm for Densest k-Subgraph,
that achieves approximation factor O

(
(α(nO(logn)))3 · log2 n

)
, in time nO(logn). Therefore, we prove

that Densest k-Subgraph and (r,h)-Graph Partitioning are roughly equivalent from the approximation
perspective (at least for large approximation factors and quasi-polynomial running times). Com-
bined with our conditional hardness of approximation for Densest k-Subgraph, our results show
that, assuming the Low-Degree CSP Conjecture, for some constant 0 < ε ≤ 1/2, there is no efficient
2(logn)ε-approximation algorithm for (r,h)-Graph Partitioning, unless NP ⊆ BPTIME(nO(logn)).

Maximum Bounded-Crossing Subgraph. The third problem that we study is a variation of
the classical Minimum Crossing Number problem. In the Minimum Crossing Number problem, given
an input n-vertex graph G, the goal is to compute a drawing of G in the plane while minimizing the
number of crossings in the drawing. We define the notions of graph drawing and crossings formally
in the Preliminaries, but these notions are quite intuitive and the specifics of the definition are not
important in this high-level overview.

The Minimum Crossing Number problem was initially introduced by Turán [Tur77] in 1944, and has
been extensively studied since then (see, e.g., [Chu11, CMS11, CH11, CS13, KS17, KS19, CMT20],
and also [RS09,PT00,Mat02,Sch12] for excellent surveys). But despite all this work, most aspects
of the problem are still poorly understood. A long line of work [LR99,EGS02,CMS11,Chu11,KS17,
KS19, Chu15, CT22] has recently led to the first sub-polynomial approximation algorithm for the

problem in low degree graphs. Specifically, [CT22] obtain a factor O
(

2O((logn)7/8 log logn) ·∆O(1)
)

-

approximation algorithm for Minimum Crossing Number, where ∆ is the maximum vertex degree.
To the best of our knowledge, no non-trivial approximation algorithms are known for the problem
when vertex degrees in the input graph G can be arbitrary. However, on the negative side, only
APX-hardness is known for the problem [Cab13, AMS07]. As the current understanding of the
Minimum Crossing Number problem from the approximation perspective is extremely poor, it is
natural to study hardness of approximation of its variants.

Let us consider two extreme variations of the Minimum Crossing Number problem. The first variant

3

is the Minimum Crossing Number problem itself, where we need to draw an input graph G in the
plane with fewest crossings. The second variant is where we need to compute a subgraph G′ of
the input graph G that is planar, while maximizing |E(G′)|. The latter problem has a simple
constant-factor approximation algorithm, obtained by letting G′ be any spanning forest of G (this
is since a planar n-vertex graph may only have O(n) edges).

In this paper we study a variation of the Minimum Crossing Number problem, that we call Maximum
Bounded-Crossing Subgraph, which can be viewed as an intermediate problem between these two
extremes. In the Maximum Bounded-Crossing Subgraph problem, given an n-vertex graph G and
an integer L > 0, the goal is to compute a subgraph H ⊆ G, such that H has a plane drawing
with at most L crossings, while maximizing |E(H)|. This problem is only interesting when the
bound L on the number of crossings is Ω(n). This is since, from the Crossing Number Inequality
[ACNS82,Lei83], if |E(G)| ≥ 4|V (G)|, then the crossing number of G is at least Ω(|E(G)|3/|V (G)|2).
Therefore, for L = O(n), a spanning tree provides a constant-factor approximation to the problem.
We emphasize that the focus here is on dense graphs, whose crossing number may be as large as
Ω(n4).

The Maximum Bounded-Crossing Subgraph problem was implicitly used in [CKN21] for proving
hardness of approximation of NDP, as an intermediate problem, in the reduction from (r,h)-Graph
Partitioning with Bundles to NDP. Their work suggests that there may be a connection between (r,h)-
Graph Partitioning and Maximum Bounded-Crossing Subgraph, even though the two problems appear
quite different. In this paper we prove that the two problems are roughly equivalent from the ap-
proximation perspective: if there is an efficient factor α(n)-approximation algorithm for (r,h)-Graph
Partitioning, then there is an efficient O(α(n) · poly log n)-approximation algorithm for Maximum
Bounded-Crossing Subgraph. On the other hand, an efficient α(n)-approximation algorithm for
Maximum Bounded-Crossing Subgraph implies an efficient O((α(n))2 · poly log n)-approximation al-
gorithm for (r,h)-Graph Partitioning. Combined with our conditional hardness of approximation for
(r,h)-Graph Partitioning, we get that, assuming the Low-Degree CSP Conjecture, for some constant
0 < ε ≤ 1/2 there is no efficient 2(logn)ε-approximation algorithm for Maximum Bounded-Crossing
Subgraph, unless NP ⊆ BPTIME(nO(logn)).

Dense k-Coloring. The fourth and last problem that we consider is Dense k-Coloring. In this
problem, the input is an n-vertex graph G and an integer k, such that n is an integral multiple of k.
The goal is to partition V (G) into n/k disjoint subsets S1, . . . , Sn/k, of cardinality k each, so as to

maximize
∑n/k

i=1 |E(Si)|. This problem can be viewed as an intermediate problem between Densest
k-Subgraph and (r,h)-Graph Partitioning. The connection to (r,h)-Graph Partitioning seems clear: in
both problems, the goal is to compute a large collection of subgraphs of the input graph G, that
contain many edges of G. While in (r,h)-Graph Partitioning we place a limit on the number of edges
in each subgraph, in Dense k-Coloring we require that each subgraph contains exactly k vertices.
The connection to the Densest k-Subgraph problem is also clear: while in Densest k-Subgraph the
goal is to compute a single dense subgraph of G containing k vertices, in Dense k-Coloring we
need to partition G into many dense subgraphs, containing k vertices each. We show reductions
between the Dense k-Coloring and the Densest k-Subgraph problem in both directions, that provide
very similar guarantees to the reductions between (r,h)-Graph Partitioning and Densest k-Subgraph.
In particular, our results show that, assuming the Low-Degree CSP Conjecture, for some constant
0 < ε ≤ 1/2, there is no efficient 2(logn)ε-approximation algorithm for Dense k-Coloring, unless

4

NP ⊆ BPTIME(nO(logn)).

The Low-Degree CSP Conjecture. We now turn to describe our new conjecture on the hard-
ness of 2-CSP’s. We consider the following bipartite version of the Constraint Satisfaction Problem
with 2 variables per constraint (2-CSP). The input consists of two sets X and Y of variables, to-
gether with an integer A ≥ 1. Every variable in X ∪ Y takes values in [A] = {1, . . . , A}. We are
also given a collection C of constraints, where each constraint C(x, y) ∈ C is defined over a pair of
variables x ∈ X and y ∈ Y . For each such constraint, we are given a truth table that, for every
pair of assignments a to x and a′ to y, specifies whether (a, a′) satisfy the constraint. The value of
the CSP is the largest fraction of constraints that can be simultaneously satisfied by an assignment
to the variables. For given values 0 < s < c ≤ 1, the (c, s)-Gap-CSP problem is the problem of
distinguishing CSP’s of value at least c from those of value at most s.

We can associate, to each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L,R,E), where
L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y satisfy C.
Notice that instance I of the Bipartite 2-CSP problem is completely defined by X,Y,A, C, and the
graphs in {GC}C∈C , so we will denote I = (X,Y,A, C, {GC}C∈C). We let the size of instance I be
size(I) = |C| · A2 + |X| + |Y |. We sometimes refer to A as the size of the alphabet for instance I.
We say that instance I of 2-CSP is d-to-d′ iff for every constraint C, every vertex of GC that lies in
L has degree at most d, and every vertex that lies in R has degree at most d′. (We note that this
is somewhat different from the standard definition, that requires that all vertices in L have degree
exactly d and all vertices of R have degree exactly d′. In the standard definition, the alphabet sizes
for variables in X and Y may be different, that is, variables in X take values in [A] and variables
of Y take values in [A′] for some integers A,A′. However, this difference is insignificant to our
discussion, and it is more convenient for us to use this slight variation of the standard definition).

The famous Unique-Games Conjecture of Khot [Kho02] applies to 1-to-1 CSP’s. The conjecture
states that, for any 0 < ε < 1, there is a large enough value A, such that the (1 − ε, ε)-Gap-CSP
problem is NP-hard for 1-to-1 instances with alphabet size A. The conjecture currently remains
open, though interesting progress has been made on the algorithmic side: the results of [ABS15]

provide an algorithm for the problem with running time 2n
O(1/ε1/3)

.

A conjecture that is closely related to the Unique-Games Conjecture is the d-to-1 Conjecture of
Khot [Kho02]. The conjecture states that, for every 0 < ε < 1, and d > 0, there is a large enough
value A, such that the (1, ε)-Gap-CSP problem in d-to-1 instances with alphabet size A is NP-hard.

H̊astad [H̊as01] proved the following nearly optimal hardness of approximation results for CSP’s: he
showed that for every 0 < ε < 1, there are values d and A, such that the problem of (1, ε)-Gap-CSP
in d-to-1 instances with alphabet size A is NP-hard. The value d, however, depends exponentially
on poly(1/ε) in this result. In contrast, in the d-to-1 Conjecture, both d and ε are fixed, and d may
not have such a strong dependence on 1/ε.

On the algorithmic side, the results of [ABS15, Ste] provide an algorithm for (c, s)-Gap-CSP on

d-to-1 instances. The running time of the algorithm is 2n
O(1/(log(1/s))1/2)

, where the O(·) notation
hides factors that are polynomial in d and A.

A recent breakthrough in this area is the proof of the 2-to-2 conjecture (now theorem), that builds on
a long sequence of work [BGH+15,KS13,KMMS18,BKS19,KMS17,DKK+18a,DKK+18b,KMS18].

5

The theorem proves that for every 0 < ε < 1, there is a large enough value A, such that the
(1− ε, ε)-Gap-CSP problem is NP-hard on 2-to-2 instances with alphabet size A.

In this paper, we propose the following conjecture, that we refer to as Low-Degree CSP Conjecture,
regarding the hardness of Gap-CSP in d-to-d instances.

Conjecture 1 (Low-Degree CSP Conjecture). There is a constant 0 < ε ≤ 1/2, such that it is
NP-hard to distinguish between d(n)-to-d(n) instances of 2-CSP of size n, that have value at least

1/2, and those of value at most s(n), where d(n) = 2(logn)ε and s(n) = 1/264(logn)1/2+ε.

We now compare this conjecture to existing conjectures and results in this area that we are aware of.
First, in contrast to the d-to-1 conjecture, we allow the parameter d and the soundness parameter
s to be functions of n – the size of the input instance. Note that the size of the input instance
depends on the alphabet size A, so, unlike in the setting of the d-to-1 conjecture, A may no longer
be arbitrarily large compared to d and s.

The hardness of approximation result of H̊astad [H̊as01] for d-to-d CSP’s only holds when d de-
pends exponentially on poly(1/s), (in particular it may not extend to the setting where s(n) =

1/264(logn)1/2+ε , since the size n of the instance depends polynomially on d(n)).

We can also combine standard constant hardness of approximation results for CSP’s (such as, for
example, 3-SAT) with the Parallel Repetition theorem, to obtain NP-hardness of (1, s(n))-Gap-CSP
on d(n)-to-d(n) instances. Using this approach, if we start from an instance of CSP of size N
and a constant hardness gap (with perfect completeness), after ` rounds of parallel repetition, we
obtain hardness of (1, s)-Gap-CSP on d-to-d instances with s = 2O(`), d = 2O(`), and the resulting
instance size n = NO(`). By setting the number of repetition to be ` = Θ

(
(logN)(1/2+ε)/(1/2−ε)),

we can ensure the desired bound s(n) = 1/264(logn)1/2+ε . However, in this setting, we also get that

d(n) = 2Ω((logn)1/2+ε), which is significantly higher than the desired value d(n) = 2(logn)ε .

Lastly, one could attempt to combine the recent proof of the 2-to-2 conjecture with Parallel Repe-
tition in order to reap the benefits of both approaches, but the resulting parameters also fall short
of the ones stated in the conjecture.

From the above discussion, one can view the Low-Degree CSP Conjecture as occupying a middle
ground between the d-to-1 conjecture, and the results one can obtain via standard techniques of
amplifying a constant hardness of a CSP, such as 3SAT, via Parallel Repetition.

We now proceed to discuss our results and techniques in more detail.

1.1 A More Detailed Overview of our Results and Techniques

In addition to posing the Low-Degree CSP Conjecture that we already described above, we prove
conditional hardness of approximation of the four problems that we consider. We also prove that all
four problems are roughly equivalent approximation-wise. We now discuss the conditional hardness
of approximation for Densest k-Subgraph and the connections between the four problems that we
establish.

6

Conditional Hardness of Densest k-Subgraph. Our first result is a conditional hardness of
Densest k-Subgraph. Specifically, we prove that, assuming Conjecture 1 holds and P 6= NP, for
some 0 < ε ≤ 1/2, there is no efficient approximation algorithm for Densest k-Subgraph problem
that achieves approximation factor 2(logN)ε , where N is the number of vertices in the input graph.

We now provide a brief overview of our techniques. The proof of the above result employs a
Cook-type reduction, and follows some of the ideas that were introduced in [CKN21]. We assume
for contradiction that there is a factor-α algorithm A for the Densest k-Subgraph problem, where
α = 2(logN)ε . Given an input instance I of the 2-CSP problem of size n, that is a d(n)-to-d(n)
instance, we construct a constraint graph H representing I. We gradually decompose graph H into
a collection H of disjoint subgraphs, such that, for each subgraph H ′ ∈ H, we can either certify
that the value of the corresponding instance of 2-CSP is at most 1/4, or it is at least β, for some
carefully chosen parameter β. In order to compute the decomposition, we start with H = {H}. If,
for a graph H ′ ∈ H, we certified that the corresponding instance of 2-CSP has value at most 1/4, or
at least β, then we say that graph H ′ is inactive. Otherwise, we say that it is active. As long as H
contains at least one active graph, we perform iterations. In each iteration, we select an arbitrary
graph H ′ ∈ H to process. In order to process H ′, we consider an assignment graph G′ associated
with H ′, that contains a vertex for every variable-assignment pair (x, a), where x is a variable whose
corresponding vertex belongs to H ′. We view G′ as an instance of the Densest k-Subgraph problem,
for an appropriately chosen parameter k, and apply the approximation algorithm A for Densest
k-Subgraph to it. Let S be the set of vertices of G′ that Algorithm A computes as a solution to this
instance. We exploit the set S of vertices in order to either (i) compute a large subset E′ ⊆ E(H ′)
of edges, such that, if we denote by C′ ⊆ C the set of constraints corresponding to E′, then at
most 1/4 of the constraints of C′ can be simultaneously satisfied; or (ii) compute a large subset
E′ ⊆ E(H ′) of edges as above, and certify that at least a β-fraction of such constraints can be
satisfied; or (iii) compute a subgraph H ′′ ⊆ H ′, such that |V (H ′′)| � |V (H ′)|, and the number
of edges contained in graphs H ′′ and H ′ \ V (H ′′) is sufficiently large compared to E(H ′). In the
former two cases, we replace H ′ with graph H ′[E′] in H, and graph H ′[E′] becomes inactive. In
the latter case, we replace H ′ with two graphs: H ′′ and H ′ \ V (H ′′), that both remain active. The
algorithm terminates once every graph in H is inactive. The crux of the analysis of the algorithm
is to show that, when the algorithm terminates, the total number of edges lying in the subgraphs
H ′ ∈ H is high, compared to |E(H)|. This algorithm for decomposing graph H into subgraphs and
its analysis employ some of the techniques and ideas introduced in [CKN21], and is very similar in
spirit to the hardness of approximation proof of the (r,h)-Graph Partitioning with Bundles problem,
though details are different. We employ this decomposition algorithm multiple times, in order to
obtain a partition (E0, E1, . . . , Ez) of the set E(H) of edges into a small number of subsets, such
that, among the constraints corresponding to the edges of E0, at most a 1/4-fraction can be satisfied
by any assignment to X ∪ Y , and, for all 1 ≤ i ≤ z, a large fraction of constraints corresponding
to edges of Ei can be satisfied by some assignment. Depending on the cardinality of the set E0 of
edges we then determine whether I is a Yes-Instance or a No-Instance.

Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph. We show
that, if there is an efficient factor α(n)-approximation algorithm for the Densest k-Subgraph problem,
then there is an efficient O(α(n2) · poly log n)-approximation algorithm for Dense k-Coloring, and
an efficient O(α(n2) · poly log n)-approximation algorithm for (r,h)-Graph Partitioning. The two

7

reductions are very similar, so we focus on describing the first one. We believe that the reduction
is of independent interest, and uses unusual techniques.

We assume that there is an α(n)-approximation algorithm for the Densest k-Subgraph problem. In
order to obtain an approximation algorithm for Dense k-Coloring, we start by formulating a natural
LP-relaxation for the problem. Unfortunately, this LP-relaxation has a large number of variables:
roughly nΘ(k), where n is the number of vertices in the input graph and k is the parameter of the
Dense k-Coloring problem instance. We then show an efficient algorithm, that, given a solution to
the LP-relaxation, whose support size is bounded by poly(n), computes an approximate integral
solution to the Dense k-Coloring problem.

The main challenge is that, since the LP relaxation has nΘ(k) variables, it is unclear how to solve it
efficiently. We consider the dual linear program, that has poly(n) variables and nΘ(k) constraints.
Using the α(n)-approximation algorithm for Densest k-Subgraph as a subroutine, we design an
approximate separation oracle for the dual LP, that allows us to solve the original LP-relaxation
for Dense k-Coloring, obtaining a solution whose support size is bounded by poly(n). By applying
the LP-rounding approximation algorithm to this solution, we obtain the desired approximate
solution to the input instance of Dense k-Coloring.

Reductions from Densest k-Subgraph to (r,h)-Graph Partitioning and Dense k-Coloring. We
prove that, if there is an efficient α(n)-approximation algorithm for Dense k-Coloring, then there
is a randomized algorithm for the Densest k-Subgraph problem, whose running time is nO(logn),
that with high probability obtains an O(α(nO(logn)) · log n)-approximate solution to the input
instance of the problem. We also show a similar reduction from Densest k-Subgraph to (r,h)-
Graph Partitioning, but now the resulting approximation factor for Densest k-Subgraph becomes
O((α(nO(logN)))3 · log2 n). By combining these reductions with our conditional hardness result
for Densest k-Subgraph, we get that, assuming the Low-Degree CSP Conjecture, for some constant
0 < ε ≤ 1/2, there is no efficient 2(logn)ε-approximation algorithm for (r,h)-Graph Partitioning and
for Dense k-Coloring, unless NP ⊆ BPTIME(nO(logn)).

The two reductions are very similar; we focus on the reduction to Dense k-Coloring in this overview.
Our construction is inspired by the results of [KLS00], and we borrow some of our ideas from them.
Assume that there is an efficient α(n)-approximation algorithm for Dense k-Coloring. Let G be
an instance of the Densest k-Subgraph problem. The main difficulty in the reduction is that it
is possible that G only contains one very dense subgraph induced by k vertices, while the Dense
k-Coloring problem requires that the input graph G can essentially be partitioned into many such
dense subgraphs. To overcome this difficulty, we construct a random “inflated” bipartite graph H,
that contains nO(logn) vertices, where n = |V (G)|. Every vertex of G is mapped to some vertex of H
at random, while every edge ofG is mapped to a large number of edges ofH. This allows us to ensure
that, if G contains a subgraph G′ induced by a set of k vertices, where |E(G′)| = R, then graph H
can essentially be partitioned into a large number of subgraphs that contain k vertices each, and
many of them contain close to R edges. Therefore, we can apply our α(n)-approximation algorithm
for Dense k-Coloring to the new graph H. The main challenge in the reduction is that, while this
approximation algorithm is guaranteed to return a large number of disjoint dense subgraphs of H,
since every edge of G contributes many copies to H, it is not clear that one can extract a single
dense subgraph of G from dense subgraphs of H. The main difficulty in the reduction is to ensure
that, on the one hand, a single k-vertex dense subgraph in G can be translated into |V (H)|/k dense

8

subgraphs of H; and, on the other hand, a dense k-vertex subgraph of H can be translated into a
dense subgraph of G on k vertices. We build on and expand the ideas from [KLS00] in order to
ensure these properties.

Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph. Lastly,
we provide reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph
in both directions. First, we show that, if there is an efficient factor α(n)-approximation algorithm
for (r,h)-Graph Partitioning, then there is an efficient O(α(n) · poly log n)-approximation algorithm
for Maximum Bounded-Crossing Subgraph. On the other hand, an efficient α(n)-approximation
algorithm for Maximum Bounded-Crossing Subgraph implies an efficient O((α(n))2 · poly log n)-
approximation algorithm for (r,h)-Graph Partitioning. Combined with our conditional hardness of
approximation for (r,h)-Graph Partitioning, we get that, assuming the Low-Degree CSP Conjecture,
for some constant 0 < ε ≤ 1/2, there is no efficient 2(logn)ε-approximation algorithm for (r,h)-Graph
Partitioning, unless NP ⊆ BPTIME(nO(logn)).

Both these reductions exploit the following connection between crossing number and graph parti-
tioning: if a graph G has a drawing with at most L crossings, then there is a balanced cut in G,

containing at most O
(√

L+ ∆ · |E(G)|
)

edges, where ∆ is maximum vertex degree in G. This

result can be viewed as an extension of the classical Planar Separator Theorem of [LT79]. Another
useful fact exploited in both reductions is that any graph G with m edges has a plane drawing
with at most m2 crossings. In particular, if H = {H1, . . . ,Hr} is a solution to an instance of the
(r,h)-Graph Partitioning problem on graph G, then there is a drawing of graph H =

⋃r
i=1Hi, in

which the number of crossings is bounded by r · h2. These two facts establish a close relationship
between the (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph problems, that are
exploited in both our reductions.

We have now obtained a chain of reductions that show that all four problems, Densest k-Subgraph,
Dense k-Coloring, (r,h)-Graph Partitioning, and Maximum Bounded-Crossing Subgraph are almost
equivalent from approximation viewpoint (if one considers sufficiently large approximation factors,
and allows randomized quasi-polynomial time algorithms). We also obtain conditional hardness of
approximation results for all four problems based on the Low-Degree CSP Conjecture.

Organization. We start with preliminaries in Section 2. In Section 3 we provide the conditional
hardness of approximation proof for the Densest k-Subgraph problem. In Section 4 we provide
our reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph, and in
Section 5 we provide reductions in the opposite direction. Lastly in Section 6 we provide reductions
between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph.

2 Preliminaries

By default, all logarithms are to the base of 2. For a positive integer N , we denote by [N] =
{1, 2, . . . , N}. All graphs are finite, simple and undirected. We say that an event holds with high
probability if the probability of the event is 1− 1/nc for a large enough constant c, where n is the
number of vertices in the input graph.

9

2.1 General Notation

Let G be a graph and let S be a subset of its vertices. We denote by G[S] the subgraph of G
induced by S. For two disjoint subsets A,B of vertices of G, we denote by EG(A,B) the set of all
edges with one endpoint in A and the other endpoint in B, and we denote by EG(A) the set of all
edges with both endpoints in A. Given a graph G and a vertex v ∈ V (G), we denote by degG(v)
the degree of v in G. For a subset S of vertices of G, its volume is volG(S) =

∑
v∈S degG(v). We

sometimes omit the subscript G if it is clear from the context.

Given a graph G, a drawing ϕ of G is an embedding of G into the plane, that maps every vertex
v of G to a point (called the image of v and denoted by ϕ(v)), and every edge e of G to a simple
curve (called the image of e and denoted by ϕ(e)), that connects the images of its endpoints. If e is
an edge of G and v is a vertex of G, then the image of e may only contain the image of v if v is an
endpoint of e. Furthermore, if some point p belongs to the images of three or more edges of G, then
p must be the image of a common endpoint of all edges e with p ∈ ϕ(e). We say that two edges
e, e′ of G cross at a point p, if p ∈ ϕ(e)∩ϕ(e′), and p is not the image of a shared endpoint of these
edges. Given a graph G and a drawing ϕ of G in the plane, we use cr(ϕ) to denote the number
of crossings in ϕ, and the crossing number of G, denoted by CrN(G), is the minimum number of
crossings in any drawing of G.

2.2 Problem Definitions and Additional Notation

In this paper we consider the following four problems: Densest k-Subgraph, Dense k-Coloring, (r,h)-
Graph Partitioning and Maximum Bounded-Crossing Subgraph. We now define the problems, along
with some additional notation.

Densest k-Subgraph. In the Densest k-Subgraph problem, the input is a graph G and an integer
k > 0. The goal is to compute a subset S ⊆ V (G) of k vertices, maximizing |EG(S)|. We denote an
instance of the problem by DkS(G, k), and we denote the value of the optimal solution to instance
DkS(G, k) by OPTDkS(G, k).

We also consider a bipartite version of the Densest k-Subgraph problem, called
Bipartite Densest (k1, k2)-Subgraph. This problem was first studied in [AAM+11]. The input to the
problem is a bipartite graph G = (A,B,E) and positive integers k1, k2. The goal is to compute a
subset S ⊆ V (G) of vertices with |S ∩ A| = k1 and |S ∩ B| = k2, such that |EG(S)| is maximized.
An instance of this problem is denoted by BDkS(G, k1, k2), and the value of the optimal solution
to instance BDkS(G, k1, k2) is denoted by OPTBDkS(G, k1, k2). The following lemma shows that
the Bipartite Densest (k1, k2)-Subgraph problem and the Densest k-Subgraph problem are roughly
equivalent from the approximation viewpoint. Similar results were also shown in prior work. For
completeness, we provide the proof in Appendix A.

Lemma 2.1. Let α : Z+ → Z+ be an increasing function such that α(n) = o(n). Then the following
hold:

• If there exists an α(n)-approximation algorithm for the Densest k-Subgraph problem with
running time at most T (n), where n is the number of vertices in the input graph, then there

10

exists an O(α(N2))-approximation algorithm for the Bipartite Densest (k1, k2)-Subgraph prob-
lem, with running time O(T (N2) · poly(N)), where N is the number of vertices in the input
graph. Moreover, if the algorithm for Densest k-Subgraph is deterministic, then so is the
algorithm for Bipartite Densest (k1, k2)-Subgraph.

• Similarly, if there exists an efficient α(N)-approximation algorithm for the Bipartite Densest
(k1, k2)-Subgraph problem, where N is the number of vertices in the input graph, then there
exists an efficient O(α(2n))-approximation algorithm for the Densest k-Subgraph problem,
where n is the number of vertices in the input graph. Moreover, if the algorithm for Bipartite
Densest (k1, k2)-Subgraph is deterministic, then so is the algorithm for Densest k-Subgraph.

Dense k-Coloring. The input to the Dense k-Coloring problem consists of an n-vertex graph G
and an integer k > 0, such that n is an integral multiple of k. The goal is to compute a partition

of V (G) into n/k subsets S1, . . . , Sn/k of cardinality k each, while maximizing
∑n/k

i=1 |EG(Si)|. An
instance of the Dense k-Coloring problem is denoted by DkC(G, k), and the value of the optimal
solution to instance DkC(G, k) is denoted by OPTDkC(G, k).

(r, h)-Graph Partitioning. The input to the (r,h)-Graph Partitioning problem consists of a graph
G, and integers r, h > 0. The goal is to compute r vertex-disjoint subgraphs H1, . . . ,Hr of G, such
that for all 1 ≤ i ≤ r, |E(Hi)| ≤ h, while maximizing

∑r
i=1 |E(Hi)|. An instance of the (r,h)-Graph

Partitioning problem is denoted by GP(G, r, h), and the value of the optimal solution to instance
GP(G, r, h) is denoted by OPTGP(G, r, h).

Maximum Bounded-Crossing Subgraph. In the Maximum Bounded-Crossing Subgraph prob-
lem, the input is a graph G and an integer L > 0. The goal is to compute a subgraph H ⊆ G with
CrN(H) ≤ L, while maximizing |E(H)|. An instance of the Maximum Bounded-Crossing Subgraph
problem is denoted by MBCS(G,L), and the value of the optimal solution to instance MBCS(G,L)
is denoted by OPTMBCS(G,L). We note that we can assume that L ≤ |V (G)|4, as otherwise the
optimal solution is the whole graph G, since the crossing number of a simple graph G is at most
|E(G)|2 ≤ |V (G)|4.

2.3 Chernoff Bound

We use the following standard version of Chernoff Bound (see. e.g., [DP09]).

Lemma 2.2 (Chernoff Bound). Let X1, . . . , Xn be independent randon variables taking values in
{0, 1}. Let X =

∑
1≤i≤nXi, and let µ = E [X]. Then for any t > 2eµ,

Pr
[
X > t

]
≤ 2−t.

Additionally, for any 0 ≤ δ ≤ 1,

Pr
[
X < (1− δ) · µ

]
≤ e−

δ2·µ
2 .

11

2.4 Auxiliary Lemma

We use the following simple lemma.

Lemma 2.3. There is an efficient algorithm, that, given a graph G, a subset S of its vertices,
and a parameter 2

|S| < β < 1, computes a set S′ ⊆ S of vertices, such that |S′| ≤ β · |S|, and

|EG(S′)| ≥ Ω(β2 · |EG(S)|) holds.

Proof: Consider the graph G′ = G[S] and denote |S| = k. We iteratively remove the lowest-
degree vertex from G′, until G′ contains bβkc vertices. Once the algorithm terminates, we output
S′ = V (G′). It now remains to show that |EG′(S′)| ≥ Ω(β2|E(G′)|).

Observe that, if H is an n-vertex graph, and v is a lowest-degree vertex of H, then the degree of v
in H is at most 2|E(H)|/n. Therefore, if vertex v is removed from H, then |E(H)| decreases by at
most a factor (1− 2/n). Therefore,

|EG′(S′)|
|E(G′)|

≥
(

1− 2

k

)(
1− 2

k − 1

)
· · ·
(

1− 2

bβkc+ 1

)
=
bβkc · (bβkc − 1)

k · (k − 1)
= Ω(β2).

3 Conditional Hardness of Densest k-Subgraph

3.1 Low-Degree CSP Conjecture

We consider the Bipartite 2-CSP problem, that is defined as follows. The input to the problem
consists of two sets X,Y of variables, together with an integer A > 1. Every variable z ∈ X ∪ Y
takes values in set [A] = {1, . . . , A}. We are also given a collection C of constraints, where each
constraint C(x, y) ∈ C is defined over a pair of variables x ∈ X and y ∈ Y . For each such constraint,
we are given a truth table that, for every pair of assignments a to x and a′ to y, specifies whether
(a, a′) satisfy constraint C(x, y). The value of the CSP is the largest fraction of constraints that
can be simultaneously satisfied by an assignment to the variables.

We associate with each constraint C = C(x, y) ∈ C, a bipartite graph GC = (L,R,E), where
L = R = [A], and there is an edge (a, a′) in E iff the assignments a to x and a′ to y satisfy C.
Notice that instance I of the Bipartite 2-CSP problem is completely defined by X,Y,A, C, and the
graphs in {GC}C∈C , so we will denote I = (X,Y,A, C, {GC}C∈C). The size of instance I is defined
to be size(I) = |C| ·A2 + |X|+ |Y |.

Consider some instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP. We say that I is a d-to-d
instance if, for every constraint C, every vertex of graph GC = (L,R,E) has degree at most d.

Consider now some functions d(n), s(n) : R+ → R+. We assume that, for all n, d(n) ≥ 1 and
s(n) < 1. In a (d(n), s(n))-LD-2CSP problem, the input is an instance I = (X,Y,A, C, {GC}C∈C)
of Bipartite 2-CSP, such that, if we denote by n = size(I), then the instance is d(n)-to-d(n). We
say that I is a Yes-Instance, if there is some assignment to the variables of X ∪ Y that satisfies
at least |C|/2 of the constraints, and we say that it is a No-Instance, if the largest number of
constraints of C that can be simultaneously satisfied by any assignment is at most s(n) · |C|. Given

12

an instance I of (d(n), s(n))-LD-2CSP problem, the goal is to distinguish between the case where I
is a Yes-Instance and the case where I is a No-Instance. If I is neither a Yes-Instance nor a
No-Instance, the output of the algorithm can be arbitrary. We now state our conjecture regarding
hardness of (d(n), s(n))-LD-2CSP, that is a restatement of Conjecture 1 from the Introduction.

Conjecture 2 (Low-Degree CSP Conjecture). There is a constant 0 < ε ≤ 1/2, such that the

(d(n), s(n))-LD-2CSP problem is NP-hard for d(n) = 2(logn)ε and s(n) = 1/264(logn)1/2+ε.

3.2 Conditional Hardness of Densest k-Subgraph

In the remainder of this section, we prove the following theorem on the conditional hardness of
Densest k-Subgraph.

Theorem 3.1. Assume that Conjecture 2 holds and that P 6= NP. Then for some 0 < ε ≤ 1/2, there
is no efficient approximation algorithm for Densest k-Subgraph problem that achieves approximation
factor 2(logN)ε, where N is the number of vertices in the input graph.

In fact we will prove a slightly more general theorem, that will be useful for us later.

Theorem 3.2. Suppose there is an algorithm for the Densest k-Subgraph problem, that, given
an instance DkS(G, k) with |V (G)| = N , in time at most T (N), computes a factor 2(logN)ε-
approximate solution to the problem, for some constant 0 < ε ≤ 1/2. Then there is an algo-
rithm, that, given an instance I of (d(n), s(n))-LD-2CSP problem of size n, where d(n) = 2(logn)ε

and s(n) = 1/264(logn)1/2+ε, responds “YES” or ”NO”, in time O(poly(n) · T (poly(n))). If I is a
Yes-Instance, the algorithm is guaranteed to respond “YES”, and if it is a No-Instance, it is
guaranteed to respond “NO”.

Theorem 3.1 immediately follows from Theorem 3.2. The remainder of this section is dedicated to
proving Theorem 3.2. A central notion that we use is a constraint graph that is associated with an
instance I of 2-CSP.

Constraint Graph. Let I = (X,Y,A, C, {GC}C∈C) be an instance of the Bipartite 2-CSP prob-
lem. The constraint graph associated with instance I is denoted by H(I), and it is defined as
follows. The set of vertices of H(I) is the union of two subsets: set V = {v(x) | x ∈ X} of vertices
representing the variables of X, and set U = {v(y) | y ∈ Y } of vertices representing the variables
of Y . For convenience, we will not distinguish between the vertices of V and the variables of X,
so we will identify each variable x ∈ X with its corresponding vertex v(x). Similarly, we will not
distinguish between vertices of U and variables of Y . The set of edges of H(I) contains, for every
constraint C = C(x, y) ∈ C, edge eC = (x, y). We say that edge eC represents the constraint C.
Notice that, if E′ is a subset of edges of H(I), then we can define a set Φ(E′) ⊆ C of constraints
that the edges of E′ represent, namely: Φ(E′) = {C ∈ C | eC ∈ E′}. Next, we define bad sets of
constraints and bad collections of edges.

Definition 3.3 (Bad Set of Constraints and Bad Collection of Edges). Let C′ ⊆ C be a collection
of constraints of an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP. We say that C′ is a bad
set of constraints if the largest number of constraints of C′ that can be simultaneously satisfied by

13

any assignment to the variables of X ∪ Y is at most |C
′|

4 . If E′ ⊆ E(H(I)) is a set of edges of
H(I), whose corresponding set Φ(E′) of constraints is bad, then we say that E′ is a bad collection
of edges.

The next observation easily follows from the definition of a bad set of constraints.

Observation 3.4. Let I = (X,Y,A, C, {GC}C∈C) be an instance of bipartite 2-CSP, and let C′, C′′ ⊆
C be two disjoint sets of constraints that are both bad. Then C′ ∪C′′ is also a bad set of constraints.

Next, we define good subsets of constraints and good subgraphs of the constraint graph H(I).

Definition 3.5 (Good Set of Constraints and Good Subgraphs of H(I)). Let C′ ⊆ C be a collection
of constraints of an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP, and let 0 < β ≤ 1 be
a parameter. We say that C′ is a β-good set of constraints, if there is an assigmnet to variables

of X ∪ Y that satisfies at least |C
′|
β constraints of C′. If E′ ⊆ E(H(I)) is a set of edges of H(I),

whose corresponding set Φ(E′) of constraints is β-good, then we say that E′ is a β-good collection
of edges. Lastly, if H ′ ⊆ H(I) is a subgraph of the constraint graph, and the set E(H ′) of edges is
β-good, then we say that graph H ′ is β-good.

The next observation easily follows from the definition of a good set of constraints.

Observation 3.6. Let I = (X,Y,A, C, {GC}C∈C) be an instance of bipartite 2-CSP, let 0 < β ≤ 1
be a parameter, and let H ′, H ′′ be two subgraphs of H(I) that are both β-good and disjoint in their
vertices. Then graph H ′ ∪H ′′ is also β-good.

The observation follows from the fact that, since graphs H ′, H ′′ are disjoint in their vertices, if
we let C′ = Φ(E(H ′)), C′′ = Φ(E(H ′′)) be the sets of constraints associated with the edge sets of
both graphs, then the variables participating in the constraints of C′ are disjoint from the variables
participating in the constraints of C′′.

The following theorem is key in proving Theorem 3.2.

Theorem 3.7. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation
algorithm A for the Densest k-Subgraph problem, whose running time is at most T (N), where N is
the number of vertices in the input graph, and α(N) = 2(logN)ε. Then there is an algorithm, whose
input consists of an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP and parameter n that is
greater than a large enough constant, so that size(I) ≤ n holds, and I is a d(n)-to-d(n) instance

of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε. Let β = 28(logn)1/2+ε, and let r = dβ · log ne. The algorithm
returns a partition (Eb, E1, . . . , Er) of E(H(I)), such that Eb is a bad set of edges, and for all
1 ≤ i ≤ r, set Ei of edges is β3-good. The running time of the algorithm is O(T (poly(n)) · poly(n).

The proof of Theorem 3.2 easily follows from Theorem 3.7. Assume that there exists a constant
0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph problem, whose
running time is at most T (N), where N is the number of vertices in the input graph, and α(N) =
2(logN)ε . We show an algorithm for the (d(n), s(n))-LD-2CSP problem, for d(n) = 2(logn)ε and

s(n) = 1/264(logn)1/2+ε . Let I = (X,Y,A, C, {GC}C∈C) be an input instance of the Bipartite 2-CSP
problem, with size(I) = n, so that I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε .

14

If n is bounded by a constant, then we can determine whether I is a Yes-Instance or a No-
Instance by exhaustively trying all assignments to its variables. Therefore, we assume that n is
greater than a large enough constant. We apply the algorithm from Theorem 3.7 to this instance
I. Let (Eb, E1, . . . , Er) be the partition of the edges of E(H(I)) that the algorithm returns. We
now consider two cases.

Assume first that |Eb| > 2|C|/3. Let Cb ⊆ C be the set of all constraints that correspond to the

edges of Eb. Recall that set Cb of constraints is bad, so in any assignment, at most |C
′|

4 of the
constraints in C may be satisfied. Therefore, if f is any assignment to variables of X ∪ Y , the

number of constraints in C that are not satisfied by f is at least 3|C′|
4 > |C|

2 . Clearly, I may not be
a Yes-Instance in this case. Therefore, if |Eb| > 2|C|/3, we report that I is a No-Instance.

If |Eb| ≤ 2|C|/3, then we report that I is a Yes-Instance. It is now enough to show that,
if |Eb| ≤ 2|C|/3, then instance I may not be a No-Instance. In other words, it is enough to

show that there is an assignment that satisfies more than |C|
264(logn)

1/2+ε constraints. Indeed, since

|Eb| ≤ 2|C|/3, there is an index 1 ≤ i ≤ r, with |Ei| ≥ |C|
3r . Since set Ei of edges is β3-good,

there is an assignment to the variables of X ∪ Y , that satisfies at least |Ei|
β3 ≥ |C|

3rβ3 constraints

that correspond to the edges of Ei. Recall that β = 28(logn)1/2+ε and r = dβ · log ne. Therefore,

3rβ3 ≤ 6β4 log n ≤ 264(logn)1/2+ε . We conclude that there is an assignment satisfying at least
|C|/264(logn)1/2+ε constraints, and so I may not be a No-Instance. It is easy to verify that the
running time of the algorithm is O(T (poly(n)) · poly(n).

To conclude, we have shown that, if there is an α(N)-approximation algorithm A for the Densest
k-Subgraph problem, with running time at most T (N), where N is the number of vertices in the
input graph, and α(N) = 2(logN)ε , then there is an algorithm for the (d(n), s(n))-LD-2CSP problem,

for d(n) = 2(logn)ε and s(n) = 1/28(logn)1/2+ε , whose running time is O(T (poly(n)) · poly(n).

In the remainder of this section we prove Theorem 3.7.

3.3 Proof of Theorem 3.7

The following theorem is the main technical ingredient of the proof of Theorem 3.7.

Theorem 3.8. Assume that there exists an α(N)-approximation algorithm A for the Bipartite
Densest (k1, k2)-Subgraph problem, whose running time is at most T (N), where N is the num-
ber of vertices in the input graph. Then there is an algorithm, that, given an instance I =
(X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP and parameters n, β ≥ 1, so that size(I) ≤ n, β ≥
230(α(n))3(log n)12, and I is a d(n)-to-d(n) instance of Bipartite 2-CSP, for some function d(n), in
time O(T (n) · poly(n)), does one of the following:

• either correctly establishes that graph H(I) is β3-good; or

• computes a bad set C′ ⊆ C of constraints, with |C′| ≥ |C|
8 log2 n

; or

• computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), for which the following hold:

– |X ′| ≤ 2d(n)·|X|
β ;

15

– |Y ′| ≤ 2d(n)·|Y |
β ; and

– |E′| ≥ volH(X′∪Y ′)
2048d(n)·α(n)·log4 n

.

We prove Theorem 3.8 in Section Section 3.4, after we complete the proof of Theorem 3.7 using it.
We start with the following corollary of Theorem 3.8.

Corollary 3.9. Assume that there exists an α(N)-approximation algorithm A for the BDkS prob-
lem, whose running time is at most T (N), where N is the number of vertices in the input graph.
Then there is an algorithm, whose input consists of an instance I = (X,Y,A, C, {GC}C∈C) of Bi-
partite 2-CSP and parameters n, β ≥ 1, so that size(I) ≤ n, β ≥ 230(α(n))3(log n)12, and I is a
d(n)-to-d(n) instance of Bipartite 2-CSP. The algorithm returns a partition (E1, E2) of E(H(I)),
where E1 is a bad set of edges, and:

• either the algorithm correctly certifies that E2 is a β3-good set of edges; or

• it computes a subgraph H ′ = (X ′, Y ′, E′) of H(I), with E(H ′) ⊆ E2, for which the following
hold:

– |X ′| ≤ 2d(n)·|X|
β ;

– |Y ′| ≤ 2d(n)·|Y |
β ; and

– |E′| ≥ |E∗2 |
2048d(n)·α(n)·log4 n

, where E∗2 is a set of edges containing every edge e ∈ E2 with

exactly one endpoint in V (H ′).

The running time of the algorithm is O(T (n) · poly(n)).

Proof: The algorithm is iterative. We start with E1 = ∅, E2 = E(H(I)) and H = H(I). We then
iterate. In every iteration, we compute a graph H ′ = H \E1. We denote by C′ = Φ(E(H ′)) the set
of all constraints of C corresponding to the edges of H ′. Notice that graph H ′ naturally defines a
d(n)-to-d(n) instance I ′ of Bipartite 2-CSP, whose size is at most n, that corresponds to the subset
C′ ⊆ C of constraints. We apply the algorithm from Theorem 3.8 to instance I ′. If the outcome of
the algorithm is a bad set C′′ ⊆ C′ of constraints, then we let Ẽ = {eC | C ∈ C′′} be the set of edges
of H ′ corresponding to the constraints of C′′. We add the edges of Ẽ to E1, remove them from E2,
and continue to the next iteration.

If the algorithm from Theorem 3.8 certifies that graph H ′ is β3-good, then we terminate the
algorithm with the current partition (E1, E2) of E(H), and certify that the set E2 of edges is
β3-good.

Otherwise, the outcome of the algorithm from Theorem 3.8 must be a subgraph H ′′ = (X ′, Y ′, E′)

of H ′, with |X ′| ≤ 2d(n)·|X|
β and |Y ′| ≤ 2d(n)·|Y |

β . The algorithm also guarantees that |E′| ≥
volH′ (X

′∪Y ′)
2048d(n)·α(n)·log4 n

.

Let E∗2 be the set of edges containing every edge e ∈ E2 with exactly one endpoint in V (H ′′). Since
E(H ′) = E2, it is immediate to verify that |E∗2 | ≤ volH′(X

′ ∪ Y ′). Therefore, we are guaranteed

16

that |E′| ≥ |E∗2 |
2048d(n)·α(n)·log4 n

. We return the current partition (E1, E2) of E(H) and subgraph H ′′

of H(I), and terminate the algorithm.

It is easy to verify that the algorithm consists of at most O(poly(n)) iterations, and the running time
of each iteration is at most O(T (n) · poly(n)). Therefore, the total running time of the algorithm
is at most O(T (n) · poly(n)).

Next, we obtain the following corollary.

Corollary 3.10. Assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-approximation
algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, whose running time is at most
T (N), where N is the number of vertices in the input graph, and α(N) = 2(4 logN)ε. Then there
is an algorithm, whose input consists of an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP
and parameter n that is greater than a large enough constant, so that size(I) ≤ n holds, and I is a

d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε. Let β = 28(logn)1/2+ε. The algorithm
returns a partition (E1, E2, E3) of E(H(I)), where E1 is a bad set of constraints, E2 is a β3-good

set of constraints, and |E1∪E2| ≥ |E(H(I))|
β . The running time of the algorithm is O(T (n)·poly(n)).

Proof: Throughout the proof, we assume that there exists a constant 0 < ε ≤ 1/2, and an α(N)-
approximation algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, whose running time
is at most T (N), where N is the number of vertices in the input graph, and α(N) = 2(2 logN)ε .
Assume that we are given an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP, together with
a parameter n that is greater than a large enough constant, so that size(I) ≤ n, and I is a d(n)-to-
d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε . For convenience, we denote H = H(I). Our
algorithm uses a parameter η = 212d(n) · α(n) · log4 n.

The algorithm is iterative. Over the course of the algorithm, we maintain a collectionH of subgraphs
of H, and another subgraph Hg of H. We will ensure that, throughout the algorithm, all graphs in
H∪{Hg} are mutually disjoint in their vertices. We denote by Eg = E(Hg) and E1 =

⋃
H′∈HE(H ′).

Additionally, we maintain another set Eb of edges of H, that is disjoint from Eg∪E1, and we denote
by E0 = E(H) \ (Eg ∪ Eb ∪ E1) the set of all remaining edges of H. We ensure that the following
invariants hold throughout the algorithm.

I1. set Eg = E(Hg) of edges is β3-good;

I2. set Eb of edges is bad; and

I3. all graphs in H ∪ {Hg} are disjoint in their vertices.

Intuitively, we will start with the set H containing a single graph H, and Eg = Eb = E0 = ∅. As
the algorithm progresses, we will iteratively add edges to sets Eg, Eb and E0, while partitioning
the graphs in H into smaller subgraphs. The algorithm will terminate once H = ∅. The key in the
analysis of the algorithm is to ensure that |E0| is relatively small when the algorithm terminates.
We do so via a charging scheme: we assign a budget to every edge of E1 ∪ Eg ∪ Eb, that evolves
over the course of the algorithm, and we keep track of this budget over the course of the algorithm.

In order to define vertex budgets, we will assign, to every graph H ∈ H a level, that is an integer
between 0 and dlog ne. We will ensure that, throughout the algorithm, the following additional
invariants hold:

17

I4. If H ′ ∈ H is a level-i graph, then the budget of every edge e ∈ E(H ′) is at most ηi; and

I5. Throughout the algorithm’s execution, the total budget of all edges in Eg∪Eb∪E1 is at least
|E(H)|.

Intuitively, at the end of the algorithm, we will argue that the level of every graph in H is not too
large, and that the budget of every edge in Eg ∪ Eb ∪ E1 is not too large. Since the total budget
of all edges in Eg ∪Eb ∪E1 is at least |E(H)|, it will then follow that |Eg ∪Eb ∪E1| is sufficiently
large. We now proceed to describe the algorithm.

Our algorithm will repeatedly use the algorithm from Corollary 3.9, with the same functions
α(N), d(n), and parameter β. In order to be able to use the corollary, we need to estalish that

β ≥ 230(α(n))3(log n)12. This is immediate to verify since β = 28(logn)1/2+ε , α(n) = 2(4 logn)ε , and
n is large enough.

Initialization. At the beginning of the algorithm, we set E0 = Eg = Eb = ∅, and we let H
contain a single graph H, which is assigned level 0. Note that E1 = E(H) must hold. Every edge
e ∈ E(H) is assigned budget b(e) = 1. Clearly, the total budget of all edges of E1 ∪ Eg ∪ Eb is
B =

∑
e∈E1∪Eg∪Eb b(e) = |E(H)|.

The algorithm performs iterations, as long as H 6= ∅. In every iteration, we select an arbitrary
graph H ′ ∈ H to process. We now describe a single iteration.

Iteration description. We now describe an iteration where some graph H ′ ∈ H is processed.
We assume that graph H ′ is assigned level i. Notice that graph H ′ naturally defines an instance
I ′ = (X ′, Y ′, A, C′, {GC}C∈C′) of Bipartite 2-CSP, where X ′ = V (H ′) ∩ X, Y ′ = V (H ′) ∩ Y ,
C′ = {C ∈ C | eC ∈ E(H ′)}, and the graphs GC for constraints C ∈ C′ remain the same as in
instance I. Clearly, size(I ′) ≤ size(I) ≤ n, and H(I ′) = H ′. Furthermore, instance I ′ remains a
d(n)-to-d(n) instance. We apply the algorithm from Corollary 3.9 to instance I ′, with parameters n
and β remaining unchanged. Consider the partition (E1, E2) of E(H ′) that the algorithm returns.
Recall that the set E1 of edges is bad. We add the edges of E1 to set Eb. From Invariant I2 and
Observation 3.4, set Eb of edges continues to be bad. If the algorithm from Corollary 3.9 certified
that E2 is a β3-good set of edges, then we update graph Hg to be Hg ∪ (H ′ \E1), and we add the
edges of E2 to set Eg. We then remove graph H ′ from H, and continue to the next iteration. Note
that, from Observation 3.6 and Invariants I1 and I3, the set Eg of edges continues to be β3-good.
It is easy to verify that all remaining invariants also continue to hold.

From now on we assume that the algorithm from Corollary 3.9 returned a subgraphH ′′ = (X ′′, Y ′′, E′′)

of H ′, with E′′ ⊆ E2, such that |X ′′| ≤ 2d(n)·|X′|
β and |Y ′′| ≤ 2d(n)·|Y ′|

β . In particular, |V (H ′′)| =

|X ′′| + |Y ′′| ≤ 2d(n)
β · (|X ′| + |Y ′|) ≤ 2d(n)

β · |V (H ′)|. Additinally, if we denote by E∗2 the subset of

edges of E2 containing all edges with exactly one endpoint in X ′′∪Y ′′, then |E′′| ≥ |E∗2 |
2048d(n)·α(n)·log4 n

must hold. We let H∗ be the graph obtained from H ′ \ E1, by deleting the vertices of H ′′ from it,
so V (H∗) ∪ V (H ′′) = V (H ′), and E(H∗) ∪ E(H ′′) ∪ E∗2 = E2. We remove graph H ′ from H, and
we add graphs H ′′ and H∗ to H, with graph H ′′ assigned level (i+ 1), and graph H∗ assigned level
i. We also add the edges of E∗2 to E0, and we update the set E1 of edges to contain all edges of

18

⋃
H̃∈HE(H̃). Since we did not modify graph Hg in the current iteration, it is immediate to verify

that Invariants I1–I3 continue to hold. Next, we update the budgets of edges, in order to ensure
that Invariants I4 and I5 continue to hold. Intuitively, the edges of E∗2 are now added to set E0,
so we need to distribute their budget among the edges of E(H ′′), in order to ensure that the total
budget of all edges in Eg ∪Eb ∪E1 does not decrease. This will ensure that Invariant I5 continues
to hold. At the same time, since the level of graph H ′′ is (i+ 1), while the level of graph H ′ was i,
we can increase the budgets of the edges of E(H ′) and still maintain Invariant I4.

Formally, recall that Corollary 3.9 guarantees that |E∗2 | ≤ |E′′| · (2048d(n) · α(n) · log4 n) = |E′′|·η
2 .

From Invariant I4, the current budget of every edge in E′′ ∪E∗2 is bounded by ηi. Therefore, at the
beginning of the current iteration:

∑
e∈E′′∪E∗2

b(e) ≤ ηi ·
(
|E∗2 |+ |E′′|

)
≤ ηi · |E′′| ·

(
1 +

η

2

)
< ηi+1 · |E′′|.

We set the budget of every edge in E′′ to be ηi+1, and leave the budgets of all other edges unchanged.
It is easy to verify that

⋃
e∈Eg∪Eb∪E1 b(e) does not decrease in the current iteration, so Invariant

I5 continues to hold. It is also easy to verify that Invariant I4 continues to hold. Therefore,
all invariants continue to hold at the end of the iteration. This completes the description of an
iteration.

The algorithm terminates when H = ∅. Clearly, we obtain a partition (Eg, Eb, E0) of E(H) into
disjoint subsets, where the set Eb of edges is bad, and the set Eg of edges is β3-good. It remains
to show that |Eg ∪ Eb| ≥ |E(H)|

β . We use the edge budgets in order to prove this. Let L∗ be the
largest level of any subgraph of H that belonged to H at any time during the algorithm. We start
with the following key observation.

Observation 3.11. L∗ ≤ (log n)1/2−ε.

Proof: Consider any graph H ′′ that was added to set H at any time during the algorithm’s
execution, and assume that H ′′ was assigned level i. Consider the iteration during which H ′′ was
added to H, and let H ′ ∈ H be the graph that was processed during that iteration. We refer to
graph H ′ as the parent-graph of H ′′. Note that the level of H ′ is either i or (i − 1). Assume that

it is the latter. Then, from the algorithm’s description, |V (H ′′)| ≤ 2d(n)
β · |V (H ′)| must hold.

We can now construct a partitioning tree, that contains a vertex v(H ′) for every graph H ′ that was
ever present in H over the course of the algorithm, an an edge between vertices v(H ′) and v(H ′′)
whenever graph H ′ is a parent-graph of graph H ′′. The root of the tree is v(H). Consider now
again some graph H ′′, and the unique path P in the partitioning tree, connecting v(H) to v(H ′′).
Denote the vertices on this path by v(H) = v(H0), v(H1), . . . , v(Hr) = v(H ′′), and assume that
these vertices appear on path P in this order. For all 1 ≤ i ≤ r, denote the level of graph Hi by Li.
Then 0 = L1 ≤ L2 ≤ · · · ≤ Lr must hold. Moreover, for every index 0 < i ≤ r, either Li = Li−1;

or Li = Li−1 + 1 hold. In the latter case, |V (Hi)| ≤ |V (Hi−1)| · 2d(n)
β . Denote ∆ = logn

log
(

β
2d(n)

) .

We claim that Lr ≤ ∆. Indeed, assume for contradiction that Lr > ∆. Then there is a collection
J ⊆ {1, . . . , r} of at least ∆ + 1 indices i, for which Li = Li−1 + 1. But then:

19

|V (H ′′)| ≤ n ·
(

2d(n)

β

)∆+1

< 1,

a contradiction. We conclude that L∗ ≤ logn

log
(

β
2d(n)

) . Substituting β = 28(logn)1/2+ε and d(n) ≤

2(logn)ε , we get that:

L∗ ≤ log n

log
(

26(logn)1/2+ε
) ≤ (log n)1/2−ε.

From Invariant I4, throughout the algorithm, for every edge e ∈ E1, b(e) ≤ ηL
∗

must hold. Once
an edge is added to Eb ∪ Eg, its budget does not change. Therefore, at the end of the algorithm,
the budget of every edge in Eg ∪ Eb is at most ηL

∗
. On the other hand, from Invariant I5, at the

end of the algorithm, the total budget of all edges in E1 ∪ Eg ∪ Eb is at least |E(H)|. Therefore,
at the end of the algorithm:

|Eg ∪ Eb| ≥ |E(H)|
ηL∗

.

We now bound ηL
∗
. Recall that η = 212d(n) · α(n) · log4 n ≤ 24(logn)ε , since d(n) ≤ 2(logn)ε ,

α(n) = 2(4 logn)ε , and n is large enough. Since, from Observation 3.11, L∗ ≤ (log n)1/2−ε, we get

that ηL
∗ ≤ 24(logn)1/2 < β, since β = 28(logn)1/2+ε . Therefore, |Eg ∪ Eb| ≥ |E(H)|/β as required.

Lastly, it is easy to verify that the algorithm has at most poly(n) iterations, and the running time
of each iteration is bounded by O(T (n) · poly(n)), so the total running time of the algorithm is at
most O(T (n) · poly(n)).

We are now ready to complete the proof of Theorem 3.7. Assume that there exists a constant
0 < ε ≤ 1/2, and an α(N)-approximation algorithm A for the Densest k-Subgraph problem, whose
running time is at most T (N), where N is the number of vertices in the input graph, and α(N) =
2(logN)ε . From Lemma 2.1, there exists an α′(N)-approximation algorithm A for the Bipartite
Densest (k1, k2)-Subgraph problem, where N is the number of vertices in the input graph, and
α′(N) ≤ O(α(N2)) ≤ O

(
2(2 logN)ε

)
. The running time of the algorithm is at most O(T (N2) ·

poly(N)). Denote T ′(N) = O(T (N2) · poly(N)) this bound on the running time of the algorithm,
and let α′′(N) = 2(4 logN)ε . Then there is an α′′(N)-approximation algorithm for Bipartite Densest
(k1, k2)-Subgraph with running time at most O(T ′(N)). Indeed, if N is greater than a sufficiently
large constant, then we can use Algorithm A, to obtain a solution whose approximation factor is
α′(N) ≤ O

(
2(2 logN)ε

)
≤ 2(4 logN)ε ≤ α′′(N). Otherwise, we can solve the problem exactly via

exhaustive search.

Assume now that we are given an instance I = (X,Y,A, C, {GC}C∈C) of Bipartite 2-CSP and
parameter n that is greater than a large enough constant, so that size(I) ≤ n holds, and I is

a d(n)-to-d(n) instance of Bipartite 2-CSP, for d(n) ≤ 2(logn)ε . Let β = 28(logn)1/2+ε , and let
r = dβ · log ne. For convenience, we denote H = H(I). Initially, we set Eb = ∅. Our algorithm
performs r iterations, where for all 1 ≤ j ≤ r, in iteration j we construct the set Ej ⊆ E(H) of

20

edges, that is β3-good, and possibly adds some edges to set Eb. We ensure that, throughout the
algorithm, the set Eb of edges is bad.

Initially, Eb = ∅. We now describe the jth iteration. We assume that sets E1, . . . , Ej−1 of edges
of H were already defined. We construct graph Hj , that is obtained from graph H, by deleting
the edges of E1 ∪ · · · ∪Ej−1 ∪Eb from it. Notice that graph Hj naturally defines an instance Ij =
(X,Y,A, Cj , {GC}C∈Cj) of Bipartite 2-CSP, with Hj = H(Ij), where Cj = {C ∈ C | eC ∈ E(Hj)}.
We apply the algorithm from Corollary 3.10 to graph Hj , with parameters n, β, and d(n) remaining
unchanged. Consider a partition (E1, E2, E3) of E(Hj) that the algorithm returns. We add the
edges of E1 to set Eb. Since both sets of edges are bad, from Observation 3.4, set Eb of edges
continues to be bad. We also set Ej = E2, which is guaranteed to be a β3-good set of edges from
Corollary 3.10. Recall that Corollary 3.10 also guarantees that |E1 ∪ E2| ≥ |E(Hj)|/β. We then
continue to the next iteration.

Since, from the above discussion, for all 1 ≤ j < r, |E(Hj+1)| ≤
(

1− 1
β

)
|E(Hj)|, and since

r = dβ · log ne, at the end of the algorithm, we are guaranteed that the final collection Eb, E1, . . . , Er
of subsets of edges indeed partitions E(H).

Notice that the running time of a single iteration is bounded by O(T ′(n) ·poly(n)) ≤ O(T (poly(n)) ·
poly(n)). Since the number of iterations is bounded by poly(n), the total running time of the
algorithm is bounded by O(T (poly(n)) · poly(n)).

In order to complete the proof of Theorem 3.7, it is now enough to prove Theorem 3.8, which we
do next.

3.4 Proof of Theorem 3.8

The proof partially relies on ideas and techniques from [CKN21]. Assume that there exists
an α(N)-approximation algorithm A for the Bipartite Densest (k1, k2)-Subgraph problem, whose
running time is at most T (N), where N is the number of vertices in the input graph. Let
I = (X,Y,A, C, {GC}C∈C) be the input instance of Bipartite 2-CSP, with size(I) ≤ n. For conve-
nience, we denote H = H(I). If |E(H)| ≤ β3, then graph H is β3-good, since we can compute
an assignment to the variables of X ∪ Y that satisfies at least one constraint of C. Therefore, we
assume from now on that |E(H)| > β3. We can also assume that graph H contains no isolated
vertices, as isolated vertices of H correspond to variables that do not participate in any constraints,
and can be discarded.

The proof consists of four steps. In the first step, in order to simplify the proof, we will regularize
graph H, by computing a “nice” subgraph H̃ ⊆ H. In the second step, we will define an assignment
graph associated with H̃, and we will use it in order to obtain an instance of Bipartite Densest
(k1, k2)-Subgraph, to which algorithm A will then be applied. In the last two steps, we will use
the outcome of algorithm A in order to either correctly establish that graph H is β3-good, or to
compute a bad subset of constraints, or a subgraph H ′ of H as required. We now describe each of
the three steps in turn.

21

3.4.1 Step 1: Regularization

In this step we will compute a subgraph H̃ of H that has a convenient structure. We refer to graphs
with such structure as nice subgraphs of H, and define them next.

Definition 3.12 (Nice Subgraph of H). Let H̃ = (X̃, Ỹ , Ẽ) be a subgraph of H, and let d1, d2 ≥ 1
be parameters. We say that H̃ is a (d1, d2)-nice subgraph of H, if the following hold:

• For every vertex x ∈ X̃, d1 ≤ degH(x) < 2d1;

• For every vertex y ∈ Ỹ , d2 ≤ degH(y) < 8d2 log n and d2 ≤ degH̃(y) < 2d2; and

• |Ẽ| ≥ d1
4 logn · |X̃|.

We say that H̃ is a nice subgraph of H ′ if it is a (d1, d2)-nice subgraph of H for any pair d1, d2 ≥ 1
of parameters.

The first step of our algorithm is summarized in the following claim, that allows us to compute a
nice subgraph H̃ of H that contains many edges of H.

Claim 3.13. There is an algorithm with running time O(poly(n)), that computes parameters
d1, d2 > 1, and a subgraph H̃ of H, such that H̃ is a (d1, d2)-nice subgraph of H, and |E(H̃)| ≥
|E(H)|
8 log2 n

.

Proof: The proof uses standard regularization techniques, and consists of three steps. Denote
H = (X,Y,E).

In the first step, we partition the vertices of X into groups S0, . . . , Sq, for q = dlog ne, where for all
0 ≤ i ≤ q, Si = {x ∈ X | 2i ≤ degH(x) < 2i+1}. We also partition the set E of edges into subsets
E0, . . . , Eq, where for all 0 ≤ i ≤ q, set Ei contains all edges e ∈ E that are incident to vertices of

Si. Clearly, there is an index 0 ≤ i∗ ≤ q, with |Ei∗ | ≥ |E(H)|
2 logn . We let X̃ = Si∗ , and we let H1 be the

graph whose vertex set is X̃ ∪ Y , and edge set is Ei∗ . We also define d1 = 2i
∗
. Clearly, for every

vertex x ∈ X̃, d1 ≤ degH(x) < 2d1. This completes the first regularization step.

We now proceed to describe our second step, in which we consider the vertices of y ∈ Y one by one.
We say that a vertex y ∈ Y is bad, if degH1

(y) < degH(y)
4 logn . Let Y ′′ ⊆ Y be the set of all bad vertices,

and let Y ′ = Y \ Y ′′ be the set of all remaining vertices of Y , that we refer to as good vertices. We
use the following observation.

Observation 3.14.
∑

y∈Y ′′ degH1
(y) ≤ |E(H1)|

2 .

Proof: Since, for every bad vertex y, degH1
(y) < degH(y)

4 logn , we get that:

∑
y∈Y ′′

degH1
(y) <

∑
y∈Y ′′

degH(y)

4 log n
≤ |E(H)|

4 log n
.

Since, as observed above, |E(H1)| ≥ |E(H)|
2 logn , the observation follows.

22

We let H2 be a graph that is obtained from H1, by discarding the vertices of Y ′′ from it. Therefore,
V (H2) = X̃ ∪ Y ′. Additionally, from Observation 3.14, |E(H2)| ≥ |E(H1)|

2 ≥ |E(H)|
4 logn .

Lastly, in our third step, we perform a geometric grouping of the vertices of Y ′ by their degree
in H2. Specifically, we let r = dlog ne, and we partition the vertices of Y ′ into sets S′0, . . . , S

′
r,

where for 0 ≤ j ≤ r, S′j = {y ∈ Y ′ | 2j ≤ degH2
(y) < 2j+1}. As before, we also partition

the set E(H2) of edges into subsets E′0, . . . , E
′
r, where for 0 ≤ j ≤ r set E′j contains all edges

e ∈ E(H2) that are incident to the vertices of S′j . As before, there must be an index 0 ≤ j∗ ≤ r

with |E′j∗ | ≥
|E(H2)|
2 logn ≥

|E(H)|
8 log2 n

. We set Ỹ = S′j∗ , d2 = 2j
∗
, and we let H̃ be the graph whose vertex

set is X̃ ∪ Ỹ , and edge set is E′j∗ . We now verify that this graph has all required properties.

First, as observed already, for every vertex x ∈ X̃, d1 ≤ degH(x) < 2d1. Let Ẽ = E(H̃). As

observed already, |Ẽ| ≥ |E(H)|
8 log2 n

. Moreover, since, for every vertex x ∈ X̃, degH1
(x) = degH(x) ≥ d1,

we get that |E(H1)| ≥ d1 · |X̃|, and so |Ẽ| ≥ |E(H2)|
2 logn ≥

|E(H1)|
4 logn ≥

d1
4 logn · |X̃|.

Consider now some vertex y ∈ Ỹ . From the definition of graph H̃, it is immediate to verify that
degH̃(y) = degH2

(y). Therefore, d2 ≤ degH̃(y) < 2d2. Clearly, degH(y) ≥ degH̃(y) ≥ d2. Lastly,
since vertex y is good, we get that:

degH̃(y) = degH2
(y) = degH1

(y) ≥ degH(y)

4 log n
.

Since degH̃(y) < 2d2, we get that degH(y) ≤ (4 log n) degH̃(y) < 8d2 log n. We conclude that
d2 ≤ degH(y) < 8d2 log n.

3.4.2 Step 2: Assignment Graph and Reduction to Bipartite Densest (k1, k2)-Subgraph

Recall that we have computed, in the first step, a subgraph H̃ = (X̃, Ỹ , Ẽ) of the graph H = H(I).
Since every edge of H is associated with a distinct constraint in C, we can define a collection C̃ ⊆ C
of constraints corresponding to the edges of H̃: C̃ = {C ∈ C | eC ∈ Ẽ}.

Next, we define a bipartite graph G = (U, V, Ê), called assignment graph, that is associated with
graph H̃. For every variable z ∈ X̃∪ Ỹ , we define a set R(z) = {v(z, a) | 1 ≤ a ≤ A} of vertices that
represent the possible assignments to variable z. We then set U =

⋃
x∈X̃ R(x), and V =

⋃
y∈Ỹ R(y).

The set of vertices of G is defined to be U ∪ V .

In order to define the edges, consider any constraint C = C(x, y) ∈ C̃. We define a set E(C) of
at most d(n) · A edges corresponding to C, as follows: we add an edge between vertex v(x, a) and
vertex v(y, a′) to E(C) if assignments a to x and a′ to y satisfy the constraint C. Since instance
I is a d(n)-to-d(n) instance of Bipartite 2-CSP, every vertex of R(x) ∪R(y) is incident to at most
d(n) edges of E(C). We then let E(G) =

⋃
C∈C̃ E(C).

Let k1 = |X̃| and k2 = |Ỹ |. We can then view graph G, together with parameters k1 and k2

as an instance of the Bipartite Densest (k1, k2)-Subgraph problem, DkS(G, k1, k2). Notice that
|V (G)| ≤ |C̃| · A2 ≤ |C| · A2 ≤ size(I) ≤ n. We apply Algorithm A to instance DkS(G, k1, k2) of
Bipartite Densest (k1, k2)-Subgraph, and we let S be the solution that the algorithm returns. Denote

G′ = G[S], so the value of the solution is |E(G′)|. Assume first that |E(G′)| < |C̃|
4α(n) . We use the

23

following observation to show that, in this case, the set C̃ of constraints is bad.

Observation 3.15. If the set C̃ of constraints is not bad, then the value of the optimal solution to

instance DkS(G, k1, k2) of Bipartite Densest (k1, k2)-Subgraph is at least |C̃|4 .

Proof: Assume that the set C̃ of constraints is not bad. Then there is an assignment f to variables

of X̃ ∪ Ỹ that satisfies more than |C̃|
4 constraints of C̃. For each variable z ∈ X̃ ∪ Ỹ , we denote

the corresponding assignment by f(z). Let S′ be the set of vertices of G that contains, for every
variable x ∈ X̃, vertex v(x, f(x)), and for every variable y ∈ Ỹ , vertex v(y, f(y)). Then S′ is a
valid solution to instance DkS(G, k1, k2) of Bipartite Densest (k1, k2)-Subgraph. Moreover, for every
constraint C ∈ C̃ that is satisfied by the assignment f , an edge of E(C) must be contained in G[S′].

Therefore, the value of solution S′ is at least |C̃|4 .

From Observation 3.15, if the set C̃ of constraints is not bad, then algorithm A must have returned

a solution whose value is at least |C̃|
4α(n) . Therefore, if the value of the solution S that the algorithm

returns is less than |C̃|
4·α(n) , then we terminate the algorithm, and return C̃ as a bad set of constraints.

Recall that, from Claim 3.13, |C̃| = |E(H̃)| ≥ |E(H)|
8 log2 n

= |C|
8 log2 n

. From now on we assume that the

value of the soution S is at least |C̃|
4α(n) . We will use the set S of vertices of G, in order to either

correctly certify that graph H is β3-good, or to compute a subgraph H ′ ⊆ H with the required
properties. It will be convenient for us to further regularize graph G′, which we do in the next step.

3.4.3 Step 3: Further Regularization

It would be convenient for us to further regularize graph G′, by computing a subgraph G′′ ⊆ G′,
with |E(G′′)| roughly comparable to |E(G′)|, that has the following additional properties. First,
for all variables x ∈ X̃ with R(x) ∩ V (G′′) 6= ∅, the cardinalities of the sets R(x) ∩ V (G′′) of
vertices are roughly equal to each other (to within factor 2). Similarly, for all variables y ∈ Ỹ
with R(y) ∩ V (G′′) 6= ∅, the cardinalities of the sets R(y) ∩ V (G′′) of vertices are roughly equal
to each other. Lastly, for all constraints C ∈ C̃ with E(C) ∩ E(G′′) 6= ∅, the cardinalities of the
sets E(C) ∩ E(G′′) of edges are roughly equal to each other. In this step, we compute a subgraph
G′′ ⊆ G′ with all these properties. The algorithm is summarized in the following claim.

Claim 3.16. There is an algorithm with running time O(poly(n)), that computes a subgraph G′′ ⊆
G′, subsets X∗ ⊆ X̃, Y ∗ ⊆ Ỹ of variables, a subset C∗ ⊆ C̃ of constraints, and integers q, q′, r ≥ 1,
such that, if we denote, for every variable z ∈ X∪Y , R′(z) = R(z)∩V (G′′), and for every constraint
C ∈ C, E′(C) = E(C) ∩ E(G′′), then the following hold:

• for every variable x ∈ X∗, 2q ≤ |R′(x)| < 2q+1, and for x 6∈ X∗, R′(x) = ∅;

• for every variable y ∈ Y ∗, 2q
′ ≤ |R′(y)| < 2q

′+1, and for y 6∈ Y ∗, R′(y) = ∅;

• for every constraint C ∈ C∗, 2r ≤ |E′(C)| < 2r+1, and for C 6∈ C∗, E′(C) = ∅; and

• |C∗| ≥ |C̃|
2r+6·α(n)·log3 n

.

24

Proof: The proof follows a standard regularization process. Let E0 = E(G′), so that |E0| ≥ |C̃|
4·α(n) .

Our first step regularizes the variables of X̃. We group the variables of X̃ into sets J0, J1, . . . , JdlogAe.

For all 0 ≤ i ≤ dlogAe, we let Ji = {x ∈ X̃ | 2i ≤ |R(x) ∩ V (G′)| < 2i+1}. Note that, if
R(x) ∩ V (G′) = ∅, then variable x does not belong to any of the groups that we have defined.
We also partition the edges of E0 into groups E0, E1, . . . , EdlogAe, where for all 0 ≤ i ≤ dlogAe,
group Ei contains all edges e ∈ E0 that are incident to the vertices of

⋃
x∈Ji(R(x) ∩ V (G′)). It is

easy to verify that (E0, . . . , EdlogAe) is indeed a partition of the set E0 of edges. Therefore, there

is an index 0 ≤ q ≤ dlogAe with |Eq| ≥ |E0|
2 logA ≥

|E0|
2 logn . We then set X∗ = Jq. For each such

variable x ∈ X∗, we set R′(x) = R(x)∩ V (G′), and for each variable x ∈ X̃ \X∗, we set R′(x) = ∅.
We also let E1 = Eq. From the above discussion, |E1| ≥ |E0|

2 logn , and, for every variable x ∈ X∗,
2q ≤ |R′(x)| < 2q+1. Note that all edges of E1 are incident to vertices of

⋃
x∈X∗ R

′(x).

Our second step is to regularize the variables of Ỹ , exactly as before. We group the variables of
Ỹ into sets J ′0, J

′
1, . . . , J

′
dlogAe. For all 0 ≤ i′ ≤ dlogAe, we let J ′i′ = {y ∈ Ỹ | 2i

′ ≤ |R(x) ∩
V (G′)| < 2i

′+1}. As before, if R(y) ∩ V (G′) = ∅, then variable y does not belong to any of the
sets that we have defined. We also partition the edges of E1 into sets E′0, E

′
1, . . . , E

′
dlogAe, where

for all 0 ≤ i′ ≤ dlogAe, set Ei′ contains all edges e ∈ E1 that are incident to the vertices of⋃
y∈Ji′

(R(y)∩ V (G′)). As before, (E′0, . . . , E
′
dlogAe) is a partition of the set E1 of edges. Therefore,

there is an index 0 ≤ q′ ≤ dlogAe with |E′q′ | ≥
|E1|

2 logA ≥
|E1|

2 logn ≥
|E0|

4 log2 n
. We then set Y ∗ = J ′q′ .

For each variable y ∈ Y ∗, we let R′(y) = R(y) ∩ V (G′), and for each variable y ∈ Ỹ \ Y ∗, we set

R′(y) = ∅. We also let E2 = E′q′ . From the above discussion, |E2| ≥ |E0|
4 log2 n

, and, for every variable

y ∈ Y ∗, 2q
′ ≤ |R′(y)| < 2y+1. Notice that every edge of E2 is incident to a vertex of

⋃
x∈X∗ R

′(x)
and a vertex of

⋃
y∈Y ∗ R

′(y).

Our third and final step is to regularize the constraints. Recall that for each constraint C =
C(x, y) ∈ C̃, we defined a set E(C) of edges. Since |R(x)| = A and |R(y)| = A, |E(C)| ≤ A2 ≤ n
must hold. We group all constraints C ∈ C̃ into sets C0, C1, . . . , Cdlogne, where for all 0 ≤ j ≤ dlog ne,
set Cj contains all constraints C ∈ C̃ with 2j ≤ |E(C) ∩ E2| < 2j+1. Note that, if E(C) ∩ E2 = ∅,
then constraint C does not belong to any set. Next, we define a partition E′′0 , E

′′
1 , . . . , E

′′
dlogne of

the set E2 of edges: for 0 ≤ j ≤ dlog ne, set E′′j contains all edges in
⋃
C∈Cj (E(C) ∩ E2). It is

easy to verify that (E′′0 , . . . , E
′′
dlogne) is indeed a partition of E2. Therefore, there must be an index

0 < r ≤ dlog ne, with |E′′r | ≥
|E2|

2 logn ≥
|E0|

8 log3 n
. We let C∗ = Cr and E3 = E′′r . Since every constraint

C ∈ C∗ contributes at most 2r+1 edges to E3, we get that:

|C∗| ≥ |E
3|

2r+1
≥ |E0|

2r+4 log3 n
≥ |C̃|

2r+6 · α(n) · log3 n
.

For every constraint C ∈ C∗, we let E′(C) = E(C)∩E2, and for every constraint C ∈ C̃ \ C∗, we let

E′(C) = ∅. We are now ready to define graph G′′. Its vertex set is
(⋃

x∈X∗ R
′(X)

)
∪
(⋃

y∈Y ∗ R
′(y)
)

,

and its edge set is
⋃
C∈C∗ E

′(C) = E3. It is immediate to verify, from the above discussion, that
graph G′, sets X∗, Y ∗ of variables, and set C∗ of constraints have all required properties.

25

In the next observation, we establish some useful bounds on the cardinalities of the sets X∗, Y ∗ of
variables, and the set C∗ of constraints.

Observation 3.17. All of the following bounds hold:

• |X∗| ≤ |X̃|2q ;

• |Y ∗| ≤ |Ỹ |
2q′

;

• |C∗| ≤ 2d1|X∗| ≤ 2d1|X̃|
2q ; and

• |C∗| ≤ 2d2|Y ∗| ≤ 2d2|Ỹ |
2q′

.

Proof: From the definition of the instance (G, k1, k2) of Bipartite Densest (k1, k2)-Subgraph, graph
G′ contains at most k1 = |X̃| vertices of

⋃
x∈X̃ R(x), and at most k2 = |Ỹ | vertices of

⋃
y∈Ỹ R(y).

Since, for every variable x ∈ X∗, R′(x) ⊆ V (G′) and |R′(x)| ≥ 2q, we get that |X∗| ≤ |X̃|2q . Similarly,

|Y ∗| ≤ |Ỹ |
2q′

.

Recall that, since H̃ is a nice subgraph of H, for every vertex x ∈ H̃, degH̃(x) ≤ degH(x) ≤ 2d1,

and so x may participate in at most 2d1 constraints of C̃. Since C∗ ⊆ C̃ and X∗ ⊆ X̃, every variable
x ∈ X∗ may participate in at most 2d1 constraints of C∗. Therefore, |C∗| ≤ 2d1|X∗|.

Similarly, since H̃ is a nice subgraph of H, for every vertex y ∈ Ỹ , degH̃(y) ≤ 2d2. Using the same
arguments as before, |C∗| ≤ 2d2|Y ∗|.

Recall that, from Claim 3.16, |C∗| ≥ |C̃|
2r+5·α(n)·log3 n

. Since graph H̃ is a nice subgraph of H, we get

that, for every vertex y ∈ Ỹ , degH̃(y) ≥ d2. Therefore, |C̃| ≥ |Ỹ | · d2, and so:

|C∗| ≥ d2 · |Ỹ |
2r+6 · α(n) · log3 n

. (1)

Similarly, from the definition of a nice subgraph, |C̃| ≥ d1
4 logn · |X̃|, and so:

|C∗| ≥ d1 · |X̃|
2r+8 · α(n) · log4 n

. (2)

Lastly, we show that both 2q, 2q
′

are close to 2r, in the following corollary of Observation 3.17.

Corollary 3.18. The following inequalities hold:

• 2r

2d(n) ≤ 2q ≤ 2r+8 · α(n) · log4 n; and

• 2r

2d(n) ≤ 2q
′ ≤ 2r+6 · α(n) · log3 n.

26

Proof: Consider some constraint C = C(x, y) ∈ C∗, and recall that |E′(C)| ≥ 2r. From the
definition of the d-to-d instances, every vertex v(x, a) ∈ R(x) may be incident to at most d(n)
edges of E(C). Since all edges of E′(C) are incident to vertices of R′(x), and |R′(x)| ≤ 2q+1, we
get that |E′(C)| ≤ d(n) · |R′(x)| ≤ d(n) · 2q+1. We conclude that 2r ≤ d(n) · 2q+1.

Similarly, every vertex v(y, a′) ∈ R(y) may be incident to at most d(n) edges of E(C). Since all edges
of E′(C) are incident to vertices of R′(y), and |R′(y)| ≤ 2q

′+1, we get that |E′(C)| ≤ d(n) · 2q′+1.
This proves the inequalities 2r

2d(n) ≤ 2q and 2r

2d(n) ≤ 2q
′
.

Next, we prove that 2q
′ ≤ 2r+6 · α(n) · log3 n. Recall that, from Inequality 1, |C∗| ≥ d2·|Ỹ |

2r+6·α(n)·log3 n
.

On the other hand, from the definition of a nice subgraph, every variable y ∈ Y ∗ may participate

in at most 2d2 constraints of C∗, and, from Observation 3.17, |Y ∗| ≤ |Ỹ |
2q′

. Therefore:

|C∗| ≤ 2d2 · |Y ∗| ≤
2d2|Ỹ |

2q′
. (3)

Combining the two inequalities, we get that: 2q
′ ≤ 2r+6 · α(n) · log3 n.

Lastly, we prove that 2q ≤ 2r+8 · α(n) · log4 n. Recall that, from Inequality 2, |C∗| ≥ d1·|X̃|
2r+7·α(n)·log4 n

holds. As before, from the definition of a nice subgraph, every variable x ∈ X∗ may participate in

at most 2d1 constraints of C∗, and, from Observation 3.17, |X∗| ≤ |X̃|2q . Therefore:

|C∗| ≤ 2d1 · |X∗| ≤
2d1 · |X̃|

2q
. (4)

Combining the two inequalities together, we get that: 2q ≤ 2r+8 · α(n) · log4 n.

3.4.4 Step 4: Certifying that H is a Good Graph or Computing a Subgraph of H

We consider two cases, depending on whether 2r ≤ β holds. We start by showing that, if 2r ≤ β,
then graph H is β3-good.

Observation 3.19. If 2r ≤ β, then graph H is β3-good.

Proof: We show that there exists an assignment to variables of X ∪Y that satisfies at least |C|/β3

constraints of C. In order to do it, we show a randomized algorithm that computes assignments to
variables of X ∪ Y , such that the expected number of satisfied constraints is at least |C|/β3.

The assignments are computed as follows. Consider a variable x ∈ X. If x 6∈ X∗, then we assign
to x an arbitrary value from [A]. Assume now that x ∈ X∗. Recall that we have defined a set
R′(x) ⊆ R(x) of vertices, whose cardinality is at most 2q+1. Set R′(x) of vertices naturally defines
a collection Â(x) = {a ∈ [A] | v(x, a) ∈ R′(x)} of assignments to variable x, with |Â(x)| ≤ 2q+1.
We choose an assignment a ∈ Â(x) uniformly at random, and assign value a to x.

Assignments to variables of Y are defined similarly. Consider a variable y ∈ Y . If y 6∈ Y ∗, then we
assign to y an arbitrary value from [A]. Assume now that y ∈ Y ∗. Recall that we have defined a set
R′(y) ⊆ R(y) of vertices, whose cardinality is at most 2q

′+1. Set R′(y) of vertices naturally defines

27

a collection Â(y) = {a ∈ [A] | v(y, a) ∈ R′(y)} of assignments to variable y, with |Â(y)| ≤ 2q
′+1.

We choose an assignment a′ ∈ Â(y) uniformly at random, and assign value a′ to y.

Recall that we have computed, in Claim 3.16, a collection C∗ ⊆ C of constraints, with |C∗| ≥
|C̃|

2r+6·α(n)·log3 n
. Consider now any constraint C = C(x, y) ∈ C∗, and recall that x ∈ X∗, y ∈ Y ∗

must hold. Recall that graph G′′ contains a collection E′(C) ⊆ E(C) of edges, with |E′(C)| ≥ 2r.
Consider now any such edge e = (v(x, a), v(y,A)). We say that edge e wins if x is assigned value
a, and y is assigned value a′. The probability that edge e wins is at least 1

2q+1·2q′+1 . Notice that

at most one edge of E′(C) may win, and so the probability that any edge of E′(C) wins is at least
|E′(C)|

2q+1·2q′+1 ≥ 2r

2q+1·2q′+1 . If any edge of E′(C) wins, the constraint C is satisfied by the assignment
that the algorithm chooses. Therefore, the probability that a constraint C ∈ C∗ is satisfied is at
least 2r

2q+1·2q′+1 .

Overall, the expected number of constraints that are satisfied by the assignment is at least:

|C∗| · 2r

2q+1 · 2q′+1
≥ |C̃|

28 · α(n) · 2q · 2q′ · log3 n

Recall that, from Claim 3.13, |C̃| = |E(H̃)| ≥ |E(H)|
8 log2 n

= |C|
8 log2 n

, and, from Corollary 3.18, 2q · 2q′ ≤
22r+14 · (α(n))2 · log7 n ≤ 214 · β2 · (α(n))2 · log7 n, since we have assumed that 2r ≤ β. Therefore,
the expected number of constraints of C that are satisfied by the assignment is at least:

|C̃|
28 · α(n) · 2q · 2q′ · log3 n

≥ |C|
211 · α(n) · 2q · 2q′ · log5 n

≥ |C|
225 · β2 · (α(n))3 · log12 n

≥ |C|
β3
,

since β ≥ 227(α(n))3 log12 n.

We conclude that there is an assignment to the variables of X ∪ Y that satisfies at least |C|/β3

constraints of C, and so graph H is β3-good.

If 2r ≤ β, then we terminate the algorithm and report that graph H is β-good.

From now on we assume that 2r > β. In this case, we return a subgraph a subgraph H ′ =
(X ′, Y ′, E′) of H(I), that is defined as follows: X ′ = X∗, Y ′ = Y ∗, and E′ = E∗. We now verify
that this graph has all required properties.

Recall that, from Observation 3.17, |X∗| ≤ |X̃|
2q ≤

|X|
2q , from Corollary 3.18, 2q ≥ 2r

2d(n) , and, from
our assumption, 2r > β. Therefore:

|X∗| ≤ |X|
2q
≤ |X| · 2d(n)

2r
≤ 2d(n)

β
· |X|.

Similarly, from Observation 3.17, |Y ∗| ≤ |Ỹ |
2q′
≤ |Y |

2q′
, from Corollary 3.18, 2q

′ ≥ 2r

2d(n) , and, from our
assumption, 2r > β. Therefore:

|Y ∗| ≤ |Y |
2q′
≤ |Y | · 2d(n)

2r
≤ 2d(n)

β
· |Y |.

28

It now only remains to show that |E∗| ≥ volH(X∗∪Y ∗)
256d(n)·α(n)·log4 n

.

Recall that, from Inequality 2, |C∗| ≥ d1·|X̃|
2r+8·α(n)·log4 n

holds. Since, from Corollary 3.18, 2r ≤ 2q·2d(n),

we get that |E∗| = |C∗| ≥ d1·|X̃|
2q+9·d(n)·α(n)·log4 n

. At the same time, from the definition of a nice graph,

for every vertex x ∈ X∗, degH(x) ≤ 2d1, so volH(X∗) ≤ 2d1 · |X∗| ≤ 2d1·|X̃|
2q , since |X∗| ≤ |X̃|2q from

Observation 3.17. Therefore, |E′| ≥ volH(X∗)

1024d(n)·α(n)·log4 n
.

Similarly, from Inequality 1, |C∗| ≥ d2·|Ỹ |
2r+6·α(n)·log3 n

. Since, from Corollary 3.18, 2r ≤ 2q
′ · 2d(n), we

get that |E′| = |C∗| ≥ d2·|Ỹ |
2q′+7·d(n)·α(n)·log3 n

. At the same time, from the definition of a nice graph,

for every vertex y ∈ Y ∗, degH(y) ≤ 2d2, so volH(Y ∗) ≤ 2d2 · |Y ∗| ≤ 2d2·|Ỹ |
2q′

, since |Y ∗| ≤ |Ỹ |
2q′

from

Observation 3.17. Therefore, |E∗| ≥ volH(Y ∗)

1024d(n)·α(n)·log3 n
.

Altogether, we get that |E′| ≥ volH(X∗∪Y ∗)
2048d(n)·α(n)·log4 n

.

Note that every step of the algorithm, except Step 2, has running time O(poly(n)), while the
running time of Step 2 is O(T (n) + poly(n)). Therefore, the total running time of the algorithm is
at most O(T (n) · poly(n)).

4 Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Dens-
est k-Subgraph

In this section we provide reductions from the Dense k-Coloring and (r,h)-Graph Partitioning problems
to Densest k-Subgraph, by proving the following theorem.

Theorem 4.1. Let α : Z+ → Z+ be an increasing function, such that α(n) ≤ o(n). Assume that
there is an efficient α(n)-approximation algorithm for the Densest k-Subgraph problem, where n is
the number of vertices in the input graph. Then both of the following hold:

• there is an efficient randomized algorithm that, given an instance of Dense k-Coloring whose
graph contains N vertices, with high probability computes an O(α(N2)·poly logN)-approximate
solution to this instance; and

• there is an efficient randomized algorithm that, given an instance of (r,h)-Graph Partitioning
whose graph contains N vertices, with high probability computes an O(α(N2) · poly logN)-
approximate solution to this instance.

We provide the proof of the first assertion of the theorem, by showing a reduction from Dense
k-Coloring to Densest k-Subgraph. The proof of the second assertion is similar and is deferred to
Section B of Appendix. We start by considering an LP-relaxation of the Dense k-Coloring problem,
whose number of variables is at least

(
N
k

)
. Due to this high number of variables, we cannot solve

it directly. We first show an algorithm, that, given an approximate fractional solution to this
LP-relaxation, whose support size is polynomial in N , computes an approximate integral solution

29

to the Dense k-Coloring problem instance. We then show an efficient algorithm that computes an
approximate solution to the LP-relaxation, whose support is relatively small. In order to do so, we
design an approximate separation oracle to the dual LP of the LP-relaxation.

4.1 An LP-Relaxation and Its Rounding

Let DkC(G, k) be an input instance of the Dense k-Coloring problem, and denote |V (G)| = N .
We let R the collection of all subsets of V (G) containing at most k vertices, that is: R = {S ⊆
V (G) | |S| ≤ k}. For every set S ∈ R of vertices, we denote by m(S) = |EG(S)|. We consider the
following LP-relaxation of the Dense k-Coloring problem, that has a variable xS for every set S ∈ R
of vertices.

(LP-P)

max
∑

S∈Rm(S) · xS
s.t. ∑

S∈R:
v∈S

xS ≤ 1 ∀v ∈ V (G)∑
S∈R xS ≤ N/k
xS ≥ 0 ∀S ∈ R

It is easy to verify that (LP-P) is an LP-relaxation of the Dense k-Coloring problem. Indeed,
consider a solution (S1, . . . , Sr) to the input instance DkC(G, k), where r = N/k. For all 1 ≤ i ≤ r,
we set xSi = 1, and for every other set S ∈ R, we set xS = 0. This provides a feasible solution
to (LP-P), whose value is precisely

∑r
i=1 |EG(Si)|. We denote the value of the optimal solution to

(LP-P) by OPTLP-P. From the above discussion, OPTLP-P ≥ OPTDkC(G, k).

Note that the number of variables in (LP-P) is at least
(
N
k

)
, and so we cannot solve it directly.

We will show below an efficient algorithm that provides an approximate solution to (LP-P), whose
support is reasonably small. Before we do so, we provide an LP-rounding algorithm, by proving
the following claim.

Claim 4.2. There is an efficient randomized algorithm, whose input consists of an instance DkC(G, k)
of the Dense k-Coloring problem with N = |V (G)|, such that N is greater than a large enough con-
stant, and a solution {xS | S ∈ R} to (LP-P), in which the number of variables xS with xS > 0
is bounded by poly(N), and

∑
S∈Rm(S) · xS ≥ OPTLP-P/β, for some parameter 1 ≤ β ≤ N3;

the solution is given by only specifying values of variables xS that are non-zero. The algorithm
with high probability returns an integral solution (S1, . . . , SN/k) to instance DkC(G, k), such that∑N/k

i=1 |EG(Si)| ≥ OPTDkC(G,k)

2000β log3N
.

Proof: We assume that we are given a solution {xS | S ∈ R} to (LP-P), in which the number
of variables xS with xS > 0 is bounded by poly(N). Denote C =

∑
S∈Rm(S) · xS , so that

C ≥ OPTLP-P
β ≥ OPTDkC(G,k)

β holds. We denote by R′ ⊆ R the collection of all sets S ∈ R with

xS > 0. Assume first that there is any set S ∈ R′ with m(S) ≥ C
300 log3N

. Then we can obtain the

30

desired solution (S1, . . . , SN/k) as follows. We start with S1 = S and S2 = · · · = SN/k = ∅. We then
iteratively add vertices of V (G)\S to sets S1, . . . , SN/k arbitrarily, to ensure that the cardinality of

each such set is exactly k. It is immediate to verify that
∑N/k

i=1 |EG(Si)| ≥ C
300 log3N

≥ OPTDkC(G,k)

300β log3N
.

Therefore, we assume from now on that, for every set S ∈ R′, m(S) < C
300 log3N

.

We construct another collectionR′′ ⊆ R′ of subsets of vertices of G as follows. For every set S ∈ R′,
we add S toR′′ independently, with probability xS . Clearly, E

[∑
S∈R′′m(S)

]
=
∑

S∈Rm(S)·xS =
C.

We say that a bad event E1 happens if some vertex v ∈ V (G) lies in more than 5 logN sets in R′′.
We say that a bad event E2 happens if |R′′| > (5N logN)/k. We say that a bad event E3 happens
if
∑

S∈R′′m(S) < C
8 . Lastly, we say that a bad event E happens if either of the events E1, E2, or E3

happen. We start with the following simple observation.

Observation 4.3. Pr [E] ≤ 2
N3 .

Proof: For every set S ∈ R′, let YS be the random variable whose value is 1 if S ∈ R′′ and 0
otherwise.

Consider any vertex v ∈ V (G). Denote by Zv the number of vertex sets in R′′ containing v. Clearly,
Zv =

∑
S∈R′:
v∈S

YS . Therefore:

E [Zv] = E

∑
S∈R′:
v∈S

YS

 =
∑
S∈R′:
v∈S

xS ≤ 1,

where the last inequality follows from the constraints of (LP-P).

By applying the Chernoff Bound from Lemma 2.2, we get that Pr [Zv > 5 logN] ≤ 1/N5. Using
the union bound over all vertices v ∈ V (G), we get that Pr [E1] ≤ 1/N4.

Notice that E [|R′′|] = E
[∑

S∈R YS
]

=
∑

S∈R xS ≤ N/k from the constraints of (LP-P). Bad Event
E2 happens if |R′′| =

∑
S∈R YS > (5N logN)/k. By applying the Chernoff Bound from Lemma 2.2

to the variables of {YS | S ∈ R′}, we get that Pr [E2] = Pr
[∑

S∈R′ YS > (5N logN)/k
]
≤ 1/N5.

Lastly, we bound the probability of Event E3. Recall that we have assumed that, for every set
S ∈ R′, m(S) < C

300 log3N
holds. We partition the collection R′ of vertex subsets into ρ = d2 logNe

collections R0, . . . ,Rρ−1, as follows. For all 0 ≤ i < ρ, we let Ri = {S ∈ R′ | 2i ≤ m(S) < 2i+1}.
For all 0 ≤ i < ρ, we denote Ci =

∑
S∈Rim(S) · xS . Clearly,

∑ρ−1
i=0 Ci = C. We say that an index

0 ≤ i < ρ is bad, if Ci <
C

8 logN , and otherwise we say that i is a good index. Let Ig, Ib ⊆ {0, . . . , ρ−1}
be the collections of good and bad indices, respectively. Since ρ ≤ 4 logN , we get that:

∑
i∈Ib

Ci ≤ (4 logN) · C

8 logN
≤ C

2
.

Therefore,
∑

i∈Ig Ci ≥
C
2 holds. Consider now a good index i ∈ Ig. Recall that, for every set S ∈ R′,

m(S) ≤ C
300 log3N

holds, and so 2i ≤ C
300 log3N

must hold. Moreover, since
∑

S∈Rim(S) · xS = Ci ≥
C

8 logN , we get that:

31

C

8 logN
≤
∑
S∈Ri

m(S)xS ≤ 2i+1 ·
∑
S∈Ri

xS ≤
C

150 log3N
·
∑
S∈Ri

xS .

We conclude that
∑

S∈Ri xS ≥ 16 log2N holds for every good index i ∈ Ig.

For a good index i ∈ Ig, we denote by R′i = Ri ∩ R′′, and we let Ẽi be the bad event that

|R′i| <
∑
S∈Ri

xS

2 . From the Chernoff Bound (Lemma 2.2), and the fact that
∑

S∈Ri xS ≥ 16 log2N ,

we get that Pr
[
Ẽi
]
≤ e−2 log2N < N−4, if N is sufficiently large. By applying the Union Bound

to all indices i ∈ Ig, we get that the probability that any of the events in {Ẽi | i ∈ Ig} happens is
bounded by 1/N3. Note that, if neither of the events in {Ẽi | i ∈ Ig} happen, then:

∑
S∈R′′

m(S) ≥
∑
i∈Ig

2i · |R′i|

≥
∑
i∈Ig

2i ·
∑

S∈Ri xS

2

≥
∑
i∈Ig

∑
S∈Ri

m(S) · xS
4

≥
∑
i∈Ig

Ci
4

≥ C

8
.

Therefore, if neither of the events in {Ẽi | i ∈ Ig} happen, then Event E3 also does not happen. We
conclude that Pr [E3] ≤ 1/N3.

Finally, from the Union Bound, we get that:

Pr [E] ≤ Pr [E1] + Pr [E2] + Pr [E3] ≤ 1

N4
+

1

N5
+

1

N3
≤ 2

N3
.

Observe that we can efficiently check whether Event E happened. If Event E happens, then we
terminate the algorithm with a FAIL. We assume from now on that Event E did not happen. In this
case, we are guaranteed that

∑
S∈R′′m(S) ≥ C

8 ≥
OPTDkC(G,k)

8β . We denote R′′ = {S1, S2, . . . , Sz},
where the sets are indexed according to their value m(S), so that m(S1) ≥ m(S2) ≥ · · · ≥ m(Sz).
We then let S = {S1, . . . , SN/k} (if z < N/k, then we set Sz+1 = · · · = SN/k = ∅). For all

1 ≤ i ≤ N/k, we denote Ei = EG(Si), so |Ei| = m(Si), and we denote E′ =
⋃N/k
i=1 Ei. Recall that,

since Event E did not happen, |R′′| ≤ (5N logN)/k holds. Therefore:

|E′| ≥
∑

S∈R′′m(S)

5 logN
≥ OPTDkC(G, k)

40β logN
.

32

Note that the vertex sets in the family S may not be mutually disjoint. However, since Event E did
not happen, every vertex of V (G) may lie in at most 5 logN such sets. We now construct a new
collection S ′ = {S′1, . . . , S′N/k} of sets of vertices, as follows. Consider any vertex v ∈ V (G), and

let Si1 , Si2 , . . . , Sia ∈ S be the sets of S containing v. Vertex v chooses an index i∗ ∈ {i1, . . . , ia}
at random, and is then added to S′i∗ .

Note that for all 1 ≤ j ≤ N/k, for every vertex v ∈ Sj , the probability that v ∈ S′j is at least
1/(5 logN). We say that an edge e = (u, v) ∈ Ej survives if both u, v ∈ S′j . We denote by E′′ ⊆ E′

the set of all edges that survive. Since Pr
[
u ∈ S′j

]
≥ 1/(5 logN), Pr

[
v ∈ S′j

]
≥ 1/(5 logN),

and the two events are independent, we get that the probability that edge e survives is at least
1/(25 log2N). Overall, we get that:

E
[
|E′′|

]
≥ |E′|

25 log2N
≥ OPTDkC(G, k)

1000β log3N
.

We obtain a final solution S∗ to instance DkC(G, k) of the Dense k-Coloring problem by starting with

S∗ = S ′, and then partitioning the vertices of V (G) \
(⋃N/k

j=1 S
′
j

)
among the sets of S∗ arbitrarily,

until each such set contains exactly k vertices. Clearly, the value of the resulting solution is at least
|E′′|.

So far we have obtained a randomized algorithm that either returns FAIL (with probability at
most 2/N3), or it returns a solution to instance DkC(G, k) of the Dense k-Coloring problem, whose

expected value is at least OPTDkC(G,k)

1000β log3N
.

Let p′ be the probability that the algorithm returned a solution of value at least OPTDkC(G,k)

3000β log3N
, given

that it did not return FAIL. Note that the expected solution value, assuming the algorithm did not
return FAIL, is at most OPTDkC(G,k)

2000β log3N
+ p′ · OPTDkC(G, k). Since this expectation is also at least

OPTDkC(G,k)

1000β log3N
, we get that p′ ≥ 1

2000β log3N
. Overall, the probability that our algorithm successfully

returns a solution of value at least OPTDkC(G,k)

2000β log3N
is p′ · Pr [¬E] ≥ Ω

(
1

β log3N

)
. By repeating the

algorithm poly(N) times we can ensure that it successfully computes a solution of value at least
OPTDkC(G,k)

2000β log3N
with high probability.

4.2 Approximately Solving the LP-Relaxation

As observed already, (LP-P) has
(
N
k

)
variables, and so we cannot solve it directly. Instead, we will

use the Ellipsoids algorithm with an approximate separation oracle to its dual LP, that appears
below. This LP has a variable z, and, additionally, for every vertex v ∈ V (G), it has a variable yv.

33

(LP-D)

min N
k · z +

∑
v∈V (G) yv

s.t.

z +
∑

v∈S yv ≥ m(S) ∀S ∈ R
z ≥ 0

yv ≥ 0 ∀v ∈ V (G)

We denote the value of the optimal solution to (LP-D) by OPTLP-D.

Next, we define an approximate separation oracle, and provide such a separation oracle to (LP-D).

Approximate Separation Oracle. Consider the following general minimization Linear Pro-
gram, whose variables are {x1, . . . , xn}.

(P)

min
∑n

i=1 cixi

s.t. ∑n
i=1Aj,ixi ≥ bj ∀1 ≤ j ≤ m
xi ≥ 0 ∀1 ≤ i ≤ n

Let β : Z+ → Z+ be an increasing function. A randomized β(n)-approximate separation oracle for
(P) is an efficient randomized algorithm (that is, the running time of the algorithm is bounded by
a polynomial function of its input size). The input to the algorithm is a set {xi}ni=1 of non-negative
real values. The algorithm either returns “accept”, or it returns an LP-constraint (called a violated
constraint) that does not hold for the given values x1, . . . , xn. We say that the algorithm errs if
it returns “accept” and yet there is some index 1 ≤ j ≤ m for which

∑n
i=1Aj,ixi < bj/β(n) holds.

We require that the probability that the algorithm errs is at most 2/3.

For the case where a linear program has a very large number of constraints, or the constraints are
not given explicitly, one can use an approximate separation oracle, combined with the Ellipsoids
algorithm, in order to compute an approximate LP-solution in time polynomial in the number of
variables of the LP, provided that there is an Ellipsoid containing the feasible region, whose volume
is not too large. For the case where a linear program has a large number of variables, but a relatively
small number of constraints, we can use an approximate separation oracle for its dual LP in order
to solve the original LP approximately. We start by providing an approximate separation oracle for
(LP-D). We then show that this separation oracle can be used in order to obtain an approximate
solution to (LP-P) in time poly(N).

Lemma 4.4. Assume that there is an efficient α(n)-approximation algorithm for the Densest k-
Subgraph problem, where α is an increasing function, and n is the number of vertices in the input
graph. Then there is a randomized β(N)-approximate separation oracle for (LP-D), where N is the
number of variables in the input graph G, and β(N) = O(α(N2) · log2N).

34

Proof: Recall that we are given as input real values z and {yv | v ∈ V (G)}. Clearly, we can
efficiently check whether z ≥ 0, and whether yv ≥ 0 for all v ∈ V (G). If this is not the case, we
can return the corresponding violated constraint.

We say that a set S ∈ R of vertices is bad if z+
∑

v∈S yv < m(S)/β holds, where β = c·α(N2)·log2N ,
and c is a large enough constant whose value we set later. Our goal is to design an efficient algorithm
that either returns a violated constraint of the LP (that is, a set S ∈ R of vertices for which
z +

∑
v∈S yv < m(S) holds); or it returns “accept”. We require that, if there exists a bad set S of

vertices, then the probability that the algorithm returns “accept” is at most 2/3.

It will be convenient for us to slightly modify the input values in {yv | v ∈ V (G)}, as follows. We let
m be the smallest integral power of 2 that is greater than |E(G)|. First, for every vertex v ∈ V (G)
with yv > m, we let y′v = m, and for every vertex v ∈ V (G) with yv < 1/4, we set y′v = 0. For each
remaining vertex v, we let y′v be the smallest integral power of 2 that is greater than 4yv. Note
that for every vertex v with y′v 6= 0, 1 ≤ y′v ≤ 4m holds, and y′v is an integral power of 2. We also
set z′ = 2z. We say that a set S ∈ R of vertices is problematic if z′ +

∑
v∈S y

′
v < 8m(S)/β holds.

We need the following two observations regarding the new values {y′v | v ∈ V (G)}.

Observation 4.5. If S ∈ R is a bad set of vertices, then it is a problematic set of vertices.

Proof: Recall that, if S is a bad set of vertices, then z+
∑

v∈S yv < m(S)/β must hold. Since, for
every vertex v ∈ V (G), y′v ≤ 8yv holds, and z′ = 2z, we get that:

z′ +
∑
v∈S

y′v ≤ 2z + 8
∑
v∈S

yv ≤ 8

(
z +

∑
v∈S

yv

)
< 8m(S)/β.

Therefore, set S is problematic.

Observation 4.6. Assume that there exists a set S ∈ R of vertices, for which z′+
∑

v∈S y
′
v < m(S)

holds. Let S′ ⊆ S be the set of vertices obtained from S by deleting every vertex v ∈ S that has no
neighbors in S. Then z +

∑
v∈S′ yv < m(S′) holds.

Proof: Since, for every vertex v ∈ S\S′, no neighbor of v lies in S, we get that m(S′) = |EG(S′)| =
|EG(S)| = m(S). We partition the vertices of S′ into two subsets: set X containing all vertices

v ∈ S′ with yv < 1/4, and set Y containing all remaining vertices. Clearly,
∑

v∈X yv <
|X|
4 ≤

m(S′)
2

(since m(S′) ≥ |S′|/2 ≥ |X|/2, as graph G[S′] contains no isolated vertices).

Assume for contradiction that z +
∑

v∈S′ yv ≥ m(S′). Then:

z +
∑
v∈Y

yv ≥ m(S′)−
∑
v∈X

yv ≥ m(S′)/2.

We now consider two cases. The first case is when there is some vertex v ∈ Y with yv ≥ m. In this
case, y′v ≥ m holds, and z′ +

∑
v∈S y

′
v ≥ m > m(S) holds, a contradiction.

Otherwise, for every vertex v ∈ Y , y′v ≥ 4yv holds. Since z′ = 2z also holds, we get that:

35

z′ +
∑
v∈S

y′v ≥ z′ +
∑
v∈Y

y′v ≥ 2z + 4
∑
v∈Y

yv ≥ m(S′) = m(S),

a contradiction.

From now on we focus on values z′, {y′v | v ∈ V (G)}. It is now enough to design an efficient
randomized algorithm, that either computes a set S ∈ R of vertices, for which z′+

∑
v∈S y

′
v < m(S)

holds, or returns “accept”. It is enough to ensure that, if there is a problematic set S ∈ R of vertices,
then the algorithm returns “accept” with probability at most 2/3. Indeed, if there is a bad set
S ∈ R of vertices, then, from Observation 4.5, there is a problematic set of vertices, and the
algorithm will return “accept” with probability at most 2/3. On the other hand, if the algorithm
computes a set S ∈ R of vertices, for which z′+

∑
v∈S y

′
v < m(S) holds, then we can return the set

S′ ⊆ S of vertices from the statement of Observation 4.6, that defines a violated constraint with
respect to the original LP-values.

Our algorithm computes a random partition (A,B) of the vertices of G, where every vertex v ∈
V (G) is independently added to A or to B with probability 1/2 each. Let q = log(8m). For
all 1 ≤ i ≤ q, we define a set Ai ⊆ A of vertices: Ai = {v ∈ A | y′v = 2i−1}, and we let
A0 = {v ∈ A | y′v = 0}. Clearly, (A0, . . . , Aq) is a partition of the set A of vertices.

We compute a partition (B0, . . . , Bq) of the vertices of B similarly. For all 0 ≤ i, j ≤ q, we denote
by Ei,j the set of all edges e = (u, v) with u ∈ Ai and v ∈ Bj , and we define a bipartite graph Gi,j ,
whose vertex set is Ai ∪Bj , and edge set is Ei,j .

Recall that we have assumed that there is an efficient α(n)-approximation algorithm for the Densest
k-Subgraph problem, where n is the number of vertices in the input graph. From Lemma 2.1, there
exists an efficient O(α(n̂2))-approximation algorithm for the Bipartite Densest (k1, k2)-Subgraph
problem, where n̂ is the number of vertices in the input graph. We denote this algorithm by A′.

For every pair 0 ≤ i, j ≤ q of integers, and every pair k1, k2 ≥ 0 of integers with k1+k2 ≤ k, we apply
Algorithm A′ for the Bipartite Densest (k1, k2)-Subgraph problem to graph Gi,j , with parameters

k1 and k2. Let Sk1,k2i,j be the output of this algorithm, and let mk1,k2
i,j be the number of edges in

the subgraph of Gi,j that is induced by the set Sk1,k2i,j of vertices. We say that the application of

algorithm A′ is successful if z′+
∑

v∈Sk1,k2i,j

y′v < mk1,k2
i,j , and otherwise it is unsuccessful. If, for any

quadruple (i, j, k1, k2) of indices, the application of algorithm A′ was successful, then we return the

resulting set S = Sk1,k2i,j of vertices. Clearly, |S| ≤ k1 + k2 ≤ k, so S ∈ R holds. Moreover, we

are guaranteed that z′ +
∑

v∈S y
′
v < mk1,k2

i,j < m(S), as required. If every application of algorithm
A′ is unsuccessful, then we return “accept”. The following observation will finish the proof of
Lemma 4.4.

Observation 4.7. Suppose there is a problematic set S ∈ R of vertices. Then the probability that
the algorithm returns “accept” is at most 2/3.

Proof: Let S ∈ R be a problematic set of vertices, so z′ +
∑

v∈S y
′
v < 8m(S)/β holds. Let

E′ = EG[S], so |E′| = m(S). Denote AS = A∩ S,BS = B ∩ S, and let E′′ ⊆ E′ be the set of edges
e, such that exactly one endpoint of e lies in A. Clearly, for every edge e ∈ E′, Pr [e ∈ E′′] = 1/2.

36

Therefore, E [|E′′|] = |E′|/2. Let E ′ be the bad event that |E′′| < |E′|/8, and let p = Pr [E ′].
Clearly:

E
[
|E′′|

]
≤ p · |E

′|
8

+ (1− p) · |E′| = |E′|
(

1− 7p

8

)
.

Since E [|E′′|] = |E′|/2, we get that p ≤ 2/3. Next, we show that, if Event E ′ does not happen,
then the algorithm does not return “accept”.

From now on we assume that Event E ′ did not happen, so |E′′| ≥ |E′|/8. Therefore:

z′ +
∑
v∈S

y′v <
8m(S)

β
≤ 64|E′′|

β

holds.

Clearly, there must be a pair 0 ≤ i, j ≤ q of indices, such that |E′′ ∩ Ei,j | ≥ |E
′′|

4q2
≥ |E′′|

128 log2m
. We

now fix this pair i, j of indices, and denote A′i = Ai ∩S and B′j = Bj ∩S. We also denote k1 = |A′i|
and let k2 = |B′j |. Clearly, k1 +k2 ≤ k holds. Denote Mi,j = |E′′ ∩Ei,j |. From our choice of indices
i, j, we get that:

z′ +
∑

v∈A′i∪B′j

y′v ≤ z′ +
∑
v∈S

y′v ≤
64|E′′|
β

≤ Mi,j

β
· (213 log2m).

Notice that the set S′ = A′i∪B′j of vertices provides a solution to the instance of the Bipartite Densest
(k1, k2)-Subgraph problem on graph Gi,j with parameters k1, k2, whose value is at least Mi,j . Let

S′′ = Sk1,k2i,j be the set of vertices obtained by applying Algorithm A′ to graph Gi,j with parameters

k1, k2. Since |V (Gi,j)| ≤ N , and since A′ is an O(α(N2))-approximation algorithm for Bipartite

Densest (k1, k2)-Subgraph, we are guaranteed that |EG(S′′)| ≥ Ω
(

Mi,j

α(N2)

)
. Recall that |A∩S′′| ≤ k1;

A∩S′′ ⊆ Ai, and all vertices v ∈ Ai have an identical value y′v. Therefore,
∑

v∈A∩S′′ y
′
v ≤

∑
v∈A′i

y′v.

Using a similar reasoning,
∑

v∈B∩S′′ y
′
v ≤

∑
v∈B′j

y′v. Overall, we then get that:

z′ +
∑
v∈S′′

y′v ≤ z′ +
∑
v∈S′

y′v

≤ Mi,j

β
· (213 · log2m)

≤ O
(
|EG(S′′)| · α(N2) · 213 · log2m

β

)
Recall that β = c · α(N2) · log2N . By letting the value of the constant c be high enough, we
can ensure that z′ +

∑
v∈S′′ y

′
v < |EG(S′′)|, and so the application of algorithm A′ to graph Gi,j

with parameters k1 and k2 is guaranteed to be successful. Therefore, if Event E ′ does not happen,
and we set c to be a large enough constant, then our algorithm does not return ”accept”. Since
Pr [E ′] ≤ 2/3, the observation follows.

37

Approximately Solving (LP-P). We use standard methods for solving (LP-P) using approxi-
mate separation oracle for (LP-D).

For a collection R′ ⊆ R of vertex subsets, we define a linear program (LP(R′)), which is obtained
from (LP-D) by only including the constraints associated with the subsets in R′:

(LP(R′))
min N

k · z +
∑

v∈V (G) yv

s.t.

z +
∑

v∈S yv ≥ m(S) ∀S ∈ R′

z ≥ 0

yv ≥ 0 ∀v ∈ V (G)

We denote by OPT(R′) the value of the optimal solution to (LP(R′)). Since a solution to (LP-D)
defines a solution to (LP(R′)), we get that OPT(R′) ≤ OPTLP-D We use the following lemma that
allows us to compute a small collection R′ ⊆ R of vertex subsets, such that OPT(R′) is within a
factor β(N) = O(α(N2) · log2N) of OPTLP-D.

Claim 4.8. Assume that there is an efficient α(n)-approximation algorithm for Densest k-Subgraph,
where α is an increasing function of n, and n is the number of vertices in the input graph. Then
there is a randomized algorithm with running time O(poly(N)), that computes a collection R′ ⊆
R of subsets of vertices with |R′| ≤ O(poly(N)), such that, with high probability, OPT(R′) ≥
Ω (OPTLP-D/β(N)), where β(N) = O(α(N2) · log2N).

We prove Claim 4.8 below, after we provide an algorithm for approximately solving (LP-P) using
it.

Recall that for every set S ∈ R of vertices, there is a variable xS in the primal LP, (LP-P). We
now consider the dual LP to LP(R′), that is defined as follows:

(LP-P2)

max
∑

S∈R′m(S) · xS
s.t. ∑

S∈R′:
v∈S

xS ≤ 1 ∀v ∈ V (G)∑
S∈R′ xS ≤ N/k
xS ≥ 0 ∀S ∈ R′

Notice that this Linear Program can be obtained from (LP-P) by eliminating all variables xS for
S ∈ R \R′. Since |R′| ≤ poly(N), this new linear program has at most O(poly(N)) variables, and
it has at most poly(N) constraints. Therefore, we can solve it in time O(poly(N)) using standard
algorithms for LP-solving. Let {x′S | S ∈ R′} be the resulting solution. From the Strong Duality
Theorem, we get that:

38

∑
S∈R′

m(S) · x′S = OPT(R′).

From Claim 4.8, with high probability:

OPT(R′) ≥ Ω

(
OPTLP-D

β(N)

)
= Ω

(
OPTLP-P

β(N)

)
.

Altogether, we get that with high probability,
∑

S∈R′m(S) ·x′S ≥ Ω
(

OPTLP-P
β(N)

)
. We can extend the

solution {x′S | S ∈ R′} to (LP-P2) to obtain a feasible solution {x′S | S ∈ R} to (LP-P) by setting
the value x′S for all sets S ∈ R \ R′ to 0. It is immediate to verify that the resulting solution to
(LP-P) is feasible, and its value remains unchanged. Therefore, we have obtained a randomized
algorithm, with running time bounded by O(poly(N)), that with high probability computes a

solution to (LP-P), whose value is at least Ω
(

OPTLP-P
β(N)

)
; here, β(N) = O(α(N2) · log2N).

We are now ready to complete the reduction from Dense k-Coloring to Densest k-Subgraph from
Theorem 4.1. Let α : Z+ → Z+ be an increasing function, such that α(n) ≤ o(n), and assume that
there is an efficient α(n)-approximation algorithm for the Densest k-Subgraph problem, where n is
the number of vertices in the input graph.

Consider now the input instance DkC(G, k) of the Dense k-Coloring problem with N = |V (G)|. We
can assume w.l.o.g. that N is greater than a large enough constant, as otherwise we can solve the
problem exactly via exhaustive search. Since α(n) ≤ o(n), we can also assume that β(N) ≤ N3.
We use the randomized algorithm described above, that, in time O(poly(N)), with high probability
computes a β(N)-approximate solution to (LP-P). Recall that the number of variables of (LP-P)
with non-zero LP-value is bounded by O(poly(N)). Next, we apply the algorithm from Claim 4.2 in
order to round the resulting LP solution. The algorithm with high probability returns an integral

solution (S1, . . . , SN/k) to instance DkC(G, k), such that
∑N/k

i=1 |EG(Si)| ≥ Ω
(

OPTDkC(G,k)

β(N)·log3N

)
. Since

β(N) = O(α(N2) · log2N), with high probability we obtain an O(α(N2) · poly logN)-approximate
solution to the input instance of Dense k-Coloring. In order to complete the reduction from
Dense k-Coloring to Densest k-Subgraph from Theorem 4.1, it is now enough to prove Claim 4.8,
which we do next. The proof uses standard techniques and is only included for completeness.

Proof of Claim 4.8. Let m = |E(G)|. Notice that we can assume w.l.o.g. that in an optimal
solution to (LP-D), for every vertex v ∈ V (G), yv ≤ m holds, and z ≤ m. Indeed, if this is not
the case, then we can modify the solution by setting yv = min{yv,m} for every vertex v ∈ V (G),
and z = min{z,m}. It is easy to verify that this remains a feasible solution, and its value does not
grow. For convenience, for every subset R′ ⊆ R of vertex subsets, we define the following LP:

39

(P ′(R′))
min N

k · z +
∑

v∈V (G) yv

s.t.

z +
∑

v∈S yv ≥ m(S) ∀S ∈ R′

0 ≤ z ≤ m
0 ≤ yv ≤ m ∀v ∈ V (G)

We denote by OPT′(R′) the value of the optimal solution of the above LP. From the above dis-
cussion, it is enough to provide a randomized algorithm with running time O(poly(N)), that com-
putes a collection R′ ⊆ R of subsets of vertices, such that, with high probability, OPT′(R′) ≥
Ω (OPT′(R)/β(N)), where β(N) = O(α(N2) · log2N). This is since OPT(R′) = OPT′(R′), and
OPT′(R) = OPT(R) holds.

Clearly, OPT′(R) ≤ 2Nm must hold. Let M be the smallest integral power of 2 that is greater
than 2Nm. For all 0 < C ≤ logM and R′ ⊆ R, we consider a feasibility LP, that is obtained from
P ′(R′), by adding the constraint that N

k · z +
∑

v∈V (G) yv ≤ 2C :

(F (R′, C))
N
k · z +

∑
v∈V (G) yv ≤ 2C

z +
∑

v∈S yv ≥ m(S) ∀S ∈ R′

0 ≤ z ≤ m
0 ≤ yv ≤ m ∀v ∈ V (G)

The key to the proof of Claim 4.8 is the following observation.

Observation 4.9. Assume that there is an efficient α(n)-approximation algorithm for Densest
k-Subgraph, where α is an increasing function of n, and n is the number of vertices in the input
graph. Then there is a randomized algorithm with running time O(poly(N)), that, given a value
0 ≤ C ≤ logM , either:

• computes a collection R′(C) ⊆ R of at most O(poly(N)) subsets of vertices, such that the
linear program (F (R′, C)) is infeasible; or

• computes values 0 ≤ z′ ≤ m and 0 ≤ y′v ≤ m for all v ∈ V (G), such that N
k ·z+

∑
v∈V (G) yv ≤

2C , and, with high probability, for every vertex set S ∈ R, z′ +
∑

v∈S y
′
v ≥ m(S)/β(N).

We provide the proof of Observation 4.9 below, after we complete the proof of Claim 4.8 using
it. We apply the algorithm from Observation 4.9 to every value 0 ≤ C ≤ logM . We say that the
application of the algorithm for value C is successful if the algorithm returns values 0 ≤ z′ ≤ m and
0 ≤ y′v ≤ m for all v ∈ V (G); otherwise we say that it is unsuccessful. We say that the algorithm
errs if it is successful, and yet there is a set S ∈ R of vertices for which z′+

∑
v∈S y

′
v < m(S)/β(N).

40

Let C∗ be the smallest value of C, such that the algorithm from Observation 4.9, when applied to
C, was successful. Let z′ and {y′v | v ∈ V (G)} be the values of the LP-variables returned by the
algorithm. We let Ê be the bad event that the algorithm from Observation 4.9, when applied to value
C∗, errs. The probability of Ê is at most 1/poly(N). Consider the following solution to (P ′(R)):
we set z∗ = min{z′ ·β(N),m}, and for all v ∈ V (G), we set y∗v = min{y′v ·β(N),m}. It is immediate
to verify that, if Event Ê did not happen, then we obtain a feasible solution to (P ′(R)), whose value
is at most 2C

∗ · β(N). Notice that, from the choice of the value C∗, LP (F (R′(C∗ − 1), C∗ − 1))
does not have a feasible solution. Since the constraints in (F (R′(C∗ − 1), C∗ − 1) are a subset of
the constraints in (F (R, C∗ − 1)), it follows that (F (R, C∗ − 1)) does not have a feasible solution,
and so OPT′(R) ≥ 2C

∗−1. Therefore, if Event Ê did not happen, we obtain a feasible solution
(z∗, {y∗v}v∈V (G)) to (P ′(R)), whose value is at most 2β(N) ·OPT′(R).

The final collection of subsets of vertices that our algorithm returns is R′ =
⋃C∗−1
C=0 R′(C). Clearly,

|R′| ≤ poly(N). It is also immediate to verify that OPT(R′) ≥ 2C
∗−1. Indeed, for all values

0 ≤ C < C∗, linear program (F (R′(C), C)) is infeasible, and, since R′(C) ⊆ R′, linear program
(F (R′, C)) is also infeasible. Since every constraint of P ′(R′) is also a constraint of LP (R), we get
that, if Event Ê did not happen, then (z∗, {y∗v}v∈V (G)) is a feasible solution to P ′(R′), whose value

is at most β(N) · 2C∗ . To summarize, if Event Ê did not happen, then:

2C
∗−1 ≤ OPT′(R′) ≤ 2C

∗ · β(N)

and

2C
∗−1 ≤ OPT′(R) ≤ 2C

∗ · β(N)

hold.

Therefore, if Event Ê did not happen, then OPT′(R′) ≥ 2C
∗−1 ≥ OPT′(R)/(2β(N)). It now

remains to prove Observation 4.9. The proof is standard; we only provide its sketch below.

Proof of Observation 4.9. We fix a value 0 ≤ C ≤ logM , and consider the corresponding Linear
Program (F (R, C)). The idea of the proof is simple: we employ the Ellipsoids algorithm, together
with the separation oracle from Lemma 4.4 (after we reduce its error probability by repeating the
algorithm a number of times). We then let R′(C) be the collection of all vertex subsets S ∈ R, such
that the separation oracle returns the constraint associated with S over the course of the algorithm.

We now provide more details. Recall first the Ellipsoids algorithm for solving a feasibility Linear
Program (F) on N ′ variables. The algorithm proceeds in iterations. The input to the ith iteration
is an N ′-dimensional Ellipsoid Ei, that contains the feasible region of (F). Let xi denote the center
point of the ellipsoid. If the algorithm is given a constraint Aj of the Linear Program (F) that is
violated by point xi, then it produces a new ellipsoid Ei+1, that contains the feasible region of (F),
whose volume is at most (1 − 1/poly(N ′)) times the volume of Ei. The running time of a single
iteration is O(poly(N ′)).

Typically, we assume that there is an initial ellipsoid E1, whose volume is at most 2poly(N ′), that
contains the feasible region of (F), which needs to be supplied to the Ellipsoids algorithm. We can
also typically assume that, if (F) has a feasible solution, then the volume of the feasible region of (F)
is at least L = 2−poly(N ′) (if this is not the case, the feasible region can be slightly inflated artificially

41

by adding a small amount of slack to the constraints; in our case, since we are only solving the LP
approximately, this is immaterial). If the above two conditions hold, the algorithm can proceed for
at most poly(N ′) iterations, before the volume of the current ellipsoid becomes smaller than L, and
the algorithm then correctly declares that (F) does not have a feasible solution. In every iteration,
the constraint violated by the center xi of the current ellipsoid Ei is supplied by a separation oracle.
If the separation oracle declares that xi is (approximately) feasible solution, then the algorithm
halts.

We now turn to consider the linear program (F (R, C)). Since the LP constraints require that
the values of all LP-variables are between 0 and m, it is easy to verify that the feasible region of
the LP is contained in the (N + 1)-dimensional sphere E1, whose radius is bounded by poly(m),
and volume is at most 2poly(m) ≤ 2poly(N). We initially set R′(C) = ∅. We apply the Ellipsoids
algorithm to this LP, with the initial ellipsoid E1.

We now consider the ith iteration of the algorithm, whose input is an ellipsoid Ei, together with
its center point (zi, {yiv}v∈V (G)). We manually check the constraints N

k · z
i +

∑
v∈V (G) y

i
v ≤ 2C ;

0 ≤ zi ≤ m; and 0 ≤ yiv ≤ m for all v ∈ V (G). If any of these constraints does not hold, then
we return it as a violated constraint. Assume now that all these constraints hold. We apply the
algorithm from Lemma 4.4 to the current values (zi, {yiv}v∈V (G)); we do so N times. If, in each of
these iterations, the algorithm returns “accept”, then we terminate our algorithm, and return the
current solution (zi, {yiv}v∈V (G)). Observe that we are guaranteed that 0 ≤ zi ≤ m; 0 ≤ yiv ≤ m for

all v ∈ V (G); and N
k · z

i+
∑

v∈V (G) y
i
v ≤ 2C . Moreover, unless the algorithm from Lemma 4.4 erred

in each of its N applications, we are guaranteed that, for every vertex set S ∈ R, zi +
∑

v∈S y
i
v ≥

m(S)/β(N) holds. The probability that the algorithm from Lemma 4.4 errs is at most 2/3, so with
high probability, we are guaranteed that for all S ∈ R, zi +

∑
v∈S y

i
v ≥ m(S)/β(N).

Assume now that in some application of the algorithm from Lemma 4.4 to the current values
(zi, {yiv}v∈V (G)) we obtain a violated constraint of (LP-D). That is, we obtain a set S ∈ R of
vertices, for which zi +

∑
v∈S y

i
v < m(S) holds. In this case, we add S to set R′(S), and we use

this constraint as a violated constraint for the Ellipsoids algorithm.

If the above algorithm never terminates with an approximately feasible solution (zi, {yiv}v∈V (G)),
then we are guaranteed that after at most poly(N) iterations, the algorithm correctly certifies that
(F (R, C)) does not have a feasible solution. We then return the current collection R(C) of vertex
subsets. For convenience, we denote by A1, A1, . . . , Ar the sequence of violated constraints that were
fed to the Ellipsoids algorithm. Each of the constraints Aj either corresponds to a set S ∈ R(C), or
it is one of the constraints 0 ≤ zi ≤ m; 0 ≤ yiv ≤ m for all v ∈ V (G); and N

k · z
i +
∑

v∈V (G) y
i
v ≤ 2C .

In other words, each such constraint Aj is also a constraint of the LP (F (R(C), C)).

It now remains to prove that in the latter case, (F (R(C), C)) does not have a feasible solution. In
order to do so, consider applying the Ellipsoids algorithm to this linear program. We start with
the same initial ellipsoid E1 as before. Since the Ellipsoid algorithm is deterministic, its behavior
is entirely determined by the initial ellipsoid E1 and the sequence of the violated constraints that
it receives. We will use exactly the same sequence A1, A1, . . . , Ar of violated constraints in this
execution of Ellipsoids algorithm. This ensures that for all i, the ellipsoid Ei that is used as the
input to the ith iteration is identical to the ellipsoid that was used as input to iteration i when
solving (F (R, C)), which in turn ensures that constraint Ai is a violating constraint for the center
of ellipsoid Ei. Therefore, this execution of Ellipsoids algorithm is identical to the execution of the

42

same algorithm when applied to LP (F (R, C)), and it will end up with a final ellipsoid Er, whose
volume is small enough to correctly establish that (F (R(C), C)) does not have a feasible solution.

5 Reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-
Graph Partitioning

In this section we prove the following theorem.

Theorem 5.1. Let α : Z+ → Z+ be an increasing function with α(n) ≤ o(n). Then the following
hold:

• If there exists an efficient α(n)-approximation algorithm A for the Dense k-Coloring problem,
where n is the number of vertices in the input graph, then there exists a randomized algorithm
for the Densest k-Subgraph problem, whose running time is NO(logN), that with high probability
computes an O(α(NO(logN))·logN)-approximate solution to the input instance of the problem;
here N is the number of vertices in the input instance of Densest k-Subgraph.

• If there exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning prob-
lem, where n is the number of vertices in the input graph, then exists a randomized algorithm
for the Densest k-Subgraph problem, whose running time is NO(logN), that with high proba-
bility computes an O((α(NO(logN)))3 · log2N)-approximate solution to the input instance of
the problem; here N is the number of vertices in the input instance of Densest k-Subgraph.

We obtain the following immediate corollary of Theorem 5.1.

Corollary 5.2. Assume that Conjecture 2 holds and that NP 6⊆ BPTIME(nO(logn)). Then for

some constant 0 < ε′ ≤ 1/2, there is no efficient 2(logn)ε
′
-approximation algorithm for (r,h)-Graph

Partitioning, and there is no efficient 2(logn)ε
′
-approximation algorithm for Dense k-Coloring.

Proof: We prove the corollary for (r,h)-Graph Partitioning; the proof for Dense k-Coloring is similar.
Assume that Conjecture 2 holds and that NP 6⊆ DTIME(nO(logn)). Then, from Theorem 3.2,
for some constant 0 < ε < 1, there is no randomized factor-2(logn)ε-approximation algorithm for
Densest k-Subgraph with running time nO(logn), where n is the number of vertices in the input
graph.

We let ε′ = ε/c, where c is a sufficiently large constant. We now prove that there is no efficient

2(logn)ε
′
-approximation algorithm for (r,h)-Graph Partitioning. Indeed, assume for contradiction that

there is an efficient 2(logn)ε
′
-approximation algorithm A for (r,h)-Graph Partitioning. From Theo-

rem 5.1, there is a randomized algorithm for the Densest k-Subgraph problem, that, given an instance
DkS(G, k) of the problem with |V (G)| = N , in time NO(logN), computes a c′(α(NO(logN)))3 ·log2N -

approximate solution, where α(x) = 2(log x)ε
′

and c′ is a constant independent of N . Note that:

α(NO(logN)) = 2(logN)O(ε′)
= 2(logN)O(ε/c)

.

43

Since we can let c be a sufficiently large constant, we can ensure that c′(α(NO(logN)))3 · log2N <
2(logn)ε .

Therefore, we obtain a randomized factor-2(logn)ε-approximation algorithm for Densest k-Subgraph,
with running time nO(logn), a contradiction.

The remainder of this section is dedicated to the proof of Theorem 5.1. In order to obtain both
reductions, we start with an instance DkS(G, k) of the Densest k-Subgraph problem, and construct
another auxiliary graph H. This graph is then used in order to define the corresponding instances
of Dense k-Coloring and (r,h)-Graph Partitioning, respectively. We start by defining graph H and
analyzing its properties in Section 5.1. We then complete the reduction from Densest k-Subgraph
to Dense k-Coloring in Section 5.2, and the reduction from Densest k-Subgraph to (r,h)-Graph Parti-
tioning in Section 5.3. Throughout this section, for an integer A, we denote [A] = {0, 1, . . . , A− 1}.
We also assume that the parameter k in the input instance of the Densest k-Subgraph problem is
greater than a large enough constant, since otherwise the problem can be solved in time poly(N)
via exhaustive search.

5.1 Auxiliary Graph H

Let DkS(G, k) be an instance of the Densest k-Subgraph problem. Denote V (G) = {v0, v1, . . . , vN−1}.
We now provide a randomized algorithm to construct an auxiliary graph H corresponding to this
instance. The construction is somewhat similar to and inspired by the construction used in Section
2 of [KLS00].

Let q = dlogNe. We start by computing a prime number M , such that N5q ≤M ≤ 2 ·N5q. From
the Bertrand-Chebyshev theorem [Ber45, Čeb50], such a prime number must exist, and it can be
computed in time NO(logN) by checking every integer between N5q and 2 ·N5q. We then construct
a random mapping f : [N]→ [M] as follows. For every integer 1 ≤ i ≤ N , we let f(i) be an integer
chosen independently and uniformly at random (with replacement) from [M].

We are now ready to define the graph H. The set of vertices of H is V (H) = {u0, . . . , uM−1}.
For every edge e = (vi, vj) ∈ E(G), we construct a collection J(e) of M edges in H: J(e) =
{
(
uf(i)+t, uf(j)+t

)
| 0 ≤ t ≤M − 1}, where the addition in the subscript is modulo M (we use this

convention throughout the remainder of this section). We say that edge e is the origin of every
edge in set J(e). We then set E(H) =

⋃
e∈E(G) J(e). We note that we do not allow parallel edges in

H, so it is possible for an edge in H to have several origin edges in G. This completes the definition
of the graph H. We now analyze its properties.

Good Event Eg. We say that a good event Eg happens if there is a collection {H1, . . . ,Hr} of

r =
⌊

M
k log k

⌋
disjoint subgraphs of H, such that the following hold:

• for all 1 ≤ j ≤ r, |V (Hj)| = k;

• for all 1 ≤ j ≤ r, |E(Hj)| ≤ OPTDkS(G, k); and

•
∑

1≤j≤r |E(Hj)| ≥ 0.1 ·
⌊

M
k log k

⌋
·OPTDkS(G, k).

44

We start by showing that good event Eg happens with a sufficiently high probability.

Claim 5.3. Pr [Eg] ≥ 0.8.

Proof: Let S be the optimal solution to instance DkS(G, k) of the Densest k-Subgraph problem,
and let T be a subset of vertices of H, defined as T = {uf(i) | vi ∈ S}. Let I be a collection of
r = bM/(k log k)c integers from [M], obtained by selecting each integer independently uniformly
at random (with replacement) from [M]. For every index j ∈ I, we define a set T ′j of vertices of
H as follows: T ′j = {uf(i)+j | vi ∈ S}. Finally, for every index j ∈ I, we define another set Tj of
vertices of H, by starting with the set T ′j of vertices, and then removing from it every vertex that
lies in set

⋃
i∈I\{j} T

′
i . Clearly, all resulting vertex sets in {Tj}j∈I are mutually disjoint, and each

such set contains at most k vertices.

For every index j ∈ I, we denote by Ê(Tj) the set of edges e ∈ EH(Tj), such that an origin of e in
G lies in EG(S). Equivalently: Ê(Tj) = {(uf(i)+j , uf(i′)+j) | (vi, vi′) ∈ EG(S)}. Clearly, |Ê(Tj)| ≤
OPTDkS(G, k) for all j ∈ I, and so

∑
j∈I |Ê(Tj)| ≤ r ·OPTDkS(G, k) =

⌊
M

k log k

⌋
·OPTDkS(G, k).

We prove the following observation.

Observation 5.4.

E

∑
j∈I
|Ê(Tj)|

 ≥ 0.9 ·
⌊

M

k log k

⌋
·OPTDkS(G, k).

Assume first that the observation holds. For simplicity of notation, denoteB =
⌊

M
k log k

⌋
·OPTDkS(G, k).

For all j ∈ I, we define a subgraphHj ofH, whose vertex set is Tj , and edge set is Ê(Tj). Clearly, the
graphs in {Hj | j ∈ I} are disjoint, and, for all j ∈ I, |V (Hj)| = |T | ≤ k holds. Additionally, from
the above discussion, for all j ∈ I, |E(Hj)| ≤ OPTDkS(G, k). If, additionally,

∑
j∈I |Ê(Tj)| ≥ 0.1B

holds, then Event Eg happens. As observed above,
∑

j∈I |Ê(Tj)| ≤ B must hold. Let p denote the

probability that
∑

j∈I |Ê(Tj)| ≥ 0.1B. Then:

E

∑
j∈I
|Ê(Tj)|

 ≤ (1− p) · 0.1 ·B + p ·B = 0.1B + 0.9Bp.

Since, from Observation 5.4, E
[∑

j∈I |Ê(Tj)|
]
≥ 0.9B, we conclude that p ≥ 0.8, and so Pr [Eg] ≥

0.8, as required. In order to complete the proof of Claim 5.3, it is now enough to prove Observa-
tion 5.4, which we do next.

Proof of Observation 5.4. We associate a collection {X1, . . . , Xr} of random variables with the
set I of indices. In order to do so, we view set I as being constructed as follows. For each 1 ≤ i ≤ r,
sample a value Xi uniformly at random from [M], and then let I = {X1, . . . , Xr} be the collection of
these sampled values. Consider now any index 1 ≤ i ≤ r, the corresponding set T ′Xi of vertices of H,
and any edge e = (va, vb) ∈ EG(S). Edge e′ = (uf(a)+Xi , uf(b)+Xi) of H corresponding to e belongs

to set Ê(TXi) if and only if neither of the vertices uf(a)+Xi , uf(b)+Xi lies in
⋃
j∈I\{i} T

′
Xj

. Consider

now an index j ∈ I \ {i}. The probability that a fixed vertex u ∈ V (H) lies in T ′Xj is at most k/M

45

(since for every vertex vz ∈ S, there is a single index s with uf(z)+s = u). From the union bound,

the probability that a fixed vertex u ∈ V (H) lies in
⋃
j∈I\{i} T

′
Xj

is at most r·k
M ≤

1
log k . In particular,

the probability that any of the endpoints of edge e′ = (uf(a)+Xi , uf(b)+Xi) lies in
⋃
j∈I\{i} T

′
Xj

is

at most 2
log k . Therefore, E

[
|Ê(Tj)|

]
≥ |EG(S)| ·

(
1− 2

log k

)
≥ 0.9 · |EG(S)|. Altogether, from the

linearity of expectation, E
[∑

1≤i≤r |Ê(TXi)|
]
≥ 0.9 · |EG(S)| · r = 0.9 ·

⌊
M

k log k

⌋
·OPTDkS(G, k).

Ensemble and Bad Event Eb. Next, we define the notion of an ensemble. Recall that q =
dlogNe. An ensemble B consists of a collection I ⊆ [N] of at most 2q indices, and, for every index
i ∈ I, an integer −q ≤ xi ≤ q with xi 6= 0. We denote the ensemble by B = {I, {xi}i∈I}. We say
that ensemble B = {I, {xi}i∈I} is bad if

∑
i∈I xi · f(i) ≡ 0 (mod M). We let Eb be the bad event

that there exists a bad ensemble. We start by showing that the probability of Event Eb happening
is low. Later, we show that, if Event Eb does not happen, then graph H has some useful properties.

Observation 5.5. Pr
[
Eb
]
≤ 1

Nq .

Proof: Consider any fixed ensemble B = {I, {xi}i∈I}. Let i∗ ∈ I be any fixed index. Consider now
the following two-step process: in the first step, we select the values f(i) for all indices i ∈ I \ {i∗}
independently uniformly at random from [M]. We then denote S =

∑
i∈I\{i∗} xi · f(i). In the

second step, we select the value a = f(i∗) at random from [M]. Ensemble B is bad if and only
if a · xi∗ + S = 0 mod M . Since M is a prime number, there is exactly one value a′ ∈ [M] with
a′ · xi∗ + S = 0 mod M (indeed, if two such values a′, a′′ exist, then a′ · xi∗ = a′′ · xi∗ mod M ,
implying that a′ = a′′ must hold). The probability to choose f(i∗) = a′ is then 1/M , and so the
probability that a fixed ensemble B is bad is 1/M .

Notice that the total number of ensembles is bounded by
(∑2q

t=1

(
N
t

))
· (2q)2q ≤ (2q) ·

(
N
2q

)
· (2q)2q ≤

N4q . Using the Union Bound, Pr
[
Eb
]
≤ N4q

M ≤ 1
Nq , since M ≥ N5q.

Next, we show that, if Event Eb does not happen, then every edge e ∈ E(H) has a unique origin
edge in G.

Observation 5.6. Assume that Event Eb did not happen. Let e be any edge of H. Then there is
a unique edge e′ ∈ E(G), such that e′ is an origin edge of e.

Proof: Denote e = (uj , uj′), and assume for contradiction that there are two distinct edges e1, e2 ∈
E(G) that both serve as origin edges of e. Denote e1 = (vi1 , vi′1) and e2 = (vi2 , vi′2). From the
construction of H, since edge e1 is an origin edge of e, there exists an integer t1, such that:

j ≡ f(i1) + t1 (mod M), and j′ ≡ f(i′1) + t1 (mod M). (5)

Similarly, since edge e2 is an origin edge of e, there exists an integer t2, such that:

j ≡ f(i2) + t2 (mod M), and j′ ≡ f(i′2) + t2 (mod M). (6)

46

By adding the first equation of (5) to the second equation of (6), we get that f(i1) + f(i′2) ≡
j + j′ − t1 − t2 (mod M). Similarly, by adding the second equation of (5) to the first equation of
(6), we get that f(i′1) + f(i2) ≡ j + j′ − t1 − t2 (mod M). In other words, we get that:

f(i1) + f(i′2) ≡ f(i′1) + f(i2) (mod M). (7)

Since e1 is an edge of G, i1 6= i′1 must hold, and similarly, since e2 is an edge of G, i2 6= i′2 must
hold. Moreover, since e1 6= e2, either i1 6= i2, or i′1 6= i′2 must hold. Combining this with Equation
(7), we conclude that both i1 6= i2 and i′1 6= i′2 must hold.

We now consider four cases. The first case is when all indices in {i1, i′1, i2, i′2} are distinct. In this
case, we consider the ensemble B = {I, {xi}i∈I}, where I = {i1, i′1, i2, i′2}, with xi1 = xi′2 = 1 and
xi2 = xi′1 = −1. From Equation 7, we get that

∑
i∈I xi · f(i) ≡ 0 (mod M), so ensemble B is bad,

contradicting the fact that Event Eb did not happen.

The second case is when i1 = i′2 but i′1 6= i2. Then we construct an ensemble B = {I, {xi}i∈I},
where I = {i1, i′1, i2}, with xi1 = 2 and xi2 = xi′1 = −1. As before, from Equation 7, we get that∑

i∈I xi · f(i) ≡ 0 (mod M), so ensemble B is bad, contradicting the fact that Event Eb did not
happen.

The third case is when i′1 = i2 but i1 6= i′2. We consider the ensemble B = {I, {xi}i∈I}, where
I = {i1, i′1, i′2}, with xi1 = xi′2 = 1 and xi2 = −2. From Equation 7, we get that

∑
i∈I xi · f(i) ≡

0 (mod M), so ensemble B is bad, contradicting the fact that Event Eb did not happen.

From the above discussion, the only remaining case is when both i′1 = i2 and i1 = i′2 hold. But in
this case, e1 = e2, contradicting our assumption that these two edges are distinct.

Assume that bad event Eb did not happen. For every edge e ∈ E(H), we denote by R(e) the unique
edge of G that serves as the origin edge of e. For a subgraph H ′ ⊆ H, we let R(H ′) be the subgraph
of G induced by the set {R(e) | e ∈ E(H ′)} of edges; we refer to R(H ′) as the origin graph of H ′.
In other words, the set of edges of graph R(H ′) is {R(e) | e ∈ E(H ′)}, and the set of its vertices
contains every vertex of G that serves as an endpoint to any of these edges.

In the next observation we show that, if bad Event Eb did not happen, then for every cycle C ⊆ H
containing at most q edges, every vertex in the corresponding origin-graph R(C) has an even degree.

Observation 5.7. Assume that Event Eb did not happen. Let C ⊆ H be any simple cycle containing
at most q edges, and let G′ = R(C) be the origin graph of C. Then every vertex of G′ has an even
degree in G′.

Proof: Throughout the proof, we assume that Event Eb did not happen, and we fix a simple cycle
C = (uj1 , . . . , ujz) in H, with z ≤ q. For all 1 ≤ i ≤ z, we denote ei = (uji , uji+1), and we denote
the origin-edge of ei by e′i = R(ei) = (vai , vbi). From the definition of graph H, there must be an
integer ti ∈ [M], with ji ≡ f(ai) + ti (mod M) and ji+1 ≡ f(bi) + ti (mod M). Therefore, for all
1 ≤ i ≤ z:

f(ai)− f(bi) ≡ ji − ji+1 (mod M).

Summing up the above equality over all i = 1, . . . z, we get that∑
1≤i≤z

f(ai)−
∑

1≤i≤z
f(bi) ≡ 0 (mod M). (8)

47

Let A be the set of indices lying in {a1, . . . , az} (if an index appears several times in {a1, . . . , az}, we
only include it once in A). For every index a∗ ∈ A, let x′a∗ be the number of integers i ∈ {1, . . . , z}
with ai = a∗. Similarly, we let B be the set of indices lying in {b1, . . . , bz}, and for every index
b∗ ∈ B, we let x′′b∗ be the number of integers i ∈ {1, . . . , z} with bi = a. We claim that A = B
must hold, and, for every index a ∈ A, x′a = x′′a must hold. Indeed, assume otherwise. We then
construct an ensemble B = {I, {xi}i∈I} as follows. Set I includes every index i ∈ (A \B)∪ (B \A);
for each such index i, we set xi = x′i if i ∈ A \ B and xi = −x′′i otherwise. Additionally, for every
index i ∈ A ∩ B with x′i 6= x′′i , we include index i in I, with xi = x′i − x′′i . From our assumptions,
I 6= ∅, |I| ≤ 2q, and for all i ∈ I, −q ≤ xi ≤ q, with xi 6= 0. Therefore, B = {I, {xi}i∈I} is a valid
ensemble. But then, from Equation 8,

∑
i∈I xi · f(i) ≡ 0 (mod M). In other words, ensemble B is

bad, contradicting the assumption that bad event Eb did not happen.

We conclude that A = B must hold, and, for every index a ∈ A, x′a = x′′a must hold. Therefore, for
every vertex v ∈ V (G), the number of times that v lies in {va1 , . . . , vaz} is equal to the number of
times that v lies in {vb1 , . . . , vbz}. Therefore, the number of edges of {R(ei) | 1 ≤ i ≤ z} that are
incident to v is even.

Lastly, we need the following claim.

Claim 5.8. Let H ′ be any subgraph of H with |V (H ′)| ≤ N . If Event Eb did not happen, then the
origin graph R(H ′) of H ′ contains at most c∗ · |V (H ′)| vertices, where c∗ is a constant independent
of N .

Proof: Recall that the girth of an unweighted graph G∗ is the length of the shortest cycle in G∗.
For an integer t ≥ 1, we say that a subgraph G′ of G∗ is a t-spanner of G∗ if V (G′) = V (G∗), and,
for every pair v, v′ of vertices of G∗, if we denote by distG∗(v, v

′) the length of the shortest v-v′

path in G∗, and we define distG′(v, v
′) similarly for G′, then distG′(v, v

′) ≤ t · distG∗(v, v
′).

Consider now any subgraph H ′ of H. We use the following algorithm of [ADD+93], whose goal is
to construct a q-spanner H ′′ of H ′ that contains few edges. The algorithm starts with graph H ′′,
whose vertex set is V (H ′′) = V (H ′), and edge set is empty. It then processes every edge e ∈ E(H ′)
one by one. If graph H ′′ ∪ {e} contains a cycle of length at most q, then we continue to the next
iteration; otherwise, we add e to H ′′, and continue to the next iteration. Consider the final graph
H ′′ that is obtained at the end of the algorithm, once very edge of H ′ is processed. It is immediate
to see that the girth of H ′′ is greater than q. One can also show that the resulting graph H ′′ is a
q-spanner of H ′, but we do not need to use this fact. We use the following theorem from [Bol04].

Theorem 5.9 (Theorem 3.7 from [Bol04]). Let G be an n-vertex graph with girth greater than q,
for any integer q > 1. Then |E(G)| ≤ n ·

⌈
n2/(q−2)

⌉
.

From the above theorem, |E(H ′′)| ≤ |V (H ′)|1+O(1/q) = O(|V (H ′)|), as |V (H ′)| ≤ N and q =
dlogNe.

We denote by W ′ ⊆ G the origin graph of H ′, and we denote by W ′′ ⊆ G the origin graph of H ′′.
Note that |E(W ′′)| ≤ |E(H ′′)| ≤ O(|V (H ′)|), and so |V (W ′′)| ≤ O(|E(W ′′)|) ≤ O(|V (H ′)|). We
next show the following observation.

Observation 5.10. If Event Eb did not happen, then V (W ′) = V (W ′′).

48

Notice that the observation implies that |V (W ′)| ≤ O(|V (H ′)|), completing the proof of Claim 5.8.
It now remains to prove Observation 5.10.

Proof of Observation 5.10. Consider any edge e ∈ E(H ′) \ E(H ′′). From the construction of
graphH ′′, there must be a simple cycle C in graphH ′′∪{e}, whose length is at most q. Consider now
the subgraph WC of G, induced by the edges of {R(e′) | e′ ∈ E(C)}; in other words, WC = R(C).
Since the event Eb did not happen, from Observation 5.7, graph WC is an even-degree graph.
Therefore, if we denote by ê = R(e) the origin-edge of e, then graph WC \ {ê} contains exactly two
odd-degree vertices, that serve as endpoints of edge ê in G. Notice however that WC \ {ê} ⊆ W ′′.
Therefore, for every edge e ∈ E(H ′) \ E(H ′′), the endpoints of the origin edge R(e) lie in W ′′. It
then follows that W ′ = W ′′.

Bad Event E. We say that the bad event E happens if either bad event Eb happens, or bad event
Eg does not happen. By using the Union bound, together with Claim 5.3 and Observation 5.5, we
get that Pr [E] ≤ 0.1.

We are now ready to complete the proof of Theorem 5.1.

5.2 Completing the Reduction from Densest k-Subgraph to Dense k-Coloring

Let DkS(G, k) be an input instance of the Densest k-Subgraph problem. Denote V (G) = {v1, . . . , vN}.
We start by constructing the auxiliary graph H, from instance DkS(G, k). We add isolated ver-
tices to graph H, until |V (H)| becomes an integral multiple of k, and we denote |V (H)| = n.
Clearly, n ≤ NO(logN). We then consider instance DkC(H, k) of the Dense k-Coloring prob-
lem, where the parameter k remains unchanged. Note that, if Event E did not happen, then,

from the definition of Events E and Eg, there is a collection {H1, . . . ,Hr} of r =
⌊

M
k log k

⌋
dis-

joint subsets of vertices of H, such that for all 1 ≤ j ≤ r, |V (Hj)| ≤ k holds, and additionally,∑
1≤j≤r |E(Hj)| ≥ 0.1 ·

⌊
M

k log k

⌋
· OPTDkS(G, k). We can then define a solution (S1, . . . , Sn/k) to

instance DkC(H, k) of the Dense k-Coloring problem, as follows. For all 1 ≤ i ≤ r, we initially
set Si = V (Hi), and for all r < i ≤ n/k, we set Si = ∅. Let U = V (H) \ (

⋃r
i=1 V (Hi)). Next,

we partition the vertices of U by adding them to sets S1, . . . , Sn/r arbitrarily, to ensure that the
cardinality of each set is exactly k. From the above discussion, if Event E did not happen, then:

n/k∑
i=1

|EH(Si)| ≥
r∑
i=1

|E(Hi)| ≥ 0.1 ·
⌊

M

k log k

⌋
·OPTDkS(G, k) ≥ Ω

(
n

k log k

)
·OPTDkS(G, k).

We conclude that, if Event E did not happen, then OPTDkC(H, k) ≥ Ω
(

n
k log k

)
·OPTDkS(G, k).

We apply the α(n)-approximation algorithm for Dense k-Coloring to instance DkC(H, k), and we
denote the resulting solution by (U1, . . . , Un/k). Note that:

n/k∑
i=1

|EH(Ui)| ≥
OPTDkC(H, k)

α(n)
≥ Ω

(
n

k · α(n) · log k

)
·OPTDkS(G, k)

49

must hold. We let U ∈ {U1, . . . , Un/k} be a subset maximizing |EH(Ui)|, so that

|EH(U)| ≥
∑n/k

i=1 |EH(Ui)|
n/k

≥ Ω

(
OPTDkS(G, k)

α(n) · log k

)
.

Let H ′ = H[U], and let W = R(H ′) be the origin graph of H ′. From Claim 5.8, if Event E did not
happen, then |V (W)| ≤ c∗ · |V (H ′)| ≤ c∗k, for some universal constant c∗.

Lastly, we apply the algorithm from Lemma 2.3 to graph W , to obtain a subgraph W ′ of W
with |V (W ′)| = k and |E(W ′)| ≥ Ω(|E(W)|). We then return S = |V (W ′)| as the solution to
the input instance DkS(G, k) of the Densest k-Subgraph problem. From the above discussion,

|EG(S)| ≥ Ω(|E(W)|) ≥ Ω
(

OPTDkS(G,k)
α(n)·log k

)
≥ Ω

(
OPTDkS(G,k)

α(NO(logN))·logN

)
. Therefore, if the event E does

not happen, we obtain an O(α(NO(logN)) · logN)-approximate solution to the input instance of
the Densest k-Subgraph problem. Recall that the probability of Event E happening is at most 0.1.
Lastly, since |V (H)| ≤ NO(logN), it is easy to verify that the running time of the algorithm is at
most NO(logN).

5.3 Completing the Reduction from Densest k-Subgraph to (r,h)-Graph Partitioning

Let DkS(G, k) be an input instance of the Densest k-Subgraph problem with |V (G)| = N . Our
algorithm requires the knowledge of an estimate h on the value of OPTDkS(G, k), with h/2 ≤
OPTDkS(G, k) ≤ h. In order to overcome this difficulty, we run the algorithm for every value of
h that is an integral power of 2 between 1 and |E(G)|, and output the best resulting solution.
Therefore, it is now enough to provide a randomized algorithm that, given an estimate h with
h/2 ≤ OPTDkS(G, k) ≤ h, with a constant probability produces a solution to instance DkS(G, k)

of Densest k-Subgraph whose value is at least Ω
(

OPTDkS(G,k)

(α(NO(logN)))3·log2N

)
, such that the running time

of the algorithm is NO(logN). From now on we assume that we are given an integer h with h/2 ≤
OPTDkS(G, k) ≤ h.

As before, we denote V (G) = {v0, . . . , vN−1}, and we construct the auxiliary graph H from instance
DkS(G, k) of Densest k-Subgraph. We denote |V (H)| = n, so n ≤ NO(logN) holds. We then consider

instance GP(H, r, h) of the (r,h)-Graph Partitioning problem, where r =
⌊

n
k log k

⌋
.

Note that, if Event E did not happen, then, from the definition of Events E and Eg, there is a

collection {H1, . . . ,Hr} of r =
⌊

n
k log k

⌋
disjoint subgraphs of H, such that for all 1 ≤ j ≤ r,

|E(Hj)| ≤ OPTDkS(G, k) ≤ h holds, and
∑

1≤j≤r |E(Hj)| ≥ 0.1·
⌊

n
k log k

⌋
·OPTDkS(G, k). Therefore,

we obtain a solution (H1, . . . ,Hr) to instance GP(H, r, h) of (r,h)-Graph Partitioning, whose value

is at least 0.1 ·
⌊

n
k log k

⌋
· OPTDkS(G, k). We conclude that, if Event E did not happen, then

OPTGP(H, r, h) ≥ Ω
(

n
k log k

)
·OPTDkS(G, k).

We apply the α(n)-approximation algorithm to instance GP(H, r, h) of (r,h)-Graph Partitioning,

obtaining a solution (H ′1, . . . ,H
′
r), whose value is at least OPTGP(H,r,h)

α(n) . Denote H = {H ′1, . . . ,H ′r}.
We partition set H into two subsets: set H′ containing all graphs H ′j ∈ H with |V (H ′)| ≤ 100 ·

50

α(n)k log k, and set H′′ containing all remaining graphs.

Assume for now that Event E did not happen. Then, as observed above:

∑
H′j∈H

|E(H ′j)| ≥
OPTGP(H, r, h)

α(n)
≥ n ·OPTDkS(G, k)

20k · α(n) · log k
.

Clearly, |H′′| ≤ n
100·α(n)·k log k , and so:

∑
H′j∈H′′

|E(H ′j)| ≤
n · h

100 · α(n) · k log k
≤ n ·OPTDkS(G, k)

100 · α(n) · k log k
.

Altogether, we get that, if Event E did not happen, then:

∑
H′j∈H′

|E(H)| ≥ n ·OPTDkS(G, k)

50k · α(n) · log k
.

We let H∗ ∈ H′ be the graph maximizing the number of edges. Since |H′| ≤ |H| = r =
⌊

n
k log k

⌋
,

from the above discussion, if Event E did not happen, then:

|E(H∗)| ≥ n ·OPTDkS(G, k)

r · 50k · α(n) · log k
≥ OPTDkS(G, k)

50α(n)
.

From the definition of the collection H′ of graphs, |V (H∗)| ≤ 100 · α(n)k log k.

Let W = R(H∗) be the origin graph of H∗. From Claim 5.8, if Event E did not happen, then
|V (W)| ≤ c∗ · |V (H∗)| ≤ O(α(n)k log k).

Lastly, we apply the algorithm from Lemma 2.3 to graph W , to obtain a subgraph W ′ of W

with |V (W ′)| ≤ k and |E(W ′)| ≥ Ω
(

|E(W)|
(α(n))2·log2 k

)
. We then return S = |V (W ′)| as the solution

to the input instance DkS(G, k) of the Densest k-Subgraph problem. From the above discussion,
|V (S)| ≤ k, and, if Event E did not happen, then:

|EG(S)| ≥ Ω

(
|E(W)|

(α(n))2 · log2 k

)
≥ Ω

(
|E(H∗)|

(α(n))2 · log2 k

)
≥ Ω

(
OPTDkS(G, k)

(α(n))3 · log2 k

)
≥ Ω

(
OPTDkS(G, k)

(α(NO(logN)))3 · log2N

)
.

Therefore, if the event E does not happen, we obtain an O((α(NO(logN)))3 · log2N)-approximate
solution to the input instance of the Densest k-Subgraph problem. Recall that the probability of

51

Event E happening is at most 0.1. Lastly, since |V (H)| ≤ NO(logN), it is easy to verify that the
running time of the algorithm is at most NO(logN).

6 Reductions between (r,h)-Graph Partitioning and Maximum Bounded-
Crossing Subgraph

In this section we establish a connection between the (r,h)-Graph Partitioning and Maximum Bounded-
Crossing Subgraph problems, by proving the following two theorems.

Theorem 6.1. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume that there
exists an efficient α(n)-approximation algorithm for the (r,h)-Graph Partitioning problem, where n
is the number of vertices in the input graph. Then there exists an efficient O(α(N) · poly logN)-
approximation algorithm for Maximum Bounded-Crossing Subgraph, where N is the number of ver-
tices in the input instance of Maximum Bounded-Crossing Subgraph.

Theorem 6.2. Let α : Z+ → Z+ be an increasing function with α(n) = o(n). Assume that
there exists an efficient α(N)-approximation algorithm for the Maximum Bounded-Crossing Subgraph
problem, where N is the number of vertices in the input graph. Then there exists an efficient
O((α(n))2 · poly log n)-approximation algorithm for (r,h)-Graph Partitioning, where n is the number
of vertices in the input instance of (r,h)-Graph Partitioning.

By combining Theorem 6.2 with Corollary 5.2, we obtain the following corollary.

Corollary 6.3. Assume that Conjecture 2 holds and that NP 6⊆ BPTIME(nO(logn)). Then for

some constant 0 < ε′ ≤ 1/2, there is no efficient 2(logn)ε
′
-approximation algorithm for Maximum

Bounded-Crossing Subgraph.

Proof: Assume that Conjecture 2 holds and that NP 6⊆ DTIME(nO(logn)). Then, from Corol-
lary 5.2, for some constant 0 < ε ≤ 1/2, there is no efficient factor-2(logn)ε-approximation algorithm
for (r,h)-Graph Partitioning, where n is the number of vertices in the input graph.

We let ε′ = ε/c, where c is a sufficiently large constant. We now prove that there is no efficient

2(logn)ε
′
-approximation algorithm for Maximum Bounded-Crossing Subgraph. Indeed, assume for

contradiction that there is an efficient 2(logn)ε
′
-approximation algorithm A for Maximum Bounded-

Crossing Subgraph. From Theorem 6.2, there is an efficient c′ · (α(N))2 · poly logN -approximation
algorithm for (r,h)-Graph Partitioning, where N is the number of vertices in the input instance of

(r,h)-Graph Partitioning, c′ is some constant, and α(N) = 2(logN)ε
′
. Notice however that c′ ·(α(N))2 ·

poly logN ≤ 2(logN)ε holds, if the constant c is large enough.

Therefore, we obtain an efficient factor-2(logn)ε-approximation algorithm for (r,h)-Graph Partitioning,
a contradiction.

In the remainder of this section, we prove Theorems 6.2 and 5.2. We start by proving two aux-
iliary lemmas that will be used in the proofs of both theorems. We then complete the proofs of
Theorem 6.1 and Theorem 6.2 in sections Section 6.2 and Section 6.3, respectively.

52

6.1 Auxiliary Lemmas

We start with the following definition, that will be used in the proofs of both theorems.

Definition 6.4. Let GP(G, r, h) be an instance of (r,h)-Graph Partitioning, and let {H1, . . . ,Hr} be
a solution to this instance. We say that this solution is good, if for all 1 ≤ i ≤ r, h/2 ≤ |E(Hi)| ≤ h.

We are now ready to state the first auxiliary lemma.

Lemma 6.5. There is an efficient algorithm, that, given a graph G with |V (G)| = n, integers
r, h > 0 and any solution H to instance GP(G, r, h) of (r,h)-Graph Partitioning, computes positive
integers r∗ ≤ r, h∗ ≤ h and a subset H∗ ⊆ H of subgraphs of G, such that H∗ is a good solution to

instance GP(G, r∗, h∗), of (r,h)-Graph Partitioning, and
∑

H∈H∗ |E(H)| ≥
∑
H′∈H |E(H′)|

4 logn .

Proof: The idea of the proof is to partition the graphs in H geometrically into groups by the
cardinalities of their edge sets, and then select a group maximizing the total number of edges in its
subgraphs.

Specifically, let q = d2 log ne. For all 1 ≤ i ≤ q, we let Hi ⊆ H contain all graphs H with
2i−1 ≤ |E(H)| < 2i. It is easy to verify that H1 . . . ,Hq partition H. Clearly, there must be an index

1 ≤ i∗ ≤ q, with
∑

H∈Hi∗ |E(H)| ≥
∑
H′∈H |E(H′)|

q ≥
∑
H′∈H |E(H′)|

4 logn . We set r∗ = |Hi∗ |, h∗ = 2i
∗
, and

we let H∗ = Hi∗ . It is immediate to verify that H∗ is a good solution to instance GP(G, r∗, h∗), of

(r,h)-Graph Partitioning, and, from the above discussion,
∑

H∈H∗ |E(H)| ≥
∑
H′∈H |E(H′)|

4 logn .

We are now ready to prove our second auxiliary lemma.

Lemma 6.6. There is an efficient algorithm, whose input consists of an instance MBCS(G,L)
of the Maximum Bounded-Crossing Subgraph problem with |V (G)| = N , where N is greater than
a sufficiently large constant, together with a solution H to this instance, such that |E(H)| ≥
4N log6N holds. The algorithm computes integers r, h > 0, such that r · h2 ≤ L · log6N and
r · h ≥ Ω(|E(H)|/ logN) hold, together with a good solution {H1, . . . ,Hr} to instance GP(G, r, h)
of (r,h)-Graph Partitioning.

Proof: Let Ĝ be any graph. A cut in Ĝ is a partition (A,B) of vertices of Ĝ into two non-empty
subsets. The value of the cut (A,B) is |E(A,B)|. For a parameter 1/2 < β < 1, we say that
cut (A,B) is β-balanced, if |E(A)|, |E(B)| ≤ β · |E(Ĝ)|. We say that cut (A,B) is a minimum
β-balanced cut if it is a β-balanced cut whose value is the smallest among all such cuts. We use the
following theorem that follows from the results of [ARV09], and was formally proved in [CT22].

Theorem 6.7 (Theorem 4.11 in the full version of [CT22]). There is an efficient algorithm, that,
given a graph Ĝ with |V (Ĝ)| = N̂ , computes a γ-balanced cut in Ĝ, whose value is at most

O(

√
log N̂) times the value of the minimum (3/4)-balanced cut in Ĝ, for some universal constant

3/4 < γ < 1 that does not depend on N̂ .

We use the following theorem, that is a simple corollary of the Planar Separator Theorem by
Lipton and Tarjan [LT79], and was formally proved in [CT22]. A variation of this theorem for
vertex-balanced cuts was proved in [PSS96].

53

Theorem 6.8 (Lemma 4.12 in the full version of [CT22]). Let Ĝ be a connected graph with m

edges and maximum vertex degree ∆ < m
240

. If CrN(Ĝ) ≤ m2

240
, then the value of the minimum

(3/4)-balanced cut in Ĝ is at most O

(√
CrN(Ĝ) + ∆ ·m

)
.

We are now ready to complete the proof of Lemma 6.6. Recall that we are given an instance
MBCS(G,L) of Maximum Bounded-Crossing Subgraph, where |V (G)| = N , together with a solution
H to this instance, such that |E(H)| ≥ 4N log6N .

The algorithm starts by iteratively decomposing graph H into smaller subgraphs. Throughout the
decomposition procedure, we maintain a collection H of connected subgraphs of H, that are all
mutually disjoint. Each graph H ′ ∈ H is marked as either active or inactive. At the beginning of
the algorithm, we let H contain all connected components of H, which are all marked as active.
The algorithm performs iterations, as long as at least one graph in H is inactive.

In order to execute an iteration, we select an arbitrary active graph H ′ ∈ H. We apply the

algorithm from Theorem 6.7 to compute a γ-balanced cut (A,B) of H ′. If |EH′(A,B)| ≥ |E(H′)|
log2N

,

then we mark H ′ as inactive and continue to the next iteration. Otherwise, we remove graph H ′

from H, and we add all connected components of graphs H ′[A] and H ′[B] to H, that are all marked
as active graphs. We then continue to the next iteration. This completes the description of the
decomposition procedure. Let H′ be the collection H of subgraphs of H that we obtain at the end
of the procedure. We prove the following simple observation.

Observation 6.9.
∑

H′∈H′ |E(H ′)| ≥ |E(H)|/2.

Proof: We use a charging scheme. We observe the setH of graphs over the course of the partitioning
procedure. Throughout the execution of the partitioning procedure, we denote by E′ = E(H) \(⋃

H′∈HE(H ′)
)
, and we call the edges of E′ deleted edges. Over the course of the partitioning

procedure we maintain, for every edge e ∈ E(H), a non-negative value c(e), that we refer to as the
charge of e. We will ensure that, at every point of the algorithm’s execution,

∑
e∈E(H) c(e) ≥ |E′|,

and that, for every edge e ∈ E(H), c(e) ≤ 1/2 always holds. We note that, even when an edge
e is added to the set E′ of deleted edges, its charge c(e) may remain strictly positive. It is then
easy to verify that, at the end of the algorithm, |E′| ≤

∑
e∈E(H) c(e) ≤ |E(H)|/2 holds, and so∑

H′∈H′ |E(H ′)| ≥ |E(H)|/2.

It now remains to describe the assignment of the charge values c(e) to the edges e ∈ E(H), for
which the above properties hold. Initially, E′ = ∅, and we set c(e) = 0 for every edge e ∈ E(H).

Consider now some iteration of the algorithm, and assume that, at the beginning of the iteration,∑
e∈E(H) c(e) ≥ |E′| holds. Let H ′ ∈ H be the graph that was processed in the current iteration,

and let (A,B) be the cut in H ′ that the algorithm computed. If |EH′(A,B)| ≥ |E(H′)|
log2N

, then no new

edges were added to E′ in the current iteration, and the charge values c(e) remain unchanged for

all edges e ∈ E(H). Assume now that |EH′(A,B)| < |E(H′)|
log2N

holds, and denote E′′ = EH′(A,B).

Then in the current iteration, the edges of E′′ were added to set E′. We increase the charge c(e)

of every edge e ∈ E(H ′) by |E′′|
|E(H′)| , and leave all other edge charges unchanged. This ensures

that
∑

e∈E(H) c(e) ≥ |E′| holds at the end of the iteration. Since |E′′| < |E(H′)|
log2N

, for every edge

e ∈ E(H ′), the charge c(e) increases by at most 1
log2N

in the current iteration.

54

From the above discussion, at the end of the algorithm, |E′| ≤
∑

e∈E(H) c(e) holds. It now remains
to show that for every edge e ∈ E(H), c(e) ≤ 1/2 holds at the end of the algorithm.

Consider any edge e ∈ E(H), and denote by H1, H2, . . . ,Hr the sequence of subgraphs of H that
belonged to H over the course of the algorithm, and contained e. In other words, H1 = H, and,
for all 1 < i ≤ r, graph Hi was obtained via a balanced cut from graph Hi−1. Then the charge of
e has increased in at most r + 1 iterations, and in each such iteration, the increase in the charge
was bounded by 1

log2N
. Furthermore, for all 1 < i ≤ r, |E(Hi)| ≤ γ · |E(Hi+1)| holds, and so

r ≤ O(logN) as γ is a constant. Therefore, at the end of the algorithm, c(e) ≤ r+1
log2N

≤ 1
2 , since

we have assumed that N is sufficiently large.

Consider now the final collection H′ of graphs. We say that a graph H ′ ∈ H′ is dense iff |E(H ′)| ≥
|V (H ′)| · log6N , and otherwise we say it is sparse. We partition the set H′ of graphs into a
collection Hd containing all dense graphs and a collection Hs containing all sparse graphs. We
need the following simple observation.

Observation 6.10.
∑

H′∈Hd |E(H ′)| ≥ |E(H)|
4 ≥ N log6N .

Proof: Assume for contradiction that
∑

H′∈Hd |E(H ′)| < |E(H)|
4 . Since, from Observation 6.9∑

H′∈H′ |E(H ′)| ≥ |E(H)|/2, we get that
∑

H′∈Hs |E(H ′)| > |E(H)|
4 . However:

∑
H′∈Hs

|E(H ′)| ≤
∑

H′∈Hs
|V (H ′)| · log6N ≤ N log6N.

We then conclude that |E(H)| < 4
∑

H′∈Hs |E(H ′)| ≤ 4N log6N , contradicting the statement of
Lemma 6.6.

We also need the following obsevation.

Observation 6.11. Let H ′ ∈ Hd be a dense graph. Then CrN(H ′) ≥ Ω
(
|E(H′)|2
log5N

)
.

We provide the proof of Observation 6.11 below, after we complete the proof of Lemma 6.6 using it.
Let r′ = |Hd| and h′ = maxH′∈Hd{|E(H ′)|}. Clearly, collection Hd of graphs is a valid solution to
instance GP(G, r′, h′) of (r,h)-Graph Partitioning. We apply the algorithm from Lemma 6.5 to the
soluton Hd to instance GP(G, r′, h′) of (r,h)-Graph Partitioning. Recall that the algorithm computes
positive integers r ≤ r′, h ≤ h′, and a subset H∗ ⊆ Hd of subgraphs of G, such that H∗ is a good

solution to instance GP(G, r, h), of (r,h)-Graph Partitioning, and
∑

H′∈H∗ |E(H ′)| ≥
∑
H′∈Hd |E(H′)|

4 logN .

It now remains to verify that r · h2 ≤ L · log6N and r · h ≥ Ω(|E(H)|/ logN) hold.

Observe first that:

r · h ≥
∑

H′∈H∗
|E(H ′)| ≥

∑
H′∈Hd |E(H ′)|

4 logN
≥ |E(H)|

16 logN
,

from Observation 6.10.

Finally, since for each graph H ′ ∈ Hd, CrN(H ′) ≥ Ω
(
|E(H′)|2
log5N

)
holds, and since, for every graph

H ′ ∈ H∗, |E(H ′)| ≥ h/2 holds, we get that:

55

r · h2 ≤
∑

H′∈H∗
4 · |E(H ′)|2 ≤

∑
H′∈H∗

O(log5N) · CrN(H ′) ≤ O(log5N) · CrN(H) ≤ L · log6N,

since N is large enough.

In order to complete the proof of Lemma 6.6, it is now enough to prove Observation 6.11, which
we do next.

Proof of Observation 6.11. Since graph H ′ is marked inactive by the algorithm, the γ-balanced

cut of H ′ computed by the algorithm from Theorem 6.7 had value at least |E(H′)|
log2N

. Therefore the

minimum (3/4)-balanced cut of H ′ has value at least Ω
(
|E(H′)|
log2.5N

)
.

Let ∆ denote the maximum vertex degree in H ′. Clearly, ∆ ≤ V (H ′) must hold. On the other
hand, from the definition of a dense graph, |E(H ′)| ≥ |V (H ′)| · log6N , and so ∆ ≤ |V (H ′)| ≤
|E(H′)|
log6N

< |E(H′)|
240

, if N is sufficiently large.

Recall that, from Theorem 6.8, either CrN(H ′) ≥ |E(H′)|2
240

, or the value of minimum (3/4)-balanced

cut in H ′ is at most
√
CrN(H ′) + ∆ · |E(H ′)|. In the former case, we immediately get that

CrN(H ′) ≥ Ω
(
|E(H′)|2
log5N

)
. In the latter case, since the value of the minimum (3/4)-balanced cut in H ′

is Ω
(
|E(H′)|
log2.5N

)
, we get that

√
CrN(H ′) + ∆ · |E(H ′)| ≥ Ω

(
|E(H′)|
log2.5N

)
. Moreover, since ∆ ≤ |E(H′)|

log6N
:

CrN(H ′) ≥ Ω

(
|E(H ′)|2

log5N

)
−∆ · |E(H ′)| ≥ Ω

(
|E(H ′)|2

log5N

)
− |E(H ′)|2

log6N
≥ Ω

(
|E(H ′)|2

log5N

)
,

since N is sufficiently large.

6.2 Reduction from Maximum Bounded-Crossing Subgraph to (r,h)-Graph Partitioning:
Proof of Theorem 6.1

In this subsection we prove Theorem 6.1. Let MBCS(G,L) be a given instance of Maximum
Bounded-Crossing Subgraph, with |V (G)| = N . Note that we can assume without loss of generality
that G contains no isolated vertices, since all such vertices can be deleted without changing the
problem.

As our first step, we compute an arbitrary spanning forest F of graph G. Since G contains no
isolated vertices, |E(F)| ≥ N/2. Clearly, CrN(F) = 0. Consider now the optimal solution H∗ to
instance MBCS(G,L) of Maximum Bounded-Crossing Subgraph. If |E(H∗)| < 4N · log6N , then F
is a factor-O(log6N) approximate solution to instance MBCS(G,L).

Assume now that |E(H∗)| ≥ 4N log6N . Then, from Lemma 6.6, there exist integers r, h > 0
with r · h2 ≤ L · log6N and r · h ≥ Ω(|E(H∗)|/ logN), such that there exists a good solution
to instance GP(G, r, h) of (r,h)-Graph Partitioning. We will now attempt to guess such integers
r, h, and then use the approximation algorithm for the (r,h)-Graph Partitioning problem, in order
to compute a solution to the corresponding instance GP(G, r, h) of (r,h)-Graph Partitioning, whose
value is sufficiently high.

56

We say that a pair (r, h) of positive integers is eligible, if r · h2 ≤ L · log6N . For each eligible pair
(r, h) of integers, we consider the instance GP(G, r, h) of (r,h)-Graph Partitioning and we use the
α(n)-approximation algorithm for the (r,h)-Graph Partitioning problem to compute a solution Hr,h
to the instance GP(G, r, h), such that

∑
H′∈Hr,h |E(H ′)| ≥ OPTGP(G,r,h)

α(N) (since |V (G)| = N). We
use the following observation.

Observation 6.12. If OPTMBCS(G,L) ≥ 4N log6N , then there exists an eligible pair (r, h) of
integers, with: ∑

H′∈Hr,h

|E(H ′)| ≥ Ω

(
OPTMBCS(G,L)

α(N) logN

)
.

Proof: Let H∗ be an optimal solution to the instance MBCS(G,L). From Lemma 6.6, there is
an eligible pair (r∗, h∗) of integers, with r∗ · h∗ ≥ Ω(E(H∗)|/ logN), so that there exists a good
solution H∗ to instance GP(G, r∗, h∗) of (r,h)-Graph Partitioning. From the definition of a good
solution, ∑

H′∈H∗
|E(H ′)| ≥ r∗h∗

2
≥ Ω

(
|E(H∗)|
logN

)
≥ Ω

(
OPTMBCS(G,L)

logN

)
.

Therefore, if Hr∗,h∗ is the approximate solution that we obtained for instance GP(G, r∗, h∗) of
(r,h)-Graph Partitioning, then:

∑
H′∈Hr∗,h∗

|E(H ′)| ≥ Ω

(
OPTGP(G, r∗, h∗)

α(N)

)
≥ Ω

(∑
H′∈H∗ |E(H ′)|

α(N)

)
≥ Ω

(
OPTMBCS(G,L)

α(N) logN

)
,

and the observation follows.

Let (r′, h′) be the eligible pair of integers that maximizes
∑

H∈Hr′,h′
|E(H)|. For every graph

H ∈ Hr′,h′ , let H̃ be a graph that is obtained from H as follows. We set V (H̃) = V (H), and we

let E(H̃) contain an arbitrary subset of
⌊
|E(H)|
log3N

⌋
edges of E(H). Note that:

|E(H)|
2 log3N

≤ |E(H̃)| ≤ h′

log3N
.

Finally, we define a graph H ′ =
⋃
H∈Hr′,h′

H̃. Since the crossing number of any m-edge graph is

bounded by m2, it is easy to verify that:

CrN(H ′) ≤
∑

H∈Hr′,h′

CrN(H̃) ≤ r′ · (h′)2

log6N
≤ L.

Moreover:

|E(H ′)| =
∑

H∈Hr′,h′

|E(H̃)| ≥
∑

H∈Hr,h

|E(H)|
log3N

≥ Ω

(
OPTMBCS(G,L)

α(N) log4N

)
.

57

Recall that we have computed a spanning forest F of G. We return the graph in {F,H ′} that
contains more edges as the outcome of the algorithm. From the above discussion, we obtain an
O(α(N) · poly logN)-approximate solution.

6.3 Reduction from (r,h)-Graph Partitioning to Maximum Bounded-Crossing Subgraph–
Proof of Theorem 6.2

In this subsection we prove Theorem 6.2. Let GP(G, r, h) be the input instance of (r,h)-Graph
Partitioning, and denote n = |V (G)|. For convenience, we will assume that the value C∗ =
OPTGP(G, r, h) is known to the algorithm: since 0 ≤ OPTGP(G, r, h) ≤ |E(G)| holds, and
OPTGP(G, r, h) is an integer, we can try all possible guesses for the value C∗, and then output the
best of the resulting solutions. It is sufficient to ensure that the algorithm correctly computes an
O((α(n))2 · poly log n)-approximate solution to instance GP(G, r, h) if the guess C∗ is correct, that
is, C∗ = OPTGP(G, r, h). From now on we assume that we are given a value C∗ = OPTGP(G, r, h).

We distinguish between two cases. The first case happens if C∗ ≥ 16nα(n) log7 n. In this case,
we proceed as follows. By applying Lemma 6.5 to the optimal solution to instance GP(G, r, h),
we conclude that there are positive integers r∗ ≤ r, h∗ ≤ h and a collectoin H∗ of subgraphs
of G, such that H∗ is a good solution to instance GP(G, r∗, h∗), of (r,h)-Graph Partitioning, and
r∗h∗ ≥

∑
H∈H∗ |E(H)| ≥ C∗

4 logn . Since the values of integers r∗, h∗ are not known to our algorithm,

we will try all possible candidate values 1 ≤ r′ ≤ r and 1 ≤ h′ ≤ h with r′h′ ≥ C∗

4 logn . For each

such pair (r′, h′) of integers, we will compute a solution Hr′,h′ to instance GP(G, r′, h′). We will
then output the best solution from among {Hr′,h′ | r′h′ ≥ C∗

4 logn}. It is sufficient to ensure that, for

integers (r′, h′) = (r∗, h∗), the value of the resulting solution Hr′,h′ is close to C∗ = OPTGP(G, r, h).

Consider now a pair of integers 1 ≤ r′ ≤ r and 1 ≤ h′ ≤ h with r′h′ ≥ C∗

4 logn , and assume that

values r′, h′ were guessed correctly, that is, (r′, h′) = (r∗, h∗). In other words, there is a good
solution H∗ to instance GP(G, r∗, h∗), of (r,h)-Graph Partitioning, whose value is at least C∗

4 logn .

Consider now the graph H ′ =
⋃
H∈H∗ H. Since the crossing number of a graph H may not be

higher than |E(H)|2, we get that CrN(H) ≤ r′ · (h′)2. Let L = r′ · (h′)2, and consider instance
MBCS(G,L) of the Maximum Bounded-Crossing Subgraph problem. From the above discussion,

the value of the optimal solution to this problem is at least |E(H)| ≥ OPTGP(G,r,h)
4 logn . Therefore,

by applying the α(N)-approximation algorithm for Maximum Bounded-Crossing Subgraph to this
instance, we obtain a solution G′ to instance MBCS(G,L) of Maximum Bounded-Crossing Subgraph,
whose value is at least C∗

4α(n) logn . Since we have assumed that C∗ ≥ 16nα(n) log7 n, we get that

|E(G′)| ≥ 4n log6 n. We can now use the algorithm from Lemma 6.6 to compute integers r′′, h′′ > 0,
such that r′′ · (h′′)2 ≤ L · log6 n, together with a good solution H′ to instance GP(G, r′′, h′′), whose

value is at least Ω
(
|E(G′)|

logn

)
≥ Ω

(
C∗

α(n) log2 n

)
. Notice however that it is possible that r′′ > r′ or

h′′ > h′ hold, so the solution that we obtain may not be a valid solution to instance GP(G, r′, h′)
of (r,h)-Graph Partitioning. We show that, if (r′, h′) = (r∗, h∗), then h′′ cannot be much larger than
h′. We then slightly modify solution H′, to transform it into a valid solution Hr′,h′ to instance
GP(G, r′, h′), while only decreasing the solution cost slightly. This completes the computation of
the solution Hr′,h′ associated with parameters (r′, h′), and the algorithm for the first case.

Consider now the second case, where C∗ < 16nα(n) log7 n. In this case, we start by computing a

58

maximal subgraph F of G, such that F is a forest, with maximum vertex degree at most h. Let S
be the set of all vertices of G that are adjacent to at least one edge of F , and denote |S| = n′.

We consider two subcases of Case 2. The first subcase happens if |E(F)| ≥ C∗

32α(n′)·log7 n′
. In this

case, we show an algorithm that decomposes F into r subgraphs containing at most h edges each,
so that the total number of edges in all such subgraphs is close to |E(F)|. Therefore, we obtain
a solution H to instance GP(G, r, h), whose value is close to C∗ = OPTGP(G, r, h). Consider now
the second subcase, where |E(F)| < C∗

32α(n′)·log7 n′
. We show that in this case, there is a solution

to instance GP(G[S], r, h) of (r,h)-Graph Partitioning, whose value is at least C∗

2 . From now on
we only consider instane GP(G[S], r, h). We assume again that we are given the value C∗∗ of
the optimal solution to this instance, where C∗

2 ≤ C∗∗ ≤ C∗. As before, this can be assumed
since we can try all guesses for the value C∗∗, and it is sufficient to ensure that the algorithm
works correctly if the value C∗∗ is guessed correctly. Recall that we have denoted n′ = |S|. Since
(h− 1) · |S| ≤ |E(F)| ≤ C∗

32α(n′)·log7 n′
, while C∗∗ ≥ C∗

2 , we get that C∗∗ ≥ 16n′ · α(n′) · log7 n′.

We have now obtained a new instance GP(G[S], r, h) of (r,h)-Graph Partitioning, in which the value
of the optimal solution C∗∗ ≥ 16nα(n) log7 n′, where n′ = |S|. We can now repeat our algorithm
for Case 1, to obtain the desired approximate solution to instance GP(G[S], r, h), which, in turn
will provide an approximate solution to the original instance GP(G, r, h).

We now turn to the formal proof of Theorem 6.2. We assume that we are given an instance
GP(G, r, h) of the (r,h)-Graph Partitioning problem, where |V (G)| = n, together with a guess C∗

on the value OPTGP(G, r, h) of the optimal solution to this instance. Our goal is to compute a
solution H to instance GP(G, r, h) of (r,h)-Graph Partitioning, such that, if C∗ = OPTGP(G, r, h),

then the value of the solution H is at least Ω
(

C∗

(α(n))2poly logn

)
. Note that we can assume that n is

greater than a sufficiently large constant, since otherwise we can solve the problem efficiently via
exhaustive search. We distinguish between two cases, depending on whether C∗ ≥ 16nα(n) log7 n
holds.

6.3.1 Case 1: C∗ ≥ 16nα(n) log7 n

Applying Lemma 6.5 to the optimal solution tp instance GP(G, r, h), we conclude that there are
positive integers r∗ ≤ r, h∗ ≤ h and a collection H∗ of subgraphs of G, such that H∗ is a good
solution to instance GP(G, r∗, h∗), of (r,h)-Graph Partitioning. Moreover, if C∗ = OPTGP(G, r, h),
then r∗ ·h∗ ≥

∑
H∈H∗ |E(H)| ≥ C∗

4 logn . Our algorithm tries all possible values of integers 1 ≤ r′ ≤ r
and 1 ≤ h′ ≤ h with r′h′ ≥ C∗

4 logn . For each such pair (r′, h′) of integers, we will compute a solution

Hr′,h′ to instance GP(G, r′, h′). At the end, our algorithm will output the best solution from among
{Hr′,h′ | r′h′ ≥ C∗

4 logn}. It is sufficient to ensure that, for integers (r′, h′) = (r∗, h∗), the value of the

resulting solution Hr′,h′ is at least Ω
(

C∗

(α(n))2poly logn

)
.

From now on we fix a pair 1 ≤ r′ ≤ r, 1 ≤ h′ ≤ h of integers, with r′h′ ≥ C∗

4 logn . Let L = r′·(h′)2. We
apply the α(N)-approximation algorithm for the Maximum Bounded-Crossing Subgraph problem to
instance MBCS(G,L), and obtain a solution that we denote by H. We use the following observation.

Observation 6.13. If C∗ = OPTGP(G, r, h), r′ = r∗ and h′ = h∗, then |E(H)| ≥ C∗

4α(n) logn must
hold.

59

Proof: Assume that C∗ = OPTGP(G, r, h), r′ = r∗ and h′ = h∗. Recall that there exists a
good solution H∗ to instance GP(G, r∗, h∗), with

∑
H′∈H∗ |E(H ′)| ≥ C∗

4 logn . Consider the graph

Ĥ =
⋃
H′∈H∗ H

′. Since the crossing number of a graph G′ may not be higher than |E(G′)|2, we

get that CrN(Ĥ) ≤
∑

H′∈H∗ CrN(H ′) ≤ r′ · (h′)2 = L. Therefore, Ĥ is a valid solution to instance

MBCS(G,L), whose value is at least C∗

4 logn . Since we use an α(N)-approximation algorithm for

Maximum Bounded-Crossing Subgraph, and |V (G)| = n, we get that |E(H)| ≥ C∗

4α(n) logn .

If |E(H)| < C∗

4α(n) logn , then we terminate the algorithm and return an empty solution: in this case,

we are guaranteed that either C∗, or r′, h′ are guessed incorrectly. Therefore, we assume from now
on that |E(H)| ≥ C∗

4α(n) logn holds. Note that, since in Case 1, C∗ ≥ 16nα(n) log7 n holds, we are

guaranteed that |E(H)| ≥ 4n log6 n.

Next, we apply the algorithm from Lemma 6.6 to instance MBCS(G,L) of Maximum Bounded-
Crossing Subgraph, to compute integers r′′, h′′ > 0, such that r′′ ·(h′′)2 ≤ L · log6 n = r′ ·(h′)2 · log6 n,

and r′′ · h′′ ≥ Ω
(
|E(H)|
logn

)
≥ Ω

(
C∗

α(n) log2 n

)
. The algorithm also computes a good solution H′ to

instance GP(G, r′′, h′′) of (r,h)-Graph Partitioning. Note that, while the value of the solution H′ to
instance GP(G, r′′, h′′) is guaranteed to be close to C∗, we are only guaranted that H′ is a valid
solution to instance GP(G, r′′, h′′) of the problem, and it may not be a valid solution to instance
GP(G, r′, h′). In our next steps, we will either correctly established that at least one of C∗, r′, h′ was
not guessed correctly; or we will slightly modifyH′ to obtain a valid solution to intance GP(G, r′, h′)
of (r,h)-Graph Partitioning, whose value remains close to that of H′. We start with the following
observation.

Observation 6.14. There is a large enough constant c′, such that, if C∗ = OPTGP(G, r, h), r′ = r∗

and h′ = h∗ hold, then h′′ ≤ c′h′ · α(n) · log8 n.

Proof: Recall that we have established that:

r′′ · h′′ ≥ Ω

(
C∗

α(n) log2 n

)
.

Assume for contradicton that h′′ > c′h′ · α(n) · log8 n, where c′ is a large enough constant. Then:

r′′ · (h′′)2 ≥ 4h′ · C∗ log6 n.

Notice that C∗ ≥ r′h′/2 must hold. Indeed, since r′ ≤ r and h′ ≤ h, any solution to instance
GP(G, r′, h′) of (r,h)-Graph Partitioning is also a feasible solution to instance GP(G, r, h). Since
we have assumed that r′ = r∗ and h′ = h∗, there is a good solution to instance GP(G, r′, h′) of
(r,h)-Graph Partitioning, and the value of any such good solution is at least r′h′/2. Since we have
assumed that C∗ = OPTGP(G, r, h), we get that r′h′/2 ≤ C∗ must hold. We conclude that, if
h′′ > h′ · α(n) · log8 n, then:

r′′ · (h′′)2 ≥ 2r′(h′)2 log6 n.

But we have already established above that r′′ · (h′′)2 ≤ r′ · (h′)2 · log6 n, a contradiction.

60

We will now slightly modify the collection H′ of subgraphs of G to obtain a feasible solution to
instance GP(G, r, h), whose value is close to the value of H′. First, for every cluster H ∈ H′, if
|E(H)| > h′/2, then we discard arbitrary edges from graph H, until |E(H)| = h′/2 holds. From
Observation 6.14, if C∗ = OPTGP(G, r, h), r′ = r∗ and h′ = h∗ hold, then the total number of edges
in the graphs of H′ decreases by at most factor O(α(n) · log8 n) as the result of this transformation,

and so
∑

H∈H′ |E(H)| ≥ Ω
(

r′′·h′′
α(n)·log8 n

)
≥ Ω

(
C∗

(α(n))2 log10 n

)
holds. Also, if, at the end of this

transformation,
∑

H∈H′ |E(H)| > h′·r′
2 holds, then we discard arbitrary edges from the graphs

in H′ until
∑

H∈H′ |E(H)| ≤ h′·r′
2 holds. Since h′r′ ≥ C∗

4 logn ,
∑

H∈H′ |E(H)| ≥ Ω
(

C∗

(α(n))2 log10 n

)
continues to hold.

If |H′| ≤ r′, then we have obtained a valid solution to instance GP(G, r′, h′) of value Ω
(

C∗

(α(n))2 log10 n

)
.

Otherwise, we perform further transformations to the set H′ of graphs as follows.

While |H′| > r′, we let H ′, H ′′ ∈ H′ be a pair of graphs with smallest number of edges, breaking ties
arbitrarily. We remove H ′ and H ′′ from H′, and we add a new graph H = H ′ ∪H ′′ to H′ instead.
The procedure is terminated once |H′| = r′ holds. We claim that at the end of this procedure,
for every graph H ∈ H′, |E(H)| ≤ h′ holds. Indeed, assume otherwise. Consider the first time
when a graph H with |E(H)| > h′ was added to H′. Then H = H ′ ∪H ′′ must hold, where H ′, H ′′

are two graphs that belonged to H′ prior to this iterations. Then at least one of these two graphs
must contain more than h′/2 edges. From the choice of the graphs H ′, H ′′, and from the fact that
|H′| > r′ held at the beginning of the iteration, we get that, at the beginning of the iteration, there
were at least r′ graphs H̃ ∈ H′ with |E(H̃)| > h′/2. But then

∑
H̃∈H′ |E(H̃)| > r′h′

2 held at the
beginning of the iteration. Since the total number of edges contained in the graphs of H′ does not
change over the course of the algorithm, we reach a contradiction, since we have ensured that, at
the beginning of the algorithm,

∑
H̃∈H′ |E(H̃)| ≤ h′·r′

2 held. We return the resulting collection H′
of subgraphs of G, which is guaranteed to be a feasible solution to instance GP(G, r′, h′), of value

at least Ω
(

C∗

(α(n))2 log10 n

)
.

6.3.2 Case 2: C∗ < 16nα(n) log7 n

In this case, we start by computing a maximal subgraph F of G, such that F is a forest, and
maximum vertex degree in F is at most h. Such a graph F can be computed via a simple greedy
algorithm. We start with graph F containing the set V (F) = V (G) of vertices and no edges. We
then consider the edges of G one by one. For each such edge e ∈ E(G), if graph F ∪ {e} remains
a forest with maximum vertex degree at most h, then we add e to F . Once every edge of G is
processed, we obtain the final graph F . Let S be the set of all vertices of G that are adjacent to at
least one edge of F , and denote |S| = n′.

We consider two subcases of Case 2. The first subcase, Case 2a happens if |E(F)| ≥ C∗

64α(n′)·log7 n′
.

In this case, we use the following simple observation, that will allow us to decompose the forest
F to obtain a solution to instance GP(G, r′, h′) of (r,h)-Graph Partitioning, whose value is close to
|E(F)|.

Observation 6.15. There is an efficient algorithm, that, given a tree T with maximum vertex
degree at most ∆ and |E(T)| ≥ ∆/2, computes a collection T of vertex-disjoint subgraphs of T ,

61

such that for each subgraph T ′ ∈ T , ∆
2 ≤ |E(T ′)| ≤ ∆, and

∑
T ′∈T |E(T ′)| ≥ |E(T)|

2 .

Proof: We root the tree T in an arbitrary vertex v. Initially, we let T = ∅. As long as |E(T)| > ∆,
we perform iterations. In every iteration, we consider an arbitrary vertex u in the current tree
T , that is a non-leaf vertex, but all children of u are leaf vertices. Let T ′ be the subtree of T
rooted at vertex u. Note that 1 ≤ |E(T ′)| ≤ ∆ − 1. We add graph T ′ to T , and we delete all
vertices of T ′ from T . Note that, as the result of this iteration, the unique edge e connecting u
to its parent-vertex in the tree T is deleted from T , and it does not belong to any graph in T .
We let e′ ∈ E(T) be an arbitrary edge (which must exist since |E(T)| ≥ 1), and we say that e′ is
responsible for the deletion of the edge e. We then continue to the next iteration. The algorithm
terminates once |E(T)| ≤ ∆ holds. We then add graph T to the collection T and terminate the
algorithm. It is immediate to verify that, for every graph T ′ ∈ T , |E(T ′)| ≤ ∆ holds. Moreover,
if an edge e belonged to the original graph T , and it does not belong to

⋃
T ′∈T E(T ′), then some

edge of
⋃
T ′∈T E(T ′) is designated as being responsible for deleting e. It is easy to verify that every

edge e′ ∈
⋃
T ′∈T E(T ′) may be responsible for the deletion of at most one edge. Therefore, at the

end of the algorithm,
∑

T ′∈T |E(T ′)| ≥ |E(T)|/2 holds.

Initially, we construct a collection H′ of subgraphs of F as follows. For every tree T of the forest
F , if |V (T)| ≤ h, then we add T to H′. Otherwise, we apply Observation 6.15 to tree T with
parameter ∆ = h, and add the graphs in the resulting collection T to H′. At the end of this algo-
rithm, for every graph H ′ ∈ H′, |E(H ′)| ≤ h holds, and

∑
H′∈H′ |E(H ′)| ≥ |E(F)|

2 ≥ C∗

128α(n′)·log7 n′
.

For every graph H ′ ∈ H′, if |E(H ′)| > h/2, then we delete edges from H ′ until |E(H ′)| ≤
h/2 holds. Clearly, after this transformation,

∑
H′∈H′ |E(H ′)| ≥ C∗

256α(n′)·log7 n′
≥ Ω

(
C∗

α(n)·log7 n

)
holds. If

∑
H∈H′ |E(H)| > hr/2, then we discard arbitrary edges from the graphs in H′, until∑

H∈H′ |E(H)| = hr/2 holds. Since, if C∗ = OPTGP(G, r, h), C∗ ≤ rh, we are still guaranteed that∑
H′∈H′ |E(H ′)| ≥ Ω

(
C∗

α(n)·log7 n

)
holds.

If |H′| ≤ r, then we have obtained a valid solution to instance GP(G, r, h) of value Ω
(

C∗

α(n)·log7 n

)
.

Otherwise, we proceed exactly like in Case 1 in order to transform H′ into a valid solution to
instance GP(G, r, h) of (r,h)-Graph Partitioning, without changing the total number of edges that
lie in the graphs of H′. While |H′| > r, we let H ′, H ′′ ∈ H′ be a pair of graphs with smallest
number of edges, breaking ties arbitrarily. We remove H ′ and H ′′ from H′, and we add a new
graph H = H ′ ∪ H ′′ to H′ instead. The procedure is terminated once |H′| = r holds. We claim
that at the end of this procedure, for every graph H ∈ H′, |E(H)| ≤ h holds. Indeed, assume
otherwise. Consider the first time when a graph H with |E(H)| > h was added to H′. Then
H = H ′ ∪H ′′ must hold, where H ′, H ′′ are two graphs that belonged to H′ prior to this iterations.
Then at least one of these two graphs must contain more than h/2 edges. From the choice of
the graphs H ′, H ′′, and from the fact that |H′| > r held at the beginning of the iteration, we get
that, at the beginning of the iteration, there were at least r graphs H̃ ∈ H′ with |E(H̃)| > h/2.
But then

∑
H̃∈H′ |E(H̃)| > rh

2 held at the beginning of the iteration. Since the total number of
edges contained in the graphs of H′ does not change over the course of the algorithm, we reach a
contradiction, since we have ensured that, at the beginning of the algorithm,

∑
H̃∈H′ |E(H̃)| ≤ h·r

2
held. We return the resulting set H′ of subgraphs of G, which is guaranteed to be a feasible solution

to instance GP(G, r, h) of (r,h)-Graph Partitioning, of value at least Ω
(

C∗

α(n) log7 n

)
.

62

It now remains to consider Case (2b), where C∗ < 16nα(n) log7 n and |E(F)| < C∗

64α(n′)·log7 n′
. Recall

that S is the set of all vertices of G that are adjacent to at least one edge of F , and recall that we
have denoted |S| = n′.

In this case, we let G′ = G[S], and we consider instance GP(G′, r, h) of (r,h)-Graph Partitioning.
Notice that, if H′ is a valid solution to instance GP(G′, r, h) of (r,h)-Graph Partitioning, then it is
also a valid solution to instance GP(G, r, h) of (r,h)-Graph Partitioning. We start by showing that
OPTGP(G′, r, h) is close to C∗.

Observation 6.16. If C∗ = OPTGP(G, r, h), and Case (2b) happens, then OPTGP(G′, r, h) ≥ C∗

2 .

Proof: Let S′ ⊆ S be the set of all vertices whose degree in F is h, and let S∗ the set of all vertices
of F that are isolated.

Let H be the optimal solution to instance GP(G, r, h), and let E′ =
⋃
H∈HE(H). We partition

the set E′ of edges into two subsets: set E′1 containing all edges that lie in G′ = G[S], and set E′2
containing all remaining edges. Clearly, for every edge e = (x, y) ∈ E′2, at least one endpoint of e
must lie in S∗. Assume w.l.o.g. that x ∈ S∗. We claim that y ∈ S′ must hold. Indeed, otherwise
F ∪ {e} remains a forest, with maximum vertex degree at most h, contradicting the fact that F is
a maximal subgraph of G with these properties.

Therefore, very edge of E′2 connects a vertex of S∗ to a vertex of S′. We claim that |E′2| ≤ |S′| · h.
Indeed, from the definition of the (r,h)-Graph Partitioning problem, for every graph H ∈ H, |E(H)| ≤
h, and all graphs in H are disjoint in their vertices. Therefore, every vertex of G may be incident
to at most h edges of E′. Since every edge of E′2 has a vertex of S′ as its endpoint, we get that
|E′2| ≤ |S′| · h.

Recall that, from our definition, every vertex v ∈ S′ has degree h in F . Therefore, |E(F)| ≥
(h− 1) · |S′|. We conclude that |E(F)| ≥ |E′2|/2, and so |E′2| ≤ 2|E(F)| < C∗

4 . Since |E′| = C∗, we
get that |E′1| ≥ C∗/2.

We now define a solution H′ to instance GP(G′, h, r) of (r,h)-Graph Partitioning. For every graph
H ∈ H, we let H ′ be a graph that is obtained from H by deleting all vertices of S∗ from it, and we
let H′ = {H ′ | H ∈ H}. It is easy to verify that H′ is a valid solution to instance GP(G′, r, h), and
that its value is at least |E′ \ E′2| ≥ C∗

2 . We conclude that OPTGP(G′, r, h) ≥ C∗

2 .

Denote C ′ = OPTGP(G′, r, h). From the above discussion C∗

2 ≤ C ′ ≤ C∗. Notice that for every

tree T of F , if T is not a singleton vertex, then |E(T)| ≥ |V (T)| − 1 ≥ |V (T)|
2 . Therefore, |E(F)| ≥

|S|
2 = n′

2 . On the other hand, from our assumpution, |E(F)| < C∗

64α(n′)·log7 n′
. We then conclude that

C∗ > 32n′α(n′) · log7 n.

We will now focus on solving instance GP(G′, r, h) of the (r,h)-Graph Partitioning problem. As
before, we will try all guesses C∗∗ on the value C ′ of the optimal solution for this problem. Note
that we only need to consider values C∗∗ that are integers, with C∗

2 ≤ C
∗∗ ≤ C∗. Furthermore, from

the above discussion, for each such guess, C∗∗ ≥ C∗

2 ≥ 16n′α(n′) · log7 n holds, so Case 1 will occur.
We execute the algorithm from Case 1 for each such guessed value C∗∗ and output the best among
the resulting solutions. We are then guaranteed to obtain a solution H to instance GP(G′, r, h) of

value at least Ω
(

C′

(α(n))2 log10 n

)
≥ Ω

(
C∗

(α(n))2 log10 n

)
. Clearly, H is also a valid solution to instance

GP(G, r, h). Overall, we obtain an efficient O((α(n))2 · poly log n)-approximation algorithm for

63

(r,h)-Graph Partitioning.

7 Acknowledgement

The authors thank Irit Dinur and Uri Feige for insightful and helpful discussions.

64

A Proof of Lemma 2.1

We prove each of the directions of the reductions separately, in the following two subsections.

A.1 Reduction from Bipartite Densest (k1, k2)-Subgraph to Densest k-Subgraph

Assume that exists an α(n)-approximation algorithm A for the Densest k-Subgraph problem with
running time at most T (n), where n is the number of vertices in the input graph. We show
an O(α(N2))-approximation algorithm for the Bipartite Densest (k1, k2)-Subgraph problem, whose
running time is at most O(T (N2) ·poly(N)), where N is the number of vertices in the input graph.

Let DkS(G, k1, k2) be the input instance to the Bipartite Densest (k1, k2)-Subgraph problem. Denote
G = (A,B,E), so |A ∪ B| = N . We construct another bipartite graph H = (A′, B′, E′), that will
serve as input to the Densest k-Subgraph problem, as follows. We define, for every vertex u ∈ A, a
collection Tu = {u1, . . . , uk2} of vertices that we call copies of u, and we let A′ =

⋃
u∈A Tu. Similarly,

we define, for every vertex v ∈ B, a set Tv = {v1, . . . , vk1} of k1 vertices, that we call copies of v,
and we let B′ =

⋃
v∈B Tv. The set E′ of edges of H contains, for every edge e = (u, v) ∈ E(G), all

edges in Tu × Tv. Note that |V (H)| ≤ max{k1, k2} · |A ∪B| ≤ N2.

Let k = 2k1k2, and consider the instance DkS(H, k) of the Densest k-Subgraph problem. We use
the following observation to lower-bound its optimal solution cost.

Observation A.1. OPTDkS(H, k) ≥ k1k2 ·OPTBDkS(G, k1, k2).

Proof: Let S∗ be the optimal solution to instance BDkS(G, k1, k2) of Bipartite Densest (k1, k2)-
Subgraph. Denote S∗A = S∗ ∩ A and S∗B = S∗ ∩ B, so |S∗A| = k1 and |S∗B| = k2 hold. We define
T ∗A =

⋃
u∈S∗A

Tu and T ∗B =
⋃
v∈S∗B

Tv. From the construction of H, it is clear that |T ∗A| = |T ∗B| =

k1 ·k2, and |EH(T ∗A, T
∗
B)| = k1k2 · |EG(S∗A, S

∗
B)|. Therefore, T ∗A∪T ∗B is a feasible solution to instance

DkS(H, k) of Densest k-Subgraph, and so OPTDkS(H, 2k1k2) ≥ k1k2 ·OPTBDkS(G, k1, k2).

In order to complete the reduction, we need the following claim.

Claim A.2. There is an efficient algorithm, that, given any solution W to the instance DkS(H, k)
of the Densest k-Subgraph problem, computes a solution to instance BDkS(G, k1, k2) of Bipartite
Densest (k1, k2)-Subgraph, whose value is at least |EH(W)|/(4k1k2).

Proof: DenoteWA = W∩A andWB = W∩B. We start by computing a partition (W 0
A, . . . ,W

2k2−1
A)

of the vertices of WA into 2k2 subsets, containing at most k1 vertices each, so that, for every vertex
u of A, no two copies of u appear in the same subset.

In order to do so, we let σ be an arbitrary ordering of the vertices of WA, in which, for every vertex
u ∈ A, all copies of u that belong to WA appear consecutively. For all 0 ≤ i ≤ 2k2 − 1, we let
W i
A ⊆WA to be the set of all vertices x ∈WA, whose index is i (mod 2k2) in this ordering. Since,

for every vertex u ∈ A, |Tu| = k2, it is immediate to verify that all copies of u in WA lie in distinct
sets. It is also immediate to verify that, for all 0 ≤ i < 2k2, |W i

A| ≤ k1.

We similarly compute a partition (W 0
B, . . . ,W

2k1−1
B) of the vertices of WB into 2k1 subsets, con-

taining at most k2 vertices each, so that, for every vertex v of B, no two copies of v appear in the
same subset.

65

Let 0 ≤ i∗ < 2k2, 0 ≤ j∗ < 2k1 be a pair of indices, for which |EH(W i∗
A ,W

j∗

B)| is maximized. Clearly,

|EH(W i∗
A ,W

j∗

B)| ≥ |EH(W)|/(4k1k2). Finally, let X ⊆ V (G) be the set of vertices containing every

vertex u ∈ V (G), whose copy lies in W i∗
A ∪W

j∗

B . Note that |X ∩ A| = |W i∗
A | ≤ k1 and |X ∩ B| =

|W j∗

B | ≤ k2 must hold, so X is a valid solution to instance BDkS(G, k1, k2) of Bipartite Densest

(k1, k2)-Subgraph. Since W i∗
A ∪W

j∗

B contains at most one copy of every vertex of V (G), from the

construction of graph H, it is easy to verify that |EG(X)| = |EH(W i∗
A ,W

j∗

B)| ≥ |EH(W)|/(4k1k2).

We are now ready to complete our reduction. We apply the approximation algorithm A for the
Densest k-Subgraph problem to instance DkS(H, k), to obtain a solution W . Since |V (H)| ≤ N2,
and since A is a factor-α(n) approximation algorithm, from Observation A.1, we get that:

|EH(W)| ≥ OPTDkS(H, k)

α(N2)
≥ k1 · k2 ·OPTBDkS(G, k1, k2)

α(N2)
.

Additionally, the running time of the algorithm is O(T (N2)).

We then apply the algorithm from Claim A.2, whose running time is bounded by O(poly(N)) to
solution W to instance DkS(H, k), to obtain a solution X to instance DkS(G, k1, k2) of Bipartite
Densest (k1, k2)-Subgraph. We are guaranteed that:

|EG(X)| ≥ |EH(W)|
4k1k2

≥ Ω

(
OPTDkS(G, k1, k2)

α(N2)

)
.

It is easy to verify that the running time of the algorithm is bounded by O(T (N2) · poly(N)).

A.2 Reduction from Densest k-Subgraph to Bipartite Densest (k1, k2)-Subgraph

We now assume that there exists an efficient α(N)-approximation algorithm A′ for the Bipartite
Densest (k1, k2)-Subgraph problem, where N is the number of vertices in the input graph. We
show that there exists an efficient O(α(2n))-approximation algorithm for the Densest k-Subgraph
problem, where n is the number of vertices in the input graph.

Let DkS(G, k) be the input instance for the Densest k-Subgraph problem, so |V (G)| = n. We
construct a bipartite graph H = (V1, V2, E), where the vertex sets are V1 = {u1 | u ∈ V (G)},
V2 = {u2 | u ∈ V (G)}, and the edge set is E = {(u1, v2), (u2, v1) | (u, v) ∈ E(G)}. We denote
N = |V (H)| = 2n. Consider the instance DkS(H, k1, k2) of Bipartite Densest (k1, k2)-Subgraph,
where k1 = k2 = k. We use the following observation to lower-bound the optimal solution cost of
this instance.

Observation A.3. OPTBDkS(H, k1, k2) ≥ 2 ·OPTDkS(G, k).

Proof: Let V ∗ be the optimal solution to instance DkS(G, k) of Densest k-Subgraph. We define
U∗ = {v1, v2 | v ∈ V ∗}, so |U∗ ∩ V1| = k and |U∗ ∩ V2| = k. Clearly, U∗ is a feasible solu-
tion to instance BDkS(H, k, k). Moreover, it is easy to verify that |EH(U∗)| = 2 · |EG(V ∗)|, so
OPTBDkS(H, k1, k2) ≥ 2 ·OPTDkS(G, k).

66

We apply Algorithm A′ to instance, DkS(H, k1, k2) of Bipartite Densest (k1, k2)-Subgraph, obtaining
a solution U ′. We denote U1 = U ′ ∩ V1 and U2 = U ′ ∩ V2, so |U1| = |U2| = k, and |EH(U1, U2)| ≥
OPTBDkS(H, k, k)/α(N) ≥ 2OPTDkS(G, k)/α(2n) from Observation A.3.

Let U = {v | v1 ∈ U1 or v2 ∈ U2} be a subset of vertices of G. Clearly, |U | ≤ 2k, and |EG(U)| ≥
|EH(U∗)|

2 ≥ OPTDkS(G,k)
α(2n) .

We then apply the algorithm from Lemma 2.3 to graph G and set U of vertices, with parame-
ter β = 1/2, to obtain a set Ũ ⊆ U of vertices, with |Ũ | ≤ k, and |EG(Ũ)| ≥ Ω(|EG(U)|) ≥
Ω(OPTDkS(G, k)/α(2n)). Therefore, we obtained an O(α(2n))-approximate solution to instance
DkS(G, k) of the Densest k-Subgraph problem.

B Reduction from (r,h)-Graph Partitioning to Densest k-Subgraph

In this section we complete the proof Theorem 4.1, by showing a reduction from (r,h)-Graph Parti-
tioning to Densest k-Subgraph. The reduction is very similar to the reduction from Dense k-Coloring
to Densest k-Subgraph described in Section 4.

We start by formulating an LP-relaxation of the problem, whose number of constraints is bounded
by O(N), but the number of variables may be large. We then show an LP-rounding algorithm for
this LP-relaxation, whose running time is O(poly(N)) if it is given a solution to the LP-relaxation
whose support size is bounded by O(poly(N)). In order to compute an approximate LP-solution
whose support size is sufficiently small, we design an approximate separation oracle for the dual
of the LP-relaxation. We start with describing the LP-relaxation and providing an LP-rounding
algorithm for it.

B.1 Linear Programming Relaxation and an LP-Rounding Algortihm

Let GP(G, r, h) be the input instance of (r,h)-Graph Partitioning, and denote |V (G)| = N . We let H
be the collection of all subgraphs H ⊆ G with |E(H)| ≤ h. For each such subgraph H, we denote
m(H) = |E(H)|. We consider the following LP-relaxation of the (r,h)-Graph Partitioning problem,
that has a variable xH for every graph H ∈ H.

(LPW-P)

max
∑

H∈Hm(H) · xH
s.t. ∑

H∈H:

v∈V (H)
xH ≤ 1 ∀v ∈ V (G)∑

H∈H xH ≤ r
xH ≥ 0 ∀H ∈ H

It is easy to verify that (LPW-P) is an LP-relaxation of the (r,h)-Graph Partitioning problem. Indeed,
consider a solution (H1, . . . ,Hr) to the input instance GP(G, r, h). For all 1 ≤ i ≤ r, we set xHi = 1,
and for every other graph H ∈ H, we set xH = 0. This provides a feasible solution to (LPW-P),

67

whose value is precisely
∑r

i=1 |E(H)|. We denote the value of the optimal solution to (LPW-P) by
OPTLP-P. From the above discussion, OPTLP-P ≥ OPTGP(G, r, h).

In the following claim we provide an LP-rounding algorithm for (LPW-P). The claim is an analogue
of Claim 4.2. Its proof is almost identical and is provided here for completeness.

Claim B.1. There is an efficient randomized algorithm, whose input consists of an instance
GP(G, r, h) of the (r,h)-Graph Partitioning problem with N = |V (G)|, such that N is greater than
a large enough constant, and a solution {xH | H ∈ H} to (LPW-P), in which the number of vari-
ables xH with xH > 0 is bounded by O(poly(N)), and

∑
H∈Hm(H) · xH ≥ OPTLP-P/β, for some

parameter 1 ≤ β ≤ N3; the solution is given by only specifying values of variables xH that are
non-zero. The algorithm with high probability returns an integral solution (H1, . . . ,Hr) to instance

GP(G, r, h), such that
∑r

i=1 |E(Hi)| ≥ OPTGP(G,r,h)

2000β log3N
.

Proof: We assume that we are given a solution {xH | H ∈ H} to (LPW-P), in which the number
of variables xH with xH > 0 is bounded by O(poly(N)). Denote C =

∑
H∈Hm(H) · xH , and recall

that C ≥ OPTLP-P/β holds. We denote by H′ ⊆ H the collection of all graphs H ∈ H with xH > 0.

We construct another collection H′′ ⊆ H′ of subgraphs of G as follows. For every subgraph H ∈ H′,
we add H to H′′ independently, with probability xH . Clearly, E

[∑
H∈H′′m(H)

]
=
∑

H∈Hm(H) ·
xH = C.

We say that a bad event E1 happens if some vertex v ∈ V (G) lies in more than 5 logN graphs in
H′′. We say that a bad event E2 happens if |H′′| > 5r logN . We say that a bad event E3 happens
if
∑

H∈H′′m(H) < C
8 . Lastly, we say that a bad event E happens if either of the events E1, E2, or

E3 happen. The following observation is an analogue of Observation 4.3. Its proof is identical and
is omitted here.

Observation B.2. Pr [E] ≤ 2/N3.

Observe that we can efficiently check whether Event E happened. If Event E happens, then we
terminate the algorithm with a FAIL. We assume from now on that Event E did not happen.
Then

∑
H∈H′′m(H) ≥ C

8 ≥
OPTGP(G,r,h)

8β must hold. We denote H′′ = {H1, H2, . . . ,Hz}, where the
graphs are indexed according to their value m(H), so that m(H1) ≥ m(H2) ≥ · · · ≥ m(Hz). We
then let H∗ = {H1, . . . ,Hr} (if z < r, then we set Hz+1 = · · · = Hr = ∅). For all 1 ≤ i ≤ r, we
denote Ei = E(Hi), so |Ei| = m(Hi). Recall that, since Event E did not happen, |H′′| ≤ 5r logN
holds. Therefore:

r∑
i=1

|Ei| ≥
∑

H∈H′′m(H)

5 logN
≥ OPTGP(G, r, h)

40β logN
.

As before, the graphs in set H may not be mutually disjoint. However, since Event E did not
happen, every vertex of V (G) may lie in at most 5 logN such graphs. We now construct a new
collection H∗∗ = {H ′1, . . . ,H ′r} of graphs, as follows. For all 1 ≤ i ≤ r, we will define a subset
Vi ⊆ V (Hi) of vertices, and we will then set H ′i = Hi[Vi]. In order to define vertex sets V1, . . . , Vr,
we start by setting V1 = V2 = · · · = Vr = ∅, and then process vertices v ∈ V (H) one by one.
Consider any vertex v ∈ V (G), and let Hi1 , Hi2 , . . . ,Hia ∈ H∗ be the graphs of H∗ containing v.

68

Vertex v chooses an index i∗ ∈ {i1, . . . , ia} at random, and is then added to Vi∗ . Once all vertices of
V (G) are processed, we obtain a final collection V1, . . . , Vr of sets of vertices, where for all 1 ≤ i ≤ r,
Vi ⊆ V [Hi]. For all 1 ≤ i ≤ r, we then set H ′i = Hi[Vi]. Since H ′i ⊆ Hi, we are then guaranteed
that |E(H ′i)| ≤ h holds.

Note that for all 1 ≤ j ≤ r, for every vertex v ∈ V (Hj), the probability that v ∈ Vj is at least
1/(5 logN). We say that an edge e = (u, v) ∈ Ej survives if both u, v ∈ Vj . We denote by E′′ ⊆⋃r
i=1Ei the set of all edges that survive. Since Pr [u ∈ Vj] ≥ 1/(5 logN), Pr [v ∈ Vj] ≥ 1/(5 logN),

and the two events are independent, we get that the probability that edge e survives is at least
1/(25 log2N). Overall, we get that:

E
[
|E′′|

]
≥
∑r

i=1 |Ei|
25 log2N

≥ OPTGP(G, r, h)

1000β log3N
.

The final solution to instance GP(G, r, h) is H∗∗ = {H ′1, . . . ,H ′r}. Clearly, the value of this solution
is |E′′|.

So far we have obtained a randomized algorithm that either returns FAIL (with probability at
most 2/N3), or it returns a solution to instance instance GP(G, r, h) of the (r,h)-Graph Partitioning

problem, whose expected value is at least OPTGP(G,r,h)

1000β log3N
.

Let p′ be the probability that the algorithm returned a solution of value at least OPTGP(G,r,h)

2000β log3N
, given

that it did not return FAIL. Note that the expected solution value, assuming the algorithm did not
return FAIL, is at most OPTGP(G,r,h)

2000β log3N
+ p′ · OPTGP(G, r, h). Since this expectation is also at least

OPTGP(G,r,h)

1000β log3N
, we get that p′ ≥ 1

1000β log3N
. Overall, the probability that our algorithm successfully

returns a solution of value at least OPTGP(G,r,h)

2000β log3N
is p′ · Pr [¬E] ≥ Ω

(
1

β log3N

)
. By repeating the

algorithm poly(N) times we can ensure that it successfully computes a solution of value at least
OPTGP(G,r,h)

2000β log3N
with high probability.

B.2 Approximately Solving the LP-Relaxation

In this subsection we provide an approximate separation oracle for the dual linear program of
(LPW-P). This is sufficient in order to obtain an algorithm with running time O(poly(N)) that
approximately solves (LPW-P) using the methods described in Section 4.2. The following Linear
Program is a Dual of (LPW-P). It has a variable yv for every vertex v ∈ V (G), and an additional
variable z.

(LPW-D)

min r · z +
∑

v∈V (G) yv

s.t.

z +
∑

v∈V (H) yv ≥ m(H) ∀H ∈ H
z ≥ 0

yv ≥ 0 ∀v ∈ V (G)

69

We denote the value of the optimal solution to (LPW-D) by OPTLPW-D.

The following lemma provides a randomized separation oracle for (LPW-D). It is an analogue of
Lemma 4.4, and its proof is essentially identical. We provide it here for completeness.

Lemma B.3. Assume that there is an efficient α(n)-approximation algorithm for the Densest k-
Subgraph problem, where α is an increasing function, and n is the number of vertices in the input
graph. Then there is a randomized β(N)-approximate separation oracle for (LPW-D), where N is
the number of variables in the input graph G, and β(N) = O(α(N2) · log2N).

Proof: Recall that we are given as input real values z and {yv | v ∈ V (G)}. As before, we can
efficiently check whether z ≥ 0, and whether yv ≥ 0 for all v ∈ V (G). If this is not the case, we
can return the corresponding violated constraint.

We say that a subgraphH ∈ H is bad if z+
∑

v∈V (H) yv < m(H)/β holds, where β = c·α(N2)·log2N ,
and c is a large enough constant whose value we set later. Our goal is to design an efficient
algorithm that either returns a violated constraint of the LP (that is, a graph H ∈ H for which
z +

∑
v∈V (H) yv < m(H) holds); or it returns “accept”. We require that, if there exists a bad

subgraph H ∈ H, then the probability that the algorithm returns “accept” is at most 2/3.

We slightly modify the input values in {yv | v ∈ V (G)}, almost exactly like in the proof of
Lemma B.3. First, for every vertex v ∈ V (G) with yv > h, we let y′v be the smallest integral power
of 2 that is greater than h, and for every vertex v ∈ V (G) with yv < 1/4, we set y′v = 0. For each
remaining vertex v, we let y′v be the smallest integral power of 2 that is greater than 4yv. Notice
that, for every vertex v with y′v 6= 0, 1 ≤ y′v ≤ 4h holds, and y′v is an integral power of 2. We also
set z′ = 2z. We say that a subgraph H ∈ H is problematic if z′ +

∑
v∈V (H) y

′
v < 8m(H)/β holds.

We use the following two observations, that are analogues of Observation 4.5 and Observation 4.6;
their proofs are also almost identical.

Observation B.4. If H ∈ H is a bad subgraph of G, then it is a problematic subgraph of G.

Proof: Recall that, if H is a bad subgraph, then z +
∑

v∈V (H) yv < m(H)/β must hold. Since, for

every vertex v ∈ V (G), y′v ≤ 8yv, and z′ = 2z, we get that:

z′ +
∑

v∈V (H)

y′v ≤ 2z + 8
∑

v∈V (H)

yv ≤ 8

z +
∑

v∈V (H)

yv

 < 8m(H)/β.

Therefore, subgraph H is problematic.

Observation B.5. Assume that there exists a subgraph H ∈ H, for which z′+
∑

v∈V (H) y
′
v < m(H)

holds. Let H ′ ⊆ H be the graph obtained from H after removing all isolated vertices from it. Then
z +

∑
v∈V (H′) yv < m(H ′) holds.

Proof: Since every vertex v ∈ V (H) \ V (H ′) is isolated in H, we get that m(H ′) = |E(H ′)| =
|E(H)| = m(H). We partition the vertices of H ′ into two subsets: set X containing all vertices

v ∈ V (H ′) with yv < 1/4, and set Y containing all remaining vertices. Clearly,
∑

v∈X yv <
|X|
4 ≤

m(H′)
2 (since m(H ′) ≥ |V (H ′)|/2 ≥ |X|/2, as graph H ′ contains no isolated vertices).

70

Assume for contradiction that z +
∑

v∈V (H′) yv ≥ m(H ′). Then:

z +
∑
v∈Y

yv ≥ m(H ′)−
∑
v∈X

yv ≥ m(H ′)/2.

We now consider two cases. The first case is when there is some vertex v ∈ Y with yv ≥ h. In this
case, y′v ≥ h holds, and z′ +

∑
v∈S y

′
v ≥ h > m(H ′) holds, a contradiction.

Otherwise, for every vertex v ∈ Y , y′v ≥ 4yv holds. Since z′ = 2z also holds, we get that:

z′ +
∑

v∈V (H)

y′v ≥ z′ +
∑
v∈Y

y′v ≥ 2z + 4
∑
v∈Y

yv ≥ m(H ′) = m(H),

a contradiction.

From now on we focus on values z′, {y′v | v ∈ V (G)}. It is now enough to design an efficient
randomized algorithm, that either computes a subgraph H ∈ H, for which z′+

∑
v∈V (H) y

′
v < m(H)

holds, or returns “accept”. It is enough to ensure that, if there is a problematic subraph H ∈ H,
then the algorithm returns “accept” with probability at most 2/3. Indeed, if there is a bad subgraph
H ∈ H, then, from Observation B.4, there is a problematic subgraph, and the algorithm will return
“accept” with probability at most 2/3. On the other hand, if the algorithm computes a subgraph
H ∈ H of vertices, for which z′+

∑
v∈S y

′
v < m(S) holds, then we can return the subgraph H ′ ⊆ H

from the statement of Observation B.5, that defines a violated constraint with respect to the original
LP-values.

Our algorithm is essentially the same as before: it computes a random partition (A,B) of the
vertices of G, where every vertex v ∈ V (G) is independently added to A or to B with probability
1/2 each. Let q = dlog(8h)e. For all 1 ≤ i ≤ q, we define a set Ai ⊆ A of vertices: Ai = {v ∈ A |
y′v = 2i−1}, and we let A0 = {v ∈ A | y′v = 0}. Clearly, (A0, . . . , Aq) is a partition of the set A of
vertices.

We compute a partition (B0, . . . , Bq) of the vertices of B similarly. For all 0 ≤ i, j ≤ q, we denote
by Ei,j the set of all edges e = (u, v) with u ∈ Ai and v ∈ Bj , and we define a bipartite graph Gi,j ,
whose vertex set is Ai ∪Bj , and edge set is Ei,j .

Recall that we have assumed that there is an efficient α(n)-approximation algorithm for the Densest
k-Subgraph problem, where n is the number of vertices in the input graph. From Lemma 2.1, there
exists an efficient O(α(n̂2))-approximation algorithm for the Bipartite Densest (k1, k2)-Subgraph
problem, where n̂ is the number of vertices in the input graph. We denote this algorithm by A′.

For every pair 0 ≤ i, j ≤ q of integers, and every pair 0 ≤ k1, k2 ≤ N of integers, we apply Algorithm
A′ for the Bipartite Densest (k1, k2)-Subgraph problem to graph Gi,j , with parameters k1 and k2.

Let Sk1,k2i,j be the output of this algorithm, and let mk1,k2
i,j be the number of edges in the subgraph

of Gi,j that is induced by the set Sk1,k2i,j of vertices. We say that the application of algorithm A′

is successful if z′ +
∑

v∈Sk1,k2i,j

y′v < min{h,mk1,k2
i,j }, and otherwise it is unsuccessful. If, for any

quadruple (i, j, k1, k2) of indices, the application of algorithm A′ was successful, then we return a

graph H, that is defined as the subgraph of G induced by the set S = Sk1,k2i,j of vertices; if this
graph contains more than h edges, then we delete arbitrary edges from it, until |E(H)| = h holds.

71

Clearly, H ∈ H must hold. Moreover, we are guaranteed that z′ +
∑

v∈V (H) y
′
v < min{h,mk1,k2

i,j } ≤
m(H), as required. If every application of algorithm A′ is unsuccessful, then we return “accept”.
The following observation will finish the proof of Lemma B.3. The observation is an analogue of
Observation 4.7 and its proof is essentially identical.

Observation B.6. Suppose there is a problematic subgraph H ∈ H. Then the probability that the
algorithm returns “accept” is at most 2/3.

Proof: Let H ∈ H be a problematic subgraph, and denote S = V (H), so z′+
∑

v∈S y
′
v < 8m(S)/β

holds. Let E′ = E(H), so |E′| = m(H) ≤ h.

Denote AS = A∩S,BS = B∩S, and let E′′ ⊆ E′ be the set of edges e, such that exactly one endpoint
of e lies in A. Clearly, for every edge e ∈ E′, Pr [e ∈ E′′] = 1/2. Therefore, E [|E′′|] = |E′|/2. Let E ′
be the bad event that |E′′| < |E′|/8. Using the same arguments as in the proof of Observation 4.7,
Pr [E ′] ≤ 2/3. Next, we show that, if Event E ′ does not happen, then the algorithm does not return
“accept”.

From now on we assume that Event E ′ did not happen, so |E′′| ≥ |E′|/8. Therefore:

z′ +
∑
v∈S

y′v <
8m(H)

β
≤ 64|E′′|

β

holds.

Clearly, there must be a pair 0 ≤ i, j ≤ q of indices, such that |E′′ ∩ Ei,j | ≥ |E
′′|

4q2
≥ |E′′|

128 log2m
. We

now fix this pair i, j of indices, and denote A′i = Ai ∩S and B′j = Bj ∩S. We also denote k1 = |A′i|
and let k2 = |B′j |. Denote Mi,j = |E′′ ∩ Ei,j |. Fom our choice of indices i, j, we get that:

z′ +
∑

v∈A′i∪B′j

y′v ≤ z′ +
∑
v∈S

y′v ≤
64|E′′|
β

≤ Mi,j

β
· (213 · log2m).

Notice that the set S′ = A′i∪B′j of vertices provides a solution to the instance of the Bipartite Densest
(k1, k2)-Subgraph problem on graph Gi,j with parameters k1, k2, whose value is at least Mi,j . Let

S′′ = Sk1,k2i,j be the set of vertices obtained by applying Algorithm A′ to graph Gi,j with parameters

k1, k2. Since |V (Gi,j)| ≤ N , and since A′ is an O(α(N2))-approximation algorithm for Bipartite

Densest (k1, k2)-Subgraph, we are guaranteed that |EG(S′′)| ≥ Ω
(

Mi,j

α(N2)

)
. Recall that |A∩S′′| ≤ k1;

A∩S′′ ⊆ Ai, and all vertices v ∈ Ai have an identical value y′v. Therefore,
∑

v∈A∩S′′ y
′
v ≤

∑
v∈A′i

y′v.

Using a similar reasoning,
∑

v∈B∩S′′ y
′
v ≤

∑
v∈B′j

y′v. Overall, we then get that:

z′ +
∑
v∈S′′

y′v ≤ z′ +
∑
v∈S′

y′v

≤ Mi,j

β
· (213 · log2m)

≤ O
(
α(N2) · 213 · log2m

β

)
·min{|EG(S′′)|, h}.

72

Recall that β = c · α(N2) · log2N . By letting the value of the constant c be large enough, we can
ensure that z′+

∑
v∈S′′ y

′
v < min{|EG(S′′)|, h}, and so the application of algorithm A′ to graph Gi,j

with parameters k1 and k2 is guaranteed to be successful. Therefore, if Event E ′ does not happen,
and we set c to be a large enough constant, then our algorithm does not return ”accept”. Since
Pr [E ′] ≤ 2/3, the observation follows.

We can use the separation oracle described in Lemma B.3 in order to obtain a β(N)-approximate
solution to (LPW-P), whose support size is bounded by O(poly(N)) using the standard techniques
that were described in Section 4.2; we do not repeat them here. By applying the LP-rounding
algorithm from Claim B.1 to the resulting LP-solution, with high probability we obtain, in time
O(poly(N)), an integral solution (H1, . . . ,Hr) to instance GP(G, r, h), such that

∑r
i=1 |E(Hi)| ≥

Ω
(

OPTGP(G,r,h)

300β(N) log3N

)
. Since β(N) = O(α(N2) · log2N), with high probability we obtain an O(α(N2) ·

poly logN)-approximate solution to the input instance of (r,h)-Graph Partitioning.

References

[AAM+11] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Wein-
stein. Inapproximabilty of densest k-subgraph from average case hardness. Manuscript,
2011. https://www.tau.ac.il/~nogaa/PDFS/dks8.pdf.

[ABS15] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. Journal of the ACM (JACM), 62(5):1–25, 2015.

[ACNS82] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Theory
and Practice of Combinatorics, pages 9–12, 1982.

[ADD+93] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. On
sparse spanners of weighted graphs. Discrete & Computational Geometry, 9(1):81–
100, 1993.

[AMS07] Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results
for sparsest cut, optimal linear arrangement, and precedence constrained scheduling.
In 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS’07),
pages 329–337. IEEE, 2007.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric em-
beddings and graph partitioning. J. ACM, 56(2), 2009.

[Bar15] Siddharth Barman. Approximating nash equilibria and dense bipartite subgraphs via
an approximate version of caratheodory’s theorem. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing, pages 361–369, 2015.

[BCC+10] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vi-

jayaraghavan. Detecting high log-densities: an O(n1/4) approximation for densest
k -subgraph. In Proceedings of the 42nd ACM Symposium on Theory of Computing,
STOC 2010, Cambridge, Massachusetts, USA, 5-8 June 2010, pages 201–210, 2010.

73

https://www.tau.ac.il/~nogaa/PDFS/dks8.pdf

[BCG+12] Aditya Bhaskara, Moses Charikar, Venkatesan Guruswami, Aravindan Vijayaragha-
van, and Yuan Zhou. Polynomial integrality gaps for strong sdp relaxations of densest
k-subgraph. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 388–405. SIAM, 2012.

[Ber45] Joseph Bertrand. Memory on the number of values a function can take: when you
swap the letters it contains. Bachelor, 1845.

[BGH+15] Boaz Barak, Parikshit Gopalan, Johan H̊astad, Raghu Meka, Prasad Raghavendra,
and David Steurer. Making the long code shorter. SIAM Journal on Computing,
44(5):1287–1324, 2015.

[BKRW17] Mark Braverman, Young Kun Ko, Aviad Rubinstein, and Omri Weinstein. Eth hard-
ness for densest-k-subgraph with perfect completeness. In Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1326–1341.
SIAM, 2017.

[BKS19] Boaz Barak, Pravesh K. Kothari, and David Steurer. Small-set expansion in shortcode
graph and the 2-to-2 conjecture. In 10th Innovations in Theoretical Computer Science
Conference, ITCS 2019, January 10-12, 2019, San Diego, California, USA, pages
9:1–9:12, 2019.

[Bol04] Béla Bollobás. Extremal graph theory. Courier Corporation, 2004.

[Cab13] Sergio Cabello. Hardness of approximation for crossing number. Discrete & Compu-
tational Geometry, 49(2):348–358, 2013.

[CCH+20] Shih-Chia Chang, Li-Hsuan Chen, Ling-Ju Hung, Shih-Shun Kao, and Ralf Klasing.
The hardness and approximation of the densest k-subgraph problem in parameterized
metric graphs. In 2020 International Computer Symposium (ICS), pages 126–130.
IEEE, 2020.

[CDK+18] Eden Chlamtác, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Ra-
banca. The densest k-subhypergraph problem. SIAM Journal on Discrete Mathemat-
ics, 32(2):1458–1477, 2018.

[Čeb50] Pafnutij Lvovič Čebyšev. Mémoire sur les nombres premiers. 1850.

[CH11] Markus Chimani and Petr Hliněnỳ. A tighter insertion-based approximation of the
crossing number. In International Colloquium on Automata, Languages, and Program-
ming, pages 122–134. Springer, 2011.

[Chu11] Julia Chuzhoy. An algorithm for the graph crossing number problem. In Proceedings
of the forty-third annual ACM symposium on Theory of computing, pages 303–312.
ACM, 2011.

[Chu15] Julia Chuzhoy. Excluded grid theorem: Improved and simplified. In Proceedings of the
forty-seventh annual ACM symposium on Theory of Computing, pages 645–654, 2015.

[CKN21] Julia Chuzhoy, David Hong Kyun Kim, and Rachit Nimavat. Almost polynomial
hardness of node-disjoint paths in grids. Theory of Computing, 17(6):1–57, 2021.

74

[CMS11] Julia Chuzhoy, Yury Makarychev, and Anastasios Sidiropoulos. On graph crossing
number and edge planarization. In Proceedings of the twenty-second annual ACM-
SIAM symposium on Discrete algorithms, pages 1050–1069. SIAM, 2011.

[CMT20] Julia Chuzhoy, Sepideh Mahabadi, and Zihan Tan. Towards better approximation of
graph crossing number. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), pages 73–84. IEEE, 2020. Full version: Arxiv:2011.06545.

[CS13] Chandra Chekuri and Anastasios Sidiropoulos. Approximation algorithms for euler
genus and related problems. In 2013 IEEE 54th Annual Symposium on Foundations
of Computer Science, pages 167–176. IEEE, 2013.

[CT22] Julia Chuzhoy and Zihan Tan. A subpolynomial approximation algorithm for graph
crossing number in low-degree graphs. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2022, pages 303–316, 2022.
Full version: Arxiv:2202.06827.

[DKK+18a] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally
expanding sets in Grassmann graphs. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 940–951, 2018.

[DKK+18b] Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof
of the 2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-
29, 2018, pages 376–389, 2018.

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the
analysis of randomized algorithms. Cambridge University Press, 2009.

[EGS02] Guy Even, Sudipto Guha, and Baruch Schieber. Improved approximations of crossings
in graph drawings and vlsi layout areas. SIAM Journal on Computing, 32(1):231–252,
2002.

[Fei02] Uriel Feige. Relations between average case complexity and approximation complexity.
In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 534–543, 2002.

[FL01] Uriel Feige and Michael Langberg. Approximation algorithms for maximization prob-
lems arising in graph partitioning. Journal of Algorithms, 41(2):174–211, 2001.

[FPK01] Uriel Feige, David Peleg, and Guy Kortsarz. The dense k-subgraph problem. Algo-
rithmica, 29(3):410–421, 2001.

[FS+97] Uriel Feige, Michael Seltser, et al. On the densest k-subgraph problem. Technical
Report CS97-16, Weizmann Institute of Science., 1997. https://citeseerx.ist.

psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf.

[GL09] Doron Goldstein and Michael Langberg. The dense k subgraph problem. arXiv preprint
arXiv:0912.5327, 2009.

75

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.37.9962&rep=rep1&type=pdf

[Han22] Tesshu Hanaka. Computing densest k-subgraph with structural parameters. arXiv
preprint arXiv:2207.09803, 2022.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 767–775, 2002.

[Kho06] Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM Journal on Computing, 36(4):1025–1071, 2006.

[KLS00] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating
the chromatic number. Combinatorica, 20(3):393–415, 2000.

[KMMS18] Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra. Small set expansion
in the Johnson graph. Electronic Colloquium on Computational Complexity (ECCC),
25:78, 2018. https://eccc.weizmann.ac.il/report/2018/078.

[KMS17] Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and
Grassmann graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
576–589, 2017.

[KMS18] Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann graph
have near-perfect expansion. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 592–601,
2018.

[KP93] G Kortsarz and D Peleg. On choosing a dense subgraph. In Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science, pages 692–701. IEEE Computer
Society, 1993.

[KS13] Subhash Khot and Muli Safra. A two-prover one-round game with strong soundness.
Theory of Computing, 9:863–887, 2013.

[KS17] Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation
for minimum planarization (almost). In 58th IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages
779–788, 2017.

[KS19] Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation
for euler genus on bounded degree graphs. In Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, pages 164–175. ACM, 2019.

[Lei83] F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange
graph and other networks. MIT Press, 1983.

[Lin18] Bingkai Lin. The parameterized complexity of the k-biclique problem. Journal of the
ACM (JACM), 65(5):1–23, 2018.

76

https://eccc.weizmann.ac.il/report/2018/078

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their
use in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–
832, 1999.

[LT79] Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[Man17] Pasin Manurangsi. Almost-polynomial ratio ETH-hardness of approximating densest
k-subgraph. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 954–961,
2017.

[Man18] Pasin Manurangsi. Inapproximability of maximum biclique problems, minimum k-cut
and densest at-least-k-subgraph from the small set expansion hypothesis. Algorithms,
11(1):10, 2018.

[Mat02] J. Matoušek. Lectures on discrete geometry. Springer-Verlag, 2002.

[PSS96] János Pach, Farhad Shahrokhi, and Mario Szegedy. Applications of the crossing num-
ber. Algorithmica, 16(1):111–117, 1996.

[PT00] J. Pach and G. Tóth. Thirteen problems on crossing numbers. Geombinatorics,
9(4):194–207, 2000.

[RS09] R. B. Richter and G. Salazar. Crossing numbers. In L. W. Beineke and R. J. Wilson,
editors, Topics in Topological Graph Theory, chapter 7, pages 133–150. Cambridge
University Press, 2009.

[Sch12] Marcus Schaefer. The graph crossing number and its variants: A survey. The electronic
journal of combinatorics, pages DS21–Sep, 2012.

[Sot20] Renata Sotirov. On solving the densest k-subgraph problem on large graphs. Opti-
mization Methods and Software, 35(6):1160–1178, 2020.

[Ste] David Steurer. Subexponential algorithms for d-to-1 two-prover games and for cer-
tifying almost perfect expansion. Available at https://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf, 2010.

[Tur77] P. Turán. A note of welcome. J. Graph Theory, 1:1–5, 1977.

77

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.189.5388&rep=rep1&type=pdf

	Introduction
	A More Detailed Overview of our Results and Techniques

	Preliminaries
	General Notation
	Problem Definitions and Additional Notation
	Chernoff Bound
	Auxiliary Lemma

	Conditional Hardness of Densest k-Subgraph
	Low-Degree CSP Conjecture
	Conditional Hardness of Densest k-Subgraph
	Proof of thm: DkS reduction main
	Proof of thm: partition or solution for no instance
	Step 1: Regularization
	Step 2: Assignment Graph and Reduction to Bipartite Densest (k1,k2)-Subgraph
	Step 3: Further Regularization
	Step 4: Certifying that H is a Good Graph or Computing a Subgraph of H

	Reductions from Dense k-Coloring and (r,h)-Graph Partitioning to Densest k-Subgraph
	An LP-Relaxation and Its Rounding
	Approximately Solving the LP-Relaxation

	Reductions from Densest k-Subgraph to Dense k-Coloring and (r,h)-Graph Partitioning
	Auxiliary Graph H
	Completing the Reduction from Densest k-Subgraph to Dense k-Coloring
	Completing the Reduction from Densest k-Subgraph to (r,h)-Graph Partitioning

	Reductions between (r,h)-Graph Partitioning and Maximum Bounded-Crossing Subgraph
	Auxiliary Lemmas
	Reduction from Maximum Bounded-Crossing Subgraph to (r,h)-Graph Partitioning: Proof of thm: algWGP gives algCN
	Reduction from (r,h)-Graph Partitioning to Maximum Bounded-Crossing Subgraph– Proof of thm: alg for CN gives alg for WGP
	Case 1: C*16n(n)log7n
	Case 2: C*< 16n(n)log7n

	Acknowledgement
	Proof of lem: DkS and Dk1k2S
	Reduction from Bipartite Densest (k1,k2)-Subgraph to Densest k-Subgraph
	Reduction from Densest k-Subgraph to Bipartite Densest (k1,k2)-Subgraph

	Reduction from (r,h)-Graph Partitioning to Densest k-Subgraph
	Linear Programming Relaxation and an LP-Rounding Algortihm
	Approximately Solving the LP-Relaxation

