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ABSTRACT
Given an undirected graphG = (V,E), a collection {(si, ti)}ki=1

of k demand pairs, and an integer c, the goal in the Edge
Disjoint Paths with Congestion problem is to connect maxi-
mum possible number of the demand pairs by paths, so that
the maximum load on any edge (called edge congestion) does
not exceed c.

We show an efficient randomized algorithm that routes
Ω(OPT/poly log k) demand pairs with congestion at most
14, where OPT is the maximum number of pairs that can
be simultaneously routed on edge-disjoint paths. The best
previous algorithm that routed Ω(OPT/poly log n) pairs re-
quired congestion poly(log log n), and for the setting where
the maximum allowed congestion is bounded by a constant
c, the best previous algorithms could only guarantee the
routing of OPT/nO(1/c) pairs.

We also introduce a new type of vertex sparsifiers that we
call integral flow sparsifiers, which approximately preserve
both fractional and integral routings, and show an algorithm
to construct such sparsifiers.
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F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems
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1. INTRODUCTION
We study network routing problems in undirected graphs.

In such problems, we are given an undirected n-vertex graph
G = (V,E), and a collection M = {(s1, t1), (s2, t2), . . . , (sk, tk)}
of k source-sink pairs, that we also refer to as demand pairs.
In order to route a pair (si, ti), we need to select a path con-
necting si to ti in graph G. Given a routing of any subset
of the demand pairs, its congestion is the maximum load on
any edge, that is, the maximum number of paths containing
the same edge. In general, we would like to route as many
demand pairs as possible, while minimizing the edge conges-
tion. These two conflicting objectives naturally give rise to
several basic optimization problems.

One of the central routing problems is Edge Disjoint Paths
(EDP), where the goal is to route the maximum number of
the demand pairs on edge-disjoint paths (that is, with con-
gestion 1). Robertson and Seymour [RS90] have shown an
efficient algorithm to solve this problem optimally, when the
number k of the demand pairs is bounded by a constant.
However, for general values of k, it is NP-hard to even de-
cide whether all pairs can be simultaneously routed on edge-
disjoint paths [Kar72]. The best currently known approxi-
mation algorithm for the problem, due to Chekuri, Khanna
and Shepherd [CKS06b], achieves an O(

√
n)-approximation

factor, while the best current hardness of approximation
is Ω(log1/2−ǫ n) for any constant ǫ, unless NP is contained
in ZPTIME(npoly log n) [AZ05, ACG+10]. We note that the
standard multicommodity flow LP relaxation for EDP, that
is commonly used in approximation algorithms for network
routing problems, has an integrality gap of Ω(

√
n) [GVY97].

Interestingly, Rao and Zhou [RZ10] have shown a (poly log n)-
approximation algorithm for EDP on graphs where the value
of the global minimum cut is Ω(log5 n), by rounding the
same LP relaxation.

On the other extreme is the Congestion Minimization prob-
lem, where we need to route all source-sink pairs, while
minimizing the edge congestion. The classical randomized
rounding technique of Raghavan and Thompson [RT87] gives
the best currently known approximation algorithm for this
problem, whose approximation factor is O(log n/ log log n).
On the negative side, Andrews and Zhang [AZ07] show that
the problem is hard to approximate to within a factor of

Ω
(

log log n
log log log n

)

unless NP ⊆ ZPTIME(npoly log n).

A problem that lies between these two extremes, and is
a natural framework for studying the tradeoff between the
number of pairs routed and the edge congestion is the Edge
Disjoint Paths with Congestion problem (EDPwC). We say
that an algorithm A achieves a factor α-approximation with



congestion c for EDPwC, iff it routes at least OPT/α of the
demand pairs, and the congestion of this routing is bounded
by c, where OPT is the maximum number of the demand
pairs that can be simultaneously routed on edge-disjoint
paths. In particular, a very interesting question is whether,
by slightly relaxing the capacity constraints, and allowing
a small edge congestion, we can significantly increase the
number of pairs routed.

The randomized rounding algorithm of Raghavan and Thomp-
son [RT87] gives a constant factor approximation for EDPwC,
when the congestion c is allowed to be Ω(log n/ log log n).

For smaller values of c, until recently, only O(n1/c) approx-
imation algorithms have been known [AR01, BS00, KS04].
In a recent breakthrough, Andrews [And10] has shown a ran-

domized algorithm that routes Ω
(

OPT

log61 n

)

pairs with conges-

tionO((log log n)6). In another recent result, Kawarabayashi
and Kobayashi [KK11] have shown an algorithm that routes

Ω
(

OPT

n3/7

)

pairs with congestion 2, thus improving the best

previously known O(
√
n)-approximation for c = 2.

In this paper we show an efficient randomized algorithm,

that routes Ω
(

OPT

log22.5 k log log k

)

demand pairs with conges-

tion at most 14. We note that on the negative side, An-
drews et al. [ACG+10] have shown that for any constant ǫ,

for any 1 ≤ c ≤ O
(

log log n
log log log n

)

, there is no O
(

(logn)
1−ǫ
c+1

)

-

approximation algorithm for EDPwC with congestion c, un-
less NP ⊆ ZPTIME(npoly log n). Therefore, the best approx-
imation factor one may hope to achieve for EDPwC in the
setting where the allowed congestion is bounded by a con-
stant is polylogarithmic.

While our algorithm is guaranteed w.h.p. to route at least
Ω(OPT/poly log k) of the demand pairs with constant con-
gestion, we have no control over the choice of the pairs that
are routed. In some applications it may be useful to be able
to choose the specific pairs for the algorithm to route be-
forehand. While we do not expect to be able to pre-select
an arbitrary collection of the demand pairs to be routed,
under some conditions we can still have some control over
their selection. We show that if the graph G is well-linked
for a given set T of terminals (see a formal definition below),
then we can efficiently find a partition G of the terminals of
T into groups of size poly log k, such that, if we are given
any collection M = {(s1, t1), . . . , (sr, tr)} of demand pairs,
where for each group U ∈ G, the terminals of U appear in
at most one pair in M, then there is an efficient randomized
algorithm that w.h.p. routes all demand pairs in M with
constant congestion.

We then turn to vertex flow sparsifiers. Given a graph
G with a subset T of k vertices called terminals, and a set
D of demands over the set T , let η(G,D) be the minimum
congestion required to fractionally route the demands in D
in graph G. We say that a graph H is a quality-q ver-
tex flow sparsifier for (G, T ) iff T ⊆ V (H), and for any
set D of demands over T , η(G,D) ≤ η(H,D) ≤ qη(G,D).
Flow sparsifiers were first introduced by Moitra [Moi09] and
Leighton and Moitra [LM10]. Their motivation was ob-
taining better approximation algorithms for combinatorial
optimization problems, whose value only depends on the
congestion η(G,D) for various sets D of demands. The
improvement is obtained by running the approximation al-
gorithms on the sparsifier H instead of G, assuming that
|V (H)| << |V (G)|. Several efficient algorithms are now

known for constructing quality-O(log k/ log log k) spasifiers
H with V (H) = T [CLLM10, EGK+10, MM10]. However,
such sparsifiers do not preserve integral routings. For exam-
ple, if we were to solve the EDP problem, or some other rout-
ing problem on graph H , then we are not guaranteed that
we can transform this solution into an integral solution in
the original graph G. This motivates our definition of inte-
gral sparsifiers, that approximately preserve both fractional
and integral routings. Suppose we are given any n-vertex
graph G = (V,E) with a subset T of k vertices called ter-
minals. We say that a graph H is a quality-(q1, q2)-integral
flow sparsifier for G, iff (1) T ⊆ V (H); (2) for any set D of
demands over T , η(H,D) ≤ q1η(G,D) (so in particular if
we scale the demands in D down by factor q1, we can route
them fractionally in H with no congestion), and (3) given
any integral routing P of any set M of pairs of terminals
in graph H with any congestion η, there is an efficient ran-
domized algorithm to find an integral routing P ′ of M in G
with congestion at most q2 · η. We show an efficient algo-
rithm to construct integral sparsifiers H of quality (q1, q2)
with q1 = poly log k, q2 = 31, and |V (H)| = O(d), where d
is the sum of degrees of all terminals.

Other related work.
EDP and its variants have been studied extensively, and

better approximation algorithms are known for several spe-
cial cases. Some examples include planar graphs [Fra85,
KT95, Kle05, CKS05, CKS06a, KK10], trees [GVY97, CMS07],
and expander graphs [LR99, BFU94, BFSU94, KR96, Fri00].

We note that routing problems are somewhat better un-
derstood in directed graphs. For the EDP problem, approx-

imation algorithms achieving a factor Õ
(

min
{

n2/3,
√
m
})

approximation are known in directed graphs, where m is the
number of graph edges [CK03, VV04, Kle96], and the prob-

lem is hard to approximate to within a factor of Ω
(

m1/2−ǫ
)

for any constant ǫ [GKR+99]. The randomized rounding
technique of Raghavan and Thompson [RT87] gives a fac-
tor O(log n/ log log n)-approximation for directed Conges-
tion Minimization, and the problem is hard to approximate
to within a factor of Ω(log n/ log log n), unless NP is con-
tained in ZPTIME(npoly log n) [AZ08, CGKT07]. As for EDPwC,

the randomized rounding technique gives an O(cn1/c) ap-
proximation [KS04, Sri97] for any congestion bound c. On

the other hand, for any 1 ≤ c ≤ O
(

logn
log logn

)

, there is

no nΩ(1/c)-approximation algorithm for the problem unless
NP ⊆ ZPTIME(npoly log n) [CGKT07].

Our results and techniques.
Our main result is summarized in the following theorem.

Theorem 1 There is a randomized polynomial-time algo-
rithm, that, given an undirected graph G and a set M =
{(s1, t1), . . . , (sk, tk)} of k demand pairs, w.h.p. finds a col-

lection P of paths, connecting Ω
(

OPT

log22.5 k log log k

)

of the de-

mand pairs with congestion at most 14, where OPT is the
maximum number of the demand pairs that can be simulta-
neously routed on edge-disjoint paths in G.

Our algorithm in fact routes Ω
(

OPTLP

log22.5 k log log k

)

demand

pairs, where OPTLP is the value of the optimal solution to



the standard multicommodity flow linear programming re-
laxation for the problem. Since the integrality gap of this
LP relaxation is Ω(

√
n) for EDP when no congestion is al-

lowed, our result shows that the integrality gap improves
from polynomial to polylogarithmic if we allow a congestion
of 14.

A basic notion used throughout the paper is that of well-
linkedness. Well-linkedness and its variations have been
used extensively in previous work [CKS05, RZ10, And10].
We say that a graph G = (V,E) is α-well-linked1, iff for any
partition (A,B) of V , |E(A,B)| ≥ α·min {|T ∩A|, |T ∩B|}.

Suppose we are given a graph G = (V,E), a set T ⊆ V of
vertices called terminals, a partition G of T , and a collection
M = {(s1, t1), . . . , (sr, tr)} of demands pairs, where for each
1 ≤ i ≤ r, si, ti ∈ T . We say that the demand set M is
(1, G)-restricted, iff for every group U ∈ G, at most one pair
(si, ti) contains a terminal of U (and only one terminal of U
may participate in this pair). Our next theorem allows us to
pre-select, to some extent, the demand pairs to be routed,
if the set T of terminals is well-linked in G.

Theorem 2 Suppose we are given an n-vertex graph G =
(V,E), a subset T ⊆ V of k0 vertices called terminals, such
that G is α0-well-linked for T , and an integer c ≥ 1. Then
we can efficiently find a partition G of the terminals in T
into groups of size O

(

(log k0)
21+11/c

α0

)

, such that, given any

set M of demand pairs over T , where M is (1, G)-restricted,
there is an efficient randomized algorithm that w.h.p. finds
a routing of all pairs in M with congestion at most 14c+1.

In particular, we can achieve congestion 15 with group size
O(log32 k0/α0), and if the group size is O(log22 k0/α0), then
the congestion is 155. Finally, the next theorem provides an
algorithm for constructing integral sparsifiers.

Theorem 3 There is an efficient algorithm that constructs,
for any graph G and a set T of k terminals, an integral
sparsifier H of quality (q1, q2), with q1 = poly log k, q2 = 31,
and |V (H)| = O(d), where d is the sum of degrees of all
terminals.

We now give an overview of our techniques and compare
them to previous work. The starting point of the proof of
Theorem 1 is the same as in the work of [CKS05, RZ10,
And10]. We start with the standard LP-relaxation for the
EDP problem on graph G, and we compute a partition of
G into disjoint induced sub-graphs G1, . . . , Gr. For each
1 ≤ i ≤ r, we compute a subset Mi ⊆ M of demand pairs
that are contained in Gi, such that Gi is well-linked for
the corresponding set Ti of terminals, containing all ver-
tices that participate in the pairs in Mi, and moreover,
∑r

i=1 |Mi| ≥ Ω
(

|M|

log2 k

)

. An algorithm for efficiently com-

puting such a decomposition was shown by Chekuri, Khanna
and Shepherd [CKS05]. From now on, it is enough to find
a good routing in each resulting sub-instance Gi separately.
To simplify notation, let G denote any such sub-instance
Gi, let M denote the set Mi of demand pairs, and let T
denote the corresponding set Ti of terminals. Since graph G

1Our definition of well-linkedness is similar to the notion of
cut well-linkedness of [CKS05] (though we should say “set T
of terminals is α-well linked in graph G” using their termi-
nology).

is well-linked for T , it has good expansion properties with
respect to T . However, graph G may be far from being an
expander, since it may contain many vertices besides the
terminals. Intuitively, a natural approach is to embed an
expander X, whose vertex set is T , into the graph G. Each
edge e = (ti, tj) of the expander is mapped to a path Pe con-
necting ti to tj in G, and the congestion of the embedding
is the maximum, over all edges e′ ∈ E(G), of the number
of paths in {Pe | e ∈ E(X)}, containing e′. If we could find
a low-congestion embedding of an expander X into G, then
we could use existing algorithms for routing on expanders to
find a low-congestion routing of a polylogarithmic fraction
of the demand pairs in X, which in turn would give us a
low-congestion routing of the same demand pairs in G. This
general framework was first suggested by Chekuri, Khanna
and Shepherd [CKS05], who proposed to embed a crossbar
into the input graph G. Intuitively, a crossbar is a graph
for which efficient algorithms to compute integral routings
are known. In particular, expander graphs can be viewed
as a special case of crossbars. This general framework has
been used Rao and Zhou [RZ10] and by Andrews [And10].
A very useful tool in embedding an expander into any well-
linked graph is the cut-matching game of Khandekar, Rao
and Vazirani [KRV06]. In this game, we have two players:
a cut player, who wants to construct an expander X, and
a matching player, who tries to delay its construction. We
start with X containing only the set V (X) of 2N vertices
and no edges. In each iteration i, the cut player computes
a partition (Ai, Bi) of V (X) with |Ai| = |Bi| = N , and the
matching player computes a matching Mi between Ai and
Bi. The edges of Mi are then added to X. Khandekar, Rao
and Vazirani [KRV06] have shown that no matter what the
matching player does, there is a strategy for the cut player
(that we denote by AKRV), such that after O(log2 N) itera-
tions, X becomes an expander. A natural approach to con-
structing an expander X and embedding it into the graph
G using the cut-matching game, is the following. We use
the algorithm AKRV for the cut player, while the match-
ing player is simulated by finding appropriate flows in G.
Specifically, we let V (X) = T be the set of vertices of X.
If (Ai, Bi) is the bi-partition of V (X) computed by the cut
player, then we can try to send |Ai| = |Bi| flow units from
the terminals of Ai to the terminals of Bi in graph G, and
use the resulting flow to define the matching Mi. This pro-
cedure can be used to both construct the expander X, and
embed it into G. In fact, Khandekar, Rao and Vazirani use
precisely this procedure in their algorithm for the sparsest
cut problem.

One problem with this approach is that we need to com-
pute Θ(log2 k) different flows in graph G, and together they
may cause a poly-logarithmic congestion. Moreover, the par-
titions that the cut player computes depend on the match-
ings computed in previous iterations, so we cannot attempt
to route all these flows simultaneously in graph G with low
congestion. Rao and Zhou [RZ10] have proposed the follow-
ing approach to overcome this difficulty. Let γ = Θ(log2 k)
be the number iterations in the algorithm of [KRV06]. We
can build γ graphs G1, . . . , Gγ , where for each 1 ≤ i ≤ γ,
V (Gi) = V (G), and the sets E(G1), . . . , E(Gγ) of edges form
a partition of the edges in E(G). If we can construct the
family G1, . . . , Gγ of graphs so that each graph Gi is still
well-linked for the terminals, then we can now construct the
expander X and embed it into G by using the cut-matching



game of [KRV06], where in each iteration i, matching Mi

is computed by finding a flow from Ai to Bi in graph Gi.
Since the edges of each set Mi are embedded into distinct
graphs Gi, the congestion does not accumulate, and we ob-
tain a good embedding of X into G. In order to construct
the graphs Gi, Rao and Zhou use a random procedure where
each edge e ∈ E is added to one of the graphs Gi uniformly
at random. However, this procedure only works if the value
of the global minimum cut in G is at least polylogarithmic.
In order to overcome this difficulty, Andrews [And10] uses
Raecke’s tree decomposition technique [Räc02]. Roughly
speaking, he decomposes the graph G into a collection C
of disjoint clusters, where each cluster C ∈ C has some use-
ful properties that allow us to find good routings across the
cluster C efficiently. Moreover, if H is the graph obtained
from G by contracting each cluster C ∈ C into a single ver-
tex, then H is both well-linked for the terminals, and has a
large global minimum cut, so we can use the algorithm of
Rao and Zhou to complete the routing.

Our algorithm uses a slightly different way to embed an
expander into G, somewhat similar to the one in [RZ10].
Specifically, each vertex t ∈ V (X) is represented by a con-
nected component Ct in graph G, that contains the terminal
t. Each edge e = (t, t′) ∈ E(X) is represented by a path Pe

connecting some vertex v ∈ Ct to some vertex v′ ∈ Ct′ in
G. We ensure that each edge e′ ∈ E(G) only participates
in a constant number of the components {Ct}t∈V (X) and

paths {Pe}e∈E(X). Once we find such an embedding, we use
vertex-disjoint routing in the expander X, that gives a
low edge congestion routing in the original graph G.

A major point of our departure from previous work is in
how the expander X is constructed and embedded into G.
A central notion in our algorithm is that of a good family
of vertex sets. Let k′ = k/poly log k be a parameter, where
k = |M| is the number of the demand pairs. For any subset
S ⊆ V of vertices, let out(S) be the set of edges with exactly
one endpoint in S. Given a subset S ⊆ V of vertices of G,
we say that S is α-well-linked, iff the graph G[S] is α-well-
linked for the set out(S) of edges. (More formally, subdivide
every edge e ∈ out(S) with a new vertex te, and consider
the sub-graph HS of the resulting graph induced by S ∪ T ′,
where T ′ = {te | e ∈ out(S)}. We say that the set S is α-
well-linked iff the graph HS is α-well-linked for the set T ′

of terminals). Similarly, if we are given a subset Γ ⊆ out(S)
of edges, we say that S is α-well-linked for Γ iff the graph
G[S] is α-well-linked for the set Γ of edges.

We say that a subset S ⊆ G of vertices is a good subset, iff
there is a collection Γ ⊆ out(S) of k′ edges, such that S is
α-well-linked for Γ (where α = 1/ poly log k), and moreover
the edges in Γ can send |Γ| flow units in G to the terminals
in T with constant edge congestion. A family F of vertex
subsets is a good family iff it contains γ mutually disjoint
good vertex subsets S1, . . . , Sγ , where γ = O(log2 k) is the
parameter from the cut-matching game of [KRV06].

Suppose we find a good family F = {S1, . . . , Sγ} of vertex
subsets. For each 1 ≤ j ≤ γ, let Γj ⊆ out(Sj) be the
corresponding subset Γ of edges. In order to construct the
expander X, we select a subset T ′ = {t1, . . . , tk′} ⊆ T of
k′ terminals, and we let V (X) = T ′. For each 1 ≤ i ≤ k′,
we then construct a connected component Ci in graph G,
that contains, for each 1 ≤ j ≤ γ, a distinct edge ei,j ∈ Γj ,
and also contains the terminal ti. For each 1 ≤ j ≤ γ, the
edges e1,j , . . . , ek′,j are all distinct, and we view the edge

ei,j as the copy of terminal ti for the set Sj . We also ensure
that each edge of graph G only participates in a constant

number of the components {Ci}k
′

i=1. For each i, component
Ci is viewed as representing the vertex ti ofX in graph G. In
order to construct the expander X, we use the cut-matching
game of [KRV06], where in each iteration 1 ≤ j ≤ γ, we use
the sub-graph G[Sj ] to route some matching Mj between
the copies of the terminals in Aj and Bj for the set Sj .
This ensures that the congestion does not accumulate across
different iterations. Finally, we show an efficient algorithm
for finding a good family F of vertex subsets.

Organization.
Most of this paper is devoted to the proof of our main

result, Theorem 1. We start with preliminaries in Section 2,
and provide the proof of Theorem 1 in Section 3. The proofs
of Theorems 2 and 3 appear in Sections 4 and 5 respectively.

2. PRELIMINARIES AND NOTATION
In this section we provide notation and basic results that

we use to prove Theorem 1. We assume that we are given
an undirected n-vertex graph G = (V,E), and a set M =
{(s1, t1), . . . , (sk, tk)} of k source-sink pairs, that we also
refer to as demand pairs. We denote by T the set of vertices
that participate in pairs in M, and we call them terminals.
Let OPT denote the maximum number of demand pairs that
can be simultaneously routed via edge-disjoint paths. Our
goal is to connect Ω(OPT/poly log k) distinct pairs in M
with paths that cause congestion at most 14.

We assume w.l.o.g. that every terminal in T participates
in exactly one source-sink pair. Otherwise, if a terminal v ∈
T participates in r > 1 source-sink pairs, we can add r new
terminals t1(v), . . . , tr(v), connect each of them to v with
an edge, and use a distinct terminal in {t1(v), . . . , tr(v)}
for each source-sink pair in which v participates. We also
assume w.l.o.g. that the maximum vertex degree in G is
4, and that the degree of every terminal is 1. In order to
achieve this, we perform the following simple transformation
of graph G. If v is a terminal, whose degree is greater than
1, then we add a new vertex u to graph G that connects
to v with an edge, and becomes a terminal instead of v.
Next, we process the non-terminal vertices one-by-one. Let
v be any such vertex, and assume that the degree of v is
d > 4. Let u1, . . . , ud ∈ V be the neighbors of v. We
replace v with a d× d grid Zv , and denote by u′

1, . . . , u
′
d the

vertices in the first row of Zv. For each 1 ≤ i ≤ d, we add
an edge (ui, u

′
i). It is easy to verify that any solution to

the EDP problem in the original graph can be transformed
into a feasible routing of the same value and no congestion
in the new graph, and any routing in the new graph with
congestion η can be transformed into a routing in the original
graph with the same congestion. Therefore, we assume from
now on that the maximum vertex degree in G is 4, the degree
of every terminal is 1, and every terminal participates in one
source-sink pair.

For any subset S ⊆ V of vertices, we denote by outG(S) =
EG(S, V \ S), and by EG(S) the subset of edges with both
endpoints in S. When clear from context, we omit the
subscript G. Throughout the paper, we say that a ran-
dom event succeeds w.h.p., if the probability of success is
(1− 1/ poly(n)).

Let P be any collection of paths in graph G. We say



that paths in P cause congestion η in G, iff for every edge
e ∈ E at most η paths in P contain e. Assume that we are
given a subset S ⊆ V of vertices and a subset E′ ⊆ E of
edges of G. We say that a collection P of paths connects the
vertices of S to the edges of E′ with congestion η, and denote
P : S ;η E′, iff P = {Pv | v ∈ S}, where path Pv has v as
its first vertex and some edge of E′ as its last edge, and P
causes congestion at most η in G. In particular, each edge in
E′ serves as the last edge on at most η paths in P . Similarly,
given two subsets S, S′ of vertices, if P is a collection of
paths, connecting every vertex of S to some vertex of S′

with overall congestion at most η, then we denote this by
P : S ;η S′. Finally, if |S| = |S′| = |P|, and each path in
P connects a distinct vertex of S to a distinct vertex of S′,

then we denote this by P : S
1:1
;η S′. Similarly, we say that

a flow F connects the vertices of S to the edges of E′ with
congestion η, and denote F : S ;η E′, iff each vertex v ∈ S
sends one flow unit to the edges in E′, and the flow F causes
congestion at most η in G. Notice that each flow-path in F
starts at a vertex of S and terminates at some edge e ∈ E′.
We view edge e as part of the flow-path, so in particular
each edge in E′ receives at most η flow units.

We will often be interested in a scenario where we are
given a subset S of vertices and two subsets E1, E2 ⊆ out(S)
of edges. We say that the flow F : E1 ;η E2 is contained in
S iff every flow-path is completely contained in G[S], except
for its first and last edges, that belong to out(S). Similarly,
we say that a set P : E1 ;η E2 of paths is contained in S
iff all inner edges on every path of P belong to G[S].

Given a graph G = (V,E), and a set T ⊆ V of terminals,
a set D of demands is a function D : T × T → R

+, that
specifies, for every unordered pair t, t′ ∈ T , a demand Dt,t′ .
We say that the set D of demands is γ-restricted, iff for
each t ∈ T , the total demand

∑

t′∈T Dt,t′ ≤ γ. Given a
partition G of the set T of terminals, we say that the set D
of demands is (γ,G)-restricted, iff for each U ∈ G, the total
demand

∑

t∈U

∑

t′∈T Dt,t′ ≤ γ. We say that the set D of
demands is integral iff Dt,t′ is integral for each t, t′ ∈ T .

Given any set D of demands, a fractional routing of D is a
flow F , where every unordered pair t, t′ ∈ T sends Dt,t′ flow
units to each other. Given an integral set D of demands,
an integral routing of D is a collection P of paths, where
for each unordered pair (t, t′) ∈ T , there are Dt,t′ paths
connecting t to t′ in P . The congestion of this routing is the
congestion caused by the set P of paths in G. Observe that
any matching M on the set T of terminals defines a set D
of demands where Dt,t′ = 1 for (t, t′) ∈ M and Dt,t′ = 0
otherwise. We do not distinguish between the matching M
and the set D of demands.

Sparsest Cut and the Flow-Cut Gap.
Suppose we are given a graph G = (V,E), with non-

negative weights wv on vertices v ∈ V , and a subset T ⊆ V
of k terminals, such that for all v 6∈ T , wv = 0. For any sub-
set S ⊆ V of vertices, let w(S) =

∑

v∈S w(v). The sparsity

of a cut (S, S) in G is Φ(S) = |E(S,S)|

w(S)·w(S)
, and the value of the

sparsest cut in G is defined to be: Φ(G) = minS⊂V {Φ(S)}.
In the sparsest cut problem, the input is a graph G with
non-negative vertex weights, and the goal is to find a cut of
minimum sparsity. Arora, Rao and Vazirani [ARV09] have
shown an O(

√
log k)-approximation algorithm for the spars-

est cut problem. We will often work with a special case of
the sparsest cut problem, where for each t ∈ T , wt = 1.

A problem dual to sparsest cut is the maximum concurrent
flow problem. For the case where the weights of all terminals
are unit, the goal in the maximum concurrent flow problem
is to find the maximum value λ, such that every pair of
terminals can send λ flow units to each other simultaneously
with no congestion. The flow-cut gap is the maximum ratio,
in any graph, between the value of the minimum sparsest
cut and the maximum concurrent flow. The value of the
flow-cut gap in undirected graphs, that we denote by β(k)
throughout the paper, is Θ(log k) [LR99, GVY95, LLR94,
AR98]. Therefore, if Φ(G) = α, then every pair of terminals
can send α/β(k) flow units to each other with no congestion.

We will use a sightly different, but also standard, and
roughly equivalent, definition of sparsity. Given any parti-
tion (S, S) of V , the sparsity of the cut (S, S) is Ψ(S, S) =

|E(S,S)|

min{w(S),w(S)} . We then denote: Ψ(G) = minS⊂V

{

Ψ(S, S)
}

.

It is easy to see that 2Ψ(G)/k ≥ Φ(G) ≥ Ψ(G)/k. There-
fore, if Ψ(G) = α, then Φ(G) ≥ α/k, and every pair of
terminals can send α

kβ(k)
flow units to each other with no

congestion. Equivalently, every pair of terminals can send
1/k flow units to each other with congestion at most β(k)/α.
Moreover, any matching on the set T of terminals can be
fractionally routed with congestion at most 2β(k)/α. In the
rest of the paper, we will use the latter definition of sparsity,
and we will use the term cut sparsity and the value of spars-
est cut to denote Ψ(S, S) and Ψ(G) respectively. The algo-
rithm of [ARV09] can still be used to obtain a cut of sparsity
at most O(

√
log k) · Ψ(G) in G. We denote by AARV this

algorithm and by αARV(k) = O(
√
log k) its approximation

factor.

Routing on Expanders.
We say that a multi-graph G = (V,E) is an α-expander, iff

min S⊆V :

|S|≤|V |/2

{

|E(S,S)|
|S|

}

≥ α. There are many algorithms for

routing on expanders, e.g. [LR99, BFU94, BFSU94, KR96,
Fri00], which give different types of guarantees. For exam-
ple, Frieze [Fri00] has shown that if G is an r-regular graph
(where r is a constant) with strong enough expansion prop-
erties, then there is an efficient randomized algorithm for
routing any matching on any subset of Ω(n/ log n) of its
vertices via edge-disjoint paths. We need a slightly different
type of guarantee: the routing should be on vertex-disjoint
paths, and the graph degree may be super-constant (but still
bounded). Rao and Zhou [RZ10] give such an algorithm,
which is summarized in the next theorem.

Theorem 4 (Theorem 7.1 in [RZ10]) Let G = (V,E)
be any n-vertex d-regular α-expander. Assume further that
n is even, and that the vertices of G are partitioned into
n/2 disjoint demand pairs M =

{

(s1, t1), . . . , (sn/2, tn/2)
}

.

Then there is an efficient algorithm that routes Ω
(

αn
log n·d2

)

of the demand pairs on vertex-disjoint paths in G.

The Cut-Matching Game.
We use the cut-matching game of Khandekar, Rao and

Vazirani [KRV06]. In this game, we are given a set V of
N vertices, where N is even, and two players: a cut player,
whose goal is to construct an expander X on the set V of



vertices, and a matching player, whose goal is to delay its
construction. The game is played in iterations. We start
with the graph X containing the set V of vertices, and no
edges. In each iteration j, the cut player computes a bi-
partition (Aj , Bj) of V into two equal-sized sets, and the
matching player returns some perfect matching Mj between
the two sets. The edges of Mj are then added to X. Khan-
dekar, Rao and Vazirani have shown that there is a strategy
for the cut player, guaranteeing that after O(log2 N) itera-
tions we obtain a 1

2
-expander w.h.p. Subsequently, Orecchia

et al. [OSVV08] have shown the following improved bound:

Theorem 5 ([OSVV08]) There is a probabilistic algorithm
for the cut player, such that, no matter how the matching
player plays, after γCMG(N) = O(log2 N) iterations, graph
X is an Ω(logN)-expander, with constant probability.

Well-Linked Decompositions.
Well-linked decompositions have been used extensively in

algorithms for network routing, e.g. in [Räc02, CKS04,
CKS05, RZ10, And10]. We define a specific type of well-
linkedness that our algorithm uses and give an algorithm
for computing the corresponding well-linked decomposition.

Definition 1 Given a graph G, a subset S of its vertices,
and a parameter α > 0, we say that S is α-well-linked, iff for
any partition (A,B) of S, if we denote by TA = out(A) ∩
out(S), and by TB = out(B) ∩ out(S), then |E(A,B)| ≥
α ·min {|TA|, |TB |}.

We also need a more general notion of well-linkedness that
we define below. Intuitively, it handles subsets S of vertices,
where | out(S)|may be large, but we only need to route small
amounts of flow across S.

Definition 2 Let S be any subset of vertices of a graph G.
For any integer k > 0 and for any 0 < α < 1, we say that
set S is (k, α)-well-linked iff for any pair T1, T2 ⊆ out(S)
of disjoint subsets of edges, with |T1| + |T2| ≤ k, for any
partition (X,Y ) of S with T1 ⊆ out(X) and T2 ⊆ out(Y ),
|EG(X,Y )| ≥ α ·min {|T1|, |T2|}.

Note that if | out(S)| ≤ k, then set S is (k, α)-well-linked
iff it is α-well-linked, and the two definitions of well-linkedness
become equivalent. Notice also that if S is (k, α)-well-linked,
then for any subset T ⊆ out(S) of at most k edges, any
matching on T can be fractionally routed inside S with con-
gestion at most 2β(k)/α. This is since we can set up an
instance of the sparsest cut problem on graph G[S] ∪ T ,
where the edges of T serve as terminals. Since S is (k, α)-
well-linked, the value of the sparsest cut is at least α, and so
any matching on T can be routed with congestion at most
2β(k)/α.

Assume now that S is not (k, α)-well-linked. Then there
must be a partition (X,Y ) of S, and two subsets T1 ⊆
out(X)∩ out(S), T2 ⊆ out(Y )∩ out(S) with |T1|+ |T2| ≤ k,
such that |E(X,Y )| < α · min {|T1|, |T2|}. We say that
(X,Y ) is a (k, α)-violating cut for S.

Given a subset S of vertices of G, we would like to find a
partition W of S, such that every set in W ∈ W is (k, α)-
well-linked. We could do so using the standard well-linked
decomposition procedures, for example similar to those used

in [Räc02, CKS05]. However, in order to do so, we need to
be able to check whether a given subset W of vertices is
(k, α)-well-linked, and if not, find a (k, α)-violating cut effi-
ciently. We do not know how to do this, even approximately.
Therefore, we will assume for now that we are given an or-
acle that finds a (k, α)-violating cut in a given subset of
vertices, if such a cut exists. We describe the decomposition
procedure and bound the number of edges

∑

W∈W | out(W )|
in the resulting decomposition. When we use this decompo-
sition later in the algorithm, we will be interested in routing
small amounts of flow (up to k) across the clusters of the de-
composition. Whenever we will be unable to route this flow,
we will naturally obtain a (k, α)-violating cut. Therefore,
our algorithm itself will serve as an oracle to the decomposi-
tion procedure. We note that in the final decomposition W,
not all sets W ∈ W may be (k, α)-well-linked, but we will
be able to route the flow that we need to route across these
clusters, and this is sufficient for us. We now describe the
oracle-based decomposition procedure and analyze it.

We are given as input a subset S of vertices of G, an
integer k, and a parameter 0 < α < 1. Throughout the
decomposition procedure, we maintain a partition W of S,
and at the beginning, W = {S}. The algorithm proceeds as
follows. As long as not all sets in W are (k, α)-well-linked,
our oracle computes a (k, α)-violating partition (X,Y ) of
one of the sets W ∈ W. We then remove W from W and
add X and Y to W instead. In the next theorem, we bound
∑

W∈W | out(W )|.

Theorem 6 Let k > 8, and denote γ = γCMG(k) = Θ(log2 k).
Let α(k) = 1

211·γ·log k
, and let W be any partition of S pro-

duced over the course of the above algorithm. Then
∑

W∈W | out(W )| ≤ | out(S)|
(

1 + 1
64γ

)

.

We emphasize that the bound on
∑

W∈W | out(W )| holds
for any partition produced over the course of the algorithm,
and not just the final partition.

Proof. The proof uses a standard charging scheme. For
simplicity, we denote α = α(k). Consider some iteration of
the algorithm, and suppose the oracle has found a (k, α)-
violating partition (X,Y ) of some set W in the current
partition. Let TX = out(X) ∩ out(W ), TY = out(Y ) ∩
out(W ), and assume w.l.o.g. that |TX | ≤ |TY | (note that
it is possible that |TX | > k). We charge the edges of TX

evenly for the edges in E(X,Y ). Specifically, if |TX | ≥ k/2,
then |E(X,Y )| ≤ αk/2 must hold, and the charge to each
edge in TX is at most αk

2|TX |
≤ αk

| out(X)|
, since | out(X)| =

|TX |+ |E(X,Y )| ≤ 2|TX |. Otherwise, |E(X,Y )| ≤ α · |TX |,
and the charge to each edge of TX is at most α. In any
case, | out(X)| = |TX | + |E(X,Y )| < 2| out(W )|/3, and
| out(Y )| ≤ | out(W )|.

Consider some edge e = (u, v) ∈ ⋃

W∈W out(W ). We
analyze the charge to edge e. We first bound the charge via
the vertex u. Let i1 ≤ i2 ≤ · · · ≤ iℓ be the iterations of the
decomposition procedure in which e was charged via vertex
u, and for each 1 ≤ j ≤ ℓ, let zj = | out(W )|, where W is
the cluster to which u belonged at the end of iteration ij .
Note that for each 1 < j ≤ ℓ, zj < 2zj−1/3. Let j∗ be the
largest index for which zj∗ > k/2. Then the total charge to



e via u in iterations i1, . . . , ij∗ is at most:

αk

z1
+

αk

z2
+ · · ·+ αk

zj∗

≤ αk

zj∗

(

1 + (2/3) + (2/3)2 + · · ·+ (2/3)j
∗−1

)

<
3αk

zj∗
≤ 6α

In each subsequent iteration, the charge to edge e was
at most α, and the number of such iterations is bounded
by 2 log k. So the charge to edge e via vertex u is at most
6α + 2α log k < 4α log k, and the total charge to edge e is
at most 8α log k ≤ 1

28γ
. This however only accounts for the

direct charge. For example, some edge e′ 6∈ out(S), that was
first charged to the edges in out(S), can in turn be charged
for some other edges. We call such charging indirect. If
we sum up the indirect charge for every edge e ∈ out(S),
we obtain a geometric series, and so the total direct and
indirect amount charged to every edge e ∈ out(S) is at most

1
128γ

. We conclude that
∑

W∈W | out(W )| ≤ |S|
(

1 + 1
64γ

)

.

(The additional factor of 2 is due to the fact that each edge
of the partition is counted twice in

∑

W∈W | out(W )| - once
for each its endpoint).

Let αWL(k) = α(k)/αARV(k) = Ω(1/(log3.5 k)). If | out(S)| ≤
k, then we can obtain a (k, αWL(k))-well-linked decomposi-
tion of S efficiently, by using the algorithm AARV for Spars-
est Cut as our oracle: In each iteration, for each W ∈ W,
we apply the algorithm AARV to the corresponding instance
of the sparsest cut problem (where the edges of out(W ) are
viewed as terminals). If algorithm AARV returns a (k, α(k))-
violating cut (X,Y ) for any setW ∈ W, then we can proceed
with the decomposition procedure as before. Otherwise, we
are guaranteed that each set W ∈ W is αWL(k)-well-linked.
We therefore have the following corollary.

Corollary 1 Let S be any subset of vertices of G, such that
| out(S)| ≤ k. Then we can efficiently find a partition W
of S, such that for each W ∈ W, | out(W )| ≤ k, and W
is αWL(k) = 1

211·αARV(k)·γCMG(k)·log k
= Ω(1/(log3.5 k))-well-

linked. Moreover,
∑

W∈W | out(W )| ≤ | out(S)|
(

1 + 1
64γCMG(k)

)

.

This finishes the description of the well-linked decompo-
sition procedure. Throughout the paper, we use α(k) =

1
211·γCMG(k)·log k

to denote the parameter from Theorem 6,

and αWL(k) = α(k)/αARV(k) to denote the parameter from
Corollary 1.

The Grouping Technique.
The grouping technique was first introduced by Chekuri,

Khanna and Shepherd [CKS04], and has since been widely
used in algorithms for network routing, to boost network
connectivity and well-linkedness parameters (see e.g. [CKS05,
RZ10, And10]). We summarize it in the following theorem.

Theorem 7 Suppose we are given a connected graph G =
(V,E), with weights w(v) on vertices v ∈ V , and a parameter
p. Assume further that for each v ∈ V , 0 ≤ w(v) ≤ p. Then
we can find a partition G of the vertices in V , and for each
group U ∈ G, find a tree TU ⊆ G containing all vertices of
U , such that the trees {TU}U∈G are edge-disjoint, and for
each U ∈ G, p ≤ ∑

v∈U w(v) ≤ 3p.

We will sometimes use the grouping theorem in slightly
different settings. The first such setting is when we are given
a subset T ⊆ V of vertices called terminals, and we would
like to group them into groups of cardinality at least p and
at most 3p. In this case we will think of all non-terminal
vertices as having weight 0, and terminal vertices as having
weight 1. Instead of finding a partition G of all vertices,
we will be looking for a partition G′ of the set T of ter-
minals. This partition is obtained from G by ignoring the
non-terminal vertices. Another setting is when we are given
a subset E′ ⊆ E of edges, and we would like to find a group-
ing G of these edges into groups of at least p and at most
3p edges. As before, we would also like to find, for each
group U ∈ G, a tree TU containing all edges in U , and we re-
quire that the trees {TU}U∈G are edge-disjoint. This setting
can be reduced to the previous one, by sub-dividing each
edge e ∈ E′ by a terminal vertex. It is easy to verify that
Theorem 7 can be applied in this setting as well.

3. THE ALGORITHM
This section is dedicated to proving Theorem 1. Our

starting point is similar to that used in previous work on
the problem [CKS04, CKS05, RZ10, And10]: namely, we
use the standard multicommodity flow LP-relaxation for the
EDP problem to partition our graph into several disjoint
sub-graphs, that are well-linked for their respective sets of
terminals, and solve the problem separately on each such
sub-graph. Recall that the standard LP-relaxation for EDP
is defined as follows. For each 1 ≤ i ≤ k, we have an indica-
tor variable xi for whether or not we route the pair (si, ti).
Let Pi denote the set of all paths connecting si to ti in G.
The LP relaxation is defined as follows.

(LP ) max
∑k

i=1 xi

s.t.
∑

P∈Pi
f(P ) ≥ xi ∀1 ≤ i ≤ k

∑

P :e∈P f(P ) ≤ 1 ∀e ∈ E

0 ≤ xi ≤ 1 ∀1 ≤ i ≤ k

f(P ) ≥ 0 ∀1 ≤ i ≤ k,∀P ∈ Pi

While this LP has exponentially many variables, it can be
efficiently solved using standard techniques, e.g. by using
an equivalent polynomial-size LP formulation. Throughout
the rest of the paper, we denote by OPT the value of the
optimal solution to the LP. Clearly, the value of the optimal
solution to the EDP problem instance is at most OPT. We
need the following definition.

Definition 3 Given a graph G = (V,E), and a subset T ⊆
V of vertices called terminals, we say that T is flow-well-
linked in G, iff any matching M on T can be fractionally
routed with congestion at most 2 in G.

The next theorem follows from the work of Chekuri, Khanna
and Shepherd [CKS04, CKS05], and its proof appears in the
full version of the paper.

Theorem 8 Suppose we are given a graph G = (V,E) and a
set M of k source-sink pairs in G. Then we can efficiently
partition G into a collection G1, . . . , Gℓ of vertex-disjoint
induced sub-graphs, and compute, for each 1 ≤ i ≤ ℓ, a



collection Mi ⊆ M of source-sink pairs contained in Gi,
such that

∑ℓ
i=1 |Mi| = Ω(OPT/ log2 k), and moreover, if for

each 1 ≤ i ≤ ℓ, Ti denotes the set of terminals participating
in pairs in Mi, then Ti ⊆ V (Gi), and Gi is flow-well-linked
for Ti.

We now proceed to solve the problem on each one of the
graphs Gi separately. In order to simplify the notation, we
denote the graph Gi by G, the set Mi of the source-sink
pairs byM, and the set of terminals by T . For simplicity, we
denote |M| = k. Recall that G is flow-well-linked for T , the
degree of every terminal in T is 1, and the maximum vertex
degree in G is at most 4. It is now enough to prove that

we can route Ω
(

k
log20.5 k log log k

)

demand pairs in M with

congestion at most 14. We also assume that k > k0, where
k0 is a large enough constant: otherwise, we can simply pick
any source-sink pair (s, t) ∈ M, connect it with any path P
and output this as a solution. In particular, we will assume
that k > log24 k, and γCMG(k) = Θ(log2 k) > 20.

Legal Contracted Graph.
Let γ = γCMG(k) = Θ(log2 k). We use a parameter k1 =

k
192γ3 log γ

= Ω
(

k
log6 k log log k

)

. We maintain, throughout

the algorithm, a graph G′, obtained from G by contracting
some subsets of non-terminal vertices of G. We say that G′

is a legal contracted graph for G, iff the following conditions
hold:

• The set V (G′) is partitioned into two subsets, V1 ⊆
V (G) containing the original vertices of G, and V2 =
V (G′) \ V1, containing super-nodes vC , for C ⊆ V (G).
The subsets V1 and {C}vC∈V2

of vertices of G are all
pairwise disjoint, and T ⊆ V1.

• Graph G′ can be obtained from graph G by contracting
each cluster in set {C | vC ∈ V2} into the super-node
vC (we delete all self-loops, but we do not delete par-
allel edges).

• For each super-node vC ∈ V2, | outG(C)| ≤ k1, and the
set C is αWL(k)-well-linked in graph G.

Notice that graph G′ may contain parallel edges, and it
remains flow-well-linked for the set T of terminals. Also,
since the maximum vertex degree in G is 4, the maximum
vertex degree in G′ is at most k1, and every terminal has
degree 1. Every edge in graph G′ corresponds to some edge
in the original graph G, and we will not distinguish between
them. In particular, for any vertex subset S′ ⊆ V (G′), if
S ⊆ V (G) is the corresponding subset of vertices in G, where
every super-node vC ∈ S′ ∩ V2 is replaced by the vertices of
C, then there is a one-to-one mapping between outG′(S′)
and outG(S), and we will identify the edges in these two
sets, that is, outG′(S′) = outG(S). We need the following
simple claim.

Claim 1 If G′ is a legal contracted graph for G, then G′ \T
contains at least k/6 edges.

Proof. For each terminal t ∈ T , let et be the unique
edge adjacent to t in G′, and let ut be the other endpoint of
et. We partition the terminals in T into groups, where two
terminals t, t′ belong to the same group iff ut = ut′ . Let G be
the resulting partition of the terminals. Since the degree of

every vertex in G′ is at most k1, each group U ∈ G contains
at most k1 terminals. Next, we partition the terminals in T
into two subsets X, Y , where |X|, |Y | ≥ k/3, and for each
group U ∈ G, either U ⊆ X, or U ⊆ Y holds. It is possible
to find such a partition by greedily processing each group
U ∈ G, and adding all terminals of U to one of the subsets
X or Y , that currently contains fewer terminals. Finally,
we remove terminals from set X until |X| = k/3, and we
do the same for Y . Since graph G′ is flow-well-linked for
the terminals, it is possible to route k/3 flow units from
the terminals in X to the terminals in Y , with congestion
at most 2. Since no group U is split between the two sets
X and Y , each flow-path must contain at least one edge of
G′ \ T . Therefore, the number of edges in G′ \ T is at least
k/6.

Families of Good Vertex Subsets.
We define a good family of vertex subsets in graph G.

We then proceed in two steps. First, we show that we can
efficiently find a good family of vertex subsets in graph G.
Next, we show that given such good family, we can find the
desired routing of a subset of the demand pairs in M.

Definition 4 We say that a subset S ⊆ V (G)\T of vertices
is a good subset iff there is a subset Γ ⊆ outG(S) of edges,
with |Γ| = k1, such that:

• S is αWL(k)-well-linked for Γ. That is, for any parti-
tion (X,Y ) of S, if ΓX = Γ ∩ out(X) and ΓY = Γ ∩
out(Y ), then |EG(X,Y )| ≥ αWL(k) ·min {|ΓX |, |ΓY |}.

• There is a flow F in graph G, where every edge e ∈ Γ
sends one flow unit to a distinct terminal te ∈ T (so
for e 6= e′, te 6= te′), and the congestion caused by F
is at most 2β(k)/αWL(k) = O(log4.5 k).

We say that a family F = {S1, . . . , Sγ} of γ = γCMG(k) =
Θ(log2 k) subsets of vertices is good iff each subset Sj is
a good subset of vertices of G, and S1, . . . , Sγ are pairwise
disjoint.

We view the subset Γ ⊆ outG(S) of edges as part of the
definition of a good subset of vertices. In particular, when
we say that we are given a good family F = {S1, . . . , Sγ} of
vertex subsets, we assume that we are also given the corre-
sponding subsets Γj ⊆ outG(Sj) of edges, for all 1 ≤ j ≤ γ.
We use the next theorem, to find a good family of vertex
subsets in G.

Theorem 9 Let G′ be a legal contracted graph for G. Then
there is an efficient randomized algorithm that w.h.p. either
returns a good family F = {S1, . . . , Sγ} of vertex subsets in
G, together with the corresponding subsets Γj ⊆ outG(Sj) of
edges for all 1 ≤ j ≤ γ, or finds a legal contracted graph G′′

for G, with |E(G′′)| < |E(G′)|.
Proof. Let m be the number of edges in G′ \ T . From

Claim 1, m ≥ k/6. The proof consists of two steps. First,
we randomly partition the vertices in G′ \ T into γ subsets
X1, . . . , Xγ . We show that with high probability, for each
1 ≤ j ≤ γ, | outG′(Xj)| < 10m

γ
, while the number of edges

with both endpoints in Xj , |EG′(Xj)| ≥ m
2γ2 . Therefore,

|EG′(Xj)| > | outG′ (Xj)|

20γ
w.h.p. For each j : 1 ≤ j ≤ γ, we



then try to recover a good subset Sj of vertices from the
cluster Xj . If we succeed, then we obtain a good family
F = {S1, . . . , Sγ} of vertex subsets. If we fail to recover a
good vertex subset for some 1 ≤ j ≤ γ, then we will produce
a legal contracted graph G′′ containing fewer edges than G′.

We start with the first part. We partition the vertices
in V (G′) \ T into subsets X1, . . . , Xγ , where each vertex
v ∈ V (G′) \ T selects an index 1 ≤ j ≤ γ independently
uniformly at random, and is then added to Xj . We need the
following claim.

Claim 2 With probability at least 1
2
, for each 1 ≤ j ≤ γ,

| outG′(Xj)| < 10m
γ

, while |EG′(Xj)| ≥ m
2γ2 .

Proof. Let H = G′ \ T . Fix some 1 ≤ j ≤ γ. Let

E1(j) be the bad event that
∑

v∈Xj
dH(v) ≥ 2m

γ
·
(

1 + 1
γ

)

.

In order to bound the probability of E1(j), we define, for
each vertex v ∈ V (H), a random variable xv, whose value is
dH (v)

k1
if v ∈ Xj and 0 otherwise. Notice that xv ∈ [0, 1], and

the random variables {xv}v∈V (H) are pairwise independent.

Let B =
∑

v∈V (H) xv. Then the expectation of B, µ1 =
∑

v∈V (H)
dH (v)
γk1

= 2m
γk1

. Using the standard Chernoff bound

(see e.g. Theorem 1.1 in [DP09]),

Pr [E1(j)] = Pr [B > (1 + 1/γ) µ1]

≤ e−µ1/(3γ
2) = e

− 2m
3γ3k1 <

1

6γ

since m ≥ k/6 and k1 = k
192γ3 log γ

.

For each terminal t ∈ T , let et be the unique edge ad-
jacent to t in graph G′, and let ut be its other endpoint.
Let U = {ut | t ∈ T }. For each vertex u ∈ U , let w(u) be
the number of terminals t, such that u = ut. Notice that
w(u) ≤ k1 must hold. We say that a bad event E2(j) hap-

pens iff
∑

u∈U∩Xj
w(u) ≥ k

γ
·
(

1 + 1
γ

)

. In order to bound

the probability of the event E2(j), we define, for each u ∈ U ,
a random variable yu, whose value is w(u)/k1 iff u ∈ Xj ,
and it is 0 otherwise. Notice that yu ∈ [0, 1], and the vari-
ables yu are independent for all u ∈ U . Let Y =

∑

u∈U yu.

The expectation of Y is µ2 = k
k1γ

, and event E2(j) holds

iff Y ≥ k
k1γ

·
(

1 + 1
γ

)

≥ µ2 ·
(

1 + 1
γ

)

. Using the standard

Chernoff bound again, we get that:

Pr [E2(j)] ≤ e−µ2/(3γ
2) ≤ e−k/(3k1γ

3) ≤ 1

6γ

since k1 = k
192γ3 log γ

. Notice that if events E1(j), E2(j) do

not hold, then:

| outG′(Xj)| ≤
∑

v∈Xj

dH(v) +
∑

u∈U∩Xj

w(u)

≤
(

1 +
1

γ

)(

2m

γ
+

k

γ

)

<
10m

γ

since m ≥ k/6.
Let E3(j) be the bad event that |EG′(Xj)| < m

2γ2 . We

next prove that Pr [E3(j)] ≤ 1
6γ

. We say that two edges

e, e′ ∈ E(G′ \ T ) are independent iff they do not share
any endpoints. Our first step is to compute a partition

U1, . . . , Ur of the set E(G′ \ T ) of edges, where r ≤ 2k1,
such that for each 1 ≤ i ≤ r, |Ui| ≥ m

4k1
, and all edges

in set Ui are mutually independent. In order to compute
such a partition, we construct an auxiliary graph Z, whose
vertex set is {ve | e ∈ E(H)}, and there is an edge (ve, ve′)
iff e and e′ are not independent. Since the maximum ver-
tex degree in G′ is at most k1, the maximum vertex degree
in Z is bounded by 2k1 − 2. Using the Hajnal-Szemerédi
Theorem [HS70], we can find a partition V1, . . . , Vr of the
vertices of Z into r ≤ 2k1 subsets, where each subset Vi is

an independent set, and |Vi| ≥ |V (Z)|
r

− 1 ≥ m
4k1

. The parti-
tion V1, . . . , Vr of the vertices of Z gives the desired partition
U1, . . . , Ur of the edges of G′ \ T . For each 1 ≤ i ≤ r, we

say that the bad event E i
3(j) happens iff |Ui∩E(Xj)| < |Ui|

2γ2 .

Notice that if E3(j) happens, then event E i
3(j) must happen

for some 1 ≤ i ≤ r. Fix some 1 ≤ i ≤ r. The expectation

of |Ui ∩ E(Xj)| is µ3 = |Ui|

γ2 . Since all edges in Ui are inde-

pendent, we can use the standard Chernoff bound to bound
the probability of E i

3(j), as follows:

Pr
[

E i
3(j)

]

= Pr [|Ui ∩ E(Xj)| < µ3/2] ≤ e−µ3/8 = e
−

|Ui|

8γ2

Since |Ui| ≥ m
4k1

, m ≥ k/6, k1 = k
192γ3 log γ

, and γ =

Θ(log2 k), this is bounded by 1
12k1γ

. We conclude thatPr
[

E i
3(j)

]

≤
1

12k1γ
, and by using the union bound over all 1 ≤ i ≤ r,

Pr [E3(j)] ≤ 1
6γ

.
Using the union bound over all 1 ≤ j ≤ γ, with probability

at least 1
2
, none of the events E1(j), E2(j), E3(j) for 1 ≤ j ≤ γ

happen, and so for each 1 ≤ j ≤ γ, | outG′(Xj)| < 10m
γ

, and

|EG′(Xj)| ≥ m
2γ2 must hold.

Given a partition X1, . . . , Xγ , we can efficiently check
whether the conditions of Claim 2 hold. If they do not hold,
we repeat the randomized partitioning procedure. From
Claim 2, we are guaranteed that w.h.p., after poly(n) itera-
tions, we will obtain a partition with the desired properties.
Assume now that we are given the partition X1, . . . , Xγ of
V (G′)\T , for which the conditions of Claim 2 hold. Then for

each 1 ≤ j ≤ γ, |EG′(Xj)| > | outG′ (Xj)|

20γ
. Let X ′

j ⊆ V (G)\T
be the set obtained from Xj , after we un-contract each clus-
ter, that is, for each super-node vC ∈ V2∩Xj , we replace vC
with the vertices of C. Notice that

{

X ′
j

}γ

j=1
is a partition of

V (G) \ T . We now proceed as follows. For each 1 ≤ j ≤ γ,
we perform a partitioning procedure for the set X ′

j of ver-
tices. We say that this partitioning procedure is successful,
iff we find a good subset Sj ⊆ X ′

j of vertices. Therefore, if
the partitioning procedure is successful for all j, then we ob-
tain a good family (S1, . . . , Sγ) of disjoint vertex subsets. If
the partitioning procedure is not successful for some j, then
we will produce a legal contracted graph G′′ as required.

We now describe the partitioning procedure for some j :
1 ≤ j ≤ γ. Intuitively, we would like to perform a well-linked
decomposition of the set X ′

j of vertices, using Theorem 6, to
obtain a partition Wj of X ′

j . If we could ensure that each
set W ∈ Wj has | outG(W )| ≤ k1, and it is αWL(k)-well-
linked, then we could simply obtain the graph G′′ by first
uncontracting all clusters C with vC ∈ V2 ∩ Xj , and then
contracting all clusters in Wj into super-nodes. Since we
are guaranteed that

∑

W∈Wj
| outG(W )| ≤ | outG(X ′

j)|(1 +

1
64γ

), while |EG′(Xj)| > | outG(X′
j)|

20γ
, it is easy to verify that



|E(G′′)| < |E(G′)| would hold. There are two problems
with this approach. First, in order to use Theorem 6, we
need an oracle for finding (k, α(k))-violating cuts of sets.
Second, even if we had such an oracle, we would not be able
to guarantee that for each set W ∈ W, | outG(W )| ≤ k1.
On the other hand, if, for some set W ∈ Wj , | outG(W )| ≥
k1, then it is possible that W is a good set, though this
is not guaranteed. Our idea is to gradually perform the
well-linked decomposition of the set X ′

j , using Theorem 6.
We will maintain a partition Wj of X ′

j into clusters, and

in addition, a partition of Wj into two subsets: W1 and
W2. Intuitively, W1 contains all active clusters, that still
participate in the well-linked decomposition procedure, and
that we may still sub-divide into smaller clusters later, while
W2 contains inactive clusters. In each iteration, we will
select an arbitrary cluster S ∈ W1, and check if S is a good
set of vertices. If so, then we declare the iteration successful,
and stop the procedure. Otherwise, we will either obtain a
(k, α(k))-violating cut of some set S′ ∈ Wj , or we will be
able to perform a different well-linked decomposition step
that will turn cluster S into an inactive one. We now give a
formal description of the partitioning procedure.

Throughout the partitioning procedure, we maintain a
partitionWj of the setX

′
j of vertices, where at the beginning

Wj =
{

X ′
j

}

. Set Wj is in turn partitioned into two subsets:

set W1 of active clusters and set W2 of inactive clusters. At
the beginning, W1 = Wj , and W2 = ∅. We also maintain a
graph G̃, which is an“almost legal”contracted graph for G in
the following sense. The set V (G̃) of vertices is partitioned

into two subsets, Ṽ1 = V (G̃) ∩ V (G) and Ṽ2 = V (G̃) \ Ṽ1,

with T ⊆ Ṽ1. Each vertex vC ∈ Ṽ2 is associated with a
cluster C ⊆ V (G) \ Ṽ1, and all subsets {C}vC∈Ṽ2

of vertices

are pairwise disjoint. As before, we can obtain G̃ from G, by
contracting every cluster C (where vC ∈ Ṽ2) into a super-
node vC , and deleting self-loops. For each cluster S ∈ W1,
there is a super-node vS ∈ Ṽ2. Let V ′

2 =
{

vS | S ∈ W1
}

be
the set of all such super-nodes. Then for each super-node
vC ∈ Ṽ2 \ V ′

2 , | outG(C)| ≤ k1, and C is αWL(k)-well-linked

for outG(C) in graph G. In other words, graph G̃ is a le-
gal contracted graph for G, except for the super-nodes vS ,
where S ∈ W1: for such nodes vS , we are not guaranteed
that | outG(S)| ≤ k1, or that S is well-linked. However, if

W1 = ∅, then G̃ is a legal contracted graph of G. We re-
mark that for clusters S ∈ W2, graph G̃ does not necessarily
contain a super-node vS , and it is possible that the vertices
of S are split among several super-nodes. We only maintain
the set W2 for accounting purposes. The initial graph G̃ is
obtained from G′ as follows: we un-contract all super-nodes
vC ∈ Xj , and then contract all vertices of X ′

j into a single

super-node vX′
j
. We set Wj = W1 =

{

X ′
j

}

and W2 = ∅.
While W1 is non-empty, we select any cluster S ∈ W1 and
process it. At the end of this procedure, we will either de-
clare that S is a good set, or we will find a (k, α(k))-violating
cut of some cluster S′ ∈ W1, or S will become inactive.

Let S ∈ W1 be the current cluster. We try to send k1 flow
units from the edges of outG̃(S) to the terminals in T in the

current graph G̃ with no congestion. Two case are possible,
depending on whether or not such flow exists.

Case 1.
Assume first that such flow exists. From the integrality of

flow, there is a collection P of k1 edge-disjoint paths in G̃,
connecting distinct edges in outG̃(S) to distinct terminals
in T . Let Γ ⊆ outG̃(S) be the set of k1 edges which serve
as endpoints of the paths in P . We set up an instance of
the sparsest cut problem in graph G[S] ∪ outG(S), where
the edges in set Γ serve as terminals. We then run the
algorithm AARV on the resulting instance. If the algorithm
returns a cut (X,Y ) of sparsity less than α(k), then (X,Y )
is a (k, α(k))-violating cut for S. We then replace S with
X and Y in Wj and in W1. We also update the current
graph G̃, by first un-contracting the super-node vS, and then
contracting the two clusters X and Y into super-nodes vX
and vY , respectively. This ends the current iteration, and
we then proceed to process some new set in W1. Assume
now that algorithm AARV returns a cut whose sparsity is
at least α(k). Then we are guaranteed that S is αWL(k) =
α(k)/αARV(k)-well-linked for Γ. Recall that we are given a
set P of k1 edge-disjoint paths connecting the edges in Γ
to the terminals T in graph G̃, where each path connects a
distinct edge e ∈ Γ to a distinct terminal te ∈ T . In order
for S to be a good set, a low-congestion flow connecting the
edges in Γ to the terminals must exist in the original graph
G. We will try to find this flow, as follows. The flow will
follow the paths in P , except that we need to specify how
the flow is routed inside each cluster C for vC ∈ Ṽ2. Observe
that for each such cluster C, the paths in P define a set DC

of 1-restricted demands on the edges of outG(C). Moreover,
the total number of edges in outG(C) participating in the
paths in P is at most k1, as there are only k1 paths in P
and we can assume w.l.o.g. that they are simple. If vC 6∈
V ′
2 , then we are guaranteed that cluster C is αWL(k)-well-

linked in graph G. Therefore, we can route the set DC of
demands inside G[C] with congestion at most 2β(k)/αWL(k).
If vC ∈ V ′

2 , then C ∈ W1, and it is possible that we cannot
route the set DC of demands inside G[C] with congestion at
most 2β(k)/αWL(k). We then proceed as follows. If, for each
super-node vC ∈ V ′

2 , we can route the set DC of demands
inside G[C] with congestion at most 2β(k)/αWL(k), then S
is a good set, and the jth iteration is successful. Otherwise,
let vC ∈ V ′

2 be any super-node, for which such flow does
not exist. Consider the instance of the sparsest cut problem
defined on the graph G[C] ∪ outG(C), where the edges of
outG(C) with non-zero demand serve as terminals (recall
that there are at most k1 such edges). Then the value of
the sparsest cut in this instance is at most αWL(k), and so
by applying algorithm AARV on this instance of sparsest
cut, we will obtain a (k, α(k))-violating cut (X,Y ) for set
C. We then remove C from W1 and from Wj , and add X
and Y to W1 and Wj instead. We also update G̃ by un-
contracting the super-node vC and contracting the clusters
X and Y into super-nodes vX and vY , respectively, and end
the current iteration. To conclude, if it is possible to send k1
flow units with no congestion in graph G̃ between outG̃(vS)
and T , then either S is a good set, or we find a (k, α(k))-
violating cut (X,Y ) of some cluster C ∈ W1 (where possibly
C = S).

Case 2.
Assume now that such flow does not exist. Then there

is a cut (X,Y ) in graph G̃, where T ⊆ Y , vS ∈ X, and
|E(X,Y )| < k1. (If | outG̃(S)| < k1, then we set X = {vS}).
Let A ⊆ V (G) \ T be the subset of vertices obtained from
X after we un-contract every super-node vC ∈ X. Then



| outG(A)| < k1. We perform a well-linked decomposition
of A, using Corollary 1, and we denote the resulting par-
tition of A by W(A). Recall that each set C ∈ W(A) is
guaranteed to be αWL(k)-well-linked, and | outG(C)| < k1.

Moreover,
∑

C∈W(A) | outG(C)| ≤ | outG(A)|
(

1 + 1
64γ

)

≤
| outG(S)|

(

1 + 1
64γ

)

. We say that the cluster S ∈ W1

is responsible for A, and for the partition W(A) (we will
eventually charge the edges in outG(S) for the edges in
⋃

C∈W(A) outG(C)). We update the graph G̃, by first un-
contracting all super-nodes that belong to X, and then con-
tracting each cluster C ∈ W(A) into a super-node vC . Also,
for each vertex vC ∈ W1, if vC ∈ X, then we move C from
W1 to W2, where it becomes an inactive cluster (notice that
super-node vC may not exist in the new graph anymore, as
the vertices of C may end up being partitioned into sev-
eral clusters by the contraction procedure). Observe that
the cluster S that is responsible for A has been moved from
W1 to W2 in the current iteration, and hence it becomes an
inactive cluster.

This finishes the description of the decomposition proce-
dure for Xj , for 1 ≤ j ≤ γ. In order to analyze it, it is
enough to show that if this procedure was not declared suc-
cessful, then the final graph G′′, obtained at the end of the
procedure, whenW1 = ∅, contains fewer edges than G′. (We
note that from the above discussion it is clear that G′′ must
be a legal contracted graph for G.) We bound the number
of edges in G′′ in two steps. First, we bound the number
of edges in

∑

C∈W2 | outG(C)|. Observe that W2 defines
a partition of the set X ′

j of vertices of G. Moreover, this
partition was obtained by performing an oracle-based well-
linked decomposition of X ′

j . Therefore, from Theorem 6,
∑

C∈W2 | outG(C)| ≤ | outG(X ′
j)|

(

1 + 1
64γ

)

.

Next, we bound the number of edges in G′′, by charging
them to the edges of

⋃

C∈W2 outG(C). Let A1, A2, . . . , Aℓ

be all sets of vertices A that were decomposed in itera-
tions where Case 2 happened, in the order in which they
were processed. Observe that all vertices of X ′

j are con-

tained in
⋃ℓ

i=1 Ai, as all clusters in W2 are contained in
⋃ℓ

i=1 Ai (but the sets Ai are not necessarily disjoint). The
set of edges of G′′ can be partitioned into two subsets: E1 =
{e = (u, v) | e ∈ E(G′) ∩ E(G′′);u, v 6∈ Xj}, and set E2 con-
taining all remaining edges. It is easy to see that E2 ⊆
⋃ℓ

i=1(
⋃

C∈W(Ai)
outG(C)). Indeed, let e = (u, v) ∈ E2.

Let u′, v′ be the endpoints of the corresponding edge in
the original graph G. Two cases are possible. If both
u, v 6∈ X ′

j , then the only way that edge e was added to

the graph G̃ is when either u′ or v′ belonged to some set Ai.
Let i∗ be the largest index for which {u′, v′} ∩ Ai∗ 6= ∅.
Then e ∈ ⋃

C∈W(Ai∗ ) outG(C) must hold. Otherwise, if

at least one of the vertices (say v′) belongs to X ′
j , then,

since every vertex in X ′
j belongs to some inactive cluster

at the end of the algorithm, there is at least one index i
such that v′ ∈ Ai. Let i∗ be the largest index for which
{u′, v′} ∩ Ai∗ 6= ∅. Then e ∈ ⋃

C∈W(Ai∗ ) outG(C) must

hold. Therefore, E2 ⊆ ⋃ℓ
i=1(

⋃

C∈W(Ai)
outG(C)).

Recall that for each set Ai, for 1 ≤ i ≤ ℓ, we have
a distinct cluster Si ∈ W2 responsible for Ai, and more-

over
∑

C∈W(Ai)
| outG(C)| ≤ | outG(Si)|

(

1 + 1
64γ

)

There-

fore, the total number of edges in graph G′′ is bounded by:

|E(G′′)| ≤ |E(G′)| − |EG′(Xj)| − | outG′(Xj)|+ |E2|

≤ |E(G′)| − | outG′(Xj)|
(

1 +
1

20γ

)

+
∑

C∈W2

| outG(C)|
(

1 +
1

64γ

)

≤ |E(G′)| − | outG′(Xj)|
(

1 +
1

20γ

)

+ | outG′(Xj)|
(

1 +
1

64γ

)2

< |E(G′)|

We are now ready to describe the algorithm for finding a
good family of vertex subsets in graph G. We start with the
graph G′ = G, which is trivially a legal contracted graph,
and repeatedly apply Theorem 9 to it. Since the number
of edges in any legal contracted graph is at least k/6 by
Claim 1, we are guaranteed that after at most |E(G)| iter-
ations, the algorithm will produce a good family of vertex
subsets w.h.p. We summarize this algorithm in the following
corollary.

Corollary 2 There is an efficient randomized algorithm that
w.h.p. computes a good family of vertex subsets in graph G.

Finally, we show that given a good family F of vertex

subsets, we can find a routing of Ω
(

k
log20.5 k log log k

)

pairs in

M with congestion at most 14.
We assume that we are given a good family F = {S1, . . . , Sγ}

of vertex subsets of G. For each 1 ≤ j ≤ γ, we are also given
a subset Γj ⊆ outG(Sj) of edges, such that Sj is αWL(k)-well-
linked for Γj , and there is a flow Fj : Γj ;η T , where each
edge e ∈ Γj sends one flow unit to a distinct terminal te, and
the total congestion due to Fj is at most η = 2β(k)/αWL(k).

In order to find the final routing, we build an expander
on a subset of terminals and embed it into graph G. More
precisely, we select an arbitrary subset M′ ⊆ M of k′/2
source-sink pairs, where k′ = k/poly log k. Let T ′ ⊆ T
be the subset of terminals participating in pairs in M′, and
assume that T ′ = {t1, . . . , tk′}. We construct an expanderX
on the set {v1, . . . , vk′} of vertices, which is then embedded
into the graph G as follows. For each 1 ≤ i ≤ k′, we define
a connected component Ci in graph G, that represents the
vertex vi of the expander. For each edge e = (vi, vj) ∈
E(X), we define a path Pe, connecting a vertex of Ci to a
vertex of Cj in G. We will ensure that each edge of G may
only appear in a small constant number of components Ci,
and a small constant number of paths Pe. We also ensure
that for each 1 ≤ i ≤ k′, terminal ti ∈ Ci. We will think
about the expander vertex vi as representing the terminal ti.
The idea is that any vertex-disjoint routing of the terminal
pairs in the expander X can now be translated into a low
edge-congestion routing in the original graph G.

We now turn to describe the construction of the expander
X and the connected components C1, . . . , Ck′ that we use
to embed X into G. The construction exploits the good
family F = {S1, . . . , Sγ} of vertex subsets. We construct a
collection T1, . . . , Tk′ of trees in graph G. Each such tree Ti

contains, for each 1 ≤ j ≤ γ, an edge ei,j ∈ Γj . For each



1 ≤ j ≤ γ, the edges e1,j , e2,j , . . . , ek′,j are all distinct, and
we think of the edge ei,j as the copy of the vertex vi ∈ V (X)
for the set Sj . In other words, each tree Ti spans γ copies
of the vertex vi: one copy ei,j for each set Sj ∈ F . We
will ensure that each edge of graph G only participates in
a constant number of such trees. Additionally, we build a
set P = {Pt | t ∈ T ′} of paths, where path Pt connects the
terminal t to a distinct tree Ti (so if t 6= t′, then t and t′

are connected to different trees), and the total congestion
caused by paths in P is at most 4. We rename the terminals
in T ′, so that ti denotes the terminal that is connected to
the tree Ti. The final connected component Ci is simply the
union of the tree Ti and the path Pti .

In order to construct the expanderX on the set {v1, . . . , vk′}
of vertices, we use the cut-matching game of [KRV06], where
we use the sub-graph G[Sj ] of G to route the jth matching
between the corresponding copies e1,j , e2,j , . . . , ek′,j of the
vertices v1, . . . , vk′ , respectively. Recall that we are only
guaranteed that sets {Sj}γj=1 are αWL(k)-well-linked for the
edges in Γj , and so in order to route these matchings, we
may have to incur the congestion of Ω(1/αWL(k)), which we
cannot afford. However, this problem is easy to overcome
by performing a suitable grouping of the edges of Γj .

The rest of the algorithm proceeds in three steps. In the
first step, we perform groupings of the edges in the subsets
Γj for 1 ≤ j ≤ γ. In the second step, we construct the trees
T1, . . . , Tk′ . In the third step, we finish the construction of
the expander X and its embedding into G, and produce the
final routing of a subset of demand pairs in M′.

Step 1: Edge Grouping.
In this step we compute, for each 1 ≤ j ≤ γ, a group-

ing of the edges in Γj . We then establish some properties
of these groupings. We use the following two parameters:
p = 8β(k)/αWL(k) = O(log4.5 k) is the grouping parameter
for the sets Γj . The second parameter, k′ = ⌊ 1

8γ3 · ⌊ k1

6p
⌋⌋ =

Ω
(

k
log16.5 k log log k

)

is the number of the vertices in the ex-

pander X that we will eventually construct. We assume
w.l.o.g. that k′ is an even integer; otherwise we round it
down to the closest even integer.

Fix some 1 ≤ j ≤ γ. Since G[Sj ] ∪ outG(Sj) is a con-
nected graph, we can find a spanning tree Tj of this graph,
and perform a grouping of the edges in Γj along this tree
into groups whose size is at least p and at most 3p using
Theorem 7. Let Gj be the resulting collection of groups,
and let k∗ = ⌊ k1

6p
⌋. For each group U ∈ Gj , let Tj(U) be the

sub-tree of the tree Tj spanning the edges of U . For each
group U ∈ Gj , we select one arbitrary representative edge,
and we let Γ′

j denote this set of representative edges. For
each e ∈ Γ′

j , we denote by Ue the group to which e belongs.
Additionally, let U ′

e ⊆ Ue be an arbitrary subset of p edges
of Ue, including e itself. Notice that |Γ′

j | ≥ k∗ must hold. If
|Γ′

j | > k∗, then we discard edges from Γ′
j arbitrarily, until

|Γ′
j | = k∗ holds. This finishes the description of the group-

ing. The next theorem establishes some properties of the
resulting groupings that will be used later.

Theorem 10

• For each 1 ≤ j ≤ γ, for any pair X,Y ⊆ Γ′
j of

edge subsets, where |X| = |Y |, there is a collection

P(X,Y ) : X
1:1

;2 Y of paths contained in G[Sj ], where

each path connects a distinct edge of X to a distinct
edge of Y , and the paths cause congestion at most 2.

• For all 1 ≤ i, j ≤ γ, there is a set Pi,j : Γ′
i

1:1

;2 Γ′
j

of k∗ paths in graph G. That is, each path connects a
distinct edge of Γ′

i to a distinct edge of Γ′
j , with total

congestion at most 2.

• Let Γ∗
1 ⊆ Γ′

1 be any subset of k′ edges, M′ ⊆ M any
subset of k′/2 source-sink pairs, and T ′ the subset of
terminals participating in pairs in M′. Then there is

a set P : T ′ 1:1

;4 Γ∗
1 of paths in G, each path connecting

a distinct terminal of T ′ to a distinct edge of Γ∗
1, with

total congestion at most 4.

Proof. In order to prove the first assertion, fix some 1 ≤
j ≤ γ. From the integrality of flow, it is enough to prove
that there is a flow Fj(X,Y ) in G[Sj ], where each edge in
X sends one flow unit, each edge in Y receives one flow
unit, and the flow congestion is at most 2. We start by
defining two subsets X ′, Y ′ ⊆ Γj of edges, as follows: X ′ =
⋃

e∈X U ′
e, and Y ′ =

⋃

e∈Y U ′
e. Observe that |X ′| = |Y ′| =

|X| · p. Since set Sj is αWL(k)-well-linked for Γj , there is a
flow Fj(X

′, Y ′) in G[Sj ], where every edge in X ′ sends one
flow unit, every edge in Y ′ receives one flow unit, and the
congestion due to this flow is at most 1/αWL(k). We are now
ready to define the flow Fj(X,Y ). Each edge e ∈ X spreads
one flow unit uniformly among the edges of U ′

e along the
tree Tj(Ue). Next, all this flow is sent along the flow-paths
in Fj(X

′, Y ′), where we scale this flow down by factor p.
Finally, each edge e ∈ Y collects all flow from edges in U ′

e

along the tree Tj(Ue). Since all trees {TU}U∈Gj
are edge-

disjoint, and since the congestion caused by Fj(X
′, Y ′) is

at most 1/αWL(k) < p, the resulting flow Fj(X,Y ) causes
congestion at most 2.

We now turn to prove the second assertion. From the
integrality of flow, it is enough to prove that there is a flow
Fi,j : Γ′

i ;2 Γ′
j , where every edge in Γ′

i sends one flow
unit and every edge in Γ′

j receives one flow unit. As before,
we construct two edge subsets, X ⊆ Γj and Y ⊆ Γi, as
follows: X =

⋃

e∈Γ′
i
U ′

e, and Y =
⋃

e∈Γ′
j
U ′

e. Notice that

|X| = |Y | = k∗ · p.
Recall that from the definition of good vertex subsets, we

already have a flow Fj , where each edge e ∈ Γj sends one
flow unit to a distinct terminal in T , with total congestion
at most η = 2β(k)/αWL(k). We discard all flow-paths except
those originating at the edges of X. As a result, we obtain
a flow F ∗

j , where each edge e ∈ X sends one flow unit to a
distinct terminal te ∈ T , and F ∗

j causes congestion at most
η in G. Let Tj be the subset of terminals that receive flow
in F ∗

j , |Tj | = |X|. Similarly, we can define a flow F ∗
i , where

each edge e ∈ Y sends one flow unit to a distinct terminal
te ∈ T , and F ∗

i causes congestion at most η in G. Subset Ti

of terminals is defined similarly. Notice that Ti and Tj are
not necessarily disjoint. But since the set T of terminals is

flow-well-linked in G, there is a flow F : Ti
1:1
;2 Tj , where

each terminal in Ti sends one flow unit, each terminal in
Tj receives one flow unit, and the congestion is at most 2.
We concatenate the three flows, F ∗

i , F, F
∗
j , to obtain a flow

F ′ : X ; Y . In this flow, each edge in X sends one flow
unit, each edge in Y receives one flow unit, and the total
congestion is at most 2η + 2.

We are now ready to define the flow Fi,j . Each edge e ∈ Γ′
i

sends one flow unit along the tree Ti(Ue), which is evenly



split among the edges of U ′
e. We then use the flow F ′, scaled

down by factor p, to route this flow to the edges of Y . Fi-
nally, each edge e ∈ Γ′

j collects the flow that the edges of
U ′

e receive, along the tree Tj(Ue), so that after collecting all
that flow, edge e receives 1 flow unit. In order to analyze
the total congestion due to flow Fi,j , observe that all trees
{Ti(U)}U∈Gi

∪ {Tj(U)}U∈Gj
are edge-disjoint. So the rout-

ing along these trees causes a congestion of at most 1. Since
flow F ′ causes congestion of at most 2η+2, and p is selected
so that p ≥ 2η + 2, the congestion due to the scaled-down
flow F ′ is at most 1. The total congestion is therefore at
most 2.

Finally, we prove the third assertion. Let Γ∗
1 ⊆ Γ′

1 be
any subset of k′ edges, M′ ⊆ M any subset of k′/2 source-
sink pairs, and T ′ the set of all terminals participating in the
pairs in M′. Let X =

⋃

e∈Γ∗
1
U ′

e, so |X| = k′p. As before, we

make use of the previously defined flow F1, where each edge
e ∈ Γ1 sends one flow unit to a distinct terminal in T , with
total congestion at most η = 2β(k)/αWL(k). We discard all
flow-paths except those that originate at the edges of X. As
a result, we obtain a flow F ∗, where each edge e ∈ X sends
one flow unit to a distinct terminal te ∈ T , and F ∗ causes
congestion at most η < p in G. We now define a new flow
F ∗∗ : Γ∗

1 ;2 T , where each edge in Γ∗
1 sends one flow unit,

and each terminal in T receives at most one flow unit. Flow
F ∗∗ is defined as follows. Each edge e ∈ Γ∗

1 sends one flow
unit to the edges in set U ′

e along the tree T1(Ue), distributing
it evenly among these edges. Each edge in U ′

e then sends
the 1/p flow unit it receives from e to the terminals via the
flow F ∗, so the flow F ∗ is scaled down by factor p. Since
the congestion caused by flow F ∗ is η < p, and the trees
{T1(Ue)}e∈Γ∗

1
are edge-disjoint, the total congestion caused

by F ∗∗ is at most 2. Moreover, each terminal receives at
most one flow unit in F ∗∗. From the integrality of flow,
there is a subset T ′′ ⊆ T of k′ terminals, and a collection

P1 : Γ∗
1

1:1
;2 T ′′ of paths in G. Since the set T of terminals

is flow-well-linked, using the integrality of flow, there is a

collection P2 : T ′′ 1:1
;2 T ′ of paths in G. We then obtain the

desired collection P of paths by concatenating the paths in
P1 with the paths in P2.

Step 2: Constructing the Trees.
The goal of this step is to find a collection T1, . . . , Tk′ of

trees in graph G, such that each edge of G belongs to at most
8 trees. For each tree Ti, we will find a subset Ei ⊆ E(Ti)
of special edges, that contains, for each 1 ≤ j ≤ γ, one edge
ei,j ∈ Γ′

j , such that the sets E1, . . . , Ek′ are pairwise disjoint.
Notice that an edge e ∈ Γ′

j may belong to several trees, but
only to one of them as a special edge. For each 1 ≤ j ≤ γ, we
denote Γ∗

j = {e1,j , . . . , ek′,j}, the subset of edges of Γ′
j that

the trees T1, . . . , Tk′ contain as special edges. We summarize
Step 2 in the next theorem.

Theorem 11 Given a good family F, and a subset Γ′
j ⊆

outG(Sj) of edges for each 1 ≤ j ≤ γ, as computed in Step
1, we can efficiently find k′ trees T1, . . . , Tk′ in graph G, and
for each tree Ti a subset Ei ⊆ E(Ti) of special edges, such
that:

• Each edge of G belongs to at most 8 trees;

• Subsets E1, . . . , Ek′ of edges are pairwise disjoint; and

• For all 1 ≤ i ≤ k′, Ei = {ei,1, . . . , ei,γ}, where for all
1 ≤ j ≤ γ, ei,j ∈ Γ′

j.

Proof. In order to prove the theorem, we start by aug-
menting the graph G as follows. First, replace each edge of
G with two parallel edges. Next, for each 1 ≤ j ≤ γ, add a
new vertex sj , and for each edge e ∈ Γ′

j , we sub-divide one
of the copies of e, by adding a new vertex ve, which is then
connected to the vertex sj . Notice that from Theorem 10,
for each 1 ≤ j 6= j′ ≤ γ, there are exactly k∗ edge-disjoint
paths connecting sj to sj′ in the resulting graph. Finally, we
replace each edge in the resulting graph by two bi-directed
edges, thus obtaining a directed Eulerian graph that we de-
note by G+. From Theorem 10, for each pair 1 ≤ j 6= j′ ≤ γ
of indices, there are k∗ edge-disjoint paths connecting sj to
sj′ , and k∗ edge-disjoint paths connecting sj′ to sj . Notice
also that each vertex sj has exactly k∗ incoming edges and
exactly k∗ outgoing edges.

As a next step, we use the standard edge splitting proce-
dure in graph G+. Our goal is to eventually obtain a graph
H̃ on the set {s1, . . . , sγ} of vertices, such that each pair
sj , sj′ is k∗-edge connected, and each edge e = (sj , sj′) ∈
E(H̃) is associated with a path Pe connecting sj to sj′ in

G+, while all paths in
{

Pe | e ∈ E(H̃)
}

are edge-disjoint in

G+.
Let D = (V,A) be any directed multigraph with no self-

loops. For any pair (v, v′) ∈ V of vertices, their connectivity
λ(v, v′;D) is the maximum number of edge-disjoint paths
connecting v to v′ in D. Given a pair a = (u, v), b = (v, w)
of edges, a splitting-off procedure replaces the two edges a, b
by a single edge (u,w). We denote by Da,b the resulting
graph. We use the extension of Mader’s theorem [Mad78] to
directed graphs, due to Frank [Fra89] and Jackson [Jac98].
Following is a simplified version of Theorem 3 from [Jac98]:

Theorem 12 Let D = (V,A) be an Eulerian digraph, v ∈ V
and a = (v, u) ∈ A. Then there is an edge b = (w, v) ∈ A,
such that for all y, y′ ∈ V \ {v}: λ(y, y′;D) = λ(y, y′;Dab)

We apply Theorem 12 repeatedly to all vertices of G+ ex-
cept for the vertices in set {s1, . . . , sγ}, until we obtain a

directed graph H̃, whose vertex set is {s1, . . . , sγ}, and for
each 1 ≤ j, j′ ≤ γ, there are k∗ edge-disjoint paths connect-
ing sj to sj′ and k∗ edge-disjoint paths connecting sj′ to

sj . Clearly, each edge e = (sj , sj′) ∈ E(H̃) is associated
with a path Pe connecting sj to sj′ in G+, and all paths
{

Pe | e ∈ E(H̃)
}

are edge-disjoint. Let H̃ ′ denote the undi-

rected multi-graph identical to H̃, except that now all edges
become undirected. Notice that each vertex sj must have
2k∗ >> γ edges adjacent to it in H̃ ′, so the graph contains
many parallel edges. For each pair sj , sj′ of vertices, there
are exactly 2k∗ edge-disjoint paths connecting sj to sj′ in

H̃ ′. For convenience, let us denote 2k∗ by ℓ.
As a next step, we build an auxiliary undirected graph

Z on the set {s1, . . . , sγ} of vertices, as follows. For each
pair sj , sj′ of vertices, there is an edge (sj , sj′) in graph Z

iff there are at least ℓ/γ3 edges connecting sj and sj′ in H̃ ′.
If edge e = (sj , sj′) is present in graph Z, then its capacity
c(e) is set to be the number of edges connecting sj to sj′ in

H̃ ′. For each vertex sj , let C(sj) denote the total capacity
of edges incident on sj in graph Z. We need the following
simple observation.



Observation 1

• For each vertex v ∈ V (Z), (1− 1/γ2)ℓ ≤ C(v) ≤ ℓ.

• For each pair (u, v) of vertices in graph Z, we can send
at least (1− 1/γ)ℓ flow units from u to v in Z without
violating the edge capacities.

Proof. In order to prove the fist assertion, recall that
each vertex in graph H̃ ′ has ℓ edges incident to it (this is
since, in graph G+, each vertex s1, . . . , sγ had exactly k∗

incoming and k∗ outgoing edges, and we did not perform
edge splitting on these vertices). So C(v) ≤ ℓ for all v ∈
V (Z). Call a pair (sj , sj′) of vertices bad iff there are fewer

than ℓ/γ3 edges connecting sj to sj′ in H̃ ′. Notice that each
vertex v ∈ V (Z) may participate in at most γ bad pairs,
as |V (Z)| = γ. Therefore, C(v) ≥ ℓ − γℓ/γ3 = ℓ(1− 1/γ2)
must hold.

For the second assertion, assume for contradiction that it
is not true, and let (u, v) be a violating pair of vertices. Then
there is a cut (A,B) in Z, with u ∈ A, v ∈ B, and the total
capacity of edges crossing this cut is at most (1 − 1/γ)ℓ.
Since u and v were connected by ℓ edge-disjoint paths in
graph H̃ ′, this means that there are at least ℓ/γ edges in

graph H̃ ′ that connect bad pairs of vertices. But since we
can only have at most γ2 bad pairs, and each pair has less
than ℓ/γ3 edges connecting them, this is impossible.

We now proceed in two steps. First, we show that we can
efficiently find a spanning tree of Z with maximum vertex
degree at most 3. Next, using this spanning tree, we show
how to construct the collection T1, . . . , Tk′ of trees.

Claim 3 There is an efficient algorithm to find a spanning
tree T ∗ of Z with maximum vertex degree at most 3.

Proof. We use the algorithm of Singh and Lau [SL07]
for constructing bounded-degree spanning trees. Suppose we
are given a graph G = (V,E), and our goal is to construct
a spanning tree T of G, where the degree of every vertex
is bounded by B. For each subset S ⊆ V of vertices, let
E(S) denote the subset of edges with both endpoints in S,
and δ(S) the subset of edges with exactly one endpoint in
S. Singh and Lau consider a natural LP-relaxation for the
problem. We note that their algorithm works for a more
general problem where edges are associated with costs, and
the goal is to find a minimum-cost tree that respects the
degree requirements; since we do not need to minimize the
tree cost, we only discuss the unweighted version here. For
each edge e ∈ E, we have a variable xe indicating whether
e is included in the solution. We are looking for a feasible
solution to the following LP.

∑

e∈E xe = |V | − 1 (1)
∑

e∈E(S) xe ≤ |S| − 1 ∀S ⊂ V (2)
∑

e∈δ(v) xe ≤ B ∀v ∈ V (3)

xe ≥ 0 ∀e ∈ E (4)

Singh and Lau [SL07] show an efficient algorithm, that,
given a feasible solution to the above LP, produces a span-
ning tree T , where for each vertex v ∈ V , the degree of v is
at most B + 1 in T . Therefore, in order to prove the claim,
it is enough to show a feasible solution to the LP, where

B = 2. Recall that |V (Z)| = γ. The solution is defined as
follows. Let e = (u, v) be any edge in E(Z). We set the

LP-value of e to be xe = γ−1
γ

·
(

c(e)
C(v)

+ c(e)
C(u)

)

. We say that

γ−1
γ

· c(e)
C(v)

is the contribution of v to xe, and
γ−1
γ

· c(e)
C(u)

is

the contribution of u. We now verify that all constraints of
the LP hold.

First, it is easy to see that
∑

e∈E xe = γ − 1, as required.
Next, consider some subset S ⊂ V of vertices. Notice that
it is enough to establish Constraint (2) for subsets S with
|S| ≥ 2. From Observation 1, the total capacity of edges
in EZ(S, S) must be at least (1 − 1/γ)ℓ. Since for each
v ∈ S, C(v) ≤ ℓ, the total contribution of the vertices in
S towards the LP-weights of edges in EZ(S, S) is at least
γ−1
γ

· (1− 1/γ) = (1− 1/γ)2. Therefore,

∑

e∈E(S)

xe ≤ γ − 1

γ
|S| − (1− 1/γ)2

= |S| − |S|/γ − 1− 1/γ2 + 2/γ ≤ |S| − 1,

since we assume that |S| ≥ 2. This establishes Constraint (2).
Finally, we show that for each v ∈ V (Z),

∑

e∈δv
xe ≤ 2.

First, the contribution of the vertex v to this summation is
bounded by 1. Next, recall that for each u ∈ V (Z), C(u) ≥
(1 − 1/γ2)ℓ, while the total capacity of edges in δ(v) is at
most ℓ. Therefore, the total contribution of other vertices
to this summation is bounded by ℓ

(1−1/γ2)ℓ
· γ−1

γ
≤ γ

γ+1
≤ 1.

The algorithm of Singh and Lau can now be used to obtain
a spanning tree T ∗ for Z with maximum vertex degree at
most 3.

Root the tree T ∗ at any degree-1 vertex r. Let e = (si, sj)
be some edge of the tree, where si is the parent of sj . Recall
that there are at least ℓ/γ3 edges (si, sj) in graph H̃ ′. Let
A(e) be any collection of exactly ⌊ℓ/γ3⌋ such edges. Recall

that for each edge e′ ∈ A(e) in graph H̃ ′, there is a path
P , connecting either si to sj or sj to si in graph G+ (recall
that graph G+ is directed). Since the direction of the edges
in G+ will not play any role in the following argument, we
will assume w.l.o.g. that P is directed from sj towards si.
Recall that the first edge on path P must connect sj to
some vertex vẽ, where ẽ ∈ Γ′

j , and similarly, the last edge
on path P connects some vertex vẽ′ , for ẽ′ ∈ Γ′

i to si. So
by removing the first and the last edges from path P , we
obtain a path Pe′ in graph G, that connects edge ẽ ∈ Γ′

j to
edge ẽ′ ∈ Γ′

i. Since si is the parent of sj in tree T ∗, we will
think of Pe′ as being directed from Sj towards Si. We call ẽ
the first edge of Pe′ , and ẽ′ the last edge of Pe′ . Going back
to the edge e = (si, sj) in tree T ∗, we can now define a set
P(e) = {Pe′ | e′ ∈ A(e)} of exactly ⌊ℓ/γ3⌋ paths in graph G,
associated with e. We let

B1(e) =
{

ẽ ∈ Γ′
j | ẽ is the first edge on some path Pe′ ∈ P(e)

}

and

B2(e) =
{

ẽ ∈ Γ′
i | ẽ is the last edge on some path Pe′ ∈ P(e)

}

Both sets B1(e), B2(e) are multi-sets, that is, if some edge
ẽ ∈ Γ′

j appears as a first edge on two paths in Pe′ , then we
add two copies of ẽ to B1(e). (From the construction of G+,
it is easy to see that ẽmay appear as the first edge on at most



two such paths). We then have that P(e) : B1(e)
1:1
;4 B2(e)

in graph G, since, from the construction of graphs G+ and
H̃ ′, every edge of graph G may appear on at most four paths
of

⋃

e∈E(T∗) P(e).

We call the sets B1(e),B2(e) of edges bundles correspond-
ing to e, and we view B1(e) as a bundle that belongs to
Sj , while B2(e) is a bundle that belongs to Si. Since the
degree of tree T ∗ is at most 3, every set Sj has at most
three bundles that belong to it. From the construction of
graph G+, for every vertex si : 1 ≤ i ≤ γ, each edge in Γ′

i

may appear at most twice in the multi-set defined by the
union of the bundles that belong to Si. In particular, it is
possible that it appears twice in the same bundle. We need
to make sure that this never happens. In order to achieve
this, we will define, for each edge e ∈ E(T ∗), smaller bun-
dles, B′

1(e) ⊆ B1(e) and B′
2(e) ⊆ B2(e), such that each edge

appears at most once in each bundle, and there is a subset

P ′(e) ⊆ P(e), where P ′(e) : B′
1(e)

1:1
;4 B′

2(e). We will also
ensure that |B′

1(e)| = |B′
2(e)| = ⌊ ℓ

8γ3 ⌋.
This is done as follows. Consider some edge e = (si, sj) in

tree T ∗, and assume that si is the parent of sj in the tree.
Consider first B1(e). For each edge ẽ ∈ B1(e), if two copies
of ẽ appear in B1(e), then we remove one of the copies from
B1(e). If P ∈ P(e) is one of the two paths for which ẽ is
the first edge, then we remove P from P(e), and we also
remove its last edge from B2(e). It is easy to see that we
remove at most half the edges of B1(e). We then perform
the same operation for B2(e). In the end, both B1(e) and
B2(e) must contain at least a 1/4 of the original edges, and
P(e) contains at least a 1/4 of the original paths. We now
let P ′(e) be any subset of exactly ⌊ℓ/8γ3⌋ remaining paths,
and we set B′

1(e) to be the set of all edges ẽ that appear as
the first edge on some path in P ′(e), and similarly B′

2(e) the
set of all edges that appear as the last edge on some path in
P ′(e). We perform this operation for all edges e of tree T ∗.

We are now ready to define the subsets Γ∗
j ⊆ Γ′

j of k′

edges, Γ∗
j = {e1,j , . . . , ek′,j}, that our trees will span. Fix

some index 1 ≤ j ≤ γ. If sj is not the root of the tree
T ∗, then we let Γ∗

j = B1(e), where e is the edge connecting
sj to its parent in T ∗. If sj is the root of the tree, then
Γ∗
j = B2(e), where e is the unique edge incident on sj in

tree T ∗. Notice that |Γ∗
j | = ⌊ ℓ

8γ3 ⌋ = ⌊ k∗

4γ3 ⌋ = k′.

Finally, we construct the trees T1, . . . , T
′
k. In order to

construct these trees, we process the vertices of the tree
T ∗ in the bottom-up order, starting from the leaves. Let
sj be any vertex of T ∗, and let T ∗(sj) be the sub-tree of
T ∗, rooted at sj . We will ensure that after vertex sj is
processed, we will have a collection T1(sj), . . . , Tk′(sj) of
trees, such that for each vertex si ∈ T ∗(sj), each one of the
trees contains exactly one distinct edge of Γ∗

i as a special
edge. The trees T1(sj), . . . , Tk′(sj) will consist of the union
of the paths P ′(e), where e is an edge in the sub-tree T ∗(sj)
of T ∗, of the edges of G whose both endpoints lie in sets Si

for si ∈ T ∗(sj), and of sets Γ∗
i , for si ∈ T ∗(sj).

Assume first that sj is a leaf of T ∗. Then the trees
T1(sj), . . . , Tk(sj) consist of a single distinct edge of Γ∗

j each.
Assume now that sj is an inner vertex of T ∗. We will assume
here that sj has two children, sa and sb; the case where sj
only has one child is treated similarly.

Recall that we are given a collection T1(sa), . . . , Tk′(sa)
of trees spanning the sets Γ∗

i of vertices si in the sub-tree
T ∗(sa). We will assume w.l.o.g., that for each such tree

Tq(sa), the root of the tree is an endpoint of the unique
edge of Γ∗

a that belongs to Tq(sa) as a special edge. Let
e = (sa, sj) be the edge of T ∗ connecting sa to sj . Recall

that we are given a collection P ′(e) : Γ∗
a

1:1
; B2(e) of paths

in G. From Theorem 10, we can find a set P1 : B2(e)
1:1
;2 Γ∗

j

of paths contained in the sub-graph G[Sj ] of G, where each
path in P1 connects a distinct edge of B2(e) to a distinct
edge of Γ∗

j . We now concatenate the paths in P ′(e) with the
paths in P1, to get a collection P ′

1 of paths. Each path in P ′
1

connects a root of a distinct tree Tq(sa) to a distinct edge
of Γ∗

j .
Similarly, let e′ = (sb, sj) be the edge of T ∗ connecting sb

to sj . We are again given a collection P ′(e′) : Γ∗
b

1:1
; B2(e

′) of

paths in G, and we can again find a set P2 : B2(e
′)

1:1
;2 Γ∗

j of
paths contained in G[Sj ]. Concatenating the paths in P ′(e′)
and P2, we again obtain a collection P ′

2 of paths, where each
path connects a root of a distinct tree Tq(sb) with a distinct
edge in Γ∗

j .
Consider now some edge ẽ ∈ Γ∗

j . We have two paths: P1 ∈
P ′

1, connecting ẽ to the root of some tree Tq(sa), and path
P2 ∈ P ′

2 connecting ẽ to the root of some tree Tq′(sb). We
obtain a tree Tẽ(sj) by taking the union of Tq(sa), Tq′(sb), P1

and P2 (we may need to delete some edges to ensure that it
is indeed a tree). The set of the special edges of this new
tree consists of all special edges of Tq(sa), Tq′(sb), and the
edge ẽ.

At the end of this procedure, when the root r of T ∗ is
processed, we will obtain a desired collection T1, . . . , Tk′ of
trees, where for each 1 ≤ j ≤ γ, for each 1 ≤ i ≤ k′, tree
Ti contains an edge ei,j ∈ Γ∗

j , and the edges e1,j , . . . , ek′,j

are all distinct. We now analyze the congestion caused by
these trees. First, as already observed, each edge of graph G
may belong to at most four paths of the set

⋃

e∈E(T∗) P ′(e).
Additionally, for each 1 ≤ j ≤ γ, we route two subsets of
edges of Γ′

j to each other twice. Each such routing causes
congestion 2 in graph G[Sj ], and so the total congestion
caused by all these routings is at most 4. We conclude that
each edge of G belongs to at most 8 trees T1, . . . , Tk′ .

Step 3: Constructing the Expander and Finding the
Routing.

In this step, we construct the expander X, together with
its embedding into the graph G, and find the final routing
of a subset of demands in M. Let M′ ⊆ M be any subset
of k′/2 demand pairs, and let T ′ be the subset of terminals
participating in the pairs of M′.

Let P = T ′ 1:1
;4 Γ∗

1 be the collection of paths connect-
ing the terminals of T ′ to the edges of Γ∗

1 ⊆ Γ1 (where
Γ∗
1 = {e1,1, . . . , ek′,1}), guaranteed by Theorem 10. Denote

P = {Pt | t ∈ T ′}, where Pt is the path originating from ter-
minal t. Rename the terminals in T ′ as T ′ = {t1, . . . , tk′},
where for each 1 ≤ i ≤ k′, ti is the terminal whose path
Pt terminates at the edge ei,1 (the unique edge of Γ∗

1 that
belongs to the tree Ti as a special edge). For 1 ≤ i ≤ k′, let
Ci be the connected component of graph G, that consists
of the union of the tree Ti and the path Pti . Since each
edge of graph G participates in at most 8 trees Ti, and at
most 4 paths in P , each edge of G participates in at most
12 connected components Ci.

We now construct the expander X and embed it into the
graph G. The set of vertices of X is V (X) = {v1, . . . , vk′},



where we view each vertex vi as representing the terminal
ti ∈ T ′. We view the connected component Ci as the em-
bedding of the vertex vi into G. Finally, we need to define
the set of the edges ofX and specify their embedding into G.
In order to do so, we use the cut-matching game from The-
orem 5. Recall that in each iteration j, the cut player pro-
duces a partition (Aj , Bj) of V (X), with |Aj | = |Bj |. The
matching player then returns some matching Mj between
the vertices of Aj and Bj , and the edges of Mj are added
to graph X. We use the graphs G[Sj ] to route the match-
ings Mj . Specifically, let (A1, B1) be the partition of V (X)
produced by the cut player in the first iteration. Consider
the set Γ∗

1 = {e1,1, . . . , ek′,1} of edges. Partition (A1, B1)
of V (X) defines a partition (A′

1, B
′
1) of these edges, where

A′
1 = {ei,1 | vi ∈ A1} and B′

1 = {ei,1 | vi ∈ B1}. From The-

orem 10, we can find a set Q1 : A′
1

1:1
;2 B′

1 of |A′
1| paths con-

tained in G[S1], where each path in Q1 connects a distinct
edge of A′

1 to a distinct edge of B′
1. Set Q1 of paths then

defines a matching M ′
1 between the sets A′

1 and B′
1, which

in turn defines a matching M1 between the sets A1 and B1

of vertices of V (X). We then treat M1 as the response of
the matching player. For each edge e = (vi, vi′ ) ∈ M1 of the
matching, we let Pe be the unique path of Q1 connecting ei,1
to ei′,1. We view Pe as the embedding of e into graph G.
We continue similarly to execute the remaining iterations,
where in each iteration j : 1 ≤ j ≤ γ, we use the set Sj ∈ F
to find the matching Mj . That is, we define the partition
(A′

j , B
′
j) of Γ′

j based on the partition (Aj , Bj) of V (X) as

before, find a collection Qj : A′
j

1:1
;2 B′

j of paths contained
in G[Sj ]. These paths give us the matching M ′

j between the
sets A′

j and B′
j of edges, which in turn gives us the match-

ing Mj between the sets Aj and Bj of vertices of V (X). For
each edge e = (vi, vi′) ∈ Mj , we let Pe be the unique path
of Qj connecting ei,j to ei′,j . We view Pe as the embedding
of e into graph G. The final graph X is the graph obtained
after γ iterations, with E(X) =

⋃γ
j=1 Mj , and we are guar-

anteed that w.h.p. it is an Ω(log k′)-expander. For each
edge e = (vi, vi′) ∈ E(X), we have defined an embedding Pe

of e into G, where Pe is a path connecting some vertex in
Ci to some vertex in Ci′ . Let PX = {Pe | e ∈ E(X)}. Then
PX =

⋃γ
j=1 Qj , and the total congestion caused by paths

in PX in G is at most 2. This finishes the definition of the
expander X and of its embedding into G.

We now use the expander X and its embedding into G,
to route a subset of demand pairs. We identify from now on
the vertices of X with the terminals of T ′ they represent,
that is, V (X) = T ′.

We use Theorem 4 to find a collection P of r = Ω
(

k′

γ2

)

vertex-disjoint paths in the expander X, connecting a subset
M′′ ⊆ M′ of r distinct demand pairs. Assume w.l.o.g. that
M′′ = {(t1, t2), (t3, t4), . . . , (t2r−1, t2r)}. For each 1 ≤ i ≤ r,
let Pi ∈ P be the path connecting t2i−1 to t2i. In order to
complete the routing, we transform each such path Pi into
a path Qi in graph G, connecting the same pair (t2i−1, t2i)
of terminals.

Fix some 1 ≤ i ≤ r. We now show how to transform the
path Pi connecting t2i−1 to t2i in graph X to a path Qi

connecting the same pair of terminals in graph G. In order
to do so, we will replace the edges and the vertices of path
Pi by paths in graph G. First, each edge e = (ta, tb) ∈ Pi

is replaced by the path Pe ⊆ G, connecting some vertex
v ∈ Ca to some vertex u ∈ Cb. Next, consider some inner

vertex tx ∈ Pi, and let e, e′ be the two edges appearing im-
mediately before and immediately after tx on the original
path Pi, respectively. Let vx ∈ Cx be the last vertex on
path Pe, and let v′x ∈ Cx be the first vertex on path Pe′ .
Then we replace the vertex tx with an arbitrary path Px

connecting vx to v′x in the connected component Cx of G. It
now only remains to take care of the endpoints of path Pi.
Let e be the first edge on the original path Pi, and recall
that the first vertex on Pi is t2i−1. Let v2i−1 ∈ C2i−1 be
the first vertex on the path Pe. Then we replace t2i−1 by
any path connecting t2i−1 to v2i−1 in the connected compo-
nent C2i−1. The last vertex of Pi is taken care of similarly.
Let Qi denote the resulting path. Notice that Qi consists
of two types of segments: the first type are the paths Pe

for edges e ∈ Pi, and the second type is the paths Px for
vertices x ∈ Pi. Let Q1, . . . , Qr be the resulting set of paths.
We now bound the congestion due to paths in Q1, . . . , Qr in
graph G. Recall that the paths {Pi}ri=1 are edge- and vertex-
disjoint. Recall also that each edge of graph G participates
in at most 2 paths of the set PX = {Pe | e ∈ E(X)}. There-
fore, the congestion due to type-1 segments in {Qi}ri=1 is
at most 2. Since the paths in {Pi}ri=1 are vertex-disjoint,
and every edge of graph G participates in at most 12 com-
ponents C1, . . . , Ck′ , the congestion due to type-2 segments
is bounded by 12. Overall, the paths in {Qi}ri=1 cause con-
gestion at most 14. The number of demand pairs routed is

r = Ω
(

k′

γ2

)

= Ω
(

k
log20.5 k log log k

)

.

To conclude, we have started with a graph G, a collection
M of k source-sink pairs, and the set T of terminals partic-
ipating in pairs in M, such that G is flow-well-linked for T .
We have constructed a routing for the subset M′′ ⊆ M of

Ω
(

k
log20.5 k log log k

)

pairs with congestion at most 14.

Since we lose an additional O(log2 k) factor on the number
of pairs routed due to the pre-processing step that ensures
flow-well-linkedness of the terminals, our algorithm routes

Ω
(

OPT

log22.5 k log log k

)

pairs with congestion at most 14 w.h.p.

4. ROUTING WITH GROUPING
The goal of this section is to prove Theorem 2. We roughly

follow the algorithm from Section 3, except that we use a
slightly different theorem for routing on expanders, summa-
rized below. Its proof is similar to some arguments from [BFU94],
and it uses the new constructive proof of the Lovasz Local
Lemma by Moser and Tardos [MT10]. The proof appears in
the full version of the paper.

Theorem 13 Let G = (V,E) be any n-vertex α-expander
(for α ≤ 1) with maximum degree dmax, and let c ≥ 1 be any

integer. Then there is a value m = Θ

(

d
1+3/c

max (log n)1+5/c

α1+3/c

)

,

such that, for any partition G = (V1, . . . , Vr) of the ver-
tices of G into groups of size at least m, and for any partial
matching M ⊆ ([r]×[r]), we can efficiently find, for each pair
(i, j) ∈ M , a path Pi,j connecting a vertex of Vi to a vertex
of Vj, such that w.h.p., the set of paths {Pi,j | (i, j) ∈ M}
causes vertex congestion at most c in G.

Assume that we are given a graph G = (V,E) and a set
T ⊆ V of k0 terminals, such that G is α0-well-linked for T .
We will construct an expander X on a subset of terminals
in T as in Section 3, where X is a 1

2
-expander, |V (X)| ≤ k0,



and the maximum degree of X is bounded by γCMG(k0) =

O(log2 k0). We denote by m = Θ
(

(log k0)
3+11/c

)

the cor-

responding parameter from Theorem 4 for this setting.
We also use the following parameters. Let k̃ = k0α0

12βFCG(k0)
=

Ω
(

k0α0

log k0

)

. Recall that we have defined, in Section 3, a pa-

rameter k′, whose value is Ω
(

k
log16.5 k log log k

)

, where k is

the number of the terminals. We define a function q(k) =
O(log16.5 k log log k), so that for any integer k, k′ = k/q(k).
We then set

k̃′ = k̃/q(k̃) = Ω

(

k0α0

log k0 · log16.5 k̃ log log k̃

)

= Ω

(

k0α0

log18 k0

)

.

Intuitively, we will define a grouping G′′ of the terminals
in T into groups of size roughly k0α0/βFCG(k0), and select
one representative terminal from each group. Let T ′′ denote
the resulting set of terminals. We will show that the set T ′′

is flow-well-linked in graph G, and |T ′′| ≥ k̃. We can then
apply the algorithm from Section 3 to construct an expander
X on a subset T ′ ⊆ T ′′ of k̃′ terminals. These terminals are
in turn grouped into groups of size at least m, and we then
apply Theorem 4 to route these terminals in the expanderX.
We now proceed with a formal description of the algorithm.

We define three hierarchical groupings of the terminals
in T . Let T be any spanning tree of the graph G. Our
first step is to group the terminals in T into groups of size
roughly k0m/k̃′. To do so, we use the grouping technique

with the parameter 6⌈k0m/k̃′⌉ on the set T of terminals and
the tree T . As a result, we obtain a partition G of the set T
of terminals into groups of size at least 6⌈k0m/k̃′⌉, and at

most 18⌈k0m/k̃′⌉. For each group U ∈ G, there is a tree TU

spanning the terminals of U , and the all trees in {TU}U∈G

are edge-disjoint. The final grouping of the terminals re-
turned by the algorithm is G. The size of each group in G is

bounded by 18⌈k0m/k̃′⌉ = O
(

k0(log k0)
3+11/c · log18 k0

k0α0

)

=

O
(

(log k0)
21+11/c

α0

)

, as required. Assume now that we are

given a set M of integral (1, G)-restricted demands on T .
We now show an algorithm to integrally route the demands
in M.

For each group U ∈ G, we further partition the terminals
in U into at least m groups of roughly equal size, using the
tree TU . Let nU = |U |. We use the grouping technique
with the parameter 1

3
⌊nU/m⌋ for U and tree TU . We then

obtain at least m groups, whose sizes are at least k0

k̃′ and

at most 36k0

k̃′ . For each group U ∈ G, let P(U) denote the

resulting partition of U , and let G′ =
⋃

U∈G P(U) be the
corresponding grouping of the terminals. Notice that again
for each group U ′ ∈ G′, we have a tree TU′ spanning the
terminals of U ′, such that all trees in {TU′}U′∈G′ are edge-
disjoint.

Finally, for each group U ′ ∈ G′, we further partition the

terminals in U ′ into groups of size at least ⌈βFCG(k0)
α0

⌉ and

at most 3⌈βFCG(k0)
α0

⌉, using the standard grouping technique

on the tree TU′ , with the parameter ⌈βFCG(k0)
α0

⌉. For each

set U ′ ∈ G′, let P ′(U ′) be the resulting partition of U ′, and
let G′′ =

⋃

U′∈G′ P ′(U ′) be the resulting partition of the ter-
minals. For each set U ′′ ∈ G′′, let tU′′ be any representative
terminal from U ′′, and let T ′′ = {tU′′ | U ′′ ∈ G′′}. Each
group U ′′ ∈ G′′ is again associated with a tree TU′′ span-

ning the terminals of U ′′, and all trees in {TU′′}U′′∈G′′ are
edge-disjoint. We start with the following simple claim.

Claim 4 The terminals in T ′′ are flow-well-linked.

Proof. Let M ′ be any partial matching on the terminals
of T ′′. We extend the matching M ′ as follows. Assume
w.l.o.g. that M ′ = {(t1, t2), . . . , (t2r−1, t2r)}, and for all
1 ≤ i ≤ 2r, ti ∈ Ui, where Ui ∈ G′′. For each 1 ≤ j ≤ r,

let Mj be any matching of size ⌈βFCG(k0)
α0

⌉ between U2j−1

and U2j , and let M ′′ =
⋃r

j=1 Mj . Since graph G is α0-

well-linked for T , matching M ′′ can be fractionally routed
with congestion at most βFCG(k0)/α0 in G. Let F be the

resulting flow, scaled down by factor ⌈βFCG(k0)
α0

⌉. Then F
causes congestion at most 1, and for each 1 ≤ j ≤ r, the
terminals in U2j−1 send one flow unit to the terminals in
U2j .

For each pair (t2j−1, t2j) ∈ M ′, we define the flow from
t2j−1 to t2j as follows: terminal t2j−1 spreads one unit of flow
along the tree TU2j−1

to the terminals in U2j−1, where the
amount of flow each terminal receives equals to the amount
of flow it sends in F . This flow is then concatenated with
the flow originating from the terminals in U2j−1 in F , and
finally t2j collects one flow unit from the terminals in U2j

via the tree TU2j . It is easy to see that the resulting flow
causes congestion at most 2.

Notice that the number of terminals in T ′′ is |T ′′| ≥
k0

3⌈βFCG(k0)/α0⌉
≥ k0α0

12βFCG(k0)
≥ k̃. Therefore, we now have a

graph G and a subset T ′′ of at least k̃ terminals, that are
flow-well-linked in G. This is precisely the starting point
of the algorithm in Section 3. We can now use the algo-
rithm from Section 3 to construct the expander X on a
subset T ′ ⊆ T ′′ of k̃′ terminals. The only difference is
that, instead of selecting an arbitrary subset T ′ of termi-
nals as in the algorithm, we select T ′ as follows. Consider
the grouping G′ of the terminals. Let G∗ be the grouping
of the terminals in T ′′ that G′ induces. We select one rep-
resentative terminal from each group in G∗, and we let T ′

be the set of all selected terminals. By our construction,
|T ′| = |G′| ≤ 6m|G| ≤ 6k0m

6k0m/k̃′ ≤ k̃′.

We now use the algorithm from Section 3 to construct a
1
2
-expander X on the set T ′ of terminals, and embed it into

G. Recall that for each terminal t ∈ T ′, we have a connected
component Ct of G, and each edge of G participates in at
most 12 such components. Each edge e of X is mapped to
a path Pe in G, and each edge of G participates in at most
two such paths.

Consider the grouping G∗∗ of the terminals in T ′, induced
by G. In order to obtain G∗∗, we start from G, and we
ignore terminals that do not belong to T ′. By our construc-
tion, each group in G∗∗ contains at least m terminals from
T ′. We assume w.l.o.g. that the input set of demands is
M = {(t1, t2), . . . , (t2r−1, t2r)}, and for each 1 ≤ i ≤ 2r,
ti ∈ Ui, where Ui ∈ G. Let U∗

i = Ui ∩ T ′, and recall that
|U∗

i | ≥ m, and U∗
i ∈ G∗∗. We now use Theorem 4 on graph

X, set T ′ of terminals, grouping G∗∗, and matching M ′ =
{(1, 2), (3, 4), . . . , (2r − 1, 2r)}. Let P ′′ be the set of paths
returned by the theorem, where for each 1 ≤ j ≤ r, there is
a path P ′′

j ∈ P connecting some terminal t′2j−1 ∈ U2j−1 to
some terminal t′2j ∈ U2j . The paths in P ′′ cause vertex con-
gestion at most c in X. We transform these paths into a set
P ′ of paths connecting the same pairs of terminals in graph



G. Since each edge of G participates in at most 12 connected
component, and at most two paths in set {Pe | e ∈ E(X)},
the total congestion caused by paths in P ′ is at most 14c.
For each 1 ≤ j ≤ r, let P ′

j ∈ P ′ be the path connecting t′2j−1

to t′2j .
We then construct a path Pj connecting t2j−1 to t2j as

follows: first connect t2j−1 to t′2j−1 via the tree TU2j−1
, then

use the path P ′
j to connect t′2j−1 to t′2j , and finally connect

t′2j to t2j via the tree TU2j . Let P = {Pj}rj=1 be the final
routing. Then the total edge congestion caused by P is
bounded by 14c+ 1.

5. INTEGRAL SPARSIFIERS
In this section we prove Theorem 3. Notice that we can

assume w.l.o.g. that the degree of every terminal is 1, and
the number of terminals is d: for each terminal t ∈ T , we
can simply sub-divide every edge e incident on t with a new
vertex vt, let St be the set of these new vertices, and set
T ′ =

⋃

t∈T St. Let G′ be the sub-graph of the resulting
graph induced by (V \ T ) ∪ T ′, and let T ′ be the new set
of terminals. Then every terminal in T ′ has degree 1, and
|T ′| = d. Moreover, if H ′ is a quality (q1, q2) integral spar-
sifier for G′, we can obtain a sparsifier H for G by unifying,
for each t ∈ T , all vertices in St into a single vertex t in
graph H ′. It is immediate to verify that the resulting graph
H is a quality (q1, q2)-sparsifier for G.

For convenience, from now on we assume that every ter-
minal in T has degree 1, and we denote by k the number of
terminals in T . We now show a construction of a sparsifier
for G of size O(k).

We first consider a special case where graph G is αWL(k)-
well-linked for the set T of terminals. We use Theorem 2
with c = 1 and α0 = αWL(k) to find a partition G of the
terminals into subsets of size Z = O(log32 k/αWL(k)) =
O(log35.5 k). Recall that in the proof of Theorem 2, we
have constructed, for each group U ∈ G, a tree TU ⊆ G
containing all terminals of U , such that the trees {TU}U∈G

are edge-disjoint.
Consider some group U ∈ G and its corresponding tree

TU . We construct a new tree T ′
U , which is a minor of TU ,

as follows. Root TU at some arbitrary vertex rU . For each
vertex v of TU , let T (v) be the sub-tree of TU rooted at
v, and let S(v) be the set of vertices of TU , excluding v.
While TU contains a vertex v with S(v) ∩ U = ∅, we delete
all vertices of S(v) from the tree TU . Assume now that
for each vertex v of TU , S(v) contains some vertex of U .
While TU contains any degree-2 vertex v′ 6= rU , we replace
the two edges incident on v′ with a single edge. Let T ′

U be
the resulting tree. It is easy to see that T ′

U is a minor of
TU , and it contains at most 2|U | vertices, since all its leaves
belong to U . In order to construct the sparsifier H , we start
with disjoint copies of trees T ′

U (so if any vertex is contained
in several such trees, we use several copies of this vertex).
Finally, we add a new vertex r, and an edge (r, rU ) for every
U ∈ G, connecting r to the root of the tree T ′

U . We claim
that graph H is a quality-(Z, 31) integral flow sparsifier for
G.

Indeed, let D be any set of demands on T . By scaling D
appropriately, we can assume w.l.o.g. η(G,D) = 1. Let D′

be the demand set obtained from D by scaling all demands
down by factor Z. We show that η(H,D′) ≤ 1. For each
group U ∈ G, the total demand originating from the termi-
nals of U is at most 1. For each pair t, t′ ∈ U , we route the

demand D′(t, t′) along the tree T ′
U . For each pair (t, t′) with

t ∈ U , t′ ∈ U ′, where U 6= U ′, we route D′(t, t′) flow units
from t to rU along the tree T ′

U , then use the edges (rU , r)
and (r, rU′), and finally we route D′(t, t′) flow units from
rU′ to t′ along the tree T ′

U′ . This gives a routing of D′ with
congestion at most 1. Therefore, η(H,D) ≤ Z.

Assume now that we are given some collection M of pairs
of terminals, and a set P of paths that connects the pairs of
terminals in M with congestion at most η in graph H . We
show a collection P ′ of paths connecting the same pairs of
terminals with congestion at most 31η in graph G.

We decompose M into two subsets: M1 ⊆ M containing
pairs (s, t) where both s and t belong to the same group U ,
and M2 = M\ M1. For each group U ∈ G, let M1(U) ⊆
M1 be the set of pairs that belong to group U . Then we can
assume w.l.o.g. that all pairs in M1(U) are routed along the
tree T ′

U in H , and the total congestion of this routing is at
most η. We can then route these pairs along the tree TU

in graph G. We therefore obtain an integral routing of all
pairs in M1 with congestion at most η in graph G.

We now turn to pairs in M2. Since the pairs in M2 can be
routed in graphH with congestion at most η, for each U ∈ G,
the terminals of U participate in at most η pairs in M2. We
decompose M2 into 2η subsets M1, . . . ,M2η, such that for
each 1 ≤ j ≤ 2η, for each U ∈ G, at most one terminal of U
participates in pairs in Mj . Such a decomposition can be
found greedily. We consider each pair (s, t) ∈ M2 in turn.
Assume that s ∈ U , t ∈ U ′. We select any index j, such
that no terminal of U ∪ U ′ participates in any pair of Mj ,
and add (s, t) to Mj . Since for each U ∈ G, the terminals
of U participate in at most η pairs in M2, it is easy to see
that this greedy process will give the desired decomposition.
For each 1 ≤ j ≤ 2η, the pairs in Mj now define a set Dj

of (1,G)-restricted demands. Using Theorem 2, there is an
efficient algorithm that w.h.p. finds a routing of Dj in G
with congestion at most 15. Therefore, we obtain a routing
of all pairs in M2 with congestion at most 30η. Overall,
we route all pairs in M with congestion at most 31η. This
concludes the proof that H is a quality-(Z, 31) integral flow
sparsifier for G. Notice that |V (H)| ≤ 2k.

We now consider a general case, where we are given a
graph G = (V,E), and set T of k terminals, such that
the degree of every terminal is 1 in G, but G is not nec-
essarily well-linked for T . We compute a well-linked de-
composition W of V (G) \ T using Corollary 1. Let G′

be the graph obtained from G by subdividing every edge
e ∈ ⋃

W∈W out(W ) by a vertex ve. For each cluster W ∈ W,
let TW = {ve | e ∈ outG(W )}, and let GW = G′[W ∪ TW ].
Notice that since W is αWL(k)-well-linked, we are guaran-
teed that graph GW is αWL(k)-well-linked for the set TW of
terminals. We can then compute a sparsifier HW for GW as
before.

In order to obtain the final sparsifier H , we replace, for
each W ∈ W, graph GW with graph HW in G′. In order
to do so, we delete all vertices of W from G′, and add the
vertices and the edges of HW to it. Finally, for each t ∈ TW ,
we identify the two copies of t in the resulting graph. It is
immediate to verify that the resulting graph H is a quality-
(Z, 31) integral flow sparsifier for (G, T ), using the fact that
for each W ∈ W, graph HW is a quality-(Z, 31) integral flow
sparsifier for (GW , TW ).



Acknowledgements.
The author thanksMatthew Andrews and Sanjeev Khanna

for many inspiring discussions about routing problems.

6. REFERENCES

[ACG+10] Matthew Andrews, Julia Chuzhoy, Venkatesan
Guruswami, Sanjeev Khanna, Kunal Talwar,
and Lisa Zhang. Inapproximability of
edge-disjoint paths and low congestion routing
on undirected graphs. Combinatorica,
30(5):485–520, 2010.

[And10] Matthew Andrews. Approximation algorithms
for the edge-disjoint paths problem via Raecke
decompositions. In Proceedings of the 2010
IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pages 277–286,
Washington, DC, USA, 2010. IEEE Computer
Society.

[AR98] Yonatan Aumann and Yuval Rabani. An
O(log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM
J. Comput., 27(1):291–301, 1998.

[AR01] Yossi Azar and Oded Regev. Strongly
polynomial algorithms for the unsplittable flow
problem. In In Proceedings of the 8th
Conference on Integer Programming and
Combinatorial Optimization (IPCO), pages
15–29, 2001.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V.
Vazirani. Expander flows, geometric
embeddings and graph partitioning. J. ACM,
56(2), 2009.

[AZ05] Matthew Andrews and Lisa Zhang. Hardness of
the undirected edge-disjoint paths problem. In
Harold N. Gabow and Ronald Fagin, editors,
STOC, pages 276–283. ACM, 2005.

[AZ07] Matthew Andrews and Lisa Zhang. Hardness of
the undirected congestion minimization
problem. SIAM J. Comput., 37(1):112–131,
2007.

[AZ08] Matthew Andrews and Lisa Zhang.
Almost-tight hardness of directed congestion
minimization. J. ACM, 55(6), 2008.

[BFSU94] Andrei Z. Broder, Alan M. Frieze, Stephen
Suen, and Eli Upfal. Optimal construction of
edge-disjoint paths in random graphs. In Proc.
5th ACM-SIAM SODA, pages 603–612, 1994.

[BFU94] Andrei Z. Broder, Alan M. Frieze, and Eli
Upfal. Existence and construction of
edge-disjoint paths on expander graphs. SIAM
J. Comput., pages 976–989, 1994.

[BS00] Alok Baveja and Aravind Srinivasan.
Approximation algorithms for disjoint paths
and related routing and packing problems.
Mathematics of Operations Research, 25:2000,
2000.

[CGKT07] Julia Chuzhoy, Venkatesan Guruswami, Sanjeev
Khanna, and Kunal Talwar. Hardness of
routing with congestion in directed graphs. In
ACM Symposium on Theory of Computing,
pages 165–178, 2007.

[CK03] Chandra Chekuri and Sanjeev Khanna. Edge
disjoint paths revisited. In Symposium on
Discrete Algorithms, pages 628–637, 2003.

[CKS04] Chandra Chekuri, Sanjeev Khanna, and
F. Bruce Shepherd. The all-or-nothing
multicommodity flow problem. In Proceedings
of the thirty-sixth annual ACM symposium on
Theory of computing, STOC ’04, pages
156–165, New York, NY, USA, 2004. ACM.

[CKS05] Chandra Chekuri, Sanjeev Khanna, and
F. Bruce Shepherd. Multicommodity flow,
well-linked terminals, and routing problems. In
STOC ’05: Proceedings of the thirty-seventh
annual ACM symposium on Theory of
computing, pages 183–192, New York, NY,
USA, 2005. ACM.

[CKS06a] Chandra Chekuri, Sanjeev Khanna, and
F. Bruce Shepherd. Edge-disjoint paths in
planar graphs with constant congestion. In
Proceedings of the thirty-eighth annual ACM
symposium on Theory of computing, STOC ’06,
pages 757–766, New York, NY, USA, 2006.
ACM.

[CKS06b] Chandra Chekuri, Sanjeev Khanna, and
F. Bruce Shepherd. An O(

√
n) approximation

and integrality gap for disjoint paths and
unsplittable flow. Theory of Computing,
2(1):137–146, 2006.

[CLLM10] Moses Charikar, Tom Leighton, Shi Li, and
Ankur Moitra. Vertex sparsifiers and abstract
rounding algorithms. In Proceedings of the 2010
IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pages 265–274,
Washington, DC, USA, 2010. IEEE Computer
Society.

[CMS07] Chandra Chekuri, Marcelo Mydlarz, and
F. Bruce Shepherd. Multicommodity demand
flow in a tree and packing integer programs.
ACM Trans. Algorithms, 3, August 2007.

[DP09] Devdatt Dubhashi and Alessandro Panconesi.
Concentration of Measure for the Analysis of
Randomized Algorithms. Cambridge University
Press, New York, NY, USA, 1st edition, 2009.

[EGK+10] Matthias Englert, Anupam Gupta, Robert
Krauthgamer, Harald Räcke, Inbal
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