
SIAM J. COMPUT. c⃝ 2016 Society for Industrial and Applied Mathematics
Vol. 45, No. 4, pp. 1490–1532

ROUTING IN UNDIRECTED GRAPHS WITH CONSTANT
CONGESTION∗

JULIA CHUZHOY†

Abstract. Given an undirected graph G = (V, E), a collection {(s1, t1), . . . , (sk, tk)} of k pairs
of its vertices, called demand pairs, and an integer c, the goal in the Edge-Disjoint Paths with
Congestion problem is to connect the maximum possible number of demand pairs by paths, so that
the maximum load on any edge (called edge congestion) does not exceed c. We show an efficient
randomized algorithm to route Ω(OPT/poly log k) demand pairs with congestion at most 14, where
OPT is the maximum number of pairs that can be simultaneously routed on edge-disjoint paths.
The algorithm in fact routes Ω(OPTLP/poly log k) pairs, where OPTLP is the optimal value of the
standard multicommodity flow relaxation for the problem. The best previous efficient algorithm
that routed Ω(OPT/poly logn) pairs required congestion poly(log log n), and for the setting where
the maximum allowed congestion is bounded by a constant c, the best previous efficient algorithms
could only guarantee the routing of Ω(OPT/n1/c) pairs. We also introduce a new type of vertex
sparsifier that we call an integral flow sparsifier ; integral flow sparsifiers approximately preserve
both fractional and integral routings. We show an algorithm that constructs such sparsifiers.

Key words. approximation algorithms, edge-disjoint paths, network routing

AMS subject classifications. 68R10, 05C85, 68W25

DOI. 10.1137/130910464

1. Introduction. We study network routing problems in undirected graphs. In
such problems, we are given an undirected n-vertex graph G = (V,E) and a collection
M = {(s1, t1), (s2, t2), . . . , (sk, tk)} of k pairs of vertices of G, called source-sink pairs,
that we also refer to as demand pairs. In order to route a pair (si, ti), we need to
select a path connecting si to ti in graph G. Given a routing of any subset of the
demand pairs, its congestion is the maximum load on any edge, that is, the maximum
number of paths containing the same edge. In general, we would like to route as
many demand pairs as possible, while minimizing the edge congestion. These two
conflicting objectives naturally give rise to several basic optimization problems.

One of the central routing problems is Edge-Disjoint Paths (EDP), where the goal
is to route the maximum number of demand pairs on edge-disjoint paths (that is, with
congestion 1). Robertson and Seymour [55, 56] have shown an efficient algorithm to
solve this problem, when the number k of the demand pairs is bounded by a constant.
However, when k is part of the input, it is NP-hard to even decide whether all pairs can
be simultaneously routed on edge-disjoint paths [36, 27]. The best currently known
approximation algorithm for the problem, due to Chekuri, Khanna, and Shepherd [18],
achieves an O(

√
n)-approximation factor, while the best current hardness of approx-

imation is Ω(log1/2−ϵ n) for any constant ϵ, unless NP ⊆ ZPTIME(npoly logn) [3, 2].
We note that the standard multicommodity flow linear programming (LP) relaxation
for EDP that is commonly used in approximation algorithms for network routing
problems has an integrality gap of Ω(

√
n) [31]. Interestingly, Rao and Zhou [54] have

∗Received by the editors February 21, 2013; accepted for publication (in revised form) Novem-
ber 16, 2015; published electronically August 30, 2016. This work was supported in part by NSF
CAREER grant CCF-0844872, a Sloan Research Fellowship, and NSF grant CCF-1318242. A pre-
liminary version of this paper appeared in STOC 2012.

http://www.siam.org/journals/sicomp/45-4/91046.html
†Toyota Technological Institute, Chicago, IL 60637 (cjulia@ttic.edu).

1490

http://www.siam.org/journals/sicomp/45-4/91046.html
mailto:cjulia@ttic.edu

ROUTING WITH CONSTANT CONGESTION 1491

shown an O(poly logn)-approximation algorithm for EDP in graphs where the value
of the global minimum cut is Ω(log5 n), by rounding the same LP relaxation.

In the EDP problem, we require that the congestion of the routing be the best
possible (congestion 1), and the goal is to maximize the number of pairs routed subject
to this constraint. On the other extreme is the Congestion Minimization problem,
where we need to route all source-sink pairs while minimizing the edge congestion. The
classical randomized rounding technique of Raghavan and Thompson [53] gives the
best currently known approximation algorithm for this problem, whose approximation
factor is O(log n/ log logn). On the negative side, Andrews and Zhang [4] show that
the problem is hard to approximate to within a factor of Ω(log logn

log log logn) unless NP ⊆
ZPTIME(npoly logn).

A problem that lies between these two extremes, and is a natural framework for
studying the tradeoff between the number of pairs routed and the edge congestion,
is the Edge-Disjoint Paths with Congestion problem (EDPwC). We say that an algo-
rithm A achieves a factor-α approximation with congestion c for EDPwC if it routes
at least OPT/α source-sink pairs, and the congestion of this routing is bounded by c,
where OPT is the maximum number of the demand pairs that can be simultaneously
routed on edge-disjoint paths. In particular, a very interesting question is whether,
by slightly relaxing the capacity constraints, and allowing small edge congestion, we
can significantly increase the number of pairs routed.

When the congestion c is allowed to be as high as Ω(logn/ log logn), the ran-
domized rounding algorithm of Raghavan and Thompson [53] gives a constant-factor
approximation for EDPwC. For smaller values of c, until recently, only O(n1/c)-
approximation algorithms have been known [7, 8, 44]. In a recent breakthrough, An-
drews [1] has shown an efficient randomized algorithm that routes Ω(OPT

log61 n
) pairs with

congestionO((log logn)6). In another recent result, Kawarabayashi and Kobayashi [37]
have shown an efficient algorithm that routes Ω(OPT

n3/7) pairs with congestion 2, thus
improving the best previously known O(

√
n)-approximation for c = 2.

In this paper we show an efficient randomized algorithm that routes Ω(OPT
log22.5 k log log k

)
demand pairs with congestion at most 14. We note that, on the negative side, Andrews
et al. [2] have shown that for any fixed constant ϵ > 0, for any 1 ≤ c ≤ O(log logn

log log log n),

there is no O((log n)
1−ϵ
c+1)-approximation algorithm for EDPwC with congestion c un-

less NP ⊆ ZPTIME(npoly logn). Therefore, the best approximation factor one may
hope to achieve for EDPwC in the setting where the allowed congestion is bounded
by a constant is polylogarithmic.

In a subsequent work, our main result was extended in [24] to an algorithm that
achieves an O(poly log(k))-approximation for EDPwC with congestion 2. Chekuri
and Ene [15] considered a closely related, and more general, Node-Disjoint Paths
problem, where the congestion is measured on vertices and not edges. They show an
algorithm that achieves an O(poly log(k))-approximation with constant congestion for
this problem, building on some of the ideas from this paper. Some of the new technical
ideas introduced in this paper have also led to new results in graph theory, including
a new algorithm to decompose large-treewidth graphs into a number of disjoint large-
treewidth subgraphs [12], a new proof of the Excluded Grid Theorem that achieves
the first polynomial bounds on the size of the grid-minor [13], and a construction of
degree-3 treewidth sparsifiers [14].

1492 JULIA CHUZHOY

While our algorithm is guaranteed, with high probability,1 to route at least
Ω(OPT/ poly log k) of the demand pairs with constant congestion, we have no control
over the choice of the pairs that are routed. In some applications it may be useful to
be able to choose specific pairs for the algorithm to route beforehand. While we do
not expect to be able to preselect an arbitrary collection of the demand pairs to be
routed (from the NP-hardness of the decision version of EDP), under some conditions
we can still have some control over their selection. We show that if a given set T
of vertices is well-linked in the graph G (see a formal definition below), then we can
efficiently find a partition G of T into groups of size O(poly log k) each, with the fol-
lowing property: if we are given any collection M = {(s1, t1), . . . , (sr, tr)} of demand
pairs, with M ⊆ T × T , where for each group U ∈ G, the vertices of U appear in at
most one pair in M, then there is an efficient randomized algorithm that with high
probability routes all demand pairs in M with constant congestion.

We then turn to vertex flow sparsifiers. Given a graph G with a subset T of k ver-
tices called terminals, and a set D : T × T → R+ of demands over pairs of vertices of
T , let η(G,D) be the minimum congestion required to fractionally route the demands
in D in graph G. We say that a graph H is a quality-q vertex flow sparsifier for (G, T)
iff T ⊆ V (H), and for any set D of demands over T , η(G,D) ≤ η(H,D) ≤ qη(G,D).
Flow sparsifiers were first introduced by Moitra [49] and Leighton and Moitra [45].
One of their motivations was to obtain better and faster approximation algorithms for
combinatorial optimization problems, whose solution value depends only on the con-
gestion values η(G,D) for various setsD of demands. The improvement is obtained by
running the approximation algorithm on the sparsifier H instead of G, assuming that
|V (H)| ≪ |V (G)|. This results in a better running time and in better approximation
factors for algorithms whose approximation factors depend on the input graph size.
Several efficient algorithms are now known for constructing quality-O(log k/ log log k)
sparsifiers H with V (H) = T [11, 26, 48], and constant-quality sparsifiers when V (H)
may contain additional nonterminal vertices [22]. However, such sparsifiers do not
preserve integral routings. For example, if we were to solve the EDP problem, or
some other routing problem in graph H , we would not be guaranteed that we could
transform this solution into an integral solution in graph G. This motivates our defi-
nition of integral sparsifiers that approximately preserve both fractional and integral
routings. Suppose we are given any n-vertex graph G = (V,E) with a subset T
of k vertices called terminals. We say that a graph H is a quality-(q1, q2) integral
flow sparsifier for G and T iff (1) T ⊆ V (H); (2) for any set D of demands over T ,
η(H,D) ≤ q1η(G,D) (so in particular if we scale the demands in D down by factor
q1, we can route them fractionally in H with no congestion); and (3) given any in-
tegral routing P of any set M of pairs of terminals in graph H with congestion c,
there is an efficient randomized algorithm that with high probability finds an integral
routing P ′ of M in G with congestion at most q2 · c. We show an efficient algorithm
to construct integral sparsifiers H of quality (q1, q2) with q1 = O(poly log k), q2 = 31,
and |V (H)| = O(d), where d is the sum of the degrees of all terminals.

Other related work. EDP and its variants have been studied extensively, and
better approximation algorithms are known for several special cases. Some exam-
ples include planar graphs [28, 43, 42, 17, 19, 38, 57], trees [31, 21], and expander
graphs [46, 10, 9, 41, 30].

We note that the approximability of routing problems is somewhat better under-

1Throughout the paper, we use “with high probability” to mean probability 1−1/poly(n), where
n is the number of the graph vertices.

ROUTING WITH CONSTANT CONGESTION 1493

stood in directed graphs. The EDP problem has Õ
(
min

{
n2/3,

√
m
})

-approximation
algorithms in directed graphs, where m is the number of the graph edges [16, 60, 40],
and it is hard to approximate to within a factor of Ω

(
m1/2−ϵ

)
for any constant

ϵ [32]. The randomized rounding technique of Raghavan and Thompson [53] gives
an O(log n/ log logn)-approximation for directed Congestion Minimization, and the
problem is hard to approximate to within a factor of Ω(log n/ log logn) unless NP ⊆
ZPTIME(npoly logn) [5, 23]. As for EDPwC, the randomized rounding technique gives
an O(cn1/c)-approximation [44, 59] for any congestion bound c. On the other hand,
for any 1 ≤ c ≤ O(log n

log logn), there is no nO(1/c)-approximation algorithm for the

problem in directed graphs unless NP ⊆ ZPTIME(npoly logn) [23].

Our results and techniques. Our main result is summarized in the following the-
orem.

Theorem 1.1. There is a randomized polynomial-time algorithm that, given an
undirected graph G and a set M = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices of
G called demand pairs, with high probability finds a collection P of paths connecting
Ω(OPT

log22.5 k log log k
) demand pairs with congestion at most 14, where OPT is the maxi-

mum number of the demand pairs that can be simultaneously routed on edge-disjoint
paths in G.

Our algorithm in fact routes Ω(OPTLP

log22.5 k log log k
) demand pairs, where OPTLP is the

value of the optimal solution to the standard multicommodity flow LP relaxation for
the problem, where each edge carries at most one flow unit. Since the integrality gap
of this LP relaxation is Ω(

√
n) for EDP when no congestion is allowed, our result

shows that the integrality gap improves from polynomial to polylogarithmic if we
allow a congestion of 14.

Remark. We compare the number of the demand pairs routed by our solution
with congestion 14 to the number OPT of the demand pairs routed by the optimal
solution with congestion 1. We have set up the definitions in this way in order to
be consistent with prior work, and this gives a bicriteria approximation to EDPwC
with congestion 14. However, since our algorithm is based on LP rounding, we ob-
tain an O

(
log22.5 k log log k

)
-approximation algorithm even when compared to the

value OPT′ of the optimal solution with congestion 14 (that is, we also obtain a real
approximation). Indeed, if we denote by OPTLP the value of the optimal solution
of the multicommodity LP relaxation for our EDP instance, where we only allow
congestion 1 on edges, then our algorithm returns a routing of Ω(OPTLP

log22.5 k log log k
) de-

mand pairs with congestion 14. Let OPT′
LP denote the value of the optimal solution

to the multicommodity LP relaxation where we allow congestion 14. It is easy to
see that OPT′

LP ≤ 14OPTLP, since, given a fractional routing with congestion 14, by
scaling all flows down by factor 14, we obtain a fractional routing with congestion
1. Therefore, the number of the demand pairs routed by our algorithm is at least

Ω(OPT′
LP

log22.5 k log log k
) = Ω(OPT′

log22.5 k log log k
), and we obtain a (real) O(poly log k) approxi-

mation for EDPwC with congestion 14.
A basic notion used throughout the paper is that of well-linkedness. Well-linkedness

and its variations have been used extensively in graph minor theory and in pre-
vious work on routing problems [52, 17, 54, 1]. We say that a set T of vertices
is α-well-linked in a graph G iff for any partition (A,B) of V (G), |E(A,B)| ≥
α ·min {|T ∩ A|, |T ∩B|}.

Suppose we are given a graphG = (V,E), a set T ⊆ V of vertices called terminals,
a partition G of T , and a collectionM = {(s1, t1), . . . , (sr, tr)} of demand pairs, where

1494 JULIA CHUZHOY

for each 1 ≤ i ≤ r, si, ti ∈ T . We say that the demand set M is (1,G)-restricted iff
for every group U ∈ G, at most one demand pair (si, ti) contains a terminal of U (and
only one terminal of U may participate in this pair). Our next theorem allows us to
preselect, to some extent, the demand pairs to be routed, if the set T of terminals is
well-linked in G.

Theorem 1.2. Suppose we are given an n-vertex graph G = (V,E), a subset
T ⊆ V of k0 vertices called terminals, such that T is α0-well-linked in G for some
0 < α0 < 1, and an integer c ≥ 1. Then we can efficiently find a partition G of the

terminals of T into groups of size O((log k0)
21+11/c

α0
), such that, given any set M of

demand pairs over T , where M is (1,G)-restricted, there is an efficient randomized
algorithm that with high probability finds a routing of all pairs in M with congestion
at most 14c+ 1.

In particular, we can achieve congestion 15 with group size O(log32 k0/α0), and if
the group size is O(log22 k0/α0), then the congestion is 155. Finally, the next theorem
provides an algorithm for constructing integral sparsifiers.

Theorem 1.3. There is an efficient algorithm that constructs, for any graph G
and set T ⊆ V (G) of k terminals, an integral sparsifier H of quality (q1, q2), with
q1 = O(poly log k), q2 = 31, and |V (H)| = O(d), where d is the sum of the degrees of
all terminals.

We now give an overview of our techniques and compare them to previous work.
The starting point of the proof of Theorem 1.1 is the same as in the work of [17, 54, 1].
We start with the standard LP relaxation for the EDP problem on graph G, and
we compute a partition of G into disjoint induced subgraphs G1, . . . , Gr. For each
1 ≤ i ≤ r, we compute a subset Mi ⊆ M of demand pairs that are contained in Gi,
such that the corresponding set Ti of terminals, containing all vertices that participate
in the pairs in Mi, is

1
2 -well-linked in Gi, and, moreover,

∑r
i=1 |Mi| ≥ Ω(|M|

log2 k
).

An algorithm for efficiently computing such a decomposition was shown by Chekuri,
Khanna, and Shepherd [17]. From now on, it is enough to find a good routing in
each resulting subinstance Gi separately. To simplify notation, let G denote any such
subinstance Gi, let M denote the set Mi of demand pairs, and let T denote the
corresponding set Ti of terminals. Since set T is 1

2 -well-linked in G, graph G has good
expansion properties with respect to T . However, graph G may be far from being
an expander, since it may contain many vertices besides the terminals. Intuitively, a
natural approach is to embed an expander X , whose vertex set is T , into the graph
G. Each edge e = (ti, tj) of the expander is mapped to a path Pe connecting ti to tj
in G, and the congestion of the embedding is the maximum, over all edges e′ ∈ E(G),
of the number of paths in {Pe | e ∈ E(X)}, containing e′. If we could find a low-
congestion embedding of an expander X into G, then we could use existing algorithms
for routing on expanders to find a low-congestion routing of a polylogarithmic fraction
of the demand pairs in X , which in turn would give us a low-congestion routing of
the same demand pairs in G. This general framework was first suggested by Chekuri,
Khanna, and Shepherd [17], who proposed to embed a crossbar into the input graph
G. Intuitively, a crossbar is a graph for which efficient algorithms to approximately
compute integral routings are known. In particular, expander graphs can be viewed
as crossbars. This framework was used by Rao and Zhou [54] and by Andrews [1].
A very useful tool in embedding an expander into any graph with a well-linked set
T of terminals is the cut-matching game of Khandekar, Rao, and Vazirani [39]. In
this game, we have two players: a cut player, who wants to construct an expander
X , and a matching player, who tries to delay its construction. We start with X

ROUTING WITH CONSTANT CONGESTION 1495

containing only the set V (X) of 2N vertices and no edges. In each iteration i, the
cut player computes a partition (Ai, Bi) of V (X) with |Ai| = |Bi| = N , and the
matching player computes a matching Mi between Ai and Bi. The edges of Mi are
then added to X . Khandekar, Rao, and Vazirani [39] have shown that no matter
what the matching player does, there is a strategy for the cut player (that we denote
by ACMG), such that after O(log2 N) iterations, X becomes an expander. Moreover,
there is an efficient algorithm to compute the partitions (Ai, Bi), given the previous
responses of the matching player. A natural approach to constructing an expander X
and embedding it into the graph G using the cut-matching game is the following. We
use the algorithm ACMG for the cut player, while the matching player is simulated
by finding appropriate flows in G. Specifically, we let V (X) = T . If (Ai, Bi) is the
bipartition of V (X) computed by the cut player, then we can send |Ai| = |Bi| flow
units from the terminals of Ai to the terminals of Bi with low congestion in graph
G, using the fact that T is well-linked in G. We then use the resulting flow to define
the matching Mi. This procedure can be used to both construct the expander X and
embed it into G. In fact, Khandekar, Rao, and Vazirani use precisely this procedure
in their algorithm for the sparsest cut problem.

One problem with this approach is that we need to compute Θ(log2 k) different
flows in graph G, and together they may cause a polylogarithmic congestion. More-
over, the partitions that the cut player computes depend on the matchings computed
in previous iterations, so we cannot attempt to route all these flows simultaneously
in graph G with low congestion. Rao and Zhou [54] have proposed the following
approach to overcome this difficulty. Let γ = Θ(log2 k) be the number iterations in
the algorithm of [39]. We can build γ graphs G1, . . . , Gγ , where, for each 1 ≤ i ≤ γ,
V (Gi) = V (G), and the sets E(G1), . . . , E(Gγ) of edges form a partition of the edges
in E(G). If we can construct the family G1, . . . , Gγ of graphs so that, in each graph
Gi, the set of terminals is still well-linked, then we can now construct the expander X
and embed it into G by using the cut-matching game of [39], where in each iteration
i, matching Mi is computed by finding a flow from Ai to Bi in graph Gi. Since the
edges of each set Mi are embedded into distinct graphs Gi, the congestion does not
accumulate, and we obtain a good embedding of X into G. In order to construct the
graphs Gi, Rao and Zhou use the random procedure of Karger [35], where each edge
e ∈ E is added to one of the graphs Gi uniformly at random. However, this procedure
only works if the value of the global minimum cut in G is at least polylogarithmic.
In order to overcome this difficulty, Andrews [1] used Raecke’s tree decomposition
technique [52]. Roughly speaking, he decomposes the graph G into a collection C of
disjoint clusters, where each cluster C ∈ C has some useful properties that allow us
to find good routings across the cluster C efficiently. Moreover, if H is the graph
obtained from G by contracting each cluster C ∈ C into a single vertex, then the set
of terminals is well-linked in H , and the global minimum cut in H is large, so we can
use the algorithm of Rao and Zhou to complete the routing.

Our algorithm uses a slightly different way to embed an expander into G, some-
what similar to that in [54]. Specifically, each vertex t ∈ V (X) is represented
by a connected subgraph Ct of graph G that contains the terminal t. Each edge
e = (t, t′) ∈ E(X) is represented by a path Pe connecting some vertex v ∈ Ct to some
vertex v′ ∈ Ct′ in G. We ensure that each edge e′ ∈ E(G) only participates in a
constant number of the subgraphs {Ct}t∈V (X) and paths {Pe}e∈E(X). Once we find
such an embedding, we use vertex-disjoint routing in the expander X , which gives a
low edge-congestion routing in the original graph G.

1496 JULIA CHUZHOY

A major point of our departure from previous work is in how the expander X
is constructed and embedded into G. A central notion in our algorithm is that of a
family of good routers. Let k′ = Θ(k/ poly log k) be a parameter, where k = |M| is
the number of the demand pairs. For any subset S ⊆ V of vertices, let out(S) be
the set of edges with exactly one endpoint in S. Given a subset S ⊆ V of vertices
of G, we say that S has the α-bandwidth property iff the edges of out(S) are α-well-
linked in G[S]. (More formally, subdivide every edge e ∈ out(S) with a new vertex
te, and consider the subgraph HS of the resulting graph induced by S ∪ T ′, where
T ′ = {te | e ∈ out(S)}. We say that the set S has the α-bandwidth property iff T ′

is α-well-linked in HS .) Similarly, if we are given a subset Γ ⊆ out(S) of edges, we
say that S has the α-bandwidth property with respect to Γ iff the set {te | e ∈ Γ} is
α-well-linked in HS .

We say that a subset S ⊆ G of vertices is a good router iff there is a collection
Γ ⊆ out(S) of k′ edges, such that S has the α-bandwidth property with respect to Γ
(where α = Ω(1/ poly log k)), and moreover the edges in Γ can send |Γ| flow units in
G to the terminals in T with constant edge-congestion. A family F of vertex subsets
is a family of good routers iff it contains γ mutually disjoint good routers S1, . . . , Sγ ,
where γ = O(log2 k) is the parameter from the cut-matching game of [39].

Suppose we find a family F = {S1, . . . , Sγ} of good routers. For each 1 ≤ j ≤ γ,
let Γj ⊆ out(Sj) be the corresponding subset Γ of edges. In order to construct the
expander X , we select a subset T ′ = {t1, . . . , tk′} ⊆ T of k′ terminals, and we let
V (X) = T ′. For each 1 ≤ i ≤ k′, we then construct a connected subgraph Ci in
graph G that contains, for each 1 ≤ j ≤ γ, a distinct edge ei,j ∈ Γj and also contains
the terminal ti (see Figure 1). For each 1 ≤ j ≤ γ, the edges e1,j , . . . , ek′,j are all
distinct, and we view the edge ei,j as the representative of terminal ti for the set Sj .
We also ensure that each edge of graph G only participates in a constant number of

the subgraphs {Ci}k
′

i=1. For each i, Ci is viewed as representing the vertex ti of X
in graph G. In order to construct the expander X , we use the cut-matching game
of [39], where in each iteration 1 ≤ j ≤ γ, we use the subgraph G[Sj] to route some
matching Mj between the representatives of the terminals in Aj and Bj for the set
Sj . This ensures that the congestion does not accumulate across different iterations.
Finally, we show an efficient algorithm for finding a family F of good routers.

. . . Sγ
S1 S2

t1 t2 · · · tk′

Fig. 1. A family F = {S1, . . . , Sγ} of good routers, together with the collection {C1, . . . , Ck′}
of subgraphs, where each subgraph Ci is a tree.

Organization. Most of this paper is devoted to the proof of our main result,
Theorem 1.1. We start with preliminaries in section 2 and provide the proof in

ROUTING WITH CONSTANT CONGESTION 1497

section 3. For convenience, a list of parameters is provided in Appendix D. The
proofs of Theorems 1.2 and 1.3 appear in sections 4 and 5, respectively.

2. Preliminaries and notation. In this section we provide notation and basic
results that we use to prove Theorem 1.1. We assume that we are given an undirected
n-vertex graph G = (V,E) and a set M = {(s1, t1), . . . , (sk, tk)} of k source-sink
pairs, which we also refer to as demand pairs. We denote by T the set of vertices
that participate in pairs in M, and we call them terminals. Let OPT denote the
maximum number of the demand pairs that can be simultaneously routed via edge-
disjoint paths. Our goal is to connect Ω(OPT/ poly log k) distinct pairs in M with
paths that cause congestion at most 14. Throughout the paper, all logarithms are to
the base of 2. We sometimes refer to vertex subsets as clusters. We say that a cluster
C ⊆ V (G) is connected iff G[C] is connected.

We perform a number of transformations to our graph to ensure that the maxi-
mum vertex degree in G is 4, the degree of every terminal is 1, and every terminal
participates in one source-sink pair. We note that these are standard transformations
that were used in prior work. We assume without loss of generality that every terminal
of T participates in exactly one source-sink pair. Otherwise, if a terminal v ∈ T partic-
ipates in r > 1 source-sink pairs, we can add r new terminals t1(v), . . . , tr(v), connect
each of them to v with an edge, and use a distinct terminal in {t1(v), . . . , tr(v)} for
each source-sink pair in which v participates. We also assume without loss of general-
ity that the maximum vertex degree in G is 4 and that the degree of every terminal is
1. In order to achieve this, we perform the following simple transformation of graph
G. If v is a terminal whose degree is greater than 1, then we add a new vertex u to
graph G that connects to v with an edge and becomes a terminal instead of v. Next,
we process the nonterminal vertices one by one. Let v be any such vertex, and assume
that the degree of v is d > 4. Let u1, . . . , ud ∈ V be the neighbors of v. We replace
v with a d × d grid Zv, and we denote by u′

1, . . . , u
′
d the vertices in the first row of

Zv. For each 1 ≤ i ≤ d, we add an edge (ui, u′
i). It is easy to verify that any solution

to the EDP problem in the original graph can be transformed into a feasible routing
of the same value and no congestion in the new graph, and any routing in the new
graph with congestion η can be transformed into a routing in the original graph with
the same congestion. Therefore, we assume from now on that the maximum vertex
degree in G is 4, the degree of every terminal is 1, and every terminal participates in
one source-sink pair.

For any subset S ⊆ V of vertices, we denote by outG(S) = EG(S, V \ S) and by
EG(S) the subset of edges with both endpoints in S. When clear from context, we
omit the subscript G. Throughout the paper, we say that a random event succeeds
with high probability if the probability of success is at least (1− 1/ poly(n)).

Let P be any collection of paths in graph G. We say that paths in P cause
congestion η in G iff for every edge e ∈ E at most η paths in P contain e, and some
edge belongs to η paths of P . Assume that we are given a subset S ⊆ V of vertices
and a subset E′ ⊆ E of edges of G. We say that a collection P of paths connects the
vertices of S to the edges of E′ with congestion at most η, and we denote P : S !η E′

iff P = {Pv | v ∈ S}, where path Pv has v as its first vertex and some edge of E′ as
its last edge, and P causes congestion at most η in G. In particular, each edge in E′

serves as the last edge on at most η paths in P . Similarly, given two subsets S, S′ of
vertices, if P is a collection of paths connecting every vertex of S to some vertex of S′

with overall edge-congestion at most η, then we denote this by P : S !η S′. Finally,
if |S| = |S′| = |P|, and each path in P connects a distinct vertex of S to a distinct

1498 JULIA CHUZHOY

vertex of S′ with edge-congestion at most η, then we denote this by P : S
1:1!η S′.

Similarly, we say that a flow F connects the vertices of S to the edges of E′ with
congestion at most η, and we denote F : S !η E′ iff each vertex v ∈ S sends one flow
unit to the edges in E′, and the flow F causes congestion at most η in G. Notice that
each flow-path in F starts at a vertex of S and terminates at some edge e ∈ E′. We
view edge e as part of the flow-path, so in particular each edge in E′ receives at most
η flow units. Notice that from the integrality of flow, for any integer η ≥ 1, there is
a flow F : S !η E′ iff there is a collection P : S !η E′ of paths. We define flows
and paths between subsets of edges similarly. Given two subsets S, S′ of vertices, if
F : S !η S′ is a flow where every vertex of S sends one flow unit, and every vertex

of S′ receives one flow unit, then we denote this by F : S
1:1!η S′.

We will often be interested in a scenario where we are given a subset S of vertices
and two subsets E1, E2 ⊆ out(S) of edges. We say that the flow F : E1 !η E2 is
contained in S iff every flow-path is completely contained in G[S], except for its first
and last edges, which belong to out(S). Similarly, we say that a set P : E1 !η E2 of
paths is contained in S iff all inner edges on every path of P belong to G[S].

Given a graph G = (V,E) and a set T ⊆ V of terminals, a set D of demands is
a function D : T × T → R+, which specifies, for every unordered pair t, t′ ∈ T , a
demand Dt,t′ . We say that the set D of demands is γ-restricted iff for each t ∈ T ,
the total demand

∑
t′∈T Dt,t′ ≤ γ. Given a partition G of the set T of terminals,

we say that the set D of demands is (γ,G)-restricted iff for each U ∈ G the total
demand

∑
t∈U

∑
t′∈T Dt,t′ ≤ γ. We say that the set D of demands is integral iff Dt,t′

is integral for each t, t′ ∈ T .
Given any set D of demands, a fractional routing of D is a flow F , where every

unordered pair t, t′ ∈ T sends Dt,t′ flow units to each other. Given an integral
set D of demands, an integral routing of D is a collection P of paths, where for each
unordered pair (t, t′) ∈ T there are Dt,t′ paths connecting t to t′ in P . The congestion
of this routing is the congestion caused by the set P of paths in G. Observe that any
matching M on the set T of terminals defines a set D of demands where Dt,t′ = 1
for (t, t′) ∈ M and Dt,t′ = 0 otherwise. We do not distinguish between the matching
M and the set D of demands.

Sparsest cut and the flow-cut gap. Suppose we are given a graph G = (V,E), with
nonnegative weights wv on vertices v ∈ V , and a subset T ⊆ V of k terminals, such
that for all v ̸∈ T , wv = 0. For any subset S ⊆ V of vertices, let w(S) =

∑
v∈S w(v).

The sparsity of a cut (S, S) in G is Φ(S) = |E(S,S)|
w(S)·w(S)

, and the value of the sparsest

cut in G is defined to be Φ(G) = minS⊂V {Φ(S)}. In the sparsest cut problem,
the input is a graph G with nonnegative vertex weights, and the goal is to find a
cut of minimum sparsity. Arora, Rao, and Vazirani [6] have shown an O(

√
log k)-

approximation algorithm for the sparsest cut problem. We will often work with a
special case of the sparsest cut problem where for each t ∈ T , wt = 1.

A problem dual to sparsest cut is the maximum concurrent flow problem. For the
case where the weights of all terminals are unit, the goal in the maximum concurrent
flow problem is to find the maximum value λ, such that every pair of terminals can
send λ flow units to each other simultaneously with no congestion. The flow-cut gap is
the maximum ratio, in any graph, between the value of the minimum sparsest cut and
the maximum concurrent flow. The value of the flow-cut gap in undirected graphs
with k terminals, which we denote by β(k) throughout the paper, is Θ(log k) [46].
Therefore, if Φ(G) = α, then every pair of terminals can send α/β(k) flow units to
each other with no congestion.

ROUTING WITH CONSTANT CONGESTION 1499

We will use a slightly different, but also standard, and roughly equivalent, defi-
nition of sparsity. Given any partition (S, S) of V , the sparsity of the cut (S, S) is

Ψ(S, S) = |E(S,S)|
min{w(S),w(S)} . We then denote Ψ(G) = minS⊂V

{
Ψ(S, S)

}
. It is easy

to see that if the weight of every terminal is 1, then 2Ψ(G)/k ≥ Φ(G) ≥ Ψ(G)/k.
Therefore, if Ψ(G) = α, then Φ(G) ≥ α/k, and every pair of terminals can send α

kβ(k)

flow units to each other with no congestion. Equivalently, every pair of terminals
can send 1/k flow units to each other with congestion at most β(k)/α. Moreover,
any matching on the set T of terminals can be fractionally routed with congestion at
most 2β(k)/α. In the rest of the paper, we will use the latter definition of sparsity,
and we will use the term cut sparsity and the value of sparsest cut to denote Ψ(S, S)
and Ψ(G), respectively. The algorithm of [6] can still be used to obtain a cut of
sparsity at most O(

√
log k) · Ψ(G) in G. We denote by AARV this algorithm and by

αARV(k) = O(
√
log k) its approximation factor.

Routing on expanders. We say that a multigraph G = (V,E) is an α-expander iff

min S⊆V :

0<|S|≤|V |/2

{
|E(S,S)|

|S|

}
≥ α. There are many algorithms for routing on expanders,

e.g., [46, 10, 9, 41, 30], which give different types of guarantees. For example,
Frieze [30] has shown that if G is an r-regular graph (where r is a constant) with
strong enough expansion properties, then there is an efficient randomized algorithm
for routing any matching on any subset of Ω(n/ logn) of its vertices via edge-disjoint
paths. We need a slightly different type of guarantee: the routing should be on vertex-
disjoint paths, and the graph degree may be superconstant. Rao and Zhou [54] give
such an algorithm, which is summarized in the next theorem. For completeness, we
provide a proof sketch in Appendix A.

Theorem 2.1 (Theorem 7.1 in [54]). Let G = (V,E) be any n-vertex d-regular
α-expander. Assume further that n is even and that the vertices of G are partitioned
into n/2 disjoint demand pairs M =

{
(s1, t1), . . . , (sn/2, tn/2)

}
. Then there is an

efficient algorithm that routes Ω(α2n
log n·d2) of the demand pairs on vertex-disjoint paths

in G.
The cut-matching game. We use the cut-matching game of Khandekar, Rao, and

Vazirani [39]. In this game, we are given a set V of N vertices, where N is even, and
two players: a cut player, whose goal is to construct an expander X on the set V of
vertices, and a matching player, whose goal is to delay its construction. The game
is played in iterations. We start with the graph X containing the set V of vertices
and no edges. In each iteration j, the cut player computes a bipartition (Aj , Bj) of V
into two equal-sized sets, and the matching player returns some perfect matching Mj

between the two sets. The edges of Mj are then added to X . Khandekar, Rao, and
Vazirani have shown that there is a strategy for the cut player, guaranteeing that after
O(log2 N) iterations we obtain a 1

2 -expander with high probability. Subsequently,
Orecchia et al. [51] showed the following improved bound.

Theorem 2.2 (see [51]). There is an efficient probabilistic algorithm for the cut
player such that, no matter how the matching player plays, after γCMG(N) = O(log2 N)
iterations, graph X is an Ω(logN)-expander, with constant probability.

Well-linkedness, bandwidth property, and bandwidth decompositions. We define
the the notion of well-linkedness, which has been used extensively in algorithms for
network routing, e.g., in [52, 20, 17, 54, 1].

Definition 2.3. We say that a set T of vertices is α-well-linked in graph G iff
for every partition (A,B) of V (G), |EG(A,B)| ≥ α ·min {|A ∩ T |, |B ∩ T |}.

The following is an easy observation about well-linkedness that follows from the

1500 JULIA CHUZHOY

duality between cuts and flows.
Observation 2.4. Set T of vertices is α-well-linked in graph G for any real

number 0 < α ≤ 1 iff for every pair T1, T2 of disjoint equal-sized subsets of vertices of
T , there is a flow F : T1

1:1!1/α T2 in G.
Next, we define bandwidth property—a notion closely related to well-linkedness

and similar to the notion of bandwidth property defined in [52]. Intuitively, we say
that a cluster S has the α-bandwidth property iff the boundary out(S) of the cluster
is α-well-linked in G[S]. The formal definition appears below.

Definition 2.5. Given a graph G, a subset S of its vertices, and a real number
0 < α ≤ 1, we say that S has the α-bandwidth property iff for any partition (A,B)
of S, if we denote by TA = out(A) ∩ out(S) and by TB = out(B) ∩ out(S), then
|E(A,B)| ≥ α ·min {|TA|, |TB|}.

Given any subset Γ ⊆ out(S) of edges, we say that S has the α-bandwidth
property with respect to Γ iff for any partition (A,B) of S, |E(A,B)| ≥ α·
min {| out(A) ∩ Γ|, | out(B) ∩ Γ|}.

We also need a more general notion of bandwidth property that we define below.
Intuitively, it handles subsets S of vertices, where | out(S)| may be large, but we only
need to route small amounts of flow across S.

Definition 2.6. Let S be any subset of vertices of a graph G. For any integer
k > 0 and for any real number 0 < α < 1, we say that set S has the (k,α)-bandwidth
property iff for any pair T1, T2 ⊆ out(S) of disjoint subsets of edges, with |T1|+ |T2| ≤
k, for any partition (X,Y) of S with T1 ⊆ out(X) and T2 ⊆ out(Y), |EG(X,Y)| ≥
α ·min {|T1|, |T2|}.

Note that if | out(S)| ≤ k, then set S has the (k,α)-bandwidth property iff it
has the α-bandwidth property, and the two definitions of bandwidth property become
equivalent.

Observation 2.7. If S ⊆ V (G) has the (k,α)-bandwidth property, then for any
subset T ⊆ out(S) of at most k edges, any matching on T can be fractionally routed
inside S with congestion at most 2β(k)/α.

Proof. We set up an instance of the sparsest cut problem on a graph H , obtained
as follows: first, we subdivide every edge e ∈ T by a vertex ve, and we let Γ =
{ve | e ∈ T } be the resulting set of new vertices. Let H be the subgraph of the
resulting graph, induced by S ∪ Γ. Consider an instance of the sparsest cut problem
on graph H , with the set Γ of terminals. Since S has the (k,α)-bandwidth property,
the value of the sparsest cut is at least α, and so any matching on T can be routed
with congestion at most 2β(k)/α.

Assume now that S does not have the (k,α)-bandwidth property. Then
there must be a partition (X,Y) of S, such that |E(X,Y)| < α
·min {| out(X) ∩ out(S)|, | out(Y) ∩ out(S)|, k/2}. We say that (X,Y) is a (k,α)-
violating cut for S.

The reason for defining the more general (k,α)-bandwidth property is the fol-
lowing. Given a set S of vertices of G, we will sometimes need to find a partition
of S into a set W of clusters such that, on the one hand, each cluster W ∈ W has
the α-bandwidth property, while on the other hand,

∑
W∈W | out(W)| is very close

to | out(S)|. Procedures for finding such decompositions are well known (sometimes
under the name of well-linked decomposition). The problem is that | out(S)| may be
much larger than k (for example, it can be close to n), and in order to obtain such
a partition, we need to set α = 1/ poly logn. In our algorithm, since we are trying
to obtain an O(poly log k)-approximation for EDPwC, including in scenarios where

ROUTING WITH CONSTANT CONGESTION 1501

k ≪ n, this dependency of α on n is unacceptable, and we need α = 1/ poly log k.
If we use the new (k,α)-bandwidth property instead of the standard α-bandwidth
property, such a decomposition W exists, as we show below, with α = 1/ poly log k.
The (k,α)-bandwidth property is sufficient for us, since we only use the bandwidth
property of S in order to route small (up to k) amounts of flow through S.

We now discuss the bandwidth-decomposition procedure in more detail. Given a
subset S of vertices of G, we would like to find a partition W of S such that every
set in W ∈ W has the (k,α)-bandwidth property. We could do so using the standard
well-linked decomposition procedures—for example, similar to those used in [52, 17].
However, in order to do so, we need to be able to check whether a given subset W
of vertices has the (k,α)-bandwidth property, and if not, find a (k,α)-violating cut
efficiently. We do not know how to do this, even approximately. Therefore, we will
assume for now that we are given an oracle that finds a (k,α)-violating cut in a given
subset of vertices, if such a cut exists. We describe the decomposition procedure and
bound the number of edges

∑
W∈W | out(W)| in the resulting decomposition. When

we use this decomposition later in the algorithm, we will be interested in routing
small amounts of flow (up to k) across the clusters of the decomposition. Whenever
we will be unable to route this flow, we will naturally obtain a (k,α)-violating cut.
Therefore, our algorithm itself will serve as an oracle to the decomposition procedure.
We note that in the final decomposition W , not all sets W ∈ W may have the (k,α)-
bandwidth property, but we will be able to route the flow that we need to route
across these clusters, and this is sufficient for us. We now describe the oracle-based
decomposition procedure and analyze it.

We are given as input a subset S of vertices of G, an integer k > 8, and a real
parameter 0 < α < 1. Throughout the decomposition procedure, we maintain a
partition W of S, and at the beginning, W = {S}. The algorithm proceeds as follows.
As long as not all sets in W have the (k,α)-bandwidth property, our oracle computes
a (k,α)-violating cut (X,Y) of one of the sets W ∈ W . We then remove W from W
and add X and Y to W instead. In the next theorem, we bound

∑
W∈W | out(W)|.

Theorem 2.8. Assume that k > 8, α < 1
48 log k , and let W be any partition

of S produced over the course of the above algorithm. Then
∑

W∈W | out(W)| ≤
| out(S)| (1 + 32α log k).

We emphasize that the bound on
∑

W∈W | out(W)| holds for any partition pro-
duced over the course of the algorithm, and not just the final partition.

Proof. The proof uses standard arguments. Let E∗ = E(S)∪out(S). Throughout
the algorithm, we assign nonnegative budgets B(v, e) to all edges e ∈ E∗, and vertices
v ∈ S, where v is an endpoint of e. Given a current partition W of S, the budgets are
assigned as follows. For each set W ∈ W , for each edge e ∈ out(W), and endpoint
v of e lying in W , we set B(v, e) = 8α log(| out(W)|) if | out(W)| < k, and we set
B(v, e) = 16α log k + 8α(1− k

| out(W)|) otherwise. All other budgets B(v, e) are set to
0. It is easy to see that all budgets are nonnegative. It is now enough to prove that
throughout the algorithm, the following invariant holds:

(1)
∑

e∈E∗

∑

v∈e∩S

B(v, e) +
∑

W∈W
| out(W)| ≤ | out(S)|(1 + 32α log k).

Clearly, the budget value B(v, e) for e ∈ E∗ and v ∈ S∩e never exceeds 24α log k.
At the beginning of the algorithm, the sum of all budgets B(v, e) is therefore bounded
by 24α log k| out(S)|, and so the invariant holds. We now consider some iteration,
where cluster W was partitioned into clusters X and Y , and we assume without loss

1502 JULIA CHUZHOY

of generality that | out(X)| ≤ | out(Y)|. We assume that (1) holds at the beginning
of the current iteration, and we prove that it continues to hold at the end of the
iteration. Recall that from the definition of the (k,α)-violating cut, |E(X,Y)| <
α ·min {| out(W) ∩ out(X)|, k/2}. Notice also that | out(X)| ≤ | out(X) ∩ out(W)|+
|E(X,Y)| < 1.1| out(X) ∩ out(W)| ≤ 0.55| out(W)|. We now consider three cases.

First, if | out(W)| < k, then the total decrease in the budgets of pairs (v, e) where
e ∈ out(X) ∩ out(W) and v ∈ X ∩ e is at least

| out(X) ∩ out(W)| · (8α log(| out(W)|) − 8α log(| out(X)|))
= | out(X) ∩ out(W)| · 8α log(| out(W)|/| out(X)|)
≥ 6α| out(X) ∩ out(W)|,

since | out(X)| ≤ 0.55| out(W)|. The total number of edges in E(X,Y) is bounded by
α| out(X)∩out(W)|, and each such edge contributes 2 to the summation

∑
W∈W | out(W)|.

Additionally, for each edge e ∈ E(X,Y), for each endpoint v of e, the budget B(v, e)
becomes at most 8α log k. Therefore, the total increase in

∑
W∈W | out(W)| and∑

e∈E(X,Y)

∑
v∈eB(v, e) is bounded by

|E(X,Y)|(2 + 16α log k) ≤ 2.5|E(X,Y)| ≤ 2.5α| out(X) ∩ out(W)|.

The budgets B(v, e) where e ∈ out(W)∩ out(Y) and v ∈ e∩Y can only decrease,
and all other budgets remain unchanged. We conclude that the invariant (1) continues
to hold at the end of the iteration.

The second case is when | out(W)| ≥ k, but | out(X)| < k. In this case, for each
edge e ∈ out(X) ∩ out(W), and endpoint v ∈ X of e, budget B(v, e) decreases by at
least 8α log k, and so the total decrease in budgets

∑
e∈out(X)∩out(W)

∑
v∈X∩e B(v, e)

is at least 8| out(X) ∩ out(W)| · α log k. Similarly to the previous case, the total
increase in

∑
W∈W | out(W)| and

∑
e∈E(X,Y)

∑
v∈e B(v, e) is bounded by

|E(X,Y)|(2 + 32α log k) ≤ 3|E(X,Y)| ≤ 3α| out(X) ∩ out(W)|.

Therefore, the invariant (1) continues to hold at the end of the iteration.
The third, and final, case is when | out(W)| ≥ k and | out(X)| ≥ k. In this case,

the decrease in
∑

e∈out(X)∩out(W)

∑
v∈X∩eB(v, e) is at least

| out(W) ∩ out(X)| ·
(
8α

(
1− k

| out(W)|

)
− 8α

(
1− k

| out(X)|

))

= | out(W) ∩ out(X)| · 8kα
(

1

| out(X)| −
1

| out(W)|

)

≥ | out(W) ∩ out(X)| · 3.6kα

| out(X)|
≥ 3.24kα,

since | out(X)| ≤ 0.55| out(W)|, and | out(W)∩out(X)| ≥ 0.9| out(X)| (as |E(X,Y)| ≤
0.1| out(W) ∩ out(X)|). On the other hand, the total increase in

∑
W∈W | out(W)|

and
∑

e∈E(X,Y)

∑
v∈e B(v, e) is bounded by

|E(X,Y)|(2 + 48α log k) ≤ 3|E(X,Y)| ≤ 3αk.

The budgets B(v, e) where e ∈ out(W)∩out(Y) and v ∈ e∩Y can only decrease, and
all other budgets remain unchanged. Therefore, the invariant (1) continues to hold
at the end of the iteration.

ROUTING WITH CONSTANT CONGESTION 1503

Throughout the paper, we use α(k) = 1
211·γCMG(k)·log k and αBW(k) = α(k)/αARV(k).

If | out(S)| ≤ k, then we can obtain a decomposition W of S, where each set
W ∈ W has the (k,αBW(k))-bandwidth property efficiently, by using the algorithm
AARV for sparsest cut as our oracle: In each iteration, for each W ∈ W , we apply
the algorithm AARV to the corresponding instance of the sparsest cut problem (where
the edges of out(W) are viewed as terminals). If algorithm AARV returns a (k,α(k))-
violating cut (X,Y) for any set W ∈ W , then we can proceed with the decomposition
procedure as before. Otherwise, we are guaranteed that each set W ∈ W has the
αBW(k)-bandwidth property. We therefore have the following corollary.

Corollary 2.9. Let S be any subset of vertices of G such that | out(S)| ≤
k, where k ≥ 8. Then we can efficiently find a partition W of S such that for
each W ∈ W, | out(W)| ≤ k, and W has the αBW(k)-bandwidth property. Moreover,∑

W∈W | out(W)| ≤ | out(S)|(1 + 1
64γCMG(k)

).

The grouping technique. The grouping technique was first introduced by Chekuri,
Khanna, and Shepherd [20] and has since been widely used in algorithms for network
routing [17, 54, 1] to boost network connectivity and well-linkedness parameters. We
summarize it in the following theorem, whose proof appears in Appendix A for com-
pleteness.

Theorem 2.10. Suppose we are given a connected graph G = (V,E), with weights
w(v) on vertices v ∈ V , and a parameter p. Assume further that for each v ∈ V ,
0 ≤ w(v) ≤ p, and

∑
v∈V w(v) ≥ p. Then we can find a partition G of the vertices in

V , and for each group U ∈ G, find a tree TU ⊆ G containing all vertices of U such
that the trees {TU}U∈G are edge-disjoint, and for each U ∈ G, p ≤

∑
v∈U w(v) ≤ 3p.

We will sometimes use the grouping theorem in slightly different settings. The
first such setting is when we are given a subset T ⊆ V of vertices called terminals,
and we would like to group them into groups of cardinality at least p and at most 3p.
In this case we will think of all nonterminal vertices as having weight 0, and terminal
vertices as having weight 1. Instead of finding a partition G of all vertices, we will be
looking for a partition G′ of the set T of terminals. This partition is obtained from G
by ignoring the nonterminal vertices. Another setting is when we are given a subset
E′ ⊆ E of edges, and we would like to find a partition G of these edges into groups of
at least p and at most 3p edges. As before, we would also like to find, for each group
U ∈ G, a tree TU containing all edges of U , and we require that the trees {TU}U∈G are
edge-disjoint. This setting can be reduced to the previous one by subdividing each
edge e ∈ E′ with a terminal vertex. It is easy to verify that Theorem 2.10 can be
applied in this setting as well.

3. The algorithm. This section is dedicated to proving Theorem 1.1. Our
starting point is similar to that used in previous work on the problem [20, 17, 54, 1]:
namely, we use the standard multicommodity flow LP relaxation for the EDP problem
to partition our graph into several disjoint subgraphs and compute a subset of the
demand pairs for each such subgraph, such that the terminals participating in the
demand pairs are well-linked in the subgraph. We then solve the problem separately
on each such subgraph. We use the standard multicommodity flow LP relaxation for
EDP, where for each 1 ≤ i ≤ k, we have an indicator variable xi for whether or not
we route the pair (si, ti). Let Pi denote the set of all paths connecting si to ti in G.

1504 JULIA CHUZHOY

The LP relaxation is defined as follows:

(LP) max
k∑

i=1

xi

s.t. ∑

P∈Pi

f(P) ≥ xi ∀1 ≤ i ≤ k,

∑

P :e∈P

f(P) ≤ 1 ∀e ∈ E,

0 ≤ xi ≤ 1 ∀1 ≤ i ≤ k,

f(P) ≥ 0 ∀1 ≤ i ≤ k, ∀P ∈ Pi.

While this LP has exponentially many variables, it can be efficiently solved us-
ing standard techniques, e.g., by using an equivalent polynomial-size edge-based LP
formulation. Throughout the rest of the paper, we denote by OPT the value of the
optimal solution to the LP. Clearly, the value of the optimal solution to the EDP prob-
lem instance is at most OPT. The next theorem follows from the work of Chekuri,
Khanna, and Shepherd [20, 17], and we provide a short proof sketch in Appendix B
for completeness.

Theorem 3.1. Suppose we are given a graph G = (V,E) and a set M of k source-
sink pairs in G. Then we can efficiently partition G into a collection G1, . . . , Gℓ

of vertex-disjoint induced subgraphs and compute, for each 1 ≤ i ≤ ℓ, a collection
Mi ⊆ M of source-sink pairs contained in Gi such that

∑ℓ
i=1 |Mi| = Ω(OPT/ log2 k),

and, moreover, if for each 1 ≤ i ≤ ℓ, Ti denotes the set of terminals participating in
pairs in Mi, then Ti ⊆ V (Gi), and Ti is 1

2 -well-linked in Gi.
We now proceed to solve the problem on each one of the graphs Gi separately.

We assume without loss of generality that Gi is connected. In order to simplify the
notation, we denote the graph Gi by G, the set Mi of the source-sink pairs by M,
and the set Ti of terminals by T . For simplicity, we denote |M| = k. Recall that T is
1
2 -well-linked in G, the degree of every terminal in T is 1, and the maximum vertex
degree in G is at most 4. It is now enough to prove that we can route Ω(k

log20.5 k log log k
)

demand pairs in M with congestion at most 14. We also assume that k > k0, where
k0 is a large enough constant: otherwise, we can simply pick any source-sink pair
(s, t) ∈ M, connect it with any path P , and output this as a solution. In particular,
we will assume that k > log24 k, and γCMG(k) = Θ(log2 k) > 20.

Throughout the algorithm, we let γ = γCMG(k) = Θ(log2 k), and we use a param-
eter k1 = k

192γ3 log γ = Ω(k
log6 k log log k

). We say that a cluster C ⊆ V (G) is small if

| outG(C)| ≤ k1, and we say that it is large otherwise.

Families of good routers. We define a family of good routers in graph G. We
then proceed in two steps. First, we show that we can efficiently find a family of good
routers. Next, we show that given such a family, we can find the desired routing of a
subset of the source-sink pairs in M.

Definition 3.2. We say that a subset S ⊆ V (G) \ T of vertices is a good router
iff there is a subset Γ ⊆ outG(S) of edges, with |Γ| = k1, such that the following hold:

• S has the αBW(k)-bandwidth property for Γ. That is, for any partition (X,Y)
of S, if ΓX = Γ ∩ out(X) and ΓY = Γ ∩ out(Y), then |EG(X,Y)| ≥ αBW(k) ·
min {|ΓX |, |ΓY |}.

ROUTING WITH CONSTANT CONGESTION 1505

• There is a flow F in graph G, where every edge e ∈ Γ sends one flow unit to
a distinct terminal te ∈ T (so for e ̸= e′, te ̸= te′), and the congestion caused
by F is at most 2β(k)/αBW(k) = O(log4.5 k).

We say that a family F = {S1, . . . , Sγ} of γ = γCMG(k) = Θ(log2 k) subsets of
vertices is a family of good routers iff each subset Sj is a good router, and S1, . . . , Sγ

are pairwise disjoint.
We view the subset Γ ⊆ outG(S) of edges as part of the definition of a good router.

In particular, when we say that we are given a family F = {S1, . . . , Sγ} of good
routers, we assume that we are also given the corresponding subsets Γj ⊆ outG(Sj)
of edges for all 1 ≤ j ≤ γ. The rest of the proof consists of two parts. First, we show
how to find a family of good routers in G. Next, we exploit this family to embed an
expander into G and find the desired routing.

3.1. Finding a family of good routers. The goal of this section is to prove
the following theorem.

Theorem 3.3. There is an efficient randomized algorithm that with high proba-
bility computes a family of good routers in graph G.

In order to prove Theorem 3.3, we use the notions of good clustering and legal
contracted graphs. Intuitively, these notions allow us to “hide” some irrelevant parts
of our graph by contracting some connected clusters into supernodes. Our algorithm
will perform a number of iterations. In every iteration, we start from some legal
contracted graph and either produce a family of good routers or contract the graph
even further. This guarantees that after polynomially many iterations, we will produce
a family of good routers. We now turn to define the notions of good clustering and
legal contracted graph.

We say that a partition C of V (G) is a good clustering iff the following hold:
• Each terminal t ∈ T belongs to a cluster that contains only t. That is, for
each t ∈ T , {t} ∈ C.

• For each cluster C ∈ C, | outG(C)| ≤ k1, and the set C has the αBW(k)-
bandwidth property. (In particular, since G is connected, due to the band-
width property, so is G[C].)

Given a good clustering C, we let G′ = GC be obtained from G by contracting each
cluster C ∈ C into a supernode vC . We delete self-loops but keep parallel edges. A
graph G′ obtained in this manner from a good clustering C is called a legal contracted
graph.

Notice that graph G′ may contain parallel edges, and T remains 1
2 -well-linked in

G′. Also, since the maximum vertex degree in G is 4, the maximum vertex degree in
G′ is at most k1, and every terminal has degree 1. Every edge in graph G′ corresponds
to some edge in the original graph G, and we will not distinguish between them. In
particular, for every vertex subset S′ ⊆ V (G′), if S ⊆ V (G) is the corresponding
subset of vertices in G, where every supernode vC ∈ S′ is replaced by the vertices
of C, then there is a one-to-one mapping between outG′(S′) and outG(S), and we
will identify the edges in these two sets, that is, outG′(S′) = outG(S). We need the
following simple claim.

Claim 3.4. If G′ is a legal contracted graph for G, then G′ \ T contains at least
k/6 edges.

Proof. For each terminal t ∈ T , let et be the unique edge adjacent to t in G′,
and let ut be the other endpoint of et. We partition the terminals in T into groups,
where two terminals t, t′ belong to the same group iff ut = ut′ . Let G be the resulting
partition of the terminals. Since the degree of every vertex in G′ is at most k1, each

1506 JULIA CHUZHOY

group U ∈ G contains at most k1 terminals. Next, we partition the terminals in T
into two subsets X,Y , where |X |, |Y | ≥ k/3, and for each group U ∈ G, either U ⊆ X
or U ⊆ Y holds. It is possible to find such a partition by greedily processing each
group U ∈ G and adding all terminals of U to one of the subsets X or Y that currently
contains fewer terminals. Finally, we remove terminals from set X until |X | = k/3,
and we do the same for Y . Since the terminals are 1

2 -well-linked in G′, it is possible
to route k/3 flow units from the terminals in X to the terminals in Y , with edge-
congestion at most 2. Since no group U is split between the two sets X and Y , each
flow-path must contain at least one edge of G′ \ T . Therefore, the number of edges
in G′ \ T is at least k/6.

In order to prove Theorem 3.3, we use the following theorem.
Theorem 3.5. Let C be a good clustering of G. Then there is an efficient ran-

domized algorithm that with high probability either returns a family F = {S1, . . . , Sγ}
of good routers in G, together with the corresponding subsets Γj ⊆ outG(Sj) of edges
for all 1 ≤ j ≤ γ, or finds a good clustering C′ of G, with

∑
C∈C′ | outG(C)| <∑

C∈C | outG(C)|.
We prove Theorem 3.5 below and complete the proof of Theorem 3.3 here first.

We start with the good clustering C = {{v} | v ∈ V (G)}, where every vertex belongs
to a separate cluster, and repeatedly apply Theorem 3.5 to it. In every iteration, if
Theorem 3.5 returns a family F of good routers, then we terminate the algorithm
and return F . Otherwise, we replace C with C′ and continue to the next iteration.
Clearly, after at most 2|E(G)| iterations, the algorithm will produce a family of good
routers with high probability. From now on we focus on the proof of Theorem 3.5.

Let G′ = GC be the legal contracted graph corresponding to C, and let m be the
number of edges in G′ \T . From Claim 3.4, m ≥ k/6. The proof consists of two steps.
First, we randomly partition the vertices in G′\T into γ subsets X1, . . . , Xγ . We show
that with high probability, for each 1 ≤ j ≤ γ, | outG′(Xj)| < 10m

γ , while the number of

edges with both endpoints in Xj , |EG′(Xj)| ≥ m
2γ2 . Therefore, |EG′(Xj)| > | outG′ (Xj)|

20γ
with high probability. For each j : 1 ≤ j ≤ γ, we then try to recover a good router Sj

from the cluster Xj. If we succeed, then we obtain a family F = {S1, . . . , Sγ} of good
routers. If we fail to recover a good router for some 1 ≤ j ≤ γ, then we will produce
a new good clustering C′, with

∑
C∈C′ | outG(C)| <

∑
C∈C | outG(C)|.

We start with the first step. We partition the vertices in V (G′) \ T into subsets
X1, . . . , Xγ , where each vertex v ∈ V (G′)\T selects an index 1 ≤ j ≤ γ independently
uniformly at random and is then added to Xj. We need the following claim.

Claim 3.6. With probability at least 1
2 , for each 1 ≤ j ≤ γ, | outG′(Xj)| < 10m

γ ,

while |EG′(Xj)| ≥ m
2γ2 .

Proof. Let H = G′ \ T . Fix some 1 ≤ j ≤ γ. Let E1(j) be the bad event that∑
v∈Xj

dH(v) ≥ 2m
γ · (1 + 1

γ). In order to bound the probability of E1(j), we define,

for each vertex v ∈ V (H), a random variable xv, whose value is dH(v)
k1

if v ∈ Xj

and 0 otherwise. Notice that xv ∈ [0, 1], and the random variables {xv}v∈V (H) are
pairwise independent. Let B =

∑
v∈V (H) xv. Then the expectation of B, µ1 =

∑
v∈V (H)

dH(v)
γk1

= 2m
γk1

. Using the standard Chernoff bound (see, e.g., Theorem 1.1
in [25]),

Pr [E1(j)] = Pr [B > (1 + 1/γ)µ1] ≤ e−µ1/(3γ
2) = e

− 2m
3γ3k1 <

1

6γ

since m ≥ k/6 and k1 = k
192γ3 log γ .

ROUTING WITH CONSTANT CONGESTION 1507

For each terminal t ∈ T , let et be the unique edge adjacent to t in graph G′, and
let ut be its other endpoint. Let U = {ut | t ∈ T }. For each vertex u ∈ U , let w(u)
be the number of terminals t, such that u = ut. Notice that w(u) ≤ k1 must hold.
We say that a bad event E2(j) happens iff

∑
u∈U∩Xj

w(u) ≥ k
γ · (1 + 1

γ). In order to

bound the probability of the event E2(j), we define, for each u ∈ U , a random variable
yu, whose value is w(u)/k1 if u ∈ Xj and 0 otherwise. Notice that yu ∈ [0, 1], and the
variables yu are independent for all u ∈ U . Let Y =

∑
u∈U yu. The expectation of

Y is µ2 = k
k1γ

, and event E2(j) holds iff Y ≥ k
k1γ

· (1 + 1
γ) ≥ µ2 · (1 + 1

γ). Using the
standard Chernoff bound again, we get that

Pr [E2(j)] ≤ e−µ2/(3γ
2) ≤ e−k/(3k1γ

3) ≤ 1

6γ

since k1 = k
192γ3 log γ . Notice that if events E1(j), E2(j) do not happen, then

| outG′(Xj)| ≤
∑

v∈Xj

dH(v) +
∑

u∈U∩Xj

w(u) ≤
(
1 +

1

γ

)(
2m

γ
+

k

γ

)
<

10m

γ

since m ≥ k/6.
Let E3(j) be the bad event that |EG′(Xj)| < m

2γ2 . We next prove that Pr [E3(j)] ≤
1
6γ . We say that two edges e, e′ ∈ E(G′ \T) are independent iff they do not share any

endpoints. Our first step is to compute a partition U1, . . . , Ur of the set E(G′ \ T) of
edges, where r ≤ 2k1, such that for each 1 ≤ i ≤ r, |Ui| ≥ m

4k1
, and all edges in set

Ui are mutually independent. In order to compute such a partition, we construct an
auxiliary graph Z, whose vertex set is {ve | e ∈ E(H)}, and there is an edge (ve, ve′)
iff e and e′ are not independent. Since the maximum vertex degree in G′ is at most
k1, the maximum vertex degree in Z is bounded by 2k1 − 2. We use the following
theorem due to Hajnal and Szemerédi [33].

Theorem 3.7 (see [33]). For any graph H with maximum vertex degree ∆, there
is a partition S1, . . . , Sr of V (H) into r ≤ ∆ + 1 disjoint subsets, such that for each
1 ≤ i ≤ r, Si is an independent set, and for 1 ≤ i ̸= i′ ≤ r, ||Si|− |Si′ || ≤ 1.

From Theorem 3.7, we can find a partition V1, . . . , Vr of the vertices of Z into r ≤
2k1 subsets, where each subset Vi is an independent set, and |Vi| ≥ |V (Z)|

r − 1 ≥ m
4k1

.
The partition V1, . . . , Vr of the vertices of Z gives the desired partition U1, . . . , Ur of
the edges of G′ \ T . For each 1 ≤ i ≤ r, we say that the bad event E i

3(j) happens iff

|Ui ∩ E(Xj)| < |Ui|
2γ2 . Notice that if E3(j) happens, then event E i

3(j) must happen for

some 1 ≤ i ≤ r. Fix some 1 ≤ i ≤ r. The expectation of |Ui ∩ E(Xj)| is µ3 = |Ui|
γ2 .

Since all edges in Ui are independent, we can use the standard Chernoff bound to
bound the probability of E i

3(j) as follows:

Pr
[
E i
3(j)

]
= Pr [|Ui ∩ E(Xj)| < µ3/2] ≤ e−µ3/8 = e

− |Ui|
8γ2 .

Since |Ui| ≥ m
4k1

, m ≥ k/6, k1 = k
192γ3 log γ , and γ = Θ(log2 k), this is bounded by

1
12k1γ

. We conclude that Pr
[
E i
3(j)

]
≤ 1

12k1γ
, and by using the union bound over all

1 ≤ i ≤ r, Pr [E3(j)] ≤ 1
6γ .

Using the union bound over all 1 ≤ j ≤ γ, with probability at least 1
2 , none of

the events E1(j), E2(j), E3(j) for any 1 ≤ j ≤ γ happen, and so for each 1 ≤ j ≤ γ,
| outG′(Xj)| < 10m

γ , and |EG′(Xj)| ≥ m
2γ2 must hold.

1508 JULIA CHUZHOY

Given a partition X1, . . . , Xγ , we can efficiently check whether the conditions of
Claim 3.6 hold. If they do not hold, we repeat the randomized partitioning procedure.
From Claim 3.6, we are guaranteed that with high probability, after poly(n) iterations,
we will obtain a partition with the desired properties. Assume now that we are given
the partition X1, . . . , Xγ of V (G′) \ T , for which the conditions of Claim 3.6 hold.

Then for each 1 ≤ j ≤ γ, |EG′(Xj)| > | outG′ (Xj)|
20γ . Let X ′

j ⊆ V (G) \ T be the set

obtained from Xj , after we uncontract each cluster, that is, X ′
j =

⋃
vC∈Xj

C. Notice

that
{
X ′

j

}γ

j=1
is a partition of V (G) \ T . We use the following theorem to finish the

proof of Theorem 3.5.
Theorem 3.8. There is an efficient algorithm that, for each 1 ≤ j ≤ γ,

either finds a good router Sj ⊆ X ′
j or produces a good clustering C′ of G, with∑

C∈C′ | outG(C)| <
∑

C∈C | outG(C)|.
In order to complete the proof of Theorem 3.5, we apply Theorem 3.8 to each

cluster Xj in turn. If, for some 1 ≤ j ≤ γ, Theorem 3.8 produces a good clustering
C′, with

∑
C∈C′ | outG(C)| <

∑
C∈C | outG(C)|, then we are done. Otherwise, for each

1 ≤ j ≤ γ, we obtain a good router Sj ⊆ X ′
j , and, since the sets X ′

1, . . . , X
′
γ are

mutually disjoint, we obtain a family F = {S1, . . . , Sγ} of good routers. In order to
complete the proof of Theorem 3.5, it now remains to prove Theorem 3.8.

Proof of Theorem 3.8. Recall that we say that a cluster S ⊆ V (G) is large if
| outG(S)| > k1, and we say that it is small otherwise. Fix some 1 ≤ j ≤ γ. We
partition the set C of clusters into two subsets: W1 contains all clusters C with
C ∩ X ′

j = ∅, and W2 contains all clusters C ⊆ X ′
j . Throughout the algorithm, we

also maintain another partition C̃ of V (G) into clusters (which may not be a good
clustering). We will also maintain a partition (W̃1, W̃2) of C̃, where W̃1 = C̃ ∩ W1,
and W̃2 = C̃ \ W̃1. Recall that from Claim 3.6,

∑
C∈W2

| outG(C)| ≥ | outG(X ′
j)| +

2|EG′(Xj)| > | outG(X ′
j)|(1+ 1

10γ). Our goal is to either find a good router Sj ⊆ X ′
j or

produce a good clustering C̃, where
∑

C∈W̃2
| outG(C)| < | outG(X ′

j)|(1 + 1
10γ). This

will ensure that
∑

C∈C̃ | out(C)| <
∑

C∈C | out(C)|.
Assume now that we are given some large cluster C ⊆ V (G) \ T and a current

partition C̃ of V (G) into clusters. We say that a partition (A,B) of V (G) is a small
canonical separator for C iff C ⊆ A, T ⊆ B, |EG(A,B)| ≤ k1, and, for each cluster
C′ ∈ C̃, either C′ ⊆ A or C′ ⊆ B holds.

Our algorithm proceeds in two steps. In the first step, we either find a good router
Sj ⊆ X ′

j or compute a partition C̃ of V (G) into clusters, such that each large cluster

C ∈ C̃ has a small canonical separator. If we find a good router Sj ⊆ X ′
j , then we

terminate the algorithm and return Sj. Otherwise, we continue to the second step,
which transforms the partition C̃ into a good clustering.

Step 1. Given a partition C̃ of V (G), a cluster C ∈ C̃ is called a candidate cluster
if it is a large cluster, and there is no small canonical separator (A,B) for C. Notice
that, in this case, there is a flow F in the corresponding contracted graph GC̃ , of value
at least k1, from vC to T . This step is summarized in the following claim.

Claim 3.9. There is an efficient algorithm that either finds a good router Sj ⊆ X ′
j

or computes a partition R of X ′
j, such that

∑
C∈R | outG(C)| ≤ | outG(X ′

j)|(1 + 1
64γ),

and, if C̃ = R ∪W1, then no cluster of C̃ is a candidate cluster.
Proof. We start with R =

{
X ′

j

}
. Throughout the algorithm, we maintain a

partition C̃ of V (G) into clusters, where C̃ = R ∪W1. While C̃ contains at least one
candidate cluster, let S be any such cluster. Notice that S ∈ R must hold, as every

ROUTING WITH CONSTANT CONGESTION 1509

cluster in W1 is small. For simplicity, we denote GC̃ by G̃. From the integrality of
flow, there is a collection P of k1 edge-disjoint paths in G̃ connecting distinct edges in
outG̃(S) to distinct terminals in T . Let Γ ⊆ outG̃(S) be the set of k1 edges which serve
as endpoints of the paths in P . We set up an instance of the sparsest cut problem
in graph G[S] ∪ outG(S), where the edges in set Γ serve as terminals. We then run
the algorithm AARV on the resulting instance. If the algorithm returns a cut (Y, Z)
of sparsity less than α(k), then (Y, Z) is a (k,α(k))-violating cut for S. We then
replace S with Y and Z in R, and update C̃ and G̃ accordingly. This ends the current
iteration, and we then proceed to the next iteration. Assume now that algorithm
AARV returns a cut whose sparsity is at least α(k). Then we are guaranteed that S
has the αBW(k) = α(k)/αARV(k)-bandwidth property for Γ. Recall that we are given a
set P of k1 edge-disjoint paths connecting the edges in Γ to the terminals T in graph
G̃, where each path connects a distinct edge e ∈ Γ to a distinct terminal te ∈ T . In
order for S to be a good router, a low-congestion flow connecting the edges in Γ to the
terminals must exist in the original graph G. We will try to find this flow, as follows.
The flow will follow the paths in P , except that we need to specify how the flow is
routed inside each cluster C for C ∈ C̃. Observe that for each such cluster C, the
paths in P define a setDC of 1-restricted demands on the edges of outG(C). Moreover,
the total number of edges in outG(C) participating in the paths in P is at most k1,
as there are only k1 paths in P and we can assume without loss of generality that
they are simple. If C ∈ W1, then we are guaranteed that cluster C has the αBW(k)-
bandwidth property in graph G. From Observation 2.7, we can route the set DC of
demands inside G[C] with congestion at most 2β(k)/αBW(k). Otherwise, C ∈ R, and
it is possible that we cannot route the set DC of demands inside G[C] with congestion
at most 2β(k)/αBW(k). We then proceed as follows. If, for each cluster C ∈ R, we
can route the set DC of demands inside G[C] with congestion at most 2β(k)/αBW(k),
then S is a good router. We terminate the algorithm and return S. Otherwise, let
C ∈ R be any cluster, for which such flow does not exist. Consider the instance of the
sparsest cut problem defined on the graphG[C]∪outG(C), where the edges of outG(C)
with nonzero demand serve as terminals (recall that there are at most 2k1 such edges).
Then the value of the sparsest cut in this instance is at most αBW(k), and so by applying
algorithm AARV to this instance of sparsest cut, we will obtain a (k,α(k))-violating
cut (Y, Z) for set C. We then remove C from R, and add Y and Z to C̃ instead. We
also update C̃ and G̃ accordingly and end the current iteration. This concludes the
description of the algorithm. Notice that the final set R was obtained from X ′

j by
running the bandwidth-decomposition algorithm from Theorem 2.8 on X ′

j , as in each
step we computed a (k,α)-violating cut of some cluster in the current partition R of
X ′

j . Therefore, from Theorem 2.8,
∑

C∈R | outG(C)| ≤ | outG(X ′
j)|(1 + 1

64γ). If the
algorithm does not terminate with a good router S ⊆ X ′

j , then it is guaranteed to
terminate after O(|V (G)|) iterations, with a partition R of X ′

j , and a corresponding

partition C̃ of V (G), such that C̃ contains no candidate clusters.

If the algorithm from Claim 3.9 returns a good router S ⊆ X ′
j , then we terminate

the algorithm and return S. We assume from now on that Claim 3.9 returns a partition
R ofX ′

j into clusters and a corresponding partition C̃ of V (G), where C̃ = R∪W1, such

that no cluster of C̃ is a candidate cluster, and
∑

C∈R | outG(C)| ≤ | outG(X ′
j)|(1 +

1
64γ).

Step 2. In this step, we transform the partition C̃ of V (G) computed in Step 1

1510 JULIA CHUZHOY

into a good clustering. We start with the following claim.
Claim 3.10. Let C̃ be the partition of V (G) computed in Step 1. Then there is

an efficient algorithm to find a collection S of disjoint small clusters, such that each
cluster S ∈ S is contained in V (G)\T , and for each large cluster C ∈ C̃, there is some
cluster S ∈ S with C ⊆ S. Moreover, for every pair C′ ∈ C̃ and S ∈ S of clusters,
either C′ ⊆ S or C′ ∩ S = ∅.

Proof. Throughout the algorithm, we maintain a collection S of disjoint subsets
of nonterminal vertices of G, where each set S ∈ S is a small cluster. We will ensure
throughout the algorithm that for each pair C′ ∈ C̃ and S ∈ S of clusters, either
C′ ⊆ S or C′ ∩ S = ∅. We say that a large cluster C ∈ C̃ is covered by S iff there is a
cluster S ∈ S with C ⊆ S. We start with S = ∅.

While there is a large cluster in C̃ that is not covered by S, let C be any such
cluster. Recall that there is a small canonical separator (A,B) for C in G. Let
L ⊆ C̃ be the set of large clusters covered by S ∪ {A}. We now consider clusters
S ∈ S one by one. For each such cluster S, if S \ A is a small cluster, then we
replace S with S \ A in S. Notice that all clusters of L remain covered by the new
set S ∪ {A}. Otherwise, if S \ A is a large cluster, then, from the submodularity of
cuts, | out(S)|+ | out(A)| ≥ | out(S \A)|+ | out(A \ S)|, and since S and A are small
clusters, A \ S is a small cluster. We replace A with A \ S and continue. Notice that
all clusters of L remain covered by the new set S ∪ {A}. Once all clusters of S are
processed, we add the final set A to S and continue to the next iteration. It is easy
to see that in each iteration, the number of large clusters in C̃ that are not covered
by S decreases by at least 1, and we maintain the property that for each pair C′ ∈ C̃
and S ∈ S of clusters, either C′ ⊆ S or C′ ∩ S = ∅. Once all large clusters of C̃ are
covered, we obtain the desired set S of small clusters.

We assume without loss of generality that for each cluster S ∈ S, there is some
large cluster CS ∈ C̃ with CS ⊆ S, since otherwise we can remove S from S. Let C̃′

be a partition of V (G), obtained from C̃ as follows: for each cluster S ∈ S, we delete
all clusters C ⊆ S from C̃, and we add S to C̃′ instead. Notice that every cluster
in C̃′ is now a small cluster. We let W̃1 = C̃′ ∩W1 and W̃2 = C̃′ \ W1. Notice that
for every cluster S ∈ W̃2, either S ∈ R or there is some large cluster CS ∈ R, such
that CS ⊆ S. In the latter case, since CS is a large cluster, and S is a small cluster,
| outG(S)| < | outG(CS)|. Therefore,

∑

S∈W̃2

| outG(S)| ≤
∑

C∈R
| outG(C)| ≤ | outG(X ′

j)|
(
1 +

1

64γ

)
.

Our final step is to compute, for each cluster C ∈ W̃2, a partition W(C) into small
clusters that have the αBW(k)-bandwidth property, such that

∑
C′∈W(C) | outG(C′)| ≤

| outG(C)|(1 + 1
64γ), using Corollary 2.9. Let R′ =

⋃
C∈W̃2

W(C). Then

∑

C′∈R′

| outG(C′)| ≤
∑

C∈W̃2

| outG(C)|
(
1 +

1

64γ

)
≤ | outG(X ′

j)|
(
1 +

1

64γ

)2

< | outG(X ′
j)|

(
1 +

1

20γ

)
.

Our final good partition C′ of V (G) is the union of W̃1 and R′. It is immediate

ROUTING WITH CONSTANT CONGESTION 1511

to verify that this is indeed a good partition. Moreover,

∑

C∈C′

| outG(C)| ≤
∑

C∈W̃1

| outG(C)|+
∑

C∈R′

| outG(C)|

<
∑

C∈W1

| outG(C)|+ | outG(X ′
j)|

(
1 +

1

20γ

)

<
∑

C∈W1

| outG(C)|+
∑

C∈W2

| outG(C)|

=
∑

C∈C
| outG(C)|,

since
∑

C∈W2
| outG(C)| = | outG(X ′

j)|+ 2|EG′(Xj)| ≥ | outG(X ′
j)|(1 + 1

10γ).

3.2. Finding the routing. In this section, we exploit the family F of good
routers, in order to find a routing of Ω(k

log20.5 k log log k
) pairs in M with congestion at

most 14.
We assume that we are given a family F = {S1, . . . , Sγ} of good routers in G. For

each 1 ≤ j ≤ γ, we are also given a subset Γj ⊆ outG(Sj) of edges, such that Sj has
the αBW(k)-bandwidth property for Γj , and there is a flow Fj : Γj !η T , where each
edge e ∈ Γj sends one flow unit to a distinct terminal te, and the total congestion due
to Fj is at most η = 2β(k)/αBW(k).

In order to find the final routing, we build an expander over a subset of terminals
and embed it into graph G. More precisely, we select an arbitrary subset M′ ⊆ M
of k′/2 source-sink pairs, for some k′ = k/ poly log k, whose precise value is defined
later. Let T ′ ⊆ T be the subset of terminals participating in pairs in M′, and assume
that T ′ = {t1, . . . , tk′}. We construct an expander X over the set {v1, . . . , vk′} of
vertices, which is then embedded into the graph G as follows. For each 1 ≤ i ≤ k′, we
define a connected subgraph Ci of G that represents the vertex vi of the expander.
For each edge e = (vi, vj) ∈ E(X), we define a path Pe connecting a vertex of Ci

to a vertex of Cj in G. We will ensure that each edge of G may only appear in a
small constant number of the subgraphs Ci and a small constant number of the paths
Pe. We will also ensure that for each 1 ≤ i ≤ k′, terminal ti ∈ Ci. We will think
about the expander vertex vi as representing the terminal ti. The idea is that any
vertex-disjoint routing of the terminal pairs in the expander X can now be translated
into a low edge-congestion routing in the original graph G.

We now turn to describe the construction of the expander X and the connected
subgraphs C1, . . . , Ck′ that we use to embed X into G. The construction exploits
the family F = {S1, . . . , Sγ} of good routers. We construct a collection T1, . . . , Tk′ of
trees in graph G. Each such tree Ti contains, for each 1 ≤ j ≤ γ, an edge ei,j ∈ Γj .
For each 1 ≤ j ≤ γ, the edges e1,j , e2,j, . . . , ek′,j are all distinct, and we think of the
edge ei,j as the representative of the vertex vi ∈ V (X) for the set Sj . In other words,
each tree Ti spans γ representatives of the vertex vi: one representative ei,j for each
set Sj ∈ F . We will ensure that each edge of graph G only participates in a constant
number of such trees. Additionally, we build a set P = {Pt | t ∈ T ′} of paths, where
path Pt connects the terminal t to a distinct tree Ti (so if t ̸= t′, then t and t′ are
connected to different trees), and the total congestion caused by paths in P is at most
4. We rename the terminals in T ′, so that ti denotes the terminal that is connected
to the tree Ti. The final subgraph Ci of G is simply the union of the tree Ti and the
path Pti .

1512 JULIA CHUZHOY

In order to construct the expander X over the set {v1, . . . , vk′} of vertices, we use
the cut-matching game of [39], where we use the subgraph G[Sj] of G to route the jth
matching between the corresponding representatives e1,j, e2,j , . . . , ek′,j of the vertices
v1, . . . , vk′ , respectively. Recall that we are only guaranteed that sets {Sj}γj=1 have
the αBW(k)-bandwidth property for the edges in Γj , and so in order to route these
matchings, we may have to incur the congestion of Ω(1/αBW(k)), which we cannot
afford. However, this problem is easy to overcome by performing a suitable grouping
of the edges of Γj .

The rest of the algorithm proceeds in three steps. In the first step, we perform
groupings of the edges in the subsets Γj for 1 ≤ j ≤ γ. In the second step, we
construct the trees T1, . . . , Tk′ . In the third step, we finish the construction of the
expander X and its embedding into G and produce the final routing of a subset of
demand pairs in M′.

Step 1: Edge grouping. In this step we compute, for each 1 ≤ j ≤ γ, a grouping
of the edges in Γj . We then establish some properties of these groupings. We use the
following two parameters: p = 8β(k)/αBW(k) = O(log4.5 k) is the grouping parameter
for the sets Γj. The second parameter, k′ = ⌊ 1

4γ3 · ⌊k1
6p⌋⌋ = Ω(k

log16.5 k log log k
), is

the number of the vertices in the expander X that we will eventually construct. We
assume without loss of generality that k′ is an even integer; otherwise we round it
down to the closest even integer.

Fix some 1 ≤ j ≤ γ. Since G[Sj] ∪ outG(Sj) is a connected graph, we can find a
spanning tree Tj of this graph and partition the edges of Γj along this tree into groups
whose size is at least p and at most 3p using Theorem 2.10. Let Gj be the resulting
collection of groups, and let k∗ = ⌊k1

6p⌋. For each group U ∈ Gj , let Tj(U) be the
subtree of the tree Tj spanning the edges of U . For each group U ∈ Gj , we select one
arbitrary representative edge, and we let Γ′

j denote this set of representative edges.
For each e ∈ Γ′

j , we denote by Ue the group to which e belongs. Additionally, we
let U ′

e ⊆ Ue be an arbitrary subset of p edges of Ue, including e itself. Notice that
|Γ′

j | ≥ k∗ must hold. If |Γ′
j | > k∗, then we discard edges from Γ′

j arbitrarily, until
|Γ′

j | = k∗ holds. This finishes the description of the grouping. The next theorem
establishes some properties of the resulting groupings that will be used later.

Theorem 3.11.
• For each 1 ≤ j ≤ γ, for any pair X,Y ⊆ Γ′

j of edge subsets, where |X | = |Y |,
there is a collection P(X,Y) : X

1:1!2 Y of paths contained in G[Sj], where
each path connects a distinct edge of X to a distinct edge of Y , and the paths
cause congestion at most 2.

• For all 1 ≤ i ̸= j ≤ γ, there is a set Pi,j : Γ′
i

1:1!2 Γ′
j of k∗ paths in graph G.

That is, each path connects a distinct edge of Γ′
i to a distinct edge of Γ′

j, with
total congestion at most 2.

• Let Γ∗
1 ⊆ Γ′

1 be any subset of k′ edges, M′ ⊆ M any subset of k′/2 source-sink
pairs, and T ′ the subset of terminals participating in pairs in M′. Then there
is a set P : T ′ 1:1!4 Γ∗

1 of paths in G, each path connecting a distinct terminal
of T ′ to a distinct edge of Γ∗

1, with total congestion at most 4.
Proof. In order to prove the first assertion, fix some 1 ≤ j ≤ γ. From the

integrality of flow, it is enough to prove that there is a flow Fj(X,Y), where each edge
in X sends one flow unit, each edge in Y receives one flow unit, the flow congestion
is at most 2, and the flow is contained in G[Sj]. We start by defining two subsets
X ′, Y ′ ⊆ Γj of edges, as follows: X ′ =

⋃
e∈X U ′

e and Y ′ =
⋃

e∈Y U ′
e. Observe that

|X ′| = |Y ′| = |X | · p. Since set Sj has the αBW(k)-bandwidth property for Γj , there

ROUTING WITH CONSTANT CONGESTION 1513

is a flow Fj(X ′, Y ′) contained in G[Sj], where every edge in X ′ sends one flow unit,
every edge in Y ′ receives one flow unit, and the congestion due to this flow is at
most 1/αBW(k). We are now ready to define the flow Fj(X,Y). Each edge e ∈ X
spreads one flow unit uniformly among the edges of U ′

e along the tree Tj(Ue). Next,
all this flow is sent along the flow-paths in Fj(X ′, Y ′), where we scale this flow down
by factor p. Finally, each edge e ∈ Y collects all flow from edges in U ′

e along the tree
Tj(Ue). Since all trees {TU}U∈Gj

are edge-disjoint, and since the congestion caused

by Fj(X ′, Y ′) is at most 1/αBW(k) < p, the resulting flow Fj(X,Y) causes congestion
at most 2.

We now turn to prove the second assertion. From the integrality of flow, it is
enough to prove that there is a flow Fi,j : Γ′

i !2 Γ′
j , where every edge in Γ′

i sends
one flow unit and every edge in Γ′

j receives one flow unit. As before, we construct
two edge subsets, X ⊆ Γj and Y ⊆ Γi, as follows: X =

⋃
e∈Γ′

i
U ′
e, and Y =

⋃
e∈Γ′

j
U ′
e.

Notice that |X | = |Y | = k∗ · p.
Recall that, from the definition of good routers, we already have a flow Fj , where

each edge e ∈ Γj sends one flow unit to a distinct terminal in T , with total congestion
at most η = 2β(k)/αBW(k). We discard all flow-paths except those originating at the
edges of X . As a result, we obtain a flow F ∗

j , where each edge e ∈ X sends one flow
unit to a distinct terminal te ∈ T , and F ∗

j causes congestion at most η in G. Let Tj
be the subset of terminals that receive flow in F ∗

j , |Tj | = |X |. Similarly, we can define
a flow F ∗

i , where each edge e ∈ Y sends one flow unit to a distinct terminal te ∈ T ,
and F ∗

i causes congestion at most η in G. Subset Ti of terminals is defined similarly.
Notice that Ti and Tj are not necessarily disjoint. But since the set T of terminals is
1
2 -well-linked in G, there is a flow F : Ti

1:1!2 Tj , where each terminal in Ti sends one
flow unit, each terminal in Tj receives one flow unit, and the total edge-congestion is
at most 2. We concatenate the three flows, F ∗

i , F, F
∗
j , to obtain a flow F ′ : X ! Y .

In this flow, each edge in X sends one flow unit, each edge in Y receives one flow unit,
and the total congestion is at most 2η + 2.

We are now ready to define the flow Fi,j . Each edge e ∈ Γ′
i sends one flow unit

along the tree Ti(Ue), which is evenly split among the edges of U ′
e. We then use the

flow F ′, scaled down by factor p, to route this flow to the edges of Y . Finally, each
edge e ∈ Γ′

j collects the flow that the edges of U ′
e receive, along the tree Tj(Ue), so

that after collecting all that flow, edge e receives 1 flow unit. In order to analyze the
total congestion due to flow Fi,j , observe that all trees {Ti(U)}U∈Gi

∪ {Tj(U)}U∈Gj

are edge-disjoint. So the routing along these trees causes a congestion of at most 1.
Since flow F ′ causes congestion of at most 2η+2 and p is selected so that p ≥ 2η+2,
the congestion due to the scaled-down flow F ′ is at most 1. The total congestion is
therefore at most 2.

Finally, we prove the third assertion. Let Γ∗
1 ⊆ Γ′

1 be any subset of k′ edges, M′ ⊆
M any subset of k′/2 source-sink pairs, and T ′ the set of all terminals participating
in the pairs in M′. Let X =

⋃
e∈Γ∗

1
U ′
e, so |X | = k′p. As before, we make use of the

previously defined flow F1, where each edge e ∈ Γ1 sends one flow unit to a distinct
terminal in T , with total congestion at most η = 2β(k)/αBW(k). We discard all flow-
paths except those that originate at the edges of X . As a result, we obtain a flow
F ∗, where each edge e ∈ X sends one flow unit to a distinct terminal te ∈ T , and
F ∗ causes congestion at most η < p in G. We now define a new flow F ∗∗ : Γ∗

1 !2 T ,
where each edge in Γ∗

1 sends one flow unit, and each terminal in T receives at most
one flow unit. Flow F ∗∗ is defined as follows. Each edge e ∈ Γ∗

1 sends one flow unit
to the edges in set U ′

e along the tree T1(Ue), distributing it evenly among these edges.

1514 JULIA CHUZHOY

Each edge in U ′
e then sends the 1/p flow unit it receives from e to the terminals via

the flow F ∗, so the flow F ∗ is scaled down by factor p. Since the congestion caused by
flow F ∗ is η < p, and the trees {T1(Ue)}e∈Γ∗

1
are edge-disjoint, the total congestion

caused by F ∗∗ is at most 2. Moreover, each terminal receives at most one flow unit
in F ∗∗. From the integrality of flow, there is a subset T ′′ ⊆ T of k′ terminals, and a
collection P1 : Γ∗

1
1:1!2 T ′′ of paths in G. Since the set T of terminals is 1

2 -well-linked,

using the integrality of flow, there is a collection P2 : T ′′ 1:1!2 T ′ of paths in G. We
then obtain the desired collection P of paths by concatenating the paths in P1 with
the paths in P2.

Step 2: Constructing the trees. The goal of this step is to find a collection
T1, . . . , Tk′ of trees in graph G, such that each edge of G belongs to at most 8 trees.
For each tree Ti, we will find a subset Ei ⊆ E(Ti) of special edges, such that the sets
E1, . . . , Ek′ are pairwise disjoint, and for each 1 ≤ i ≤ k′, Ei = {ei,1, ei,2, . . . , ei,γ},
where for 1 ≤ j ≤ γ, ei,j ∈ Γ′

j . Notice that an edge e ∈ Γ′
j may belong to several

trees, but only to one of them as a special edge. For each 1 ≤ j ≤ γ, we denote
Γ∗
j = {e1,j , . . . , ek′,j} the subset of edges of Γ′

j that the trees T1, . . . , Tk′ contain as
special edges. We summarize Step 2 in the next theorem.

Theorem 3.12. Given a family F of good routers and a subset Γ′
j ⊆ outG(Sj)

of edges for each 1 ≤ j ≤ γ, as computed in Step 1, we can efficiently find k′ trees
T1, . . . , Tk′ in graph G, and for each tree Ti a subset Ei ⊆ E(Ti) of special edges, such
that

• each edge of G belongs to at most 8 trees;
• subsets E1, . . . , Ek′ of edges are pairwise disjoint; and
• for all 1 ≤ i ≤ k′, Ei = {ei,1, . . . , ei,γ}, where for all 1 ≤ j ≤ γ, ei,j ∈ Γ′

j.

Proof. In order to prove the theorem, we start by augmenting the graph G as
follows. First, replace each edge ofG with two parallel edges. Next, for each 1 ≤ j ≤ γ,
add a new vertex sj , and for each edge e ∈ Γ′

j , we subdivide one of the copies of e,
by adding a new vertex ve, which is then connected to the vertex sj . Notice that
from Theorem 3.11, for each 1 ≤ j ̸= j′ ≤ γ, there are exactly k∗ edge-disjoint
paths connecting sj to sj′ in the resulting graph. Finally, we replace each edge in the
resulting graph by two bidirected edges, thus obtaining a directed Eulerian graph that
we denote by G+. From Theorem 3.11, for each pair 1 ≤ j ̸= j′ ≤ γ of indices, there
are k∗ edge-disjoint paths connecting sj to sj′ , and k∗ edge-disjoint paths connecting
sj′ to sj. Notice also that each vertex sj has exactly k∗ incoming edges and exactly
k∗ outgoing edges.

As a next step, we use the standard edge splitting procedure in graph G+. Our
goal is to eventually obtain a graph H̃ over the set {s1, . . . , sγ} of vertices, such that
each pair sj , sj′ is k∗-edge connected, and each edge e = (sj , sj′) ∈ E(H̃) is associated

with a path Pe connecting sj to sj′ in G+, while all paths in
{
Pe | e ∈ E(H̃)

}
are

edge-disjoint in G+.

Let D = (V,A) be any directed multigraph with no self-loops. For any pair
(v, v′) ∈ V of vertices, their connectivity λ(v, v′;D) is the maximum number of edge-
disjoint paths connecting v to v′ in D. Given a pair a = (u, v), b = (v, w) of edges, a
splitting-off procedure replaces the two edges a, b by a single edge (u,w). We denote
by Da,b the resulting graph. We use the extension of Mader’s theorem [47] to directed
graphs, due to Frank [29] and Jackson [34]. The following is a simplified version of
Theorem 3 from [34].

Theorem 3.13. Let D = (V,A) be an Eulerian digraph, v ∈ V , and a =

ROUTING WITH CONSTANT CONGESTION 1515

(v, u) ∈ A. Then there is an edge b = (w, v) ∈ A, such that for all y, y′ ∈ V \ {v}:
λ(y, y′;D) = λ(y, y′;Dab).

We apply Theorem 3.13 repeatedly to all vertices of G+ except for the vertices in
set {s1, . . . , sγ}, until we obtain a directed graph H̃ , whose vertex set is {s1, . . . , sγ},
and for each 1 ≤ j, j′ ≤ γ, there are k∗ edge-disjoint paths connecting sj to sj′ and
k∗ edge-disjoint paths connecting sj′ to sj . Clearly, each edge e = (sj , sj′) ∈ E(H̃) is

associated with a path Pe connecting sj to sj′ in G+, and all paths
{
Pe | e ∈ E(H̃)

}

are edge-disjoint. Let H̃ ′ denote the undirected multigraph identical to H̃ , except
that now all edges become undirected. Notice that each vertex sj must have 2k∗ ≫ γ
edges adjacent to it in H̃ ′, so the graph contains many parallel edges. For each pair
sj , sj′ of vertices, there are exactly 2k∗ edge-disjoint paths connecting sj to sj′ in H̃ ′.
For convenience, let us denote 2k∗ by ℓ.

As a next step, we build an auxiliary undirected graph Z on the set {s1, . . . , sγ} of
vertices, as follows. For each pair sj , sj′ of vertices, there is an edge (sj , sj′) in graph
Z iff there are at least ℓ/γ3 edges connecting sj and sj′ in H̃ ′. If edge e = (sj , sj′) is
present in graph Z, then its capacity c(e) is set to be the number of edges connecting
sj to sj′ in H̃ ′. For each vertex sj , let C(sj) denote the total capacity of edges incident
on sj in graph Z. We need the following simple observation.

Observation 3.14.
• For each vertex v ∈ V (Z), (1− 1/γ2)ℓ ≤ C(v) ≤ ℓ.
• For each pair (u, v) of vertices in graph Z, we can send at least (1 − 1/γ)ℓ
flow units from u to v in Z without violating the edge capacities.

Proof. In order to prove the first assertion, recall that each vertex in graph H̃ ′

has ℓ edges incident to it (this is since, in graph G+, each vertex s1, . . . , sγ had
exactly k∗ incoming and k∗ outgoing edges, and we did not perform edge splitting
on these vertices). So C(v) ≤ ℓ for all v ∈ V (Z). Call a pair (sj , sj′) of vertices
bad iff there are fewer than ℓ/γ3 edges connecting sj to sj′ in H̃ ′. Notice that each
vertex v ∈ V (Z) may participate in at most γ bad pairs, as |V (Z)| = γ. Therefore,
C(v) ≥ ℓ− γℓ/γ3 = ℓ(1− 1/γ2) must hold.

For the second assertion, assume for contradiction that it is not true, and let
(u, v) be a violating pair of vertices. Then there is a cut (A,B) in Z, with u ∈ A,
v ∈ B, and the total capacity of edges crossing this cut is at most (1− 1/γ)ℓ. Since u
and v were connected by ℓ edge-disjoint paths in graph H̃ ′, this means that there are
at least ℓ/γ edges in graph H̃ ′ that connect bad pairs of vertices. But since we can
only have at most γ2 bad pairs, and each pair has fewer than ℓ/γ3 edges connecting
them, this is impossible.

We now proceed in two steps. First, we show that we can efficiently find a
spanning tree of Z with maximum vertex degree at most 3. Next, using this spanning
tree, we show how to construct the collection T1, . . . , Tk′ of trees.

Claim 3.15. There is an efficient algorithm to find a spanning tree T ∗ of Z with
maximum vertex degree at most 3.

Proof. We use the algorithm of Singh and Lau [58] for constructing bounded-
degree spanning trees. Suppose we are given a graph G = (V,E), and our goal is
to construct a spanning tree T of G, where the degree of every vertex is bounded
by B. For each subset S ⊆ V of vertices, let E(S) denote the subset of edges with
both endpoints in S, and δ(S) the subset of edges with exactly one endpoint in S.
Singh and Lau consider a natural LP relaxation for the problem. We note that their
algorithm works for a more general problem where edges are associated with costs,

1516 JULIA CHUZHOY

and the goal is to find a minimum-cost tree that respects the degree requirements;
since we do not need to minimize the tree cost, we only discuss the unweighted version
here. For each edge e ∈ E, we have a variable xe indicating whether e is included in
the solution. We are looking for a feasible solution to the following LP:

∑

e∈E

xe = |V |− 1,(2)

∑

e∈E(S)

xe ≤ |S|− 1 ∀S ⊂ V,(3)

∑

e∈δ(v)

xe ≤ B ∀v ∈ V,(4)

xe ≥ 0 ∀e ∈ E.(5)

Singh and Lau [58] show an efficient algorithm, that, given a feasible solution to
the above LP, produces a spanning tree T , where for each vertex v ∈ V , the degree of
v is at most B + 1 in T . Therefore, in order to prove the claim, it is enough to show
a feasible solution to the LP, where B = 2. Recall that |V (Z)| = γ. The solution is
defined as follows. Let e = (u, v) be any edge in E(Z). We set the LP-value of e to

be xe =
γ−1
γ · (c(e)

C(v) +
c(e)
C(u)). We say that γ−1

γ · c(e)
C(v) is the contribution of v to xe, and

γ−1
γ · c(e)

C(u) is the contribution of u. We now verify that all constraints of the LP hold.

First, it is easy to see that
∑

e∈E xe = |V |− 1, as required. Indeed,

∑

e∈E

xe =
∑

e=(u,v)∈E

γ − 1

γ
·
(

c(e)

C(v)
+

c(e)

C(u)

)

=
∑

v∈V

γ − 1

γ
·

⎛

⎝
∑

e∈δ(v)

c(e)

C(v)

⎞

⎠

=
γ − 1

γ
· |V |

= |V |− 1,

as |V | = γ.
Next, consider some subset S ⊂ V of vertices. Notice that it is enough to establish

constraint (3) for subsets S with |S| ≥ 2. From Observation 3.14, the total capacity
of edges in EZ(S, S) must be at least (1− 1/γ)ℓ. Since for each v ∈ S, C(v) ≤ ℓ, the
total contribution of the vertices in S toward the LP-weights of edges in EZ(S, S) is
at least γ−1

γ · (1− 1/γ) = (1− 1/γ)2. Therefore,

∑

e∈E(S)

xe ≤
γ − 1

γ
|S|− (1− 1/γ)2 = |S|− |S|/γ − 1− 1/γ2 + 2/γ ≤ |S|− 1

since we assume that |S| ≥ 2. This establishes constraint (3). Finally, we show that
for each v ∈ V (Z),

∑
e∈δ(v) xe ≤ 2. First, the contribution of the vertex v to this

summation is bounded by 1. Next, recall that for each u ∈ V (Z), C(u) ≥ (1−1/γ2)ℓ,
while the total capacity of edges in δ(v) is at most ℓ. Therefore, the total contribution
of other vertices to this summation is bounded by ℓ

(1−1/γ2)ℓ ·
γ−1
γ ≤ γ

γ+1 ≤ 1. The
algorithm of Singh and Lau can now be used to obtain a spanning tree T ∗ for Z with
maximum vertex degree at most 3.

ROUTING WITH CONSTANT CONGESTION 1517

Root the tree T ∗ at any degree-1 vertex r. Let e = (si, sj) be some edge of the
tree, where si is the parent of sj . Recall that there are at least ℓ/γ3 edges (si, sj) in
graph H̃ ′. Let A(e) be any collection of exactly ⌊ℓ/γ3⌋ such edges. Recall that for
each edge ê ∈ A(e) in graph H̃ ′, there is a path P , connecting either si to sj or sj to
si, in graph G+ (recall that graph G+ is directed). Since the direction of the edges in
G+ will not play any role in the following argument, we will assume without loss of
generality that P is directed from sj toward si. Recall that the first edge on path P
must connect sj to some vertex vẽ, where ẽ ∈ Γ′

j , and similarly, the last edge on path
P connects some vertex vẽ′ , for ẽ′ ∈ Γ′

i, to si. So by removing the first and the last
edges from path P , we obtain a path Pê in graph G that connects edge ẽ ∈ Γ′

j to edge
ẽ′ ∈ Γ′

i. Since si is the parent of sj in tree T ∗, we will think of Pê as being directed
from Sj toward Si. We call ẽ the first edge of Pê and ẽ′ the last edge of Pê. Going back
to the edge e = (si, sj) in tree T ∗, we can now define a set P(e) = {Pê | ê ∈ A(e)} of
exactly ⌊ℓ/γ3⌋ paths in graph G, associated with e. We let

B1(e) =
{
ẽ ∈ Γ′

j | ẽ is the first edge on some path Pê ∈ P(e)
}

and

B2(e) = {ẽ ∈ Γ′
i | ẽ is the last edge on some path Pê ∈ P(e)} .

Both sets B1(e), B2(e) are multisets; that is, if some edge ẽ ∈ Γ′
j appears as a

first edge on two paths in P(e), then we add two copies of ẽ to B1(e). (From the
construction of G+, it is easy to see that ẽ may appear as the first edge on at most
two such paths.) We then have that P(e) : B1(e)

1:1!4 B2(e) in graph G, since, from
the construction of graphs G+ and H̃ ′, every edge of graph G may appear on at most
four paths of

⋃
e∈E(T∗) P(e).

We call the sets B1(e), B2(e) of edges bundles corresponding to e, and we view
B1(e) as a bundle that belongs to Sj , while B2(e) is a bundle that belongs to Si.
Since the degree of tree T ∗ is at most 3, every set Sj has at most three bundles that
belong to it. From the construction of graph G+, for every vertex si : 1 ≤ i ≤ γ,
each edge in Γ′

i may appear at most twice in the multiset defined by the union of the
bundles that belong to Si. In particular, it is possible that it appears twice in the
same bundle. We need to make sure that this never happens. In order to achieve
this, we will define, for each edge e ∈ E(T ∗), smaller bundles, B′

1(e) ⊆ B1(e) and
B′

2(e) ⊆ B2(e), such that each edge appears at most once in each bundle, and there

is a subset P ′(e) ⊆ P(e), where P ′(e) : B′
1(e)

1:1!4 B′
2(e). We will also ensure that

|B′
1(e)| = |B′

2(e)| = ⌊ ℓ
4γ3 ⌋ (see Figure 2).

This is done as follows. Consider some edge e = (si, sj) in tree T ∗, and assume
that si is the parent of sj in the tree. Consider first B1(e). For each edge ẽ ∈ B1(e),
if two copies of ẽ appear in B1(e), then we remove one of the copies from B1(e). If
P ∈ P(e) is one of the two paths for which ẽ is the first edge, then we remove P from
P(e), and we also remove its last edge from B2(e). It is easy to see that we remove
at most half the edges of B1(e). We then perform the same operation for B2(e). In
the end, both B1(e) and B2(e) must contain at least a 1/4 of the original edges, and
P(e) contains at least a 1/4 of the original paths. We now let P ′(e) be any subset
of exactly ⌊ ℓ

4γ3 ⌋ remaining paths, and we set B′
1(e) to be the set of all edges ẽ that

appear as the first edge on some path in P ′(e), and, similarly, we set B′
2(e) to be the

set of all edges that appear as the last edge on some path in P ′(e). We perform this
operation for all edges e of tree T ∗. We then obtain the following corollary.

Corollary 3.16. Our algorithm finds a tree T ∗ with maximum vertex degree at

1518 JULIA CHUZHOY

most 3, rooted at a degree-1 vertex, with vertex set V (T ∗) = {v1, . . . , vγ}. Additionally,
for each edge e = (vi, vj) ∈ E(T ∗), where vi is a parent of vj in T ∗, the algorithm

finds a collection P ′(e) of paths in graph G, a subset B′
1(e) ⊆ Γ(Sj) of

⌊
ℓ

4γ3

⌋
edges,

and a subset B′
2(e) ⊆ Γ(Si) of

⌊
ℓ

4γ3

⌋
edges, such that

• each path in P ′(e) connects a distinct edge of B′
1(e) to a distinct edge of B′

2(e)
in G; and

• the paths in
⋃

e∈E(T∗) P ′(e) cause total edge-congestion at most 4 in G.

e

(a) Tree T ∗

P ′(e)

B′
1(e)

B′
2(e)

(b) Sets P ′(e) of paths; the edges of B′
1(e) are

shown in green, and the edges of B′
2(e) in red.

Fig. 2. Illustration for Corollary 3.16.

We are now ready to define the subsets Γ∗
j ⊆ Γ′

j of k
′ edges, Γ∗

j = {e1,j, . . . , ek′,j},
that our trees will span. Fix some index 1 ≤ j ≤ γ. If sj is not the root of the tree
T ∗, then we let Γ∗

j = B1(e), where e is the edge connecting sj to its parent in T ∗. If
sj is the root of the tree, then Γ∗

j = B2(e), where e is the unique edge incident on sj
in tree T ∗. Notice that |Γ∗

j | = ⌊ ℓ
4γ3 ⌋ = ⌊ k∗

2γ3 ⌋ = k′.
Finally, we construct the trees T1, . . . , Tk′ . In order to construct these trees, for

each vertex sj ∈ V (T ∗), we define a set Qj of paths, and a corresponding set Uj ⊆ Sj

of special vertices in graph G, as follows. If the degree of sj is 1 in T ∗, then let e
be the unique edge of T ∗ incident on sj . We let Uj be the set of vertices of Sj that
serve as endpoints of the paths in P ′(e), and we set Qj = ∅. If the degree of sj is 2
in T ∗, then let e1 and e2 be the two edges of T ∗ incident on sj , and assume that e1
is the edge connecting sj to its parent. Let U1 be the set of vertices of Sj that serve
as endpoints of the paths in P ′(e1), and let U2 be defined similarly for e2. We then

define Uj = U1∪U2. Notice that from Theorem 3.11, we can find a set Qj : U1 1:1!2 U2

of paths contained in G[Sj], where each path in Qj connects a distinct vertex of U ′

to a distinct vertex of U ′′. Finally, assume that sj has degree 3 in T ∗. Let e1 be the
edge incident on sj that connects it to its parent, and let e2, e3 be the other two edges
incident on sj in T ∗. Let U1 and U2 be defined exactly as before, with respect to e1
and e2. Similarly, we let U3 be the set of vertices of Sj which serve as endpoints of
the paths in P ′(e3). We let Uj = U1 ∪ U2 ∪ U3. As before, from Theorem 3.11, we

can find a set Q1 : U1 1:1!2 U2 and a set Q2 : U1 1:1!2 U3 of paths in G[Sj]. We let

ROUTING WITH CONSTANT CONGESTION 1519

Qj = Q1 ∪Q2 (see Figure 3). Let P =
⋃

e∈E(T∗) P ′(e) and Q =
⋃

vj∈V (T∗) Qj . Recall
that every edge of G belongs to at most four paths in P , and it is easy to see that it
belongs to at most four paths in Q.

(a) Paths in P are shown in blue, and paths in Q
are shown in red and green.

(b) The final construction of the trees.

Fig. 3. Constructing the trees.

It is now easy to complete the construction of the trees. Let U be the graph
obtained from disjoint union of the paths in P and Q; that is, if a vertex, or an edge,
belongs to several paths in P ∪Q, then we create several copies of this edge or vertex.
For each sj ∈ V (T ∗), for each vertex v ∈ Uj , we unify all copies of v that serve as
endpoints of the paths in P ∪ Q (there can be at most three such copies), and we
call the resulting copy of v a special copy. (Notice that v may belong to additional
paths in P ∪Q as an inner vertex, and we do not unify such copies of v.) It is easy
to see that the resulting graph is a collection of k′ disjoint trees T1, . . . , Tk′ , where
for each edge e ∈ E(T ∗), each path P ∈ P ′(e) is contained in a distinct tree Ti (see
Figure 3). Consider now some vertex vj ∈ V (T ∗) and the corresponding set Γ∗

j of
k′ edges. If sj is not the root of T ∗, then let e be the edge of T ∗ connecting sj to
its parent; otherwise, let e be the unique edge of T ∗ incident on sj . For each edge
ẽ ∈ Γ∗

j , the unique path P ∈ P ′(e) that originates from ẽ is contained in some tree
Ti for 1 ≤ i ≤ k′, and we add ẽ to the set Ei of special edges for Ti. It is easy to see
that each edge in Γ∗

j is added as a special edge to a distinct tree in {T1, . . . , Tk′}. As
observed before, every edge of G may belong to at most eight trees Ti for 1 ≤ i ≤ k′.
Notice that for 1 ≤ i ≤ k′, tree Ti defines a connected subgraph of G that may not
necessarily be a tree (since the same edge or vertex may appear twice in Ti in graph
U). We simply delete edges from the resulting subgraph of G until it becomes a tree,
and we still denote that tree by Ti.

Step 3: Constructing the expander and finding the routing. In this step, we
construct the expander X , together with its embedding into the graph G, and find
the final routing of a subset of demands in M. Let M′ ⊆ M be any subset of k′/2
demand pairs, and let T ′ be the subset of terminals participating in the pairs of M′.

Let P∗ = T ′ 1:1!4 Γ∗
1 be the collection of paths connecting the terminals of T ′

to the edges of Γ∗
1 ⊆ Γ1 (where Γ∗

1 = {e1,1, . . . , ek′,1}), guaranteed by Theorem 3.11.
Denote P∗ = {Pt | t ∈ T ′}, where Pt is the path originating from terminal t. Rename
the terminals in T ′ as T ′ = {t1, . . . , tk′}, where for each 1 ≤ i ≤ k′, ti is the terminal
whose path Pti terminates at the edge ei,1 (the unique edge of Γ∗

1 that belongs to the
tree Ti as a special edge). For 1 ≤ i ≤ k′, let Ci be the connected subgraph of graph
G that consists of the union of the tree Ti and the path Pti . Since each edge of graph

1520 JULIA CHUZHOY

G participates in at most eight trees Ti, and at most four paths in P∗, each edge of
G participates in at most 12 connected subgraphs Ci.

We now construct the expander X and embed it into the graph G. The set of
vertices of X is V (X) = {v1, . . . , vk′}, where we view each vertex vi as representing
the terminal ti ∈ T ′. We view the connected subgraph Ci of G as the embedding
of the vertex vi into G. Finally, we need to define the set of the edges of X and
specify their embedding into G. In order to do so, we use the cut-matching game
from Theorem 2.2. Recall that in each iteration j, the cut player produces a partition
(Aj , Bj) of V (X), with |Aj | = |Bj |. The matching player then returns some matching
Mj between the vertices of Aj and Bj , and the edges of Mj are added to graph X .
We use the graphs G[Sj] to route the matchings Mj. Specifically, let (A1, B1) be
the partition of V (X) produced by the cut player in the first iteration. Consider the
set Γ∗

1 = {e1,1, . . . , ek′,1} of edges. Partition (A1, B1) of V (X) defines a partition
(A′

1, B
′
1) of these edges, where A′

1 = {ei,1 | vi ∈ A1} and B′
1 = {ei,1 | vi ∈ B1}. From

Theorem 3.11, we can find a set R1 : A′
1

1:1!2 B′
1 of |A′

1| paths contained in G[S1],
where each path in R1 connects a distinct edge of A′

1 to a distinct edge of B′
1. Set

R1 of paths then defines a matching M ′
1 between the sets A′

1 and B′
1, which in turn

defines a matching M1 between the sets A1 and B1 of vertices of V (X). We then
treat M1 as the response of the matching player. For each edge e = (vi, vi′) ∈ M1

of the matching, we let Pe be the unique path of R1 connecting ei,1 to ei′,1. We
view Pe as the embedding of e into graph G. We continue similarly to execute the
remaining iterations, where in each iteration j : 1 ≤ j ≤ γ, we use the set Sj ∈ F to
find the matching Mj. That is, we define the partition (A′

j , B
′
j) of Γ′

j based on the

partition (Aj , Bj) of V (X) as before, and we find a collection Rj : A′
j

1:1!2 B′
j of paths

contained in G[Sj]. These paths give us the matching M ′
j between the sets A′

j and
B′

j of edges, which in turn gives us the matching Mj between the sets Aj and Bj of
vertices of V (X). For each edge e = (vi, vi′) ∈ Mj, we let Pe be the unique path of
Rj connecting ei,j to ei′,j. We view Pe as the embedding of e into graph G. The final
graph X is the graph obtained after γ iterations, with E(X) =

⋃γ
j=1 Mj , and we are

guaranteed that with constant probability it is an Ω(log k′)-expander. For each edge
e = (vi, vi′) ∈ E(X), we have defined an embedding Pe of e into G, where Pe is a
path connecting some vertex in Ci to some vertex in Ci′ . Let PX = {Pe | e ∈ E(X)}.
Then PX =

⋃γ
j=1 Rj , and the total congestion caused by paths in PX in G is at most

2. This finishes the definition of the expander X and of its embedding into G.
We now use the expander X and its embedding into G to route a subset of

demand pairs. We identify from now on the vertices of X with the terminals of T ′

they represent; that is, V (X) = T ′.

We use Theorem 2.1 to find a collection P̃ of r = Ω(k′

γ2) vertex-disjoint paths

in the expander X , routing r distinct demand pairs. Let M′′ ⊆ M′ be the set of
these demand pairs, and assume, by renumbering the terminals as necessary, that
M′′ = {(t1, t2), (t3, t4), . . . , (t2r−1, t2r)}. For each 1 ≤ i ≤ r, let Pi ∈ P̃ be the path
connecting t2i−1 to t2i. In order to complete the routing, we transform each such path
Pi into a path Qi in graph G, connecting the same pair (t2i−1, t2i) of terminals.

Fix some 1 ≤ i ≤ r. We now show how to transform the path Pi connecting t2i−1

to t2i in graph X to a path Qi connecting the same pair of terminals in graph G. In
order to do so, we will replace the edges and the vertices of path Pi by paths in graph
G. We will think of Pi as directed from t2i−1 to t2i. First, each edge e = (ta, tb) ∈ Pi

is replaced by the path Pe ⊆ G, connecting some vertex v ∈ Ca to some vertex u ∈ Cb

(where Pe is the path into which e is embedded). Next, consider some inner vertex

ROUTING WITH CONSTANT CONGESTION 1521

tx ∈ Pi, and let e, e′ be the two edges appearing immediately before and immediately
after tx on the original path Pi, respectively. Let vx ∈ Cx be the last vertex on path
Pe, and let v′x ∈ Cx be the first vertex on path Pe′ . Then we replace the vertex tx
with an arbitrary path Px connecting vx to v′x in the connected subgraph Cx of G. It
now only remains to take care of the endpoints of path Pi. Let e be the first edge on
the original path Pi, and recall that the first vertex on Pi is t2i−1. Let v2i−1 ∈ C2i−1

be the first vertex on the path Pe. Then we replace t2i−1 by any path connecting
t2i−1 to v2i−1 in the connected subgraph C2i−1 of G. The last vertex of Pi is taken
care of similarly. Let Qi denote the resulting path. Notice that Qi consists of two
types of segments: the first type is the paths Pe for edges e ∈ Pi, and the second type
is the paths Px for vertices x ∈ Pi. Let Q1, . . . , Qr be the resulting set of paths. We
now bound the congestion due to paths in Q1, . . . , Qr in graph G. Recall that the
paths {Pi}ri=1 are edge- and vertex-disjoint. Recall also that each edge of graph G
participates in at most two paths of the set PX = {Pe | e ∈ E(X)}. Therefore, the
congestion due to type-1 segments in {Qi}ri=1 is at most 2. Since the paths in {Pi}ri=1
are vertex-disjoint, and every edge of graph G participates in at most 12 components
C1, . . . , Ck′ , the congestion due to type-2 segments is bounded by 12. Overall, the
paths in {Qi}ri=1 cause congestion at most 14. The number of demand pairs routed

is r = Ω(k′

γ2) = Ω(k
log20.5 k log log k

).

To conclude, we have started with a graphG, a collectionM of k source-sink pairs,
and the set T of terminals participating in pairs in M, such that T is 1

2 -well-linked
for G. We have constructed a routing for the subset M′′ ⊆ M of Ω(k

log20.5 k log log k)
pairs with congestion at most 14.

We note that our algorithm uses randomization in two places: first, in constructing
a random partition of vertices of the legal contracted graph into clusters in Claim 3.6,
and second, in the cut-matching game, in order to embed an expander into our graph.
As observed before, the random partitioning of the legal contracted graph can be
run poly(n) times to ensure that the procedure succeeds with high probability. The
cut-matching game only returns an Ω(log k′)-expander with constant probability. If
the graph returned by the cut-matching game is not an expander, then we may fail
to route the desired number of demand pairs on node-disjoint paths in the expander.
In this case, we can terminate the algorithm execution, and repeat it, starting from
the step where the cut-matching game is executed. Clearly, after poly(n) iterations,
we are guaranteed that the algorithm will succeed with high probability.

Since we lose an additional O(log2 k) factor on the number of pairs routed due to
the preprocessing step that ensures 1

2 -well-linkedness of the terminals, our algorithm
routes Ω(OPT

log22.5 k log log k
) pairs with congestion at most 14 with high probability.

4. Routing with grouping. The goal of this section is to prove Theorem 1.2.
We roughly follow the algorithm from section 3, except that we use a slightly different
theorem for routing on expanders, summarized below. Its proof is similar to some
arguments from [10], and it uses the new constructive proof of the Lovasz local lemma
by Moser and Tardos [50]. The proof is deferred to Appendix C.

Theorem 4.1. Let G = (V,E) be any n-vertex α-expander (for α ≤ 1) with
maximum degree dmax, and let c ≥ 1 be any integer. Then there is a value m =

Θ(d1+3/c
max (logn)1+5/c/α1+3/c), such that, for any partition G = (V1, . . . , Vr) of the

vertices of G into groups of size at least m, and for any partial matching M ⊆ ([r]×
[r]), we can efficiently find, for each pair (i, j) ∈ M , a path Pi,j connecting a vertex of
Vi to a vertex of Vj, such that with high probability, the set of paths {Pi,j | (i, j) ∈ M}

1522 JULIA CHUZHOY

causes vertex congestion at most c in G.
Assume that we are given a graph G = (V,E) and a set T ⊆ V of k0 terminals,

such that T is α0-well-linked in G. We will construct an expander X on a subset
of terminals in T as in section 3, where X is a 1

2 -expander, |V (X)| ≤ k0, and the

maximum degree of X is bounded by γCMG(k0) = O(log2 k0). We denote by m =
Θ
(
(log k0)3+11/c

)
the corresponding parameter from Theorem 2.1 for this setting.

We also use the following parameters. Let k̃ = k0α0
12 . Recall that we have defined,

in section 3, a parameter k′, whose value is Ω(k
log16.5 k log log k), where k is the number

of the terminals. We define a function q(k) = O(log16.5 k log log k), so that for any
integer k, k′ = k/q(k). We then set k̃′ = k̃/q(k̃) = Ω(k0α0

log16.5 k̃ log log k̃
) = Ω(k0α0

log17 k0
).

Intuitively, we will define a grouping G′′ of the terminals in T into groups of size
roughly k0α0 and select one representative terminal from each group. Let T ′′ denote
the resulting set of terminals. We will show that the set T ′′ is 1

2 -well-linked in graph

G, and |T ′′| ≥ k̃. We can then apply the algorithm from section 3 to construct an
expander X over a subset T ′ ⊆ T ′′ of k̃′ terminals. These terminals are in turn
grouped into groups of size at least m, and we then apply Theorem 2.1 to route
these terminals in the expander X . We now proceed with a formal description of the
algorithm.

We define three hierarchical groupings of the terminals in T . Let T be any
spanning tree of the graph G. Our first step is to group the terminals in T into
groups of size roughly k0m/k̃′. To do so, we use the grouping technique with the
parameter 6⌈k0m/k̃′⌉ on the set T of terminals and the tree T . As a result, we
obtain a partition G of the set T of terminals into groups of size at least 6⌈k0m/k̃′⌉
and at most 18⌈k0m/k̃′⌉. For each group U ∈ G, there is a tree TU spanning the
terminals of U , and all the trees in {TU}U∈G are edge-disjoint. The final grouping of
the terminals returned by the algorithm is G. The size of each group in G is bounded

by 18⌈k0m/k̃′⌉ = O(k0(log k0)3+11/c · log
17 k0

k0α0
) = O((log k0)

21+11/c

α0
), as required. Assume

now that we are given a set M of integral (1,G)-restricted demands on T . We now
show an algorithm to integrally route the demands in M.

For each group U ∈ G, we further partition the terminals in U into at least m
groups of roughly equal size, using the tree TU . Let nU = |U |. We use the grouping
technique with the parameter 1

3⌊nU/m⌋ for U and tree TU . We then obtain at least m

groups, whose sizes are at least k0

k̃′ and at most 36k0

k̃′ . For each group U ∈ G, let P(U)
denote the resulting partition of U , and let G′ =

⋃
U∈G P(U) be the corresponding

grouping of the terminals. Notice that, again, for each group U ′ ∈ G′, we have a tree
TU ′ spanning the terminals of U ′, such that all trees in {TU ′}U ′∈G′ are edge-disjoint.

Finally, for each group U ′ ∈ G′, we further partition the terminals in U ′ into
groups of size at least ⌈ 1

α0
⌉ and at most 3⌈ 1

α0
⌉, using the standard grouping technique

on the tree TU ′ , with the parameter ⌈ 1
α0

⌉. For each set U ′ ∈ G′, let P ′(U ′) be the
resulting partition of U ′, and let G′′ =

⋃
U ′∈G′ P ′(U ′) be the resulting partition of the

terminals. For each set U ′′ ∈ G′′, let tU ′′ be any representative terminal from U ′′,
and let T ′′ = {tU ′′ | U ′′ ∈ G′′}. Each group U ′′ ∈ G′′ is again associated with a tree
TU ′′ spanning the terminals of U ′′, and all trees in {TU ′′}U ′′∈G′′ are edge-disjoint. We
start with the following simple claim.

Claim 4.2. The terminals in T ′′ are 1
2 -well-linked.

Proof. Let T1, T2 ⊆ T ′′ be any pair of equal-sized disjoint subsets of terminals.
From Observation 2.4, it is enough to show that there is a flow F : T1

1:1!2 T2 in G.
We construct two sets X,Y of terminals as follows. For each terminal t ∈ T1 ∪ T2, let

ROUTING WITH CONSTANT CONGESTION 1523

St be any subset of ⌈1/α0⌉ vertices of the set U ′′ ∈ G′′, where t ∈ U ′′. We then let
X =

⋃
t∈T1

St, and Y =
⋃

t∈T2
St. Since the terminals in T are α0-well-linked in G,

there is a flow F ′ : X
1:1!1/α Y in G. Scaling this flow down by factor ⌈1/α⌉, we obtain

a flow F ′′ where every vertex of X sends 1
⌈1/α⌉ flow units, every vertex of Y receives

1
⌈1/α⌉ flow units, and the total edge-congestion is at most 1. In order to obtain the
final flow F , every terminal t ∈ T1 spreads 1 flow unit evenly among the vertices of
St, along the corresponding tree TU ′′ , where t ∈ U ′′. Every vertex of X then receives

1
⌈1/α⌉ flow units. We then use flow F ′′ to ensure that every vertex of Y receives 1

⌈1/α⌉
flow units. Finally, every terminal t ∈ T2 collects one flow unit from the vertices of St

along the corresponding tree TU ′′ , where t ∈ U ′′. It is easy to see that the congestion
due to flow F is at most 2.

Notice that the number of terminals in T ′′ is |T ′′| ≥ k0
3⌈1/α0⌉ ≥ k0α0

12 ≥ k̃. There-

fore, we now have a graph G and a subset T ′′ of at least k̃ terminals that are 1
2 -well-

linked in G. As before, we perform the standard transformation that ensures that the
degree of every vertex is at most 4, and the degree of every terminal in T ′′ is 1. It
is easy to verify that the terminals of T ′′ remain 1

2 -well-linked in the resulting graph

G′, since for any pair T1, T2 of equal-sized subsets of T ′′, there is a flow F : T1
1:1!2 T2

in G iff it exists in G′. Therefore, we obtain precisely the starting point of the al-
gorithm in section 3. We can now use the algorithm from section 3 to construct the
expander X on a subset T ′ ⊆ T ′′ of k̃′ terminals. The only difference is that, instead
of selecting an arbitrary subset T ′ of terminals as in the algorithm, we select T ′ as
follows. Consider the grouping G′ of the terminals. Let G∗ be the grouping of the
terminals in T ′′ that G′ induces. We select one representative terminal from each
group in G∗, and we let T ′ be the set of all selected terminals. By our construction,
|T ′| = |G′| ≤ 6m|G| ≤ 6k0m

6k0m/k̃′ ≤ k̃′.

We now use the algorithm from section 3 to construct a 1
2 -expander X on the

set T ′ of terminals and embed it into G. Recall that for each terminal t ∈ T ′, we
have a connected subgraph Ct of G, and each edge of G participates in at most 12
such subgraphs. Each edge e of X is mapped to a path Pe in G, and each edge of G
participates in at most two such paths.

Consider the grouping G∗∗ of the terminals in T ′ induced by G. In order to obtain
G∗∗, we start from G, and we ignore terminals that do not belong to T ′. By our con-
struction, each group in G∗∗ contains at leastm terminals from T ′. We assume without
loss of generality that the input set of demands is M = {(t1, t2), . . . , (t2r−1, t2r)}, and
for each 1 ≤ i ≤ 2r, ti ∈ Ui, where Ui ∈ G. Let U∗

i = Ui ∩ T ′, and recall that
|U∗

i | ≥ m, and U∗
i ∈ G∗∗. We now use Theorem 2.1 on graph X , set T ′ of terminals,

grouping G∗∗, and matching M ′ = {(1, 2), (3, 4), . . . , (2r − 1, 2r)}. Let P ′′ be the set
of paths returned by the theorem, where for each 1 ≤ j ≤ r, there is a path P ′′

j ∈ P
connecting some terminal t′2j−1 ∈ U2j−1 to some terminal t′2j ∈ U2j . The paths in P ′′

cause vertex congestion at most c in X . We transform these paths into a set P ′ of
paths connecting the same pairs of terminals in graph G. Since each edge of G par-
ticipates in at most 12 subgraphs Ci, and at most two paths in set {Pe | e ∈ E(X)},
the total congestion caused by paths in P ′ is at most 14c. For each 1 ≤ j ≤ r, let
P ′
j ∈ P ′ be the path connecting t′2j−1 to t′2j .

We then construct a path Pj connecting t2j−1 to t2j as follows: first connect t2j−1

to t′2j−1 via the tree TU2j−1 , then use the path P ′
j to connect t′2j−1 to t′2j , and finally

connect t′2j to t2j via the tree TU2j . Let P = {Pj}rj=1 be the final routing. Then the
total edge congestion caused by P is bounded by 14c+ 1.

1524 JULIA CHUZHOY

5. Integral sparsifiers. In this section we prove Theorem 1.3. Notice that we
can assume without loss of generality that the degree of every terminal is 1, and the
number of terminals is d: for each terminal t ∈ T , we can simply subdivide every
edge e incident on t with a new vertex vt, let St be the set of these new vertices,
and set T ′ =

⋃
t∈T St. Let G′ be the subgraph of the resulting graph induced by

(V \ T) ∪ T ′, and let T ′ be the new set of terminals. Then every terminal in T ′ has
degree 1, and |T ′| = d. Moreover, if H ′ is a quality (q1, q2) integral sparsifier for G′,
we can obtain a sparsifier H for G by unifying, for each t ∈ T , all vertices in St into
a single vertex t in graph H ′. It is immediate to verify that the resulting graph H is
a quality (q1, q2)-sparsifier for G.

For convenience, from now on we assume that every terminal in T has degree 1,
and we denote by k the number of terminals in T . We now show a construction of a
sparsifier for G of size O(k).

We first consider a special case where the set T of terminals is αBW(k)-well-linked
in graph G. We use Theorem 1.2 with c = 1 and α0 = αBW(k) to find a partition
G of the terminals into subsets of size z = O(log32 k/αBW(k)) = O(log35.5 k). Recall
that in the proof of Theorem 1.2, we have constructed, for each group U ∈ G, a tree
TU ⊆ G containing all terminals of U , such that the trees {TU}U∈G are edge-disjoint.

Consider some group U ∈ G and its corresponding tree TU . We construct a new
tree T ′

U , which is a minor of TU , as follows. Root TU at some arbitrary vertex rU .
While TU contains a leaf v that does not belong to U , delete v from TU . Assume now
that every leaf of TU belongs to U . While TU contains any degree-2 vertex v′ ̸= rU ,
we replace the two edges incident on v′ with a single edge. Let T ′

U be the resulting
tree. It is easy to see that T ′

U is a minor of TU , and it contains at most 2|U | vertices,
since its leaves belong to U . In order to construct the sparsifier H , we start with
disjoint copies of trees T ′

U (so if any vertex is contained in several such trees, we use
several copies of this vertex). Finally, we add a new vertex r, and an edge (r, rU) for
every U ∈ G, connecting r to the root of the tree T ′

U . We claim that graph H is a
quality-(z, 31) integral flow sparsifier for G.

Indeed, let D be any set of demands over T . By scaling D appropriately, we
can assume without loss of generality that η(G,D) = 1. Let D′ be the demand set
obtained fromD by scaling all demands down by factor z. We show that η(H,D′) ≤ 1.
For each group U ∈ G, the total demand originating from the terminals of U is at
most 1. For each pair t, t′ ∈ U , we route the demand D′(t, t′) along the tree T ′

U . For
each pair (t, t′) with t ∈ U , t′ ∈ U ′, where U ̸= U ′, we route D′(t, t′) flow units from t
to rU along the tree T ′

U , then use the edges (rU , r) and (r, rU ′), and finally we route
D′(t, t′) flow units from rU ′ to t′ along the tree T ′

U ′ . This gives a routing of D′ with
congestion at most 1. Therefore, η(H,D) ≤ z.

Assume now that we are given some collection M of pairs of terminals and a set
P of paths that connects the pairs of terminals in M with congestion at most η in
graph H . We show a collection P ′ of paths connecting the same pairs of terminals
with congestion at most 31η in graph G.

We decompose M into two subsets: M1 ⊆ M containing pairs (s, t) where both
s and t belong to the same group U , and M2 = M \ M1. For each group U ∈ G,
let M1(U) ⊆ M1 be the set of pairs that belong to group U . Then we can assume
without loss of generality that all pairs in M1(U) are routed along the tree T ′

U in H ,
and the total congestion of this routing is at most η. We can then route these pairs
along the tree TU in graph G. We therefore obtain an integral routing of all pairs in
M1 with congestion at most η in graph G.

ROUTING WITH CONSTANT CONGESTION 1525

We now turn to pairs in M2. Since the pairs in M2 can be routed in graph
H with congestion at most η, for each U ∈ G, the terminals of U participate in at
most η pairs in M2. We decompose M2 into 2η subsets M1, . . . ,M2η, such that
for each 1 ≤ j ≤ 2η, for each U ∈ G, at most one terminal of U participates in
pairs in Mj . Such a decomposition can be found greedily. We consider each pair
(s, t) ∈ M2 in turn. Assume that s ∈ U , t ∈ U ′. We select any index j, such that no
terminal of U ∪ U ′ participates in any pair of Mj , and add (s, t) to Mj . Since for
each U ∈ G, the terminals of U participate in at most η pairs in M2, it is easy to see
that this greedy process will give the desired decomposition. For each 1 ≤ j ≤ 2η, the
pairs in Mj now define a set Dj of (1,G)-restricted demands. Using Theorem 1.2,
there is an efficient algorithm that with high probability finds a routing of Dj in G
with congestion at most 15. Therefore, we obtain a routing of all pairs in M2 with
congestion at most 30η. Overall, we route all pairs in M with congestion at most
31η. This concludes the proof that H is a quality-(z, 31) integral flow sparsifier for
G. Notice that |V (H)| ≤ 2k.

We now consider a general case where we are given a graph G = (V,E), and set T
of k terminals, such that the degree of every terminal is 1 in G, but T is not necessarily
αBW(k)-well-linked in G. We compute a bandwidth-decompositionW of V (G)\T using
Corollary 2.9. Let G′ be the graph obtained from G by subdividing every edge e ∈⋃

W∈W out(W) by a vertex ve. For each clusterW ∈ W , let TW = {ve | e ∈ outG(W)},
and let GW = G′[W ∪ TW]. Notice that since W has the αBW(k)-bandwidth property,
we are guaranteed that the set TW of terminals is αBW(k)-well-linked in graph GW .
We can then compute a sparsifier HW for GW as before.

In order to obtain the final sparsifier H , we replace, for each W ∈ W , graph GW

with graph HW in G′. In order to do so, we delete all vertices of W from G′, and add
the vertices and the edges of HW to it. Finally, for each t ∈ TW , we identify the two
copies of t in the resulting graph. It is immediate to verify that the resulting graph
H is a quality-(z, 31) integral flow sparsifier for (G, T), using the fact that for each
W ∈ W , graph HW is a quality-(z, 31) integral flow sparsifier for (GW , TW).

Appendix A. Proofs omitted from section 2.

A.1. Proof of Theorem 2.1. Let ℓ = 4dβ(n)/α, where β(n) = O(log n) is the
flow-cut gap for undirected graphs. The algorithm greedily selects a source-sink pair
(si, ti) that has a path P of length at most ℓ connecting si to ti in the current graph
G. We then remove all vertices of P from the graph G and continue. The algorithm
terminates when for each remaining source-sink pair (si, ti), every path connecting si
to ti has length at least ℓ.

Note that in each iteration of the algorithm, we route one demand pair and remove
at most (ℓ + 1)d edges from the graph. The key to the algorithm analysis is to show
that when the algorithm terminates, we have removed many edges from the graph,
and therefore we have routed many of the demand pairs.

Let E′ be the subset of edges removed from the graph by the algorithm, and
let E′′ be the subset of remaining edges. We first claim that there is a multicut in
graph G whose value is at most |E′| + |E′′| · β(n)/ℓ. Indeed, let G′ = G[E′′] be the
graph obtained when the algorithm terminates, and let M′ be the set of the surviving
source-sink pairs. Consider the instance of the multicut problem on graph G′ with
the set M′ of demand pairs. Setting the weight of each edge in E′′ to 1/ℓ, we obtain
a feasible fractional solution to this multicut instance, since the length of every path
connecting every pair of terminals is at least ℓ. Therefore, there is an integral solution
to this multicut instance of value |E′′| · β(n)/ℓ. Adding the subset E′ of edges, we

1526 JULIA CHUZHOY

obtain a feasible solution to the multicut problem on the original graph G of value
|E′|+ |E′′| · β(n)/ℓ. (Notice that all edges incident on the terminals that participate
in pairs in M\M′ belong to E′.)

On the other hand, the value of any multicut in graphG is at least α|V |/2. Indeed,
if E∗ is any feasible solution to the multicut problem, then each connected component
C of G\E∗ contains at most |V |/2 vertices and therefore has at least α|V (C)| outgoing
edges. Since each edge is counted at most twice, we get that |E∗| ≥ α|V |/2.

We conclude that |E′|+ |E′′| · β(n)/ℓ ≥ α|V |/2, and so

|E′| ≥ α|V |
2

− |E′′| · β(n)
ℓ

≥ α|V |
2

− |E| · β(n)
ℓ

≥ α|V |
2

− d|V |β(n)
2ℓ

≥ α|V |
4

since ℓ = 4dβ(n)/α. Therefore, at least α|V |/4 edges have been deleted from the
graph. Since in each iteration we only delete at most d(ℓ + 1) edges, overall the

number of pairs routed is at least α|V |
4d(ℓ+1) = Ω(α2|V |

d2 log n).

A.2. Proof of Theorem 2.10. Let T be any spanning tree of the graph G, and
assume that it is rooted at some vertex r. We perform a number of iterations, where
in each iteration we delete some edges and vertices from T . For each vertex v of the
tree T , let Tv denote the subtree rooted at v, and let w(Tv) denote the total weight of
all vertices in Tv. We build the partition G of V gradually. At the beginning, G = ∅.
While w(T) > 3p, we perform the following iteration:

• Let v be the lowest vertex in the tree T , such that w(Tv) > p.
• If w(Tv) ≤ 2p, then we add a new group U to G, containing all vertices of Tv,
and we delete Tv from the tree T , setting TU = Tv.

• Otherwise, let u1, . . . , uk be the children of v, and let j be the smallest index,
such that

∑j
i=1 w(Tui) ≥ p. We add a new group U to G, consisting of all

vertices in trees Tu1 , . . . , Tuj . Notice that w(U) ≤ 2p must hold. We let TU

be the subtree of T consisting of v and the trees Tu1 , . . . , Tuj . We delete the
trees Tu1 , . . . , Tuj from the tree T .

Notice that if, at the beginning of the current iteration, w(T) > 3p, then at
the end of the current iteration, w(T) > p must hold. In the last iteration, when
w(T) ≤ 3p, we add a final group U to G, containing all vertices currently in the tree
T , and we let TU be the current tree T . It is easy to verify that all conditions of the
theorem hold for the final partition G of V .

Appendix B. Proof of Theorem 3.1.
For the proof of this theorem, we need a more general definition of well-linkedness

that was used in [17]. Suppose we are given a graph G = (V,E), and for each
vertex v ∈ V , we are given a weight π(v). For a subset S ⊆ V of vertices, let
π(S) =

∑
v∈S π(v). We say that G is π-flow well-linked iff each pair (u, v) of vertices

can simultaneously send π(u)·π(v)
π(V) flow units to each other with no congestion. We

start with the following theorem, that was proved in [17], using a flow-well-linked
graph decomposition.

Theorem B.1 (Theorem 2.1 in [17]). Let G = (V,E) be any graph, and let M be
a set of k source-sink pairs in G. We can efficiently find a partition G1, . . . , Gℓ of G
into vertex-disjoint induced subgraphs, and for each 1 ≤ i ≤ ℓ, find a weight function
πi : V (Gi) → R+ with the following properties. Let M′

i ⊆ M be the set of source-sink
pairs contained in Gi, and let T ′

i be the set of all terminals participating in M′
i. Then

the following hold.
• For all 1 ≤ i ≤ ℓ:

ROUTING WITH CONSTANT CONGESTION 1527

– for all u ∈ T ′
i , πi(u) ≤ 1.

– for all (u, v) ∈ M′
i, πi(u) = πi(v).

– Graph Gi is πi-flow well-linked.
•
∑ℓ

i=1 πi(T ′
i) = Ω(OPT/(β(k) · logOPT)) = Ω(OPT/ log2 k).

In order to complete the proof of the theorem, it is enough to show that we
can find, for each 1 ≤ i ≤ ℓ, a subset Mi ⊆ M′

i of source-sink pairs, with |Mi| =
Ω(πi(T ′

i)), such that the set Ti of all terminals participating in pairs in Mi is
1
2 -well-

linked in Gi.

Fix some 1 ≤ i ≤ ℓ. We find a grouping Gi of the terminals in set T ′
i , using the

weights πi and the grouping parameter p = 2, as in Theorem 2.10, so for each group
U ∈ Gi, 2 ≤ πi(U) ≤ 6. Next, we will gradually construct the set Mi of source-sink
pairs, starting from Mi = ∅. In each iteration, we will add one source-sink pair to
Mi and remove some source-sink pairs from M′

i, charging their weights to the pair
that was added to Mi. While M′

i is nonempty, we perform the following procedure:

• Let (s, t) ∈ M′
i be any source-sink pair. Add (s, t) to Mi.

• If both s and t belong to the same group U ∈ G, then for each pair (u, v) ∈ M′
i,

where u ∈ U or v ∈ U , remove (u, v) from M′
i and charge the weight πi(v)

and πi(v) to (s, t). Notice that the total weight charged to (s, t) is at most
12.

• Otherwise, let U1 be the group to which s belongs, and let U2 be the group
to which t belongs. For each pair (u, v) ∈ M′

i, such that either u ∈ U1∪U2 or
v ∈ U1 ∪ U2, remove (u, v) from M′

i and charge the weights πi(u) and πi(v)
to (s, t). Notice that the total weight charged to (s, t) in this step is at most
24.

The procedure stops when M′
i = ∅. Let Mi be the resulting set of source-sink pairs,

and let Ti be the set of terminals participating in them. From the above charging
scheme, it is clear that |Mi| = Ω(πi(T ′

i)), as required. Observe also that for each
group U ∈ Gi, at most one terminal v ∈ U belongs to Ti. Finally, we need to show
that Ti is 1

2 -well-linked in Gi. For each vertex v ∈ Ti, let Uv ∈ Gi be the group to
which v belongs.

Let (A,B) be any partition of V (Gi), and assume without loss of generality that
|A ∩ Ti| ≥ |B ∩ Ti| = k′. Let TA be any subset of k′ vertices of A ∩ Ti, and let
TB = B ∩ Ti. Let M∗ be any matching between the vertices of TA and the vertices
of TB. We show how to route this matching with congestion at most 2 in Gi, proving
that |EGi(A,B)| ≥ k′/2, as required.

We find the routing in two steps. In the first step, we construct a flow F1,
where for each pair (v, v′) ∈ M∗, the vertices in Uv send 1 flow unit in total to the
vertices in Uv′ , each vertex x ∈ Uv sends at most πi(x) flow units, and each vertex
y ∈ Uv′ receives at most πi(y) flow units, with total congestion at most 1. This flow
is defined as follows. Recall that graph Gi is πi-well-linked. Therefore, every pair
(x, y) of vertices can send πi(x)·πi(y)

πi(V (Gi))
flow units to each other with no congestion. Let

F denote this flow. Fix some pair (v, v′) ∈ M∗. In flow F , there are πi(Uv) flow
units originating from the vertices in Uv that are then distributed among the vertices
of G, and the amount of flow each vertex z of G receives is πi(z) · πi(Uv)/πi(V (Gi)).
We scale the flow originating from the vertices in Uv down by factor πi(Uv)/2, so
that every vertex z of G now receives 2πi(z)/πi(V (Gi)) flow units from Uv. We

1528 JULIA CHUZHOY

perform a similar transformation for the flow originating at the vertices of Uv′ , and
we concatenate both flows. As a result, we obtain a flow where the vertices in Uv send
two flow units in total to the vertices in Uv′ . Taking the union of these flows over all
(v, v′) ∈ M∗, and scaling them down by factor 2, gives us the flow F1. It is easy to
see that the total congestion caused by F1 is at most 1. This is since each flow-path
in F is used at most twice: once for each of its endpoints. Finally, in order to route
the matching M∗, consider any pair (v, v′) ∈ M∗. Vertex v will distribute one flow
unit to the vertices in Uv, along the tree TUv , where the amount of flow each vertex
x ∈ TUv receives equals the amount of flow it sends out in F1. We then use the flow
F1 to route this one flow unit to the vertices of Uv′ . Finally, vertex v′ collects one
flow unit from the vertices of Uv′ along the tree TUv′ . It is easy to see that the total
congestion caused by this flow is at most 2, since all trees {TU}U∈Gi

are edge-disjoint.

We conclude that |EGi(A,B)| ≥ k′/2, and Ti is 1
2 -well-linked in Gi.

Appendix C. Proof of Theorem 4.1.

We use the result of Leighton and Rao [46], who have shown that any demand that
is routable on an expander graph with no congestion can also be routed on relatively
short paths with small congestion. Specifically, the following is a slightly rephrased
statement of Theorem 18 from [46] and its immediate corollary.

Theorem C.1 (Theorem 18 from [46]). Let G be any n-vertex α-expander with
maximum vertex degree dmax. Then every pair of vertices in G can send Ω(α/(n logn))
flow units to each other with no congestion, on flow-paths of length O(dmax logn/α).
Moreover, such flow can be found efficiently.

Corollary C.2. Let G be any n-vertex α-expander with maximum vertex de-
gree dmax, and let M be any partial matching over the vertices of G. Then there is
an efficient randomized algorithm that finds, for every pair (u, v) ∈ M , a set Pu,v of
h = ⌈logn⌉ paths of length O(dmax logn/α) each, such that the set P =

⋃
(u,v)∈M Pu,v

of paths causes congestion O(log2 n/α) in G. The algorithm succeeds with high prob-
ability.

Proof. We start by showing that there is a multicommodity flow f , where every
pair (u, v) ∈ M of vertices sends one flow unit to each other simultaneously, on flow-
paths of length O(dmax logn/α), with total congestion O(log n/α). Let f ′ be the flow
guaranteed by Theorem C.1, scaled up by factor O(log n/α), so that every pair of
vertices now sends 1/n flow units to each other, with total congestion O(log n/α).
Let (u, v) ∈ M be any pair of vertices. The flow between u and v is defined as follows:
u will send 1/n flow units to each vertex of G, using the flow f ′, and v will collect
1/n flow units from each vertex in G, using the flow f ′. In other words, the flow f
between u and v is obtained by concatenating all flow-paths in f ′ originating at u
with all flow-paths in f ′ terminating at v. It is easy to see then that every flow-path
in f ′ is used at most twice: once by each of its endpoints; all flow-paths in f have
length O(dmax logn/α), and the total congestion of flow f is O(log n/α).

In order to find the sets Pu,v of paths for each pair (u, v) ∈ M , we perform the
standard randomized rounding: for each pair (u, v) ∈ M , we perform h independent
random trials. In each trial, we randomly choose one of the flow-paths connecting u
to v, with probability equal to the amount of flow sent via this path in f , and add
this path to Pu,v. This ensures that all paths in set Pu,v have length O(dmax logn/α).
The expected congestion on any edge is O(h logn/α), and using the standard Chernoff

ROUTING WITH CONSTANT CONGESTION 1529

bounds, it is easy to see that with high probability, the congestion on every edge is
O(log2 n/α).

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let L = O(dmax logn/α) be the bound on the path length,
and let η = O(log2 n/α) be the bound on the congestion guaranteed by Corollary C.2.

We set m =
(4e·ηc+2·dc+2

max·L)1/c

h = O(d1+3/c
max (log n)1+5/c/α1+3/c).

Given the matching M ⊆ ([r] × [r]), we assume without loss of generality that

M = {(2i− 1, 2i)}⌊r/2⌋i=1 . We extend the matching M to the vertices of G, by defining
a matching M ′ as follows. For each 1 ≤ i ≤ ⌊r/2⌋, we select any maximal matching
Mi between the vertices of V2i−1 and the vertices of V2i and add it to M ′. Notice
that Mi must contain at least m pairs of vertices. Next, we use Corollary C.2 to find
a collection P of paths of length at most L each that cause a total congestion of at
most η in G, such that for each (u, v) ∈ M ′, there is a set Pu,v of h paths connecting
u to v in P . For each i : 1 ≤ i ≤ ⌊r/2⌋, we let Bi denote the union of the sets Pu,v of
paths, for u ∈ V2i−1, v ∈ V2i, and we call Bi the ith bundle. Notice that |Bi| ≥ mh.
If Bi contains more than mh paths, we discard paths from Bi until |Bi| = mh holds
for all i.

Finally, we will select one path from each bundle, such that the resulting set of
paths causes vertex congestion at most c. We do so using the constructive version of
the Lovasz local lemma by Moser and Tardos [50]. The next theorem summarizes the
symmetric version of the result of [50].

Theorem C.3 (see [50]). Let X be a finite set of mutually independent random
variables in some probability space. Let A be a finite set of bad events determined by
these variables. For each event A ∈ A, let vbl(A) ⊆ X be the unique minimal subset
of variables determining A, and let Γ(A) ⊆ A be a subset of bad events B, such that
A ̸= B, but vbl(A) ∩ vbl(B) ̸= ∅. Assume further that for each A ∈ A, |Γ(A)| ≤ D,
Pr [A] ≤ p, and ep(D + 1) ≤ 1. Then there is an efficient randomized algorithm that
with high probability finds an assignment to the variables of X, such that none of the
events in A holds.

For each bundle Bi we choose one of its paths Pi independently at random. We
let xi be the variable indicating which path has been chosen. For each vertex v ∈ V ,
we let βv be the bad event that v belongs to more than c of the chosen paths. Since
the congestion on every edge due to paths in P is at most η, and the maximum vertex
degree is dmax, we get that there are at most (ηdmax)c+1 potential (c + 1)-tuples of
paths containing v (where we only consider (c+1)-tuples containing at most one path
from each bundle), and each tuple is chosen with probability 1/(hm)c+1. Therefore,

Pr [βv] ≤ (ηdmax)c+1

(hm)c+1 . We denote p = (ηdmax
hm)c+1.

The set vbl(βv) of variables contains all variables xi, where the bundle Bi contains
a path P ∈ P , such that v ∈ P . Therefore, |vbl(βv)| ≤ ηdmax. For each such variable
xi, there are mh paths participating in the bundle Bi, each of which contains at most
(L+ 1) vertices. Therefore, |Γ(βv)| ≤ mh(L+ 1)ηdmax. We denote this value by D.

It now only remains to show that (D + 1)ep ≤ 1, which follows from the choice

of m =
(4e·ηc+2·dc+2

max·L)1/c

h .

1530 JULIA CHUZHOY

Appendix D. Table of parameters.

γCMG(k) Θ(log2 k) Parameter from the cut-matching game of [39],
from Theorem 2.2. Is also denoted by γ.

αARV(k) O(
√
log k) Approximation factor of the algorithm of [6]

for Sparsest Cut.

α(k) 1
211·γCMG(k)·log k

= Ω
(

1
log3 k

)
Well-linkedness parameter from Theorem 2.8.

αBW(k) α(k)/αARV(k) = Ω
(

1
log3.5 k

)
Well-linkedness parameter from Corollary 2.9.

β(k) Θ(log k) Flow-cut gap for concurrent flow on k termi-
nals.

k1
k

192γ3 log γ
= Ω

(
k

log6 k log log k

)
Parameter from the definition of legal con-
tracted graphs.

p 8β(k)
αBW(k) = O(log4.5 k) Grouping parameter for the sets Γj .

k′ ⌊ 1
2γ3 · ⌊k1

6p ⌋⌋ = Ω
(

k
log16.5 k log log k

)
Number of vertices in the expander X.

k∗ ⌊k1
6p ⌋ Size of sets Γ′

j (that contain at most one edge

from each group of Gj).

Acknowledgments. The author thanks Matthew Andrews and Sanjeev Khanna
for many inspiring discussions about routing problems. She also thanks the anony-
mous reviewers for many helpful comments.

REFERENCES

[1] M. Andrews, Approximation algorithms for the edge-disjoint paths problem via Raecke decom-
positions, in Proceedings of the 51st IEEE Annual Symposium on Foundations of Computer
Science, FOCS ’10, IEEE Computer Society, Washington, DC, 2010, pp. 277–286.

[2] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Talwar, and L. Zhang, In-
approximability of edge-disjoint paths and low congestion routing on undirected graphs,
Combinatorica, 30 (2010), pp. 485–520.

[3] M. Andrews and L. Zhang, Hardness of the undirected edge-disjoint paths problem, in Pro-
ceedings of STOC, Harold N. Gabow and Ronald Fagin, eds., ACM, New York, 2005,
pp. 276–283.

[4] M. Andrews and L. Zhang, Hardness of the undirected congestion minimization problem,
SIAM J. Comput., 37 (2007), pp. 112–131.

[5] M. Andrews and L. Zhang, Almost-tight hardness of directed congestion minimization, J.
ACM, 55 (2008), 27.

[6] S. Arora, S. Rao, and U. V. Vazirani, Expander flows, geometric embeddings and graph
partitioning, J. ACM, 56 (2009), 5.

[7] Y. Azar and O. Regev, Combinatorial algorithms for the unsplittable flow problem, Algorith-
mica, 44 (2006), pp. 49–66.

[8] A. Baveja and A. Srinivasan, Approximation algorithms for disjoint paths and related routing
and packing problems, Math. Oper. Res., 25 (2000), pp. 255–280.

[9] A. Z. Broder, A. M. Frieze, S. Suen, and E. Upfal, Optimal construction of edge-disjoint
paths in random graphs, in Proceedings of the 5th ACM-SIAM SODA, ACM, New York,
SIAM, Philadelphia, 1994, pp. 603–612.

[10] A. Z. Broder, A. M. Frieze, and E. Upfal, Existence and construction of edge-disjoint paths
on expander graphs, SIAM J. Comput., 23 (1994), pp. 976–989.

[11] M. Charikar, T. Leighton, S. Li, and A. Moitra, Vertex sparsifiers and abstract rounding
algorithms, in Proceedings of the 51st IEEE Annual Symposium on Foundations of Com-
puter Science, FOCS ’10, IEEE Computer Society, Washington, DC, 2010, pp. 265–274.

[12] C. Chekuri and J. Chuzhoy, Large-treewidth graph decompositions and applications, in Pro-
ceedings of ACM STOC, ACM, New York, 2013, pp. 291–300.

[13] C. Chekuri and J. Chuzhoy, Polynomial bounds for the grid-minor theorem, in Proceedings
of the 46th ACM STOC, ACM, New York, 2014, pp. 60–69.

[14] C. Chekuri and J. Chuzhoy, Degree-3 treewidth sparsifiers, in Proceedings of the 26th ACM-
SIAM SODA, ACM, New York, SIAM, Philadelphia, 2015, pp. 242–255.

ROUTING WITH CONSTANT CONGESTION 1531

[15] C. Chekuri and A. Ene, Poly-logarithmic approximation for maximum node disjoint paths
with constant congestion, in Proceedings of the 24th ACM-SIAM SODA, ACM, New York,
SIAM, Philadelphia, 2013, pp. 326–341.

[16] C. Chekuri and S. Khanna, Edge-disjoint paths revisited, ACM Trans. Algorithms, 3 (2007),
46.

[17] C. Chekuri, S. Khanna, and F. B. Shepherd, Multicommodity flow, well-linked terminals,
and routing problems, in Proceedings of the 37th ACM STOC, ACM, New York, 2005,
pp. 183–192.

[18] C. Chekuri, S. Khanna, and F. B. Shepherd, An O(
√
n) approximation and integrality gap

for disjoint paths and unsplittable flow, Theory Comput., 2 (2006), pp. 137–146.
[19] C. Chekuri, S. Khanna, and F. B. Shepherd, Edge-disjoint paths in planar graphs with

constant congestion, SIAM J. Comput., 39 (2009), pp. 281–301.
[20] C. Chekuri, S. Khanna, and F. B. Shepherd, The all-or-nothing multicommodity flow prob-

lem, SIAM J. Comput., 42 (2013), pp. 1467–1493.
[21] C. Chekuri, M. Mydlarz, and F. B. Shepherd, Multicommodity demand flow in a tree and

packing integer programs, ACM Trans. Algorithms, 3 (2007), 27.
[22] J. Chuzhoy, On vertex sparsifiers with Steiner nodes, in Proceedings of the 44th ACM STOC,

H. J. Karloff and T. Pitassi, eds., ACM, New York, 2012, pp. 673–688.
[23] J. Chuzhoy, V. Guruswami, S. Khanna, and K. Talwar, Hardness of routing with congestion

in directed graphs, in Proceedings of ACM STOC, ACM, New York, 2007, pp. 165–178.
[24] J. Chuzhoy and S. Li, A polylogarithmic approximation algorithm for edge-disjoint paths with

congestion 2, in Proceedings of IEEE FOCS, IEEE Computer Society, Washington, DC,
2012, pp. 233–242.

[25] D. Dubhashi and A. Panconesi, Concentration of Measure for the Analysis of Randomized
Algorithms, Cambridge University Press, New York, 2009.

[26] M. Englert, A. Gupta, R. Krauthgamer, H. Räcke, I. Talgam-Cohen, and K. Talwar,
Vertex sparsifiers: New results from old techniques, SIAM J. Comput., 43 (2014), pp. 1239–
1262.

[27] S. Even, A. Itai, and A. Shamir, On the complexity of timetable and multicommodity flow
problems, SIAM J. Comput., 5 (1976), pp. 691–703.

[28] A. Frank, Edge-disjoint paths in planar graphs, J. Combin. Theory, 39 (1985), pp. 164–178.
[29] A. Frank, On connectivity properties of Eulerian digraphs, in Graph Theory in Memory of G.

A. Dirac (Sandbjerg, 1985), Ann. Discrete Math. 41, North–Holland, Amsterdam, 1989,
pp. 179–194.

[30] A. M. Frieze, Edge-disjoint paths in expander graphs, SIAM J. Comput., 30 (2001), pp. 1790–
1801.

[31] N. Garg, V. V. Vazirani, and M. Yannakakis, Primal-dual approximation algorithms for
integral flow and multicut in trees, Algorithmica, 18 (1997), pp. 3–20.

[32] V. Guruswami, S. Khanna, R. Rajaraman, B. Shepherd, and M. Yannakakis, Near-optimal
hardness results and approximation algorithms for edge-disjoint paths and related problems,
J. Comput. System Sci., 67 (2003), pp. 473–496.

[33] A. Hajnal and E. Szemerédi, Proof of a conjecture of P. Erdös, in Proceedings of a Col-
loquium on Combinatorial Theory and Its Applications II, North–Holland, Amsterdam,
1970, pp. 601–623.

[34] B. Jackson, Some remarks on arc-connectivity, vertex splitting, and orientation in graphs and
digraphs, J. Graph Theory, 12 (1998), pp. 429–436.

[35] D. R. Karger, Random sampling in cut, flow, and network design problems, Math. Oper.
Res., 24 (1999), pp. 383–413.

[36] R. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computa-
tions, R. Miller and J. Thatcher, eds., Plenum Press, New York, 1972, pp. 85–103.

[37] K. Kawarabayashi and Y. Kobayashi, Breaking O(n1/2)-approximation algorithms for the
edge-disjoint paths problem with congestion two, in Proceedings of ACM STOC, L. Fortnow
and S. P. Vadhan, eds., ACM, New York, 2011, pp. 81–88.

[38] K. Kawarabayashi and Y. Kobayashi, An O(logn)-approximation algorithm for the edge-
disjoint paths problem in Eulerian planar graphs, ACM Trans. Algorithms, 9 (2013), 16.

[39] R. Khandekar, S. Rao, and U. V. Vazirani, Graph partitioning using single commodity
flows, J. ACM, 56 (2009), 19.

[40] J. Kleinberg, Approximation Algorithms for Disjoint Paths Problems, Ph.D. thesis, MIT,
Cambridge, MA, 1996.

[41] J. Kleinberg and R. Rubinfeld, Short paths in expander graphs, in Proceedings of the 37th
IEEE FOCS, IEEE, Washington, DC, 1996, pp. 86–95.

1532 JULIA CHUZHOY

[42] J. M. Kleinberg, An approximation algorithm for the disjoint paths problem in even-degree
planar graphs., in Proceedings of IEEE FOCS, IEEE, Washington, DC, 2005, pp. 627–636.

[43] J. M. Kleinberg and É. Tardos, Approximations for the disjoint paths problem in high-
diameter planar networks, J. Comput. System Sci., 57 (1998), pp. 61–73.

[44] S. G. Kolliopoulos and C. Stein, Approximating disjoint-path problems using packing integer
programs, Math. Program., 99 (2004), pp. 63–87.

[45] F. T. Leighton and A. Moitra, Extensions and limits to vertex sparsification, in Proceedings
of the 42nd ACM STOC, ACM, New York, 2010, pp. 47–56.

[46] F. T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms, J. ACM, 46 (1999), pp. 787–832.

[47] W. Mader, A reduction method for edge connectivity in graphs, Ann. Discrete Math., 3 (1978),
pp. 145–164.

[48] K. Makarychev and Y. Makarychev, Metric extension operators, vertex sparsifiers and Lip-
schitz extendability, in Proceedings of IEEE FOCS, IEEE Computer Society, Washington,
DC, 2010, pp. 255–264.

[49] A. Moitra, Approximation algorithms for multicommodity-type problems with guarantees in-
dependent of the graph size, in Proceedings of IEEE FOCS, IEEE Computer Society, Wash-
ington, DC, 2009, pp. 3–12.

[50] R. A. Moser and G. Tardos, A constructive proof of the general Lovász local lemma, J. ACM,
57 (2010), 11.

[51] L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K. Vishnoi, On partitioning graphs
via single commodity flows, in Proceedings of the 40th ACM STOC, ACM, New York,
2008, pp. 461–470.

[52] H. Räcke, Minimizing congestion in general networks, in Proceedings of the 43rd IEEE FOCS,
IEEE, Washington, DC, 2002, pp. 43–52.

[53] P. Raghavan and C. D. Thompson, Randomized rounding: A technique for provably good
algorithms and algorithmic proofs, Combinatorica, 7 (1987), pp. 365–374.

[54] S. Rao and S. Zhou, Edge disjoint paths in moderately connected graphs, SIAM J. Comput.,
39 (2010), pp. 1856–1887.

[55] N. Robertson and P. D. Seymour, An outline of a disjoint paths algorithm, in Paths, Flows,
and VLSI-Layout, Springer-Verlag, Berlin, 1990, pp. 267–292.

[56] N. Robertson and P. D. Seymour, Graph minors. XIII. The disjoint paths problem, J. Com-
bin. Theory Ser. B, 63 (1995), pp. 65–110.

[57] L. Seguin-Charbonneau and F. B. Shepherd, Maximum edge-disjoint paths in planar graphs
with congestion 2, in Proceedings of IEEE FOCS, R. Ostrovsky, ed., IEEE, Washington,
DC, 2011, pp. 200–209.

[58] M. Singh and L. C. Lau, Approximating minimum bounded degree spanning trees to within
one of optimal, J. ACM, 62 (2015), 1.

[59] A. Srinivasan, Improved approximations for edge-disjoint paths, unsplittable flow, and related
routing problems, in Proceedings of IEEE FOCS, IEEE, Washington, DC, 1997, pp. 416–
425.

[60] K. R. Varadarajan and G. Venkataraman, Graph decomposition and a greedy algorithm
for edge-disjoint paths, in Proceedings of ACM-SIAM SODA, ACM, New York, SIAM,
Philadelphia, 2004, pp. 379–380.

