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Abstract

In this paper we consider the job interval selection prob-
lem (JISP), a simple scheduling model with a rich history
and numerous applications. Special cases of this problem
include the so-called real-time scheduling problem (also
known as the throughput maximization problem) in single
and multiple machine environments. In these special cases
we have to maximize the number of jobs scheduled between
their release date and deadline (preemption is not allowed).
Even the single machine case is NP-hard. The unrelated
machines case, as well as other special cases of JISP, are
MAX SNP-hard. A simple greedy algorithm gives a 2-
approximation for JISP. Despite many efforts, this was the
best approximation guarantee known, even for throughput
maximization on a single machine. In this paper, we break
this barrier and show an approximation guarantee of less
than 1.582 for arbitrary instances of JISP. For some special
cases, we show better results. Our methods can be used to
give improved bounds for some related resource allocation
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problems that were considered recently in the literature.

1 Introduction

Problem statement and motivation. The job interval se-
lection problem (JISP) is a simple yet powerful model of
scheduling problems. In this model, the input is a set of n
jobs. Each job is a set of intervals of the real line. The inter-
vals may be listed explicitly or implied by other parameters
defining the job. To schedule a job, one of the intervals
defining it must be selected. To schedule several jobs, the
intervals selected for the jobs must not overlap. The ob-
jective is to schedule as many jobs as possible under these
constraints. For example, one popular special case of JISP
has each job j specified by a release date rj , a deadline dj ,
and a processing time pj . To schedule job j, an interval of
length pj must be selected within the interval [rj , dj ]. Using
the notation convention of [21], this problem is equivalent
to 1|rj |

∑

U j . The generalizations of this problem to mul-
tiple machine environments (for example, the unrelated ma-
chines case R|rj |

∑

Uj) are also common in applications.
These can be modeled as JISP by concatenating the sched-
ules for the machines along the real line, and specifying the
possible intervals for each job accordingly. Due to some
of their applications, these special cases of JISP are often
called the throughput maximization problem or the real-time
scheduling problem.

Instances of JISP are used to model scheduling prob-
lems in numerous applications. Some examples include:
selection of projects to be performed during a space mis-



sion [16],1 placement of feeders in feeder racks of an assem-
bly line for printed circuit boards [9, 27], time-constrained
communication scheduling [1], and adaptive rate-controlled
scheduling for multimedia applications [28, 23, 25]. These
applications and others inspired the development of many
heuristics for JISP or special cases of JISP, most of them
lacking theoretical analysis.

Our results. In this paper we give several exact and ap-
proximation algorithms for JISP or special cases of JISP.
In particular, our main result is a polynomial time approx-
imation algorithm for JISP with guarantee arbitrarily close
to e/(e − 1) < 1.582. Our algorithm gives better guaran-
tees for JISPk, the special case of JISP where each job has
at most k possible intervals. For example, our bound for
JISP2 is arbitrarily close to 4

3 . We consider the special case
of 1|rj |

∑

U j and give a pseudo-polynomial time 2 algo-
rithm to solve the problem optimally for the special case of
constant relative window sizes (i.e., when there is a constant
k such that for every job j, dj − rj ≤ k · pj), which occurs
in adaptive rate-controlled scheduling applications. For the
same problem, we give a polynomial time approximation
scheme for the special case that the job processing times
are taken from a constant sized set with a constant ratio of
largest to smallest value. In fact, the latter two results hold
even in the case that jobs have weights and the goal is to
maximize the total weight of scheduled jobs (i.e., for spe-
cial cases of 1|rj |

∑

wjU j). Our results can be extended
to handle more general cases. For example, we get a ratio
arbitrarily close to (2e−1)/(e−1) < 2.582 for a generaliza-
tion of JISP where intervals have heights and can overlap in
time, as long as the total height at any time does not exceed
1. Our polynomial time approximation scheme works even
for a fixed number of identical machines Pm|rj |

∑

wjU j .
The details will appear in the full version of the paper.

Previous work. Work on (special cases of) JISP dates
back to the 1950s. Jackson [17] proved that the earliest
due date (EDD) greedy rule is an optimal algorithm for
1||Lmax. This implies that if all jobs can be scheduled in
an instance of 1||

∑

Uj , then EDD finds such a schedule.
Moore [24] gave a greedy O(n log n) time optimal algo-
rithm for 1||

∑

Uj . On the other hand, the weighted ver-
sion 1||

∑

wjU j is NP-hard (KNAPSACK is a special case
when all deadlines are equal). Sahni [26] presented a fully
polynomial time approximation scheme for this problem.
When release dates are introduced, then already 1|rj |

∑

Uj

is NP-hard in the strong sense [13]. The following sim-
ple greedy rule gives a 2-approximation algorithm: When-

1According to the reference, the decision process may take up to 25%
of the budget of a mission.

2This means that the time parameters rj , dj , pj for each job are given
in unary notation.

ever the machine becomes idle, schedule a job that fin-
ishes first among all available jobs (see Adler et al. [1] or
Spieksma [27]). Much of the recent work on JISP vari-
ants extends this bound to more general settings. Indeed,
Spieksma [27] showed that the greedy algorithm gives a
2-approximation for arbitrary instances of JISP. Bar-Noy,
Guha, Naor, and Schieber [5] gave a 2-approximation for
1|rj |

∑

wjUj and a 3-approximation for R|rj |
∑

wjU j us-
ing a natural time-indexed linear programming formula-
tion of fractional schedules. Bar-Noy, Bar-Yehuda, Fre-
und, Naor, and Scheiber [4] and independently Berman and
DasGupta [7] gave combinatorial 2-approximation algo-
rithms for R|rj |

∑

wjU j , based on the local ratio/primal-
dual schema.3 Though these and other papers contain bet-
ter bounds for some special cases of JISP (see below), no
technique for improving upon the factor of 2 approximation
was known prior to this paper, even for the special case of
1|rj |

∑

U j . The integrality ratio of the natural LP formula-
tion, even for this special case, is 2 [27, 5], and attempts to
strengthen the relaxation have failed [12]. As for hardness
results, JISP2 is MAX SNP-hard [27]. Also, R|rj |

∑

U j is
MAX SNP-hard [5]. In both cases, the constant bounds for
which the problem is known to be hard are very close to 1.

Some other special cases of JISP are known to be in P .
Interval scheduling, where every job has a single choice, is
equivalent to maximum independent set in interval graphs,
and therefore has a polynomial time algorithm, even for the
weighted case (see [14]). In fact, Arkin and Silverberg [2]
gave a flow-based algorithm for weighted interval schedul-
ing on identical machines. The problem becomes NP-
hard on unrelated machines, even without weights. Bap-
tiste [3], generalizing a result of Carlier [8], showed that
1|pj = p, rj |

∑

wjU j (i.e., when all job processing times
are equal) is in P . His dynamic programming algorithm can
be generalized easily to handle the case of a fixed number
of related machines Qm|pj = p, rj |

∑

wjUj .
There are also NP-hard special cases of JISP that were

known to have better than 2 approximations. Spieksma [27]
proved that the natural LP formulation has a better than 2
integrality ratio in the case of JISP2. Berman and Das-
Gupta [7] gave a better than 2 approximation algorithm
for the special case of 1|rj |

∑

wjUj with constant relative
window sizes (the ratio approaches 2 as the relative win-
dow sizes grow). Our optimal algorithm improves their re-
sult. Bar-Noy et al. [5] showed that the greedy algorithm’s
approximation guarantee for the identical machines case
P |rj |

∑

Uj approaches e/(e − 1) as the number of ma-
chines grows. The same holds in the weighted case for their
LP-based algorithm and for the combinatorial algorithms

3Using time-indexed formulations requires the time parameters
rj , dj , pj to be written in unary. For time parameters in binary notation,
slightly weaker bounds hold. In all cases where job weights are mentioned,
we assume that they are given in binary notation.



of [4, 7]. They pointed out this improvement as a possible
scheduling anomaly. Our results refute this possibility, as
they give guarantees approaching e/(e − 1) for all cases of
JISP.

We note that some of the above-mentioned problems
were investigated also in the context of on-line computing,
where jobs have to be scheduled or discarded as they arrive
(see, for example, [6, 22, 10, 19]).

Our methods. As mentioned above, it seems hopeless to
improve the previously known factor 2 approximation us-
ing the natural LP relaxation or some simple modification
of it, other than in some special cases. Our algorithms rely
instead on proving special structural properties of optimal
or near-optimal solutions. The idea underlying the approx-
mation algorithm for JISP is a partition of the time line into
blocks, such that most of the jobs can be scheduled in blocks
that do not contain many jobs. The computation of the
partition is not trivial. The partition allows us to generate
an LP relaxation that leads to the improved approximation
guarantee. A partition into blocks also underlies the PTAS
for the case of a constant number of job sizes. There, the
partition is simple, and most of the difficulty is in setting
the dynamic program that exploits the partition. Finally,
the pseudo-polynomial time algorithm for bounded relative
window sizes uses a dynamic program that is motivated by
Baptiste’s algorithm for uniform job sizes [3]. Our case is
more complicated, and the result is based on a bound on the
number of small jobs that can “overtake” a larger job in an
optimal schedule.

Throughout this paper we assume without loss of gener-
ality that all the time parameters are integer.

2 A 1.582 Approximation Algorithm for JISP

In this section we present a polynomial time (e/(e−1)+
ε)-approximation algorithm for JISP, where ε > 0 is an arbi-
trary constant. The main idea of the algorithm is a partition
of the time line into blocks. We use several iterations of
the greedy algorithm to compute a partition that allows us
to discard job intervals that cross block boundaries without
losing too many jobs. Moreover, we are able to estimate
the number of jobs in each block. We deal separately with
blocks that contain a large number of jobs in an optimal so-
lution. For the other blocks, we generate an LP relaxation
to the scheduling problem by enumerating over all feasible
schedules in each block. The advantage of this LP is that the
fractional schedules for the blocks can be combined without
overlap, unlike the fractional schedules for individual jobs.

Put k =
⌈

6
ε

⌉

, let S be the input set of jobs, and let T be
the maximum finish time of a job in S (the time horizon).
The algorithm works in two phases. In the first phase, we
divide the time line [0, T ] into blocks and schedule jobs in

some of the blocks. In the second phase, we schedule at
most 4kk ln k+3 jobs in each of the remaining blocks. Every
scheduled job (in both phases) is completely contained in a
single block. The analysis of the algorithm depends on the
fact that these added constraints do not reduce the optimal
solution by much. Therefore, we must perform the parti-
tion into blocks carefully. Throughout the analysis of the
algorithm, we fix an arbitrary optimal solution OPT. Abus-
ing notation, we us OPT to denote both the optimal schedule
and the set of jobs used in this schedule.

We begin with the description of the first phase. At the
end of the phase, we have a partition of the time line into
blocks. In some of the blocks, we determine the schedule
in the first phase. We also compute a set Spass of jobs to
be scheduled in the second phase. Let SI denote the set
of jobs scheduled in the first phase, and let BI denote the
set of blocks where the jobs from SI are scheduled. Let
BII be the set of the remaining blocks. In the first phase,
we perform at most k ln k + 1 iterations. The first iteration
is slightly different from the others. Its purpose is to com-
pute an initial partition into blocks. In each of the following
iterations we refine the partition into blocks from the pre-
vious iteration. In the second phase, we schedule a set of
jobs SII ⊂ Spass ⊂ S \ SI in the blocks from BII . Given
a partition B of the time line into blocks, let OPTB be an
optimal schedule under the constraint that no job may cross
the boundary of a block in B.

The first iteration: In the first iteration we run GREEDY.
Denote by S1 the set of jobs that are scheduled by GREEDY.
Using the schedule produced by GREEDY, we partition the
time line into blocks, each containing k3 jobs that GREEDY

scheduled. (Notice that the last block might have fewer
jobs, and its endpoint is the time horizon T .) We denote
this partition into blocks by B1.

Lemma 1. |OPTB1
| ≥ (1 − 1/k3)|OPT|.

Proof: In each block OPT might schedule at most one job
that crosses the right boundary of the block. In fact, this
cannot happen in the last block, as it extends to the time
horizon. Thus, the number of jobs eliminated from OPT by
the partition into blocks is at most d|S1|/k3e− 1. However,
|OPT| ≥ |S1|.

Lemma 2. In each block computed by the above iteration,
OPT schedules at most k3 jobs from R1 = S \ S1.

Proof: The lemma follows from the existence of a one-
to-one mapping of unscheduled optimal jobs to GREEDY-
scheduled jobs. Each unscheduled optimal job is mapped to
a unique overlaping GREEDY-scheduled job that prevented
it from being scheduled, because it has an earlier finish time.



The partition after the first iteration does not harm the
optimal solution too much, as Lemma 1 states. However, by
Lemma 2, OPT may schedule as many as twice the number
of jobs that were scheduled by GREEDY. To do that, OPT

might schedule a very large number of jobs from S1 in some
blocks. We must identify these blocks and further partition
them. This is the purpose of the following iterations. In
the following iterations we only refine the existing partition
into blocks. Thus, Lemma 2 holds for the block partition
throughout the first phase.

The ith iteration: The input to the ith iteration is the set
of jobs Si−1 that was scheduled in the previous iteration,
and the previous iteration’s partition Bi−1 into blocks. The
output is a schedule for a subset of jobs Si ⊂ Si−1, and
a new partition into blocks Bi that refines the input parti-
tion. Implicitly, a set Ri = Si−1 \Si of unscheduled jobs is
defined and used in the analysis. To compute the new sched-
ule, we run GREEDY on Si−1, disallowing job intervals that
cross block boundaries. Whenever we complete the sched-
ule of a block, we check how many jobs were scheduled in
the block. If more than ki+2 jobs are scheduled, we par-
tition the block into smaller blocks, each containing ki+2

scheduled jobs (except, perhaps, the last) and then proceed
with GREEDY. Otherwise, we empty the block and proceed
with GREEDY. (Notice that jobs from the emptied block can
now be scheduled in a later block.) Let Si denote the set of
jobs that get scheduled eventually by this process and Bi

the new partition into blocks.

Lemma 3. |OPTBi
| ≥ (1 − i/k3)|OPT|.

Proof: In every iteration j, for 1 ≤ j ≤ i, the number of
new blocks increases by at most |Sj |

kj+2 ≤ |Sj |
k3 . Each block

eliminates at most one job from OPT (the job that crosses
the block’s right boundary, if such a job exists). Since there
is a feasible solution containing all the jobs from Sj (the
one computed in iteration j), |OPT| ≥ |Sj |. In total, the
number of jobs eliminated from the optimal solution by the
iterations 1, . . . , i is at most Σi

j=1
|Sj |
k3 ≤ i

k3 |OPT|. So there
is a feasible solution of jobs inside the blocks from Bi, con-
taining at least

(

1 − i
k3

)

|OPT| jobs.

Lemma 4. In each block computed by the above iteration,
OPT schedules at most 2ki+2 jobs from Ri = Si−1 \ Si.

Proof: Consider a block b from Bi. All the jobs from
Ri were available when GREEDY tried to schedule jobs in
this block, as none of these jobs are scheduled in any other
block. In both cases, whether the block b was emptied by
GREEDY, or it was created by partitioning some block from
the previous iteration, GREEDY can schedule at most ki+2

jobs in this block. As there is a one-to-one correspondence

between the unscheduled jobs from Ri and the jobs sched-
uled by GREEDY in block b, at most 2ki+2 jobs from Ri can
be scheduled in block b.

Stopping condition: We terminate the first phase if
|Si| ≥

(

1 − 1
k

)

|Si−1| or after the completion of iteration
k ln k + 1. In the former case, if |Si| ≥

(

1 − 1
k

)

|Si−1|,
we discard the block refinement of the last iteration, i.e., we
set Bi = Bi−1. We set SI = Si, BI is the set of blocks
where the jobs from SI are scheduled, Spass = S \ Si−1,
and BII = Bi \ BI . In the latter case, we set SI = ∅,
BI = ∅, Spass = S \ S(k ln k+1), BII = B(k ln k+1) and
we remove the jobs in S(k lnk+1) from the schedule. We
sometimes refer to the blocks from BII as empty blocks.

Lemma 5. Let r denote the number of iterations in the
first phase. Then |OPTBr

| ≥
(

1 − 1
k

)

|OPT|.

Proof: Since r ≤ k ln k + 1, by Lemma 3, |OPTBr
| ≥

(

1 − k ln k+1
k3

)

|OPT| ≥
(

1 − 1
k

)

|OPT|.
Let J be any set of jobs. We denote by OPTBII (J) the

best schedule of jobs from J in blocks from BII .

Lemma 6. |S1| + |OPTBII (Spass)| ≥ (1 − ε)|OPT|.

Proof: Consider two cases.
Case 1: If the first phase terminates after (k ln k + 1) it-

erations, then for all 1 < i ≤ k ln k, |Si| ≤
(

1 − 1
k

)

|Si−1|,

and |S(k ln k+1)| ≤
(

1 − 1
k

)k lnk
|S1| ≤ |S1|

k
≤ |OPT|

k
.

As Spass = S \ S(k ln k+1), BII = B(k ln k+1), and using
the fact that, by Lemma 5, OPT(Bk ln k+1) ≥

(

1 − 1
k

)

|OPT|,
we get that |OPTBII (Spass)| = |OPTBII (S \ S(k ln k+1))| ≥

|OPTBII (S)| − |S(k ln k+1)| ≥
(

1 − 1
k

)

|OPT| − 1
k
|OPT| =

(

1 − 2
k

)

|OPT| > (1 − ε)|OPT|.
Case 2: If the algorithm terminated after iteration r <

k ln k + 1, then SI = Sr, and Spass = S \ Sr−1. We have
|OPTBII (Spass)| ≥ |OPTBr

(Spass)| − |OPTBI (Spass)| =
|OPTBr

(S \ Sr−1)| − |OPTBI (Spass)| ≥ |OPTBr
(S)| −

|Sr−1| − |OPTBI (Spass)|. Thus,

|SI | + |OPTBII (Spass)| ≥

≥ |OPTBr
(S)| − (|Sr−1| − |Sr|) − |OPTBI (Spass)|. (1)

We bound each of the terms separately. By Lemma 5,
|OPTBr

(S)| ≥
(

1 − 1
k

)

|OPT|. As the algorithm finished
before the iteration k ln k + 1, |Sr| ≥

(

1 − 1
k

)

|Sr−1|, so
|Sr−1| − |Sr| ≤

1
k
|Sr−1| ≤

1
k
|OPT|. Finally, observe that

Spass = S \ Sr−1 = R1 ∪ R2 ∪ . . . ∪ Rr−1. Let b be
some block in BI . By Lemma 4 and the fact that Br is a
refinement of the block partitions of the previous iterations,
at most 2ki+2 jobs from set Ri can be scheduled in block b,
for all 1 ≤ i ≤ r − 1. Thus, at most Σr−1

i=1 2ki+2 ≤ 4kr+1

jobs from Spass can be scheduled in b. On the other hand,



we know that at least kr+2 jobs from SI are scheduled in
b in iteration r. Thus, |OPTBI (Spass)| ≤

4
k
|SI | ≤ 4

k
|OPT|.

Substituting these bounds into (1), we get

|SI | + |OPTBII (Spass)| ≥

≥

(

1 −
1

k

)

|OPT| −
1

k
|OPT| −

4

k
|OPT| =

=

(

1 −
6

k

)

|OPT| = (1 − ε)|OPT|.

Lemma 7. In every empty block OPT schedules less than
4kk ln k+3 jobs from Spass.

Proof: The lemma follows from Lemmas 2 and 4. Every
empty block is completely contained in a single block in
each of the previous iterations. The jobs from Spass that
OPT schedules in an empty block are contained in the sets
R1, R2, . . . , Rj , where j is the last iteration. Thus, the num-
ber of jobs OPT schedules in an empty block is less than
2

∑j

i=1 ki+2 < 4kj+2 ≤ 4kk ln k+3.
Notice that the number of blocks at the end of the first

phase is polynomial in n. In each iteration we create at most
n new blocks, and there are at most k ln k + 1 iterations.

We now proceed with the description of the second phase
of the algorithm. The input to this phase is the final parti-
tion into blocks that was computed in the previous phase
(where each block is marked as empty or not), and the set
Spass of jobs yet to be scheduled. Let Soptp denote the set
of jobs from Spass that OPT schedules in empty blocks. We
define an integer program that computes the best schedule
of jobs from Spass in empty blocks. The number of jobs
scheduled in the integer program is clearly an upper bound
on |Soptp|. We then use the integer program’s linear pro-
gramming relaxation to compute an approximate solution.
Let B denote the set of empty blocks. By Lemma 7, for
every block b ∈ B, OPT schedules at most 4kk ln k+3 jobs
from Spass in b. Given an ordered set of at most 4kk lnk+3

jobs, it is easy to schedule the jobs in b in that order, if such
a schedule exists: Scan the jobs from first to last, and place
each job in its turn as early as possible inside the block b.
Thus, the number of possible schedules in b for jobs from
Spass is at most the number of ordered sets of jobs of size
at most 4kk ln k+3, which is

4kk ln k+3

∑

s=0

s!

(

n

s

)

= nexp(k ln2 k).

Let M(b) denote the set of all such schedules for block b ∈
B. The integer program contains, for every block b ∈ B,
and for every schedule m ∈ M(b), a variable yb

m ∈ {0, 1}.
Setting yb

m = 1 means that the schedule m is chosen for the
block b. The integer program that computes an upper bound
on Soptp is the following:

maximize
∑

b∈B

∑

m∈M(b)

∑

j∈m

yb
m subject to

∑

b∈B

∑

m∈M(b)|j∈m yb
m ≤ 1 ∀j ∈ Spass

∑

m∈M(b) yb
m = 1 ∀b ∈ B

yb
m ∈ {0, 1} ∀b ∈ B, ∀m ∈ M(b).

The first set of constraints makes sure that each job is sched-
uled at most once, and the second set of constraints makes
sure that a unique feasible schedule is chosen for every
empty block. The linear programming relaxation is derived
by replacing the last set of constraints with the constraints
y ≥ 0. Denote the resulting linear program by LP. Let y be
a feasible solution to LP. We round y to an integer solution
yint using the following two steps algorithm:

1. In every block b ∈ B, choose at random, indepen-
dently of the choice in other blocks, a schedule m ∈
M(b) with distribution yb (i.e., schedule m ∈ M(b) is
chosen with probability yb

m).

2. For every job j ∈ Spass, if more than one block has a
schedule containing j as a result of the previous step,
remove j from all schedules containing it except one,
chosen arbitrarily.

For every job j ∈ Spass and for every block b ∈ B, put
xb

j =
∑

m∈M(b)|j∈m yb
m, and put xj =

∑

b∈B xb
j . Clearly,

the value of the solution y is z =
∑

j∈Spass
xj . Let pj be

the probability that j is scheduled in yint, and let zint be the
value of the solution yint. (Both yint and zint are random
variables.)

Lemma 8. For every job j ∈ Spass, pj ≥
(

1 − 1
e

)

xj .

Proof: The probability that we do not schedule j is the
probability that in no block a schedule containing j was
chosen, which is

∏

b

(

1 − xb
j

)

. Let t be the number of
blocks where a schedule containing j appears with pos-
itive probability in y. The product is maximized when
in each such block b, xb

j = xj/t. Thus, pj = 1 −
∏

b

(

1 − xb
j

)

≥ 1 − (1 − xj/t)
t. Therefore, pj/xj ≥

(

1 − (1 − xj/t)t
)

/xj . The right-hand side is monotoni-

cally decreasing in xj , and thus the minimum is achieved at
xj = 1. We conclude that pj/xj ≥ 1− (1 − 1/t)

t ≥ 1− 1
e

.
This completes the proof of the lemma.

Corollary 9. E[zint] ≥
(

1 − 1
e

)

z.

Proof: E[zint] =
∑

j∈Spass
pj ≥

∑

j∈Spass

(

1 − 1
e

)

xj =
(

1 − 1
e

)

z.
We can now state and prove the main theorem in this

section:



Theorem 10. For every ε > 0, the above two-phase algo-
rithm runs in polynomial time and guarantees, in expecta-
tion, an e/(e − 1) + ε approximation to JISP.

Proof: Let SII be the set of jobs scheduled by rounding the
optimal solution y∗ to LP. Let z∗ be the value of y∗. The
expected value of the solution produced by the algorithm is
E[|SI |+|SII |] = |SI |+E[|SII |]. By Corollary 9, E[|SII |] ≥
(

1 − 1
e

)

z∗ ≥
(

1 − 1
e

)

|OPTBII (Spass)|.
As |SI | + |OPTBII (Spass)| ≥ (1 − ε)|OPT| (by

Lemma 6), the expected value of the solution is
|SI | + E[|SII |] ≥ |SI | +

(

1 − 1
e

)

|OPTBII (Spass)| ≥
(

1 − 1
e

)

(|SI |+|OPTBII (Spass)|) ≥
(

1 − 1
e

)

(1−ε)|OPT| ≥
(

1 − 1
e
− ε

)

|OPT|.

3 Jobs with Small Windows

In this section we give a dynamic programming algo-
rithm that computes an optimal solution for instances of
1|rj |

∑

wjUj . Let T = maxj∈S dj denote the time hori-
zon. The running time of our algorithm is polynomial in
n = |S| and in T , and is exponential in poly(k), where
k = maxj∈S(dj − rj)/pj . Thus, if for every job j ∈ S, its
window size dj − rj is at most a constant factor times its
processing time pj , we get a pseudo-polynomial time algo-
rithm.

Let S = {1, 2, . . . , n} be the set of jobs, sorted in non-
decreasing order of processing times, ties broken arbitrarily.
Let Releasej(s, e) = {i ≤ j | ri ∈ [s, e)}. The dynamic
program computes the entries D(s, x, e, j, IN, OUT), where
s ≤ x < e are integers (points on the time line), j ∈ S, and
IN, OUT are subsets of S of size at most k2. We require the
following conditions on the sets of jobs IN and OUT:

• IN
⋂

OUT = ∅.

• OUT ⊆ Releasej(s, e), and all the jobs in OUT can
be scheduled after time e (as their release dates are be-
fore e, this condition can be checked by using the EDD
rule).

• IN ⊆ Releasej(0, s), and all the jobs in IN can be
scheduled after time x (this also can be checked using
EDD).

The value stored in D(s, x, e, j, IN, OUT) is an optimal
schedule of jobs from the set Releasej(s, e)

⋃

IN \ OUT in
the time interval [x, e). The output of the algorithm is the
entry D(0, 0, T, n, ∅, ∅).

We compute the entries of D in increasing order of j.
For j = 0, for all s, x, e, IN, OUT, D(s, x, e, 0, IN, OUT)
is the empty schedule. Inductively, the algorithm
computes D(s, x, e, j, IN, OUT) as follows: If j 6∈
Releasej(s, e)

⋃

IN \ OUT, set D(s, x, e, j, IN, OUT) =
D(s, x, e, j−1, IN\{j}, OUT\{j}). Otherwise, enumerate

over all feasible placements of j in the interval [x, e − pj ].
For each such placement t, compute an optimal schedule St

as explained below. Finally, set D(s, x, e, j, IN, OUT) to be
the best schedule among D(s, x, e, j−1, IN\{j}, OUT\{j})
and St, for all t.

It remains to show how to compute St. If we sched-
ule job j starting at time t, then the scheduling problem
of D(s, x, e, j, IN, OUT) is split into two subproblems on
the intervals [s, t) and [t, e). Thus, St is the union of the
schedules D(s, x, t, j − 1, E, F ), J , and D(t, t + pj , e, j −
1, G, H), for some sets E, F, G, H , where J is the schedule
containing just the job j placed starting at t. To enumerate
over the relevant choices for E, F, G, H all we have to do
is to decide which jobs with release date before t are sched-
uled after j. We partition the set OUT into two sets of jobs,
those with release dates before t and those with release dates
after t. Let B1 = OUT

⋂

Releasej−1(s, t) and let B2 =
OUT

⋂

Releasej−1(t, e). For every partition of IN \ {j}
into A1 and A2, and for every B ⊆ Releasej−1(s, t) \ B1,
such that A2

⋃

B can be scheduled after time t + pj and
B1

⋃

B can be scheduled after time t + pj , set E = A1,
F = B1

⋃

B, G = A2

⋃

B, and H = B2. (Below, we
prove that these settings satisfy the conditions on the in-
dices of the table D.) We set St to be the schedule for the
best such partition of IN and choice of B. This completes
the description of the dynamic program.

s x t

j

e

B1 B B2

A1 A2In

Out

Figure 1. Computation of St

We now proceed with the analysis of the algorithm. We
begin the analysis with an observation on the structure of
optimal solutions. Consider an optimal solution OPT. For
every job j scheduled in OPT, let tj denote the starting time
of j in OPT. Let B(j) = {i < j | ri < tj and ti > tj}.

Lemma 11. For every j ∈ S, |B(j)| ≤ k2.

Proof: Let i ∈ B(j). As jobs are sorted by their processing
times, pi ≤ pj . On the other hand, pi > pj/k, otherwise
the job j is longer than the window of i, in contradiction
with the assumption that ri < tj whereas ti > tj . Consider
the job i ∈ B(j) with maximum ti. All the jobs in B(j) are
scheduled by OPT inside [ri, di]. By our discussion, di −
ri ≤ kpj . By the lower bound on the processing time of the
jobs in B(j), at most k2 such jobs fit in this interval.
Remark: A tighter analysis gives a bound of O(k log k).



Lemma 12. Every choice for the sets E, F, G, H consid-
ered by the above algorithm satisfies the following con-
ditions: Each of the sets contains at most k2 jobs, and
D(s, x, t, j−1, E, F ), D(t, t+pj , e, j−1, G, H) are valid
entries of D.

The proof of this lemma is easy following the above discus-
sion, and is omitted from this extended abstract.

Lemma 13. The schedule D(s, x, e, j, IN, OUT) com-
puted by the algorithm is a feasible schedule of jobs from
Releasej(s, e)

⋃

IN \ OUT in the time interval [x, e).

Proof: The proof is by induction on j. The empty sched-
ule D(s, x, e, 0, IN, OUT) is clearly feasible. Consider the
schedule D(s, x, e, j, IN, OUT). Job j is scheduled only if
it belongs to Releasej(s, e)

⋃

IN \ OUT. If j is scheduled,
it starts at some time t ∈ [x, e − pj) inside its time win-
dow, so its own schedule is feasible. If j is not scheduled,
the schedule is D(s, x, e, j− 1, IN \ {j}, OUT \ {j}), which
is feasible by the induction hypothesis. If j is scheduled
at time t, the schedule we return is the union of j’s sched-
ule, D(s, x, t, j−1, E, F ), and D(t, t+pj , e, j−1, G, H).
We argue that the sets of jobs used in these schedules are
distinct, so no job is scheduled twice. (Clearly, the sched-
ules do not overlap.) This follows from the fact that the
sets Releasej−1(s, t), Releasej−1(t, e), A1, and A2 are all
distinct, and the jobs in B are considered only in the com-
putation of D(t, t + pj , e, j − 1, G, H).

Lemma 14. The schedule D(s, x, e, j, IN, OUT) is com-
puted correctly.

Proof: The proof is by induction on j. Clearly, the lemma
is true for j = 0. Now consider an optimal schedule
OPT(s, x, e, j, IN, OUT) of jobs from Releasej(s, e)

⋃

IN \
OUT in the time interval [x, e). If j is not scheduled
in this solution, then by induction this optimal schedule
has the same profit as D(s, x, e, j − 1, IN \ {j}, OUT \
{j}), which is one of the schedules checked by the algo-
rithm in the computation of D(s, x, e, j, IN, OUT). So as-
sume that j is scheduled in OPT(s, x, e, j, IN, OUT) start-
ing at time t. Let B1 = OUT

⋂

Releasej−1(s, t) and let
B2 = OUT

⋂

Releasej−1(t, e). Let A2 be the subset of
IN scheduled in OPT(s, x, e, j, IN, OUT) after time t, and let
A1 = IN \ (A2

⋂

{j}). Let B be the subset of jobs from
Releasej−1(s, t) \ B2 scheduled in OPT(s, x, e, j, IN, OUT)
after job j. Then, by the induction hypothesis, the sched-
ule considered by the algorithm for E = A1, F =
B1

⋃

B, G = A2

⋃

B, and H = B2 is as good as
OPT(s, x, e, j, IN, OUT).

We conclude

Theorem 15. The dynamic programming algorithm com-
putes an optimal schedule in time O

(

npoly(k)T 4
)

.

Proof: The correctness of the algorithm follows from Lem-
mas 13 and 14. The number of entries in the dynamic

programming table D is O
(

T 3n
(

n
k2

)2
)

. To compute an

entry D(s, x, e, j, IN, OUT), we have to check at most T
possible placements of job j. For each such placement,
there are at most 2k2

possible partitions of IN, and
(

n
k2

)

choices of B. For each such partition of IN and choice of
B, we have to run EDD several times. This takes at most
O (n logn) time. So the time complexity of the algorithm

is O
(

T 4n2 log n
(

n

k2

)3
2k2

)

≤ O
(

T 42k2

n3k2+2 log n
)

.

4 A PTAS for Instances with Restrictions on
Job Processing Times

In this section we present a polynomial time approxima-
tion scheme for 1|rj |

∑

wjUj under the following assump-
tions: Job processing times can take one of a constant num-
ber c of possible values, and the ratio r between the maxi-
mum possible value P and the minimum possible value p is
upper bounded by a constant.

Set ε > 0, and put k =
⌈

8r(2c+1)
ε

⌉

+ 2. Let x be

an integer, to be specified later. Let f1, f2, . . . , fl be in-
dependent, uniformly distributed, random variables with
f1 ∈ {1, . . . , Pk2k+2x}, and for every i = 2, 3, . . . , l,
fi ∈ {1, . . . , k2k}. We divide the time line {0, 1, 2, . . . , T}
(where T = maxj dj is the time horizon) into blocks in l
levels. Level-1 blocks are special. The first level-1 block
ends at time f1, and the other blocks are identical, each of
length Pk2k+2x. For i = 2, 3, . . . , l, the first level-i block
ends at the end of the fi level-(i − 1) block, and the other
level-i blocks are identical, each of length k2k level-(i− 1)
blocks. We set l = O(log T ).

We place some of the jobs in sets Si, i = 1, 2, . . . , l
according to their windows sizes. Let tj = dj − rj be
the window size of job j. We set S1(x) = {j ∈ S |
1 ≤ tj ≤ Pk2k+2x−1}, and, for i = 2, 3, . . . , l, Si(x) =
{j ∈ S | Pk2(i−1)k+2x+1 ≤ tj ≤ Pk2ik+2x−1}. Let
U(x) =

⋃

i Si(x). Let OPT denote an optimal schedule,
and let OPTB(U(x)) denote an optimal schedule of jobs in
U(x) under the following constraints: No job is scheduled
so that it crosses the boundary of a level-1 block, and no
job in Si(x) is scheduled unless its window is contained in
a level-i block. (A schedule that satisfies these constraints
is called a schedule within blocks.)

Lemma 16. There is a choice of x ∈ {0, 1, . . . , k − 1, k}
such that E[w(OPTB(U(x)))] ≥

(

1 − 3
k

)

w(OPT(S)).
(The expectation is over the choice of f1, f2, . . . , fl.)

Proof: Consider the sets U(x) for x = 0, 1, . . . , k − 1,
defined as U(x) = {j ∈ S | ∃i ≥ 1 s.t. Pk2ik+2x−1 <



tj < Pk2ik+2x+1} . All these sets are disjoint, and
U(x) = S \ U(x). Therefore, there exists x such that
w(U(x)

⋂

OPT(S)) = w(OPT(S))−w(U (x)
⋂

OPT(S)) ≥
(

1 − 1
k

)

w(OPT(S)). So consider the schedule OPT(U(x)).
For every scheduled job, the probability that it crosses the
boundary of a level-1 block is at most P/Pk2k+2x =
1/k2k+2x ≤ 1/k. Finally, consider a job j ∈ Si,
for some i = 1, 2, . . . , l. The probability that j’s win-
dow crosses the boundary of a level-i block is at most
Pk2ik+2x−1/Pk2ik+2x = 1/k.

Notice that we can find x by enumerating over all pos-
sible values. From now on, let x be the correct choice.
Next, we modify the jobs in U(x) as follows: For every
i = 2, 3, . . . , l, for every j ∈ Si(x), we shrink the win-
dow of j so that its release date and deadline are aligned
with level-(i − 1) block boundaries. Let Ũ(x) denote the
resulting instance, and let OPTB(Ũ(x)) denote an optimal
schedule within blocks (as defined above) for Ũ(x).

Lemma 17.

w(OPTB(Ũ(x))) ≥
(

1 − 8r
k−2

)2c

· w(OPTB(U(x))).

Proof: We convert the schedule OPTB(U(x)) into a feasible
schedule within blocks for Ũ(x) as follows: For each of the
c different job processing times, we process jobs j with that
processing time in order from right to left. If tj ≤ Pk2k+2x,
we do nothing. Otherwise, if j is scheduled in the first tj/k
time slots in its window, we try to move it forward in its
window beyond that point, but not to the last tj/k time
slots in its window. If there is no room for j, we remove
it from the schedule. After completing this process, we ex-
ecute a symmetric process, scanning jobs from left to right
and removing them from the last tj/k time slots in their
schedule. Clearly, the resulting schedule is feasible within
blocks, and the only question is how many jobs were re-
moved. We analyze a pass in a single direction for a single
job processing time value. The lemma follows by combin-
ing the bounds for all 2c passes. We proceed by induction
on the length of the schedule. Consider the last job j that
is removed from the schedule. Let I be the time interval
between j’s position in the schedule and dj −

tj

k
. The jobs

with processing time pj that were scheduled in I and previ-
ously removed must have been scheduled in the first tj

k
time

slots of j’s window (otherwise we could move j forward).
Moreover, the rest of j’s window must be full enough to
prevent us from moving j there. Thus, there are at most
d

tj

kp
e ≤

tj

kp
+ 1 jobs of size pj that were removed from

I and at least d tj(1−
2
k
)

2P
e ≥

tj(1−
2
k
)

2P
− 1 jobs that remain

scheduled in I . So we removed from I at most a fraction of
tj

kp
+ 1

tj(1−
2
k
)

2P
− 1

≤
2

tj

kp

1
2 tj

k−2
2kP

=
8r

k − 2

jobs. All the removed jobs in I are accounted for, so we

can use the induction hypothesis on the remaining schedule
beyond I .

Next we describe a dynamic programming algorithm that
computes an optimal solution within blocks for Ũ(x). We
compute the entries D(i, b, v), where i is a level number, b
is a block number within level i, and v is a vector of c in-
tegers, each entry corresponding to one of the allowed job
processing times. The value stored in D(i, b, v) is an opti-
mal solution within blocks for the level-i block number b,
using the jobs from S1(x), . . . , Si(x) whose windows are
completely contained in block b , plus vq additional jobs
with processing time q for all q, that can be placed any-
where in block b. We compute the entries D(i, b, v) by in-
duction on i. For i = 1, we have blocks of length Pk2k+2x,
so a block may contain at most rk2k+2x jobs (real ones or
“virtual” ones from v). We can enumerate over all pos-
sible schedules in polynomial time. The inductive step is
done as follows. Consider a level-i block and the jobs from
Si(x) whose window is contained in that block. In Ũ(x)
these windows are aligned with level-(i − 1) block bound-
aries, so there are at most ck4k job types, where the type
of a job is its processing time and window. We compute
D(i, b, v) using another dynamic programming procedure
that computes the entries E(l, u). The value of E(l, u) is
the best schedule for the first l level-(i − 1) blocks inside
block b, using ut jobs of type t, for every possible type t
(u has to match v at the end). We compute E by induc-
tion on l. The initial values are E(1, u) = D(i − 1, b′, v′),
where b′ is the first level-(i − 1) block inside block b, and
v′ matches u. The inductive step sets E(l, u) as the best
choice, for all integer vectors u′, 0 ≤ u′ ≤ u, of the union
of E(l − 1, u′) + D(i− 1, b + l − 1, v′), where v′ matches
u − u′. We have

Lemma 18. The above algorithm runs in polynomial time
and computes an optimal schedule within blocks for Ũ(x).

Proof sketch: There are O(log T ) levels, at most n blocks
containing a job in each level, and at most nc+1 different
counter vectors v, so the number of entries of D is bounded
by a polynomial. By the above discussion, the computation
of each entry takes polynomial time.

Let SCHED be the schedule computed by the above algo-
rithm. Lemmas 16, 17, and 18, and the choice of k, trivially
imply

Theorem 19. w(SCHED) ≥ (1 − ε)w(OPT).
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