
On Approximating Maximum Independent Set of Rectangles

Julia Chuzhoy∗ Alina Ene†

July 31, 2016

Abstract

We study the Maximum Independent Set of Rectangles (MISR) problem: given a set of n axis-
parallel rectangles, find a largest-cardinality subset of the rectangles, such that no two of them
overlap. MISR is a basic geometric optimization problem with many applications, that has been
studied extensively. Until recently, the best approximation algorithm for it achieved an O(log log n)-
approximation factor. In a recent breakthrough, Adamaszek and Wiese provided a quasi-polynomial
time approximation scheme: a (1− ε)-approximation algorithm with running time nO(poly(logn)/ε).
Despite this result, obtaining a PTAS or even a polynomial-time constant-factor approximation
remains a challenging open problem. In this paper we make progress towards this goal by providing
an algorithm for MISR that achieves a (1−ε)-approximation in time nO(poly(log logn/ε)). We introduce
several new technical ideas, that we hope will lead to further progress on this and related problems.

∗Toyota Technological Institute at Chicago. Email: cjulia@ttic.edu. Supported in part by NSF grant CCF-1318242.
†Department of Computer Science and DIMAP, University of Warwick. Email: A.Ene@dcs.warwick.ac.uk.

1 Introduction

In the Maximum Independent Set of Rectangles (MISR) problem, the input is a set R of n axis-parallel
rectangles, and the goal is to find a maximum-cardinality subset of the rectangles, such that no two
of them overlap. MISR is a fundamental geometric optimization problem with several applications to
map labeling [AVKS98, DF92], resource allocation [LENO02], and data mining [KMP98, FMMT01,
LSW97]. It is also a special case of the classical Maximum Independent Set problem, where the input
is an n-vertex graph G, and the goal is to find a maximum-cardinality subset S of its vertices, so
that no edge of G has both endpoints in S. Maximum Independent Set is one of the most fundamental
and extensively studied problems in combinatorial optimization. Unfortunately, it is known to be very
difficult to approximate: the problem does not have an n1−ε-approximation algorithm for any constant
ε unless NP = ZPP [H̊as01], and the best current positive result gives an O(n/ log2 n)-approximation
algorithm [BH92]. It is therefore natural to focus on important classes of special cases of the problem,
where better approximation guarantees may be achievable. This direction has proved to be especially
fruitful for instances stemming from geometric objects in the plane. Results in this area range from
Polynomial-Time Approximation Schemes (PTAS) for “fat objects”, such as disks and squares [EJS05],
to an nε-approximation for arbitrary geometric shapes [FP11]. Unfortunately, the techniques used in
algorithms for fat geometric objects seem to break down for other geometric shapes. Rectangles are
among the simplest shapes that are not fat, which puts MISR close to the boundary of the class of
geometric problems for which PTAS is achievable with current techniques.

MISR is a basic geometric variant of Independent Set, and rectangles seem to be among the simplest
shapes that capture several of the key difficulties associated with objects that are not fat. It is then not
surprising that MISR has attracted a considerable amount of interest from various research communi-
ties. Since the problem is known to be NP-hard [FPT81, IA83], the main focus has been on design-
ing approximation algorithms. Several groups of researches have independently suggested O(log n)-
approximation algorithms for MISR [AVKS98, KMP98, Nie00], and Berman et al. [BDMR01] showed
that there is a dlogk ne approximation for any fixed k. More recently an O(log log n)-approximation
was shown [CC09], that remains the best current approximation algorithm that runs in polynomial
time. The result of [CC09] also gives a matching upper bound on the integrality gap of the natural
LP relaxation for MISR. The best current lower bound on the integrality gap of this LP relaxation is a
small constant, and understanding this gap is a long-standing open question with a beautiful connec-
tion to rectangle coloring; see [Cha11] and references therein. In a recent breakthrough, Adamaszek
and Wiese [AW13] designed a Quasi-Polynomial Time Approximation Scheme (QPTAS) for MISR:
namely, a (1 − ε)-approximation algorithm with running time nO(poly(logn/ε)), using completely dif-
ferent techniques. Their result can be seen as a significant evidence that MISR may admit a PTAS.
However, obtaining a PTAS, or even an efficient constant-factor approximation remains elusive for
now.

In this paper, we make progress towards this goal, by providing an algorithm for MISR that achieves

a (1 − ε)-approximation and runs in time nO((log logn/ε)4). We introduce several new technical ideas
that we hope will lead to further progress on this and related problems.

The MISR problem seems to be central to understanding several other geometric problems. The work
of [AW13] has been very influential, and has lead to several new results, including, for example, a
QPTAS for Maximum Independent Set of Polygons [AW14, Har14], and QPTAS for several geometric
Set Cover problems [MRR14].

Other related work Several important special cases of MISR have been studied extensively. In
particular, there is a PTAS for squares — and more generally, rectangles with bounded aspect ratio

1

[EJS05] — and large rectangles whose width or height is within a constant factor of the size of the
bounding box that encloses the entire input [AW13]. We note that a more general weighted version
of the MISR problem has also been considered, where all input rectangles are associated with non-
negative weights, and the goal is to find a maximum-weight subset of non-overlapping rectangles.
As mentioned earlier, there are several algorithms for MISR that achieve an O(log n)-approximation,
and these results hold in the weighted setting as well. The long-standing O(log n)-approximation was
improved in the work of Chan and Har-Peled that achieved an O(log n/ log log n)-approximation for
the weighted problem [CH12]. This result remains the best polynomial-time approximation algorithm
for the weighted problem, as the O(log log n)-approximation algorithm of [CC09] only applies to the
unweighted version of MISR. The work of Adamaszek and Wiese [AW13] extends to the weighted
version and provides a QPTAS for it as well. There seem to be several technical difficulties in extending
our results to the weighted version of the problem, and we leave this as an open problem.

Our Results and Techniques. Our main result is summarized in the following theorem.

Theorem 1.1 There is an algorithm for the MISR problem that, given any set R of n axis-parallel
rectangles and a parameter 0 < ε < 1, computes a (1− ε)1-approximate solution to instance R, in time
nO((log logn/ε)4).

In order to put our techniques in context, we first give a high-level overview of the approach of
Adamaszek and Wiese [AW13]. The description here is somewhat over-simplified, and is different
from the description of [AW13], though the algorithm is essentially the same. Their approach is
based on dynamic programming, and uses the divide-and-conquer paradigm. Starting with the initial
set of rectangles, the algorithm recursively partitions the input into smaller sub-instances. A key
insight is the use of closed polygonal curves to partition the instances: given such a curve, one can
discard the rectangles that intersect the curve; the remaining rectangles can be naturally partitioned
into two sub-instances, one containing the rectangles lying in the interior of the curve and the other
containing rectangles lying outside the curve2. Adamaszek and Wiese show that for every set R∗ of
non-overlapping rectangles and an integral parameter L, there is a closed polygonal curve C, whose
edges are parallel to the axes, so that C has at most L corners; the number of rectangles of R∗
intersecting C is at most O(|R∗|/L); and at most a 3/4-fraction of the rectangles of R∗ lie on either
side of the curve C. We call such a curve C a balanced L-corner partitioning curve for set R∗.

Given any subset R′ ⊆ R of rectangles, we denote by OPT(R′) the optimal solution to instance R′,
and we denote OPT = OPT(R). Throughout this exposition, all polygons and polygonal curves have
all their edges parallel to the axes. We sometimes refer to the number of corners of a polygon as its
boundary complexity.

The approach of [AW13] can now be described as follows. Let L = Θ(logn/ε) and L∗ = Θ(L ·
log n). The algorithm uses dynamic programming. Every entry of the dynamic programming table T
corresponds to a polygon P that has at most L∗ corners. The entry T [P] will contain an approximate
solution to instance R(P), that consists of all rectangles R ∈ R with R ⊆ P . We say that P defines
a basic instance if |OPT(R(P))| ≤ log n. We can check whether P defines a basic instance, and
if so, find an optimal solution for it in time nO(logn) via exhaustive search. In order to compute
the entry T [P] where R(P) is a non-basic instance, we go over all pairs P ′, P ′′ (P of polygons
with P ′ ∩ P ′′ = ∅, such that P ′ and P ′′ have at most L∗ corners each, and we let T [P] contain

1So far we have followed the convention that approximation factors of algorithms are greater than 1, but for our
QPTAS it is more convenient for us to switch to approximation factors of the form (1− ε).

2The sub-instances could have holes. In order to simplify the exposition, instead of working with instances with holes,
we introduce what we call “fake rectangles” and use them to partition the instance.

2

the best solution T [P ′] ∪ T [P ′′] among all such possible pairs of polygons. In order to analyze the
approximation factor achieved by this algorithm, we build a partitioning tree, that will simulate an
idealized run of the dynamic program. Every vertex v of the partitioning tree is associated with some
polygon P (v) that has at most L∗ corners, and stores some solution to instance R(v) = R(P (v)),
consisting of all rectangles R ∈ R with R ⊆ P (v). For the root vertex of the tree, the corresponding
polygon P is the bounding box of our instance. Given any leaf vertex v of the current tree, such
that the instance R(v) is non-basic, we add two children v′, v′′ to v, whose corresponding polygons P ′

and P ′′ are obtained by partitioning P with the balanced L-corner partitioning curve C for the set
OPT(R(v)) of rectangles. We terminate the algorithm when for every leaf vertex v, R(v) is a basic
instance. It is easy to verify that the height of the resulting tree is O(log n). The polygon associated
with the root vertex of the tree has 4 corners, and for every 1 ≤ i ≤ log n, the polygons associated
with the vertices lying at distance exactly i from the root have at most 4 + iL corners. Therefore,
every polygon associated with the vertices of the tree has at most L∗ corners, and corresponds to
some entry of the dynamic programming table. Once the tree is constructed, we compute solutions
to sub-instances associated with its vertices, as follows. For every leaf v of the tree, the solution
associated with v is the optimal solution to instance R(v); for an inner vertex v of the tree with
children v′ and v′′, the solution associated with v is the union of the solutions associated with v′ and
v′′. Let R′ be the solution to the MISR problem associated with the root vertex of the tree. Then it
is easy to see that the solution computed by the dynamic programming algorithm has value at least
|R′|. Moreover, from our choice of parameters, |R′| ≥ |OPT(R)|(1 − ε). This is since for every inner
vertex v of the tree, with children v′ and v′′, the loss incurred by the partitioning procedure at v,
λ(v) = |OPT(R(v))| − |OPT(R(v′))| − |OPT(R(v′′))| ≤ |OPT(R(v))|/L ≤ ε|OPT(R(v))|/ log n. It is
then easy to verify that the total loss of all vertices that lie within distance exactly i from the root,
for any fixed 0 ≤ i ≤ log n, is at most ε|OPT(R)|/ log n, and the total loss of all vertices is at most
ε|OPT(R)|. It is also immediate to verify that the value of the solution stored at the root vertex of
the tree is at least |OPT(R)| −

∑
v λ(v), and so we obtain a (1− ε)-approximation.

In order to bound the running time of the algorithm, it is not hard to show by a standard transformation
to the problem input, that it is enough to consider polygons P whose corners have integral coordinates
between 1 and 2n. The number of entries of the dynamic programming table, and the running time
of the algorithm, are then bounded by nO(L∗) = nO(log2 n/ε). As a warmup, we show that this running
time can be improved to nO(logn/ε). The idea is that, instead of computing a balanced L-corner
partition of the set OPT(R(P)) of rectangles, we can compute a different partition that reduces the
boundary complexities of the two resulting polygons. If P has boundary complexity greater than L,
then we can compute a polygonal curve C, that partitions P into polygons P ′ and P ′′, such that the
number of corners of each of the two polygons P ′ and P ′′ is smaller than the number of corners of P
by a constant factor, and |OPT(R(P))|− |OPT(R(P ′))|− |OPT(R(P ′′))| ≤ f(L) · |OPT(R(P))|, where
f(L) = O(1/L). In our partitioning tree we can then alternate between computing balanced L-corner
curves, and computing partitions that reduce the boundary complexities of the polygons, so that the
number of corners of the polygons does not accumulate as we go down the tree. This allows us to set
L∗ = L = Θ(log n/ε), and obtain a running time of nO(logn/ε).

The bottleneck in the running time of the above algorithm is the number of entries in the dynamic
programming table, which is nO(L∗), where L∗ is the number of corners that we allow for our polygons,
and the term n appears since there are Θ(n2) choices for each such corner. In order to improve the
running time, it is natural to try one of the following two approaches: either (i) decrease the parameter
L∗, or (ii) restrict the number of options for choosing each corner. The latter approach can be, for
example, implemented by discretization: we can construct an (N × N)-grid G, where N is small
enough. We say that a polygon P is aligned with G if all corners of P are also vertices of G. We can
then restrict the polygons we consider to the ones that are aligned with G. Unfortunately, neither

3

of these approaches works directly. For the first approach, since the depth of the partitioning tree is
Θ(log n), we can only afford to lose an O(ε/ log n)-fraction of rectangles from the optimal solution in
every iteration, that is, on average, for an inner vertex v of the tree λ(v) ≤ O(ε/ log n) · |OPT(R(v))|
must hold. It is not hard to show that this constraint forces us to allow the partitioning curve C to have
as many as Ω(log n/ε) corners, and so in general L∗ = Ω(log n/ε) must hold. For the second approach,
over the course of our algorithm, we will need to handle sub-instances whose optimal solution values
are small relatively to |OPT|, and their corresponding polygons have small areas. If we construct
an (N × N)-grid G, with N << n, then polygons that are aligned with G cannot capture all such
instances.

In order to better illustrate our approach, we start by showing a (1− ε)-approximation algorithm with
running time nO(

√
logn/ε3). This algorithm already needs to overcome the barriers described above,

and will motivate our final algorithm. Consider the divide-and-conquer view of the algorithm, like the
one we described in the construction of the partitioning tree. We can partition this algorithm into
Θ(
√

log n) phases, where the values of the optimal solutions |OPT(R(v))| of instances R(v) considered
in every phase go down by a factor of approximately 2

√
logn. In other words, if we consider the

partitioning tree, and we call all vertices at distance exactly i from the root of the tree level-i vertices,
then every phase of the algorithm roughly contains Θ(

√
log n) consecutive levels of the tree. Therefore,

the number of such phases is only O(
√

log n), and so we can afford to lose an Θ(ε/
√

log n)-fraction of
the rectangles from the optimal solution in every phase. At the end of every phase, for every polygon P
defining one of the resulting instances R(P) of the problem, we can then afford to repeatedly partition
P into sub-polygons, reducing their boundary complexity to O(

√
log n/ε). This allows us to use

polygons with only L1 = Θ(
√

log n/ε) corners as the “interface” between the different phases. Within
each phase, we still need to allow the polygons we consider to have L2 = Θ(log n/ε) corners. However,
now we can exploit the second approach: since the values of the optimal solutions of all instances
considered within a single phase are relatively close to each other - within a factor of 2Θ(

√
logn), we

can employ discretization, by constructing a grid with 2O(
√

logn) vertical and horizontal lines, and
requiring that polygons considered in the phase are aligned with this grid.

To summarize, we use a two-level recursive construction. The set of level-1 polygons (that intuitively
serve as the interface between the phases), contains all polygons whose corners have integral coor-
dinates between 1 and 2n, and they have at most L1 = Θ(

√
log n/ε) corners. The number of such

polygons is nO(L1) = nO(
√

logn)/ε. Given a level-1 polygon P , we construct a collection C(P) of level-2
polygons P ′ ⊆ P . We start by constructing a grid GP that discretizes P , and has 2O(

√
logn) verti-

cal and horizontal lines. The grid has the property that for every vertical strip S of the grid, the
value of the optimal solution of the instance R(P ∩ S) is bounded by |OPT(R(P))|/2Θ(

√
logn), and

the same holds for the horizontal strips. Set C(P) contains all polygons P ′ ⊆ P that have at most
L2 = Θ(log n/ε) corners, so that P ′ is aligned with GP . The number of such polygons is bounded

by
(

2O(
√

logn)
)O(L2)

= 2O(log3/2 n/ε) ≤ nO(
√

logn/ε). The final set C of polygons corresponding to the

entries of the dynamic programming table includes all level-1 polygons, and for every level-1 polygon
P , all level-2 polygons in the set C(P). The algorithm for computing the entries of the dynamic
programming table remains unchanged. This reduces the running time to nO(

√
logn/ε3).

In order to improve the running time to npoly(log logn/ε), we extend this approach to O(log log n)
recursive levels. As before, we partition the execution of the algorithm into phases, where a phase
ends when the values of the optimal solutions of all instances involved in it decrease by a factor of
roughly

√
n. Therefore, the algorithm has at most 2 phases. At the end of each phase, we employ a

“clean-up” procedure, that reduces the number of corners of every polygon to L1 = Θ((log log n)3/ε),
with at most 2|OPT| · f(L1) total loss in the number of rectangles from the optimal solution, where
f(L) = O(1/L). These polygons, that we call level-1 polygons, serve as the interface between the

4

different phases. The set C1 of level-1 polygons then contains all polygons whose corners have integral
coordinates between 1 and 2n, that have at most L1 corners. The number of such polygons is bounded
by nO(L1). Consider now an execution of a phase, and let P be our initial level-1 polygon. Since the
values of the optimal solutions of instances considered in this phase are at least |OPT(R(P))|/

√
n, we

can construct an (O(
√
n) × O(

√
n))-grid GP , that will serve as our discretization grid. We further

partition the execution of the current phase (that we refer to as level-1 phase) into two level-2 phases,
where the value of the optimal solution inside each level-2 phase goes down by a factor of roughly
n1/4, and we let L2 = 2L1. The total number of level-2 phases, across the execution of the whole
algorithm, is then at most 4, and at the end of each such phase, we again apply a clean-up procedure,
that decreases the number of corners in each polygon to L2. The loss incurred in every level-2 phase
due to the cleanup procedure can be bounded by |OPT| · f(L2) = |OPT| · f(L1)/2, and the total
loss across all level-2 phases is at most 2|OPT|f(L1). For every level-1 polygon P , we define a set
C2(P) of level-2 polygons, that contains all polygons P ′ ⊆ P with at most L2 corners, so that P ′ is
aligned with GP . We continue the same procedure for Θ(log log n) recursive levels. For each level
i, we let Li = 2Li−1 = 2i−1L1, and we let ρi = n1/2i . In each level-i phase, the values of the
optimal solutions to the instances defined by the corresponding polygons should decrease by a factor
of roughly ρi, so there are approximately 2i level-i phases overall. At the end of each phase, we apply
the clean-up procedure, in order to decrease the number of corners of each polygon to Li. The loss
at the end of each level-i phase in the number of rectangles from the optimal solution is then at most
f(Li) · |OPT| = f(L1) · |OPT|/2i−1, and since the number of level-i phases is 2i, the total loss due
to the cleanup procedure in level-i phases is bounded by 2f(L1)|OPT|. Summing up over all levels,
the total loss due to the cleanup procedure is bounded by 2|OPT|f(L1) log log n ≤ ε|OPT|/ log logn.
Additional loss is incurred due to the balanced Llog logn-corner partitions of level-(log log n) instances,
but this loss is analyzed as before, since Llog logn = Ω(log n/ε). In order to define level-i polygons, for
every level-(i − 1) polygon P , we compute a grid GP that has roughly O(ρi) vertical and horizontal
lines, so that for every vertical or horizontal strip S of the grid GP , the value of the optimal solution
of instance R(S ∩ P) is roughy |OPT(R(P))|/ρi. We then let Ci(P) contain all polygons P ′ ⊆ P that
have at most Li corners and are aligned with GP . The final set of level-i polygons is the union of all
sets Ci(P) for all level-(i − 1) polygons P . Let Ci denote the set of all level-i polygons, and let C be

the set of all polygons of all levels. Then it is immediate to verify that |Ci| ≤ |Ci−1| · ρO(Li)
i ≤ nO(L1),

and since we employ O(log log n) levels, overall |C| ≤ nO(L1 log logn) = nO((log logn)4/ε).

Future directions. Unlike the algorithm of [AW13], our algorithm does not extend to the weighted
setting where each rectangle has a weight and the goal is to find a maximum weight set of independent
rectangles. The main technical obstacle is the discretization procedure where we construct a grid and
we restrict the partitions into sub-instances to be aligned with the grid. In the weighted setting, there
may be some heavy rectangles of the optimal solution that are not aligned with the grid. The optimal
solution uses only a small number of such rectangles, but there may be many of them present in the
input instance, and we do not know beforehand which of these rectangles are in the optimal solution
and thus which rectangles to remove to obtain the alignment property. We leave the extension to the
weighted setting, as well as more general shapes such as rectilinear polygons, as directions for future
work.

Organization. We start with preliminaries in Section 2, and summarize the partitioning theorems
that we use in Section 3. We then give a general outline of the dynamic programming–based algorithm
and its analysis that we employ throughout the paper in Section 4. Section 5 contains a recap of the
algorithm of Adamaszek and Wiese [AW13] in our framework; we also improve its running time to
nO(logn)/ε3 . In Section 6 we introduce the technical machinery we need in order to improve the running

5

time of the algorithm, and show a QPTAS with running time nO(
√

logn)/ε3 , using the two-level approach.
This approach is then extended in Section 7 to O(log log n) recursive levels, completing the proof of
Theorem 1.1.

2 Preliminaries

In the Maximum Independent Set of Rectangles (MISR) problem, the input is a setR = {R1, R2, ..., Rn}
of n axis-parallel rectangles in the 2-dimensional plane. Each rectangle Ri is specified by the coor-

dinates of its lower left corner (x
(1)
i , y

(1)
i) and its upper right corner (x

(2)
i , y

(2)
i). We view the input

rectangles as open subsets of points of the plane, so Ri = {(x, y) | x(1)
i < x < x

(2)
i and y

(1)
i < y < y

(2)
i },

and we assume that all rectangles have non-zero area. We say that two rectangles Ri and Rj intersect
if Ri ∩ Rj 6= ∅, and we say that they are disjoint otherwise. The goal in the MISR problem is to
find a maximum-cardinality subset R∗ ⊆ R of rectangles, such that all rectangles in R∗ are mutually
disjoint.

Canonical Instances. We say that a set R of rectangles is non-degenerate, if and only if for every
pair R,R′ ∈ R of distinct rectangles, for every corner p = (x, y) of R and every corner p′ = (x′, y′)
of R′, x 6= x′ and y 6= y′. We say that an input R to the MISR problem is canonical, if and only if
R is a non-degenerate set of rectangles, whose corners have integral coordinates between 1 and 2n.
The following claim allows us to transform any input instance of the MISR problem into an equivalent
canonical instance. The proof uses standard arguments and appears in the Appendix.

Claim 2.1 There is an efficient algorithm, that, given an instance R of the MISR problem on n
rectangles, whose optimal solution value is denoted by w∗, computes a canonical instance R′ of MISR,
whose optimal solution value is at least w∗. Moreover, given a solution S ′ to R′, we can efficiently
compute a solution S to R of the same value.

From now on, we assume without loss of generality that our input instance R is a canonical one. Let
B be the closed rectangle whose lower left corner is (0, 0) and upper right corner is (2n + 1, 2n + 1).
We call B the bounding box of R. Notice that the boundaries of the rectangles in R are disjoint from
the boundary of B.

Sub-Instances. Over the course of our algorithm, we will define sub-instances of the input instance
R. Each such sub-instance is given by some (not necessarily connected) region S ⊆ B, and it consists
of all rectangles R ∈ R with R ⊆ S. In [AW13], each such sub-instance was given by a polygon S,
whose boundary edges are parallel to the axes, and the boundary contains at most poly log n edges.
We define our sub-instances slightly differently. Each sub-instance is defined by a family F of at most
O(log n) axis-parallel closed rectangles that are contained in B (but they do not necessarily belong
to R), where every pair of rectangles in F are mutually internally disjoint (that is, they are disjoint
except for possibly sharing points on their boundaries). We call such rectangles F ∈ F fake rectangles.
Let S(F) = B \

(⋃
F∈F F

)
. The sub-instance associated with F , that we denote by R(F), consists of

all rectangles R ∈ R with R ⊆ S(F). In other words, we view the fake rectangles as “holes” in the
area defined by the bounding box B, and we only consider input rectangles that do not intersect these
holes. For example, if S is a simple polygon whose boundary is axis-parallel, and contains L corners,
then, as we show later, we can “pad” the area B \ S with a set F of O(L) internaly disjoint fake
rectangles, and obtain the instance R(F), containing all rectangles R ⊆ S. However, our definition
of sub-instances is slightly more general than that of [AW13], as, for example, S(F) is not required

6

to be connected. As we will see later, this definition is more convenient when performing boundary
simplification operations. We notice that while the set R(F) of rectangles is non-degenerate, we do
not ensure that F is non-degenerate.

Given a sub-instance R(F), we denote the optimal solution for this sub-instance by OPTF . The
boundary complexity of the sub-instance R(F) is defined to be the number of the fake rectangles, |F|.
We denote by OPT = OPT∅ the optimal solution to the original problem.

We say that a set F of rectangles is a valid set of fake rectangles if and only if F consists of closed
rectangles F ⊆ B that are mutually internally disjoint.

An O(log log |OPT|)-Approximation Algorithm. We will need to use an approximation algorithm
for the problem, in order to estimate the values of optimal solutions of various sub-instances. In [CC09],
an O(log log n)-approximation algorithm was shown for MISR. Using the following theorem, whose
proof is deferred to the Appendix, we can improve the approximation factor to O(log log |OPT|).

Theorem 2.2 There is an efficient algorithm, that, given an instance R of MISR, whose optimal
solution value is denoted by w∗, computes another instance R′ of MISR with |R′| ≤ O

(
(w∗)4

)
, such

that the value of the optimal solution to R′ is Ω(w∗). Moreover, given any solution S′ to instance R′,
we can efficiently find a solution S to R, with |S| ≥ |S′|.

Corollary 2.3 There is a universal constant cA, and a (cA · log log |OPT|)-approximation algorithm
for MISR.

Proof: Given an instance R of MISR, whose optimal solution value is denoted by w∗ = |OPT|, we
compute a new instance R′ with |R′| = O

(
|OPT|4

)
, using Theorem 2.2. Let OPT′ denote an optimal

solution for R′. We then run the O(log log n)-approximation algorithm of [CC09] on R′. Let S′ be the
solution produced by that algorithm. Then |S′| ≥ Ω

(
|OPT′|/ log log |R′|

)
= Ω (|OPT|/ log log |OPT|).

Using Theorem 2.2, we then find a solution S to R of value at least Ω (|OPT|/ log log |OPT|).

Throughout the paper, we denote by A the algorithm from Corollary 2.3. Given any valid set F of
fake rectangles, we denote by A(F) the value of the solution returned by algorithm A on instance
R(F).

Decomposition Pairs and Triples. Our algorithm employs the Divide-and-Conquer paradigm,
similarly to the algorithm of [AW13]. Intuitively, given a sub-instance R(F) of the problem, associated
with the polygon S(F), we would like to partition it into two (or sometimes three) sub-instances,
associated with polygons S1 and S2, respectively. We require that S1 ∩ S2 = ∅ and S1, S2 (S(F).
Since we define the polygons in terms of the fake rectangles, we employ the following definition.

Definition 2.1 Let F any valid set of fake rectangles. We say that (F1,F2) is a valid decomposition
pair for F if for each i ∈ {1, 2}, Fi is a valid set of fake rectangles with S(Fi) (S(F), and S(F1) ∩
S(F2) = ∅. Similarly, we say that (F1,F2,F3) is a valid decomposition triple for F if for each
i ∈ {1, 2, 3}, Fi is a valid set of fake rectangles with S(Fi) (S(F), and for all 1 ≤ i 6= j ≤ 3,
S(Fi) ∩ S(Fj) = ∅.

Alignment. Let Z be any set of points in the plane. Let X be the set of all x-coordinates of the
points in Z, and Y the set of all y-coordinates of the points in Z. We say that a point p = (x, y) is
aligned with Z, if and only if x ∈ X and y ∈ Y (notice that this does not necessarily mean that p ∈ Z;
however, if, for example, X and Y only contain integers, then the coordinates of p must be integral).

7

More generally, we say that a polygon P is aligned with Z if and only if every corner of the boundary
of P is aligned with Z. It is easy to see that the alignment property is transitive: if P1, P2, P3 are
polygons, where P2 is aligned with the corners of P1, and P3 is aligned with the corners of P2, then
P3 is aligned with the corners of P1.

Rectangle Padding. We need the following two simple lemmas that allow us to pad polygons with
rectangles. The proofs are deferred to the Appendix.

Lemma 2.4 Let P be any simple closed axis-parallel polygon whose boundary has L corners. Then
there is a valid set F of fake rectangles, with |F| ≤ L− 3, such that

⋃
F∈F F = P . Moreover, if Z is

the set of all points serving as the corners of P , then every rectangle in F is aligned with Z.

Lemma 2.5 Let P be a simple open axis-parallel polygon whose boundary has L corners, and let B be
a closed rectangle (the bounding box), such that P ⊆ B. Then there is a valid set F of fake rectangles,
with |F| ≤ L+ 2, such that

⋃
F∈F F = B \ P . Moreover, if Z denotes the set of all points serving as

the corners of P and B, then every rectangle in F is aligned with Z.

3 Balanced Partitions of MISR Instances

Since we employ the divide-and-conquer paradigm, we need algorithms that partition a given instance
I of the MISR problem into a small number of sub-instances. We would like this partition to be roughly
balanced, so that the value of the optimal solution in each sub-instance is at most an α-fraction of
the optimal solution value for I, for some constant 0 < α < 1. We also need to ensure that we do not
lose too many rectangles by this partition. A very useful tool in obtaining such balanced partitions is
r-good partitions, that we define below.

Suppose we are given any sub-instance of our problem, defined by a valid set F of fake rectangles. Let
OPT′ = OPTF be any optimal solution to the instance R(F). We would like to find a partition P of
the bounding box B into rectangles, that we will refer to as “cells”. Each cell P ∈ P is viewed as a
closed rectangle, and we say that a rectangle R ∈ OPT′ intersects P if and only if P ∩ R 6= ∅. Given
a cell P , we let NP be the number of all rectangles of OPT′ intersecting P .

Definition 3.1 A partition P of B into rectangular cells is called r-good with respect to F and OPT′,
if and only if:

• each fake rectangle F ∈ F is a cell of P;

• for all other cells P , NP ≤ 20|OPT′|/r; and

• P contains at most c∗r cells, for some universal constant c∗ > 1.

We note that P \F defines a partition of S(F). It may be more intuitive to view the r-good partition
as a partition of S(F) and not of B. However, it is more convenient for us to define P as a partition
of B, as we will see later. Notice that we only require that the number of the rectangles of OPT′

intersecting each cell P ∈ P is at most 20|OPT′|/r, and we ignore all other rectangles of R (including
those that do not participate in R(F)).

The following theorem shows that there exists an r-good partition of B into rectangular cells, for a
suitably chosen parameter r. Similar theorems have been proved before [CS95, CF90, Har14]. We
include the proof of the theorem in the Appendix for completeness.

8

Theorem 3.1 Let F be a valid set of fake rectangles with integral coordinates, where |F| = m and
let OPT′ be any optimal solution to the instance R(F). Then for every max {m, 3} ≤ r ≤ |OPT′|/2,
there is an r-good (with respect to F and OPT′) partition P of B into rectangular cells, such that the
corners of each cell have integral coordinates.

Balanced Partitions. Let G = (V,E) be any embedded planar graph, with weights w(v) ≥ 0 on
the vertices of G, such that

∑
v∈V w(v) = W . The size of a face F in the embedding of G is the

number of vertices on the boundary of F , counting multiple visits when traversing the boundary. We
say that a simple cycle C of G is a weighted separator if the total weight of the vertices in the interior
of C, and the total weight of the vertices in the exterior of C is at most 2W/3. We use the following
theorem of Miller [Mil86].

Theorem 3.2 Let G = (V,E) be an embedded n-vertex 2-connected planar graph, with an assignment
w(v) of weights to its vertices. Then there exists a simple cycle weighted separator containing at most

2
√

2
⌊
s
2

⌋
n vertices, where s is the maximum face size.

The following two theorems are used to partition a given instance into sub-instances. Similar tech-
niques were used in previous work [AW13, Har14], so we defer the proofs of these theorems to the
Appendix. The first theorem allows us to reduce the boundary complexity of a given sub-instance, by
partitioning it into two smaller sub-instances with smaller boundary complexities, while the second
theorem allows us to partition a given sub-instance into several sub-instances whose optimal solution
values are significantly smaller than the optimal solution value of the original sub-instance. Both
partition procedures guarantee that the optimal solution value only goes down by a small amount.

Theorem 3.3 There is a universal constant c1 > 1, such that the following holds. Let F be any
valid set of fake rectangles, with |F| = L > 3, and let OPT′ be any optimal solution to R(F). Let
L ≤ r ≤ |OPT′|/2 be any parameter, and let P be any r-good (with respect to F and OPT′) partition
of B. Finally, let Z be the set of the corners of all rectangles in P. Then there are two sets F1,F2 of
fake rectangles, such that:

• (F1,F2) is a valid decomposition pair for F ;

• |F1|, |F2| ≤ 2
3L+ c1

√
r;

• |OPTF1 |+ |OPTF2 | ≥ |OPTF | ·
(

1− c1√
r

)
; and

• all rectangles in F1 ∪ F2 are aligned with Z.

Theorem 3.4 There is a universal constant c2 > 1, such that the following holds. Let F be a valid
set of fake rectangles, with |F| = L ≥ 0, and let OPT′ be any optimal solution to R(F). Let
max

{
L, 224c∗

}
≤ r ≤ |OPT′|/2 be a parameter, where c∗ is the constant from the definition of r-

good partitions, and let P be any r-good partition of B with respect to F and OPT′. Finally, let Z be
the set of the corners of all rectangles in P. Then there are two sets F1,F2 of fake rectangles, such
that:

• (F1,F2) is a valid decomposition pair for F ;

• |F1|, |F2| ≤ L+ c2
√
r;

• |OPTF1 |, |OPTF2 | ≤ 3|OPTF |/4;

9

• |OPTF1 |+ |OPTF2 | ≥ |OPTF | ·
(

1− c2√
r

)
; and

• all rectangles in F1 ∪ F2 are aligned with Z.

The following corollary plays an important role in all our algorithms. Roughly speaking, it allows us
to partition any sub-instance of the problem into three smaller sub-instances, whose optimal solution
values go down by a constant factor, but whose boundary complexities remain appropriately bounded.

Corollary 3.5 There is a universal constant c3 > 10, such that the following holds. For any parameter
L∗ > c3, for any valid set F of fake rectangles with |F| = L ≤ L∗, such that |OPTF | ≥ 64(L∗)2, there
are three sets F1,F2,F3 of fake rectangles, such that:

• (F1,F2,F3) is a valid decomposition triple for F ;

• |F1|, |F2|, |F3| ≤ L∗;

• For each 1 ≤ i ≤ 3, |OPTFi | ≤ 3|OPTF |/4;

•
∑3

i=1 |OPTFi | ≥ |OPTF | ·
(
1− c3

L∗

)
; and

• if the rectangles in F have integral coordinates, then so do the rectangles in F1 ∪ F2 ∪ F3.

Notice that in all of the above partitioning theorems, the optimal values of the resulting sub-instances
reduce by the factor of at least 3/4. It is therefore more natural for us to work with logarithms to the
base of 4/3. In the rest of this paper, unless stated otherwise, all logarithms are to the base of 4/3.

4 Algorithm Outline

All our algorithms follow the same general outline, that we describe here. We define a family C of
important sets of fake rectangles, that contains ∅, so that every element of C is a valid set of fake
rectangles. As an example, C may contain all valid sets F of fake rectangles with |F| ≤ L∗ for some
bound L∗, such that all corners of all rectangles in F have integral coordinates. Additionally, we define
a set C′ ⊆ C of basic important sets of fake rectangles. Intuitively, for each F ∈ C′, the corresponding
instance R(F) is “simple” in some sense: for example, its optimal solution value may be suitably
small. We assume that we are given an algorithm A′, that, given a set F ∈ C of fake rectangles,
tests whether F ∈ C′, and an algorithm A′′, that computes a (1 − ε/2)-approximate solution to each
instance R(F) with F ∈ C′. We discuss the running times of these algorithms later. We will ensure
that {B} ∈ C′ (the set of fake rectangles containing the bounding box only). This guarantees that for
every set F ∈ C \ C′ there is always a valid decomposition pair (F1,F2) with F1,F2 ∈ C - for example,
where F1 = F2 = {B}.

Once the families C, C′, and the algorithms A′,A′′ are fixed, our algorithm is also fixed, and proceeds
via simple dynamic programming, as follows. The dynamic programming table T contains, for every
important set F ∈ C of fake rectangles, an entry T [F], that will contain an approximate solution
to the corresponding instance R(F). In order to initialize T , for every important set F ∈ C of fake
rectangles, we test whether F ∈ C′ using algorithm A′, and if so, we apply algorithm A′′ to compute
a valid (1− ε/2)-approximate solution to instance R(F), which is then stored at T [F]. Once we finish
the initialization step, we start to fill out the entries T [F] for F ∈ C \ C′ from smaller to larger values
of the area of S(F).

10

Consider now some important set F ∈ C \ C′ of fake rectangles, and assume that for all F ′ ∈ C with
S(F ′) (S(F), we have already processed the entry T [F ′]. Entry T [F] is computed as follows. First,
for every triple F1,F2,F3 ∈ C of important sets of fake rectangles, such that (F1,F2,F3) is a valid
decomposition triple for F , we consider the solution X = T [F1] ∪ T [F2] ∪ T [F3]. We do the same for
every pair F1,F2 ∈ C of important sets of fake rectangles, such that (F1,F2) is a valid decomposition
pair for F . Among all such solutions X , let X ∗ be the one of maximum value. We then store the
solution X ∗ in T [F]. Note that since we ensure that every set F ∈ C \ C′ has a valid decomposition
pair (F1,F2) with F1,F2 ∈ C, this step is well defined. This finishes the description of the algorithm.
The final solution is stored in the entry T [∅]. Notice that the choice of C, C′, and the algorithms A′,A′′
completely determines our algorithm. The running time depends on |C|, and on the running times of
the algorithms A′ and A′′.

It is immediate to see that every entry T [F] of the dynamic programming table contains a feasible
solution to instance R(F). We only need to show that the value of the solution stored in T [∅] is close
to |OPT|. This is done by constructing a partitioning tree, that we define below.

Definition 4.1 Suppose we are given a canonical instance R of the MISR problem, a family C of
important sets of fake rectangles, and a subset C′ ⊆ C of basic important sets of fake rectangles.
Assume also that we are given a set F ∈ C of fake rectangles. A partitioning tree T (F) for F is a
rooted tree, whose every vertex v ∈ V (T) is labeled with an important set F(v) ∈ C of fake rectangles,
such that the following hold:

• if v is the root of the tree, then F(v) = F ; and

• if v is an inner vertex of the tree, and {v1, . . . , vr} are its children, then r ∈ {2, 3}, and {F(vi)}ri=1

is either a valid decomposition pair or a valid decomposition triple for F(v).

We say that T (F) is a complete partitioning tree for F , if additionally for every leaf vertex v of T (F),
F(v) ∈ C′.

Let I(T (F)) and L(T (F)) denote the sets of all inner vertices and all leaf vertices of the tree T (F),
respectively. For every inner vertex v ∈ I(T (F)), whose children are denoted by v1, . . . , vr, we define
the loss at v to be λ(v) = |OPTF(v)|−

∑r
i=1 |OPTF(vi)|. The loss of the tree T (F), denoted by Λ(T (F))

is |OPTF | −
∑

v∈L(T (F)) |OPTF(v)| =
∑

v∈I(T (F)) λ(v).

The following useful observation is immediate from the definition of the partitioning tree.

Observation 4.1 Let T (F) be a partitioning tree for some set F ∈ C. If U ⊆ V (T (F)) is any
subset of vertices of the tree, such that no vertex of U is a descendant of the other in the tree, then
{S(F(v))}v∈U are all mutually disjoint, and

∑
v∈U
|OPTF(v)| ≤ |OPTF |.

Definition 4.2 Suppose we are given a canonical instance R of the MISR problem, a family C of
important sets of fake rectangles, and a subset C′ ⊆ C of basic important sets of fake rectangles. A full
partitioning tree for R is a complete partitioning tree T (F) for F = ∅.

Given a full partitioning tree T , we will denote by I(T) and L(T) the sets of all the inner vertices
and all the leaf vertices of T , respectively. For every vertex v of T , we associate a value µ(v) with v,
as follows. If v is a leaf of T , then µ(v) is the value of the (1− ε/2)-approximate solution to instance

11

R(F(v)) returned by the algorithm A′′. If v is an inner vertex of T , then µ(v) is the sum of values
µ(v′) for all children v′ of v. It is immediate to see that for every vertex v of the full partitioning tree
T , µ(v) is the sum of the values µ(v′) for all descendants v′ of v that are leaves. We denote by µ(T)
the value µ(v) of the root vertex v of T . The following observation connects the value of the solution
computed by the dynamic programming algorithm to µ(T).

Observation 4.2 For every vertex v of the tree T , the entry T [F(v)] of the dynamic programming
table contains a solution to instance R(F(v)), whose value is at least µ(v).

Proof: The proof is by induction on the depth of the vertex v. The assertion is clearly true for the
leaves of the tree. Consider now some inner vertex v of the tree, and the corresponding important set
F(v) ∈ C of fake rectangles. Let v1, . . . , vr be the children of v (where r ∈ {2, 3}), and let F1, . . . ,Fr
be the sets of fake rectangles associated with them. Then {Fi}ri=1 is either a valid decomposition
pair or a valid decomposition triple for F(v), and for all 1 ≤ i ≤ r, Fi ∈ C. Therefore, the dynamic
programming algorithm considers the solution X , obtained by taking the union of the solutions stored
in {T [Fi]}ri=1. From the induction hypothesis, for each 1 ≤ i ≤ r, the value of the solution stored in
T [Fi] is at least µ(vi), and so the value of the final solution stored at T [F] is at least µ(v).

The following simple observation will be useful in analyzing the approximation factors achieved by
our algorithms.

Observation 4.3 Suppose we are given a canonical instance R of the MISR problem, a family C
of important sets of fake rectangles, and a subset C′ ⊆ C of basic important sets of fake rectangles.
Assume further that there exists a full partitioning tree T for R, whose loss Λ(T) ≤ ε|OPT|/2. Then
the dynamic programming-based algorithm described above computes a (1− ε)-approximate solution to
R.

Proof: Let vr be the root vertex of the tree T , so Fvr = ∅. From the above discussion, entry T [vr]
of the dynamic programming table stores a valid solution to instance R = R(F(vr)) of value at least
µ(vr). It now remains to show that µ(vr) ≥ (1− ε)|OPT|. Indeed:

µ(vr) =
∑

v∈L(T)

µ(v) ≥
∑

v∈L(T)

(1−ε/2)|OPTF(v)| = (1−ε/2) (|OPTvr | − Λ(T)) ≥ (1−ε/2)2|OPT| ≥ (1−ε)|OPT|.

Notice that in order to analyze our algorithm, we now only need to show the existence of a suitable
partitioning tree. We do not need to provide an efficient algorithm to construct such a tree, and in
particular, we can assume that we know the optimal solution OPT to our instanceR when constructing
the tree.

As a warm-up, we show a QPTAS whose running time is nO(log |OPT|/ε3). This algorithm is very similar
to the algorithm of [AW13], except that we use a somewhat more sophisticated partitioning scheme
(namely, Corollary 3.5). In order to develop the intuition for our final algorithm, we then improve the

running time to nO(
√

log |OPT|/ε3), and show an algorithm with running time nO((log log |OPT|/ε)4) at the
end. Notice that since we have assumed that our instance is canonical, |OPT| ≤ O(n4), and so the
running time of our final algorithm is nO((log logn/ε)4).

12

5 A QPTAS with running time nO(log |OPT|/ε3)

We need the following parameters for our algorithm. Let L∗ = 2c3 log |OPT|
ε , where c3 is the constant

from Corollary 3.5, and let τ = 64 (L∗)2 = Θ((log |OPT|/ε)2). Notice that any valid set F of fake
rectangles with |OPTF | > τ and |F| ≤ L∗ satisfies the conditions of Corollary 3.5.

We let the family C of important sets of fake rectangles contain all valid sets F of fake rectangles
with |F| ≤ L∗, such that all corners of all rectangles in F have integral coordinates. Therefore,
|C| = nO(L∗) = nO(log |OPT|/ε). The family C′ ⊆ C of basic sets of fake rectangles contains all sets F with
|OPTF | ≤ τ . We can verify whether F ∈ C′, and if so, we can find the optimal solution to instanceR(F)

in time nO(τ) = nO(log2 |OPT|/ε2). This defines the algorithms A′ and A′′, and we can now employ the
dynamic programming-based algorithm, described in Section 4. In order to analyze the running time of
the algorithm, observe that the initialization step takes time O(|C|) ·nO(log2 |OPT|/ε2) = nO(log2 |OPT|/ε2),
and the remaining part of the algorithm takes time O(|C|4poly(n)) = nO(log |OPT|/ε), so overall the

running time is nO(log2 |OPT|/ε2). We later show how to improve the running time to nO(log |OPT|/ε3) by
replacing algorithms A′ and A′′ with more efficient algorithms.

It now remains to show that the value of the solution computed by the algorithm is at least (1−ε)|OPT|.
We do so by the constructing a full partitioning tree T for R, as described in Section 4. We start
with the tree T containing a single vertex v, with F(v) = ∅. While there is a leaf vertex v ∈ T with
F(v) ∈ C \ C′ we add three children v1, v2 and v3 to vertex v. Applying Corollary 3.5 to F(v), we
obtain a decomposition triple (F1,F2,F3) for F(v), and we associate each of the three new vertices
v1, v2, v3 with the sets F1,F2 and F3, respectively. Notice that for i ∈ {1, 2, 3}, |Fi| ≤ L∗, and if
F(v) ∈ C, then all corners of all rectangles in Fi have integral coordinates, so F1,F2,F3 ∈ C. Notice

also that from Corollary 3.5, the loss of vertex v is λ(v) = |OPTF(v)| −
∑3

i=1 |OPTFi | ≤
c3|OPTF(v)|

L∗ .

The algorithm terminates when for every leaf vertex v of T , F(v) ∈ C′.

It is now enough to prove that the loss of the tree T is at most ε|OPT|/2. We partition the inner
vertices of the tree T into subsets U1, U2, . . ., where a vertex v ∈ I(T) belongs to Ui if and only if
the number of vertices of T lying on the unique path connecting v to the root of the tree is exactly i.
Since the values |OPTF(v)| decrease by the factor of at least 3/4 as we go down the tree, the number
of non-empty subsets Ui is bounded by log |OPT|. Consider now some 1 ≤ i ≤ log |OPT|. Notice that
for every pair v, v′ ∈ Ui of vertices, neither is a descendant of the other, and so from Observation 4.1,∑

v∈Ui |OPTF(v)| ≤ |OPT|. Therefore, the total loss of all vertices in Ui is:

∑
v∈Ui

λ(v) ≤
∑
v∈Ui

c3|OPTF(v)|
L∗

≤ c3|OPT|
L∗

Overall, the total loss of the tree T is:

log |OPT|∑
i=1

∑
v∈Ui

λ(v) ≤ c3|OPT| · log |OPT|
L∗

≤ ε|OPT|
2

,

since L∗ = 2c3 log |OPT|
ε .

So far, we have shown an algorithm that computes a (1−ε)-approximate solution in time nO(log2 |OPT|/ε2).
We can also use it to compute, for any instance R(F) defined by any valid set F of fake rectangles, a

(1− ε/2)-approximate solution for R(F), in time nO(log2 |OPTF |/ε2). We denote this algorithm by A∗.

13

We now describe a slightly modified version of the algorithm, whose running time is nO(log |OPT|/ε3).
We assume that ε > 1/ log2 |OPT|, since otherwise algorithm A∗ provides an (1 − ε)-approximation
in time nO(log |OPT|/ε3). The family C of important sets of fake rectangles remains the same as before,
but the family C′ ⊆ C of basic sets of fake rectangles is defined slightly differently: it contains all
sets F ∈ C of fake rectangles, such that algorithm A from Corollary 2.3 returns a solution of value
at most τ to instance R(F). We then let A′ be the algorithm A. Notice that if F ∈ C′, then
|OPTF | ≤ O(A(R(F)) log log |OPT|) = O(log2 |OPT| log log |OPT|/ε2) = O(poly log |OPT|). We can
now use algorithm A∗ to compute a (1 − ε/2)-approximate solution for every instance R(F) with

F ∈ C′, in time nO(log2 |OPTF |/ε2) = nO((log log |OPT|)2/ε2). The rest of the algorithm remains unchanged,
except that we now use the algorithm A∗ instead of A′′. It is immediate to verify that the running
time of the algorithm is nO(log |OPT|/ε3). For every set F ∈ C \ C′ of fake rectangles, we now have
|OPTF | ≥ A(F) ≥ τ , and so F is a valid input to Corollary 3.5. We can use the same construction of
the partitioning tree as before, to show that the value of the solution computed by the algorithm is
at least (1− ε)|OPT|.

6 A QPTAS with Running Time nO(
√

log |OPT|/ε3)

In Section 5, we have presented a (1 − ε)-approximation algorithm for MISR with running time
nO(log |OPT|/ε3). The running time directly depends on |C| = nO(log |OPT|/ε), and this value is the
bottleneck in the running time of the algorithm. Since the corners of the rectangles in F have integral
coordinates between 0 and 2n + 1, we have Θ(n2) choices for every corner of each such rectangle,
and since we allow the sets F ∈ C to contain up to L∗ = Θ(log |OPT|/ε) such rectangles, we obtain
nO(log |OPT|/ε) choices overall.

Let us informally define a set I of points in the plane to be a set of points of interest if I contains all
points that may serve as corners of fake rectangles in sets F ∈ C. In the algorithm from Section 5,
set I contains all points (x, y), where x and y are integers between 0 and 2n+ 1, and so |I| = Θ(n2).
In order to improve the running time of the algorithm, it is natural to try one of the following two
approaches: (i) reduce the number of points of interest; or (ii) reduce the parameter L∗ (the maximum
allowed cardinality of sets F ∈ C).

Unfortunately, it is not hard to see that neither of these approaches works directly. Since we eventually
need to consider sub-instances R(F) where |OPTF | is very small, we need to allow many points of
interest - almost as many as Θ(n2). This rules out the first approach.

In order to see that the second approach does not work directly, consider the partitioning tree T
that we have defined for the analysis of the algorithm, and the partition (U1, U2, . . . , Uz) of the inner
vertices of T into levels, according to their distance from the root vertex. Recall that the total loss of
all vertices at a given level Ui was O(ε|OPT|/ log |OPT|), and the number of levels is z = O(log |OPT|),
thus giving us a total loss of O(ε|OPT|) overall. In order to obtain a (1− ε)-approximation, the loss at
every level must be bounded by O(ε|OPT|/ log |OPT|), and so on average, when we apply Corollary 3.5
to some set F(v) ∈ C of fake rectangles, corresponding to some vertex v ∈ V (T), we cannot afford to
lose more than an O(ε|OPTF |/ log |OPT|)-fraction of the rectangles of OPTF . It is not hard to show
that this forces us to set L∗ = Ω(log |OPT|/ε) (in other words, we cannot obtain a substantially better
tradeoff between L∗ and the number of the rectangles lost, than that in Corollary 3.5).

We get around this problem as follows. Consider the process of constructing the partitioning tree
T , and let us assume that in every iteration, we choose the leaf v in the current tree with the
largest value |OPTF(v)| to process, breaking ties arbitrarily. We divide the execution of the algorithm

into O(
√

log |OPT|) phases, where the jth phase finishes when for every leaf v in the current tree,

14

|OPTF(v)| ≤ |OPT|/2j
√

log |OPT|. At the end of each phase, while there is a leaf v in T , whose

corresponding set F(v) of fake rectangles has boundary complexity |F(v)| > Ω(
√

log |OPT|/ε), we
repeatedly apply Theorem 3.3 in order to find a valid decomposition pair (F1,F2) for F(v), with
|F1|, |F2| < 3|F(v)|/4. This allows us to lower the boundary complexities of the instances that we
consider to O(

√
log |OPT|/ε). In the process of doing so, we will lose roughly an O(ε/

√
log |OPT|)-

fraction of the rectangles from the optimal solution. However, since the number of phases is bounded
by O(

√
log |OPT|), we can afford this loss. Therefore, sets F of fake rectangles that we obtain at the

end of each phase will have a small boundary complexity - only O(
√

log |OPT|/ε). We call such sets
F level-1 sets.

Inside each phase, we still need to allow the boundary complexities of the instances we consider to be
as high as Θ(log |OPT|/ε). However, we can now exploit the fact that for all instances processed in a

phase, the values of their optimal solutions are close to each other - to within a factor of 2
√

log |OPT|.
This allows us to define a smaller set of points of interest for the sub-instances considered in every
phase, through discretization. The resulting sets F of fake rectangles are called level-2 sets. In the
next section, we provide the technical machinery that allows us to perform this discretization, as well
as the analogues of Theorem 3.3 and Corollary 3.5 in this discretized setting. We then describe our
algorithm and its analysis. The technical tools developed in this section are also used in our final
nO(((log logn)/ε)4)-time algorithm.

6.1 Grid-Aligned r-good Partitions

A grid G of size (z × z) is defined by a collection V = {V0, . . . , Vz} of vertical lines, and a collection
H = {H0, . . . ,Hz} of horizontal lines, where V0 and Vz coincide with the left and the right boundaries
of the bounding box B respectively, and H0, Hz coincide with the bottom and the top boundaries of
B respectively. Each vertical line Vi is specified by its x-coordinate xi, and it starts at the bottom
boundary of B and ends at the top boundary of B. Similarly, each horizontal line Hi is specified by
its y-coordinate yi, and it starts at the left boundary of B and ends at the right boundary of B. We
assume that the vertical lines are indexed by their left-to-right order, that is, for each 0 ≤ i < z, Vi
lies to the left of Vi+1, and similarly, all horizontal lines are indexed by their bottom-to-top order.
Every consecutive pair Vi, Vi+1 of vertical lines defines a vertical strip SVi of the bounding box, and
every consecutive pair Hj , Hj+1 of horizontal lines defines a horizontal strip SHj . The set of vertices
of G is the set of all intersection points of its vertical and horizontal lines.

Suppose we are given a grid G, and a valid set F of fake rectangles. We say that F is aligned with G,
if every corner of every rectangle of F belongs to the set Z of the vertices of the grid G.

Definition 6.1 Given a valid set F of fake rectangles and a parameter ρ ≥ 1, we say that a grid
G = (V,H) is ρ-accurate for F , if and only if:

• for every vertical strip SVi of the grid, the value of the optimal solution of the sub-instance defined
by all rectangles contained in SVi ∩ S(F) is at most d|OPTF |/ρe, and the same holds for every
horizontal strip; and

• F is aligned with the grid G.

Notice that we allow ρ > |OPTF |.

The following two observations, that we repeatedly use later, follow easily from the definition of
ρ-accurate grids.

15

Observation 6.1 If G is a ρ-accurate grid for some valid set F of fake rectangles, then for every
ρ′ ≤ ρ, G is a ρ′-accurate grid for F .

Observation 6.2 Let G be a ρ-accurate grid for some valid set F of fake rectangles, and let F ′ be any
valid set of fake rectangles with S(F ′) ⊆ S(F), such that F ′ is aligned with G. If |OPTF ′ | ≥ α|OPTF |,
then G is an α · ρ-accurate grid for F ′.

We will also need the following claim. The proof is deferred to the Appendix.

Claim 6.3 There is an efficient algorithm, that, given a valid set F of fake rectangles and a parameter
ρ ≥ 1, computes a ρ-accurate grid for F of size (z× z), where z ≤ 4cAρ log log |OPTF |+ 2|F|, and cA
is the constant from Corollary 2.3. Moreover, if all corners of all rectangles in R ∪ F have integral
coordinates, then so do all vertices of the grid G.

Over the course of our algorithm, we will construct ρ-accurate grids G with respect to some valid
sets F of fake rectangles, for some values ρ that we specify later. We would like then to find valid
decomposition pairs and triples for F , that are aligned with the grid G. In order to be able to do
so, we need an analogue of Corollary 3.5, that allows us to find a valid decomposition triple for a
G-aligned valid set F of fake rectangles. Recall that Corollary 3.5 uses Theorems 3.3 and 3.4 in
the two partitions it performs, and these two theorems in turn start with some r-good partition of
the input instance R(F). The sub-instances produced by these theorems are then guaranteed to be
aligned with the r-good partition. We need the final sub-instances to be aligned with the grid G.
Therefore, we generalize the notion of r-good partitions to grid-aligned r-good partitions. We then
show an analogue of Theorem 3.1, proving that such r-good grid-aligned partitions can be constructed
with the right choice of parameters. Finally, we prove an analogue of Corollary 3.5 that produces
grid-aligned sub-instances. We start with a definition of a grid-aligned r-good partition.

Definition 6.2 Let F be any valid set of fake rectangles, OPT′ any optimal solution to instance R(F),
and let G a be grid. A partition P of B into rectangular cells is called a G-aligned r-good partition
with respect to F and OPT′, iff:

• Every cell in the partition intersects at most 20|OPT′|/r rectangles of OPT′;

• P contains at most c∗∗r cells, where c∗∗ ≥ 1 is some universal constant;

• Each fake rectangle F ∈ F is a cell of P; and

• Every cell in the partition is aligned with the grid G.

Notice that a G-aligned r-good partition is in particular also an r-good partition (where we use a
constant c∗∗ instead of c∗, but this is immaterial because both are some universal constants). In
particular, Theorems 3.3 and 3.4 still remain valid if we apply them to G-aligned r-good partitions,
except that we need to replace c∗ by c∗∗. The proof of the following Theorem is deferred to the
Appendix.

Theorem 6.4 Let F be any valid set of fake rectangles with |F| = m and OPT′ any optimal solution
to R(F). Let G be a ρ-accurate grid with respect to F , for some ρ > max {m, 3}, and let r be a
parameter, with max {m, 3} ≤ r ≤ min

{
ρ, |OPT′|/16

}
. Then there is a G-aligned r-good partition P

of B, with respect to F and OPT′.

16

Finally, we prove an analogue of Corollary 3.5 to obtain partitions into sub-instances that are aligned
with G. The proof is almost identical to the proof of Corollary 3.5, except that we use Theorem 6.4
instead of Theorem 3.1 to find grid-aligned r-good partitions. For completeness, the proof appears in
the Appendix.

Corollary 6.5 There is a universal constant c̃ > 10, such that the following holds. For any parameter
L∗ > c̃, for any valid set F of fake rectangles, with |F| = L ≤ L∗ and |OPTF | ≥ 512(L∗)2, given any
ρ-accurate grid G for F , where ρ ≥ 32(L∗)2, there is a valid decomposition triple (F1,F2,F3) for F ,
such that:

• for all 1 ≤ i ≤ 3, |Fi| ≤ 3L∗/4;

• for all 1 ≤ i ≤ 3, |OPTFi | ≤ 3|OPTF |/4;

•
∑3

i=1 |OPTFi | ≥ |OPTF | ·
(
1− c̃

L∗

)
; and

• The rectangles in F1 ∪ F2 ∪ F3 are aligned with the grid G.

The following corollary follows immediately from the above discussion, and it will also be useful for
us later.

Corollary 6.6 For any valid set F of fake rectangles with |F| = L > c̃ and |OPTF | ≥ 512L2, given
any ρ-accurate grid G for F , where ρ ≥ 32L2, there is a valid decomposition pair (F1,F2) for F , such
that:

• |F1|, |F2| ≤ 3L/4;

• |OPTF1 |+ |OPTF2 | ≥ |OPTF | ·
(
1− c̃

L

)
; and

• The rectangles in F1 ∪ F2 are aligned with the grid G,

where c̃ is the constant from Corollary 6.5.

The proof follows from the first step in the proof of Corollary 6.5, that produces two sub-instances
F ′1,F ′2 of F with the desired properties, after setting L∗ = L.

6.2 Cleanup Trees

Recall that in order to analyze our dynamic programming algorithm, we employ partitioning trees.
Recall also that we divide the execution of our algorithm into O(

√
log |OPT|) phases, where phase j

ends when for every leaf v of the current tree, |OPTF(v)| <
|OPT|

2j
√

log |OPT|
. Once a phase ends, we would

like to reduce the boundary complexity of each instance corresponding to the leafs of the current tree,
and we will employ cleanup trees in order to do so. We now define cleanup trees.

Definition 6.3 Suppose we are given integral parameters c̃ < L2 < L1, where c̃ is the constant from

Corollary 6.6, and denote δ =
⌈
log4/3(L1/L2)

⌉
. Assume further that we are given a valid set F of fake

rectangles with |F| ≤ L1, and a ρ-accurate grid G for F , for some parameter ρ. An (L1, L2)-cleanup
tree for F and G is a rooted binary tree T , such that every vertex v of T is associated with some valid
set F(v) of fake rectangles, and the following holds:

17

• F(v) is aligned with G and |F(v)| ≤ L1;

• if v is the root vertex of T , then F(v) = F ;

• if v is an inner vertex of T , then it has exactly two children, that we denote by v1 and v2, and
(F(v1),F(v2)) is a valid decomposition pair for F(v); and

• if v is a leaf of T , then either |F(v)| ≤ L2 with |OPTF(v)| ≥ |OPTF |/Lδ+2
1 , or S(F(v)) = ∅.

Given a cleanup tree T , let I(T) and L(T) denote the sets of its inner vertices and leaves, re-
spectively. For an inner vertex v ∈ I(T), whose children are denoted by v1 and v2, the loss at v
is λ(v) = |OPTF(v)| − |OPTF(v1)| − |OPTF(v1)|. The total loss of the tree T , Λ(T) = |OPTF | −∑

v∈L(T) |OPTF(v)| =
∑

v∈I(T) λ(v).

Theorem 6.7 Suppose we are given integral parameters c̃ < L2 < L1, where c̃ is the constant from

Corollary 6.6, and denote δ =
⌈
log4/3(L1/L2)

⌉
. Assume further that we are given a valid set F of fake

rectangles with |F| ≤ L1 and |OPTF | ≥ 512Lδ+2
1 , and a ρ-accurate grid G for F , for some parameter

ρ > 32Lδ+2
1 . Then there is an (L1, L2)-cleanup tree T for F and G, whose loss Λ(T) ≤ 12c̃|OPTF |

L2
.

Proof: For all integers 0 ≤ i ≤ logL1 − 1, we say that a vertex v of tree T is a level-i vertex if
L1

(4/3)i+1 < |F(v)| ≤ L1

(4/3)i
. We say that it is an interesting vertex if S(F(v)) 6= ∅. Throughout the

construction of the tree T we maintain the following invariant: if a vertex v of T is an interesting
level-i vertex, for some 0 ≤ i ≤ logL1 − 1, then:

|OPTF(v)| ≥
|OPTF |
Li1

.

We also ensure that for every vertex v of T , |F(v)| ≤ L1, and F(v) is aligned with G.

We start our construction with the root v0 of T , and we set F(v0) = F . Clearly, our invariant holds
for T . While there is an interesting leaf vertex v in the tree, with |F(v)| > L2, select any such
vertex, and assume that v belongs to some level i, for 0 ≤ i ≤ δ. Recall that from our invariant,
|OPTF(v)| ≥

|OPTF |
Li1

≥ |OPTF |
Lδ1

. From Observation 6.2, G remains a ρ′ = ρ
Lδ1

-accurate grid for F(v).

Since we have assumed that ρ > 32Lδ+2
1 , we get that ρ′ ≥ 32L2

1 ≥ 32|F(v)|2, and since we have
assumed that |OPTF | ≥ 512Lδ+2

1 , we get that |OPTF(v)| ≥ 512L2
1.

Therefore, we can apply Corollary 6.6 to F , to obtain a valid decomposition pair (F1,F2) for F , such
that both F1 and F2 are aligned with G, and |F1|, |F2| ≤ 3|F|/4. Assume without loss of generality

that |OPTF1 | ≤ |OPTF2 |. We add two children, v1 and v2 to the tree T . If |OPTF1 | ≥
|OPTF(v)|

L1
, then

we set F(v1) = F1 and F(v2) = F2. Notice that both v1 and v2 now belong to level (i+ 1), and:

|OPTF1 |, |OPTF2 | ≥
|OPTF(v)|

L1
≥ |OPTF |

Li+1
1

,

so our invariant continues to hold.

Otherwise, we let F(v1) = {B}, so S(F(v1)) = ∅, and we let F(v2) = F2. As before, v2 is a level-(i+1)
vertex, and the invariant continues to hold.

Recall that |OPTF(v)| − (|OPTF1 |+ |OPTF2 |) ≤
c̃·|OPTF(v)|
|F(v)| ≤ c̃·|OPTF(v)|(4/3)i+1

L1
, since we assumed that

v lies at level i. Additionally, we may discard up to
|OPTF(v)|

L1
rectangles if |OPTF1 | <

|OPTF(v)|
L1

.
Therefore, in total:

18

λ(v) = |OPTF(v)| −
(
|OPTF(v1)|+ |OPTF(v2)|

)
≤

2c̃ · |OPTF(v)|(4/3)i+1

L1
.

The algorithm terminates when for every leaf vertex v, either |F(v)| ≤ L2, or S(F(v)) = ∅. It
is immediate to verify that the algorithm constructs a valid cleanup tree, and for every leaf vertex
v ∈ L, with S(F(v)) 6= ∅, we get that |F(v)| ≤ L2, and |OPTF(v)| ≥ |OPTF |/Lδ+2

1 . We now only
need to bound the loss of the tree. Let I = I(T) denote the set of all inner vertices of T . For all
0 ≤ i ≤ δ, let Ui denote the set of all inner vertices of T that belong to level i. Then I =

⋃δ
i=0 Ui.

If v, v′ ∈ Ui, then neither can be a descendant of the other in T , and so from Observation 4.1,∑
v∈Ui |OPTF(v)| ≤ |OPTF |. Since the loss at every level-i vertex v is bounded by

2c̃·|OPTF(v)|(4/3)i+1

L1
,

we get that:

∑
v∈Ui

λ(v) ≤
∑
v∈Ui

2c̃ · |OPTF(v)|(4/3)i+1

L1
≤ 2c̃ · |OPTF |(4/3)i+1

L1
,

and so overall:

Λ(T) =

δ∑
i=0

∑
v∈Ui

λ(v) ≤ 2c̃ · |OPTF |
δ∑
i=0

(4/3)i+1

L1
≤ 12c̃|OPTF |

L2
.

6.3 The Algorithm

Recall that all logarithms in this section are to the base of 4/3. For convenience, we denote |OPT|
by N . We assume that ε > 1/ log4N , since otherwise the (1 − ε)-approximation algorithm A∗ with

running time nO(log2N/ε2) from Section 5 gives an (1 − ε)-approximation in time nO(
√

logN/ε3). We

use three parameters: L∗1 = 100c̃
√

logN
ε , L∗2 = 100c̃ logN

ε , and ρ =
(

4
3

)2√logN
, where c̃ is the parameter

from Corollary 6.5. Let δ = dlog(L∗2/L
∗
1)e = Θ(log logN), and let η = 512(L∗2)δ+3 · (4/3)

√
logN =

(logN)O(log logN) · (4/3)
√

logN = 2Θ(
√

logN). We will assume that N is large enough, so, for example,(
4
3

)√logN
> 32(L∗2)δ+3 = 2Θ((log logN)2), as otherwise N is bounded by some constant and the problem

can be solved efficiently via exhaustive search.

We define the family C of important sets of fake rectangles in two steps. Set C will consist of two
subsets C1 and C2, that are defined at step 1 and step 2, respectively.

Step 1: Family C1. Family C1 contains all valid sets F of fake rectangles, such that |F| ≤ L∗1, and
all rectangles in F have integral coordinates between 0 and 2n + 1. It is immediate to verify that
|C1| = nO(

√
logN/ε). Notice that {∅} ∈ C1.

Step 2: Family C2. Consider now any important set F ∈ C1 of fake rectangles. We define a
collection C2(F) of sets of fake rectangles, and we will eventually set C2 =

⋃
F∈C1 C2(F).

In order to define the family C2(F) of fake rectangles, we apply Claim 6.3 to construct a ρ-accurate
grid G for F , so that all vertices of G have integral coordinates. The size of the grid is (z × z), where
z = O(ρ log logN + |F|) ≤ O(ρ log logN +

√
logN/ε) ≤ 2O(

√
logN). We then let C2(F) contain all valid

19

sets F ′ of fake rectangles, with S(F ′) ⊆ S(F) and |F ′| ≤ L∗2, such that F ′ is aligned with G. Notice
that C2(F) ∩ C1 6= ∅, as for example, both families contain the sets F and {B}.

Clearly, |C2(F)| ≤ zO(L∗2) = 2O(log3/2N/ε) = nO(
√

logN/ε), and we can compute the family C2(F) in time
nO(
√

logN/ε).

Finally, we set C2 =
⋃
F∈C1 C2(F), and C = C1 ∪ C2. Then |C| ≤ |C1| +

∑
F∈C1 |C2(F)| ≤ |C1| ·

nO(
√

logN/ε) ≤ nO(
√

logN/ε).

We now define the family C′ ⊆ C of basic sets of fake rectangles, and the corresponding algorithms
A′ and A′′. Recall that A is the (cA log log |OPT|)-approximation algorithm for MISR from Corol-
lary 2.3, and for any valid set F of fake rectangles, we denote by A(F) the value of the solution
produced by algorithm A on input R(F). Family C′ contains all sets F ∈ C with A(F) < η,
and we use the algorithm A in order to identify the sets F ∈ C′. Notice that if F ∈ C′, then
|OPTF | ≤ O(η log logN) ≤ 2O(

√
logN). We can compute an (1 − ε/2)-approximate solution to each

such instance R(F) in time nO(
√

logN/ε3), using the (1 − ε)-approximation algorithm from Section 5,
whose running time is nO(log |OPTF |/ε3) = nO(

√
logN/ε3). We employ this algorithm as A′′.

We can now use the dynamic programming-based algorithm from Section 4. The initialization step
takes time at most |C| · nO(

√
logN/ε3) = nO(

√
logN/ε3), and the rest of the algorithm runs in time

O(|C|4) = nO(
√

logN/ε), so the total running time is nO(
√

logN/ε3). It now remains to show that the
algorithm computes a solution of value at least (1 − ε)|OPT|. As before, we do so using partitioning
trees.

6.4 Analysis

In this section, we analyze the algorithm, by constructing the partitioning tree T . Our tree T will be
composed of a number of smaller trees, that we compute using the following theorem.

Theorem 6.8 For every set F ∈ C1 \C′ of fake rectangles, there is a partitioning tree T (F), such that

for every leaf vertex v ∈ L(T (F)), either (i) S(F) = ∅; or (ii) F(v) ∈ C1 and |OPTF(v)| ≤
|OPTF |

(4/3)
√

logN
.

The loss of the tree Λ(T) ≤ 24c̃|OPTF |
L∗1

.

Proof: Let G be the ρ-accurate grid that we have computed for F . Our initial tree T (F) consists
of a single vertex v, with F(v) = F . The construction of the tree T (F) consists of two stages. The

first stage is executed as long as there is any leaf vertex v in T (F) with |OPTF(v)| ≥
|OPTF |

(4/3)
√
logN

.

During this stage, we will ensure that throughout its execution, for every vertex v of the tree, if
S(F(v)) 6= ∅, then |OPTF(v)| ≥

|OPTF |
L∗2·(4/3)

√
logN

. Notice that, since F 6∈ C′, |OPT(F)| ≥ A(F) ≥

η = 512(L∗2)δ+3 · (4/3)
√

logN , and so for each vertex v of the tree with S(F(v)) 6= ∅, we get that

|OPTF(v)| ≥
|OPTF |

L∗2·(4/3)
√
logN

≥ 512(L∗2)δ+2.

Clearly, the invariant holds at the beginning of the algorithm. In every iteration of the first stage,
we consider some leaf vertex v with |OPTF(v)| ≥

|OPTF |
(4/3)

√
logN

. Let ρ′ = ρ

(4/3)
√
logN

= (4/3)
√

logN . From

Observation 6.1, grid G remains a ρ′-accurate grid for F(v).

Since we are guaranteed that
(

4
3

)√logN
> 32(L∗2)δ+3, we get that ρ′ ≥ 32(L∗2)2, and we can apply

Corollary 6.5 to obtain a valid decomposition triple (F1,F2,F3) for F(v), where for each 1 ≤ i ≤ 3,
|Fi| ≤ L∗2 and Fi is aligned with G, and so Fi ∈ C2(F).

Assume without loss of generality that |OPTF1 | ≤ |OPTF2 | ≤ |OPTF3 |. Notice that, since |OPTF3 | ≤

20

3|OPTF(v)|/4, and
∑3

i=1 |OPTFi | ≥ |OPTF(v)|
(

1− c̃
L∗2

)
, we are guaranteed that |OPTF1 |+ |OPTF2 | ≥

|OPTF(v)|/8, and so |OPTF2 | ≥ |OPTF(v)|/16. We add three new vertices v1, v2, v3 to the tree as the
children of v, and we set F(v2) = F2 and F(v3) = F3. Notice that both F2,F3 ∈ C2(F), and the
invariant holds for them.

If |OPTF1 | ≥
|OPTF(v)|

L∗2
, then we set F(v1) = F1, and otherwise we set F(v1) = {B}. It is easy to see

that our invariant continues to hold, and λ(v) ≤ 2c̃|OPTF(v)|
L∗2

. This completes the description of the first

stage. Let L′ be the set of all leaf vertices at the end of the first stage, and let I ′ be the set of all inner
vertices. We now bound the total loss

∑
v∈I′ λ(v), as follows. Notice that the longest root-to-leaf path

in T has length at most
√

logN . We partition the vertices of I ′ into
√

logN classes, where class Ui,
for 1 ≤ i ≤

√
logN contains all vertices v, such that the unique path from v to the root of the tree

contains exactly i vertices. As before, if two vertices v, v′ ∈ Ui, then neither of them is a descendant
of the other, and so

∑
v∈Ui |OPTF(v)| ≤ |OPTF |. We can now bound the total loss of all vertices in

class i by:

∑
v∈Ui

λ(v) ≤
∑
v∈Ui

2c̃|OPTF(v)|
L∗2

≤ 2c̃|OPTF |
L∗2

.

Overall,
∑

v∈I′ λ(v) ≤
∑√logN

i=1

∑
v∈Ui λ(v) ≤ 2c̃|OPTF |

√
logN

L∗2
.

We now proceed to describe the second stage of the algorithm. Consider some leaf vertex v ∈ L′,
such that S(F(v)) 6= ∅. Our invariant guarantees that |OPTF(v)| ≥

|OPTF |
L∗2·(4/3)

√
logN

≥ η

L∗2·(4/3)
√

logN
≥

512(L∗2)δ+2. Let ρ′′ = ρ

L∗2·(4/3)
√
logN

= (4/3)
√
logN

L∗2
. Then G remains a ρ′′-accurate grid for F(v), from

Observation 6.1. Since we have assumed that
(

4
3

)√logN
> 32(L∗2)δ+3, we get that ρ′′ ≥ 32(L∗2)δ+2.

Therefore, we can construct an L∗2–L∗1-cleanup tree T ′(v) for F(v) and G. From the definition of the
cleanup tree, it is easy to verify that for every vertex v′ ∈ V (T ′(v)), F(v′) ∈ C2(F) ⊆ C. Moreover, if
v′ is a leaf of T ′(v) with S(F(v′)) 6= ∅, then |F(v′)| ≤ L∗1, and so F(v′) ∈ C1, as required.

Once we add a clean-up tree to each vertex v ∈ L′ with S(F(v)) 6= ∅, we obtain the final tree T (F).

Recall that the loss of the cleanup tree T ′(v) is at most
12c̃|OPTF(v)|

L∗1
. Since for every pair v1, v2 ∈ L′

of vertices, neither vertex is a descendant of the other in tree T (F), we get that the total loss of all
cleanup trees is:

∑
v∈L′

Λ(T ′(v)) ≤
∑
v∈L′

12c̃|OPTF(v)|
L∗1

≤ 12c̃|OPTF |
L∗1

.

The total loss of the tree T (F) can now be bounded as follows:

Λ(T (F)) =
∑

v∈I(T (F))

λ(v) =
∑
v∈I′

λ(v)+
∑
v∈L′

Λ(T ′(v)) ≤ 2c̃|OPTF |
√

logN

L∗2
+

12c̃|OPTF |
L∗1

≤ 24c̃|OPTF |
L∗1

,

since L∗2 = L∗1 ·
√

logN .

We are now ready to complete the construction of the final partitioning tree T . The construction
consists of

√
logN phases. We start with tree T containing a single vertex v0, associated with the

important set of fake rectangles F(v0) = {∅}. Throughout the execution of the algorithm, we ensure

21

that if v is a leaf vertex of the current tree T , then either S(F(v)) = ∅, or F(v) ∈ C1. The invariant
is clearly true at the beginning of the algorithm.

In order to execute the ith phase, we let Ui contain all leaf vertices v of the current tree T with
F(v) 6∈ C′. For every vertex v ∈ Ui, we construct the tree T (v) given by Theorem 6.8, and add it
to T , by identifying its root vertex with v. Let L(v) be the set of all leaf vertices of the tree T (v).

Recall that Λ(T (v)) = |OPT(F(v))| −
∑

v′∈L(v) |OPT(F(v′))| ≤ 24c̃|OPTF(v)|
L∗1

. Notice that for every leaf

vertex v′ ∈ L(T (v)), we are guaranteed that either S(F(v′)) = ∅, or F(v′) ∈ C1, and in the latter case

|OPTF(v′)| ≤
|OPTF(v)|

(4/3)
√
logN

. Since for every pair v1, v2 ∈ Ui of vertices, neither vertex is a descendant of

the other in T ,
∑

v∈Ui |OPTF(v)| ≤ |OPT|, and so:

∑
v∈Ui

Λ(T (v)) ≤
∑
v∈Ui

24c̃|OPTF(v)|
L∗1

≤ 24c̃|OPT|
L∗1

.

Clearly, after at most
√

logN phases, we obtain a valid partitioning tree T , such that for every leaf
vertex v of T , F(v) ∈ C′. It is easy to verify that the total loss of the tree T is bounded by:

Λ(T) ≤

√
logN∑
i=1

∑
v∈Ui

Λ(T (v)) ≤ 24c̃|OPT|
√

logN

L∗1
≤ |OPT|ε

2
,

since L∗1 = 100c̃
√

logN/ε. From Observation 4.3, we conclude that our algorithm computes a (1− ε)-
approximate solution, in time nO(

√
logN/ε3).

7 A QPTAS with Running Time nO((log log |OPT|)4/ε4)

We start with an intuitive high-level overview of the algorithm. This overview is over-simplified and
imprecise, and it is only intended to provide intuition. A natural way to further improve the running
time of the QPTAS from Section 6 is to use more levels of recursion, namely: instead of just two
sets C1, C2 ⊆ C, we will have h = Θ(log logN) such sets, where we refer to the sets F ∈ Ci as level-i
sets, and to corresponding instances R(F) as level-i instances. We will also use parameters L1, . . . , Lh
associated with the instances of different levels. As before, family C1 will contain all valid sets F of
fake rectangles, whose corners have integral coordinates, and |F| ≤ L1. For each 1 < i ≤ h, for every
set F ∈ Ci−1 of fake rectangles, we will define a family Ci(F) of sets of fake rectangles, as follows.
We compute a ρi−1-accurate grid Gi−1 for F , for an appropriately chosen parameter ρi−1, and we
let Ci(F) contain all valid sets F ′ of fake rectangles that are aligned with Gi−1, such that |F ′| ≤ Li
and S(F ′) ⊆ S(F). We then set Ci =

⋃
F∈Ci−1

Ci(F). Notice that the same set F ′ of fake rectangles
may belong to several families Ci(F). It will be convenient in our analysis to view each such set as a
separate set (though the algorithm does not distinguish between them), and to keep track of the sets of
fake rectangles from C1, . . . , Ci−1, and their corresponding grids G1, . . . , Gi−1, that were used to create
the set F ′. In order to do so, we will denote each level-i instance by F(i) = (F1, G1, . . . ,Fi−1, Gi−1,Fi),
where for 1 ≤ i′ < i, Gi′ is a ρi′-accurate grid for Fi′ , though only the set Fi is added to Ci. Before
we proceed to a formal definition of the sets Ci, we need the following definition.

Definition 7.1 Let G = (V,H), G′ = (V ′,H′) be two grids. We say that G′ is aligned with G iff
V ′ ⊆ V and H′ ⊆ H.

22

Claim 7.1 Let F be any valid set of fake rectangles, and let G be a ρ-accurate grid for F , for some
parameter ρ ≥ 1. Then for any 1 ≤ ρ′ ≤ ρ, we can efficiently construct a ρ′-accurate grid G′ for F of
size (z × z), where z ≤ 2(4ρ′cA log log(|OPTF |) + 2|F|), such that G′ is aligned with G.

Proof: We start by constructing a ρ′-accurate grid G′′ = (V ′′,H′′) for F , of size (z′ × z′), where
z′ ≤ 4ρ′cA log log(|OPT(F)|)+2|F|, using Claim 6.3. In order to construct our final grid G′ = (V ′,H′),
start with V ′ = ∅. For each vertical line V ∈ V ′′, if V ∈ V, then we add V to V ′. Otherwise, we add to
V ′ two vertical lines of V: one that lies immediately to the left of V , and one that lies immediately to
the right of V . This finishes the definition of the set V ′ of vertical lines of G′. Notice that every vertical
strip of G′ is either contained in some vertical strip of G′′, or it is contained in some vertical strip of
G. Since ρ ≥ ρ′, the maximum number of mutually disjoint rectangles contained in each vertical strip
of G′ is at most d|OPT(F)|/ρ′e, as required. The set H′ of the horizontal lines of G′ is constructed
similarly.

All logarithms in this section are to the base of 2, unless stated otherwise. For convenience of notation,
we denote exp(i) = 2i. We denote by N the smallest integral power of 2, such that N ≥ |OPT|. We
assume that ε > 1/ logN , since otherwise the (1 − ε)-approximation algorithm with running time
nO(logN/ε3) from Section 5 has running time nO(1/ε4). We assume that N is large enough, so, for
example, logN > c̃ · cA(log logN)5, as otherwise N is bounded by some constant and the problem
can be solved efficiently via exhaustive search. Recall that A is the (cA log log |OPT|)-approximation
algorithm for MISR from Corollary 2.3, and for any valid set F of fake rectangles, we denote by A(F)
the value of the solution produced by algorithm A on input R(F).

7.1 Parameter Setting

We start with h∗ = log logN .

For each 1 ≤ i ≤ h∗, we define a parameter Li = c̃·(log logN)3·2i
ε , that will serve as the bound on the

number of fake rectangles in each set F ∈ Ci. Notice that L1 < L2 < · · · < Lh∗ = c̃ logN(log logN)3

ε .

Notice also that for 1 ≤ i < h∗,
⌈
log4/3(Li+1/Li)

⌉
=
⌈
log4/3 2

⌉
= 3, and we denote this value by δ.

We let η = 32L2δ+4
h∗ . Since we have assumed that ε > 1/ logN and N is large enough, it is easy to

verify that logN < η ≤ logO(1)N .

For 1 ≤ i ≤ h∗, we define ρi = N1/2i . Clearly, for all 1 < i ≤ h∗, ρi =
√
ρi−1. We let h be

the largest integer, so that ρh > η320. It is easy to verify that η320 < ρh ≤ η640, and h < h∗, as
ρh∗ = 1. The number of the recursive levels in our construction will be h. Finally, we define the
value τ∗ = ρ3

h−1 = (logN)Θ(1). From our definitions, we immediately obtain the following inequalities.
First, for all 1 ≤ i < h and 1 ≤ j ≤ h,

ρi ≥ (32L2δ+4
j)320, (1)

since ρi ≥ ρh−1 ≥ η320 ≥ (32L2δ+4
h∗)320 ≥ (32L2δ+4

j)320. Moreover, if F is any valid set of fake rectangles
with |OPTF | ≥ ρh−1, then for all 1 ≤ j ≤ h:

|OPTF | ≥ 512L2δ+4
j , (2)

using a similar reasoning as above.

23

The family C of important sets of fake rectangles will eventually be a union of h subsets C1, . . . , Ch.
Recall that the execution of the algorithm from Section 6 was partitioned into O(

√
logN) phases,

where the value of the optimal solution went down by a factor of roughly 2Θ(
√

logN) in every phase.
At the end of every phase, we reduced the boundary complexities of all resulting instances from L∗2 to
L∗1. This corresponded to adding clean-up trees to the partitioning trees T (F) for F ∈ C1.

The algorithm in this section consists of h recursive levels. The execution of the algorithm at every
level is partitioned into a number of phases. The optimal solution value in each phase of level i goes
down by a factor of at least (ρi)

1/160. We then reduce the boundary complexities of the resulting
level-(i+ 1) instances from Li+1 to Li.

7.2 The Algorithm

Our algorithm uses the framework defined in Section 4. Therefore, it is sufficient to define the family
C of important sets of fake rectangles, the family C′ ⊆ C of basic sets of fake rectangles, and the
algorithms A′ and A′′ for recognizing and approximately solving the instances corresponding to the
basic sets of fake rectangles, respectively.

For all 1 ≤ i ≤ h, it will be convenient to denote the level-i sets of fake rectangles by F(i) =
(F1, G1, . . . , Gi−1,Fi), where for 1 ≤ i′ < i, Gi′ is a ρi′-accurate grid for Fi′ , and all rectangles in
Fi′+1 are aligned with Gi′ . We also require that for all 1 < i′ < i, grid Gi′ is aligned with Gi′−1, and
that for all 1 < i′ ≤ i, S(Fi′) ⊆ S(Fi′−1).

Level-1 Instances We let C1 denote all valid sets F of fake rectangles with |F| ≤ L1, such that
all rectangles in F have integral coordinates. For each F ∈ C1, we define the level-1 set F(1) =
(F) of fake rectangles to be consistent with our notation for higher-level sets. We denote C̃1 ={
F(1) = (F) | F ∈ C1

}
. Notice that |C1| ≤ nO(L1) = nO((log logN)3/ε). Notice also that sets {B}, {∅} of

fake rectangles belong to C1.

Level-i instances Fix some 1 < i ≤ h. For every level-(i−1) instance F(i−1) ∈ C̃i−1, we define a set
C̃i(F(i−1)) of level-i instances, and we let C̃i =

⋃
F(i−1)∈C̃i−1

C̃i(F(i−1)). We now describe the construction

of the set C̃i(F(i−1)).

We assume that F(i−1) = (F1, G1,F2, G2, . . . , Gi−2,Fi−1) ∈ C̃i−1 is a level-(i−1) set of fake rectangles,
where for each 1 ≤ i′ < i − 1, Gi′ is a ρi′-accurate grid for Fi′ , and if i′ > 1, then grid Gi′ is aligned
with grid Gi′−1. Moreover, for all 1 < i′ ≤ i− 1, set Fi′ contains at most Li′ fake rectangles, that are
aligned with the grid Gi′−1.

If i > 2 and A(Fi−1) < A(Fi−2)/ρ
1/10
i−2 , then we set C̃(F(i)) = ∅. Assume now that i > 2 and

A(Fi−1) ≥ A(Fi−2)/ρ
1/10
i−2 . Then:

|OPTFi−1 | ≥ A(Fi−1) ≥ A(Fi−2)

ρ
1/10
i−2

≥
|OPTFi−2 |

cA log logN · ρ1/10
i−2

≥
|OPTFi−2 |
ρ

1/5
i−2

,

since ρi−2 ≥ ρh ≥ η320 ≥ logN , and if N is large enough, we can assume that ρ
1/10
i−2 ≥ cA log logN .

From Observation 6.2, grid Gi−2 then remains ρ
4/5
i−2-accurate for instance R(Fi−1), and, since ρi−1 =

√
ρi−2 < ρ

4/5
i−2, we can use Claim 7.1 to compute a ρi−1-accurate grid Gi−1 for Fi−1, so that Gi−1 is

aligned with Gi−2. If i = 2, then we simply compute any ρ1-accurate grid G1 for F1. In either case,
the size of the grid is (z × z), where:

24

z = O(ρi−1 log logN + Li−1) = O

(
ρi−1 logN(log logN)3

ε

)
= O

(
ρi−1 log3N

)
≤ O(ρ2

i−1),

since we have assumed that ε > 1/ logN , and ρi−1 ≥ ρh ≥ η320 ≥ log320N .

We construct the set C̃i(F(i−1)) as follows. For every valid set F ′ of fake rectangles, with S(F ′) ⊆
S(Fi−1), and |F ′| ≤ Li, such that the rectangles in F ′ are aligned with the grid Gi−1, we add a level-i
set F(i) = (F1, G1,F2, G2, . . . , Gi−2,Fi−1, Gi−1,F ′) to C̃i(F(i−1)). Notice that (F1, G1, . . . ,Fi−1, Gi−1,Fi−1) ∈
C̃i(F(i−1)), and:

|C̃i(F(i−1))| = zO(Li) ≤ ρO(exp(i)(log logN)3/ε)
i

= (N1/ exp(i))O(exp(i)(log logN)3/ε)

= NO((log logN)3/ε).

We set C̃i =
⋃

F(i−1)∈C̃i−1
C̃i(F(i−1)), and we let Ci contain all sets F of fake rectangles, such that for

some F(i) = (F1, G1, . . . , Gi−1,Fi) ∈ C̃i, F = Fi. Finally, we set C =
⋃h
i=1 Ci.

We say that F ∈ C is a basic set of fake rectangles, and add it to C′, iff A(F) ≤ τ∗. We can use
the algorithm A to determine, for each set F ∈ C, whether F is a basic set. If F is a basic set, then
|OPTF | ≤ cA · A(F) · log logN ≤ cAτ

∗ log logN = (logN)O(1), and we can use the algorithm from

Section 6 to compute a (1− ε/2)-approximate solution to instance R(F) in time nO(
√

log |OPTF |/ε3) =
nO(log logN/ε3). We use this algorithm as algorithm A′′ for the initialization step of the dynamic
program. This completes the definition of the family C of important sets of fake rectangles, the family
C′ ⊆ C of basic sets of fake rectangles, and the algorithms A′ and A′′. We then use the dynamic
programming-based algorithm from Section 4 to solve the problem. In order to analyze the running
time of the algorithm, we first need to bound |C|. As we showed above,

|C̃1| ≤ O
(
nL1
)

= nO((log logN)3/ε),

and for all 1 < i ≤ h,

|C̃i| =
∑

F(i−1)∈C̃i−1

|C̃(F(i−1))| ≤ |C̃i−1| ·NO((log logN)3/ε).

Since h < log logN , it is immediate to verify that |C| = O(|C̃h|) ≤ nO((log logN)4/ε). The initialization
step then takes time |C| ·nO(log logN/ε3) = nO((log logN)4/ε3), and the remainder of the algorithm runs in
time |C|O(1). Therefore, the total running time of the algorithm is bounded by nO((log logN)4/ε3). The
following simple observation will be useful for us later.

Observation 7.2 Suppose we are given two valid sets F ,F ′ of fake rectangles, such that for some

1 ≤ i ≤ h, |OPTF | ≥ |OPTF ′ |/ρ
1/20
i . Then A(F) ≥ A(F ′)/ρ1/10

i .

Proof:

A(F) ≥ |OPTF |
cA log logN

≥ |OPTF ′ |
ρ

1/20
i cA log logN

≥ A(F ′)
ρ

1/20
i cA log logN

≥ A(F ′)
ρ

1/10
i

,

25

since ρi ≥ ρh ≥ η320 ≥ logN , and if N is large enough, we can assume that ρ
1/20
i ≥ cA log logN .

7.3 Analysis

Since the algorithm is guaranteed to produce a feasible solution to the MISR instance, it now remains
to show that the value of the solution is within a factor of (1 − ε) of the optimal one. As before, we
do so by constructing a partitioning tree. The construction of the partitioning tree is recursive. We
first construct partitioning trees for level-(h − 1) instances. For each 1 ≤ i < h − 1, we then show
how to construct level-i partitioning tree for each level-i instance F(i) ∈ C̃i, by combining a number
of level-(i + 1) partitioning trees. We will then use a number of level-1 partitioning trees in order to
construct our final partitioning tree. We now define level-i partitioning trees.

Fix any 1 ≤ i < h, and let F(i) ∈ C̃i be any level-i set of fake rectangles, where F(i) = (F1, G1,F2, . . . , Gi−1,Fi),
such that, if i > 1, then A(Fi) ≥ A(Fi−1)/ρ

1/10
i−1 . Let Gi be the ρi-accurate grid that we have computed

for Fi when constructing C̃i+1(F(i)). A level-i partitioning tree T (F(i)) for F(i) is a valid partitioning
tree for Fi (that is, the root of the tree is labeled by Fi), such that for every leaf vertex v of T (F(i)),

either (i) F(v) ∈ C′, or (ii) F(v) is aligned with Gi, |F(v)| ≤ Li, and |OPTFi |/ρ
1/40
i ≤ |OPTF(v)| ≤

|OPTFi |/ρ
1/160
i .

We define Λh−1 = 22c̃ log η
Lh−1

, and for 1 ≤ i < h − 1, we let Λi =
(

2Λi+1 + 12c̃
Li

)
. Following is the main

theorem in our analysis.

Theorem 7.3 For every 1 ≤ i < h, for every level-i set F(i) = (F1, G1,F2, . . . , Gi−1,Fi) ∈ C̃i of fake

rectangles, such that, if i > 1, then A(Fi) ≥ A(Fi−1)/ρ
1/10
i−1 , there is a level-i partitioning tree T (F(i))

for F(i), whose loss is bounded by Λi · |OPTFi |.

The majority of the remainder of this section is dedicated to the proof of Theorem 7.3. The proof is
by induction on i, starting from i = h− 1.

7.3.1 Induction Basis: i = h− 1.

We assume that we are given a level-(h−1) set F(h−1) = (F1, G1,F2, . . . , Gh−2,Fh−1) of fake rectangles

with A(Fh−1) ≥ A(Fh−2)/ρ
1/10
h−2 . Assume first that |OPTFh−1

| ≤ ρ3
h−1 = τ∗. Then A(Fh−1) ≤

|OPTFh−1
| ≤ τ∗, and Fh−1 ∈ C′. We then let tree T (F(h−1)) contain a single vertex v with F(v) = Fh−1.

This is a valid level-(h− 1) partitioning tree for F(h−1), and its loss is 0.

We now assume that |OPTFh−1
| > ρ3

h−1. The construction of the tree T (F(h−1)) is very similar
to the construction of the tree T (F) in the proof of Theorem 6.8, except that we use different
parameters. Let Gh−1 be the ρh−1-accurate grid that we constructed for Fh−1 when computing
C̃h(F(h−1)). For convenience, we denote grid Gh−1 by G, and parameter ρh−1 by ρ. We ensure
that for every vertex v of the tree, F(v) is aligned with Gh−1 and |F(v)| ≤ Lh, thus ensuring that
(F1, G1, . . . ,Fh−1, Gh−1,F(v)) ∈ C̃h(F(h−1)), and in particular F(v) ∈ C. Our initial tree T (F(h−1))
consists of a single vertex v, with F(v) = Fh−1. From the definition of G, Fh−1 is aligned with G, and
|Fh−1| ≤ Lh−1 ≤ Lh.

The construction of the tree T (F(h−1)) consists of two stages. The first stage is executed as long as

there is any leaf vertex v in T (F(h−1)) with |OPTF(v)| ≥
|OPTFh−1

|
ρ1/160

. We ensure that throughout the

26

execution of the first stage, the following invariant holds: for every vertex v of the tree, if S(F(v)) 6= ∅,
then |OPTF(v)| ≥

|OPTFh−1
|

Lh·ρ1/160
. We use the following easy observation.

Observation 7.4 Let F be any valid set of fake rectangles with S(F) ⊆ S(Fh−1), such that F is

aligned with G, and |OPTF | ≥
|OPTFh−1

|
Lh·ρ1/160

. Then |OPTF | ≥ 512Lδ+2
h , and G is a ρ′-accurate grid for

F , for some ρ′ > 32Lδ+2
h .

Proof: Since we have assumed that |OPTFh−1
| ≥ τ∗ = ρ3, from Equation (1), |OPTF | ≥ ρ, and from

Equation (2), |OPTF | ≥ 512Lδ+2
h .

For the second assertion, let ρ′ = ρ
Lh·ρ1/160

. From Observation 6.2, grid G remains ρ′-accurate for F .

Since from Equation (1), ρ ≥ (32L2δ+4
h)320, we get that ρ′ > 32Lδ+2

h .

In every iteration of the first stage, we consider some leaf vertex v with |OPTF(v)| ≥
|OPTFh−1

|
ρ1/160

.

From Observation 7.4, |OPTF(v)| ≥ 512Lδ+2
h , and G is a ρ′-accurate grid for F(v), for some ρ′ >

32Lδ+2
h . Therefore, we can apply Corollary 6.5 to obtain a valid decomposition triple (F1,F2,F3)

for F(v), where for each 1 ≤ j ≤ 3, |F j | ≤ Lh and F j is aligned with G. Then for all 1 ≤ j ≤ 3,
(F1, G1, . . . ,Fh−1, Gh−1,F j) ∈ C̃h(F(h−1)), and in particular F j ∈ C.

Assume without loss of generality that |OPTF1 | ≤ |OPTF2 | ≤ |OPTF3 |. Notice that, since |OPTF3 | ≤
3|OPTF(v)|/4, and

∑3
j=1 |OPTFj | ≥ |OPTF(v)|

(
1− c̃

Lh

)
, we are guaranteed that |OPTF1 |+|OPTF2 | ≥

|OPTF(v)|/8, and so |OPTF2 | ≥ |OPTF(v)|/16 ≥ |OPTFh−1
|/(Lh · ρ1/160). We add three new vertices

v1, v2, v3 to the tree as the children of v, and we set F(v2) = F2 and F(v3) = F3.

If |OPTF1 | ≥ |OPTF(v)|
Lh

, then we set F(v1) = F1, and otherwise we set F(v1) = {B}. It is easy to
see that our invariant continues to hold. The loss at the vertex v is bounded by: λ(v) = |OPTF(v)| −∑3

j=1 |OPTF(vj)| ≤
2c̃|OPTF(v)|

Lh
. This completes the description of the first stage. Let L′ be the set of all

leaf vertices of T (F(h−1)) at the end of the first stage, and let I ′ be the set of all its inner vertices. We
now bound the total loss

∑
v∈I′ λ(v), as follows. Notice that the longest root-to-leaf path in T (F(h−1))

has length at most ` = log4/3 ρ
1/160
h−1 , as the values |OPTF(v)| decrease by a factor of at least 3/4 along

the path. Recall that h is the largest integer with ρh ≥ η320, so ρh ≤ η640, and ρh−1 = ρ2
h ≤ η1280.

Therefore, ` = log4/3 ρ
1/160 ≤ log4/3 η

1280/160 ≤ 20 log η.

We partition the vertices of I ′ into ` classes, where class Uj , for 1 ≤ j ≤ ` contains all vertices v, such
that the unique path from v to the root of the tree contains exactly j vertices. As before, if two vertices
v, v′ ∈ Uj , then neither of them is a descendant of the other, and so

∑
v∈Uj |OPTF(v)| ≤ |OPTFh−1

|.
We can now bound the total loss of all vertices in class j by:

∑
v∈Uj

λ(v) ≤
∑
v∈Uj

2c̃|OPTF(v)|
Lh

≤
2c̃|OPTFh−1

|
Lh

.

Overall,
∑

v∈I′ λ(v) ≤
∑`

j=1

∑
v∈Uj λ(v) ≤

2c̃`|OPTFh−1
|

Lh
≤ 40c̃ log η

Lh
· |OPTFh−1

|.

We now proceed to describe the second stage of the algorithm. Consider some leaf vertex v ∈ L′, such

that S(F(v)) 6= ∅. Our invariant guarantees that |OPTF(v)| ≥
|OPTFh−1

|
Lh·ρ1/160

, and so from Observation 7.4,

|OPTF(v)| ≥ 512Lδ+2
h , and G is a ρ′-accurate grid for F(v), for some ρ′ > 32Lδ+2

h . Therefore, we can
construct an Lh–Lh−1-cleanup tree T ′(v) for F(v) and G, using Theorem 6.7. From the definition
of the cleanup tree, it is easy to verify that for every vertex v′ ∈ V (T ′(v)), F(v′) is aligned with G,

27

|F(v′)| ≤ Lh, and S(F(v′)) ⊆ S(Fh−1), so (F1, G1, . . . ,Fh−1, Gh−1,F(v′)) ∈ C̃h(F(h−1)) and F(v′) ∈ C.
We add tree T ′(v) to T (F(h−1)), by identifying its root with vertex v. Once we add a clean-up tree
T ′(v) to each vertex v ∈ L′ with F(v) 6= ∅, we obtain the final tree T (F(h−1)).

For each vertex v ∈ L′, let L(v) and I(v) denote the sets of all leaf and inner vertices of the tree T ′(v),
respectively. From the definition of the cleanup trees, for every leaf v′ ∈ L(v) with S(F(v′)) 6= ∅, F(v)
is aligned with G, and |F(v)| ≤ Lh−1. We are also guaranteed that:

|OPTF(v′)| ≥
|OPTF(v)|
Lδ+2
h

≥
|OPTFh−1|

ρ
1/160
h−1 Lδ+3

h

≥
|OPTFh−1

|

ρ
1/80
h−1

,

from Equation (1). Therefore, we obtain a valid level-(h− 1) tree T (F(h−1)) overall. Let L be the set
of all leaf vertices of T (F(h−1)). Then the total loss of the tree T (F(h−1)) is bounded by:

Λ(T (F(h−1))) = |OPTFh−1
| −
∑
v∈L
|OPTF(v)| =

∑
v∈I′

λ(v) +
∑
v∈L′

|OPTF(v)| −
∑

v′∈L(v)

|OPTF(v′)|

≤ 40c̃ log η

Lh
· |OPTFh−1

|+
∑
v∈L′

12c̃

Lh−1
· |OPTF(v)|

≤ 40c̃ log η

Lh
· |OPTFh−1

|+ 12c̃

Lh−1
· |OPTFh−1

|

≤ 22c̃ log η

Lh−1
· |OPTFh−1

| = Λh−1|OPTFh−1
|.

(We have used the fact that for all v, v′ ∈ L′, neither vertex is a descendant of the other, so∑
v∈L′ |OPTF(v)| ≤ |OPTFh−1

| from Observation 4.1. We also used the fact that Lh = 2Lh−1.)

7.3.2 Induction Step.

We now fix some 1 ≤ i < h − 1, and we assume that the theorem holds for all i′ > i. Consider some

level-i set F(i) = (F1, G1, . . . , Gi−1,Fi), so that, if i > 1, then A(Fi) ≥ A(Fi−1)/ρ
1/10
i−1 . Let Gi be

the ρi-accurate grid that we have computed for F(i), when defining C̃i+1(F(i)). From our assumption,
C̃i+1(F(i)) 6= ∅. For convenience, we will denote the tree T (F(i)) by T .

The algorithm for constructing the partitioning tree again consists of two stages. We start with the
tree T containing a single vertex v with F(v) = Fi. The first stage continues as long as there is some

leaf v in the tree T with F(v) 6∈ C′, and |OPTF(v)| ≥
|OPTFi |
ρ
1/160
i

. Throughout this stage, we ensure the

following invariants. Consider any leaf vertex v of T , and denote F(v) by F . Then either F ∈ C′, or:

I1. F is aligned with Gi, S(F) ⊆ S(Fi), and |F| ≤ Li+1; and

I2. |OPTF | ≥
|OPTFi |
ρ
3/160
i

.

We need the following simple observation.

Observation 7.5 Suppose we are given any set F of fake rectangles, for which Properties (I1) and (I2)
hold. Then:

28

1. If we denote F(i+1) = (F1, G1, . . . , Gi−1,Fi, Gi,F), then F(i+1) ∈ C̃i+1(F(i)), and in particular
F ∈ C - this is immediate from the invariants and the definition of the set C̃i+1(F(i));

2. A(F) ≥ A(Fi)/ρ1/10
i - this follows from Observation 7.2 and Invariant (I2);

3. If we denote ρ′ = ρ
157/160
i , then Gi is ρ′-accurate for F , and ρ′ ≥ 32Lδ+2

i+1 - this follows from
Observation 6.2 together with Invariant (I2), and Equation (1); and

4. if F 6∈ C′, then |OPTF(v)| ≥ 512Lδ+2
i+1 - this follows from Equation (2) and the definition of C′.

We maintain a set U ⊆ V (T) of vertices, that will be used for the analysis. These are all vertices
that serve as the leaves of the tree T at any time during its construction. At the beginning, we let T
contain a single root vertex vr with F(vr) = Fi, and we let U = {v}. Notice that all invariants hold
for vr.

The first stage is executed as follows. While there is some leaf vertex v in the tree T , with F(v) 6∈ C′,
and |OPTF(v)| ≥

|OPTFi |
ρ
1/160
i

, let v be any such vertex. From the first two statements of Observation 7.5,

F(i+1) = (F1, G1, . . . , Gi−1,Fi, Gi,F(v)) is a valid input to Theorem 7.3, and so we can compute a
level-(i+ 1) partitioning tree T (F(i+1)), that we denote by T (v). Let L(v) be the set of the leaves of
this tree. We add T (v) to T , by identifying its root with the vertex v. We also add all vertices of
L(v) to set U . We now verify that all invariants hold for every vertex v′ ∈ L(v). Let Gi+1 be the ρi+1-
accurate grid that we have computed for F(i+1), when constructing C̃i+2(F(i+1)). From the definition
of the level-(i+ 1) tree, either (i) F(v′) ∈ C′, or (ii) F(v′) is aligned with Gi+1 (and hence with Gi, as

Gi+1 is aligned with Gi), |F(v′)| ≤ Li+1, and |OPTF(v)|/ρ
1/40
i+1 ≤ |OPTF(v′)| ≤ |OPTF(v)|/ρ

1/160
i+1 . Since

ρi = ρ2
i+1, we get that |OPTF(v′)| ≥ |OPTF(v)|/ρ

1/80
i ≥ |OPTFi |/ρ

3/160
i . We are also guaranteed that

S(F(v′)) ⊆ S(F(v)) ⊆ S(Fi) from the definition of the partitioning tree. Therefore, Invariants (I1)
and (I2) hold for F(v′).

The first stage terminates when for every leaf v of T , either F(v) ∈ C′, or |OPTF(v)| <
|OPTFi |
ρ
1/160
i

. We

partition the vertices of U into classes, where class Uj contains all vertices v ∈ U , such that the unique
path in T connecting v to the root vr of T contains exactly j vertices of U . Since for every non-leaf

vertex v ∈ U , for every vertex v′ ∈ L(v), |OPTF(v′)| ≤ |OPTF(v)|/ρ
1/160
i+1 , and ρi = ρ2

i+1, it is easy to
see that the total number of non-empty sets Uj is at most 3, and only U1, U2, U3 6= ∅, while U3 only
contains the leaves of the current tree, and U1 contains a single vertex - the root of the tree.

For every pair v, v′ ∈ U2 of vertices, neither vertex is a descendant of the other, and so
∑

v∈U2
|OPTF(v)| ≤

|OPTFi | from Observation 4.1. For every vertex v ∈ U1 ∪ U2, we define the modified loss of v to be:
λ̃(v) = |OPTF(v)| −

∑
v′∈L(v) |OPTF(v′)|. Then for every vertex v ∈ U1 ∪ U2, λ̃(v) ≤ Λi+1|OPTF(v)|

from the induction hypothesis, and overall:

2∑
j=1

∑
v∈Uj

λ̃(v) ≤
2∑
j=1

∑
v∈Uj

Λi+1|OPTF(v)| ≤
2∑
j=1

Λi+1|OPTFi | ≤ 2Λi+1|OPTFi |.

For the second stage, consider any leaf vertex v of T , with F(v) 6∈ C′. Then |OPTF(v)| ≥ |OPTFi |/ρ
3/160
i .

From Observation 7.5, if we denote ρ′ = ρ
157/160
i , then Gi is ρ′-accurate for F(v), ρ′ ≥ 32Lδ+2

i+1 , and

|OPTF(v)| ≥ 512Lδ+2
i+1 . Therefore, we can use Theorem 6.7, to construct an Li+1–Li cleanup tree T (v),

such that for every leaf v′ of tree T (v), if S(F(v′)) 6= ∅, then F(v′) is aligned with Gi, |F(v′)| ≤ Li,

and |OPTF(v′)| ≥
|OPTF(v)|
Lδ+2
i+1

≥ |OPTFi |
ρ
3/160
i Lδ+2

i+1

≥ |OPTFi |
ρ
1/40
i

from Equation (1). Therefore, we obtain a valid

29

level-i partitioning tree for F(i). Let L′ be the set of all vertices v that served as the leaves of the
tree T at the end of the first stage, with F(v) 6∈ C′. For each such vertex v, let L(v) be the set
of the leaves in the cleanup tree T (v). As before, we define the modified loss of vertex v to be
λ̃(v) = |OPTF(v)| −

∑
v′∈L(v) |OPTF(v′)|. From Theorem 6.7, λ̃(v) ≤ |OPTF(v)| · 12c̃

Li
. For every pair

v, v′ of vertices in L′, neither vertex is a descendant of the other, and so
∑

v∈L′ |OPTF(v)| ≤ |OPTFi |
from Observation 4.1. Therefore,

∑
v∈L′

λ̃(v) ≤
∑
v∈L′
|OPTF(v)| ·

12c̃

Li
≤ 12c̃

Li
|OPTFi |.

Overall, the total loss of tree T is:

Λ(T) = |OPTFi |−
∑

v∈L(T)

|OPTF(v)| ≤
2∑
j=1

∑
v∈Uj

λ̃(v)+
∑
v∈L′

λ̃(v) ≤
(

2Λi+1 +
12c̃

Li

)
|OPTFi | = Λi|OPTFi |.

This completes the proof of Theorem 7.3.

We are now ready to construct our final partitioning tree T . We start with T containing a single
vertex vr, with F(vr) = ∅. Throughout the algorithm execution, we maintain the invariant that for
every leaf vertex v of the tree, F(v) ∈ C1. The algorithm is executed as long as there is any leaf
vertex v ∈ T with F(v) 6∈ C′. Given any such vertex v, we let F(1) = (F(v)), and we let T (v) be the
level-1 tree T (F(1)) given by Theorem 7.3. We add the tree T (v) to T , by identifying its root with
the vertex v, and we denote by L(v) the set of leaves of T (v). We then continue to the next iteration.
It is immediate to verify that the invariant continues to hold. The algorithm terminates, when for
every leaf v of T , F(v) ∈ C′. As before, we let U contain all vertices of T , that served as the leaves
of T at any point of the algorithm execution. We partition the set U into subsets U1, U2, . . ., where
set Uj contains all vertices v, such that the unique path from v to the root vr of T in T contains
exactly j vertices of U . Recall that for every vertex v ∈ U that is not a leaf of T , for every vertex

v′ ∈ L(v), if F(v′) 6∈ C′, then |OPTF(v′)| ≤ |OPTF(v)|/ρ
1/160
1 . Since ρ1 =

√
N , the number of non-

empty sets Uj is bounded by 320. For every vertex v ∈ U , we again define the modified loss at v to
be λ̃(v) = |OPTF(v)| −

∑
v′∈L(v) |OPTF(v′)|. From Theorem 7.3, λ̃(v) ≤ Λ1|OPTF(v)| for all v ∈ U . As

before, for all 1 ≤ j ≤ 320, no vertex of Uj is a descendant of another, and so
∑

v∈Uj |OPTF(v)| ≤ |OPT|
from Observation 4.1. We can now bound the total loss of the tree as:

Λ(T) = |OPT| −
∑

v∈L(T)

|OPTF(v)| =
320∑
j=1

∑
v∈Uj

λ̃(v) ≤
320∑
j=1

∑
v∈Uj

Λ1|OPTF(v)| ≤ 320Λ1|OPT|.

Using the recursive definition Λh−1 = 22c̃ log η
Lh−1

, and Λi =
(

2Λi+1 + 12c̃
Li

)
for 1 ≤ i < h− 1, it is easy to

verify that:

Λ1 ≤
h−2∑
i=1

2i · 12c̃

Li
+ 2h · 22c̃ log η

Lh

≤
h−2∑
i=1

2i · 12c̃

c̃(log logN)3 · 2i/ε
+ 2h · O(log logN)

c̃2h(log logN)3/ε

≤ ε

640
,

30

assuming that N is large enough. Therefore, the total loss of the tree T is bounded by ε · |OPT|/2.
From Observation 4.3, our algorithm computes a (1 − ε)-approximate solution overall. As discussed
above, the running time of the algorithm is bounded by nO((log logN/ε)4).

References

[AVKS98] Pankaj K Agarwal, Marc Van Kreveld, and Subhash Suri. Label placement by maximum
independent set in rectangles. Computational Geometry, 11(3):209–218, 1998.

[AW13] Anna Adamaszek and Andreas Wiese. Approximation schemes for maximum weight inde-
pendent set of rectangles. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 400–409. IEEE
Computer Society, 2013.

[AW14] Anna Adamaszek and Andreas Wiese. A QPTAS for maximum weight independent set
of polygons with polylogarithmically many vertices. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 645–656. SIAM, 2014.

[BDMR01] Piotr Berman, Bhaskar DasGupta, S. Muthukrishnan, and Suneeta Ramaswami. Improved
approximation algorithms for rectangle tiling and packing. In S. Rao Kosaraju, editor,
Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9, 2001,
Washington, DC, USA., pages 427–436. ACM/SIAM, 2001.

[BH92] Ravi Boppana and Magnús M Halldórsson. Approximating maximum independent sets
by excluding subgraphs. BIT Numerical Mathematics, 32(2):180–196, 1992.

[CC09] Parinya Chalermsook and Julia Chuzhoy. Maximum independent set of rectangles. In
Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 892–
901. SIAM, 2009.

[CF90] Bernard Chazelle and Joel Friedman. A deterministic view of random sampling and its
use in geometry. Combinatorica, 10:229–249, 1990.

[CH12] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum inde-
pendent set of pseudo-disks. Discrete & Computational Geometry, 48(2):373–392, 2012.

[Cha11] Parinya Chalermsook. Coloring and maximum independent set of rectangles. In Leslie Ann
Goldberg, Klaus Jansen, R. Ravi, and José D. P. Rolim, editors, Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques - 14th International
Workshop, APPROX 2011, and 15th International Workshop, RANDOM 2011, Prince-
ton, NJ, USA, August 17-19, 2011. Proceedings, volume 6845 of Lecture Notes in Computer
Science, pages 123–134. Springer, 2011.

[CS95] Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in computa-
tional geometry, ii. Discrete Comput. Geom, 4:387–421, 1995.

[DF92] Jeffrey S Doerschler and Herbert Freeman. A rule-based system for dense-map name
placement. Communications of the ACM, 35(1):68–79, 1992.

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis
of randomized algorithms. Cambridge University Press, 2009.

31

[EJS05] Thomas Erlebach, Klaus Jansen, and Eike Seidel. Polynomial-time approximation schemes
for geometric intersection graphs. SIAM J. Comput., 34(6):1302–1323, 2005.

[FMMT01] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, and Takeshi Tokuyama. Data
mining with optimized two-dimensional association rules. ACM Transactions on Database
Systems (TODS), 26(2):179–213, 2001.

[FP11] Jacob Fox and János Pach. Computing the independence number of intersection graphs. In
Dana Randall, editor, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23-25,
2011, pages 1161–1165. SIAM, 2011.

[FPT81] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and
covering in the plane are NP-complete. Information processing letters, 12(3):133–137,
1981.

[Har14] Sariel Har-Peled. Quasi-polynomial time approximation scheme for sparse subsets of poly-
gons. In Siu-Wing Cheng and Olivier Devillers, editors, 30th Annual Symposium on Com-
putational Geometry, SOCG’14, Kyoto, Japan, June 08 - 11, 2014, page 120. ACM, 2014.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. Journal of the ACM (JACM),
48(4):798–859, 2001.

[IA83] Hiroshi Imai and Takao Asano. Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. Journal of algorithms, 4(4):310–323,
1983.

[KMP98] Sanjeev Khanna, S. Muthukrishnan, and Mike Paterson. On approximating rectangle
tiling and packing. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete
algorithms, volume 95, page 384. SIAM, 1998.

[LENO02] Liane Lewin-Eytan, Joseph Seffi Naor, and Ariel Orda. Routing and admission control in
networks with advance reservations. Springer, 2002.

[LSW97] Brian Lent, Arun Swami, and Jennifer Widom. Clustering association rules. In Data
Engineering, 1997. Proceedings. 13th International Conference on, pages 220–231. IEEE,
1997.

[Mil86] Gary L Miller. Finding small simple cycle separators for 2-connected planar graphs.
Journal of Computer and system Sciences, 32(3):265–279, 1986.

[MRR14] Nabil H Mustafa, Raghu Raman, and Sambaran Ray. Settling the APX-hardness status
for geometric set cover. In Foundations of Computer Science (FOCS), 2014 IEEE 55th
Annual Symposium on, pages 541–550. IEEE, 2014.

[Nie00] Frank Nielsen. Fast stabbing of boxes in high dimensions. Theoretical Computer Science,
246(1):53–72, 2000.

32

APPENDIX

A Proofs Omitted from Section 2

A.1 Proof of Claim 2.1

Since we assume that the rectangles are open, we can obtain an equivalent non-degenerate instance
R′′, as follows. Intuitively, for each rectangle R ∈ R, we move its right boundary towards left by a
very small random amount. Similarly, we move its left boundary towards right, top boundary down,
and bottom boundary up, by very small random amounts.

More formally, let X be the set of all distinct x-coordinates of the corners of the rectangles in R,
and let ∆ be the minimum value of |x − x′| for any pair x, x′ ∈ X with x 6= x′. Each rectangle
R ∈ R chooses a random value ∆R ∈ (0,∆/4). We then obtain a new rectangle R′ by increasing
the x-coordinates of the two left corners of R by ∆R and reducing the x-coordinates of the two right
corners of R by ∆R. We define the set Y of all distinct y-coordinates of the corners of the rectangles
in R, and perform a similar transformation with the y-coordinates of the corners of the rectangles.
Let R′′ be the final set of the rectangles. Then with probability 1, R′′ is non-degenerate. Moreover,
since the rectangles are open, it is easy to see that the transformation preserves rectangle intersections:
that is, Ri, Rj ∈ R intersect if and only if their corresponding new rectangles R′i, R

′
j ∈ R′′ intersect.

Therefore, from now on we assume that our input instance is non-degenerate.

Given a non-degenerate instance R′′, we can transform it into a combinatorially equivalent instance,
where the coordinates of the rectangles’ corners are integers between 1 and 2n. Indeed, let X ′ be
the set of all x-coordinates of the corners of the rectangles in R′′, so |X ′| = 2n. Assume that
X ′ = {a1, a2, . . . , a2n}, where a1 < a2 < · · · < a2n. We define a mapping f : X ′ → {1, 2, . . . , 2n},
where f(ai) = i. Let Y ′ be the set of all distinct y-coordinates of the corners of the rectangles in R′′.
We define a mapping g : Y ′ → {1, 2, . . . , 2n} similarly. The final set R′ of rectangles is defined as

follows: R′ = {R′1, . . . , R′n}, where for each 1 ≤ i ≤ n, the lower left corner of R′i is (f(x
(1)
i), g(y

(1)
i)),

and its upper right corner is (f(x
(2)
i), g(y

(2)
i)). It is immediate to verify that for all 1 ≤ i 6= j ≤ n, R′i

and R′j intersect if and only if Ri and Rj intersect.

Therefore, for any set R̃ ⊆ R of disjoint rectangles, the corresponding set {R′ | R ∈ R} of rectangles
in the new instance R′ is also disjoint and vice versa.

A.2 Proof of Theorem 2.2

We assume without loss of generality that instance R is non-degenerate. We will construct an
(O(w∗)×O(w∗))-grid G, and then round the boundaries of all rectangles in R to the grid G. (We
note that the value w∗ is not known to the algorithm).

We start by constructing a set V of vertical lines of the grid, that have the following property: for
every rectangle R ∈ R, at least one vertical line V ∈ V intersects R. In order to construct V, let I
be the set of intervals, obtained by projecting all rectangles R ∈ R onto the X-axis. Notice that the
intervals in I are open. Let I∗ ⊆ I be a maximum independent set of the intervals3 in I with the
following additional property: if I ∈ I \ I∗, then no interval I ′ ∈ I∗ strictly contains I. In order to
construct I∗, we start with any maximum independent set of I (that can be computed efficiently via
standard dynamic programming techniques), and then iterate. While there are intervals I ∈ I \ I∗,

3Set I∗ ⊆ I of intervals is independent if and only if no pair of intervals in I∗ intersect.

33

I ′ ∈ I∗ with I (I ′, we replace I ′ with I and continue. It is easy to see that after O(n) iterations we
obtain the desired set I∗. Notice that |I∗| ≤ w∗, as the set of all rectangles whose intervals belong
to I∗ must form an independent set. Let X be the set of points, constructed as follows. For every
interval I ∈ I∗, we add to X the coordinates of the left endpoint of I, the right endpoint of I, and
one arbitrary additional inner point on I. Observe that for every interval I ′ ∈ I, there is some point
x ∈ X with x ∈ I ′.

The final set V of vertical lines contains one vertical line Vx for each coordinate x ∈ X, and also
the left and right boundary of the bounding box (that is, the lines x = 0 and x = 2n + 1). Then
|V| ≤ 3|I∗|+ 2 ≤ 5w∗, and for every rectangle R ∈ R, at least one line V ∈ V intersects R. Similarly,
we build a set H of at most 5w∗ horizontal lines, such that for each rectangle R ∈ R, at least one
line in H intersects R. Finally, we construct a new instance R′ = {R′ | R ∈ R}, as follows. Consider
some rectangle R ∈ R. If its right boundary does not lie on any line V ∈ V, then we move the right
boundary of R to the right, until it lies on some such line. Similarly, we move its left boundary to the
left, top boundary up and bottom boundary down, until all four edges lie on the lines of the grid G.
This defines the rectangle R′, that is added to R′. Clearly, R ⊆ R′, and so any solution S ′ ⊆ R′ to the
new instance immediately defines a solution S ⊆ R of the same value to the original instance. It is
easy to see that the number of distinct rectangles in R′ is at most O

(
(w∗)4

)
, since there are at most(

O(w∗)
2

)
possible choices for the x-coordinates of the left and the right boundaries of each rectangle,

and at most
(
O(w∗)

2

)
possible choices for the y-coordinates of its top and bottom boundaries. Let OPT′

denote the optimal solution to the resulting instance R′ of MISR. The following lemma will then finish
the proof of the theorem.

Lemma A.1 |OPT′| ≥ Ω(w∗).

We define the following five instances of the problem. Let R0 = R. Let R1 be the instance obtained
from R after we round, for each rectangle R ∈ R0, its right boundary only, by moving it to the right
until it lies on some vertical line of the grid. Similarly, R2 is obtained from R1 by rounding the
left boundaries of rectangles in R1, R3 is obtained from R2 by rounding the top boundaries of the
rectangles in R2, and R4 is obtained from R3 by rounding the bottom boundaries of the rectangles in
R3. Notice that for each 0 ≤ i ≤ 4, the grid G still has the property that for each rectangle R ∈ Ri,
at least one vertical line of the grid intersects R, and at least one horizontal line of the grid intersects
R. Let S0 be any optimal solution for instance R0, so |S0| = w∗. We construct, for i = 1, 2, 3, 4, a
feasible solution Si for Ri, such that |Si| ≥ Ω(|Si−1|). It will then follow that |OPT′| ≥ |S4| ≥ Ω(w∗).

For simplicity, we show how to obtain S1 from S0; the other three cases are analyzed similarly. Let
S ⊆ R1 be the set of rectangles, corresponding to the rectangles in S0, that is, S = {R′ | R ∈ S0},
where rectangle R′ is obtained from R by moving its right boundary to closest grid line to its right.
We will find an independent set S1 ⊆ S of size Ω(|S0|).

For each rectangle R1 ∈ S0, each of the two left corners of R1 shoots a straight line to the left, until
it hits some other rectangle R2 ∈ S0 or its boundary. We say that R1 tags R2 in this case. Similarly,
each of the two right corners of R1 shoots a straight line to the right, until it hits some other rectangle
R3 ∈ S0 or its boundary. We again say that R1 tags R3. Note that R1 may tag at most four rectangles.
Following is the central claim in our analysis.

Claim A.2 Let R′1, R
′
2 ∈ S be any two rectangles, and assume that they intersect. Then either R1

tagged R2, or R2 tagged R1.

Proof: Since the original rectangles R1, R2 do not intersect, but the new rectangles R′1, R
′
2 intersect,

the projections of R1, R2 onto the y-axis must intersect, and their projections onto the x-axis cannot

34

intersect. Therefore, we can assume without loss of generality that the x-coordinate of the right
boundary of R1 is smaller than or equal to the x-coordinate of the left boundary of R2 (that is, R1

lies to the left of R2). Let x1 be the x-coordinate of the right boundary of R1, and let x2 be the
x-coordinate of the right boundary of R′1. Let x′ be the x-coordinate of the left boundary of R2 (see
Figure 1). Then x1 ≤ x′ < x2, and x2 is the smallest x-coordinate to the right of x1 through which a
vertical line of the grid passes.

x1 x2x0

R1

R2I2

I1

p
`

Figure 1: Illustration to the proof of Lemma A.2

Let I1, I2 be the projections of R′1, R
′
2 onto the y-axis, respectively, that we consider to be closed

intervals. Then, either one of the endpoints of I1 is contained in I2, or one of the endpoints of I2 is
contained in I1. Assume without loss of generality that it is the former, and let p be the right corner of
R1, whose corresponding endpoint of I1 is contained in I2. We claim that the line ` that p shot to the
right must have tagged R2. Assume otherwise. Let `′ be the straight horizontal line connecting p to
some point p′ on the boundary of R2. If R1 did not tag R2, then there is some other rectangle R ∈ S0

that intersects `′, between p and p′. But then there is some vertical line V of the grid intersecting R.
Then the right boundary of R′1 should have been rounded to V , and so R′1 cannot intersect R′2. The
case where one of the endpoints of I2 is contained in I1 is analyzed similarly.

We now build a graph H, whose vertex set is {vR | R ∈ S0}, and there is an edge (vR1 , vR2) if and only
if one of R1, R2 tags the other. Observe that if we find an independent set I in H, then the rectangles
corresponding to I define an independent set in R1. Therefore, it is enough to prove that there is an
independent set in H of size Ω(|S0|). We do so using standard techniques. We show that for every
subset U ⊆ V (H) of vertices of H, at least one vertex of U has a constant degree in H[U]. Indeed,
every rectangle may tag at most 4 other rectangles, and so the number of edges in H[U] is at most
4|U |. Therefore, at least one vertex of U has degree at most 8. In order to build the independent set
I of H, we start with any vertex v ∈ V (H), whose degree is at most 8. We add v to I, and delete v
and all its neighbors from H. We then continue to the next iteration. From the above discussion, in
every iteration, we can find a vertex of degree at most 8 in the remaining graph, and it is easy to see
that throughout the algorithm I is an independent set. In each iteration, we add one vertex to I and
delete at most 9 vertices from H. Therefore, in the end, |I| ≥ |S0|/9, and we obtain an independent

35

set S1 ⊆ R1, whose corresponding vertices belong to I, of size at least |S0|/9.

A.3 Proof of Lemma 2.4

The proof is by induction on the number of corners L on the boundary of P . The base case is when
L = 4, and P is a rectangle. In this case F contains a single rectangle P . We now assume the
correctness of the claim for polygons with up to L− 1 corners on their boundary, for L ≥ 5, and prove
it for L.

Let P be any polygon with L corners on its boundary. Then P is not a rectangle, and so there is at
least one corner p on the boundary of P , such that the two edges e, e′ of the boundary of P adjacent
to p form a 270-degree internal angle. We assume without loss of generality that e is a vertical edge,
e′ is a horizontal edge, and that p is the bottom endpoint of e (see Figure 2). We draw a line ` from
p down, until it reaches any point p′ on the boundary of P . Line ` splits P into two simple closed
polygons, that we denote by P1 and P2. Let L1 and L2 denote the number of the corners on the
boundaries of P1 and P2, respectively. We claim that L1 + L2 ≤ L + 2. Indeed, point p served as a
corner of P , and it continues to serve as a corner of exactly one of the two polygons P1, P2. Point
p′ may now serve as a corner of both polygons. No other point serves as a corner in both polygons,
and no other point, that did not serve as a corner of P , may become a corner of P1 or P2. Therefore,
L1 +L2 ≤ L+2. Since each of P1 and P2 must have at least four corners, L1, L2 < L must hold. From
the induction hypothesis, there is a set F1 of at most L1 − 3 closed internally-disjoint axis-parallel
rectangles whose union is P1, and similarly there is such a set F2 of cardinality at most L2− 3 for P2.
Setting F = F1 ∪F2, we obtain a set of at most L1− 3 +L2− 3 ≤ L− 3 rectangles, whose union is P .

P
p

e

e�

�

p�

Figure 2: Partitioning P into smaller polygons

It is easy to see that both P1 and P2 are aligned with Z, since p ∈ Z, and, if we denote p′ = (x, y),
then x is the x-coordinate of p, and y is the y-coordinate of one of the corners of P , as either p′ is
itself a corner of P , or it belongs to a horizontal edge on the boundary of P . From the induction
hypothesis, every rectangle in F1 and F2 is aligned with Z.

A.4 Proof of Lemma 2.5

If the boundaries of B and P are not disjoint, then it is easy to see that B \P is a collection of disjoint
simple polygons. Let P denote this collection of polygons. Then the total number of corners on the
boundaries of the polygons in P is at most L + 4: the L corners of P and 4 additional corners of B.
We then use Lemma 2.4 to tile each of the polygons in P separately, thus obtaining a collection F
of at most L+ 1 closed internally-disjoint axis-parallel rectangles, such that

⋃
F∈F F = B \ P . From

Lemma 2.4, every rectangle in F is aligned with Z.

36

Assume now that the boundaries of B and P are disjoint. Among all vertical edges on the boundary of
P , let e be the left-most one (breaking ties arbitrarily). Let R be the rectangle whose right boundary
is the edge e, and the left boundary lies on the left boundary of B. Notice that except for the right
boundary of R, rectangle R is completely disjoint from P . Moreover, R is aligned with Z ∪ P , and
B \ (P ∪R) is a simple polygon with at most L+ 4 corners. From Lemma 2.4, there is a set F ′ of at
most L + 1 closed internally-disjoint axis-parallel rectangles, such that

⋃
F∈F ′ F = B \ (P ∪ R), and

each rectangle of F ′ is aligned with Z. Setting F = F ′ ∪ {R} gives the desired set of rectangles.

B Proofs Omitted from Section 3

B.1 Proof of Theorem 3.1

We find the partition P in two steps. In the first step, we construct an initial partition P ′ of B into
O(r) rectangular cells. In the second step, we further subdivide some cells P ∈ P ′ into smaller cells,
thus obtaining the final partition P. Our proof follows the arguments of [Har14] very closely.

Step 1. We start by constructing a set W = S1 ∪ S2 of rectangles as follows. Initially, S1 = F .
Additionally, each rectangle R ∈ OPT′ is added to S1 independently at random with probability
r/|OPT′|. In order to construct the set S2 of rectangles, we start with S2 = ∅, and add each rectangle
R ∈ OPT′ to S2 independently at random with probability r/|OPT′|. We then set W = S1 ∪ S2. (We
note that we could have, equivalently, directly added each rectangle R ∈ OPT′ to W with probability
2r/|OPT′|, in addition to adding all rectangles of F toW. However, as we will see later, this two-stage
randomized procedure significantly simplifies the analysis). We say that the bad event E1 happens if
and only if |W| > 18r. Notice that the expected number of rectangles inW is bounded by 2r+m ≤ 3r.
We use the following standard Chernoff bound:

Theorem B.1 (Theorem 1.1 in [DP09].) Let X1, . . . , Xn be random variables independently dis-
tributed in [0, 1], and let X =

∑
iXi. Then for any t > 2e ·E [X], Pr [X > t] ≤ 2−t.

From Theorem B.1, the probability that E1 happens is bounded by 1/218.

Suppose we are given any set X ⊆ OPT′ ∪ F of rectangles, where F ⊆ X . We associate a partition
P(X) of B into rectangular cells with X . The partition P(X) is constructed as follows. For each
rectangle R ∈ X , each of the two top corners of R shoots a ray up, until it reaches the boundary of
some other rectangle in X , or the bounding box B. Similarly, each of the two bottom corners of R
shoots a ray down, until it reaches the boundary of some other rectangle in X , or the bounding box
B. Consider the partition P(X) of B, defined by the boundaries of the rectangles in X , the bounding
box B, and the vertical lines that we have just constructed.

Observation B.2 Every cell of P(X) is a rectangle.

Proof: Consider some cell C ∈ P(X), and assume for contradiction that it is not rectangular. It is
easy to see that the boundary of C is a simple cycle. Consider a tour of the boundary of C, traversing
it in a clock-wise fashion. Since all lines in our partition are parallel to the axes, every turn of the
tour has either 90 or 270 degrees. Moreover, at least one turn must be a 270-degree turn if C is not a
rectangle. Consider some corner p of the boundary of C, where the tour makes a 270-degree turn. Let
e, e′ be the edges of the boundary of C incident on p. One of these edges must be a horizontal line,
and one a vertical line. Assume w.l.o.g. that e is the horizontal edge. Then e must be contained in

37

the top or the bottom boundary of some rectangle R ∈ W, and p must be a corner of that rectangle
(see Figure 3). But then there must be two vertical lines adjacent to p: one going up and one going
down, making it impossible that both e and e′ lie on the boundary of the same cell C.

Figure 3: A 270-degree corner in the tour of the boundary of C.

Let Bt, Bb be the top and the bottom boundaries of the bounding box B, and let B =
{
Bt, Bb

}
. A

rectangle C ⊆ B is called a potential cell if and only if there is some subset X ⊆ OPT′∪F of rectangles
with F ⊆ X , such that C is a cell in the partition P(X). We next define a set D(C) =

{
Rb, Rt, R`, Rr

}
of four rectangles of OPT′ ∪ F ∪ B, that we view as defining the cell C. If C itself is a rectangle of
OPT′ ∪ F , then we set Rb = Rt = R` = Rr = C.

Assume now that C 6∈ F ∪ OPT′. Notice that all horizontal lines in the partition P(X) of B are
contained in the top or the bottom boundaries of the rectangles in X ∪ B. Let Rt ∈ X ∪ B be the
rectangle whose bottom boundary contains the top boundary of C. We think of the rectangle Rt as
defining the top boundary of C. Since all rectangles in OPT′∪F are internally disjoint, Rt is uniquely
defined. Similarly, let Rb ∈ X ∪B be the rectangle whose top boundary contains the bottom boundary
of C. We view Rb as defining the bottom boundary of C. We next define rectangles R` and Rr, that
we view as defining the left and the right boundaries of C, respectively. If the top left corner of C
is a corner of Rt, then we set R` = Rt. Otherwise, if the bottom left corner of C is a corner of Rb,
then we set R` = Rb. Otherwise, there must be at least one rectangle R ∈ X , whose right boundary
is contained in the left boundary of C (notice that the left boundary of C cannot be contained in the
left boundary of B, since in that case, the bottom left corner of Rt is the top left corner of C). If
at least one of the rectangles whose right boundary is contained in the left boundary of C belongs
to F , then we let R` be the topmost among all such rectangles R. Otherwise, there is exactly one
rectangle R ∈ OPT′ (due to non-degeneracy), such that the right boundary of R is contained in the left
boundary of C. We set R` = R. We define the rectangle Rr similarly. Let D(C) =

{
Rt, Rb, R`, Rr

}
,

so |D(C)| ≤ 4. Notice that D(C) uniquely defines the potential cell C: that is, if C 6= C ′, then
D(C) 6= D(C ′). Moreover, if C ∈ P(X) for some set X ⊆ OPT′ ∪ F with F ⊆ X , then all rectangles
of D(C) must belong to X ∪ B. We use this fact later.

We let the initial partition P ′ of the bounding box be P(W). Our next step is to bound the number
of cells in P ′. For each cell C of P ′, if C 6∈ W, then we charge C to the rectangle R` ∈ D(C), which
must belong to W ∪ B. It is easy to see that each rectangle R ∈ W ∪ B may be charged at most 3
times: twice for the cells whose left corners coincide with the top left and bottom left corner of R, and
once for a cell whose left boundary contains the right boundary of R, while each of the two rectangles
in B can be charged once. Therefore, the total number of cells in the partition P ′ is at most 4|W|+ 2.
The expected number of cells in P ′ is therefore at most 4(3r) + 2 ≤ 12r + 2. Moreover, if event E1

does not happen, P ′ contains at most 72r + 2 ≤ 73r cells.

Step 2. Let C be any potential cell, and assume that C 6∈ F . Recall that NC is the total number of all
rectangles in OPT′ intersecting C. For an integer t ≥ 0, we say that C has excess t iff

⌊
rNC/|OPT′|

⌋
=

t. We need the following lemma.

Lemma B.3 Let C be a cell of P ′, such that C 6∈ F , and assume that C has excess t ≥ 10. Then there

38

is a partition of C into at most t2 rectangular cells, where for each resulting cell C ′, NC′ ≤ 10|OPT′|/r.

Proof: We partition C into at most t2 cells by first building a grid inside B, with at most t+1 vertical
lines and at most t + 1 horizontal lines, and then using the partition of C defined by the grid. Let
R̃ ⊆ OPT′ be the set of all rectangles intersecting C, so |R̃| = NC ≥ t|OPT′|/r.

We build the set Ṽ of the vertical lines of the grid as follows. For each 1 ≤ i < t, let Vi be the leftmost
vertical line, such that the total number of the rectangles of R̃ lying completely to the left of Vi is at
least iNC/t (notice that this includes the rectangle whose right boundary lies on Vi). Observe that,
since R̃ is non-degenerate, the number of the rectangles of R̃ lying completely to the left of Vi is at

most
⌈
iNC
t

⌉
≤ (i+1)NC

t , as t ≤ rNC
|OPT′| , and so NC

t ≥
|OPT′|
r ≥ 2. Let V0 and Vt be the left and the right

boundaries of C, respectively. We set Ṽ = {V0, V1, . . . , Vt−1, Vt}. Observe that all lines V0, . . . , Vt have
integral x-coordinates. For each consecutive pair Vi−1, Vi of the vertical lines, consider the rectangle
SVi , whose left and right boundaries are Vi−1 and Vi respectively, and top and bottom boundaries
coincide with the top and the bottom boundaries of C. We call SVi the vertical strip of C defined
by Vi−1 and Vi. Then the number of the rectangles R ∈ R̃, that are contained in SVi is at most
2NC/t. We define the set H̃ = {H0, . . . ,Hr} of the horizontal lines of the grid, and the corresponding
horizontal strips SHj of C similarly.

Consider the partition P∗ of C defined by the cells of the resulting grid. Then P∗ contains at most t2

cells. We claim that for each cell C ′ ∈ P∗, NC′ ≤ 6|OPT′|/r. Indeed, consider some cell C ′ ∈ P∗, and
let R̃′ be the set of all rectangles of R̃ intersecting C ′. At most four rectangles of R̃′ may contain the
corners of the cell C ′. Each one of the remaining rectangles must be contained in either the vertical
strip of the grid to which C ′ belongs, or the horizontal strip of the grid to which C ′ belongs. The
total number of the rectangles of R̃ contained in these strips is at most 4NC/t ≤ 8|OPT′|/r, since
t ≥ rNC

2|OPT′| . Therefore, NC′ ≤ 4 + 8|OPT′|/r ≤ 10|OPT′|/r.

We are now ready to describe the second step of the algorithm. For each cell C ∈ P ′ \ F , whose
excess tC ≥ 10, we apply Lemma B.3 to partition C into t2C rectangular cells, where the value NC′

of each resulting cell C ′ is at most 10|OPT′|/r. We let P be the final partition of B, obtained after
we process all cells C ∈ P ′ \ F whose excess is at least 10. Clearly, the value NC′ of each resulting
cell C ′ is at most 20|OPT′|/r. It now only remains to prove that P contains O(r) cells with constant
probability. Assuming that event E1 does not happen, P ′ contains at most 73r cells. Therefore, it is
enough to show that with probability at least 1

2 , the number of cells added in the second step is O(r).
The following claim is central in the analysis of the algorithm.

Claim B.4 For each t ≥ 10, the expected number of cells in P ′ that have excess t is at most O(re−t).

We prove the claim below, after we complete the proof of Theorem 3.1 here. Let nt be the number of
cells with excess t in the partition P ′. The expected number of the new cells added in the second step
is then at most:

∑
t≥10

E [nt] · t2 ≤
∑
t≥10

t2 ·O(re−t) ≤ r
∑
t≥10

O(e−t/2) = O(r),

since for t ≥ 10, t2 < et/2. Using Markov’s inequality, with probability at least 1/2, the number of cells
added in the second iteration is at most O(r), and so overall, with constant probability, P contains at
most O(r) cells. It now only remains to prove Claim B.4.

Proof of Claim B.4. The proof of the claim is practically identical to the proof of Lemma 3.3
in [Har14]. Notice that for each rectangle R ∈ OPT′ ∪ F , Pr [R ∈ S1 | R ∈ W] ≥ 1

2 : if R ∈ F , then

39

this probability is 1; otherwise, it is easy to see that this probability is at least 1
2 . For convenience, we

denote P(S1) by P ′′.

Consider now some potential cell C. We claim that Pr [C ∈ P ′′ | C ∈ P ′] ≥ 1
16 .

Indeed, given a cell C, let RC be the set of all rectangles of OPT′ intersecting C, and let E(C) be the
event that none of the rectangles in RC belong to W. Then:

Pr
[
C ∈ P ′′ | C ∈ P ′

]
=

Pr [(C ∈ P ′′) ∧ (C ∈ P ′)]
Pr [C ∈ P ′]

=
Pr [(D(C) ⊆ S1) ∧ E(C)]

Pr [(D(C) ⊆ W) ∧ E(C)]

=
Pr [D(C) ⊆ S1]

Pr [D(C) ⊆ W]

=

∏
R∈D(C) Pr [R ∈ S1]∏
R∈D(C) Pr [R ∈ W]

=
∏

R∈D(C)

Pr [R ∈ S1]

Pr [R ∈ W]

=
∏

R∈D(C)

Pr [R ∈ S1 | R ∈ W] ≥ 1

16
,

since there are at most four rectangles in D(C).

Therefore, Pr [C ∈ P ′] = Pr[(C∈P ′′)∧(C∈P ′)]
Pr[C∈P ′′|C∈P ′] ≤ 16 · Pr [(C ∈ P ′′) ∧ (C ∈ P ′)]. Let Ct be the set of all

potential cells with excess at least t. Then:

E
[
|Ct ∩ P ′|

]
=
∑
C∈Ct

Pr
[
C ∈ P ′

]
≤
∑
C∈Ct

16 ·Pr
[
(C ∈ P ′′) ∧ (C ∈ P ′)

]
= 16

∑
C∈Ct

Pr
[
C ∈ P ′ | C ∈ P ′′

]
·Pr

[
C ∈ P ′′

]
.

Let E ′(C) be the event that no rectangle R ∈ RC belongs to S2. Note that if C ∈ P ′′, then C can
only belong to P ′ if event E ′(C) happens. Therefore,

Pr
[
C ∈ P ′ | C ∈ P ′′

]
≤

∏
R∈RC

Pr [R 6∈ S2] ≤
∏

R∈RC

(
1− r

|OPT′|

)
≤ e−

∑
R∈RC

r/|OPT′|
= e−NC ·r/|OPT′| ≤ e−t,

and

E
[
|Ct ∩ P ′|

]
≤ 16e−t

∑
C∈Ct

Pr
[
C ∈ P ′′

]
≤ 16e−tE

[
|P ′′|

]
.

From previous discussion, the number of cells in P ′′ is bounded by 4|S1|+2, and E [|S1|] = 2r+m ≤ 3r,
so E [|P ′′|] = O(r). We conclude that E [|Ct ∩ P ′|] ≤ O(re−t). �

40

B.2 Proof of Theorem 3.3

Let G1 be the graph whose vertices are the corners of the rectangles in P, and edges are the boundary
edges of the rectangles in P. Notice that G1 has at most |P|+ 1 ≤ c∗r + 1 faces, including the outer
face, and each vertex of G1 is adjacent to at most 4 faces. Let G2 be the graph dual to G1. Then
G2 contains at most c∗r + 1 vertices, and every face of G2 has at most 4 vertices on its boundary.
Moreover, it is easy to see that G2 is 2-connected. We assign weights to the vertices of G2 as follows:
for each fake rectangle F ∈ F , we assign the weight of 1 to the vertex of G2 that corresponds to the
face F of G1. All other vertex weights are set to 0. The total weight of the vertices of G2 is then
exactly L. We now use Theorem 3.2 to obtain a simple cycle C of length at most 16

√
c∗r in G2, such

that C is a weighted balanced separator.

Let v∗ denote the vertex of G2 corresponding to the outer face of G1. Cycle C partitions the plane
into two regions. If v∗ 6∈ V (C), then we define the exterior of C as the region containing v∗, and
the other region is called the interior of C. Otherwise, we designate one of the two regions as the
exterior, and the other as the interior of C arbitrarily. Let V1 be the set of vertices of G2 with weight
1 lying in the exterior of C, and V2 the set of vertices with weight 1 lying in the interior of C. Then
|V1|, |V2| ≤ 2L/3.

We distinguish between two cases. The first case happens when v∗ ∈ V (C). Since C is a simple cycle,
we visit v∗ only once while traversing C. Let A be the set of all cells of the partition P that correspond
to vertices of V (C) \ {v∗}, so |A| ≤ O(

√
r). Let v1, v2 be the neighbors of v∗ in the cycle C. Then the

cells corresponding to v1 and v2 must be cells whose boundaries have non-empty intersections with
the boundary of the bounding box B. We can “connect” these two cells through a segment σ of the
bounding box, contained in the interior of C. The outer boundary of

⋃
P∈A P combined with the line

σ must now be a simple polygon, that we denote by J .

The second case happens when v∗ 6∈ C. In this case, we let A be the set of all the cells of P whose
corresponding vertex belongs to C. Then |A| ≤ O(

√
r), and the outer boundary of

⋃
P∈A P is a simple

polygon, that we denote by J .

In either case, we obtain a simple polygon J , whose edges are parallel to the axes, and J is aligned
with Z. Moreover, since the length of C is at most O(

√
r), the boundary of J contains at most

O(
√
r) corners. We use the boundary of J to define the two sets F1,F2 of the fake rectangles, so that

S(F1) = (B \ J) \ (
⋃
F∈F F) and S(F2) = J \ (

⋃
F∈F F).

From Lemma 2.4, there is a set F ′1 of O(
√
r) internally disjoint closed rectangles, whose union is J ,

such that every rectangle of F ′1 is aligned with Z. Let F ′′1 be the set of all rectangles F ∈ F that are
contained in B \ J . Notice that |F ′′1 | ≤ 2L/3, since we used a balanced cut. We let F1 = F ′1 ∪ F ′′1 .
Then |F1| ≤ 2L

3 +O(
√
r). From the above discussion, every rectangle in F1 is aligned with Z.

We define F2 similarly. From Lemma 2.5, there is a set F ′2 ofO(
√
r) internally disjoint closed rectangles,

whose union isB\J , such that every rectangle of F ′2 is aligned with Z. Let F ′′2 be the set of all rectangles
F ∈ F that have contributed to the weight of V2, so |F ′′2 | ≤ 2L/3, and let F ′′′2 be the set of all fake
rectangles F ∈ F whose corresponding cell belongs to A, so |F ′′′2 | = O(

√
r). We let F2 = F ′2∪F ′′2 ∪F ′′′2 .

Then |F2| ≤ 2L
3 +O(

√
r). As before, every rectangle in F2 is aligned with Z.

It is easy to see that S(F1) = (B \ J) \ (
⋃
F∈F F), and S(F2) = J \ (

⋃
F∈F F). Therefore, S(F1) ∩

S(F2) = ∅, and S(F1) ∪ S(F2) ⊆ S(F), so (F1,F2) is a valid decomposition pair as required. The
only rectangles of OPT′ that are not contained in R(F1)∪R(F2) are the rectangles that intersect the
boundaries of the cells of A (observe that line σ does not intersect any rectangles). The number of
the rectangles of OPT′ that the boundary of each such cell P intersects is at most NP ≤ O(|OPT′|/r),
and so the total number of the rectangles of OPT′ that do not belong to R(F1)∪R(F2) is bounded by

41

O(|OPT′|/
√
r). We conclude that there are constants c, c′ with |F1|, |F2| ≤ 2L

3 + c
√
r, and |OPTF1 |+

|OPTF2 | ≥ |OPTF |
(

1− c′√
r

)
. Setting c1 = max {c, c′, 1} concludes the proof of the theorem.

B.3 Proof of Theorem 3.4

The proof closely follows the proof of Theorem 3.3, except that we define the weights of the vertices
of G2 differently.

Let G1 be the graph whose vertices are the corners of the rectangles in P, and edges are the boundary
edges of the rectangles in P. As before, G1 has at most c∗r + 1 faces, including the outer face, and
each vertex of G1 is adjacent to at most four faces. Let G2 be the graph dual to G1. Then G2 contains
at most c∗r + 1 vertices, and every face of G2 has at most 4 vertices on its boundary. As before,
graph G2 is 2-connected. We assign weights to the vertices of G2 as follows. Consider some vertex
v ∈ V (G2), and let P be the face of G1 corresponding to v. If P is the outer face, or P = F for some
fake rectangle F ∈ F , then we set the weight of v to 0. Otherwise, the weight of v is the total number
of all rectangles R ∈ OPT′, whose upper left corner is either an internal point of P , or lies on the left
or the top boundaries of P , excluding the bottom-left corner and the top-right corner of P . The total
weight of the vertices of G2 is then exactly |OPT′|. We now use Theorem 3.2 to compute a simple
cycle C of length at most 16

√
c∗r in G2, such that C is a weighted balanced separator in G2 with

respect to the vertex weights. We define the interior and the exterior of C, and construct the polygon
J exactly as in the proof of Theorem 3.3.

We now claim that the total number of the rectangles of OPT′ contained in J is at most 3|OPT′|/4,
and the same holds for B \ J . Since we have computed a balanced partition, the total weight of all
vertices lying in the interior of C is at most 2|OPT′|/3, and the same is true for the total weight of
all vertices in the exterior of C. Therefore, B \ J contains at most 2|OPT′|/3 rectangles of OPT′.
Polygon J contains at most 2|OPT′|/3 rectangles, in addition to some rectangles that may have been
added by including the cells of A in J . However, each cell P ∈ A intersects at most 20|OPT′|/r
rectangles of OPT′, and so the total number of the rectangles of OPT′ contained in J is at most
2|OPT′|

3 + 20|OPT′|
r · 16

√
c∗r ≤ 3|OPT′|

4 , as r ≥ 224c∗.

We next define the sets F1 and F2 of fake rectangles exactly like in the proof of Theorem 3.3, so
S(F1) = (B \ J) \ (

⋃
F∈F F), and S(F2) = J \ (

⋃
F∈F F). As before, S(F1) ∩ S(F2) = ∅, and

S(F1) ∪ S(F2) ⊆ S(F), so (F1,F2) is a valid decomposition pair for F , as required. The only
rectangles of OPT′ that are not contained in R(F1) or R(F2) are the rectangles that were intersected
by the boundaries of the cells of A. The total number of the rectangles of OPT′ that the boundary of
each such cell intersects is O(|OPT′|/r), while |A| = O(

√
r), and so the total number of the rectangles

in OPT′ that do not belong to R(F1) ∪R(F2) is bounded by O(|OPT′|/
√
r).

From the above discussion, it is clear that |OPTF1 |, |OPTF2 | ≤ 3|OPTF |/4. Finally, it remains to
bound |F1| and |F2|. Both are bounded by |F|+O(z), where z = O(

√
r) is the number of corners of

J . We conclude that there are constants c, c′ with |F1|, |F2| ≤ L + c
√
r, and |OPTF1 | + |OPTF2 | ≥

|OPTF |
(

1− c′√
r

)
. Setting c2 = max {c, c′, 1} concludes the proof of the theorem.

B.4 Proof of Corollary 3.5

Throughout the proof, we use the constants c1, c2 from Theorems 3.3 and 3.4, and constant c∗ from

the definition of r-good partitions. We use a parameter r =

⌊(
L∗

3(c1+c2)

)2
⌋

. By appropriately setting

the constant c3, we can ensure that r ≥ max
{
L∗, 224c∗, 16c2

1, 16c2
2

}
, and that c3 > 6(c1 + c2)2.

42

Assume first that L > 3. Let OPT′ be any optimal solution to R(F). We compute an r-good
partition P of B with respect to F and OPT′, using Theorem 3.1 (notice that we are guaranteed
that r ≤ (L∗)2 ≤ |OPTF |/64). Let Z be the set of the corners of all rectangles in P. Recall that
if the corners of all rectangles in F have integral coordinates, then all points in Z have integral
coordinates. We then apply Theorem 3.3 to F and P, to find a valid decomposition pair (F ′1,F ′2)
for F , such that the rectangles in F ′1 ∪ F ′2 are aligned with Z, so all their corners have integral
coordinates. Moreover, |F ′1|, |F ′2| ≤ 2L

3 + c1
√
r < L∗, from the definition of r. We also have that

|OPTF ′1 |+ |OPTF ′2 | ≥ |OPTF |
(

1− c1√
r

)
. Assume without loss of generality that |OPTF ′1 | ≥ |OPTF ′2 |,

so |OPTF ′2 | ≤ |OPT
′|/2. Then:

|OPTF ′1 | ≥
|OPTF |

2
− |OPTF | · c1

2
√
r

≥ |OPTF |
4

≥ 2r,

since r ≥ 16c2
1, and r ≤ |OPTF |/64. We now let OPT′′ be the optimal solution to R(F ′1). Since

r ≥ max
{
L∗, 224c∗

}
, we can compute an r-good partition P ′ of B with respect to F ′1 and OPT′′,

using Theorem 3.1. Let Z ′ be the set of the corners of all rectangles in P ′. Then all vertices in Z ′

have integral coordinates. We then apply Theorem 3.4 to F ′1 and P ′, to find a valid decomposition
pair (F1,F2) for F ′1, such that the rectangles in F1 ∪F2 are aligned with Z ′, so all their corners have
integral coordinates.

Notice that Theorem 3.4 guarantees that for each i ∈ {1, 2}, |OPTFi | ≤ 3|OPTF |/4. Moreover,
|F1|, |F2| ≤ |F ′1|+ c2

√
r ≤ 2L∗

3 + (c1 + c2)
√
r ≤ L∗, from the definition of r.

The final three sets of fake rectangles are F1,F2 and F ′2. To finish the proof, we observe that:

|OPTF1 |+ |OPTF2 |+ |OPTF ′2 | ≥ |OPTF ′1 | ·
(

1− c2√
r

)
+ |OPTF ′2 |

≥
(
|OPTF ′1 |+ |OPTF ′2 |

)
·
(

1− c2√
r

)
≥ |OPTF | ·

(
1− c1√

r

)(
1− c2√

r

)
≥ |OPTF | ·

(
1− c1 + c2√

r

)
≥ |OPTF | ·

(
1− c3

L∗

)
,

from the definition of r, and since c3 > 6(c1 + c2)2.

Assume now that L < 3. Then instead of running the first part of the above algorithm, we simply set
F ′1 = F and F ′2 = {B}. We then apply the second part of the algorithm to F ′1 exactly as before (in
other words, we only need to apply Theorem 3.4).

C Proofs Omitted from Section 6

C.1 Proof of Claim 6.3

Let τ be a parameter that we will determine later. Let OPT′ be an optimal solution to instance
R(F) (note that the algorithm does not know this solution or its value). Given τ , we define a grid

43

Gτ = (Vτ ,Hτ) as follows. The set Vτ of vertical lines of the grid is the union of two subsets, Vτ1 and
Vτ2 . Set Vτ2 contains, for every corner (x, y) of every rectangle F ∈ F , a vertical line V with coordinate
x. Therefore, |Vτ2 | ≤ 2|F|. We now proceed to define Vτ1 .

Initially, Vτ1 only contains V0 - the left boundary of B. We set t = 0, and then iterate. For each
vertical line V to the right of Vt, consider the vertical strip S(V) of B, contained between Vt and
V . Let R′ ⊆ R(F) denote the set of all rectangles that are contained in this strip. We run the
(cA log log |OPT′|)-approximation algorithm from Corollary 2.3 on R′. If the value of the solution
returned by the algorithm is at least τ/2, then V is called a candidate line. Among all candidate
lines, let Vt+1 be the leftmost one. We can assume without loss of generality, that there is a rectangle
R ∈ R whose right boundary lies on Vt+1 (alternatively, we can shift the line Vt+1 to the left until this
happens; since both vertical strips defined by the old and by the new locations of Vt+1 contain exactly
the same set of rectangles, the values of the solutions returned by the O(log log |OPT′|)-approximation
algorithm are the same for both instances). We add Vt+1 to Vτ1 , set t := t+ 1, and continue. We use
the following observation.

Observation C.1 Let R′ ⊆ R(F) contain all rectangles R with R ⊆ S(Vt+1). Then the value of the

optimal solution to instance R′ is at most
⌈
τ ·cA log log |OPT′|

2

⌉
.

Proof: Let V ′ be a vertical line lying immediately to the left of Vt+1, and let R′′ ⊆ R(F) contain
all rectangles R with R ⊆ S(V ′). Since V ′ is not a candidate line, the algorithm from Corollary 2.3
returned a solution to instance R′′ whose value is less than τ/2, and so the optimal solution value

for instance R′′ is less than τ ·cA log log |OPT′|
2 . Since the input set of rectangles are non-degenerate,

|R′ \ R′′| ≤ 1, and so the optimal solution value for instance R′ is at most
⌈
τ ·cA log log |OPT′|

2

⌉
.

The algorithm terminates in iteration t when no candidate lines exist anymore. The last strip S of
the grid must also have the property that if R′ ⊆ R(F) contains all rectangles R with R ⊆ S, then

the value of the optimal solution to instance R′ is at most
⌈
τ ·cA log log |OPT′|

2

⌉
.

We set Vτ = Vτ1 ∪Vτ2 , and we define the set Hτ of horizontal lines of grid Gτ similarly. This concludes
the definition of the grid Gτ . Since we have ensured that for each vertical line V ∈ Vτ , there is some
rectangle in R ∪ F whose left or right boundary is contained in V , if all corners of all rectangles in
R ∪ F have integral coordinates, so do all lines in Vτ . A similar argument holds for the lines in Hτ .
Therefore, if the corners of all rectangles in F ∪R have integral coordinates, then so do all vertices of
the grid.

We are now ready to complete the algorithm. Let w be a large enough constant, so that logw >
2 log(cA log logw). Notice that we can efficiently check whether |OPT′| ≥ w via exhaustive search.
Assume first that |OPT′| ≥ w holds. Our algorithm needs an estimate on the value |OPT′|. In order
to obtain this estimate, we run the (cA log log |OPT′|)-approximation algorithm from Corollary 2.3
on instance R(F), and denote by W ′ the value of the solution returned by the algorithm. Then

|OPT′|
cA log log |OPT′| ≤ W ′ ≤ |OPT′|. Since we have assumed that |OPT′| ≥ w, we get that log |OPT′| >

2 log(cA log log |OPT′|), and so log log |OPT′|
2 ≤ log logW ′ ≤ log log |OPT′|. Therefore, W ′ ≤ |OPT′| ≤

cAW
′ log log |OPT′| ≤ 2cAW

′ log logW ′.

We will use a new integral parameter W as our guess on the value of |OPT′|, trying all integral values
of W between W ′ and 2cAW

′ log logW ′, so one of the values we try is guaranteed to be |OPT′|. For
each guessed value of W , we let τW = W

ρ·cA log logW , and we construct the grid GτW as above. From
Observation C.1, we are guaranteed that for every vertical and every horizontal strip of the resulting
grid, the value of the optimal solution to the sub-instance defined by the strip is at most:

44

⌈
τW · cA log log |OPT′|

2

⌉
=

⌈
W log log |OPT′|

2ρ log logW

⌉
≤
⌈
W

ρ
· log log |OPT′|

2 log logW ′

⌉
≤
⌈
W

ρ

⌉
.

In particular, if W ≤ |OPT′|, then this value is bounded by
⌈
|OPT′|/ρ

⌉
. On the other hand, if

W = |OPT′|, then, since every vertical strip defined by the lines in VτW1 contains at least τW
2 ≥

|OPT′|
2ρcA log log |OPT′| mutually disjoint rectangles, the number of such strips is bounded by 2ρcA log log |OPT′| ≤
4ρcA log logW ′, and the same holds for the number of the horizontal strips defined by the lines in HτW1 .

Therefore, for W = |OPT′|, we get |VTW1 |, |HTW1 | ≤ 4ρcA log logW ′. We choose the smallest value W

for which the |VTW1 |, |HTW1 | ≤ 4ρcA log logW ′ and return the corresponding grid GτW as the output
of the algorithm. We are then guaranteed that W ≤ |OPT′|, and |VτW | ≤ 4ρcA log logW + 2|F| ≤
4ρcA log log |OPT′|+ 2|F|, and the same holds for |HτW |. From the above discussion, for every verti-
cal and every horizontal strip of the grid, the optimal solution value for the instance defined by the
rectangles contained in the grid is at most

⌈
|OPT′|/ρ

⌉
.

Finally, consider the case when |OPT′| < w. In this case we can compute the optimal solution OPT′

exactly via exhaustive search. We then use the grid Gτ for τ = |OPT′|
ρ·cA log log |OPT′| . From Observation C.1,

for every vertical and every horizontal strip of the grid, the optimal solution value for the instance
defined by the rectangles contained in the strip is at most:

⌈
τ · cA log log |OPT′|

2

⌉
=

⌈
|OPT′|

2ρ

⌉
.

Since every strip of the bounding box defined by the vertical lines in Vτ1 contains at least τ/2 ≥
|OPT′|/(2ρcA log log |OPT′|) rectangles that are disjoint from each other, |Vτ1 | ≤ 2ρcA log log |OPT′|,
and the same holds for |Hτ1 |.

C.2 Proof of Theorem 6.4

Proof: Let r′ = 8r, and notice that max {m, 3} ≤ r′ ≤ |OPT′|/2. Let P be the r′-good partition of B
with respect to F and OPT′, given by Theorem 3.1 (this partition is not necessarily aligned with G).
We gradually transform P into a G-aligned r-good partition. Recall that |P| ≤ c∗r′, and every cell of
P intersects at most 20|OPT′|/r′ rectangles of OPT′.

Let P be any cell of P, such that P is not contained in any vertical strip of the grid G. Let VL be the
leftmost vertical line of G intersecting P , and let VR be the rightmost vertical line of G intersecting
P (it is possible that VL = VR). We partition P into up to three cells along the lines VR and VL (if
VR = VL, then we partition into two cells). At the end of this procedure, for each cell P , either P is
contained in a vertical strip, or the left and the right boundaries of C are aligned with the grid G.
Nottice that cells P ∈ F are not changed at the end of this step, as each such cell is aligned with G.

We do the same with the horizontal lines of G. Let P ′ be the resulting partition. Then |P ′| ≤ 9r′,
and every cell of P ′ intersects at most 20|OPT′|/r′ rectangles of OPT′. Moreover, every rectangle of
F is a cell of P ′. We say that a cell P ′ of P ′ is small if P ′ 6∈ F , and it is contained in a vertical or a
horizontal strip of G; otherwise, it is large. Notice that for every large cell P ′ of P ′, the boundary of
P ′ is aligned with the grid G.

We now construct our final partition P∗ of the bounding box into cells, by starting with P∗ = ∅, and
then gradually adding rectangular cells to P∗. All cells that we add will be internally disjoint and
aligned with the grid G. At the same time, we will consider the grid G, and we will mark the cells of

45

G that are covered by the rectangles currently in P∗. First, we add to P∗ all large cells that belong
to P ′, and we mark all cells of G that are covered by such large cells of P ′. (At this point, all fake
rectangles in F belong to P∗).

Let C be any unmarked cell of the grid G. If there is some cell P ′ ∈ P ′, such that one of the four
corners of P ′ belongs to C or its boundary, then we add C to P∗, and we mark cell C of G. We call
such a cell C a neutral cell. We note that for each rectangle in P ′, we add at most 16 new rectangles
to P∗ at this step, as each of the four corners of each rectangle P ′ ∈ P ′ may intersect a boundary of
up to 4 cells of G. Therefore, so far, |P∗| ≤ 16 · 9 · c∗r′ = 144c∗r′.

Let C be any cell of G that remains unmarked after the previous step. Since C is not contained in
any large rectangle of P ′, there must be a small rectangle P ′ ∈ P ′ intersecting C. Moreover, no corner
of P ′ is contained in C or its boundary. Let SV be the vertical strip of G in which C lies, and let SH

be the horizontal strip of G in which C lies. Then P ′ is contained in SV or in SH , and exactly one of
these two things must happen, as no corner of P ′ is contained in C. In the former case, we say that
P ′ intersects C vertically, and in the latter case we say that it intersects C horizontally. Notice that
If P ′ intersects C vertically, then all other small cells of P ′ intersecting C must intersect it vertically.
We say that C is a vertical cell of G in such a case. Otherwise, we say that C is a horizontal cell.

While G contains an unmarked vertical cell C, let SV be the vertical strip of G containing C. Let
S be the set of all vertical cells contained in SV (notice that S only contains cells that are currently
unmarked). Let S ′ ⊆ S be a subset of these vertical cells, that appear consecutively in the strip SV ,
such that C ∈ S ′, and S ′ is maximal satisfying those conditions. Let P ∗ be the rectangle consisting of
the union of the cells in S ′. We add P ∗ to P∗, and we mark all cells in S ′. We call P ∗ a vertical cell
of P∗. Notice that the cell C∗ of G, appearing right below P ∗, must be a neutral cell (since the small
cells of P ′ intersecting the bottommost cell of S ′ must terminate at C∗ or its boundary). We charge
P ∗ to C∗.

We continue to process all unmarked vertical cells of G, until all of them are marked. Each neutral
cell is charged at most once, so the number of cells in P∗ at most doubles.

We process all unmarked horizontal cells of G similarly. In the end, we obtain a partition P∗ of the
bounding box into rectangles, containing at most 4 ·144 ·c∗r′ = O(r) cells. As observed above, F ⊆ P∗.
It now only remains to show that every cell of P∗ intersects at most 20|OPT′|/r rectangles of OPT′.

Lemma C.2 Each cell of P∗ intersects at most 20|OPT′|/r rectangles of OPT′.

Proof: Let P ∈ P∗ be any such cell. Recall that every cell in P ′ intersects at most 20|OPT′|/r′
rectangles of OPT′, and that r′ = 8r.

If P is a large cell, then P ∈ P ′, so it intersects at most 20|OPT′|/r′ ≤ 20|OPT′|/r rectangles of OPT′.
Assume now that P is a neutral cell. Let SV and SH be the vertical and the horizontal strips of G
containing P . At most four rectangles of OPT′ contain the corners of P , and the remaining rectangles
intersecting P are contained in either SV or SH . Since grid G is ρ-accurate, and r ≤ ρ, at most⌈
|OPT′|
ρ

⌉
≤
⌈
|OPT′|
r

⌉
rectangles of OPT′ can be contained in SV , and the same holds for SH . So P

intersects at most
⌈

2|OPT′|
r

⌉
+ 4 ≤ 20|OPT′|

r rectangles of OPT′. It now only remains to analyze the

case where P is a vertical or a horizontal cell. We only analyze the former; the latter case is analyzed
similarly.

In order to be consistent with prior notation, we let P ∗ be any vertical cell of P∗, and let C be the
vertical cell of G, such that P ∗ was added to P∗ when C was processed. Let SV be the vertical strip
of G containing P ∗, and let A,B be the left and the right boundaries of P ∗, respectively.

46

The rectangles of OPT′ intersecting P ∗ can be partitioned into three subsets: set X1 containing all

rectangles R ⊆ SV - their number is bounded by
⌈
|OPT′|
ρ

⌉
≤
⌈
|OPT′|
r

⌉
since G is ρ-accurate and r ≤ ρ;

set X2 containing all rectangles R that intersect A; and set X3 containing all rectangles that intersect

B. We now show that |X2| ≤ 20|OPT′|
r′ , and |X3| is bounded similarly.

In order to show that |X2| ≤ 20|OPT′|
r′ , we show that there is some cell P ′ ∈ P ′, such that P ′ contains

A, in the following claim.

Claim C.3 There is some cell P ′ ∈ P ′, such that P ′ contains A (possibly as part of its boundary).

Notice that every rectangle in X2 intersects A, and so, from the above claim, it also intersects P ′.

Since each cell in P ′ intersects at most 20|OPT′|
r′ rectangles of OPT′, we get that |X2| ≤ 20|OPT′|

r′ . A

similar analysis shows that |X3| ≤ 20|OPT′|
r′ . Since r′ = 8r, the total number of rectangles intersecting

P ∗ is bounded by: 40|OPT′|
r′ +

⌈
|OPT′|
r

⌉
< 20|OPT′|

r . It now only remains to prove Claim C.3.

Proof: The intuition for the proof is that P ∗ cannot contain a corner of any cell of P ′: otherwise, one
of the cells of S ′ should have been neutral. Since P ′ partitions the bounding box, A must be contained
in some cell of P ′. We now give a formal proof.

Let v be any point on the left boundary of the cell C. Then some cell P ′ of P ′ must contain v (where
possibly v belongs to the boundary of P ′). If v lies on the right boundary of P ′, then there is some
other cell P ′′ ∈ P ′, such that v lies on the left boundary of P ′′. We then replace P ′ with P ′′. Therefore,
we assume that v does not lie on the right boundary of P ′.

Assume first that P ′ is a large cell. Then its four sides are aligned with the lines of the grid. Since v
does not lie on the right boundary of P ′, it is easy to see that C ⊆ P ′ must hold, which is impossible,
since C was unmarked when it was processed.

Assume now that P ′ is a small cell. Since cell C is not neutral, and it is vertical, P ′ must intersect C
vertically. We claim that A is contained in the boundary of P ′: otherwise, the one of the corners of
P ′ is contained in P ∗, and so one of the cells of S ′ should have been neutral.

C.3 Proof of Corollary 6.5

Throughout the proof, we use the constants c1, c2 from Theorems 3.3 and 3.4, and constant c∗∗ from the

definition of r-good grid-aligned partitions. We use a parameter r =

⌊(
L∗

12(c1+c2)

)2
⌋

. By appropriately

setting the constant c̃, we can ensure that r ≥ max
{
L∗, 224c∗∗, 16c2

1, 16c2
2

}
, and that c̃ > 6(c1 + c2)2.

Assume first that L > 3, and let OPT′ be any optimal solution to R(F). Notice that we also are
guaranteed that max {L∗, 3} ≤ r ≤ min

{
ρ, |OPT′|/16

}
, and so we can apply Theorem 6.4 to compute

a G-aligned r-good partition P of B with respect to F and OPT′. Let Z be the set of the corners
of all rectangles in P. Since grid G is ρ-accurate for F , all rectangles in F are aligned with the
grid G, and so are the points of Z. We then apply Theorem 3.3 to F and P, to compute a valid
decomposition pair (F ′1,F ′2) for F , such that the rectangles in F ′1 ∪ F ′2 are aligned with Z, and
hence with G. Moreover, we are guaranteed that |F ′1|, |F ′2| ≤ 2L

3 + c1
√
r ≤ 3L∗

4 from the choice

of r, and |OPTF ′1 | + |OPTF ′2 | ≥ |OPTF |
(

1− c1√
r

)
. Assume w.l.o.g. that |OPTF ′1 | ≥ |OPTF ′2 |, so

|OPTF ′2 | ≤ |OPT
′|/2. Then:

|OPTF ′1 | ≥
|OPTF |

2
− |OPTF | · c1

2
√
r

≥ |OPTF |
4

,

47

since r ≥ 16c2
1. Moreover, from Observation 6.2, grid G remains ρ/4-accurate for F ′1. Let ρ′ = ρ/4, and

recall that r ≤ ρ′. We now let OPT′′ be the optimal solution to R(F ′1), so |OPT′′| ≥ |OPTF |/4 > 16.
Since max {L∗, 3} ≤ r ≤ min

{
ρ′, |OPT′′|/16

}
, we can again apply Theorem 6.4 to compute a G-

aligned r-good partition P ′ of B with respect to F ′1 and OPT′. Let Z ′ be the set of the corners of all
rectangles in P ′. Then all vertices in Z ′ are aligned with G. We then apply Theorem 3.4 to F ′1 and
P ′, to compute a valid decomposition pair (F1,F2) for F ′1, such that the rectangles in F1 ∪ F2 are
aligned with Z ′, and thus with G.

Notice that Theorem 3.4 guarantees that for each i ∈ {1, 2}, |OPTFi | ≤ 3|OPTF |/4. Moreover,
|F1|, |F2| ≤ |F ′1|+ c2

√
r ≤ 2L∗

3 + (c1 + c2)
√
r ≤ 3L∗/4, from the definition of r.

The final three sets of fake rectangles are F1,F2 and F ′2. To finish the proof, we observe that:

|OPTF1 |+ |OPTF2 |+ |OPTF ′2 | ≥ |OPTF ′1 | ·
(

1− c2√
r

)
+ |OPTF ′2 |

≥
(
|OPTF ′1 |+ |OPTF ′2 |

)
·
(

1− c2√
r

)
≥ |OPTF | ·

(
1− c1√

r

)(
1− c2√

r

)
≥ |OPTF | ·

(
1− c1 + c2√

r

)
≥ |OPTF | ·

(
1− c̃

L∗

)
,

since c̃ > 6(c1 + c2)2.

Assume now that L < 3. Then instead of running the first part of the above algorithm, we simply set
F ′1 = F and F ′2 = {B}. We then apply the second part of the algorithm to F ′1 exactly as before (in
other words, we only need to apply Theorem 3.4).

48

