
New Hardness Results for Routing on Disjoint Paths
Extended Abstract∗

Julia Chuzhoy
†

Toyota Technological Institute at

Chicago

6045 S. Kenwood Ave

Chicago, IL 60637, U.S.A

cjulia@�ic.edu

David H. K. Kim
‡

Computer Science Department

University of Chicago

1100 E. 58th Street

Chicago, IL 60637, U.S.A

hongk@cs.uchicago.edu

Rachit Nimavat
§

Toyota Technological Institute at

Chicago

6045 S. Kenwood Ave

Chicago, IL 60637, U.S.A

nimavat@�ic.edu

ABSTRACT

In the classical Node-Disjoint Paths (NDP) problem, the input con-

sists of an undirected n-vertex graph G, and a collection M ={
(s1, t1), . . . , (sk , tk)

}
of pairs of its vertices, called source-destination,

or demand, pairs. �e goal is to route the largest possible number of

the demand pairs via node-disjoint paths. �e best current approxi-

mation for the problem is achieved by a simple greedy algorithm,

whose approximation factor is O (
√
n), while the best current nega-

tive result is an Ω(log
1/2−δ n)-hardness of approximation for any

constant δ , under standard complexity assumptions. Even seem-

ingly simple special cases of the problem are still poorly understood:

when the input graph is a grid, the best current algorithm achieves

an Õ (n1/4)-approximation, and when it is a general planar graph,

the best current approximation ratio of an e�cient algorithm is

Õ (n9/19). �e best currently known lower bound on the approx-

imability of both these versions of the problem is APX-hardness.

In this paper we prove that NDP is 2
Ω(
√

logn)
-hard to approxi-

mate, unless all problems in NP have algorithms with running time

nO (logn)
. Our result holds even when the underlying graph is a

planar graph with maximum vertex degree 3, and all source vertices

lie on the boundary of a single face (but the destination vertices

may lie anywhere in the graph). We extend this result to the closely

related Edge-Disjoint Paths problem, showing the same hardness

of approximation ratio even for sub-cubic planar graphs with all

sources lying on the boundary of a single face.

∗
A full version of this paper is available at https://arxiv.org/abs/1611.05429
†

Supported in part by NSF grants CCF-1318242 and CCF-1616584.

‡
Supported in part by NSF grant CCF-1318242.

§
Supported in part by NSF grant CCF-1318242.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’17, Montreal, Canada
© 2017 ACM. 978-1-4503-4528-6/17/06. . .$15.00

DOI: 10.1145/3055399.3055411

CCS CONCEPTS

•�eory of computation → Problems, reductions and com-
pleteness; Routing and network design problems; Network
�ows;

KEYWORDS

Approximation algorithms, Hardness of approximation, Routing

problems, Node-Disjoint Paths, Edge-Disjoint Paths

ACM Reference format:

Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. 2017. New Hardness

Results for Routing on Disjoint Paths. In Proceedings of 49th Annual ACM
SIGACT Symposium on the �eory of Computing, Montreal, Canada, June
2017 (STOC’17), 14 pages.

DOI: 10.1145/3055399.3055411

1 INTRODUCTION

�e main focus of this paper is the Node-Disjoint Paths (NDP)

problem: given an undirected n-vertex graph G, together with a

collectionM =
{
(s1, t1), . . . , (sk , tk)

}
of pairs of its vertices, called

source-destination, or demand pairs, route the largest possible num-

ber of the demand pairs via node-disjoint paths. In other words,

a solution to the problem is a collection P of node-disjoint paths,

with each path connecting a distinct source-destination pair, and

the goal is to maximize |P |. �e vertices participating in the de-

mand pairs ofM are called terminals. NDP is a classical routing

problem, that has been extensively studied in both Graph �eory

and �eoretical Computer Science communities. One of the key

results in Robertson and Seymour’s Graph Minors series is an ef-

�cient algorithm for the special case of the problem, where the

number k of the demand pairs is bounded by a constant [28, 29];

the running time of their algorithm is f (k) · poly(n) for some large

function f . However, when k is a part of input, the problem be-

comes NP-hard [16, 17], even on planar graphs [24], and even on

grid graphs [23]. �e following simple greedy algorithm provides

an O (
√
n)-approximation for NDP [22]: Start with P = ∅. While

G contains a path connecting any demand pair, select the shortest

STOC’17, June 2017, Montreal, Canada J. Chuzhoy et al.

such path P , add it to P, and delete all vertices of P fromG . Surpris-

ingly, despite the extensive amount of work on the problem and its

variations, this elementary algorithm remains the best currently

known approximation algorithm for the problem, and until recently,

this was true even for the special cases where G is a planar graph,

or a grid graph. �e la�er two special cases have slightly be�er

algorithms now: a recent result of Chuzhoy and Kim [13] gives a

Õ (n1/4)-approximation for NDP on grid graphs, and Chuzhoy, Kim

and Li [14] provide a Õ (n9/19)-approximation algorithm for the

problem on planar graphs. �e best current negative result shows

that NDP has no O (log
1/2−δ n)-approximation algorithms for any

constant δ , unless NP ⊆ ZPTIME(npoly logn) [2, 3]. For the special

case of grids and planar graphs only APX-hardness is currently

known on the negative side [13].

�e main result of this paper is that NDP is 2
Ω(
√

logn)
-hard to

approximate unless NP ⊆ DTIME(nO (logn)), even if the underlying

graph is a planar graph with maximum vertex degree 3, and all

source vertices

{
s1, . . . , sk

}
lie on the boundary of a single face. We

note that NDP can be solved e�ciently on graphs whose maximum

vertex degree is 2 (see the full version of the paper for details).

A problem closely related to NDP is Edge-Disjoint Paths (EDP).

�e input to this problem is the same as to NDP, and the goal is

again to route the largest possible number of the demand pairs.

However, the routing paths are now allowed to share vertices, as

long as they remain disjoint in their edges. �e two problems

are closely related: it is easy to see that EDP is a special case

of NDP, by using the line graph of the EDP instance to obtain an

equivalent NDP instance
1
. �is relationship is not known for planar

graphs, as the line graph of a planar graph is not necessarily planar.

�e current approximability status of EDP is similar to that of

NDP: the best current approximation algorithm achieves anO (
√
n)-

approximation factor [11], and the best current negative result is an

Ω(log
1/2−δ n)-hardness of approximation for any constant δ , unless

NP ⊆ ZPTIME(npoly logn) [2, 3]. An analogue of the special case of

NDP on grid graphs for the EDP problem is when the input graph

is a wall, and the work of [13] gives an Õ (n1/4)-approximation

algorithm for EDP on wall graphs. For planar graphs, no be�er

thanO (
√
n)-approximation is currently known for EDP, and it is not

clear whether the algorithm of [14] can be adapted to this se�ing.

Our hardness result extends to EDP on planar sub-cubic graphs,

where all source vertices lie on the boundary of a single face.

Interestingly, be�er algorithms are known for several special cases

of EDP on planar graphs. Kleinberg [19], building on the work of

Chekuri, Khanna and Shepherd [9, 10], has shown an O (log
2 n)-

approximation algorithm for even-degree planar graphs. Aumann

and Rabani [6] showed an O (log
2 n)-approximation algorithm for

EDP on grids, and Kleinberg and Tardos [20, 21] showed O (logn)-
approximation algorithms for broader classes of nearly-Eulerian

uniformly high-diameter planar graphs, and nearly-Eulerian densely

embedded graphs. Recently, Kawarabayashi and Kobayashi [18]

gave an O (logn)-approximation algorithm for EDP on 4-edge-

connected planar graphs and on Eulerian planar graphs. It seems

1
�is transformation may in�ate the number of vertices, and so approximation factors

depending on n may not be preserved.

that the restriction of the graph G to be planar Eulerian, or nearly-

Eulerian, makes the EDP problem signi�cantly more tractable. In

contrast, the graphs we construct in our hardness of approximation

proof are sub-cubic, and far from being Eulerian.

A variation of the NDP and EDP problems, where small congestion

is allowed, has been a subject of extensive study. In the NDP
with congestion (NDPwC) problem, the input is the same as in

the NDP problem, and we are additionally given an integer c ≥ 1.

�e goal is to route as many of the demand pairs as possible with

congestion at most c : that is, every vertex may participate in at most

c paths in the solution. EDP with Congestion (EDPwC) is de�ned

similarly, except that now the congestion bound is imposed on the

graph edges and not vertices. �e classical randomized rounding

technique of Raghavan and �ompson [26] gives a constant-factor

approximation for both problems, if the congestion c is allowed to

be as high as Θ(logn/ log logn). A long line of work [1, 7, 8, 10,

12, 15, 25, 27] has lead to an O (poly logk)-approximation for both

NDPwC and EDPwC problems, with congestion bound c = 2. For

planar graphs, a constant-factor approximation with congestion

2 is known for EDP [30]. Our new hardness results demonstrate

that there is a dramatic di�erence in the approximability of routing

problems with congestion 1 and 2.

Our Results and Techniques. Our main result is the proof of the

following two theorems.

Theorem 1.1. �ere is a constant c , such that no e�cient algorithm

achieves a factor 2
c
√

logn-approximation for NDP, unless NP ⊆
DTIME(nO (logn)). �is result holds even for planar graphs with max-
imum vertex degree 3, where all source vertices lie on the boundary
of a single face.

Theorem 1.2. �ere is a constant c , such that no e�cient algorithm

achieves a factor 2
c
√

logn-approximation for EDP, unless NP ⊆
DTIME(nO (logn)). �is result holds even for planar graphs with max-
imum vertex degree 3, where all source vertices lie on the boundary
of a single face.

We now provide an informal high-level overview of the proof of

�eorem 1.1. It is somewhat easier to describe the proof of the

theorem for the case where the maximum vertex degree is allowed

to be 4 instead of 3. �is proof can then be easily modi�ed to ensure

that the maximum vertex degree in the instances we obtain does

not exceed 3, and also extended to the EDP problem. We perform

a reduction from the 3SAT(5) problem. In this problem, we are

given a SAT formula φ de�ned over a set of n Boolean variables.

�e formula consists ofm clauses, each of which is an OR of three

literals, where every literal is either a variable or its negation. Every

variable ofφ participates in exactly 5 distinct clauses, and the literals

of every clause correspond to three distinct variables. We say that

φ is a Yes-Instance, if there is an assignment to its variables that

satis�es all clauses, and we say that it is a No-Instance, if no

assignment satis�es more than a (1 − ϵ)-fraction of the clauses, for

some �xed constant 0 < ϵ < 1

2
. �e famous PCP theorem [4, 5]

shows that, unless P = NP, no e�cient algorithm can distinguish

between the Yes- and the No-Instances of 3SAT(5).

New Hardness Results for Routing on Disjoint Paths STOC’17, June 2017, Montreal, Canada

We perform Θ(logn) iterations, where in iteration i we construct

what we call a level-i instance of NDP. We use two parameters,

Ni and N ′i , and ensure that, if the reduction is performed from a

formula φ which is a Yes-Instance, then there is a solution to the

level-i instance of NDP that routes Ni demand pairs, while if φ
is a No-Instance, then no solution routes more than N ′i demand

pairs. We let дi = Ni/N
′
i be the gap achieved by the level-i instance.

Our construction ensures that the gap grows by a small constant

factor in every iteration, so дi = 2
Θ(i)

, while the instance size

grows by roughly factor-Θ(n · дi−1) in iteration i . �erefore, a�er

Θ(logn) iterations, the gap becomes 2
Ω(logn)

, while the instance

size becomes n′ = 2
O (log

2 n)
, giving us the desired 2

Ω(
√

logn′)
-

hardness of approximation, unless NP ⊆ DTIME(nO (logn)).

In all our instances of NDP, the underlying graph is a subgraph of

a grid, with all sources lying on the top boundary of the grid; all

vertices participating in the demand pairs are distinct. In the �rst

iteration, a level-1 instance is constructed by a simple reduction

from 3SAT(5), achieving a small constant gap д1. Intuitively, once

we construct a level-i instance, in order to construct a level-(i + 1)
instance, we replace every demand pair from a level-1 instance with

a collection of level-i instances. In order to be able to do so, we need

the instances to be “�exible”, so that, for example, we have some

freedom in choosing the locations of the source and the destination

vertices of a given level-i instance in the grid.

We achieve this �exibility by de�ning, for each level i , a family

of level-i instances. �e graph associated with a level-i instance

I is a subgraph of a large enough grid Gi . �e construction of

the instance consists of two parts. First, we construct a path Z (I),
and place all source vertices on this path. Second, we construct

a vertex-induced subgraph B (I) of a relatively small grid G ′i , and

we call B (I) a box. We place all the destination vertices inside the

box B (I). Graphs Z (I) and G ′i are completely disjoint from the

grid Gi and from each other. In order to construct a speci�c level-i
instance, we select a placement of the path Z (I) on the �rst row

of the grid Gi , and a placement of the box B (I) in Gi , far enough

from its boundaries (see Figure 1). We also choose a sub-grid G ′′i of

Gi , of the same dimensions as G ′i , and map the vertices of G ′i to the

vertices of G ′′i in a natural way. Since B (I) ⊆ G ′i , this also de�nes

a mapping of the vertices of B (I) to the vertices of Gi . Once these

placements are selected, the mapping of the vertices of Z (I) to the

vertices of P determines the identities of the source vertices, and the

mapping of the vertices of B (I) to the vertices of G ′′i determines

the identities of the destination vertices. We delete from Gi all

vertices to which the vertices of G ′i \ B (I) are mapped. In other

words, all vertices that were removed from G ′i to construct B (I),
are also removed from G ′′i , and hence from Gi . In order to reduce

the maximum vertex degree to 3, we can use wall graphs instead

of grid graphs and employ a similar proof. Alternatively, a simple

modi�cation of the �nal instance we obtain can directly reduce its

maximum vertex degree to 3.

�e most natural intuitive way to think about our construction

is the one described above. An equivalent, and somewhat easier

way to de�ne our construction is slightly di�erent: we let a level-0

instance be an instance consisting of a single demand pair (s, t),
with s lying on the �rst row of the grid and t lying far from the

Z(I)

B(I)

Gi

Figure 1: A schematic view of a level-i instance I.

grid boundary. We then show, for each i > 0, a procedure that

constructs a level-i instance by combining a number of level-(i −
1) instances. �e la�er de�nition is somewhat more convenient,

because it saves us the need to provide a separate correctness proof

for level-1 instances, which is essentially identical to the proof for

higher-level instances. However, we still feel that de�ning level-1

instances explicitly is useful for the sake of intuition. �erefore, we

start with preliminaries in Section 2 and describe our construction

of level-1 instances in Section 3, together with an intuition for

constructing higher-level instances. In Section 4, we de�ne our

�nal construction in two steps: by �rst de�ning level-0 instances,

and then showing how to construct level-i instances from level-

(i − 1) instances. �e resulting level-1 instances will be similar to

those de�ned in Section 3. We provide a sketch of the correctness

proof in Sections 4–6; a complete proof can be found in the full

version of the paper. �is gives a proof of �eorem 1.1 for the case

where the maximum vertex degree is allowed to be 4. Section 7

extends our result to EDP in planar graphs, and shows how to

reduce the degree of the hard NDP instances to 3, completing the

proofs of �eorems 1.1 and 1.2.

2 PRELIMINARIES

For a pair `,h > 0 of integers, we let G`,h
denote a grid of length

` and height h. �e set of vertices of grid G`,h
is V (G`,h) =

{v (i, j) | 1 ≤ i ≤ h, 1 ≤ j ≤ `}. �e set of edges of the grid G`,h

is the union of two subsets: the set of horizontal edges EH ={
(vi, j ,vi, j+1) | 1 ≤ i ≤ h, 1 ≤ j < `

}
and the set of vertical edges

EV =
{
(vi, j ,vi+1, j) | 1 ≤ i < h, 1 ≤ j ≤ `

}
. �e subgraph of G`,h

induced by the edges of EH consists of h paths, that we call the

rows of the grid; for 1 ≤ i ≤ h, the ith row Ri is the row containing

the vertex v (i, 1). Similarly, the subgraph induced by the edges of

EV consists of ` paths that we call the columns of the grid, and for

1 ≤ j ≤ `, the jth columnWj is the column containing v (1, j). We

think of the rows as ordered from top to bo�om and the columns

as ordered from le� to right. Row R dh/2e is called the middle row
of the grid G`,h

. Given two vertices u = v (i, j),u ′ = v (i ′, j ′) of the

grid, the distance between them is d (u,u ′) = |i − i ′ | + |j − j ′ |.

Given a set R of consecutive rows of a grid G = G`,h
and a setW

of consecutive columns of G , we let ϒ(R,W) be the subgraph of G

induced by the set

{
v (j, j ′) | Rj ∈ R,Wj′ ∈ W

}
of vertices. We say

that ϒ = ϒ(R,W) is the sub-grid of G spanned by the set R of rows
and the setW of columns.

STOC’17, June 2017, Montreal, Canada J. Chuzhoy et al.

Assume now that we are given a gridG , a sequenceS = (G1, . . . ,Gr)
of disjoint sub-grids of G, and an integer N . We say that the grids

of S are aligned and N -separated i� the middle row of each grid

Gi is a sub-path of the middle row of G; the grids in {G1, . . . ,Gr }
appear in this le�-to-right order insideG; every pair of consecutive

grids Gi is separated by at least N columns of G; and every grid

in S is separated by at least N columns from the right and the le�

boundaries of G.

�roughout our construction, we use the notion of a box. A box B

of length ` and height h is a vertex-induced subgraph of G`,h
. We

denote U (B) = V (G`,h) \V (B), and we sometimes think of U (B)
as the “set of vertices deleted from B”. We say that B is a cut-out
box i�U (B) contains all vertices lying on the le�, right, and bo�om

boundaries of G`,h
; note thatU (B) may contain additional vertices

of G`,h
. �e vertices of the top boundary of G`,h

that belong to

V (B) are called the opening of B. We sometimes say that the vertices

of B that belong to row R dh/2e of G`,h
lie on the middle row of B.

Given any set M of demand pairs, we let S (M) denote the set

of all source vertices participating inM and T (M) the set of all

destination vertices. Given a path P , the length of the path is the

number of vertices on it.

As already described in the introduction, for every level 0 ≤ i ≤
Θ(logn), we construct a level-i instance I. In fact, it is a family of

instances, but it is more convenient to think of it as one instance

with di�erent instantiations. A de�nition of a level-i instance I

consists of the following ingredients: (i) integral parameters Li ,L
′
i

and an even integer Hi ; (ii) a path Z (I) of length Li ; (iii) a grid G ′i
of length L′i and height Hi , together with a cut-out box B (I) ⊆ G ′i ;
and (iv) a setM of demand pairs, together with a mapping of the

vertices of S (M) to distinct vertices of Z (I) and a mapping of the

vertices of T (M) to distinct vertices on the middle row of B (I).

In order to instantiate a level-i instance I, we select a grid Gi of

length at least 2Li + 2L′i + 4Hi and height at least 3Hi , a sub-path P
of the �rst row ofGi of length Li , and a sub-gridG ′′i ofGi of height

Hi and length L′i , so that the distance from the vertices of G ′′i to

the vertices lying on the boundary of Gi is at least Hi . We map

every vertex of Z (I) to the corresponding vertex of P in a natural

way, and this determines the identities of the source vertices in

the instance we construct. We also map every vertex of G ′i to the

corresponding vertex of G ′′i , and this determines the identities of

the destination vertices. Finally, for every vertex u ∈ U (B (I)), we

delete the vertex of G ′′i to which u is mapped from Gi . �is de�nes

an instance of NDP on a subgraph of Gi , where all the sources lie

on the top boundary of Gi and all source and destination vertices

are distinct. We note that box B (I) may be constructed recursively,

by placing several boxes B (I ′) representing lower-level instances

I ′ inside it. �e mapping of the vertices of B (I ′) to the vertices of

B (I), the placement of the destination vertices, and the removal

of the vertices of B (I) corresponding to the grid vertices removed

from B (I ′) is done similarly.

Assume now that we are given an instantiation of a level-i instance

I and a set P of node-disjoint paths routing a subsetM ′ of the

demand pairs in that instance. Assume for convenience thatM ′ =

{(s1, t1), . . . , (sr , tr)}, that the vertices s1, . . . , sr appear in this le�-

to-right order on Z (I), and that P = {P1, . . . , Pr }, where path Pj
connects sj to tj . LetA be the set of all vertices of the top row of the

grid G ′′i that were not deleted (that is, these are the vertices lying

on the opening of B (I)). We say that the set P of paths respects
the box B (I) i� for all 1 ≤ j ≤ r , Pj ∩A is a single vertex, that we

denote by uj , and uj is the jth vertex of A from the le�. Intuitively,

the paths in P connect the sources to a set of consecutive vertices

on the opening of B (I) in a straightforward manner, and the actual

routing occurs inside the box B (I).

We perform a reduction from the 3SAT(5) problem. In this problem,

we are given a SAT formula φ on a set {x1, . . . ,xn } of n Boolean

variables and a set C = {C1, . . . ,Cm } of m = 5n/3 clauses. Each

clause contains 3 literals, each of which is either a variable or

its negation. �e literals of each clause correspond to 3 distinct

variables, and each variable participates in exactly 5 clauses. We

denote the literals of the clause Cq by `q1
, `q2

and `q3
. A clause

is satis�ed by an assignment to the variables i� at least one of its

literals evaluates to True. We say that φ is a Yes-Instance if there

is an assignment to its variables satisfying all its clauses. We say

that it is a No-Instance with respect to some parameter ϵ , if no

assignment satis�es more than (1 − ϵ)m clauses. �e following

well-known theorem follows from the PCP theorem [4, 5].

Theorem 2.1. �ere is a constant 0 < ϵ < 1

2
, such that no e�cient

algorithm can distinguish between the Yes- and the No-Instances
(de�ned with respect to ϵ) of the 3SAT(5) problem, unless P = NP.

Given an input formula φ, we will construct an instance (G,M)

of the NDP problem with |V (G) | = n′ = nO (logn)
, that has the

following properties: if φ is a Yes-Instance, then there is a solution

to the NDP instance routing N demand pairs, for some parameter

N ; if φ is a No-Instance, then at most N /д demand pairs can be

routed, where д = 2
Ω(logn) = 2

Ω(
√

logn′)
. �is will prove that

no e�cient algorithm can achieve a be�er than factor 2
O (
√

logn)
-

approximation for NDP, unless NP ⊆ DTIME(nO (logn)). �e in-

stance we construct is a subgraph of a grid with all source vertices

lying on its top boundary, so the hardness result holds for planar

graphs with maximum vertex degree 4, with all sources lying on

the boundary of a single face. In Section 7, we modify this instance

to reduce its maximum vertex degree to 3.

3 THE LEVEL-1 INSTANCE

In this section we de�ne our level-1 instanceI and provide intuition

for generalizing it to higher-level instances. Since Section 4 contains

all formal de�nitions, including those for the level-1 instance, the

description here is somewhat informal.

We assume that we are given a 3SAT(5) formula φ de�ned over a

set {x1, . . . ,xn } of variables and a set C = {C1, . . . ,Cm } of clauses,

som = 5n/3. For every variable x j of φ, we will de�ne a setM (x j)
of demand pairs representing x j , and similarly, for every clause

Cq ∈ C we will de�ne a setM (Cq) of demand pairs representing it.

We call the demand pairs in setMV =
⋃n
j=1
M (x j) variable-pairs

and the demand pairs in setMC =
⋃
Cq ∈CM (Cq) clause-pairs.

New Hardness Results for Routing on Disjoint Paths STOC’17, June 2017, Montreal, Canada

Let h = 1000/ϵ and δ = 8ϵ2/10
12

, where ϵ is the parameter from

�eorem 2.1. We set N1 = (200h/3 + 1)n and N ′
1
= (1 − δ)N1. Our

construction ensures that, if the input formula φ is a Yes-Instance,

then for every instantiation of I, there is a set P of node-disjoint

paths that respects the box B (I) and routes N1 demand pairs. On

the other hand, if φ is a No-Instance, then no solution can route

more than N ′
1

demand pairs in any instantiation of I. �is gives a

gap of 1/(1 − δ) between the Yes- and No-Instance solution costs.

In the following levels we gradually amplify this gap.

We set L1 = (80h + 2)n, L′
1
= 20N 3

1
and H1 = 20N1. In order

to construct a level-1 instance I, we start with a path Z (I) of

length L1 and a grid G ′
1

of length L′
1

and height H1. We delete

all vertices lying on the bo�om, le� and right boundaries of G ′
1

to obtain the initial cut-out box B (I); we will later delete some

additional vertices from B (I).

We de�ne two sub-grids ofG ′
1
: grid BV , that will contain all vertices

of T (MV) (the destination vertices of the demand pairs inMV
),

and grid BC , that will contain all vertices of T (MC). Both grids

have su�ciently large length and height: length 9N 3

1
and height

16N1 for each grid are su�cient. We place both grids inside G ′
1
, so

that the middle row of each grid is contained in the middle row

of G ′
1
, there is a horizontal spacing of at least 2N1 between the

two grids, and both grids are disjoint from the le� and the right

boundaries of G ′
1
. It is easy to see that at least 2N1 rows of G ′

1
lie

above and below both grids (see Figure 2).

Next, we de�ne smaller sub-grids of the grids BV and BC . For

every variable x j of φ, we select a sub-grid B (x j) of BV of height

HV = 4N1 + 3 and length LV = 4N1 + (70h + 2). �is is done so

that the sequence B (x1), . . . ,B (xn) of grids is aligned and (2N1)-
separated in BV (see Figure 2). Recall that this means that the

middle row of each grid coincides with the middle row of BV ,

and the horizontal distance between every pair of these grids, and

between each grid and the right and the le� boundaries of BV is at

least 2N1. It is easy to verify that grid BV is large enough to allow

this. For each variable x j of φ, the vertices of T (M (x j)) will lie in

B (x j). Note that there are at least 2N1 rows of BV above and below

each box B (x1), . . . ,B (xn).

Similarly, for every clause Cq ∈ C, we de�ne a sub-grid B (Cq)

of BC of length LC = 3h and height HC = 3. We select the sub-

grids B (C1), . . . ,B (Cq) of BC so that they are aligned and (4N1)-

separated. As before, box BC is su�ciently large to allow this, and

there are at least 2N1 rows of BC both above and below each such

grid B (Cq) (see Figure 2).

Recall that the length of the path Z (I) is L1 = (80h + 2)n. We

partition Z (I) into n disjoint sub-paths I (x1), I (x2), . . . , I (xn) of

length 80h+2 each, that we refer to as intervals. For each 1 ≤ j ≤ n,

vertices of S (M (x j)) will lie on I (x j). Additionally, for every clause

Cq in which variable x j participates, path I (x j) will contain some

vertices of S (M (Cq)). �e remainder of the construction consists

of two parts — variable gadgets and clause gadgets, that we de�ne

next, starting with the variable gadgets.

B(I)

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

2N1
2N1 2N1

2N1 2N1

Figure 2: High-level view of the level-1 construction.

Variable gadgets. Consider some variable x of the formula φ and its

corresponding interval I (x) of Z (I). We partition I (x) as follows.

Let IT (x), I F (x) ⊆ I (x) denote the sub-intervals of I (x) contain-

ing the �rst and the last (10h + 1) consecutive vertices of I (x),
respectively, and let IX (x) be the interval containing the remaining

60h vertices. Consider the box B (x), and recall that it has length

4N1 + 70h + 2 and height 4N1 + 3. Let B′(x) ⊆ B (x) be a sub-grid

of B (x) of length 70h + 2 and height 3, so that there are exactly

2N1 rows of B (x) above and below B′(x), and 2N1 columns of B (x)
to the le� and to the right of B′(x). Notice that the middle row of

B′(x), that we denote by R′(x), is aligned with the middle row of

B (x) and hence of B (I). We delete all vertices of B′(x) that lie on its

bo�om row, and we will place all destination vertices of the demand

pairs inM (x) on R′(x). In order to do so, we further partition R′(x)
into three intervals: interval ÎT (x) contains the �rst 5h + 1 vertices

of R′(x); interval Î F (x) contains the following 5h + 1 vertices of

R′(x); and interval ÎX (x) contains the remaining 60h vertices of

R′(x) (see Figure 3). �e setM (x) of demand pairs consists of three

subsets:

(Extra Pairs). LetMX (x) =
{
(sXy (x), tXy (x)) | 1 ≤ y ≤ 60h

}
be a

set of 60h demand pairs that we call the Extra pairs for x . �e

vertices sX
1
(x), . . . , sX

60h (x) appear on IX (x) in this order, and the

vertices tX
1
(x), . . . , tX

60h (x) appear on ÎX (x) in this order.

(True Pairs). We denote the vertices appearing on IT (x) by

aT
1
,bT

1
,aT

2
,bT

2
, . . . ,bT

5h ,a
T
5h+1

in this le�-to-right order. LetMT (x) ={
(sTy (x), t

T
y (x)) | 1 ≤ y ≤ 5h + 1

}
be a set of (5h + 1) demand pairs

that we call the True demand pairs for x . For each 1 ≤ y ≤ 5h + 1,

we identify sTy (x) with the vertex aTy of IT (x), and we let tTy (x) be

the yth vertex on ÎT (x).

(False Pairs). Similarly, we denote the vertices appearing on

I F (x) by aF
1
,bF

1
,aF

2
,bF

2
, . . . ,bF

5h ,a
F
5h+1

in this le�-to-right order.

LetMF (x) =
{
(sFy (x), t

F
y (x)) | 1 ≤ y ≤ 5h + 1

}
be a set of (5h + 1)

demand pairs that we call the False demand pairs for x . For each

1 ≤ y ≤ 5h + 1, we identify sFy (x) with the vertex aFy , and we let

tFy (x) be the yth vertex on Î F (x).

We letM (x) =MX (x) ∪MT (x) ∪MF (x) be the set of demand

pairs representing x .

Consider the set C (x) ⊆ C of clauses in which variable x ap-

pears without negation. Assume w.l.o.g. that C (x) = {C1, . . . ,Cr },
where r ≤ 5. For each 1 ≤ r ′ ≤ r , we will create h demand

STOC’17, June 2017, Montreal, Canada J. Chuzhoy et al.

60h10h + 1 10h + 1

IT (x) IX(x) IF (x)

B(x)
B0(x)

2N1

2N1

2N1

2N1ÎT (x) ÎF (x) ÎX(x)

Figure 3: A variable gadget.

Î1(Cq) Î2(Cq) · · ·

B(Cq)

Îh(Cq)

Figure 4: A clause gadget. Vertices of di�erent colors corre-
spond to di�erent literals.

pairs

{
(sj (Cr ′ ,x), tj (Cr ′ ,x)) | 1 ≤ j ≤ h

}
, representing the literal x

of Cr ′ . Consider the interval I F (x). We will use its vertices bFj
as the sources of these demand pairs, where, intuitively, sources

corresponding to the same clause-literal pair appear consecutively.

Formally, for each 1 ≤ r ′ ≤ r and 1 ≤ j ≤ h, we identify the

vertex sj (Cr ′ ,x) with the vertex bF
(r ′−1)h+j of I F (x). Intuitively,

if x is assigned the value False, then we will route all demand

pairs in MF (x). �e paths routing these pairs will “block” the

vertices bFj , thus preventing us from routing demand pairs that rep-

resent clause-literal pairs (Cr ′ ,x). We treat the subset C′(x) ⊆ C of

clauses containing the literal ¬x similarly, except that we identify

their source vertices with the vertices of

{
bT

1
, . . . ,bT

5h

}
of IT (x).

Clause Gadgets. Consider some clause Cq = (`q1
∨ `q2

∨ `q3
).

For each one of the three literals ` ∈
{
`q1
, `q2
, `q3

}
of Cq , let

M (Cq , `) =
{
(sj (Cq , `), tj (Cq , `)) | 1 ≤ j ≤ h

}
be a set ofh demand

pairs representing the literal ` for clause Cq . Recall that B (Cq) is a

grid of height 3 and length 3h. We delete all vertices that appear

on the bo�om row of this grid, and we let R (Cq) be the middle

row of B (Cq). Partition R (Cq) into h intervals Î1 (Cq), . . . , Îh (Cq),
each containing three consecutive vertices (see Figure 4). Fix some

1 ≤ j ≤ h. We identify the three vertices of Îj (Cq) with the desti-

nation vertices tj (Cq , `q1
), tj (Cq , `q2

), and tj (Cq , `q3
) in this order.

For each 1 ≤ z ≤ 3, the corresponding source vertex sj (Cq , `qz) has

already been de�ned as part of the de�nition of the variable gadget

corresponding to the literal `qz . LetM (Cq) =
⋃

3

z=1
M (Cq , `qz)

be the set of all demand pairs representing Cq , so |M (Cq) | = 3h.

Let MC =
⋃m
q=1
M (Cq) be the set of all clause-pairs, and let

MV =
⋃n
j=1
M (x j) be the set of all variable-pairs. Our �nal set of

demand pairs isM =MV ∪MC
. �is concludes the de�nition of

the level-1 instance. We now proceed to analyze it.

Yes-Instance Analysis. Assume that φ is a Yes-Instance. We show

that for every instantiation of the level-1 instance I, there is a

set P of node-disjoint paths routing N1 = (200h/3 + 1)n demand

pairs, that respect the box B (I). Assume that we are given some

instantiation of I. We �rst select the set
ˆM ⊆ M of demand pairs

to route. Fix some assignment A to the variables of φ that satis�es

all the clauses. For every variable x , if A assigns the value True

to x , then we let
ˆM (x) =MT (x) ∪MX (x), and otherwise, we let

ˆM (x) = MF (x) ∪MX (x). Notice that in either case, | ˆM (x) | =
65h+1. For each clauseCq = (`q1

∨`q2
∨`q3

) ∈ C, let `qz be a literal

which evaluates to True by A (if there are several such literals,

select one of them arbitrarily). We let
ˆM (Cq) =M (Cq , `qz). Let

ˆMV =
⋃n
j=1

ˆM (x j) and
ˆMC =

⋃m
q=1

ˆM (Cq). We then set
ˆM =

ˆMV ∪ ˆMC
, so | ˆM| = (65h + 1)n +mh = (200h/3 + 1)n = N1, as

m = 5n/3. In the full version of the paper, we show that all demand

pairs in
ˆM can be routed by a set P of paths that respect the box

B (I). Due to lack of space, the proof is omi�ed here.

No-Instance Analysis. Assume now that φ is a No-Instance, and

that we are given some instantiation of the level-1 instance I and

a set
˜P of node-disjoint paths routing some subset

˜M ⊆ M of

demand pairs. Our goal is to prove that | ˜M| ≤ N ′
1
= (1 − δ)N1 =

(1 − δ) (200h/3 + 1)n. Assume for contradiction that | ˜M| > N ′
1
. In

order to analyze the No-Instance, it is convenient to view the con-

struction slightly di�erently. Let C′ be the set of clauses obtained

by adding, for each clause Cq ∈ C, h copies C1

q , . . . ,C
h
q of Cq to

C′. We will refer to the clauses in C as the original clauses, and the

clauses in C′ as the new clauses. Notice that |C′ | = mh, and it is

easy to verify that no assignment to the variables of φ can satisfy

more than (1 − ϵ)hm clauses of C′. We will reach a contradiction

by de�ning an assignment to the variables of φ that satis�es more

than (1 − ϵ)hm clauses of C′. For each new clause C
j
q ∈ C

′
, we let

M (C
j
q) ⊆ M be the set of all demand pair whose destinations lie

on interval Îj (Cq); we view these demand pairs as representing the

clause C
j
q .

For every variablex ofφ, let
˜M (x) = ˜M∩M (x). Let

˜MT (x), ˜MF (x)

and
˜MX (x) denoteMT (x) ∩ ˜M,MF (x) ∩ ˜M andMX (x) ∩ ˜M,

respectively. For every new clause C
j
q ∈ C

′
, let

˜M (C
j
q) =

˜M ∩

M (C
j
q). We also denote by

˜MV =
⋃n
j=1

˜M (x j) and by
˜MC =⋃

C j
q ∈C

′
˜M (C

j
q), the sets of the variable-pairs and the clause-pairs,

respectively, that are routed by
˜P. We use the following claim,

whose proof is omi�ed due to lack of space.

Claim 3.1. For each variable x of the instance φ, at least one of the
sets ˜MT (x), ˜MF (x), ˜MX (x) is empty.

Notice that from the above claim, | ˜MV | ≤ (65h + 1)n. Consider

now some variable x . Assume �rst that
˜MF (x) = ∅. We then assign

x the value True. We say that an index 1 ≤ j ≤ 5h + 1 is bad for

New Hardness Results for Routing on Disjoint Paths STOC’17, June 2017, Montreal, Canada

x , i� the pair (sTj (x), t
T
j (x)) <

˜M (x). Otherwise, if
˜MF (x) , ∅,

then we assign x the value False. In this case, we say that an index

1 ≤ j ≤ 5h + 1 is bad for x , i� (sFj (x), t
F
j (x)) <

˜M (x).

Consider some new clause C
j
q . We say that it is an interesting

clause if | ˜M (C
j
q) | ≥ 1 (in other words, at least one pair in the set{

(sj (Cq , `qz), tj (Cq , `qz)) | 1 ≤ z ≤ 3

}
is in

˜M), and we say that it

is uninteresting otherwise. We say that clause C
j
q is troublesome

i� | ˜M (C
j
q) | > 1. �e proof of the following simple observation is

omi�ed here due to lack of space.

Observation 3.2. For each clause Cq , at most three of its copies are
troublesome.

We conclude that | ˜MC | ≤ m(h + 6) = 5n(h + 6)/3. Let C′
1
⊆ C′ be

the set of all interesting new clauses. A simple accounting shows

that, if | ˜M| ≥ (1− δ) (200h/3+ 1)n, then |C′
1
| ≥ (1− ϵ/10)hm must

hold. Notice that for each new clauseC
j
q ∈ C

′
1
, at least one demand

pair from the set

{
(sj (Cq , `qz), tj (Cq , `qz)) | 1 ≤ z ≤ 3

}
is in

˜M.

We select any literal ` ∈
{
`q1
, `q2
, `q3

}
such that (sj (Cq , `), tj (Cq , `)) ∈

˜M, and we say that clause C
j
q chooses the literal `. Let x be the

variable corresponding to the literal `. We say that C
j
q is a cheating

clause i� the assignment that we chose for x is not consistent with

the literal `: that is, if ` = x , then A (x) = False, and if ` = ¬x ,

then A (x) = True. Notice that, if C
j
q is an interesting and a non-

cheating clause, then the current assignment satis�esC
j
q . �erefore,

in order to compete the analysis, it is enough to prove the following

claim.

Claim 3.3. �e number of cheating clauses in C′
1
is bounded by

ϵmh/2.

Due to lack of space, we only provide a proof sketch here. Let

C
j
q ∈ C

′
be a cheating clause, and suppose it has chosen the literal

`, whose corresponding variable is x . We say that C
j
q is a bad

cheating clause, i� at least one of the indices j, j + 1 is a bad index

for variable x (recall that j is a bad index for x if A (x) = True and

(sTj (x), t
T
j (x)) <

˜M, or A (x) = False and (sFj (x), t
F
j (x)) <

˜M).

Otherwise, we say that C
j
q is a good cheating clause. A simple

accounting shows that the number of pairs (x , j), where j is a

bad index for x is bounded by ϵmh/16. Each such pair (x , j) may

contribute to at most two bad cheating clauses, and so there are at

most ϵmh/8 bad cheating clauses.

Our �nal step is to show that the number of good cheating clauses

is bounded by ϵmh/4. We show that for each original clause Cq ,

at most 3 copies of Cq are good cheating clauses. It then follows

that the total number of good cheating clauses is at most 3m <
ϵmh/4, since h = 1000/ϵ . Consider some original clause Cq . It is

enough to show that for each literal ` of Cq , the number of copies

of Cq that choose ` and are good cheating clauses is at most 1.

Assume for contradiction that there are two such copies C
j
q and

C
j′
q . Assume w.l.o.g. that the variable x that corresponds to ` is

assigned the value True, so ` = ¬x . �en vertex sj (Cq , `) lies on

interval IT (x), between sTj (x) and sTj+1
(x), while vertex sj′ (Cq , `)

lies on interval IT (x), between sTj′ (x) and sTj′+1
(x). Assume w.l.o.g.

that j < j ′. Consider the plane with only the top boundary of the

grid G1, the bo�om boundary of the box B′(x), and the images of

the paths of
˜P routing the pairs (sTj (x), t

T
j (x)), (s

T
j+1

(x), tTj+1
(x)),

and (sTj′+1
(x), tTj′+1

(x)) present. Let f , f ′ be the two faces of this

drawing that di�er from the outer face, such that f has sj (Cq , `)
on its boundary and f ′ has sj′ (Cq , `) on its boundary. �en f , f ′,
and the bo�om boundary of B (Cq) must belong to a single face

of the resulting drawing. Assume w.l.o.g. that this face is f ∗ , f .

�en tj (Cq , `) lies on f ∗, and so it is impossible that a path of

˜P connects sj (Cq , `) to tj (Cq , `). We conclude that the current

assignment satis�es at least (1 − ϵ/10)hm − ϵhm/2 > (1 − ϵ)hm
clauses of C′, a contradiction.

Generalization to Higher Levels and the Hardness Gap. As-

sume now that we are given a construction of a level-i instance,

and we would like to construct a level-(i + 1) instance. Intuitively,

we would like to start with the level-1 instance described above,

and then replace each source-destination pair (s, t) with a distinct

copy of a level-i instance I ′. So we would replace the vertex s
with the path Z (I ′), and the vertex t with the cut-out box B (I ′).
We say that a level-i instance I ′ is routed by a solution P to this

resulting instance, i� P routes a signi�cant number of the demand

pairs in I ′. �e idea is that, due to the level-1 instance analysis,

the number of such level-i instances that can be routed in the Yes-

and the No-Instance cases di�er by a constant factor, while within

each such instance we already have some gap дi between the Yes-

and the No-Instance solutions, and so the gap grows by a constant

factor in every level. Unfortunately this idea does not quite work. If

we consider, for example, a level-1 instance I ′, then its destination

vertices appear quite far – at distance Θ(N1) – from the bo�om

boundary of the box B (I ′). In general, in a level-i instance, this

distance needs to be roughly Θ(Ni), to allow the routing in the

Yes-Instance case (recall that Ni is the number of the demand

pairs that can be routed in the Yes-Instance case). �erefore, if

we replace each level-1 demand pair by a level-i instance, some of

the paths in the new level-(i + 1) instance may “cheat” by passing

through the boxes B (I ′) of level-i instances I ′, and exploiting the

spacing between the destination vertices and the bo�om boundary

of each such box. For example, it is now possible that in a variable

gadget, we will be able to route many demand pairs from each set

MX (x),MT (x) andMF (x) simultaneously. A simple way to get

around this problem is to create more level-i instances, namely: we

replace each source-destination pair from a level-1 instance by a

collection of ci+1 level-i instances. �e idea is that, if the number of

the demand pairs we try to route in many such ci+1-tuples of level-i
instances is large enough, then on average only a small fraction

of the routing paths may cheat by exploiting the spacing between

the destination vertices and their corresponding box boundaries,

and this will not a�ect the overall accounting by too much. If the

formula φ is a No-Instance, then we will only a�empt to route

N ′i demand pairs from each level-i instance, and therefore we need

to ensure that ci+1N
′
i � Ni in order for the gap to grow in the

current level. In other words, the number of copies of the level-

i instances that we use in the level-(i + 1) instance construction

STOC’17, June 2017, Montreal, Canada J. Chuzhoy et al.

should be proportional to the gap between the Yes- and the No-

Instance cost at level i (times n). A simple calculation shows that,

if we follow this approach, we will obtain a gap of 2
Ω(i)

in level-i

instances, with construction size roughly nΘ(i) · 2Θ(i
2)

. �erefore,

a�er i∗ = Θ(logn) iterations, we obtain a gap of 2
Ω(
√

logn′)
, where

n′ is the size of the level-i∗ instance. �is rapid growth in the in-

stance size is the main obstacle to obtaining a stronger hardness of

approximation factor using this approach.

4 THE FULL CONSTRUCTION

In this section we provide a full description of our construction. �e

resulting graphs will have maximum vertex degree 4. We show in

Section 7 how to modify the resulting instances in order to obtain

the proof of �eorem 1.1 for sub-cubic graphs. We start with se�ing

the parameters.

Parameters. �e two main parameters that we use are h = 1000/ϵ
and δ = 8ϵ2/10

12
, where ϵ is the constant from �eorem 2.1. We

de�ne the remaining parameters in terms of these two parameters.

For every level i ≥ 0 of our construction, we use two parameters,

Ni and N ′i . We will ensure that for every instantiation of the level-i
instance I, if the initial 3SAT(5) formula φ is a Yes-Instance, then

there is a solution to I routing Ni demand pairs, that respects the

box B (I), and if φ is a No-Instance, then no solution to I can

route more than N ′i demand pairs. We de�ne the parameters Ni ,N
′
i

inductively, starting with N0 = N ′
0
= 1. Assume now that for some

i ≥ 0, we are given the values of Ni and N ′i . Let дi = Ni/N
′
i be

the gap between the Yes- and the No-Instance solution values

at level i , and let ci+1 = 10
8h2дi = O (дi). Parameter ci+1 will be

used in our construction of the level-(i + 1) instance. We then set

Ni+1 = nci+1 (200h/3+1)Ni and N ′i+1
= (1−δ)nci+1 (200h/3+1)N ′i .

It is immediate to verify that дi+1 =
дi

1−δ , and so for all i ≥ 0,

дi =
(

1

1−δ

)i
, and Ni = O (n · дi−1) · Ni−1 = (ρn)i · 2O (i2)

, for some

absolute constant ρ. We set the parameters Li ,L
′
i and Hi below, but

we will ensure that each of these parameters is bounded by 20N 3

i .

Our construction has i∗ = logn levels, giving us a gap of 2
Ω(logn)

between the Yes- and the No-Instance solution values. For our

�nal level-i∗ instance, we can choose the grid Gi∗ to be of size

(Q×Q), whereQ = 2Li∗+2L′i∗+4Hi∗ = O (N 3

i∗), and so the instance

size is bounded by n′ = O (N 6

i∗) = n
O (logn) · 2O (log

2 n) = 2
O (log

2 n)
.

Overall, we obtain a factor 2
Ω(
√

logn′)
-hardness of approximation,

unless all problems in NP have deterministic algorithms running

in time nO (logn)
.

For i ≥ 0, we set the parameter Hi = 20Ni . For all i ≥ 0, we set

L′i = 20N 3

i . Parameter Li is de�ned as follows: L0 = 1, and for

i > 0, Li = (80h + 2)ciLi−1n ≤ (80h + 2)ci · 20N 3

i−1
n ≤ 20N 3

i .

Level-0 Instance. A level-0 instance I consists of a single demand

pair (s, t). In order to be consistent with our de�nitions, we let

Z (I) be a path of length L0 = 1, with s mapped to the unique

vertex of Z (I). Recall that N0 = N ′
0
= 1, H0 = 20N0 = 20, and

L′
0
= 20N 3

0
= 20. Let G ′

0
be a grid of length L′

0
= 20 and height

H0 = 20. We obtain the box B (I) from G ′
0

by deleting all vertices

lying on the le�, bo�om, and right boundaries of G ′
0
. Let R′ be the

middle row of G ′
0
. We map t to any vertex of B (I) that belongs

to R′. It is immediate to verify that for every instantiation of this

level-0 instance, there is a solution that routes one demand pair

and respects B (I), regardless of whether we are in the Yes or the

No-Instance.

From now on we focus on constructing instances of levels i > 0.

As already mentioned, the construction we obtain for level i = 1 is

similar to that described in Section 3.

4.1 Level-(i + 1) Construction

A level-(i + 1) instance is obtained by combining a number of

level-i instances. We start with a quick overview of the level-i
construction.

Level-i Construction Overview. Recall that a de�nition of a level-i
instance I consists of a path Z (I) of length Li , a grid G ′i of height

Hi and length L′i , together with a cut-out box B (I) ⊆ G ′i , and a

collectionM of demand pairs, such that all vertices of S (M) are

mapped to vertices of Z (I), while all vertices ofT (M) are mapped

to distinct vertices of B (I) ∩ R′, where R′ is the middle row of G ′i .
Path Z (I) will eventually become a sub-path of the �rst row of

the larger grid Gi , and box B (I) will be placed inside Gi , within

distance at least Hi from its boundaries.

For every destination vertex t ∈ T (M), we draw a straight line

Qt from t to the bo�om of B (I). �is line contains at most Hi/2

vertices of the graph. We will use these lines in the analysis of the

No-Instance case of the level-(i + 1) construction.

It will sometimes be useful to place several level-i instances side-by-

side. For an integer c > 0, a c-wide level-i instance I is constructed

as follows. Intuitively, we construct c disjoint level-i instances

I1, . . . ,Ic , placing their intervals Z (Ij) side-by-side on Z (I) and

placing their boxes B (Ij) side-by-side inside B (I). Formally, for

each 1 ≤ j ≤ c , letMj be the set of the demand pairs of the level-i

instanceIj , and letG j
be the corresponding gridG ′i for that instance.

�e set of the demand pairs of instance I isM =
⋃c
j=1
Mj . We

let Z (I) be a path of length c · Li , partitioned into c equal-length

intervalsA1, . . . ,Ac . We letG ′ be a grid of length cL′i and heightHi ,

that we partition into c sub-grids of length L′i and height Hi each.

For 1 ≤ j ≤ c , we map the vertices of Z (Ij) to the vertices of Aj in

a natural way. �is de�nes the mapping of the vertices of S (M) to

the vertices of Z (I). For each 1 ≤ j ≤ c , we map the vertices of G j

to the jth sub-grid of G ′, and delete from G ′ all vertices to which

the vertices ofG j \B (Ij) are mapped. �e resulting subgraph ofG ′

becomes the box B (I), and the above mapping de�nes the mapping

of the destination vertices in T (M) to the vertices of B (I). Note

that if R′ denotes the middle row of G ′, then all vertices of T (M)
lie on R′. In order to instantiate this instance, we need to select a

gridG of length at least c (2Li + 2L′i + 4Hi) and height at least 3cHi ,

a sub-path P of the �rst row of G of length cLi , to which Z (I) will

be mapped, and a sub-grid G ′′ of G of the same dimensions as G ′,
to which the vertices ofG ′ will be mapped. �e vertices ofG ′′ must

be at a distance at least cHi from the boundaries of G. Clearly, for

New Hardness Results for Routing on Disjoint Paths STOC’17, June 2017, Montreal, Canada

any instantiation of this instance, in the Yes-Instance case, there

is a solution P routing cNi demand pairs, such that, if we denote,

for each 1 ≤ j ≤ c , by Pj ⊆ P the set of paths routing demand

pairs inMj , then |Pj | = Ni and Pj respects the box B (Ij). On the

other hand, in the No-Instance case, no solution to I can route

more than cN ′i demand pairs.

We now assume that we are given a construction of a level-i in-

stance, for i ≥ 0, and describe a construction of a level-(i + 1) in-

stance I. For convenience, we denote ci+1 by c . We use parameters

Li+1,Hi+1,L
′
i+1

described above, soHi+1 = 20Ni+1, L′i+1
= 20N 3

i+1
,

and Li+1 = (80h + 2)cLin.

In order to construct the box B (I), we start with a grid G ′i+1
of

length L′i+1
and height Hi+1. We de�ne two sub-grids of B (I), of

length 9N 3

i+1
and height 16Ni+1 each: grid BV that will contain all

destination vertices of the demand pairs representing the variables

of the formula φ, and grid BC that will contain all destination

vertices of the demand pairs representing the clauses of the formula

φ. In order to construct both grids, let R be the set of all rows

of G ′i+1
, excluding the top 2Ni+1 and the bo�om 2Ni+1 rows, so

that |R | = Hi+1 − 4Ni+1 = 16Ni+1. LetW be a consecutive set of

9N 3

i+1
columns of G ′i+1

, starting from the second column, and let

W ′
be a consecutive set of 9N 3

i+1
columns of G ′i+1

, terminating

at the penultimate column. We then let BV be the sub-grid of

G ′i+1
spanned by the rows in R and the columns inW , and we

let BC be the sub-grid of G ′i+1
spanned by the rows in R and the

columns inW ′
(see Figure 5). Notice that at least 2Ni+1 columns

ofG ′i+1
separate the two grids. We delete the bo�om, le�, and right

boundaries of G ′i+1
to turn it into a cut-out box, that we refer to as

B (I) from now on. We will later delete some additional vertices

from B (I).

B(I)

BCBV

9N3
i+1 9N3

i+1

� 2Ni+1

2Ni+1

2Ni+1 2Ni+1

2Ni+1

16Ni+1

Figure 5: High-level view of box B (I)

Next, we de�ne smaller sub-grids of the two grids BV and BC .

For every variable x j of φ, we de�ne a sub-grid B (x j) of BV , of

length LV = 4Ni+1 + (70h + 2)cL′i and height HV = Hi + 2Ni+1.

�is box will contain all destination vertices of the demand pairs

that represent the variable x j . We place the boxes B (x1), . . . ,B (xn)

inside grid BV , so that they are aligned and 2Ni+1-separated. In

other words, the middle row of each box is contained in the middle

row of BV , and the horizontal distance between every pair of these

boxes, and between each box and the le� and right boundaries of

BV is at least 2Ni+1. Since n ·LV + (n+1) ·2Ni+1 ≤ 7nNi+1+ (70h+

2)cL′in ≤ 7nNi+1 + 1500hcN 3

i n < 9N 3

i+1
, we can �nd such grids

B (x1), . . . ,B (xn). Since HV = Hi +2Ni+1 = 20Ni +2Ni+1 < 3Ni+1,

there are at least 2Ni+1 rows of BV above and below these new

grids (see Figure 6).

· · ·� 2Ni+1 B(x1)
� 2Ni+1 � 2Ni+1

B(x2) B(xn)

� 2Ni+1

� 2Ni+1

BV

Figure 6: Schematic view of box BV .

We similarly de�ne sub-grids B (C1), . . . ,B (Cm) of BC . Each such

sub-grid has height HC = Hi and width LC = 3chL′i . For each

clauseCq ∈ C, box B (Cq) will contain all destination vertices of the

demand pairs that represent this clause. We let B (C1), . . . ,B (Cm)
be sub-grids of HC

that are aligned and 4Ni+1-separated. Since

m · LC + (m + 1) · 4Ni+1 ≤ 20nNi+1 + 15hcL′in ≤ 20nNi+1 +

300hcN 3

i n < 9N 3

i+1
, we can �nd such grids (see Figure 7). Since

HC = Hi = 20Ni < Ni+1, there are at least 2Ni+1 rows of BC above

and below these new grids.

· · ·B(C1) B(C2) B(Cm)

� 2Ni+1

� 2Ni+1

BC

� 4Ni+1� 4Ni+1� 4Ni+1

Figure 7: Schematic view of box BC .

Our construction consists of two parts, called variable gadgets and

clause gadgets. For each variable x j , we construct a number of level-

i instances I ′, whose corresponding boxes B (I ′) are placed inside

B (x j). Whenever we do so, we delete the corresponding vertices of

B (x j) as described in the preliminaries. We also construct clause

gadgets similarly.

Variable Gadgets. Let Z (I) be a path of length Li+1, and let Π
be a partition of Z (I) into disjoint contiguous sub-paths (that

we sometimes refer to as intervals) of length cLi each. For each

1 ≤ j ≤ n, we let I (x j) be a sub-path of Z (I), containing exactly

80h + 2 consecutive intervals of Π, so that I (x1), I (x2), . . . , I (xn)
appear on Z (I) in this le�-to-right order.

Consider some variable x of the 3SAT(5) formula φ and the corre-

sponding interval I (x) ofZ (I), containing 80h+2 consecutive inter-

vals of Π. We further partition I (x) as follows. Let IT (x), I F (x) ⊆

STOC’17, June 2017, Montreal, Canada J. Chuzhoy et al.

I (x) denote the subpaths of I (x) containing the �rst (10h + 1) and

the last (10h+ 1) consecutive intervals of Π, respectively. Let IX (x)
denote the union of the remaining 60h consecutive intervals of Π
(see Figure 8).

(Extra Pairs). We use 60h copies of c-wide level-i instances, that

we denote by IXj (x), for 1 ≤ j ≤ 60h. For each 1 ≤ j ≤ 60h, we let

Z (IXj (x)) be the jth interval of IX (x). We place the corresponding

boxes B (IX
1

(x)), . . . ,B (IX
60h (x)) side-by-side, obtaining one box

BX (x) of width 60hcL′i and height Hi . We de�ne the placement of

this box inside B (x) later. We denote byMX (x) the resulting set

of demand pairs, and we refer to them as the Extra demand pairs
of x .

(True Pairs). We denote the intervals of Π appearing on IT (x) by:

AT
1
,YT

1
,AT

2
,YT

2
, . . . ,YT

5h ,A
T
5h+1

, and we assume that they appear

on IT (x) in this le�-to-right order. We use (5h + 1) copies of the

c-wide level-i instance, that we denote by ITj (x), for 1 ≤ j ≤ 5h+ 1.

For each 1 ≤ j ≤ 5h + 1, we let Z (ITj) be the interval ATj . We place

the corresponding boxes B (IT
1
(x)), . . . ,B (IT

5h+1
(x)) side-by-side,

obtaining one box BT (x) of width (5h + 1)cL′i and height Hi . We

denote byMT (x) the resulting set of demand pairs, and we refer

to them as the True demand pairs of x .

(False Pairs). Similarly, we denote the intervals of Π appearing

on I F (x) by: AF
1
,Y F

1
,AF

2
,Y F

2
, . . . ,Y F

5h ,A
F
5h+1

, and we assume that

they appear on I F (x) in this le�-to-right order. We use (5h + 1)
copies of the c-wide level-i instance, that we denote by IFj (x), for

1 ≤ j ≤ 5h+1. For each 1 ≤ j ≤ 5h+1, we let Z (IFj) be the interval

AFj . We place the corresponding boxes B (IF
1
(x)), . . . ,B (IF

5h+1
(x))

side-by-side, obtaining one box BF (x) of width (5h + 1)cL′i and

height Hi . We denote byMF (x) the resulting set of demand pairs,

and we refer to them as the False demand pairs of x .

We letM (x) =MX (x) ∪MT (x) ∪MF (x). We call the demand

pairs inM (x) variable-pairs representing x .

IFIT

BT BF

· · · · · ·· · ·
IX

BX

60h10h + 1 10h + 1

· · · · · · · · ·

Figure 8: Variable gadget for level-(i + 1) instance.

Recall that the length of boxBX (x) is 60hcL′i , while boxesBT (x),BF (x)
have length (5h + 1)cL′i each. �e height of each box is Hi . Recall

also that box B (x) has length LV = 4Ni+1 + (70h+ 2)cL′i and height

HV = Hi + 2Ni .

We place the boxes BT (x),BF (x) and BX (x) side-by-side inside

B (x) in this order, so that the middle row of each box is contained

in the middle row of B (x), and there is a horizontal spacing of 2Ni+1

between the le� boundaries of BT (x) and B (x), and between the

right boundaries of BX (x) and B (x) (see Figure 9). Notice that there

is no horizontal spacing between BT (x),BF (x) and BX (x), and all

destination vertices lying in B (x) belong to the middle row of B (x),
and hence to the middle row of B (I). Recall that all vertices lying

on the bo�om, le� and right boundaries of boxes BT (x),BF (x) and

BX (x) are deleted from B (x).

Ni+1

Ni+1

2Ni+1 2Ni+1
BT (x) BF (x) BX(x)

Figure 9: Box B (x). Height: HV = Hi + 2Ni+1, length: LV =
4Ni+1 + (70h + 2)cL′i .

Consider the set C (x) ⊆ C of clauses in which variable x appears

without negation. Assume without loss of generality that C (x) =
{C1, . . . ,Cr }, where r ≤ 5. For each 1 ≤ r ′ ≤ r , we will create

h level-i instances of width c , that represent the variable x of Cr ′ .
We denote these instances by Ij (Cr ′ ,x), for 1 ≤ j ≤ h. Consider

the interval I F (x). We will use the sub-intervals Y F
j of I F (x) as

intervals Z (Ij (Cr ′ ,x)), where, intuitively, intervals corresponding

to the same clause-variable pair appear consecutively. Formally, for

each 1 ≤ r ′ ≤ r , for each 1 ≤ j ≤ h, we use the interval Y F
(r ′−1)h+j

of I F (x) as Z (Ij (Cr ′ ,x)), and we say that it is the sub-interval of

I F (x) that belongs to instance Ij (Cr ′ ,x). Intuitively, if x is assigned

the value False, then we will route a large number of demand pairs

inMF (x). �e paths routing these pairs will “block” the intervals

Y F
j of I F (x), thus preventing us from routing demand pairs that

belong to instances Ij (Cr ′ ,x), for 1 ≤ j ≤ h and Cr ′ ∈ C (x).

We treat the subset C′(x) ⊆ C of clauses containing the negation

of x similarly, except that we assign to each resulting instance an

interval YTj of IT (x).

Clause Gadgets. Consider some clause Cq = (`q1
∨ `q2

∨ `q3
). For

each one of the three literals of Cq , we construct h level-i width-

c instances, with instances

{
Ij (Cq , `qz) | 1 ≤ j ≤ h

}
representing

the literal `qz , for 1 ≤ z ≤ 3. Recall that B (Cq) is a grid of height

HC = Hi and length LC = 3chL′i . We partition B (Cq) into h sub-

grids B1 (Cq), . . . ,B
h (Cq), each of which has height Hi and length

3cL′i . For each 1 ≤ j ≤ h, we place the boxes B (Ij (Cq , `q1
)),

B (Ij (Cq , `q2
)) and B (Ij (Cq , `q3

)) inside B j (Cq) side-by-side in this

order (see Figure 10). As before, all vertices lying on the bo�om,

le� and right boundaries of boxes B j (Cq), for all 1 ≤ j ≤ h, are

deleted from B (Cq).

New Hardness Results for Routing on Disjoint Paths STOC’17, June 2017, Montreal, Canada

3hcL0
i

Hi

B1(Cq) B2(Cq) Bh(Cq). . .

Figure 10: Box B (Cq). Di�erent colors show boxes that rep-
resent the three di�erent literals of Cq .

�e intervals Z (Ij (Cq , `qz)) are the same as the ones de�ned in

the constructions of the variable gadgets. We denote byM (Cq)
the set of all demand pairs whose destinations lie in B (Cq), and

we call them clause-pairs representing Cq . For each 1 ≤ z ≤ 3, we

denote byM (Cq , `qz) the set of all demand pairs that belong to

instancesIj (Cq , `qz), for 1 ≤ j ≤ h, and we sometimes say that they

represent literal `qz of clauseCq . We then letMC =
⋃m
q=1
M (Cq)

be the set of all clause-pairs, andMV =
⋃n
j=1
M (x j) the set of all

variable-pairs. Our �nal set of demand pairs isM =MV ∪MC
.

�is completes the de�nition of the level-(i + 1) instance.

5 YES-INSTANCE ANALYSIS

�e goal of this section is to prove the following theorem.

Theorem 5.1. Assume that the input 3SAT(5) formula φ is a Yes-

Instance. �en for all i ≥ 0, for every instantiation of the level-i
instance I, there is a solution routing Ni demand pairs, that respects
the box B (I).

�e remainder of this section is devoted to proving this theorem.

�e proof proceeds by induction. For i = 0, N0 = 1, and it is easy

to see that for any instantiation of the level-0 instance I, there is a

solution that routes the unique demand pair of this instance and

respects the box B (I). We now assume that the theorem holds for

some i ≥ 0, and prove it for a level-(i + 1) instance, that we denote

by I. We assume that we are given an instantiation of instance I,

that consists of a grid Gi+1 of length at least 2Li+1 + 2L′i+1
+ 4Hi+1

and height at least 3Hi+1, the placement of the path Z (I) on the

top boundary of Gi+1, and the placement of the box B (I) inside

Gi+1, at distance at least Hi+1 from its boundaries. We denote

the resulting graph by G, and the resulting set of demand pairs

byM. Recall that our construction combines a number of level-i
instances. From the induction hypothesis, for each such instance

I ′, for every instantiation of instance I ′, there is a set P (I ′) of

disjoint paths, routing a set of Ni demand pairs of I ′, such that

the paths in P (I ′) respect the box B (I ′). It is easy to verify that,

if a setM∗ (I ′) of demand pairs of I ′ has a routing that respects

B (I ′) in one instantiation of I ′, then it has such a routing in every

instantiation of B (I ′). �erefore, for every level-i instance I ′, we

can �x one such setM∗ (I ′) of demand pairs with |M∗ (I ′) | = Ni ,

and assume thatM∗ (I ′) has a routing that respects B (I ′) in every

instantiation of I ′.

Recall that our construction combines level-i instances into ci+1-

wide level-i instances. LetI ′′ be any such ci+1-wide level-i instance,

and assume that it consists of level-i instances I1, . . . ,Ici+1
. We set

M∗ (I ′′) =
⋃ci+1

j=1
M∗ (Ij), so |M∗ (I ′′) | = ci+1Ni . It is easy to see

that for any instantiation of I ′′, there is a routing of all demand

pairs inM∗ (I ′′), such that for each 1 ≤ j ≤ ci+1, the demand pairs

inM∗ (Ij) are routed via paths that respect the box B (Ij).

Consider now the given instantiation (G,M) of the level-(i + 1)

instance I. We �rst select the set
ˆM ⊆ M of demand pairs that

we route, and then compute their routing. We �x some assignment

A to the variables {x1, . . . ,xn } of φ, that satis�es all clauses.

Variable Pairs. Letx be a variable. We let
ˆMX (x) =

⋃
60h
j=1
M∗ (IXj (x))

— the set of all demand pairs that are routed by the solutions to

the ci+1-wide level-i instances IX
1

(x), . . . ,IX
60h (x). Notice that

| ˆMX (x) | = 60hci+1Ni . If x is assigned the value True, then we

let
ˆMT (x) =

⋃
5h+1

j=1
M∗ (ITj (x)), and we set

ˆMF (x) = ∅. Notice

that | ˆMT (x) | = (5h + 1)ci+1Ni in this case. Otherwise, we let

ˆMF (x) =
⋃

5h+1

j=1
M∗ (IFj (x)), so | ˆMF (x) | = (5h + 1)ci+1Ni , and

we set
ˆMT (x) = ∅. We denote

ˆM (x) = ˆMX (x)∪ ˆMT (x)∪ ˆMF (x),

and we let
ˆMV =

⋃
x ˆM (x), so | ˆMV | = nci+1 (65h + 1)Ni .

Clause Pairs. Let Cq ∈ C be a clause, and let `q be a literal of Cq
whose value is True (if there are several such literals, we select

any one of them arbitrarily). We say that clause Cq chooses the

literal `q . For simplicity, we denote
ˆMj (Cq) = M

∗ (Ij (Cq , `q)),

for all 1 ≤ j ≤ h, and we let
ˆM (Cq) =

⋃h
j=1

ˆMj (Cq). Let
ˆMC =⋃m

q=1

ˆM (Cq). Clearly, for each 1 ≤ q ≤ m, | ˆM (Cq) | = hci+1Ni ,

and overall, | ˆMC | =mhci+1Ni = 5nhci+1Ni/3.

Finally, we let
ˆM = ˆMV ∪ ˆMC

, so | ˆM| = nci+1 · (65h + 1)Ni +

5nci+1hNi/3 = n · Nici+1 (200h/3 + 1) = Ni+1. It is now enough to

prove the following lemma. �e proof of the lemma is omi�ed due

to lack of space, and can be found in the full version of the paper.

Lemma 5.2. �ere is a set P of node-disjoint paths in graphG , routing
all demand pairs in ˆM, such that P respects box B (I).

6 NO-INSTANCE ANALYSIS

In this section we analyze the No-Instance case, by proving the

following theorem.

Theorem 6.1. Assume that φ is a No-Instance. �en for every
integer i ≥ 0, for every instantiation of the level-i instance I, and for
every solution P to this instance, |P | ≤ N ′i .

�e proof is again by induction. For the base case of i = 0, N ′i = 1,

and the corresponding level-0 instance contains a single demand

pair, so the theorem clearly holds. We now assume that the theorem

holds for some value i ≥ 0 and prove it for a level-(i + 1) instance

I. We assume that we are given some instantiation of I, and from

now on our goal is to prove that no solution to this instance of

NDP can route more than N ′i+1
= (1 − δ)nci+1 · (200h/3 + 1)N ′i

demand pairs, where δ = 8ϵ2/10
12

. We assume for contradiction

that this is not the case, and we let
˜P be a collection of more than

N ′i+1
node-disjoint paths, routing a set

˜M ⊆ M of demand pairs.

STOC’17, June 2017, Montreal, Canada J. Chuzhoy et al.

For every demand pair (s, t) ∈ ˜M, we let P (s, t) ∈ ˜P be the path

routing this pair in the solution.

Recall that our construction of the level-(i + 1) instance I consists

of a number of copies of ci+1-wide level-i instances: For every

variable x of φ, we have constructed (70h + 2) such instances (60h
instances for the extra pairs, and (5h+1) instances each forTrue and

False pairs); for every clause C ∈ C, we have constructed 3h such

instances. �erefore, overall we use (70h + 2)n + 3hm = 75nh + 2n
copies of ci+1-wide level-i instances (we have used the fact that

m = 5n/3). We assume (by induction) that at most ci+1N
′
i pairs

from each such instance are in
˜M. We say that a ci+1-wide level-i

instance I ′ is interesting i� at least 25Hi demand pairs ofM (I ′)

belong to
˜M; otherwise we say that it is uninteresting. We let

ˆM ⊆ ˜M be the set of all demand pairs that belong to uninteresting

instances, and we call them excess pairs. We need the following

simple observation, whose proof is omi�ed due to lack of space.

Observation 6.2. | ˆM| ≤ δ (200h/3 + 1)nci+1N
′
i .

It would be convenient for us to assume that no excess pairs ex-

ist. In order to do so, we discard all excess pairs from
˜M. From

Observation 6.2, | ˜M| ≥ (1 − 2δ)nci+1 (200h/3 + 1)N ′i still holds.

For every variable x , we let
˜M (x) = ˜M ∩M (x), and for every

clauseCq , we let
˜M (Cq) = ˜M∩M (Cq). We also denote by

˜MV =⋃n
j=1

˜M (x j) and by
˜MC =

⋃m
q=1

˜M (Cq).

For the sake of the No-Instance-analysis, it is convenient to view

our construction slightly di�erently. Let φ be the input 3SAT(5) for-

mula. Recall that C = {C1, . . . ,Cm } is the set of its clauses. For each

clauseCq ∈ C, we createh new clausesC1

q , . . . ,C
h
q , each of which is

a copy of the original clause. We letC′ =
{
C
j
q | 1 ≤ q ≤ m, 1 ≤ j ≤ h

}

be the resulting set of clauses, and φ ′ the corresponding 3SAT for-

mula. In order to avoid confusion, we refer to the clauses in C

as the original clauses, to the clauses of C′ as the new clauses,
and for each 1 ≤ q ≤ m, 1 ≤ j ≤ h, we call C

j
q the jth copy

of clause Cq . Recall that the clause gadget for Cq ∈ C contains

h boxes B1 (Cq), . . . ,B
h (Cq), where box B j (Cq) is the union of

three boxes: B (Ij (Cq , `q1
)),B (Ij (Cq , `q2

)) and B (Ij (Cq , `q3
)) (see

Figure 10). We think of the box B j (Cq) as representing the new

clause C
j
q ∈ C

′
. For convenience, we denote by

˜M (C
j
q) ⊆

˜M (Cq)
the set of all demand pairs routed by our solution whose desti-

nations lie in B j (Cq). �is set is further partitioned into three

subsets,
˜M (C

j
q , `q1

), ˜M (C
j
q , `q2

), ˜M (C
j
q , `q3

), each of which con-

tains demand pairs from the instances Ij (Cq , `q1
),Ij (Cq , `q2

), and

Ij (Cq , `q3
) respectively. �e following observation is immediate:

Observation 6.3. If φ is a No-Instance, then for any assignment
to its variables, at most (1 − ϵ)mh clauses of C′ are satis�ed.

Encircling and its Resolution. Let (s, t) ∈ ˜M be any demand pair

routed by the solution. Recall that (s, t) belongs to some level-i
instance I ′, and we have de�ned a line Qt containing at most Hi/2

vertices of the graph, that connects t to the bo�om of the box B (I ′)

(which is a cut-out box). We say that a demand pair (s ′, t ′) ∈ ˜M

encircles pair (s, t) i� path P (s ′, t ′) contains a vertex lying on Qt .

SinceQt contains at most Hi/2 vertices, at most Hi/2 demand pairs

may encircle (s, t). We repeatedly use the following simple lemma,

whose proof is omi�ed due to lack of space.

Lemma 6.4. Let S1, . . . , Sr be a collection of disjoint subsets of ˜M,
such that for all 1 ≤ j ≤ r , |Sj | ≥ r2Hi/2. �en there is a collection
M ′ = {(s1, t1), . . . , (sr , tr)} of demand pairs, such that for all 1 ≤

j ≤ r , (sj , tj) ∈ Sj , and for all distinct (s, t), (s ′, t ′) ∈ M ′, pair
(s ′, t ′) does not encircle pair (s, t).

Variable Gadget Analysis. We �x some variable x and consider its

corresponding gadget. We start with the following simple lemma,

whose proof relies on the proof of Lemma 6.4, and is omi�ed due

to lack of space.

Lemma 6.5. Let ˜MX = ˜M ∩MX (x), ˜MT = ˜M ∩MT (x), and
˜MF = ˜M ∩MF (x) be the subsets ofMX (x),MT (x), andMF (x),

respectively, that are routed by our solution. �en at least one of the
sets ˜MX , ˜MT , ˜MF is empty.

�e following corollary is now immediate.

Corollary 6.6. | ˜MV | ≤ (65h + 1) · n · ci+1N
′
i .

Consider some variable x of φ. If
˜M ∩MT (x) = ∅, then we assign

it the value False, and otherwise we assign it the value True.

Fix some variable x ∈ X and some index 1 ≤ j ≤ 5h + 1. We say

that index j is bad for variable x if either (i) x is assigned the value

True, and instance ITj (x) is uninteresting; or (ii) x is assigned the

value False, and instance IFj (x) is uninteresting.

Clause Gadget Analysis. Consider a new clause C
j
q ∈ C

′
and its

three literals `q1
, `q2
, `q3

. We say that clause C
j
q is a troublesome

clause, or a troublesome copy of Cq , i� there are at least two values

1 ≤ z < z′ ≤ 3, for which instances Ij (Cq , `qz), Ij (Cq , `qz′) are

both interesting. �e proofs of the following lemma and its corollary

are omi�ed due to lack of space.

Lemma 6.7. For every original clause Cq ∈ C, at most three of its
copies are troublesome.

Corollary 6.8. For each original clause Cq ∈ C, | ˜M (Cq) | ≤ (6 +

h)N ′i ci+1, and overall | ˜MC | ≤ 5n(6 + h)N ′i ci+1/3.

In the rest of our proof, we will reach a contradiction by proving

that the current assignment to the variables of φ satis�es more than

(1 − ϵ)hm clauses in C′. In order to do so, we gradually discard

clauses from C′, until we obtain a large enough subset of clauses

that is guaranteed to be satis�ed by the current assignment.

Our �rst step is to de�ne uninteresting clauses. Recall that for

each new clause C
j
q ∈ C

′
, there are three corresponding ci+1-wide

level-i instances, Ij (Cq , `q1
),Ij (Cq , `q2

), and Ij (Cq , `q3
). We say

that clause C
j
q is interesting i� at least one of these three instances

is interesting, and we say that it is uninteresting otherwise. Let

C′
0
⊆ C′ be the set of all uninteresting clauses. �e proof of the

following claim is omi�ed due to lack of space.

New Hardness Results for Routing on Disjoint Paths STOC’17, June 2017, Montreal, Canada

Claim 6.9. |C′
0
| ≤ 12n.

Consider some clause C
j
q ∈ C

′
that is interesting. �en there is

an index z ∈ {1, 2, 3}, such that instance Ij (Cq , `qz) is interesting.

If there are several such indices z (if C
j
q is troublesome), then we

choose one of them arbitrarily. We say that clause C
j
q chooses the

literal `qz . We say that C
j
q is a cheating clause i� the variable

xqz corresponding to literal `qz is assigned the opposite value: In

other words, if `qz = xqz , then x is assigned the value False, and

otherwise, `qz = ¬xqz , and xqz is assigned the value True. We

further say that it is a bad cheating clause i� at least one of the

indices j, j+1 is bad for the variable xqz , and we say that it is a good
cheating clause otherwise. Let C′

1
⊆ C′ \ C′

0
be the set of all the

cheating clauses. In the following lemma, whose proof is omi�ed

due to lack of space, we bound the number of the cheating clauses.

Lemma 6.10. �ere are at most 24n bad cheating clauses, and at most
3m good cheating clauses.

Notice that if clause C
j
q is an interesting non-cheating clause, then

the current assignment must satisfy it. From Claim 6.9 and Lemma 6.10,

there are at least hm − 12n − 24n − 3m = hm − 123m/5 = (1 −
123ϵ/5000)hm > (1 − ϵ)hm such clauses, contradicting Observa-

tion 6.3.

7 HARDNESS OF ROUTING ON SUB-CUBIC
PLANAR GRAPHS

In this section we prove �eorem 1.2, and show that �eorem 1.1

holds for sub-cubic planar graphs. We start with proving �eo-

rem 1.2. Let G = G`,h
be a grid of length ` and height h, where

` > 0 is an even integer, and h > 0. For every columnWj of the grid,

let e
j
1
, . . . , e

j
h−1

be the edges ofWj indexed in their top-to-bo�om

order. Let E∗ (G) ⊆ E (G) contain all edges e
j
z , where z , j mod 2,

and let Ĝ be the graph obtained from G \ E∗ (G), by deleting all

degree-1 vertices from it. �e resulting graph is called a wall of
length `/2 and height h (see Figure 11). Consider the subgraph of

Ĝ induced by all horizontal edges of the grid G that belong to Ĝ.

�is graph is a collection of h node-disjoint paths, that we refer

to as the rows of Ĝ, and denote them by R1, . . . ,Rh in this top-to-

bo�om order; notice that Rj is a sub-path of the jth row of G for

all j . Graph Ĝ contains a unique collectionW of `/2 node-disjoint

paths that connect vertices of R1 to vertices of Rh and are internally

disjoint from R1 and Rh . We refer to the paths inW as the columns
of Ĝ, and denote them byW1, . . . ,W`/2

in this le�-to-right order.

PathsW1,W`/2
,R1 and Rh are called the le�, right, top and bo�om

boundary edges of Ĝ, respectively, and the union of these paths is

the boundary of Ĝ. Given a wall Ĝ, a consecutive subset R ′ of its

rows, and a consecutive subsetW ′
of its columns, the sub-wall of

Ĝ spanned by the rows of R ′ and the columns ofW ′
is the sub-

graph of Ĝ induced by the set

{
v | ∃R ∈ R ′,W ∈ W ′

: v ∈ R ∩W
}

of vertices. �e �rst and the last columns ofW ′
serve as the le�

and the right boundary edges of the sub-wall, and the top and the

bo�om rows of R ′ serve as its top and bo�om boundary edges.

Figure 11: A wall of height 5 and length 4; the columns of
the wall are shown in red.

We perform a reduction from the 3SAT(5) problem. Assume that

we are given an instance φ of 3SAT(5) on n variables and m = 5n/3
clauses. As before, our construction has Θ(logn) levels. For every

level i ≥ 0, we de�ne a family of instances of EDP. In order to

construct a level-i instance I, we de�ne the parameters Hi ,Li
and L′i exactly as before, a path Z (I) and a box B (I) (which is a

subgraph of the grid G ′i of length L′i and height Hi), a collection

M of demand pairs, and the mappings of the vertices of S (M)
to the vertices of Z (I), and of the vertices of T (M) to distinct

vertices of the middle row of B (I) exactly as before. In order to

instantiate this instance, we select an arbitrary grid Gi of length

` ≥ 2Li + 2L′i + 4Hi , where ` is an even integer, and height h ≥ 3Hi ,

map the vertices of Z (I) to the vertices of the �rst row of Gi , and

map the vertices of B (I) to the vertices of a sub-grid G ′′i of Gi
exactly as before, obtaining an instantiation (G,M) of the level-i
instance I of NDP. Our �nal step is to delete from G every edge

of E∗ (Gi) ∩ E (G), and then to delete all vertices that have degree 1

in the resulting graph. We also delete every other edge on the top

row of Gi , and all horizontal edges that are incident to the vertices

of T (M), to ensure that the degree of every terminal is at most 2.

�e �nal graph, denoted by Ĝ, is a subgraph of a wall of length

`/2 and height h. We denote by B̂ (I) the intersection of the image

of B (I) in Gi and the graph Ĝ. �is concludes the de�nition of

the reduction. Since the resulting graph Ĝ is a subgraph of G, the

following observation is immediate.

Observation 7.1. If φ is a No-Instance, then for every level i , for
every instantiation (G,M) of the level-i instance I of NDP, every
solution to the corresponding instance (Ĝ,M) of EDP has value at
most N ′i .

It is now enough to show that, if φ is a Yes-Instance, then for every

level i , for every instantiation (G,M) of the level-i instance I of

NDP, the corresponding instance (Ĝ,M) of EDP has a solution of

value at least Ni/2. Before we do so, we need several de�nitions.

Suppose we are given some set P of node-disjoint paths in some

wall Ĥ , and assume that every path in P connects some vertex on

a row R of Ĥ to a vertex on a row R′ of Ĥ , where R , R′.

A subset U of the vertices lying on a row R of a wall Ĥ is called

well-spread i� U does not contain a pair of vertices connected by

an edge in Ĥ . Notice that if U is well-spread, then no two vertices

of U may lie on the same column of Ĥ .

We now de�ne an analogue of box-respecting paths. Consider some

level-i instance I of NDP, for i ≥ 0, and an instantiation (G,M)
of this instance. Let (Ĝ,M) be the corresponding instance of EDP,

STOC’17, June 2017, Montreal, Canada J. Chuzhoy et al.

and let P be a set of node-disjoint paths routing some subset of the

demand pairs in Ĝ . Let A be the top boundary of B̂ (I). We say that

set P of paths is canonical with respect to the box B̂ (I) i� for every

path P ∈ P, P ∩A is a single edge, and the following holds. Denote

P = (P1, . . . , Pr), and denote, for every path Pi , its source vertex by

si , and the unique edge of Pi ∩A by ei , such that s1, . . . , sr appear

on the top row of Ĝ in this le�-to-right order. �en the edges of

e1, . . . , er must appear in this le�-to-right order on A, and for each

1 ≤ j ≤ r , ej is the (2j)th edge of A from the le�.

Assume that φ is a Yes-Instance. Recall that for each i ≥ 0, for ev-

ery level-i instance I of NDP, we have de�ned a collectionM∗ (I)
of demand pairs, such that for every instantiation of I, there is a

set P of node-disjoint paths, that respect the box B (I), and route

the set M∗ (I) of demand pairs. Denote the pairs in M∗ (I) by

(s1, t1), . . . , (sp , tp), and assume that the vertices s1, . . . , sp appear

in this le�-to-right order on Z (I). We partitionM∗ (I) into two

subsets: set M∗
1
(I) contains all demand pairs (sj , tj) where j is

odd, and setM∗
2
(I) contains all remaining demand pairs. Notice

that each of the sets S (M∗
1
(I)), S (M∗

2
(I)) is well-spread, for any

instantiation of I and its corresponding instance of EDP. �e proof

of the following lemma appears in the full version of the paper, and

it completes the proof of �eorem 1.2.

Lemma 7.2. For all i ≥ 0, for every level-i instanceI ofNDP, for every
instance (Ĝ,M) of EDP corresponding to an instantiation (G,M)
of I, there is a set of node-disjoint paths in Ĝ that route all demand
pairs inM∗

1
(I), such that the paths are canonical with respect to

B̂ (I), and the same holds forM∗
2
(I).

Hardness of NDP on Sub-Cubic Planar Graphs. Consider the in-

stances of EDP constructed above. Each such instance is de�ned

on a sub-cubic planar graph, where the degree of every terminal

is at most 2. It is easy to see that, if we are given a graph G with

the above properties, and any set P of paths whose endpoints are

distinct terminals, the paths in P are mutually edge-disjoint i� they

are mutually node-disjoint. �erefore, the number of the demand

pairs that can be routed in the Yes-Instance and the No-Instance

via node-disjoint paths remains the same as for edge-disjoint paths.

�is completes the proof of �eorem 1.1.

REFERENCES
[1] Ma�hew Andrews. 2010. Approximation Algorithms for the Edge-Disjoint Paths

Problem via Raecke Decompositions. In Proceedings of IEEE FOCS. 277–286. DOI:
h�ps://doi.org/10.1109/FOCS.2010.33

[2] Ma�hew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna,

Kunal Talwar, and Lisa Zhang. 2010. Inapproximability of Edge-Disjoint Paths

and low congestion routing on undirected graphs. Combinatorica 30, 5 (2010),

485–520.

[3] Ma�hew Andrews and Lisa Zhang. 2005. Hardness of the undirected edge-

disjoint paths problem. In STOC. ACM, 276–283.

[4] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.

1998. Proof veri�cation and the hardness of approximation problems. Journal of
the ACM (JACM) 45, 3 (1998), 501–555.

[5] Sanjeev Arora and Shmuel Safra. 1998. Probabilistic checking of proofs: A new

characterization of NP. Journal of the ACM (JACM) 45, 1 (1998), 70–122.

[6] Yonatan Aumann and Yuval Rabani. 1995. Improved bounds for all optical routing.

In Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms
(SODA ’95). Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 567–576. h�p://dl.acm.org/citation.cfm?id=313651.313820

[7] Chandra Chekuri and Julia Chuzhoy. 2016. Half-Integral All-or-Nothing Flow.

(2016). Personal Communication.

[8] Chandra Chekuri and Alina Ene. 2013. Poly-logarithmic Approximation for

Maximum Node Disjoint Paths with Constant Congestion. In Proc. of ACM-SIAM
SODA.

[9] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. 2004. Edge-disjoint

paths in planar graphs. In Foundations of Computer Science, 2004. Proceedings.
45th Annual IEEE Symposium on. IEEE, 71–80.

[10] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. 2005. Multicommodity

�ow, well-linked terminals, and routing problems. In Proc. of ACM STOC. 183–

192.

[11] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. 2006. An O (
√
n)

Approximation and Integrality Gap for Disjoint Paths and Unspli�able Flow.

�eory of Computing 2, 1 (2006), 137–146.

[12] Julia Chuzhoy. 2016. Routing in Undirected Graphs with Constant Congestion.

SIAM J. Comput. 45, 4 (2016), 1490–1532. DOI:h�ps://doi.org/10.1137/130910464

[13] Julia Chuzhoy and David H. K. Kim. 2015. On Approximating Node-Disjoint Paths

in Grids. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM2015, August 24-26, 2015, Princeton,
NJ, USA (LIPIcs), Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim

(Eds.), Vol. 40. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 187–211.

DOI:h�ps://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.187

[14] Julia Chuzhoy, David H. K. Kim, and Shi Li. 2016. Improved Approximation for

Node-disjoint Paths in Planar Graphs. In Proceedings of the 48th Annual ACM
SIGACT Symposium on �eory of Computing (STOC 2016). ACM, New York, NY,

USA, 556–569. DOI:h�ps://doi.org/10.1145/2897518.2897538

[15] Julia Chuzhoy and Shi Li. 2016. A Polylogarithmic Approximation Algorithm

for Edge-Disjoint Paths with Congestion 2. J. ACM 63, 5 (2016), 45:1–45:51.

h�p://dl.acm.org/citation.cfm?id=2893472

[16] Shimon Even, Alon Itai, and Adi Shamir. 1976. On the Complexity of Timetable

and Multicommodity Flow Problems. SIAM J. Comput. 5, 4 (1976), 691–703. DOI:
h�ps://doi.org/10.1137/0205048

[17] R. Karp. 1972. Reducibility among combinatorial problems. In Complexity of
Computer Computations, R. Miller and J. �atcher (Eds.). Plenum Press, 85–103.

[18] Ken-Ichi Kawarabayashi and Yusuke Kobayashi. 2013. An O(log n)-

Approximation Algorithm for the Edge-Disjoint Paths Problem in Eulerian Planar

Graphs. ACM Trans. Algorithms 9, 2, Article 16 (March 2013), 13 pages. DOI:
h�ps://doi.org/10.1145/2438645.2438648

[19] Jon Kleinberg. 2005. An Approximation Algorithm for the Disjoint Paths Problem

in Even-Degree Planar Graphs. In Proceedings of the 46th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS ’05). IEEE Computer Society,

Washington, DC, USA, 627–636. DOI:h�ps://doi.org/10.1109/SFCS.2005.18

[20] Jon M. Kleinberg and Éva Tardos. 1995. Disjoint Paths in Densely Embedded

Graphs. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science. 52–61.

[21] Jon M. Kleinberg and Éva Tardos. 1998. Approximations for the Disjoint Paths

Problem in High-Diameter Planar Networks. J. Comput. Syst. Sci. 57, 1 (1998),

61–73.

[22] Stavros G. Kolliopoulos and Cli�ord Stein. 2004. Approximating disjoint-path

problems using packing integer programs. Mathematical Programming 99 (2004),

63–87. DOI:h�ps://doi.org/10.1007/s10107-002-0370-6

[23] MR Kramer and Jan van Leeuwen. 1984. �e complexity of wire-routing and

�nding minimum area layouts for arbitrary VLSI circuits. Advances in computing
research 2 (1984), 129–146.

[24] James F. Lynch. 1975. �e Equivalence of �eorem Proving and the Intercon-

nection Problem. SIGDA Newsl. 5, 3 (Sept. 1975), 31–36. DOI:h�ps://doi.org/10.

1145/1061425.1061430

[25] Harald Räcke. 2002. Minimizing Congestion in General Networks. In Proc. of
IEEE FOCS. 43–52.

[26] Prabhakar Raghavan and Clark D. Tompson. 1987. Randomized rounding: a

technique for provably good algorithms and algorithmic proofs. Combinatorica
7 (December 1987), 365–374. Issue 4. DOI:h�ps://doi.org/10.1007/BF02579324

[27] Satish Rao and Shuheng Zhou. 2010. Edge Disjoint Paths in Moderately Con-

nected Graphs. SIAM J. Comput. 39, 5 (2010), 1856–1887.

[28] N. Robertson and P. D. Seymour. 1990. Outline of a disjoint paths algorithm. In

Paths, Flows and VLSI-Layout. Springer-Verlag.

[29] Neil Robertson and Paul D Seymour. 1995. Graph minors. XIII. �e disjoint paths

problem. Journal of Combinatorial �eory, Series B 63, 1 (1995), 65–110.

[30] Loı̈c Seguin-Charbonneau and F. Bruce Shepherd. 2011. Maximum Edge-Disjoint

Paths in Planar Graphs with Congestion 2. In Proceedings of the 2011 IEEE 52Nd
Annual Symposium on Foundations of Computer Science (FOCS ’11). IEEE Com-

puter Society, Washington, DC, USA, 200–209. DOI:h�ps://doi.org/10.1109/

FOCS.2011.30

https://doi.org/10.1109/FOCS.2010.33
http://dl.acm.org/citation.cfm?id=313651.313820
https://doi.org/10.1137/130910464
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.187
https://doi.org/10.1145/2897518.2897538
http://dl.acm.org/citation.cfm?id=2893472
https://doi.org/10.1137/0205048
https://doi.org/10.1145/2438645.2438648
https://doi.org/10.1109/SFCS.2005.18
https://doi.org/10.1007/s10107-002-0370-6
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1007/BF02579324
https://doi.org/10.1109/FOCS.2011.30
https://doi.org/10.1109/FOCS.2011.30

	Abstract
	1 Introduction
	2 Preliminaries
	3 The Level-1 Instance
	4 The Full Construction
	4.1 Level-(i+1) Construction

	5 Yes-Instance Analysis
	6 No-Instance Analysis
	7 Hardness of Routing on Sub-cubic Planar Graphs
	References

