
New Hardness Results for Routing on Disjoint Paths

Julia Chuzhoy∗ David H. K. Kim† Rachit Nimavat‡

November 16, 2016

Abstract

In the classical Node-Disjoint Paths (NDP) problem, the input consists of an undirected n-
vertex graph G, and a collectionM = {(s1, t1), . . . , (sk, tk)} of pairs of its vertices, called source-
destination, or demand, pairs. The goal is to route the largest possible number of the demand
pairs via node-disjoint paths. The best current approximation for the problem is achieved
by a simple greedy algorithm, whose approximation factor is O(

√
n), while the best current

negative result is an Ω(log1/2−δ n)-hardness of approximation for any constant δ, under standard
complexity assumptions. Even seemingly simple special cases of the problem are still poorly
understood: when the input graph is a grid, the best current algorithm achieves an Õ(n1/4)-
approximation, and when it is a general planar graph, the best current approximation ratio of an
efficient algorithm is Õ(n9/19). The best currently known lower bound on the approximability
of both these versions of the problem is APX-hardness.

In this paper we prove that NDP is 2Ω(
√

logn)-hard to approximate, unless all problems in NP
have algorithms with running time nO(logn). Our result holds even when the underlying graph
is a planar graph with maximum vertex degree 3, and all source vertices lie on the boundary of a
single face (but the destination vertices may lie anywhere in the graph). We extend this result to
the closely related Edge-Disjoint Paths problem, showing the same hardness of approximation
ratio even for sub-cubic planar graphs with all sources lying on the boundary of a single face.
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1 Introduction

The main focus of this paper is the Node-Disjoint Paths (NDP) problem: given an undirected
n-vertex graph G, together with a collection M = {(s1, t1), . . . , (sk, tk)} of pairs of its vertices,
called source-destination, or demand pairs, route the largest possible number of the demand pairs
via node-disjoint paths. In other words, a solution to the problem is a collection P of node-
disjoint paths, with each path connecting a distinct source-destination pair, and the goal is to
maximize |P|. The vertices participating in the demand pairs ofM are called terminals. NDP is a
classical routing problem, that has been extensively studied in both Graph Theory and Theoretical
Computer Science communities. One of the key parts of Robertson and Seymour’s Graph Minors
series is an efficient algorithm for the special case of the problem, where the number k of the demand
pairs is bounded by a constant [RS90, RS95]; the running time of their algorithm is f(k)·poly(n) for
some large function f . However, when k is a part of input, the problem becomes NP-hard [Kar72,
EIS76], even on planar graphs [Lyn75], and even on grid graphs [KvL84]. The following simple
greedy algorithm provides an O(

√
n)-approximation for NDP [KS04]: Start with P = ∅. While G

contains a path connecting any demand pair, select the shortest such path P , add it to P, and delete
all vertices of P from G. Surprisingly, despite the extensive amount of work on the problem and its
variations, this elementary algorithm remains the best currently known approximation algorithm for
the problem, and until recently, this was true even for the special cases where G is a planar graph,
or a grid graph. The latter two special cases have slightly better algorithms now: a recent result
of Chuzhoy and Kim [CK15] gives a Õ(n1/4)-approximation for NDP on grid graphs, and Chuzhoy,
Kim and Li [CKL16] provide a Õ(n9/19)-approximation algorithm for the problem on planar graphs.
The best current negative result shows that NDP has no O(log1/2−δ n)-approximation algorithms
for any constant δ, unless NP ⊆ ZPTIME(npoly logn) [AZ05, ACG+10]. For the special case of grids
and planar graphs only APX-hardness is currently known on the negative side [CK15].

The main result of this paper is that NDP is 2Ω(
√

logn)-hard to approximate unless NP ⊆ DTIME(nO(logn)),
even if the underlying graph is a planar graph with maximum vertex degree at most 3, and all source
vertices {s1, . . . , sk} lie on the boundary of a single face. We note that NDP can be solved efficiently
on graphs whose maximum vertex degree is 21.

A problem closely related to NDP is Edge-Disjoint Paths (EDP). The input to this problem is
the same as to NDP, and the goal is again to route the largest possible number of the demand
pairs. However, the routing paths are now allowed to share vertices, as long as they remain
disjoint in their edges. The two problems are closely related: it is easy to see that EDP is a
special case of NDP, by using the line graph of the EDP instance to obtain an equivalent NDP
instance (but this transformation may inflate the number of vertices, and so approximation factors
depending on n may not be preserved). This relationship is not known for planar graphs, as the
line graph of a planar graph is not necessarily planar. The current approximability status of EDP is
similar to that of NDP: the best current approximation algorithm achieves an O(

√
n)-approximation

factor [CKS06], and the best current negative result is an Ω(log1/2−δ n)-hardness of approximation
for any constant δ, unless NP ⊆ ZPTIME(npoly logn) [AZ05, ACG+10]. An analogue of the special
case of NDP on grid graphs for the EDP problem is when the input graph is a wall, and the
work of [CK15] gives an Õ(n1/4)-approximation algorithm for EDP on wall graphs. However, for
planar graphs, no better than O(

√
n)-approximation is currently known for EDP, and it is not clear

1A graph whose maximum vertex degree is 2 is a collection of disjoint paths and cycles. It is enough to solve
the problem on each such path and cycle separately. The problem is then equivalent to computing a maximum
independent set of intervals on a line or on a circle, and can be solved efficiently by standard methods.
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whether the algorithm of [CKL16] can be adapted to this setting in order to break the O(
√
n)-

approximation barrier for EDP in planar graphs. Our hardness result extends to EDP on planar
sub-cubic graphs, where all source vertices lie on the boundary of a single face.

We say that two instances (G,M) and (G′,M′) of the NDP problem are equivalent iff the sets of
terminals in both instances are the same,M =M′, and for every subset M̃ ⊆M of demand pairs,
the pairs in M̃ are routable via node-disjoint paths in G iff they are routable in G′. Equivalence
of EDP problem instances is defined similarly, with respect to edge-disjoint routing. We show in
Section C of the Appendix that for every integer d > 3, there is an instance (G,M) of NDP, where
G is a planar graph, such that for every instance (G′,M′) of NDP that is equivalent to (G,M),
some vertex of G′ has degree at least d. Therefore, the class of all planar graphs is strictly more
general than the class of all planar graphs with maximum vertex degree at most 3 for NDP. In
contrast, it is well known that for any instance (G,M) of EDP, there is an equivalent instance
(G′,M′) of the problem, with maximum vertex degree at most 42. Moreover, if G is planar then G′

can also be made planar. Informally, graph G′ is obtained from G by replacing every large-degree
vertex with a grid: if the degree of a vertex v is dv > 4, then we replace v with the (dv × dv)-grid,
and connect the edges incident to v to the vertices on the first row of the grid. This transformation
inflates the number of vertices, but can be performed in a way that preserves planarity. However,
as we show in Section D, there is an instance (G,M) of EDP, where G is a planar graph, such
that for every instance (G′,M′) of EDP that is equivalent to (G,M), such that G′ is planar, the
maximum vertex degree in G′ is at least 4. This shows that we cannot reduce the degree all the
way to 3.

Interestingly, better algorithms are known for several special cases of EDP on planar graphs.
Kleinberg [Kle05], building on the work of Chekuri, Khanna and Shepherd [CKS05, CKS04], has
shown an O(log2 n)-approximation algorithm for even-degree planar graphs. Aumann and Ra-
bani [AR95] showed an O(log2 n)-approximation algorithm for EDP on grids, and Kleinberg and
Tardos [KT98, KT95] showed O(log n)-approximation algorithms for broader classes of nearly-
Eulerian uniformly high-diameter planar graphs, and nearly-Eulerian densely embedded graphs.
Recently, Kawarabayashi and Kobayashi [KK13] gave an O(log n)-approximation algorithm for
EDP on 4-edge-connected planar graphs and on Eulerian planar graphs. It seems that the restric-
tion of the graph G to be planar Eulerian, or nearly-Eulerian, makes the EDP problem significantly
more tractable. In contrast, the graphs we construct in our hardness of approximation proof are
sub-cubic, and far from being Eulerian.

A variation of the NDP and EDP problems, where small congestion is allowed, has been a subject
of extensive study. In the NDP with congestion (NDPwC) problem, the input is the same as in
the NDP problem, and we are additionally given an integer c ≥ 1. The goal is to route as many of
the demand pairs as possible with congestion at most c: that is, every vertex may participate in at
most c paths in the solution. EDP with Congestion (EDPwC) is defined similarly, except that now
the congestion bound is imposed on the graph edges and not vertices. The classical randomized
rounding technique of Raghavan and Thompson [RT87] gives a constant-factor approximation for
both problems, if the congestion c is allowed to be as high as Θ(log n/ log logn). A long line
of work [CKS05, Räc02, And10, RZ10, Chu12, CL12, CE13, CC] has lead to an O(poly log k)-
approximation for both NDPwC and EDPwC problems, with congestion bound c = 2. For planar
graphs, a constant-factor approximation with congestion 2 is known for EDP [SCS11]. Our new

2We use a slightly different definition of equivalence for EDP: namely, we only require that for every subset M̃ of
demand pairs, such that every terminal participates in at most one demand pair in M̃, set M̃ is routable in G iff it
is routable in G′. This definition is more appropriate for the EDP problem, as we discuss in Section D.
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hardness results demonstrate that there is a dramatic difference in the approximability of routing
problems with congestion 1 and 2.

Our Results and Techniques. Our main result is the proof of the following two theorems.

Theorem 1.1 There is a constant c, such that no efficient algorithm achieves a factor 2c
√

logn-
approximation for NDP, unless NP ⊆ DTIME(nO(logn)). This result holds even for planar graphs
with maximum vertex degree 3, where all source vertices lie on the boundary of a single face.

Theorem 1.2 There is a constant c, such that no efficient algorithm achieves a factor 2c
√

logn-
approximation for EDP, unless NP ⊆ DTIME(nO(logn)). This result holds even for planar graphs
with maximum vertex degree 3, where all source vertices lie on the boundary of a single face.

We now provide an informal high-level overview of the proof of Theorem 1.1. It is somewhat easier
to describe the proof of the theorem for the case where the maximum vertex degree is allowed to be
4 instead of 3. This proof can then be easily modified to ensure that the maximum vertex degree in
the instances we obtain does not exceed 3, and also extended to the EDP problem. We perform a
reduction from the 3SAT(5) problem. In this problem, we are given a SAT formula ϕ defined over
a set of n Boolean variables. The formula consists of m clauses, each of which is an OR of three
literals, where every literal is either a variable or its negation. Every variable of ϕ participates in
exactly 5 distinct clauses, and the literals of every clause correspond to three distinct variables. We
say that ϕ is a Yes-Instance, if there is an assignment to its variables that satisfies all clauses,
and we say that it is a No-Instance, if no assignment satisfies more than a (1− ε)-fraction of the
clauses, for some fixed constant 0 < ε < 1

2 . The famous PCP theorem [AS98, ALM+98] shows that,
unless P = NP, no efficient algorithm can distinguish between the Yes- and the No-Instances of
3SAT(5).

We perform Θ(log n) iterations, where in iteration i we construct what we call a level-i instance.
We use two parameters, Ni and N ′i , and ensure that, if the reduction is performed from a formula
ϕ which is a Yes-Instance, then there is a solution to the level-i instance of NDP that routes Ni

demand pairs, while if ϕ is a No-Instance, then no solution routes more than N ′i demand pairs.
We let gi = Ni/N

′
i be the gap achieved by the level-i instance. Our construction ensures that the

gap grows by a small constant factor in every iteration, so gi = 2Θ(i), while the instance size grows
by roughly factor-Θ(n · gi−1) in iteration i. Therefore, after Θ(log n) iterations, the gap becomes

2Ω(logn), while the instance size becomes n′ = 2O(log2 n), giving us the desired 2Ω(
√

logn′)-hardness
of approximation, unless NP ⊆ DTIME(nO(logn)).

In all our instances of NDP, the underlying graph is a subgraph of a grid, with all sources lying on
the top boundary of the grid; all vertices participating in the demand pairs are distinct. In the first
iteration, a level-1 instance is constructed by a simple reduction from 3SAT(5), achieving a small
constant gap g1. Intuitively, once we construct a level-i instance, in order to construct a level-(i+1)
instance, we replace every demand pair from a level-1 instance with a collection of level-i instances.
In order to be able to do so, we need the instances to be “flexible”, so that, for example, we have
some freedom in choosing the locations of the source and the destination vertices of a given level-i
instance in the grid.

We achieve this flexibility by defining, for each level i, a family of level-i instances. The graph
associated with a level-i instance I is a subgraph of a large enough grid Gi. The construction of
the instance consists of two parts. First, we construct a path Z(I), and place all source vertices on
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this path. Second, we construct a vertex-induced subgraph B(I) of a relatively small grid G′i, and
we call B(I) a box. We place all the destination vertices inside the box B(I). Graphs Z(I) and G′i
are completely disjoint from the grid Gi and from each other. In order to construct a specific level-i
instance, we select a placement of the path Z(I) on the first row of the grid Gi, and a placement
of the box B(I) in Gi, far enough from its boundaries (see Figure 1). In other words, we choose a
sub-path P of the first row of the grid, of the same length as Z(I), and map the vertices of Z(I) to
P in a natural way. We also choose a sub-grid G′′i of Gi, of the same dimensions as G′i, and map the
vertices of G′i to the vertices of G′′i in a natural way. Since B(I) ⊆ G′i, this also defines a mapping
of the vertices of B(I) to the vertices of Gi. Once these placements are selected, the mapping of
the vertices of Z(I) to the vertices of P determines the identities of the source vertices, and the
mapping of the vertices of B(I) to the vertices of G′′i determines the identities of the destination
vertices. We delete from Gi all vertices to which the vertices of G′i \ B(I) are mapped. In other
words, all vertices that were removed from G′i to construct B(I), are also removed from G′′i , and
hence from Gi. We note that box B(I) may be constructed recursively, for example, by placing
several boxes B(I ′) corresponding to lower-level instances I ′ inside it. The mapping of the vertices
of B(I ′) to the vertices of B(I), the placement of the destination vertices, and the removal of the
vertices of B(I) corresponding to the grid vertices removed from B(I ′) is done similarly. In order
to reduce the maximum vertex degree to 3, we can use wall graphs instead of grid graphs and
employ a similar proof. Alternatively, a simple modification of the final instance we obtain can
directly reduce its maximum vertex degree to 3.

Z(I)

B(I)

Gi

Figure 1: A schematic view of a level-i instance I. All source vertices lie on Z(I), whose location
can be chosen arbitrarily on the first row of Gi. All destination vertices belong to B(I), that can
be located anywhere in Gi, far enough from its boundaries.

The most natural intuitive way to think about our construction is the one described above. An
equivalent, and somewhat easier way to define our construction is slightly different: we let a level-0
instance be an instance consisting of a single demand pair (s, t), with s lying on the first row of
the grid and t lying far from the grid boundary. We then show, for each i > 0, a procedure that
constructs a level-i instance by combining a number of level-(i− 1) instances. The latter definition
is somewhat more convenient, because it saves us the need to provide a separate correctness proof
for level-1 instances, which is essentially identical to the proof for higher-level instances. However,
we still feel that defining level-1 instances explicitly is useful for the sake of intuition. Therefore, we
start with preliminaries in Section 2 and describe our construction of level-1 instances in Section 3,
together with an intuition for constructing higher-level instances. We only provide a sketch of the
correctness proof, as the complete correctness proof appears in the following sections. In Section 4,
we define our construction in two steps: by first defining level-0 instances, and then showing how
to construct level-i instances from level-(i − 1) instances. The resulting level-1 instances will be
similar to those defined in Section 3. We provide a complete proof of correctness in Sections 4–6.
This provides a proof of Theorem 1.1 for the case where the maximum vertex degree is allowed to
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be 4. Section B of the Appendix extends our result to EDP in planar graphs, and show how to
reduce the degree of the hard NDP instances to 3, completing the proofs of Theorems 1.1 and 1.2.
Finally, sections C and D discuss degree reduction in NDP and EDP instances, respectively.

2 Preliminaries

For a pair `, h > 0 of integers, we let G`,h denote a grid of length ` and height h. The set of
vertices of G`,h is V (G`,h) = {v(i, j) | 1 ≤ i ≤ h, 1 ≤ j ≤ `}, and the set of its edges is the union of
two subsets: the set of horizontal edges EH = {(vi,j , vi,j+1) | 1 ≤ i ≤ h, 1 ≤ j < `} and the set of
vertical edges EV = {(vi,j , vi+1,j) | 1 ≤ i < h, 1 ≤ j ≤ `}. The subgraph G`,h induced by the edges
of EH consists of h paths, that we call the rows of the grid; for 1 ≤ i ≤ h, the ith row Ri is
the row containing the vertex v(i, 1). Similarly, the subgraph induced by the edges of EV consists
of ` paths that we call the columns of the grid, and for 1 ≤ j ≤ `, the jth column Wj is the
column containing v(1, j). We think of the rows as ordered from top to bottom and the columns as
ordered from left to right. Row Rdh/2e is called the middle row of the grid G`,h. Given two vertices
u = v(i, j), u′ = v(i′, j′) of the grid, the distance between them is d(u, u′) = |i− i′|+ |j − j′|. Given
two vertex subsets X,Y ⊆ V (G`,h), the distance between them is d(X,Y ) = minu∈X,u′∈Y {d(u, u′)}.
Given a vertex v = v(i, j) of the grid, we denote by row(v) and col(v) the row and the column,
respectively, that contain v.

Given a set R of consecutive rows of a grid G = G`,h and a set W of consecutive columns of G, we
let Υ(R,W) be the subgraph of G induced by the set

{
v(j, j′) | Rj ∈ R,Wj′ ∈ W

}
of vertices. We

say that Υ = Υ(R,W) is the sub-grid of G spanned by the set R of rows and the set W of columns.

Assume now that we are given a grid G, a sequence S = (G1, . . . , Gr) of disjoint sub-grids of G, and
an integer N . We say that the grids of S are aligned and N -separated iff the middle row of each
grid Gi is a sub-path of the middle row of G; the grids in {G1, . . . , Gr} appear in this left-to-right
order inside G; every pair of consecutive grids Gi is separated by at least N columns of G; and
every grid in S is separated by at least N columns from the right and the left boundaries of G.

Let R′, R′′ be two distinct rows of some grid G, and let P be a set of node-disjoint paths, such that
every path in P has one endpoint (called a source) on row R′ and another (called a destination)
on row R′′. We say that the set P of paths is order-preserving iff the source vertices of the paths
in P appear on row R′ in exactly the same left-to-right order as their destination vertices on R′′.

Throughout our construction, we use the notion of a box. A box B of length ` and height h is a
vertex-induced subgraph of G`,h. We denote U(B) = V (G`,h) \ V (B), and we sometimes think of
set U(B) as the “set of vertices deleted from B”. We say that B is a cut-out box iff U(B) contains
all vertices lying on the left, right, and bottom boundaries of G`,h; note that U(B) may contain
additional vertices of G`,h. The remaining vertices of the top boundary of G`,h that belong to V (B)
are called the opening of B. We sometimes say that the vertices of B that belong to row Rdh/2e of

G`,h lie on the middle row of B.

Given any set M of demand pairs, we let S(M) denote the set of all source vertices participating
in M and T (M) the set of all destination vertices. Given a path P , the length of the path is the
number of vertices on it. We say that two paths P, P ′ are internally disjoint iff every vertex in
P ∩ P ′ is an endpoint of both paths. Given a set P of paths and some set U of vertices, we say
that the paths in P are internally disjoint from U iff for every path P ∈ P, every vertex in P ∩ U
is an endpoint of P . Given a subgraph G′ of a graph G and a set P of paths in G, we say that the
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paths in P are internally disjoint from G′ iff they are internally disjoint from V (G′).

As already described in the introduction, for every level 0 ≤ i ≤ Θ(log n), we construct a level-i
instance I. In fact, it is a family of instances, but it is more convenient to think of it as one
instance with different instantiations. A definition of a level-i instance I consists of the following
ingredients:

• integral parameters Li, L
′
i and an even integer Hi;

• a path Z(I) of length Li;

• a grid G′i of length L′i and height Hi, together with a cut-out box B(I) ⊆ G′i; and

• a setM of demand pairs, together with a mapping of the vertices of S(M) to distinct vertices
of Z(I) and a mapping of the vertices of T (M) to distinct vertices on the middle row of B(I).

In order to instantiate a level-i instance I, we select a grid Gi of length at least 2Li + 2L′i + 4Hi

and height at least 3Hi, a sub-path P of the first row of Gi of length Li, and a sub-grid G′′i of
Gi of height Hi and length L′i, so that the distance from the vertices of G′′i to the vertices lying
on the boundary of Gi is at least Hi. We map every vertex of Z(I) to the corresponding vertex
of P in a natural way, and this determines the identities of the source vertices in the instance we
construct. We also map every vertex of G′i to the corresponding vertex of G′′i , and this determines
the identities of the destination vertices. Finally, for every vertex u ∈ U(B(I)), we delete the vertex
of G′′i to which u is mapped from Gi. This defines an instance of NDP on a subgraph of Gi, where
all the sources lie on the top boundary of Gi and all source and destination vertices are distinct.

Assume now that we are given an instantiation of a level-i instance I and a set P of node-disjoint
paths routing a subset M′ of the demand pairs in that instance. Assume for convenience that
M′ = {(s1, t1), . . . , (sr, tr)}, that the vertices s1, . . . , sr appear in this left-to-right order on Z(I),
and that P = {P1, . . . , Pr}, where path Pj connects sj to tj . Let A be the set of all vertices of the
top row of the grid G′′i that were not deleted (that is, these are the vertices lying on the opening of
B(I)). We say that the set P of paths respects the box B(I) iff for all 1 ≤ j ≤ r, Pj ∩A is a single
vertex, that we denote by uj , and uj is the jth vertex of A from the left. Intuitively, the paths in
P connect the sources to a set of consecutive vertices on the opening of B(I) in a straightforward
manner, and the actual routing occurs inside the box B(I).

We perform a reduction from the 3SAT(5) problem. In this problem, we are given a SAT formula
ϕ on a set {x1, . . . , xn} of n Boolean variables and a set C = {C1, . . . , Cm} of m = 5n/3 clauses.
Each clause contains 3 literals, each of which is either a variable or its negation. The literals of each
clause correspond to 3 distinct variables, and each variable participates in exactly 5 clauses. We
denote the literals of the clause Cq by `q1 , `q2 and `q3 . A clause is satisfied by an assignment to the
variables iff at least one of its literals evaluates to True. We say that ϕ is a Yes-Instance if there
is an assignment to its variables satisfying all its clauses. We say that it is a No-Instance with
respect to some parameter ε, if no assignment satisfies more than (1− ε)m clauses. The following
well-known theorem follows from the PCP theorem [AS98, ALM+98].

Theorem 2.1 There is a constant ε : 0 < ε < 1
2 , such that it is NP-hard to distinguish between the

Yes-Instances and the No-Instances (defined with respect to ε) of the 3SAT(5) problem.

Given an input formula ϕ, we will construct an instance (G,M) of the NDP problem with |V (G)| =
n′ = nO(logn), that has the following properties: if ϕ is a Yes-Instance, then there is a solution
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to the NDP instance routing N demand pairs, for some parameter N ; if ϕ is a No-Instance, then
at most N/g demand pairs can be routed, where g = 2Ω(logn) = 2Ω(

√
logn′). This will prove that

no efficient algorithm can achieve a better than factor 2O(
√

logn)-approximation for NDP, unless
NP ⊆ DTIME(nO(logn)). The instance we construct is a subgraph of a grid with all source vertices
lying on its top boundary, so the hardness result holds for planar graphs with maximum vertex
degree 4, with all sources lying on the boundary of a single face. In Section B of the Appendix, we
modify this instance to reduce its maximum vertex degree to 3.

3 The Level-1 Instance

In this section we define our level-1 instance I and provide intuition for generalizing it to higher-
level instances. Since Sections 4–6 contain all formal definitions and proofs, including those for the
level-1 instance, the description here is informal, and we only provide proof sketches.

We assume that we are given a 3SAT(5) formula ϕ defined over a set {x1, . . . , xn} of variables and a
set C = {C1, . . . , Cm} of clauses, so m = 5n/3. For every variable xj of ϕ, we will define a setM(xj)
of demand pairs that represent that variable, and similarly, for every clause Cq ∈ C we will define
a set M(Cq) of demand pairs representing it. We call the demand pairs in set MV =

⋃n
j=1M(xj)

variable-pairs and the demand pairs in set MC =
⋃
Cq∈CM(Cq) clause-pairs.

Let h = 1000/ε and δ = 8ε2/1012, where ε is the parameter from Theorem 2.1. We set N1 =
(200h/3 + 1)n and N ′1 = (1− δ)N1. Our construction will ensure that, if the input formula ϕ is a
Yes-Instance, then for every instantiation of I, there is a collection P of node-disjoint paths that
respects the box B(I) and routes N1 demand pairs. On the other hand, if ϕ is a No-Instance,
then no solution can route more than N ′1 demand pairs in any instantiation of I. This gives a
gap of 1/(1 − δ) between the Yes- and No-Instance solution costs. In the following levels we
gradually amplify this gap.

We set L1 = (80h + 2)n, L′1 = 20N3
1 and H1 = 20N1. In order to construct a level-1 instance I,

we start with a path Z(I) of length L1 and a grid G′1 of length L′1 and height H1. We delete all
vertices lying on the bottom, left and right boundaries of G′1 to obtain the initial cut-out box B(I);
we will later delete some additional vertices from B(I).

We define two sub-grids of G′1: grid BV , that will contain all vertices of T (MV ) (the destination
vertices of the demand pairs in MV ), and grid BC , that will contain all vertices of T (MC). Both
grids have sufficiently large length and height: length 9N3

1 and height 16N1 for each grid are
sufficient. We place both grids inside G′1, so that the middle row of each grid is contained in the
middle row of G′1, there is a horizontal spacing of at least 2N1 between the two grids, and both
grids are disjoint from the left and the right boundaries of G′1. It is easy to see that at least 2N1

rows of G′1 lie above and below both grids (see Figure 2).

Next, we define smaller sub-grids of the grids BV and BC . For every variable xj of ϕ, we select a
sub-grid B(xj) of BV of height HV = 4N1 + 3 and length LV = 4N1 + (70h+ 2). This is done so
that the sequence B(x1), . . . , B(xn) of grids is aligned and (2N1)-separated in BV (see Figure 2).
Recall that this means that the middle row of each grid coincides with the middle row of BV , and
the horizontal distance between every pair of these grids, and between each grid and the right and
the left boundaries of BV is at least 2N1. It is easy to verify that grid BV is large enough to allow
this. For each variable xj of ϕ, the vertices of T (M(xj)) will lie in B(xj). Note that there are at
least 2N1 rows of BV above and below each box B(x1), . . . , B(xn).
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Similarly, for every clause Cq ∈ C, we define a sub-grid B(Cq) of BC of length LC = 3h and height
HC = 3. We select the sub-grids B(C1), . . . , B(Cq) of BC so that they are aligned and (4N1)-
separated. As before, box BC is sufficiently large to allow this, and there are at least 2N1 rows of
BC both above and below each such grid B(Cq) (see Figure 2).

B(I)

BV
BCBV

B(x1) B(x2) · · · B(xn) B(C1) B(C2) B(Cm)· · ·

2N1
2N1 2N1

2N1 2N1

Figure 2: High-level view of the level-1 construction. Boxes B(x1), . . . , B(xn) are at a distance at
least 2N1 from each other and from the boundaries of BV , and boxes B(C1), . . . , B(Cm) are at a
distance at least 4N1 from each other and from the left and right boundaries of BC .

Recall that the length of the path Z(I) is L1 = (80h + 2)n. We partition Z(I) into n disjoint
sub-paths I(x1), I(x2), . . . , I(xn) of length 80h + 2 each, that we refer to as intervals. For each
1 ≤ j ≤ n, vertices of S(M(xj)) will lie on I(xj). Additionally, for every clause Cq in which
variable xj participates, path I(xj) will contain some vertices of S(M(Cq)). The remainder of
the construction consists of two parts — variable gadgets and clause gadgets, that we define next,
starting with the variable gadgets.

Variable gadgets. Consider some variable x of the formula ϕ and its corresponding interval
I(x) of Z(I). We partition I(x) as follows. Let IT (x), IF (x) ⊆ I(x) denote the sub-intervals of I(x)
containing the first and the last (10h+ 1) consecutive vertices of I(x), respectively, and let IX(x)
be the interval containing the remaining 60h vertices. Consider the box B(x), and recall that it
has length 4N1 + 70h + 2 and height 4N1 + 3. Let B′(x) ⊆ B(x) be a sub-grid of B(x) of length
70h+ 2 and height 3, so that there are exactly 2N1 rows of B(x) above and below B′(x), and 2N1

columns of B(x) to the left and to the right of B′(x). Notice that the middle row of B′(x), that we
denote by R′(x), is aligned with the middle row of B(x) and hence of B(I). We delete all vertices
of B′(x) that lie on its bottom row, and we will place all destination vertices of the demand pairs
inM(x) on R′(x). In order to do so, we further partition R′(x) into three intervals: interval ÎT (x)
contains the first 5h + 1 vertices of R′(x); interval ÎF (x) contains the following 5h + 1 vertices of
R′(x); and interval ÎX(x) contains the remaining 60h vertices of R′(x) (see Figure 3(a)). The set
M(x) of demand pairs consists of three subsets:

• (Extra Pairs). Let MX(x) =
{

(sXy (x), tXy (x))
}60h

y=1
be a set of 60h demand pairs that we

call the Extra pairs for x. The vertices sX1 (x), . . . , sX60h(x) appear on IX(x) in this order,

and the vertices tX1 (x), . . . , tX60h(x) appear on ÎX(x) in this order.
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• (True Pairs). We denote the vertices appearing on IT (x) by aT1 , b
T
1 , a

T
2 , b

T
2 , . . . , b

T
5h, a

T
5h+1 in

this left-to-right order. LetMT (x) =
{

(sTy (x), tTy (x))
}5h+1

y=1
be a set of (5h+ 1) demand pairs

that we call the True demand pairs for x. For each 1 ≤ y ≤ 5h+ 1, we identify sTy (x) with

the vertex aTy of IT (x), and we let tTy (x) be the yth vertex on ÎT (x).

• (False Pairs). Similarly, we denote the vertices appearing on IF (x) by aF1 , b
F
1 , a

F
2 , b

F
2 , . . . , b

F
5h, a

F
5h+1

in this left-to-right order. Let MF (x) =
{

(sFy (x), tFy (x))
}5h+1

y=1
be a set of (5h + 1) demand

pairs that we call the False demand pairs for x. For each 1 ≤ y ≤ 5h+ 1, we identify sFy (x)

with the vertex aFy , and we let tFy (x) be the yth vertex on ÎF (x).

We let M(x) =MX(x) ∪MT (x) ∪MF (x) be the set of demand pairs representing x.

60h10h + 1 10h + 1

IT (x) IX(x) IF (x)

B(x)
B0(x)

2N1

2N1

2N1

2N1ÎT (x) ÎF (x) ÎX(x)

(a) A variable gadget. The (5h) green vertices of IF (x) are
partitioned into 5 groups of h consecutive vertices; each group
is used by a different clause that contains the literal x. The
green intervals of IT are dealt with similarly, but they are used
by clauses containing ¬x. The vertices on the bottom boundary
of B′(x) are deleted.

Î1(Cq) Î2(Cq) · · ·

B(Cq)

Îh(Cq)

(b) A clause gadget. Vertices of different col-
ors correspond to different literals. The ver-
tices on the bottom boundary of B(Cq) are
deleted.

Figure 3: A variable gadget and a clause gadget

Consider the set C(x) ⊆ C of clauses in which variable x appears without negation. Assume w.l.o.g.
that C(x) = {C1, . . . , Cr}, where r ≤ 5. For each 1 ≤ r′ ≤ r, we will create h demand pairs
{(sj(Cr′ , x), tj(Cr′ , x))}hj=1, representing the literal x of Cr′ . Consider the interval IF (x). We will

use its vertices bFj as the sources of these demand pairs, where, intuitively, sources corresponding
to the same clause-literal pair appear consecutively. Formally, for each 1 ≤ r′ ≤ r and 1 ≤ j ≤ h,
we identify the vertex sj(Cr′ , x) with the vertex bF(r′−1)h+j of IF (x). Intuitively, if x is assigned the

value False, then we will route all demand pairs in MF (x). The paths routing these pairs will
“block” the vertices bFj , thus preventing us from routing demand pairs that represent clause-literal
pairs (Cr′ , x). We treat the subset C′(x) ⊆ C of clauses containing the literal ¬x similarly, except
that we identify their source vertices with the vertices of

{
bT1 , . . . , b

T
5h

}
of IT (x).

Clause Gadgets. Consider some clause Cq = (`q1 ∨ `q2 ∨ `q3). For each one of the three literals
` ∈ {`q1 , `q2 , `q3} of Cq, letM(Cq, `) = {(sj(Cq, `), tj(Cq, `)) | 1 ≤ j ≤ h} be a set of h demand pairs
representing the literal ` for clause Cq. Recall that B(Cq) is a grid of height 3 and length 3h. We
delete all vertices that appear on the bottom row of this grid, and we let R(Cq) be the middle row
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of B(Cq). Partition R(Cq) into h intervals Î1(Cq), . . . , Îh(Cq), each containing three consecutive
vertices (see Figure 3(b)). Fix some 1 ≤ j ≤ h. We identify the three vertices of Îj(Cq) with
the destination vertices tj(Cq, `q1), tj(Cq, `q2), and tj(Cq, `q3) in this order. For each 1 ≤ z ≤ 3,
the corresponding source vertex sj(Cq, `qz) has already been defined as part of the definition of
the variable gadget corresponding to the literal `qz . Let M(Cq) =

⋃3
z=1M(Cq, `qz) be the set of

all demand pairs representing Cq, so |M(Cq)| = 3h. Let MC =
⋃m
q=1M(Cq) be the set of all

clause-pairs, and let MV =
⋃n
j=1M(xj) be the set of all variable-pairs. Our final set of demand

pairs isM =MV ∪MC . This concludes the definition of the level-1 instance. We now proceed to
analyze it.

Yes-Instance Analysis. Assume that ϕ is a Yes-Instance. We show that for every instanti-
ation of the level-1 instance I, there is a set P of node-disjoint paths routing N1 = (200h/3 + 1)n
demand pairs, that respect the box B(I). Assume that we are given some instantiation of I. We
first select the set M̂ ⊆M of demand pairs to route, and then define the routing. Fix some assign-
ment A to the variables of ϕ that satisfies all the clauses. For every variable x, if A assigns the value
True to x, then we let M̂(x) =MT (x)∪MX(x), and otherwise, we let M̂(x) =MF (x)∪MX(x).
Notice that in either case, |M̂(x)| = 65h + 1. For each clause Cq = (`q1 ∨ `q2 ∨ `q3) ∈ C, let `qz
be a literal which evaluates to True by A (if there are several such literals, select one of them
arbitrarily). We let M̂(Cq) = M(Cq, `qz). Let M̂V =

⋃n
j=1 M̂(xj) and M̂C =

⋃m
q=1 M̂(Cq). We

then set M̂ = M̂V ∪M̂C , so |M̂| = (65h+1)n+mh = (200h/3+1)n = N1, as m = 5n/3. We now
show that all demand pairs in M̂ can be routed by a set P of paths that respects the box B(I).
We only provide an intuitive description of the routing here; a formal proof appears in Section 5.

Consider some variable x, and assume that it is assigned the value True. Let M̂′(x) ⊆ M̂C be the
set of all clause-pairs, whose source vertices lie on the interval I(x). Since the current assignment
to x must satisfy their corresponding clauses, all vertices of S(M̂′(x)) lie on IF (x). Similarly, if x is
assigned the value False, then all vertices of S(M̂′(x)) lie on IT (x). Therefore, for every variable
x, the sources of the demand pairs in M̂(x) appear consecutively on Z(I) (relatively to the vertices
of S(M̂)), and the same holds for the sources of the demand pairs in M̂(Cq), for every clause Cq.

We build the paths in P gradually, growing them from the source vertices. We start by selecting,
for every variable x, a set A(x) of |M̂(x)| vertices on the top boundary of B(x), and similarly, for
every clause Cq, a set A(Cq) of |M̂(Cq)| vertices on the top boundary of B(Cq). We discuss this
selection later. In the first step, we route the paths from their source vertices to these newly selected
vertices, so that for every variable x, all paths originating from the vertices of S(M̂(x)) terminate
at the vertices of A(x) and they are order-preserving, and similarly for every clause Cq ∈ C, all
paths originating from the vertices of S(M̂(Cq)) terminate at the vertices of A(Cq) and they are
order-preserving. In order to execute this step, we carefully select a set Γ of |M̂| vertices on the
top boundary of BV ; a set Γ′′ of |M̂C | vertices on the bottom boundary of BV ; and the set Γ′′′ of
|M̂C | left-most vertices on the top boundary of BC . We first connect all vertices in S(M̂) to the
|M̂| leftmost vertices on the opening of B(I) via a set of order-preserving node-disjoint paths, and
then extend them to the vertices of Γ via node-disjoint order-preserving paths inside B(I). This
part of the routing is straightforward. For every variable x, the paths originating at the vertices
of S(M̂(x)) then continue to their corresponding boxes B(x), while for each clause Cq, the paths
originating at the vertices of S(M̂(Cq)) continue to the bottom boundary of BV and terminate at
a consecutive set of vertices of Γ′′ (see Section 5 and Figure 10 for more details). We select the
vertices of Γ and Γ′′ in a way that ensures that every path that we route inside the box BV is a
sub-path of a column of BV . We then connect the vertices of Γ′′ to the vertices of Γ′′′ via a set of
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node-disjoint order-preserving paths, that are internally disjoint from the boxes BV and BC ; these
paths exploit the spacing between the two boxes. Finally, we complete the routing inside the box
BC , ensuring that for every clause Cq, the paths originating at the vertices of S(M̂(Cq)) terminate
at the vertices of A(Cq). This is done via a standard snake-like routing. This routing critically
uses the fact that the endpoints of the paths that we have constructed so far, which originate at
the vertices of S(M̂(Cq)), appear consecutively on Γ′′′, for every clause Cq.

By appropriately choosing, for every clause Cq ∈ C, the set A(Cq) of vertices on the top boundary
of B(Cq), it is easy to extend the paths originating at the vertices of S(M̂(Cq)), so that they
terminate at the vertices in T (M̂(Cq)). Since the resulting paths are order-preserving, we will
route all demand pairs in M̂(Cq).

We now consider some variable x and show how to complete the routing of the demand pairs in
M̂(x) inside the box B(x). Assume first that x is assigned the value True. Then the paths routing
the demand pairs in M̂(x) arrive at the top boundary of B(x) in the same order as the ordering of
their source vertices on Z(I). The order of their corresponding destination vertices on the second
row of B′(x) is identical, and so it is immediate to extend the paths inside B(x) to complete the
routing.

Assume now that x is assigned the value False. Let J and J ′ be the intervals of the top boundary of
B(x) where the paths routing the pairs in M̂F (x) and M̂X(x) arrive, respectively. Unfortunately,
J lies to the right of J ′, while interval ÎF (x) lies to the left of the interval ÎX(x) on the second
row of B′(x). Therefore, we need to “switch” the ordering of these two sets of paths before we can
complete the routing. It is easy to do so by exploiting the ample spacing between the box B′(x)
and the boundaries of the box B(x) (see Figure 11).

No-Instance Analysis. Assume now that ϕ is a No-Instance, and that we are given some
instantiation of the level-1 instance I and a set P̃ of node-disjoint paths routing some subset
M̃ ⊆M of demand pairs. Our goal is to prove that |M̃| ≤ N ′1 = (1− δ)N1 = (1− δ)(200h/3 + 1)n.
Assume for contradiction that |M̃| > N ′1. In order to analyze the No-Instance, it is convenient
to view the construction slightly differently. Let C′ be the set of clauses obtained by adding, for
each clause Cq ∈ C, h copies C1

q , . . . , C
h
q of Cq to C′. We will refer to the clauses in C as the original

clauses, and the clauses in C′ as the new clauses. Notice that |C′| = mh, and it is easy to verify that
no assignment to the variables of ϕ can satisfy more than (1 − ε)hm clauses of C′. We will reach
a contradiction by defining an assignment to the variables of ϕ that satisfies more than (1− ε)hm
clauses of C′. For each new clause Cjq ∈ C′, we letM(Cjq ) ⊆M be the set of all demand pair whose
destinations lie on interval Îj(Cq); we view these demand pairs as representing the clause Cjq .

For every variable x of ϕ, let M̃(x) = M̃∩M(x), and let M̃T (x),M̃F (x),M̃X(x) denoteMT (x)∩
M̃,MF (x) ∩ M̃ and MX(x) ∩ M̃, respectively. For every new clause Cjq ∈ C′, let M̃(Cjq ) =
M̃∩M(Cjq ). We also denote by M̃V =

⋃n
j=1 M̃(xj) and by M̃C =

⋃
Cj

q∈C′ M̃(Cjq ), the sets of the

variable-pairs and the clause-pairs, respectively, that are routed by P̃. We use the following claim.

Claim 3.1 For each variable x of ϕ, at least one of the sets M̃T (x),M̃F (x),M̃X(x) is empty.

The proof is omitted here; we prove a somewhat stronger claim in Section 6 (see also Observation 6.6
from which the claim follows immediately). Notice that from the above claim, |M̃V | ≤ (65h+ 1)n.

Consider now some variable x. Assume first that M̃F (x) = ∅. We then assign x the value True.
We say that an index 1 ≤ j ≤ 5h+ 1 is bad for x, iff the pair (sTj (x), tTj (x)) 6∈ M̃(x). Otherwise, if

M̃F (x) 6= ∅, then we assign x the value False. In this case, we say that an index 1 ≤ j ≤ 5h+ 1
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is bad for x, iff (sFj (x), tFj (x)) 6∈ M̃(x). We later show that the total number of pairs (x, j), where
j is a bad index for variable x, is small.

Consider some new clause Cjq . We say that it is an interesting clause if |M̃(Cjq )| ≥ 1 (in other
words, at least one pair in the set {(sj(Cq, `qz), tj(Cq, `qz))}3z=1 is in M̃), and we say that it is

uninteresting otherwise. We say that clause Cjq is troublesome iff |M̃(Cjq )| > 1. The proof of the
following simple observation is omitted here; we prove a more general statement in Section 6.

Observation 3.2 For each clause Cq, at most three of its copies are troublesome.

We conclude that |M̃C | ≤ m(h + 6) = 5n(h + 6)/3. Let C′1 ⊆ C′ be the set of all interesting
new clauses. A simple accounting shows that, if |M̃| ≥ (1 − δ)(200h/3 + 1)n, then |C′1| ≥ (1 −
ε/10)hm must hold. Notice that for each new clause Cjq ∈ C′1, at least one demand pair from
the set {(sj(Cq, `qz), tj(Cq, `qz))}3z=1 is in M̃. We select any literal ` ∈ {`q1 , `q2 , `q3} such that

(sj(Cq, `), tj(Cq, `)) ∈ M̃, and we say that clause Cjq chooses the literal `. Let x be the variable

corresponding to the literal `. We say that Cjq is a cheating clause iff the assignment that we chose
for x is not consistent with the literal `: that is, if ` = x, then A(x) = False, and if ` = ¬x,
then A(x) = True. Notice that, if Cjq is an interesting and a non-cheating clause, then the current
assignment satisfies Cjq . Therefore, in order to compete the analysis, it is enough to prove the
following claim.

Claim 3.3 The number of cheating clauses in C′1 is bounded by εmh/2.

We prove a stronger claim in Section 6 (see Lemma 6.11), and provide a proof sketch here. Let
Cjq ∈ C′ be a cheating clause, and suppose it has chosen the literal `, whose corresponding variable
is x. We say that Cjq is a bad cheating clause, iff at least one of the indices j, j + 1 is a bad index
for variable x (recall that j is a bad index for x if A(x) = True and (sTj (x), tTj (x)) 6∈ M̃, or

A(x) = False and (sFj (x), tFj (x)) 6∈ M̃). Otherwise, we say that Cjq is a good cheating clause. A
simple accounting shows that the number of pairs (x, j), where j is a bad index for x is bounded
by εmh/16. Each such pair (x, j) may contribute to at most two bad cheating clauses, and so there
are at most εmh/8 bad cheating clauses.

Our final step is to show that the number of good cheating clauses is bounded by εmh/4. We show
that for each original clause Cq, at most 3 copies of Cq are good cheating clauses. It then follows
that the total number of good cheating clauses is at most 3m < εmh/4, since h = 1000/ε. Consider
some original clause Cq. It is enough to show that for each literal ` of Cq, the number of copies of Cq
that choose ` and are good cheating clauses is at most 1. Assume for contradiction that there are

two such copies Cjq and Cj
′
q . Assume w.l.o.g. that the variable x that corresponds to ` is assigned

the value True, so ` = ¬x. Then vertex sj(Cq, `) lies on interval IT (x), between sTj (x) and sTj+1(x),

while vertex sj′(Cq, `) lies on interval IT (x), between sTj′(x) and sTj′+1(x). Assume w.l.o.g. that
j < j′. Consider the plane with only the top boundary of the grid G1, the bottom boundary of
the box B′(x), and the images of the paths of P̃ routing the pairs (sTj (x), tTj (x)), (sTj+1(x), tTj+1(x)),

and (sTj′+1(x), tTj′+1(x)) present. Let f, f ′ be the two faces of this drawing that differ from the
outer face, such that f has sj(Cq, `) on its boundary and f ′ has sj′(Cq, `) on its boundary. Then
f 6= f ′, and the bottom boundary of B(Cq) must belong to a single face of the resulting drawing.
Assume w.l.o.g. that this face is f∗ 6= f . Then tj(Cq, `) lies on f∗, and so it is impossible that a
path of P̃ connects sj(Cq, `) to tj(Cq, `). We conclude that the current assignment satisfies at least
(1− ε/10)hm− εhm/2 > (1− ε)hm clauses of C′, a contradiction.
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Generalization to Higher Levels and the Hardness Gap. Assume now that we are given a
construction of a level-i instance, and we would like to construct a level-(i+1) instance. Intuitively,
we would like to start with the level-1 instance described above, and then replace each source-
destination pair (s, t) with a distinct copy of a level-i instance I ′. So we would replace the vertex
s with the path Z(I ′), and the vertex t with the cut-out box B(I ′). We say that a level-i instance
I ′ is routed by a solution P to this resulting instance, iff P routes a significant number of the
demand pairs in I ′. The idea is that, due to the level-1 instance analysis, the number of such
level-i instances that can be routed in the Yes- and the No-Instance cases differ by a constant
factor, while within each such instance we already have some gap gi between the Yes- and the
No-Instance solutions, and so the gap grows by a constant factor in every level. Unfortunately
this idea does not quite work. If we consider, for example, a level-1 instance I ′, then its destination
vertices appear quite far – at distance Θ(N1) – from the bottom boundary of the box B(I ′). In
general, in a level-i instance, this distance needs to be roughly Θ(Ni), to allow the routing in the
Yes-Instance case (recall that Ni is the number of the demand pairs that can be routed in the
Yes-Instance case). Therefore, if we replace each level-1 demand pair by a level-i instance, some
of the paths in the new level-(i + 1) instance may “cheat” by passing through the boxes B(I ′) of
level-i instances I ′, and exploiting the spacing between the destination vertices and the bottom
boundary of each such box. For example, it is now possible that in a variable gadget, we will be
able to route many demand pairs from each set MX(x),MT (x) and MF (x) simultaneously. A
simple way to get around this problem is to create more level-i instances, namely: we replace each
source-destination pair from a level-1 instance by a collection of ci+1 level-i instances. The idea is
that, if the number of the demand pairs we try to route in many such ci+1-tuples of level-i instances
is large enough, then on average only a small fraction of the routing paths may cheat by exploiting
the spacing between the destination vertices and their corresponding box boundaries, and this will
not affect the overall accounting by too much. However, if the formula ϕ is a No-Instance, then
we will only attempt to route N ′i demand pairs from each level-i instance, and therefore we need
to ensure that ci+1N

′
i � Ni in order for the gap to grow in the current level. In other words, the

number of copies of the level-i instances that we use in the level-(i+1) instance construction should
be proportional to the gap between the Yes- and the No-Instance cost at level i (times n). A
simple calculation shows that, if we follow this approach, we will obtain a gap of 2Ω(i) in level-i
instances, with construction size roughly nΘ(i) · 2Θ(i2). Therefore, after i∗ = Θ(log n) iterations, we
obtain a gap of 2Ω(

√
logn′), where n′ is the size of the level-i∗ instance. This rapid growth in the

instance size is the main obstacle to obtaining a stronger hardness of approximation factor using
this approach.

4 The Full Construction

In this section we provide a full description of our construction. The resulting graphs will have
maximum vertex degree 4. We show in Section B of the Appendix how to modify the resulting
instances in order to obtain the proof of Theorem 1.1 for sub-cubic graphs. We start with setting
the parameters.

Parameters. The two main parameters that we use are h = 1000/ε and δ = 8ε2/1012, where
ε is the constant from Theorem 2.1. We define the remaining parameters in terms of these two
parameters.

For every level i ≥ 0 of our construction, we use two parameters, Ni and N ′i . We will ensure
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that for every instantiation of the level-i instance I, if the initial 3SAT(5) formula ϕ is a Yes-
Instance, then there is a solution to I routing Ni demand pairs, that respects the box B(I), and
if ϕ is a No-Instance, then no solution to I can route more than N ′i demand pairs. We define
the parameters Ni, N

′
i inductively, starting with N0 = N ′0 = 1. Assume now that for some i ≥ 0,

we are given the values of Ni and N ′i . Let gi = Ni/N
′
i be the gap between the Yes- and the

No-Instance solution values at level i, and let ci+1 = 108h2gi = O(gi). Parameter ci+1 will be
used in our construction of the level-(i+ 1) instance. We then set Ni+1 = nci+1(200h/3 + 1)Ni and
N ′i+1 = (1− δ)nci+1(200h/3 + 1)N ′i . It is immediate to verify that gi+1 = gi

1−δ , and so for all i ≥ 0,

gi =
(

1
1−δ

)i
, and Ni = O(n · gi−1) · Ni−1 = (ρn)i · 2O(i2), for some absolute constant ρ. We set

the parameters Li, L
′
i and Hi below, but we will ensure that each of these parameters is bounded

by 20N3
i . Our construction has i∗ = log n levels, giving us a gap of 2Ω(logn) between the Yes- and

the No-Instance solution values. For our final level-i∗ instance, we can choose the grid Gi∗ to be
of size (Q × Q), where Q = 2Li∗ + 2L′i∗ + 4Hi∗ = O(N3

i∗), and so the instance size is bounded by

n′ = O(N6
i∗) = nO(logn) · 2O(log2 n) = 2O(log2 n). Overall, we obtain a factor 2Ω(

√
logn′)-hardness of

approximation, unless all problems in NP have deterministic algorithms running in time nO(logn).

For i ≥ 0, we set the parameter Hi = 20Ni. The following bound on Hi follows immediately from
the definitions of our parameters, and we use it several times in our analysis:

Hi = 20Ni = 20giN
′
i =

20ci+1N
′
i

108h2
=

2ci+1ε
2N ′i

1013
(1)

For all i ≥ 0, we set L′i = 20N3
i . Parameter Li is defined as follows: L0 = 1, and for i > 0,

Li = (80h+ 2)ciLi−1n ≤ (80h+ 2)ci · 20N3
i−1n ≤ 20N3

i .

Level-0 Instance. A level-0 instance I consists of a single demand pair (s, t). In order to be
consistent with our definitions, we let Z(I) be a path of length L0 = 1, with s mapped to the
unique vertex of Z(I). Recall that N0 = N ′0 = 1, H0 = 20N0 = 20, and L′0 = 20N3

0 = 20. Let G′0
be a grid of length L′0 = 20 and height H0 = 20. We obtain the box B(I) from G′0 by deleting
all vertices lying on the left, bottom, and right boundaries of G′0. Let R′ be the middle row of
G′0. We map t to any vertex of B(I) that belongs to R′. It is immediate to verify that for every
instantiation of this level-0 instance, there is a solution that routes one demand pair and respects
B(I), regardless of whether we are in the Yes or the No-Instance.

From now on we focus on constructing instances of levels i > 0. As already mentioned, the
construction we obtain for level i = 1 is similar to that described in Section 3.

4.1 Level-(i+ 1) Construction

A level-(i + 1) instance is obtained by combining a number of level-i instances. We start with a
quick overview of the level-i construction.

Level-i Construction Overview. Recall that a definition of a level-i instance I consists of a
path Z(I) of length Li, a grid G′i of height Hi and length L′i, together with a cut-out box B(I) ⊆ G′i,
and a collectionM of demand pairs, such that all vertices of S(M) are mapped to vertices of Z(I),
while all vertices of T (M) are mapped to distinct vertices of B(I)∩R′, where R′ is the middle row
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of G′i. Path Z(I) will eventually become a sub-path of the first row of the larger grid Gi, and box
B(I) will be placed inside Gi, within distance at least Hi from its boundaries.

For every destination vertex t, we draw a straight line Qt from t to the bottom of B(I). This
line contains at most Hi/2 vertices of the graph. We will use these lines in the analysis of the
No-Instance case of the level-(i+ 1) construction.

It will sometimes be useful to place several level-i instances side-by-side. For an integer c > 0, a c-
wide level-i instance I is constructed as follows. Intuitively, we construct c disjoint level-i instances
I1, . . . , Ic, placing their intervals Z(Ij) side-by-side on Z(I) and placing their boxes B(Ij) side-by-
side inside B(I). Formally, for each 1 ≤ j ≤ c, letMj be the set of the demand pairs of the level-i
instance Ij , and let Gj be the corresponding grid G′i for that instance. The set of the demand
pairs of instance I is M =

⋃c
j=1Mj . We let Z(I) be a path of length c · Li, partitioned into c

equal-length intervals A1, . . . , Ac. We let G′ be a grid of length cL′i and height Hi, that we partition
into c sub-grids of length L′i and height Hi each. For 1 ≤ j ≤ c, we map the vertices of Z(Ij) to the
vertices of Aj in a natural way. This defines the mapping of the vertices of S(M) to the vertices
of Z(I). For each 1 ≤ j ≤ c, we map the vertices of Gj to the jth sub-grid of G′, and delete
from G′ all vertices to which the vertices of Gj \ B(Ij) are mapped. The resulting subgraph of
G′ becomes the box B(I), and the above mapping defines the mapping of the destination vertices
in T (M) to the vertices of B(I). Note that if R′ denotes the middle row of G′, then all vertices
of T (M) lie on R′. In order to instantiate this instance, we need to select a grid G of length at
least c(2Li + 2L′i + 4Hi) and height at least 3cHi, a sub-path P of the first row of G of length cLi,
to which Z(I) will be mapped, and a sub-grid G′′ of G of the same dimensions as G′, to which
the vertices of G′ will be mapped. The vertices of G′′ must be at a distance at least cHi from the
boundaries of G. Clearly, for any instantiation of this instance, in the Yes-Instance case, there is
a solution P routing cNi demand pairs, such that, if we denote, for each 1 ≤ j ≤ c, by Pj ⊆ P the
set of paths routing demand pairs in Mj , then |Pj | = Ni and Pj respects the box B(Ij). On the
other hand, in the No-Instance case, no solution to I can route more than cN ′i demand pairs.

We now assume that we are given a construction of a level-i instance, for i ≥ 0, and describe a
construction of a level-(i+ 1) instance I. For convenience, we denote ci+1 by c. We use parameters
Li+1, Hi+1, L

′
i+1 described above, so Hi+1 = 20Ni+1, L′i+1 = 20N3

i+1, and Li+1 = (80h+ 2)cLin.

In order to construct the box B(I), we start with a grid G′i+1 of length L′i+1 and height Hi+1. We
define two sub-grids of B(I), of length 9N3

i+1 and height 16Ni+1 each: grid BV that will contain all
destination vertices of the demand pairs representing the variables of the formula ϕ, and grid BC

that will contain all destination vertices of the demand pairs representing the clauses of the formula
ϕ. In order to construct both grids, let R be the set of all rows of G′i+1, excluding the top 2Ni+1

and the bottom 2Ni+1 rows, so that |R| = Hi+1 − 4Ni+1 = 16Ni+1. Let W be a consecutive set of
9N3

i+1 columns of G′i+1, starting from the second column, and let W ′ be a consecutive set of 9N3
i+1

columns of G′i+1, terminating at the penultimate column. We then let BV be the sub-grid of G′i+1

spanned by the rows in R and the columns in W, and we let BC be the sub-grid of G′i+1 spanned
by the rows in R and the columns inW ′ (see Figure 4). Notice that at least 2Ni+1 columns of G′i+1

separate the two grids. We delete the bottom, left, and right boundaries of G′i+1 to turn it into a
cut-out box, that we refer to as B(I) from now on. We will later delete some additional vertices
from B(I).

Next, we define smaller sub-grids of the two grids BV and BC . For every variable xj of ϕ, we define
a sub-grid B(xj) of BV , of length LV = 4Ni+1+(70h+2)cL′i and height HV = Hi+2Ni+1. This box
will contain all destination vertices of the demand pairs that represent the variable xj . We place
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B(I)

BCBV

9N3
i+1 9N3

i+1

� 2Ni+1

2Ni+1

2Ni+1 2Ni+1

2Ni+1

16Ni+1

Figure 4: High-level view of box B(I)

the boxes B(x1), . . . , B(xn) inside grid BV , so that they are aligned and 2Ni+1-separated. In other
words, the middle row of each box is contained in the middle row of BV , and the horizontal distance
between every pair of these boxes, and between each box and the left and right boundaries ofBV is at
least 2Ni+1. Since n·LV +(n+1)·2Ni+1 ≤ 7nNi+1+(70h+2)cL′in ≤ 7nNi+1+1500hcN3

i n < 9N3
i+1,

we can find such grids B(x1), . . . , B(xn). Since HV = Hi + 2Ni+1 = 20Ni + 2Ni+1 < 3Ni+1, there
are at least 2Ni+1 rows of BV above and below these new grids (see Figure 5).

· · ·� 2Ni+1 B(x1)
� 2Ni+1 � 2Ni+1

B(x2) B(xn)

� 2Ni+1

� 2Ni+1

BV

Figure 5: Box BV . Each box B(xj) has length LV = 4Ni+1 + (70h + 2)cL′i and height HV =
Hi + 2Ni+1.

We similarly define sub-grids B(C1), . . . , B(Cm) of BC . Each such sub-grid has height HC = Hi

and width LC = 3chL′i. For each clause Cq ∈ C, box B(Cq) will contain all destination vertices of
the demand pairs that represent this clause. We let B(C1), . . . , B(Cm) be sub-grids of HC that are
aligned and 4Ni+1-separated. Since m · LC + (m + 1) · 4Ni+1 ≤ 20nNi+1 + 15hcL′in ≤ 20nNi+1 +
300hcN3

i n < 9N3
i+1, we can find such grids (see Figure 6). Since HC = Hi = 20Ni < Ni+1, there

are at least 2Ni+1 rows of BC above and below these new grids.
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· · ·B(C1) B(C2) B(Cm)

� 2Ni+1

� 2Ni+1

BC

� 4Ni+1� 4Ni+1� 4Ni+1

Figure 6: Box BC . Each box B(Cq) has length LC = 3chL′i height HC = Hi.

Our construction consists of two parts, called variable gadgets and clause gadgets. For each variable
xj , we construct a number of level-i instances I ′, whose corresponding boxes B(I ′) are placed
inside B(xj). Whenever we do so, we delete the corresponding vertices of B(xj) as described in
the preliminaries. We also construct clause gadgets similarly.

Variable Gadgets Let Z(I) be a path of length Li+1, and let Π be a partition of Z(I) into
disjoint contiguous sub-paths (that we sometimes refer to as intervals) of length cLi each. For each
1 ≤ j ≤ n, we let I(xj) be a sub-path of Z(I), containing exactly 80h+ 2 consecutive intervals of
Π, so that I(x1), I(x2), . . . , I(xn) appear on Z(I) in this left-to-right order.

Consider some variable x of the 3SAT(5) formula ϕ and the corresponding interval I(x) of Z(I), con-
taining 80h+2 consecutive intervals of Π. We further partition I(x) as follows. Let IT (x), IF (x) ⊆
I(x) denote the subpaths of I(x) containing the first (10h+ 1) and the last (10h+ 1) consecutive
intervals of Π, respectively. Let IX(x) denote the union of the remaining 60h consecutive intervals
of Π (see Figure 7).

• (Extra Pairs). We use 60h copies of c-wide level-i instances, that we denote by IXj (x), for

1 ≤ j ≤ 60h. For each 1 ≤ j ≤ 60h, we let Z(IXj (x)) be the jth interval of IX(x). We place

the corresponding boxes B(IX1 (x)), . . . , B(IX60h(x)) side-by-side, obtaining one box BX(x) of
width 60hcL′i and height Hi. We define the placement of this box inside B(x) later. We
denote by MX(x) the resulting set of demand pairs, and we refer to them as the Extra
demand pairs of x.

• (True Pairs). We denote the intervals of Π appearing on IT (x) by:

AT1 , Y
T

1 , A
T
2 , Y

T
2 , . . . , Y

T
5h, A

T
5h+1,

and we assume that they appear on IT (x) in this left-to-right order. We use (5h+ 1) copies
of the c-wide level-i instance, that we denote by ITj (x), for 1 ≤ j ≤ 5h + 1. For each

1 ≤ j ≤ 5h + 1, we let Z(ITj ) be the interval ATj . We place the corresponding boxes

B(IT1 (x)), . . . , B(IT5h+1(x)) side-by-side, obtaining one box BT (x) of width (5h + 1)cL′i and
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height Hi. We denote by MT (x) the resulting set of demand pairs, and we refer to them as
the True demand pairs of x.

• (False Pairs). Similarly, we denote the intervals of Π appearing on IF (x) by:

AF1 , Y
F

1 , A
F
2 , Y

F
2 , . . . , Y

F
5h, A

F
5h+1,

and we assume that they appear on IF (x) in this left-to-right order. We use (5h+ 1) copies
of the c-wide level-i instance, that we denote by IFj (x), for 1 ≤ j ≤ 5h + 1. For each

1 ≤ j ≤ 5h + 1, we let Z(IFj ) be the interval AFj . We place the corresponding boxes

B(IF1 (x)), . . . , B(IF5h+1(x)) side-by-side, obtaining one box BF (x) of width (5h + 1)cL′i and

height Hi. We denote by MF (x) the resulting set of demand pairs, and we refer to them as
the False demand pairs of x.

We let M(x) = MX(x) ∪ MT (x) ∪ MF (x). We call the demand pairs in M(x) variable-pairs
representing x.

IFIT

BT BF

· · · · · ·· · ·
IX

BX

60h10h + 1 10h + 1

· · · · · · · · ·

Figure 7: Variable gadget for level-(i + 1) instance. Index x is omitted for convenience. Blue
sub-intervals of IF belong to instances IFj whose destinations lie in BF ; green sub-intervals belong
to instances Ij(C, x) associated with clauses C ∈ C(x). The (5h) green intervals are partitioned
into 5 groups of h consecutive intervals each, and each group belongs to a distinct clause. Blue and
green intervals of IT are dealt with similarly.

Recall that the length of box BX(x) is 60hcL′i, while boxes BT (x), BF (x) have length (5h+ 1)cL′i
each. The height of each box is Hi. Recall also that box B(x) has length LV = 4Ni+1 +(70h+2)cL′i
and height HV = Hi + 2Ni.

We place the boxes BT (x), BF (x) and BX(x) side-by-side inside B(x) in this order, so that the
middle row of each box is contained in the middle row of B(x), and there is a horizontal spacing of
2Ni+1 between the left boundaries of BT (x) and B(x), and between the right boundaries of BX(x)
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and B(x) (see Figure 8). Notice that there is no horizontal spacing between BT (x), BF (x) and
BX(x), and all destination vertices lying in B(x) belong to the middle row of B(x), and hence to
the middle row of B(I).

Ni+1

Ni+1

2Ni+1 2Ni+1
BT (x) BF (x) BX(x)

Figure 8: Box B(x). Height: HV = Hi + 2Ni+1, length: LV = 4Ni+1 + (70h+ 2)cL′i.

Consider the set C(x) ⊆ C of clauses in which variable x appears without negation. Assume without
loss of generality that C(x) = {C1, . . . , Cr}, where r ≤ 5. For each 1 ≤ r′ ≤ r, we will create h
level-i instances of width c, that represent the variable x of Cr′ . We denote these instances by
Ij(Cr′ , x), for 1 ≤ j ≤ h. Consider the interval IF (x). We will use the sub-intervals Y F

j of IF (x)
as intervals Z(Ij(Cr′ , x)), where, intuitively, intervals corresponding to the same clause-variable
pair appear consecutively. Formally, for each 1 ≤ r′ ≤ r, for each 1 ≤ j ≤ h, we use the interval
Y F

(r′−1)h+j of IF (x) as Z(Ij(Cr′ , x)), and we say that it is the sub-interval of IF (x) that belongs to

instance Ij(Cr′ , x). Intuitively, if x is assigned the value False, then we will route a large number
of demand pairs in MF (x). The paths routing these pairs will “block” the intervals Y F

j of IF (x),
thus preventing us from routing demand pairs that belong to instances Ij(Cr′ , x), for 1 ≤ j ≤ h
and Cr′ ∈ C(x).

We treat the subset C′(x) ⊆ C of clauses containing the negation of x similarly, except that we
assign to each resulting instance an interval Y T

j of IT (x).

Clause Gadgets. Consider some clause Cq = (`q1 ∨`q2 ∨`q3). For each one of the three literals of

Cq, we construct h level-i width-c instances, with instances {Ij(Cq, `qz)}hj=1 representing the literal

`qz , for 1 ≤ z ≤ 3. Recall that B(Cq) is a grid of height HC = Hi and length LC = 3chL′i. We
partition B(Cq) into h sub-grids B1(Cq), . . . , B

h(Cq), each of which has height Hi and length 3cL′i.
For each 1 ≤ j ≤ h, we place the boxes B(Ij(Cq, `q1)), B(Ij(Cq, `q2)), B(Ij(Cq, `q3)) inside Bj(Cq)
side-by-side in this order (see Figure 9).

The intervals Z(Ij(Cq, `qz)) are the same as the ones defined in the constructions of the variable
gadgets. We denote byM(Cq) the set of all demand pairs whose destinations lie in B(Cq), and we
call them clause-pairs representing Cq. For each 1 ≤ z ≤ 3, we denote by M(Cq, `qz) the set of all
demand pairs that belong to instances Ij(Cq, `qz), for 1 ≤ j ≤ h, and we sometimes say that they
represent literal `qz of clause Cq. We then letMC =

⋃m
q=1M(Cq) be the set of all clause-pairs, and

MV =
⋃n
j=1M(xj) the set of all variable-pairs. Our final set of demand pairs isM =MV ∪MC .

This completes the definition of the level-(i+ 1) instance.
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3hcL0
i

Hi

B1(Cq) B2(Cq) Bh(Cq). . .

Figure 9: Box B(Cq). Different colors show boxes that represent the three different literals.

5 Yes-Instance Analysis

The goal of this section is to prove the following theorem.

Theorem 5.1 Assume that the input 3SAT(5) formula ϕ is a Yes-Instance. Then for all i ≥ 0,
for every instantiation of the level-i instance I, there is a solution routing Ni demand pairs, that
respects the box B(I).

The remainder of this section is devoted to proving this theorem. The proof proceeds by induction.
For i = 0, N0 = 1, and it is easy to see that for any instantiation of the level-0 instance I, there
is a solution that routes the unique demand pair of this instance and respects the box B(I). We
now assume that the theorem holds for some i ≥ 0, and prove it for a level-(i+ 1) instance, that we
denote by I. We assume that we are given an instantiation of instance I, that consists of a grid
Gi+1 of length at least 2Li+1 + 2L′i+1 + 4Hi+1 and height at least 3Hi+1, the placement of the path
Z(I) on the top boundary of Gi+1, and the placement of the box B(I) inside Gi+1, at distance
at least Hi+1 from its boundaries. We denote the resulting graph by G, and the resulting set of
demand pairs by M. Recall that our construction combines a number of level-i instances. From
the induction hypothesis, for each such instance I ′, for every instantiation of instance I ′, there is
a set P(I ′) of disjoint paths, routing a set of Ni demand pairs of I ′, such that the paths in P(I ′)
respect the box B(I ′). It is easy to verify that, if a setM∗(I ′) of demand pairs of I ′ has a routing
that respects B(I ′) in one instantiation of I ′, then it has such a routing in every instantiation of
B(I ′). Therefore, for every level-i instance I ′, we can fix one such setM∗(I ′) of demand pairs with
|M∗(I ′)| = Ni, and assume that M∗(I ′) has a routing that respects B(I ′) in every instantiation
of I ′.
Recall that our construction combines level-i instances into ci+1-wide level-i instances. Let I ′′ be
any such ci+1-wide level-i instance, and assume that it consists of level-i instances I1, . . . , Ici+1 . We
set M∗(I ′′) =

⋃ci+1

j=1 M∗(Ij), so |M∗(I ′′)| = ci+1Ni. It is easy to see that for any instantiation of
I ′′, there is a routing of all demand pairs in M∗(I ′′), such that for each 1 ≤ j ≤ ci+1, the demand
pairs in M∗(Ij) are routed via paths that respects the box B(Ij).
Consider now the given instantiation (G,M) of the level-(i+ 1) instance I. We first select the set
M̂ ⊆M of demand pairs that we route, and then compute their routing. We fix some assignment
A to the variables {x1, . . . , xn} of ϕ, that satisfies all clauses.

Variable Pairs. Let x be some variable, and let M̂X(x) =
⋃60h
j=1M∗(IXj (x)) — the set of all

demand pairs that are routed by the solutions to the ci+1-wide level-i instances IX1 (x), . . . , IX60h(x).
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Notice that |M̂X(x)| = 60hci+1Ni. If x is assigned the value True, then we let M̂T (x) =⋃5h+1
j=1 M∗(ITj (x)), and we set M̂F (x) = ∅. Notice that |M̂T (x)| = (5h + 1)ci+1Ni in this

case. Otherwise, we let M̂F (x) =
⋃5h+1
j=1 M∗(IFj (x)), so |M̂F (x)| = (5h + 1)ci+1Ni, and we

set M̂T (x) = ∅. We denote M̂(x) = M̂X(x) ∪ M̂T (x) ∪ M̂F (x), and we let M̂V =
⋃
x M̂(x), so

|M̂V | = nci+1(65h+ 1)Ni.

Clause Pairs. Let Cq ∈ C be a clause, and let `q be a literal of Cq whose value is True (if
there are several such literals, we select any one of them arbitrarily). We say that clause Cq
chooses the literal `q. For simplicity, we denote M̂j(Cq) = M∗(Ij(Cq, `q)), for all 1 ≤ j ≤ h,

and we let M̂(Cq) =
⋃h
j=1 M̂j(Cq). Let M̂C =

⋃m
q=1 M̂(Cq). Clearly, for each 1 ≤ q ≤ m,

|M̂(Cq)| = hci+1Ni, and overall, |M̂C | = mhci+1Ni = 5nhci+1Ni/3.

Finally, we let M̂ = M̂V ∪M̂C , so |M̂| = nci+1·(65h+1)Ni+5nci+1hNi/3 = n·Nici+1(200h/3+1) =
Ni+1. It is now enough to prove the following lemma.

Lemma 5.2 There is a set P of node-disjoint paths in graph G, routing all demand pairs in M̂,
such that P respects box B(I).

For convenience, we denote the first row of the grid Gi+1 by R. Let S′ ⊆ S(M̂) be any subset of
the source vertices of the demand pairs in M̂. We say that the sources of S′ appear consecutively
on R, iff there is a sub-path P of R that contains all the vertices of S′ and does not contain any
vertex of S(M̂) \ S′. We let O be the left-to-right ordering of the vertices of S(M̂) on row R.

Consider some variable x, and denote by M̂′(x) the set of all demand pairs in M̂C whose sources
lie on the interval I(x) — these are the demand pairs representing the clauses Cq that chose either
x or ¬x as their literal. Assume first that x is assigned the value True. Then all sources of the
demand pairs in M̂(x) lie on the intervals IX(x) and IT (x), while all sources in set S(M̂′(x)) lie
on IF (x): indeed, since x is assigned the value True, the corresponding clauses must contain x
without negation and so their sources lie on IF (x). Therefore, the sources of each set M̂(x) and
M̂′(x) are consecutive on R. If x is assigned the value False, then similarly all sources of the
demand pairs in M̂(x) are consecutive on R, while all sources of the demand pairs in M̂′(x) appear
on IT (x) and are therefore also consecutive on R. In either case, for every clause Cq ∈ C, the
vertices of S(M̂(Cq)) are consecutive on R.

In order to construct the routing, it is convenient to use special subgraphs of G that we call snakes,
in which routing can be done easily. We start by defining a corridor, and then combine several
corridors to define a snake.

Recall that our graph G is a subgraph of a grid Gi+1. Recall also that, given a set R of consecutive
rows of Gi+1 and a set W of consecutive columns of Gi+1, we denoted by Υ(R,W) the subgraph
of Gi+1 induced by the set

{
v(j, j′) | Rj ∈ R,Wj′ ∈ W

}
of vertices. We say that Υ = Υ(R,W) is

a corridor iff every vertex of Υ belongs to G. For convenience, we will say that Υ is a corridor
spanned by the rows in R and the columns of W. Let R′ and R′′ be the first and the last row
of R respectively, and let W ′ and W ′′ be the first and the last column of W respectively. Each
of the four paths Υ ∩ R′,Υ ∩ R′′,Υ ∩W ′ and Υ ∩W ′′ is called a boundary edge of Υ, and their
union is called the boundary of Υ. We say that two corridors Υ,Υ′ are internally disjoint, iff every
vertex v ∈ Υ ∩Υ′ belongs to the boundaries of both corridors. We say that two internally disjoint
corridors Υ,Υ′ are neighbors iff Υ ∩Υ′ 6= ∅.
We are now ready to define snakes. A snake Y of length ` is a sequence Υ1,Υ2, . . . ,Υ` of ` corridors
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that are pairwise internally disjoint. Moreover, for all 1 ≤ `′, `′′ < `, Υ`′ is a neighbor of Υ`′′ iff
|`′− `′′| = 1. We say that the width of the snake is w iff for each 1 ≤ `′ ≤ `, Υ`′ is spanned by a set
of at least w rows and by a set of at least w columns, and for all 1 ≤ `′ < `, Υ`′ ∩Υ`′+1 contains at
least w vertices. We use the following simple claim, whose proof is deferred to the Appendix, for
routing in snakes.

Claim 5.3 Let Y = (Υ1, . . . ,Υ`) be a snake of width w, and let A,A′ be two sets of vertices with
|A| = |A′| ≤ w− 2, such that the vertices of A lie on a single boundary edge of Υ1 and the vertices
of A′ lie on a single boundary edge of Υ`. Then there is a set Q of node-disjoint paths contained
in
⋃`
`′=1 Υ`′, that connect every vertex of A to a distinct vertex of A′.

Our routing consists of two steps. In the first step, we connect each source vertex s ∈ S(M̂) to
the top boundary of the unique box in B = {B(x1), . . . , B(xn), B(C1) . . . , B(Cm)}, that contains
its corresponding destination vertex. We will later select specific vertices on the top boundary of
each such box to which the sources are routed. The resulting paths will be internally disjoint from
the boxes in B. In the second step, we complete the routing inside each box. The first step is
summarized in the following claim.

Claim 5.4 Suppose we are given, for every variable xj, a set A(xj) of |M̂(xj)| vertices on the
top boundary of B(xj), and for every clause Cq ∈ C, a set A(Cq) of |M̂(Cq)| vertices on the top
boundary of B(Cq). Then there is a collection P ′ of node-disjoint paths in G with the following
properties:

• the paths of P ′ are internally disjoint from all boxes in B = {B(x1), . . . , B(xn), B(C1) . . . , B(Cm)};

• for every variable xj of ϕ, there is a subset P(xj) ⊆ P ′ of paths, that connect every vertex in
S(M̂(xj)) to a vertex of A(xj), so that the paths in P(xj) are order-preserving; and

• for every clause Cq ∈ C, there is a subset P(Cq) ⊆ P ′ of paths, connecting every vertex in
S(M̂(Cq)) to a vertex of A(Cq), so that the paths in P(Cq) are order-preserving.

Proof: We provide here a high-level sketch of the proof. Turning it into a formal proof is straight-
forward but somewhat tedious; we defer the formal proof to the Appendix. We construct 5 sets
of node-disjoint paths, P0, . . . ,P4. Let Z ′ be the set of |M̂| leftmost vertices on the opening of
B(I). Set P0 of paths routes all vertices in S(M̂) to the vertices of Z ′ via node-disjoint paths
that are order-preserving and internally disjoint from B(I), in a straightforward manner. Next, we
select a subset Γ of |M̂| vertices on the top row of BV . Set P1 of paths connects every vertex in
Z ′ to a distinct vertex of Γ, so that the paths in P1 are node-disjoint, order-preserving, internally
disjoint from BV ∪BC , and contained in B(I). In order to route the paths in P1, we construct an
appropriate snake inside B(I) (see Figure 10). If we combine the paths in P0 and P1, we obtain a
set of node-disjoint order-preserving paths, connecting every vertex of S(M̂) to a distinct vertex of
Γ. Paths originating at the vertices corresponding to variable demand pairs then continue to their
corresponding boxes B(xj), while paths originating at the vertices corresponding to clause demand
pairs continue directly to the bottom boundary of BV , exploiting the spacing between the boxes
B(xj). The vertices of Γ are selected in such a way that each such path can be implemented as
a sub-path of a column of BV (see Figure 10). The resulting set of paths is denoted by P2. We
then connect the endpoints of the paths in P2 that appear on the bottom boundary of BV to a
subset Γ′′′ of vertices on the top boundary of BC , by defining an appropriate snake that exploits
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the spacing between BV and BC . This latter set of paths is denoted by P3. Let P ′′ be the set of
paths obtained by combining the paths in P0, . . . ,P3. For every variable xj of ϕ, there is a subset
P(xj) ⊆ P ′′ of paths, connecting every vertex of S(M̂(xj)) to a vertex of A(xj). For every clause
Cq ∈ C, there is a subset P ′(Cq) ⊆ P ′′ of paths, connecting every vertex of S(M̂(Cq)) to a distinct
vertex of Γ′′′. We denote by Γ(Cq) ⊆ Γ′′′ the set of vertices that serve as endpoints of the paths in
P ′(Cq). Note that for each clause Cq ∈ C, the vertices of Γ(Cq) appear consecutively on the top
boundary of BC .

B(x1) B(xn)
BC

BV

Figure 10: Routing the sets P1,P2 and P3 of paths inside B(I). The paths in P2 are shown in red;
the paths of P1 are routed inside the orange snake, and the paths of P3 are routed inside the green
snake.

We can now define an ordering O′ of the clauses in C as follows: clause Cq appears before clause
Cq′ in this ordering iff the vertices of Γ(Cq) appear to the left of the vertices of Γ(Cq′) on the top
row of BC . Our final step is to define a set P4 of node-disjoint paths, that are contained in BC

and are internally disjoint from all boxes {B(Cq) | Cq ∈ C}, such that for each clause Cq ∈ C, there
is a subset P ′(Cq) ⊆ P4 of order-preserving paths, connecting the vertices of Γ(Cq) to the vertices
of A(Cq). Set P4 is constructed by using a standard snake-like routing inside the box BC . For
each clause Cq, we extend the box B(Cq) by Ni+1 columns to the right and to the left, obtaining a
larger box B′(Cq). The idea is to route the paths, so that they visit the boxes B′(C1), . . . , B′(Cm)
in this order. For all 1 ≤ q ≤ m, only paths corresponding to the clauses Cq, Cq+1, . . . , Cm visit
the box B′(Cq). The paths corresponding to clause Cq enter the box B(Cq) and terminate at its
top boundary. For each clause C ∈ {Cq+1, . . . , Cm}, if C appears before Cq in the ordering O′,
then the paths corresponding to C traverse the box B′(Cq) to the left of B(Cq), and otherwise they
traverse it to the right of B(Cq). The routing itself is implemented by constructing an appropriate
collection of snakes, where each snake is used to connect the vertices on the bottom boundary of
B′(Cq) to the vertices on the top boundary of B′(Cq+1) and exploits the spacing between the two
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boxes (see Section A.2 of Appendix for more details).

We now define the sets {A(xj) | 1 ≤ j ≤ n}∪{A(Cq) | Cq ∈ C} of vertices and complete the routing.

Consider first some clause Cq ∈ C, and assume that it has chosen the literal `q. Fix some index
1 ≤ j ≤ h, and consider the width-ci+1 level-i instance I ′ = Ij(Cq, `q). Instance I ′ consists of ci+1

level-i instances, that we denote by I ′1, . . . , I ′ci+1
. Then set M̂(Cq) contains ci+1Ni demand pairs

that belong to instance I ′, with exactly Ni pairs from each instance I ′r. For each such instance I ′r,
we select Ni leftmost vertices on the opening of the box B(I ′r). We then let A(Cq) be the set of all
such vertices we have selected, for all 1 ≤ j ≤ h and 1 ≤ r ≤ ci+1, so |A(Cq)| = hci+1Ni = |M̂(Cq)|.
Notice that, if we are given any set P(Cq) of |M̂(Cq)| node-disjoint order-preserving paths, that
connect the vertices of S(M̂(Cq)) to the vertices of A(Cq), such that the paths in P(Cq) are
internally disjoint from the box B(Cq), then we can extend the paths in P(Cq) inside B(Cq), so
that they route the set M̂(Cq) of demand pairs. In order to do so, for each ci+1-wide level-i instance
I ′ = Ij(Cq, `q), for each level-i instance I ′r that was used to construct I ′, we use the routing that
respects the box B(I ′r), which is guaranteed by the induction hypothesis and by our choice of the
demand pairs to route, in order to connect the vertices we have selected on the opening of B(I ′r)
to the corresponding destination vertices.

Consider now some variable xj , for 1 ≤ j ≤ n. We now show how to select a set A(xj) of |M̂(xj)|
vertices on the top boundary of box B(xj). We start with A(xj) = ∅ and then add vertices to it.

Assume first that xj is assigned the value True. Let I ′ be any of the (65h+1)ci+1 level-i instances
whose box B(I ′) is contained in BX(x) ∪ BT (x). Recall that M̂(xj) contains Ni demand pairs
that belong to this instance. Let A′(I ′) be the set of Ni leftmost vertices on the opening of the
box B(I ′). For each vertex v ∈ A′(I ′), we add to A(xj) the vertex v′ that belongs to the top
boundary of B(xj) and lies on the same column W as v. We let Pv be the sub-path of W between
v and v′. Notice that |A(xj)| = |M̂(xj)|, and, given any set P(xj) of node-disjoint order-preserving
paths connecting the vertices of S(M̂(xj)) to the vertices of A(xj), such that the paths in P(xj)
are internally disjoint from B(xj), we can extend these paths inside the box B(xj), so that they
route the set M̂(xj) of demand pairs. This is done using the box-respecting routing of each level-i
instance as before, together with the set {Pv | v′ ∈ A(xj)} of paths.

Finally, assume that xj is assigned the value False. Notice that the sources of the Extra demand
pairs for xj appear to the left of the sources of the False demand pairs of xj , while the box BF (xj)
appears to the left of the box BX(xj). Therefore, the straightforward routing as above cannot be
employed here and we need to “switch” the two sets of paths. In order to do so, we exploit the
spacing between the boxes BT (xj), BF (xj), BX(xj) and the boundaries of B(xj) (see Figure 8).

For each of the (5h + 1)ci+1 level-i instances whose box B(I ′) is contained in BF (x), we define
the set A′(I ′) of Ni vertices on the opening of the box B(I ′), and for each such vertex v, the
corresponding path Pv and vertex v′ that is added to A(xj) exactly as before. Let J denote the set
of vertices added to A(xj) so far. We also add to A(xj) the set J ′ of 60hci+1Ni leftmost vertices
on the top boundary of B(xj). This ensures that |A(xj)| = (65h+ 1)hci+1Ni = |M̂(xj)|. Assume
now that we are given any set P(xj) of node-disjoint order-preserving paths connecting the vertices
of S(M̂(xj)) to the vertices of A(xj), such that the paths in P(xj) are internally disjoint from
B(xj). We now show how to extend these paths inside the box B(xj), so that they route the set
M̂(xj) of demand pairs. We partition the set P(xj) into two subsets: set PX contains all paths
that originate at the sources of the demand pairs in M̂X(xj) — that is, the Extra demand pairs
of xj , and PF contains all remaining demand pairs, that must originate at the source vertices of
the False demand pairs for xj . Since the set P(xj) of paths is order-preserving, the paths in
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PX terminate at the vertices of J ′, while the paths in PF terminate at the vertices of J . We
extend the paths in set PF exactly as before, using the paths in set {Pv | v′ ∈ J}, and then using
the box-preserving routing of each corresponding level-i instance to connect each source vertex of
S(M̂F (xj)) to its destination.

In order to extend the paths in PX we do the following. For each level-i instance I ′ whose box
B(I ′) is contained in BX(xj), we let A′(I ′) be the set of Ni left-most vertices on the opening of
B(I ′). Let A′ be the set of all such vertices, for all such instances I ′, so |A′| = |J ′|. It is now
enough to construct a set Q of order-preserving node-disjoint paths contained in B(xj) that connect
every vertex in J to a distinct vertex of A′, such that the paths in Q are internally disjoint from
BT (xj) ∪BF (xj) ∪BX(xj) and are completely disjoint from {Pv | v′ ∈ J}. We show the existence
of the set Q of paths by constructing a snake Y, that consists of four corridors. The first corridor,
Υ1, is the set of the first Ni+1 columns of B(xj). The third corridor, Υ3, is the set of the last Ni+1

columns of B(xj). Let W ′ be the last column of Υ1 and let W ′′ be the first column of Υ3. The
second corridor, Υ2, is spanned by the bottom Ni+1 rows of B(xj) and the columns of B(xj) from
W ′ to W ′′, including these two columns. Let W ′′′ be the leftmost column of Gi+1 that intersects
BX(xj); let R′ be the topmost row of Gi+1 that intersects BX(xj), and let R be the set of Ni+1

consecutive rows lying above R′, including R′. The last corridor, Υ4, is spanned by the set R of
rows, and the set of all columns from W ′′′ to W ′′ (see Figure 11). Using Claim 5.3, it is immediate
to verify that the desired set Q of paths exists inside the resulting snake. We then extend the
routing inside each box B(I ′) of each corresponding level-i instance I ′ exactly as before.

J

BT (xj) BF (xj) BX(xj)

J 0

Figure 11: Routing inside box B(xj) if xj is assigned value F .

Using Claim 5.4 with our definitions of the sets {A(xj) | 1 ≤ j ≤ n} ∪ {A(Cq) | 1 ≤ q ≤ m} of ver-
tices, and the above discussion, we can route all demand pairs in M̂ via a set P of node-disjoint
paths that respects the box B(I).

6 No-Instance Analysis

In this section we analyze the No-Instance case, by proving the following theorem.

Theorem 6.1 Assume that ϕ is a No-Instance. Then for every integer i ≥ 0, for every instan-
tiation of the level-i instance I, and for every solution P to this instance, |P| ≤ N ′i .
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The proof is again by induction. For the base case of i = 0, N ′i = 1, and the corresponding level-0
instance contains a single demand pair, so the theorem clearly holds. We now assume that the
theorem holds for some value i ≥ 0 and prove it for a level-(i+ 1) instance I. We assume that we
are given some instantiation of I, and from now on our goal is to prove that no solution to this
instance of NDP can route more than N ′i+1 = (1 − δ)nci+1 · (200h/3 + 1)N ′i demand pairs, where

δ = 8ε2/1012. We assume for contradiction that this is not the case, and we let P̃ be a collection
of more than N ′i+1 node-disjoint paths, routing a set M̃ ⊆M of demand pairs. For every demand

pair (s, t) ∈ M̃, we let P (s, t) ∈ P̃ be the path routing this pair in the solution.

Recall that our construction of a level-(i+ 1) instance I consists of a number of copies of ci+1-wide
level-i instances: For every variable x of ϕ, we have constructed (70h + 2) such instances (60h
instances for the extra pairs, and (5h + 1) instances each for True and False pairs); for every
clause C ∈ C, we have constructed 3h such instances. Therefore, overall we use (70h+2)n+3hm =
75nh+ 2n copies of ci+1-wide level-i instances (we have used the fact that m = 5n/3). We assume
(by induction) that at most ci+1N

′
i pairs from each such instance are in M̃. We say that a ci+1-wide

level-i instance I ′ is interesting iff at least 25Hi demand pairs of M(I ′) belong to M̃; otherwise
we say that it is uninteresting. We let M̂ ⊆ M̃ be the set of all demand pairs that belong to
uninteresting instances, and we call them excess pairs. We need the following simple observation.

Observation 6.2 |M̂| ≤ δ(200h/3 + 1)nci+1N
′
i .

Proof: As observed above, there are at most 75nh + 2n uninteresting instances, each of which

contributes at most 25Hi ≤ 50ci+1ε
2N ′i

1013
excess demand pairs. Therefore, it is enough to show that:

(75nh+ 2n) · 50ci+1ε
2N ′i

1013
≤ δ

(
200h

3
+ 1

)
nci+1N

′
i ,

which is immediate to verify, substituting δ = 8ε2/1012.

It would be convenient for us to assume that no excess pairs exist. In order to do so, we discard
all excess pairs from M̃. From Observation 6.2, |M̃| ≥ (1− 2δ)nci+1(200h/3 + 1)N ′i still holds.

For every variable x, we let M̃(x) = M̃ ∩ M(x), and for every clause Cq, we let M̃(Cq) =
M̃ ∩M(Cq). We also denote by M̃V =

⋃n
j=1 M̃(xj) and by M̃C =

⋃m
q=1 M̃(Cq).

For the sake of the No-Instance-analysis, it is convenient to view our construction slightly dif-
ferently. Let ϕ be the input 3SAT(5) formula, and recall that C = {C1, . . . , Cm} is the set of its
clauses. For each clause Cq ∈ C, we create h new clauses C1

q , . . . , C
h
q , each of which is a copy of

the original clause. We let C′ =
{
Cjq | 1 ≤ q ≤ m, 1 ≤ j ≤ h

}
be the resulting set of clauses, and

ϕ′ the corresponding 3SAT formula. In order to avoid confusion, we refer to the clauses in C as
the original clauses, to the clauses of C′ as the new clauses, and for each 1 ≤ q ≤ m, 1 ≤ j ≤ h,
we call Cjq the jth copy of clause Cq. Recall that the clause gadget for Cq ∈ C contains h boxes
B1(Cq), . . . , B

h(Cq), where box Bj(Cq) is the union of three boxes: B(Ij(Cq, `q1)), B(Ij(Cq, `q2))
and B(Ij(Cq, `q3)) (see Figure 9). We think of the box Bj(Cq) as representing the new clause

Cjq ∈ C′. For convenience, we denote by M̃(Cjq ) ⊆ M̃(Cq) the set of all demand pairs routed
by our solution whose destinations lie in Bj(Cq). This set is further partitioned into three sub-

sets, M̃(Cjq , `q1),M̃(Cjq , `q2),M̃(Cjq , `q3), each of which contains demand pairs from the instances
Ij(Cq, `q1), Ij(Cq, `q2), and Ij(Cq, `q3) respectively. The following observation is immediate:
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Observation 6.3 If ϕ is a No-Instance, then for any assignment to its variables, at most (1−
ε)mh clauses of C′ are satisfied.

Encircling and its Resolution Let (s, t) ∈ M̃ be any demand pair routed by the solution.
Recall that (s, t) belongs to some level-i instance I ′, and we have defined a line Qt containing at
most Hi/2 vertices of the graph, that connects t to the bottom of the box B(I ′) (which is a cut-out
box). We say that a demand pair (s′, t′) ∈ M̃ encircles pair (s, t) iff path P (s′, t′) contains a vertex
lying on Qt. Since Qt contains at most Hi/2 vertices, at most Hi/2 demand pairs may encircle
(s, t). We repeatedly use the following simple lemma.

Lemma 6.4 Let S1, . . . , Sr be a collection of disjoint subsets of M̃, such that for all 1 ≤ j ≤ r,
|Sj | ≥ r2Hi/2. Then there is a collection M′ = {(s1, t1), . . . , (sr, tr)} of demand pairs, such that
for all 1 ≤ j ≤ r, (sj , tj) ∈ Sj, and for all distinct (s, t), (s′, t′) ∈ M′, pair (s′, t′) does not encircle
pair (s, t).

Proof: We perform (r − 1) iterations. At the beginning of iteration `, we are given a set M′ =
{(s1, t1), . . . , (s`−1, t`−1)} of demand pairs, where for all 1 ≤ j ≤ ` − 1, (sj , tj) ∈ Sj , and no two
pairs in M′ encircle each other. Additionally, for each ` ≤ j ≤ r, we are given a subset S′j ⊆ Sj
of (r2 − r(` − 1))Hi/2 demand pairs, such that no pair in S′j encircles a pair in M′, and no pair
in S′j is encircled by a pair in M′. Therefore, at the end of iteration (r − 1), set M′ contains one
pair from each set S1, . . . , Sr−1, and Sr 6= ∅. We add an arbitrary pair of Sr to M′ to obtain the
desired output.

At the beginning of the algorithm, M′ = ∅, and for each 1 ≤ j ≤ r, set S′j contains any subset of

r2Hi/2 demand pairs of Sj . We now describe an execution of some iteration `. LetM′′ = ⋃r
j=`+1 S

′
j ,

and let U be the set of all vertices appearing on lines Qt, where t is a destination vertex of a demand
pair inM′′. Then |M′′| ≤ (r− 1)(r2− r(`− 1))Hi/2 and |U | ≤ (r− 1)(r2− r(`− 1))H2

i /4, while S`
contains (r2 − r(`− 1))Hi/2 demand pairs. Therefore, there is some demand pair (s`, t`) ∈ S` that
contains at most (r − 1)Hi/2 vertices of U . We add (s`, t`) to M′. Consider now some set S′j , for
some ` + 1 ≤ j ≤ r. Then pair (s`, t`) may encircle at most (r − 1)Hi/2 pairs of S′j , and at most
Hi/2 pairs in S′j may encircle (s`, t`). We discard from S′j all pairs that either encircle (s`, t`) or are

encircled by it. At the end of this procedure, |S′j | ≥ (r2 − r(`− 1))Hi/2− rHi/2 ≥ (r2 − r`)Hi/2.

If |S′j | > (r2 − r`)Hi/2, then we discard arbitrary pairs from S′j until the equality holds.

Variable Gadget Analysis We fix some variable x and consider its corresponding gadget. We
start with the following lemma.

Lemma 6.5 Let M̃X = M̃∩MX(x),M̃T = M̃∩MT (x), and M̃F = M̃∩MF (x) be the subsets
of MX(x),MT (x), and MF (x), respectively, that are routed by our solution. Then at least one of
the sets M̃X ,M̃T ,M̃F is empty.

Proof: Assume otherwise. Since we have discarded all excess pairs, each one of the three sets
M̃X ,M̃T ,M̃F contains at least 25Hi demand pairs. From Lemma 6.4, we can find three pairs,
(sX , tX) ∈ M̃X , (sT , tT ) ∈ M̃T and (sF , tF ) ∈ M̃F , with neither pair encircling the other. We now
claim that it is impossible to route all three pairs simultaneously via node-disjoint paths. In order
to do so, we use the following simple observation.
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Observation 6.6 Let Σ be the sphere, and let D,D′ be two disjoint closed simple discs on Σ,
whose boundaries are denoted by Γ and Γ′, respectively. Let Σ′ be the cylinder obtained from Σ by
removing the open discs D \ Γ, D′ \ Γ′ from it. Assume further that we have three distinct points
a1, a2, a3 appearing on Γ in this circular order, and three distinct points a′1, a

′
3, a
′
2 appearing on Γ′

in this circular order (see Figure 12). Let γ1, γ2, γ3 be three simple curves on Σ′, where for each
1 ≤ j ≤ 3, γj connects aj to a′j. Then the three curves cannot be pairwise disjoint.

Proof: Assume otherwise. We can twist the cylinder so that the curve γ1 becomes a straight
vertical line, and then cut the cylinder along this line, obtaining a square, with a2 appearing to the
left of a3 on the top of the square, and a′3 appearing to the left of a′2 on the bottom of the square.
It is now immediate to see that it is impossible to connect a2 to a′2 and a3 to a′3 via disjoint curves.

a1 a2 a3

a0
3

a0
2a0

1

Figure 12: Illustration to Observation 6.6.

Assume for contradiction that there are three node-disjoint paths, routing demand pairs (sX , tX),
(sT , tT ), and (sF , tF ). We embed the grid Gi+1 onto a sphere in a natural way, and then construct a
curve γX , by concatenating the image of the path P (sX , tX) with the line QtX , denoting by bX the
endpoint of this curve that is distinct from sX . If this curve is not simple, we delete all loops from
it until it becomes simple. We define curves γT , γF , and their endpoints bT and bF for the pairs
(sT , tT ), and (sF , tF ), respectively, in a similar way. Let Γ be the top boundary of the grid, and
let Γ′ be the union of the bottom boundaries of the boxes BT (x), BF (x) and BX(x). By slightly
thickening Γ and Γ′, we can create two disjoint discs D and D′ in the plane, with Γ being the
boundary of D and Γ′ the boundary of D′, so that the curves γX , γT and γF are internally disjoint
from D and D′. Vertices sT , sX and sF appear on Γ in this circular order, while vertices bT , bF and
bX appear on Γ′ in this circular order. But then we obtain a collection of three disjoint curves on
a cylinder that contradicts Observation 6.6.

The following corollary is now immediate.

Corollary 6.7 |M̃V | ≤ (65h+ 1) · n · ci+1N
′
i .

Consider some variable x of ϕ. If M̃∩MT (x) = ∅, then we assign it the value False, and otherwise
we assign it the value True.

Fix some variable x ∈ X and some index 1 ≤ j ≤ 5h+ 1. We say that index j is bad for variable x
if either (i) x is assigned the value True, and instance ITj (x) is uninteresting; or (ii) x is assigned
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the value False, and instance IFj (x) is uninteresting. We will later show that the total number of
pairs (x, j) where j is a bad index for x is bounded by 12n.

Clause Gadget Analysis Consider a new clause Cjq ∈ C′ and its three literals `q1 , `q2 , `q3 . We

say that clause Cjq is a troublesome clause, or a troublesome copy of Cq, iff there are at least two
values 1 ≤ z < z′ ≤ 3, for which instances Ij(Cq, `qz), Ij(Cq, `qz′ ) are both interesting.

Lemma 6.8 For every original clause Cq ∈ C, at most three of its copies are troublesome.

Proof: Assume otherwise, and let Cq ∈ C be a clause, such that at least four of its copies are
troublesome. Then there are two indices 1 ≤ z < z′ ≤ 3, and two indices 1 ≤ j < j′ ≤ h, such
that each one of the four instances Ij(Cq, `qz), Ij(Cq, `qz′ ), Ij′(Cq, `qz), Ij′(Cq, `qz′ ) is interesting,

and so each of the four sets M̃(Cjq , `qz),M̃(Cjq , `qz′ ),M̃(Cj
′
q , `qz),M̃(Cj

′
q , `qz′ ) contains at least

25Hi demand pairs. From Lemma 6.4, we can find demand pairs (s1, t1) ∈ M̃(Cjq , `qz), (s2, t2) ∈
M̃(Cjq , `qz′ ), (s′1, t

′
1) ∈ M̃(Cj

′
q , `qz), and (s′2, t

′
2) ∈ M̃(Cj

′
q , `qz′ ), such that none of the four resulting

pairs encircles another. Notice that the sources of these pairs appear on the top boundary of the grid
in one of the following two orders: (s1, s

′
1, s2, s

′
2), if the variable corresponding to `qz appears before

the variable corresponding to `qz′ in the ordering (x1, x2, . . . , xn) of the variables, or (s2, s
′
2, s1, s

′
1)

otherwise.

We draw a curve γ1 by concatenating the image of the path P (s1, t1) and the line Qt1 . We draw
curves γ′1, γ2 and γ′2 for the remaining pairs similarly. On the one hand, none of the the resulting
curves may cross each other, while on the other hand the vertices lying on the bottom boundary
of the box B(Cq) have been deleted, which is impossible.

Corollary 6.9 For each original clause Cq ∈ C, |M̃(Cq)| ≤ (6 + h)N ′ici+1, and overall |M̃C | ≤
5n(6 + h)N ′ici+1/3.

Proof: Consider some original clause Cq ∈ C. Each of its non-troublesome copies Cjq contributes
at most ci+1N

′
i demand pairs to M̃C , while a troublesome copy may contribute at most 3ci+1N

′
i

demand pairs. Since at most three copies are troublesome, overall |M̃(Cq)| ≤ (6 + h)N ′ici+1 and
|M̃C | ≤ m(6 + h)N ′ici+1 = 5n(6 + h)N ′ici+1/3, since m = 5n/3.

In the rest of our proof, we will reach a contradiction by proving that the current assignment to the
variables of ϕ satisfies more than (1 − ε)hm clauses in C′. In order to do so, we gradually discard
clauses from C′, until we obtain a large enough subset of clauses that is guaranteed to be satisfied
by the current assignment.

Our first step is to define uninteresting clauses. Recall that for each new clause Cjq ∈ C′, there are
three corresponding ci+1-wide level-i instances, Ij(Cq, `q1), Ij(Cq, `q2), and Ij(Cq, `q3). We say that

clause Cjq is interesting iff at least one of these three instances is interesting, and we say that it is
uninteresting otherwise. Let C′0 ⊆ C′ be the set of all uninteresting clauses.

Claim 6.10 |C′0| ≤ 12n.

Proof: Assume otherwise. From Corollary 6.7, |M̃V | ≤ (65h+1)nci+1N
′
i , while from Corollary 6.9,

it is easy to see that |M̃C | ≤ 5n(6+h)N ′ici+1

3 −|C′0|N ′ici+1 ≤ 5n(6+h)N ′ici+1

3 −12nN ′ici+1 = nN ′ici+1(5h
3 −

2). But then:
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|M̃| ≤ (65h+1)nci+1N
′
i+

(
5h

3
− 2

)
nN ′ici+1 ≤

(
200h

3
− 1

)
nN ′ici+1 < (1−2δ)

(
200h

3
+ 1

)
nN ′ici+1,

since h = 1000/ε and δ = 8ε2/1012, a contradiction.

Consider some clause Cjq ∈ C′ that is interesting. Then there is an index z ∈ {1, 2, 3}, such that
instance Ij(Cq, `qz) is interesting. If there are several such indices z (if Cjq is troublesome), then

we choose one of them arbitrarily. We say that clause Cjq chooses the literal `qz . We say that Cjq is
a cheating clause iff the variable xqz corresponding to literal `qz is assigned the opposite value: In
other words, if `qz = xqz , then x is assigned the value False, and otherwise, `qz = ¬xqz , and xqz
is assigned the value True. We further say that it is a bad cheating clause iff at least one of the
indices j, j + 1 is bad for the variable xqz , and we say that it is a good cheating clause otherwise.
Let C′1 ⊆ C′ \C′0 be the set of all the cheating clauses. In the following lemma we bound the number
of the cheating clauses.

Lemma 6.11 There are at most 24n bad cheating clauses, and at most 3m good cheating clauses.

We provide the proof of the lemma below, after we complete the analysis of the No-Instance using
it. Notice that if a clause Cjq is an interesting non-cheating clause, then the current assignment
must satisfy it. From Claim 6.10 and Lemma 6.11, there are at least hm − 12n − 24n − 3m =
hm − 123m/5 = (1 − 123ε/5000)hm > (1 − ε)hm such clauses, contradicting Observation 6.3. It
now remains to complete the proof of Lemma 6.11.

Proof of Lemma 6.11. In order to bound the number of bad cheating clauses, we first bound
the total number of bad indices for variables. Let β denote the total number of pairs (x, j),
where x is a variable of ϕ and 1 ≤ j ≤ 5h + 1 is an index, such that j is a bad index for
x. Recall that, assuming that x is assigned the value True, this means that instance ITj (x) is

uninteresting, and if x is assigned the value False, then instance IFj (x) is uninteresting. For every
variable x, let β(x) be the total number of indices 1 ≤ j ≤ 5h + 1 that are bad for x. Then
|M̃(x)| ≤ (65h+ 1)N ′ici+1 − β(x) ·N ′ici+1. Therefore, overall,

|M̃| ≤ n · (65h+ 1)N ′ici+1 − β ·N ′ici+1 + |M̃C |
≤ n · (65h+ 1)N ′ici+1 − β ·N ′ici+1 + 5n(h+ 6)N ′ici+1/3

= (200h/3 + 11)nN ′ici+1 − β ·N ′ici+1.

Assume now for contradiction that β > 12n. Then |M̃| < (200h/3−1)nN ′ici+1 < (1−2δ)(200h/3+
1)nN ′ici+1, a contradiction. It is immediate to verify that each pair (x, j) where j is a bad index
for variable x may be responsible for at most two bad cheating clauses, and so the total number of
bad cheating clauses is bounded by 24n.

We now turn to bound the number of good cheating clauses. In order to do so, it is enough to
prove the following claim:

Claim 6.12 For each original clause Cq ∈ C and index z ∈ {1, 2, 3}, at most one copy of Cq that
chooses the literal `qz is a good cheating clause.
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Notice that from the above claim, for each original clause Cq ∈ C, there are at most 3 copies of Cq
that are good cheating clauses, and so overall there are at most 3m good cheating clauses in C′ \C′0.
It now remains to prove Claim 6.12.

Proof of Claim 6.12. Let Cq ∈ C be an original clause, and let ` ∈ {`q1 , `q2 , `q3} be one of

its literals. Assume for contradiction that two distinct copies of Cq, that we denote by Cjq and

Cj
′
q are good cheating clauses and that they both select the literal ` of Cq. Let x be the variable

corresponding to `. We assume without loss of generality that x appears in Cq without negation (so
` = x), but we assigned x the value False; the other case is dealt with similarly. We also assume
without loss of generality that j < j′.

Since both Cjq , C
j′
q are good cheating clauses, indices j, j + 1 and j′ + 1 are good indices for x.

Therefore, each of the instances IFj (x), IFj+1(x) and IFj′+1(x) is an interesting instance, and M̃
contains at least 25Hi demand pairs that belong to each of the three instances. Moreover, M̃
contains at least 25Hi demand pairs that belong to each of the two instances Ij(Cq, `) and Ij′(Cq, `),
from the choice of the literal ` by each corresponding copies of Cq.

We let M1 be the set of all demand pairs of Ij(Cq, `) that belong to M̃, and we define M2 for
instance Ij′(Cq, `) similarly. We also let M3,M4 and M5 be the sets of the demand pairs from
instances IFj (x), IFj+1(x), and IFj′+1(x) that belong to M̃, respectively. From the above discussion,
each of the five sets contain at least 25Hi demand pairs. From Lemma 6.4, we can find, for each
1 ≤ y ≤ 5, a demand pair (sy, ty) ∈My, such that none of the five resulting demand pairs encircle
each other.

Consider the plane into which the grid Gi is embedded with only the following curves. First, we
add the boundary of the grid. We also add the bottom boundary of the box BF (x), and for every
3 ≤ y ≤ 5, a curve γy, obtained by concatenating the image of P (sy, ty), with the line Qty . Notice
that the three curves cannot intersect. Let f and f ′ be the faces of the resulting drawing, that are
distinct from the outer face, and are incident to the intervals Y F

j and Y F
j′ , respectively. Let Γ be

the bottom boundary of the box B(Cq). Then Γ must lie in the same face of the drawing as t1 and
t2, since none of the five pairs encircles the other. Assume without loss of generality that this face
is f∗ 6= f . Then the source of the pair (s1, t1) lies on the part Y F

j of boundary of f that is also
incident to the infinite face, while its destination lies strictly inside another face (and this other
face is disjoint from Y F

j ), which is impossible.
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Appendix

A Proofs Omitted from Section 5

A.1 Proof of Claim 5.3

The proof is by induction on `. For the base case, assume that ` = 1, and let A,A′ any pair
of vertex sets (that are not necessarily disjoint), such that the vertices of each set lie on a single
boundary edge of the corridor Υ = Υ1, and |A| = |A′| = w′ ≤ w − 2. We show that there is a
set Q of node-disjoint paths in Υ, connecting every vertex of A to a vertex of A′, with a slightly
stronger property: namely, the paths in Q are internally disjoint from the boundary of Υ. Let
Υ′ be the graph obtained from Υ, by deleting all vertices lying on the boundary of Υ, except for
the vertices of A ∪ A′. It is enough to show that there is a set Q of w′ node-disjoint paths in Υ′,
connecting vertices of A to vertices of A′. Assume for contradiction that such a set of paths does
not exist. Then from Menger’s theorem, there is a set J of w′ − 1 vertices, such that Υ′ \ J has no
path connecting a vertex of A to the vertex of A′. We consider three cases.

The first case is when A and A′ lie on the opposite boundary edges of Υ. Assume without loss of
generality that the vertices of A lie on the top boundary edge, and the vertices of A′ on the bottom
boundary edge of Υ. Let R andW be the sets of rows and columns of Gi+1, respectively, that span
Υ. Let W ′,W ′′ ⊆ W be the sets of columns of Υ where the vertices of A and A′ lie, respectively,
so |W ′| = |W ′′| = w′. Since |J | < w′, there is a column W ′ ∈ W ′ and a column W ′′ ∈ W ′, with
W ′ ∩ J,W ′′ ∩ J = ∅. There is also some row R′ ∈ R of Υ′, that is not its top or bottom row, such
that R′ ∩ J = ∅. But W ′ ∪W ′′ ∪R′ is a connected subgraph of Υ′ \ J , that contains a vertex of A
and a vertex of A′, a contradiction.

The other two cases, when A and A′ lie on adjacent boundary edges of Υ, and when A and A′ lie
on the same boundary edge of Υ are analyzed similarly.

Assume now that the claim holds for some value ` ≥ 0. We now prove it for ` + 1. Denote
|A| = |A′| = w′, and let U be any set of w′ vertices in Υ` ∩ Υ`+1, so the vertices of U lie on the
boundaries of both corridors. Notice that the vertices of U must belong to a single boundary edge
of Υ`, and a single boundary edge of Υ`+1. Using the induction hypothesis, there is a set P1 of w′

node-disjoint paths in Υ1 ∪ · · · ∪Υ`, connecting every vertex of A to a distinct vertex of U . From
our analysis of the base case, there is a set P2 of w′ node-disjoint paths in Υ`+1, connecting every
vertex of U to a distinct vertex of A′. Moreover, the paths in P2 are internally disjoint from the
boundary of Υ`+1. We obtain the desired set of paths by concatenating the paths in P1 and the
paths in P2.

A.2 Proof of Claim 5.4

Consider two consecutive variables xj , xj+1, for 1 ≤ j < n. Recall that the vertices S(M̂(xj))
appear consecutively on R, and so do the vertices of S(M̂(xj+1)). Let Vj ⊆ S(M̂C) be the set of
all source vertices that correspond to clause-pairs, and lie between the vertices of S(M̂(xj)) and
the vertices of S(M̂(xj+1)) on R. Notice that the vertices of Vj may only correspond to clauses in
which xj or xj+1 participate, so |Vj | ≤ 10hNici+1 < Ni+1. Similarly, we let V0, Vn ⊆ S(M̂C) be the
sets of all source vertices that correspond to clause-pairs and lie before the vertices of S(M̂(x1))
and after the vertices of S(M̂(xn)) on R, respectively. We still have |V0|, |Vn| ≤ Ni+1. For all
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0 ≤ j ≤ n, let M ′j = |Vj |. For all 1 ≤ j ≤ n, let Mj = |M̂(xj)| = ci+1Ni(65h+ 1) < Ni+1.

We now select a set Γ of vertices on the top row of BV , as follows. First, for every variable xj
of ϕ, for every vertex a ∈ A(xj), we select a vertex a′ on the top row of BV , lying in the same
column as a, and we let Pa be the sub-path of the column col(a) between a and a′. Let Γj denote
the resulting set of vertices that we have selected for xj .

For 1 ≤ j < n, let Wj be the set of columns of BV that lie between the boxes B(xj) and B(xj+1).
We also letW0 be the set of all columns of BV that lie before B(x1), andWn the set of all columns
lying after B(xn). For all 0 ≤ j ≤ n, we select an arbitrary set Γ′j of M ′j distinct vertices on the

top row of BV that belong to the columns of Wj . Since |Wj | ≥ Ni+1, while M ′j ≤ Ni+1, such a

set of vertices exists. For each selected vertex v ∈ Γ′j , we let Pv be the column of BV in which

v lies, and we let v′ be the other endpoint of the column. Let Γ′′j =
{
v′ | v ∈ Γ′j

}
. We denote

Γ =
(⋃n

j=1 Γj

)
∪
(⋃n

j=0 Γ′j

)
, and Γ′′ =

⋃n
j=0 Γ′′j . Finally, we let Γ′′′ be the set of |M̂C | consecutive

left-most vertices on the top boundary of BC .

We construct five sets of node-disjoint paths, P0, . . . ,P4. The final set P ′ of paths will be obtained
by combining these sets of paths.

Set P0: Let Z ′ be the set of |M̂| leftmost vertices on the opening of B(I). Set P0 consists of |M̂|
node-disjoint paths, connecting every vertex of S(M̂) to a vertex of Z ′, so that the paths in P0

are order-preserving and internally disjoint from B(I). Since the distance between B(I) and the
boundaries of Gi+1 is at least Hi+1 ≥ Ni+1, while |M̂| = Ni+1, it is easy to verify that such a set
of paths exists.

Set P1: This set of paths connects every vertex of Z ′ to a distinct vertex of Γ in a node-disjoint and
order-preserving manner. In order to construct it, we use a snake Y1, consisting of two corridors,
Υ1

1 and Υ1
2. The first corridor Υ1

1 is simply the set of the top Ni+1 + 2 rows of B(I). In order to
construct the second corridor, Υ1

2, we denote by WV the set of all columns of Gi+1 that intersect
the box BV , and we denote by R̂ the row of Gi+1 that contains the topmost row of BV . Let R̂ be
a consecutive set of rows of B(I), starting from row RNi+1+2 and ending at row R̂. Let Υ1

2 be the

corridor spanned by the set WV of columns and the set R̂ of rows (see Figure 13). By combining
the two corridors, we we obtain a snake Y1 of width at least Ni+1 + 2. From Claim 5.3, there is
a set P1 of node-disjoint paths, connecting every vertex of Z ′ to a distinct vertex of Γ inside the
snake. It is immediate to verify that the set P1 of paths must be order-preserving.

Set P2: Set P2 contains, for every vertex v ∈ Γ, the path Pv that we have defined above. Note
that for each 1 ≤ j ≤ n, paths in P2 connect the vertices of Γj to the vertices of A(xj), lying on
the top row of B(xj), and for each 0 ≤ j ≤ n, paths in P2 connect the vertices of Γ′j to the vertices

of Γ′′j , lying on the bottom row of BV .

Set P3: This set contains |M̂C | node-disjoint paths, connecting every vertex of Γ′′ to a distinct
vertex of Γ′′′. The paths in P3 will be internally disjoint from BV and BC , and order-preserving.
In order to construct the set P3 of paths, we construct a snake Y2. Let WV and WC be the sets of
columns of Gi+1 that intersect BV and BC , respectively, and let WM be the set of columns lying
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B(x1) B(xn)
BC

BV

Figure 13: Routing the sets P1,P2 and P3 of paths inside B(I). The paths in P2 are shown in red;
the paths of P1 are routed inside the orange snake, and the paths of P3 are routed inside the green
snake.

between these two sets. Let R′ be the row of Gi+1 containing the bottommost row of BV , and let
RV be the set of Ni+1 − 2 consecutive rows of Gi+1 lying below R′, including R′. Let R′′ be the
row of Gi+1 containing the topmost row of BC , and let RC be the set of Ni+1− 2 consecutive rows
of Gi+1 lying above RC , including RC . Finally, let RM be the set of rows lying between the top
row of RC and the bottom row of RV , including these two rows. The snake Y2 consists of three
corridors (see Figure 13). The first corridor, Υ2

1, is spanned by the set RV of rows and the set
WV of columns. The second corridor, Υ2

2, is spanned by the set RM of rows and the set WM of
columns. The third and the final corridor, Υ2

3, is spanned by the set RC of rows and the set WC of
columns. We extend corridor Υ2

1 by one column to the right, so that it intersects the boundary of
Υ2

2, and similarly we extend corridor Υ2
3 by one column to the left. It is now easy to verify that we

obtain a snake of width at least Ni+1 − 2, and so from Claim 5.3, there is a set P3 of node-disjoint
paths, connecting every vertex of Γ′′ to a distinct vertex of Γ′′′. It is immediate to verify that the
paths in P3 are order-preserving.

By combining the paths of P0, . . . ,P3, we obtain a set P ′′ of node-disjoint paths, that are internally
disjoint from BC . For every variable xj of ϕ, set P ′′ contains a set P(xj) of paths connecting every
vertex of S(M̂(xj)) to a vertex of A(xj), so that the paths in P(xj) are order-preserving. For every
clause Cq ∈ C, set P ′′ contains a set P ′(Cq) of node-disjoint order-preserving paths, connecting
every vertex of S(M̂(Cq)) to a distinct vertex of Γ′′′. We denote by Γ(Cq) ⊆ Γ′′′ the set of vertices
that serve as endpoints of the paths in P ′(Cq). Note that for each clause Cq ∈ C, the vertices of
Γ(Cq) appear consecutively in Γ′′′. We define an ordering O′ of the clauses in C as follows: clause Cq
appears before clause Cq′ in this ordering iff the vertices of Γ(Cq) appear to the left of the vertices
of Γ(Cq′) on the top row of BC .
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Set P4: In our final step, we construct, for each clause Cq ∈ C, a set P ′′(Cq) of paths, connecting
the vertices of Γ(Cq) to the vertices of A(Cq), so that the paths in P ′′(Cq) are order-preserving and
the paths in

⋃
Cq∈C P ′′(Cq) are node-disjoint. We then let P4 be the union of these sets of paths.

Claim A.1 For each clause Cq ∈ C, there is a set P ′′(Cq) ⊆ BC of paths, connecting every vertex
of Γ(Cq) to a distinct vertex of A(Cq), such that the paths in set P4 =

⋃
Cq∈C P ′′(Cq) are mutually

node-disjoint and internally disjoint from the boxes {B(C1), . . . , B(Cm)}. Moreover, the paths in
P4 are internally disjoint from the top boundary of BC , and for each 1 ≤ q ≤ m, the paths in P(Cq)
are order-preserving.

We obtain the final set P ′ of paths by combining the paths of P0, . . . ,P4. In order to complete the
proof of Claim 5.4, it now remains to prove Claim A.1.

Proof: Consider some clause Cq ∈ C, and let W(Cq) be the set of columns of Gi+1 that intersect
B(Cq). We let WL(Cq) be the set of Ni+1 columns lying immediately to the left of W(Cq), and
similarly we let WR(Cq) be the set of Ni+1 columns lying immediately to the right of Cq. Let R
be the set of all rows of Gi+1 that intersect the box B(Cq) (this set is the same for all clauses Cq).
We let B′(Cq) be the sub-grid of Gi+1 spanned by the set WL(Cq) ∪W(Cq) ∪WR(Cq) of columns
and the set R of rows.

The idea is to define a snake-like routing, where the paths visit the boxes B′(C1), . . . , B′(Cm) in
turn. For each clause Cq, only the paths corresponding to the clauses Cq, Cq+1, . . . , Cm will visit the
box B′(Cq). The paths corresponding to clause Cq will terminate on the top boundary of B(Cq).
For each q+ 1 ≤ q′ ≤ m, if Cq′ appears before Cq in the ordering O′, then the paths corresponding
to Cq′ will traverse the box B′(Cq) to the left of B(Cq); otherwise, they will traverse the box B′(Cq)
to the right of B(Cq). In order to implement this, we select a subset of vertices on the top and the
bottom boundaries of B′(Cq), through which the paths will enter and leave the box (see Figure 14).

BC

B0(C1) B0(Cm). . .

Figure 14: Selecting the sets Γ(Cq) and Γ′(Cq) of vertices for the clauses Cq. The vertices of Γ′′′

are shown in green.

Fix some clause Cq, for 1 ≤ q ≤ m. Let nLq be the number of clauses Cq′ , with q < q′ ≤ m,

such that Cq′ appears before Cq in the ordering O′, and let nRq be the number of such clauses

with Cq′ appearing after Cq in O′. Recall that for each clause Cq′ , |M̂(C ′q)| = hci+1Ni, and
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mhci+1Ni < Ni+1 − 2. We select an arbitrary set ΓL(Cq) of nLq · hci+1Ni vertices on the top

boundary of B′(Cq), strictly to the left of B(Cq), and similarly, we select an arbitrary set ΓR(Cq) of
nRq ·hci+1Ni vertices on the top boundary of B′(Cq), strictly to the right of B(Cq). For each vertex

v ∈ ΓL(Cq)∪ΓR(Cq), we let Pv be the column of B′(Cq) that contains v, and we let v′ be its other
endpoint. For each vertex v ∈ A(Cq), we let Pv be a path consisting of a single vertex v. We define
Γ(Cq) = ΓL(Cq) ∪ A(Cq) ∪ ΓR(Cq), a set of vertices on the top boundary of B′(Cq). We define
Γ′(Cq) =

{
v′ | v ∈ ΓL(Cq) ∪ ΓR(Cq)

}
, a set of vertices on the bottom boundary of B′(Cq). Finally,

we let P̃ ′q = {Pv | v ∈ Γ(Cq)}. It is easy to verify that for all 1 ≤ q < m, |Γ′(Cq)| = |Γ(Cq+1)|.
In order to compute the routing, we use the following simple observation.

Observation A.2 For all 1 ≤ q < m, there is a set P̃q ⊆ BC of paths, such that:

• Paths in P̃1 connect every vertex in Γ′′′ to a distinct vertex of Γ(C1) and are order-preserving;

• For 1 < q < m, paths in P̃q connect every vertex in Γ′(Cq) to a distinct vertex of Γ(Cq+1)
and are order-preserving;

• The paths in
⋃
q P̃q are mutually node-disjoint, and they are internally disjoint from all boxes

in {B′(C1), . . . , B′(Cm)}.

Notice that combining the paths in sets
⋃m−1
q=1 P̃q and

⋃m
q=1 P̃ ′q finishes the proof of Claim A.1 and

Claim 5.4. We now prove the observation.

Proof: We construct, for each 1 ≤ q ≤ m, a snake Y(Cq), and route the set P̃q of paths inside it
(see Figure 15 for an illustration). Since |M̂C | < Ni+1 − 2, it is enough to ensure that each snake
has width at least Ni+1.

BC

Figure 15: The snakes used to route the sets P̃q of paths.

Recall that R is the set of all rows of Gi+1 that intersect the boxes B(Cq). Let R′ and R′′ be
the topmost and the bottommost rows of R, respectively. Let R′ be the set of Ni+1 consecutive
rows lying above R′ including R′, and let R′′ be the set of Ni+1 consecutive rows lying below R′′,
including R′′.
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The first snake, Y(C1) consists of two corridors. The first corridor, Υ1(C1), is spanned by the first
Ni+1 columns of BC . For the second corridor, Υ2(C1), we let W be the last column of Υ1(C1),
W ′ the last column of WR(C1), and W ′ the set of all columns lying between W and W ′, including
these two columns. We then let Υ2(C1) be the corridor spanned by the columns of W ′ and the
rows of R′.
For each 1 < q ≤ m, we construct a snake Y(Cq), that consists of three corridors. The first corridor,
Υ1(Cq) is spanned by the rows of R′′ and the columns of WL(Cq−1) ∪W(Cq−1) ∪WR(Cq−1). The
third corridor, Υ3(Cq) is spanned by the rows of R′ and the columns ofWL(Cq)∪W(Cq)∪WR(Cq).
For the second corridor, Υ2(Cq), we let R∗ be the set of consecutive rows starting from the top
row of R′ and terminating at the bottom row of R′′, including these two rows, and we let W ′(Cq)
be the set of all columns lying between B′(Cq−1) and B′(Cq). We then let Υ2(Cq) be the corridor
spanned by the rows in R∗ and the columns inW ′(Cq). In order to obtain a valid snake, we extend
Υ1(Cq) by one column to the right and Υ3(Cq) by one column to the left (see Figure 15).

It is immediate to verify that for each 1 ≤ q ≤ m, we obtain a valid snake Y(Cq) of width at least
Ni+1; the resulting snakes are mutually disjoint from each other, and each snake Y(Cq) intersects
the boxes in {B(C1), . . . , B(Cm)} only on their boundaries. For each 1 ≤ q < m, we can now find
the desired set P̃(Cq) of paths inside the snake Y(Cq), using Claim 5.3. It is immediate to verify
that the paths are order-preserving.

B Reducing the Maximum Vertex Degree and Hardness of EDP
in Sub-Cubic Planar Graphs

In this section we prove Theorem 1.2, and show that Theorem 1.1 holds for sub-cubic planar graphs.
We start with proving Theorem 1.2. Let G = G`,h be a grid of length ` and height h, where ` > 0
is an even integer, and h > 0. For every column Wj of the grid, let ej1, . . . , e

j
h−1 be the edges of Wj

indexed in their top-to-bottom order. Let E∗(G) ⊆ E(G) contain all edges ejz, where z 6= j mod 2,
and let Ĝ be the graph obtained from G \ E∗(G), by deleting all degree-1 vertices from it. The
resulting graph is called a wall of length `/2 and height h (see Figure 16). Consider the subgraph
of Ĝ induced by all horizontal edges of the grid G that belong to Ĝ. This graph is a collection of
h node-disjoint paths, that we refer to as the rows of Ĝ, and denote them by R1, . . . , Rh in this
top-to-bottom order; notice that Rj is a sub-path of the jth row of G for all j. Graph Ĝ contains
a unique collection W of `/2 node-disjoint paths that connect vertices of R1 to vertices of Rh and
are internally disjoint from R1 and Rh. We refer to the paths in W as the columns of Ĝ, and
denote them by W1, . . . ,W`/2 in this left-to-right order. Paths W1,W`/2, R1 and Rh are called the

left, right, top and bottom boundary edges of Ĝ, respectively, and the union of these paths is the
boundary of Ĝ.

Figure 16: A wall of height 5 and length 4; the columns of the wall are shown in red.
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Given a wall Ĝ, a consecutive subset R′ of its rows, and a consecutive subset W ′ of its columns,
the sub-wall of Ĝ spanned by the rows of R′ and the columns of W ′ is the subgraph of Ĝ induced
by the set {v | ∃R ∈ R′,W ∈ W ′ : v ∈ R ∩W} of vertices. The first and the last columns of W ′
serve as the left and the right boundary edges of the sub-wall, and the top and the bottom rows of
R′ serve as its top and bottom boundary edges.

We perform a reduction from the 3SAT(5) problem. Assume that we are given an instance ϕ of
3SAT(5) on n variables and m = 5n/3 clauses. As before, our construction has Θ(log n) levels. For
every level i ≥ 0, we define a family of instances of EDP. In order to construct a level-i instance
I, we define the parameters Hi, Li and L′i exactly as before, a path Z(I) and a box B(I) (which
is a subgraph of the grid G′i of length L′i and height Hi), a collection M of demand pairs, and the
mappings of the vertices of S(M) to the vertices of Z(I), and of the vertices of T (M) to distinct
vertices of the middle row of B(I) exactly as before. In order to instantiate this instance, we select
an arbitrary grid Gi of length ` ≥ 2Li + 2L′i + 4Hi, where ` is an even integer, and height h ≥ 3Hi,
map the vertices of Z(I) to the vertices of the first row of Gi, and map the vertices of B(I) to the
vertices of a sub-grid G′′i of Gi exactly as before, obtaining an instantiation (G,M) of the level-i
instance I of NDP. Our final step is to delete from G every edge of E∗(Gi) ∩ E(G), and then to
delete all vertices that have degree 1 in the resulting graph. We also delete every other edge on the
top row of Gi, and all horizontal edges that are incident to the vertices of T (M), to ensure that
the degree of every terminal is at most 2. The final graph, denoted by Ĝ, is a subgraph of a wall of
length `/2 and height h. We denote by B̂(I) the intersection of the image of B(I) in Gi and the
graph Ĝ. This concludes the definition of the reduction. Since the resulting graph Ĝ is a subgraph
of G, the following observation is immediate.

Observation B.1 If ϕ is a No-Instance, then for every level i, for every instantiation (G,M)
of the level-i instance I of NDP, the corresponding instance (Ĝ,M) of EDP has optimal solution
value at most N ′i .

Proof: Assume otherwise. Consider an instantiation (G,M) of a level-i instance I of NDP, for
some i ≥ 0, and let (Ĝ,M) be the corresponding instance of EDP. Let P be a set of edge-disjoint
paths in Ĝ, routing more than N ′i demand pairs. Since graph Ĝ is sub-cubic, and the degree of every
terminal in Ĝ is at most 2, it is immediate to verify that the paths in P are also vertex-disjoint.
Since Ĝ ⊆ G, there is a set P of node-disjoint paths routing more than N ′i demand pairs in the
instance (G,M) of NDP, contradicting Theorem 6.1.

It is now enough to show that, if ϕ is a Yes-Instance, then for every level i, for every instantiation
(G,M) of the level-i instance I of NDP, the corresponding instance (Ĝ,M) of EDP has a solution
of value at least Ni/2. Before we do so, we need several definitions.

Suppose we are given some set P of node-disjoint paths in some wall Ĥ, and assume that every
path in P connects some vertex on a row R of Ĥ to a vertex on a row R′ of Ĥ, where R 6= R′.
As before, we say that the paths in P are order-preserving iff the left-to-right ordering of their
endpoints on R is the same as the left-to-right ordering of their endpoints on R′.

A subset U of the vertices lying on a row R of a wall Ĥ is called well-spread iff U does not contain
a pair of vertices connected by an edge in Ĥ. Notice that if U is well-spread, then no two vertices
of U may lie on the same column of Ĥ.

We now define an analogue of box-respecting paths. Consider some level-i instance I of NDP, for
i ≥ 0, and an instantiation (G,M) of this instance. Let (Ĝ,M) be the corresponding instance of
EDP, and let P be a set of node-disjoint paths routing some subset of the demand pairs in Ĝ. Let A
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be the top boundary of B̂(I) (that is, A is the subgraph of G′′i , that contains all the edges and the
vertices of its top row that belong to B̂(I)). We say that set P of paths is canonical with respect
to the box B̂(I) iff for every path P ∈ P, P ∩ A is a single edge, and the following holds. Denote
P = (P1, . . . , Pr), and denote, for every path Pi, its source vertex by si, and the unique edge of
Pi ∩ A by ei, such that s1, . . . , sr appear on the top row of Ĝ in this left-to-right order. Then the
edges of e1, . . . , er must appear in this left-to-right order on A, and for each 1 ≤ j ≤ r, ej is the
(2j)th edge of A from the left.

Assume that ϕ is a Yes-Instance. Recall that for each i ≥ 0, for every level-i instance I of NDP,
we have defined a collection M∗(I) of demand pairs, such that for every instantiation of I, there
is a set P of node-disjoint paths, that respect the box B(I), and route the set M∗(I) of demand
pairs. Denote the pairs in M∗(I) by (s1, t1), . . . , (sp, tp), and assume that the vertices s1, . . . , sp
appear in this left-to-right order on Z(I). We partition M∗(I) into two subsets: set M∗1(I)
contains all demand pairs (sj , tj) where j is odd, and set M∗2(I) contains all remaining demand
pairs. Notice that each of the sets S(M∗1(I)), S(M∗2(I)) is well-spread, for any instantiation of I
and its corresponding instance of EDP. It is now enough to prove the following lemma.

Lemma B.2 For all i ≥ 0, for every level-i instance I of NDP, for every instance (Ĝ,M) of EDP
corresponding to an instantiation (G,M) of I, there is a set of node-disjoint paths in Ĝ that route
all demand pairs in M∗1(I), such that the paths are canonical with respect to B̂(I), and the same
holds for M∗2(I).

Proof: The proof is by induction on i. The lemma is clearly true for i = 0. We now assume
that it holds for some i ≥ 0 and prove it for a level-(i+ 1) instance I of NDP. Let (G,M) be any
instantiation of I, and let (Ĝ,M) be the corresponding instance of EDP. We show that the set
M∗1(I) of demand pairs can be routed in Ĝ via node-disjoint paths, that are canonical with respect
to B̂(I); the proof for set M∗2(I) is identical.

Consider some level-i instance I ′ of NDP that was used in the construction of the level-(i + 1)
instance I. The current instantiation of I also defines an instantiation of I ′. From the induction
hypothesis, for all z ∈ {1, 2}, there is a set Pz(I ′) of node-disjoint paths in Ĝ, routing the demand
pairs in M∗z(I ′), that respect the box B̂(I ′). Moreover, the subset of all demand pairs in M∗1(I)
whose destinations lie in B̂(I ′) is either equal to M∗1(I ′), or to M∗2(I ′).
The routing that we define for the set M∗1(I) of demand pairs in graph Ĝ is very similar to the
one used in the proof of Lemma 5.2. However, we need to define corridors and snakes slightly
differently.

Recall that the graph Ĝ is a subgraph of a wall Ĝi, that is obtained from Gi, by deleting the set
E∗(Gi) of its edges, the vertices of U(B(I)), and all vertices whose degree in the resulting graph
becomes 1. Given a sub-wall Υ of Ĝi, spanned by a subset R of its rows and a subset W of its
columns, we say that Υ is a corridor iff Υ ⊆ Ĝ. We say that two corridors Υ,Υ′ are internally
disjoint iff every vertex in Υ ∩ Υ′ belongs to a single boundary edge of each corridor, and this
boundary edge must be either the top or the bottom edge. We say that Υ and Υ′ are neighbors iff
they are internally disjoint and Υ∩Υ′ 6= ∅. As before, a snake of length ` is a sequence Υ1, . . . ,Υ`

of corridors that are internally disjoint, such that for all 1 ≤ j, j′ ≤ `, corridors Υj and Υj′ are
neighbors iff |j− j′| = 1. We say that the width of the snake is w iff each of its corridors is spanned
by at least w rows and at least w columns of Ĝi, and for all 1 ≤ j < `, Υj ∩Υj+1 contains at least
2w vertices. Following is an analogue of Claim 5.3 for wall graphs; its proof is almost identical and
is omitted here.
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Claim B.3 Let Y = (Υ1, . . . ,Υ`) be a snake of width w, and let A,A′ be two sets of vertices with
|A| = |A′| ≤ w−2, such that the vertices of A either all lie on the top boundary edge of Υ1, or they
all lie on the bottom boundary edge of Υ1, and the vertices of A′ either all lie on the top boundary
edge of Υ`, or they all lie on the bottom boundary edge of Υ`. Assume further that both A and A′

are well-spread. Then there is a set Q of node-disjoint paths contained in
⋃`
`′=1 Υ`′, that connect

every vertex of A to a distinct vertex of A′.

We fix some assignment A to the variables of ϕ that satisfies all clauses. For every clause Cq ∈ C, we
select a set A(Cq) of vertices on the top boundary of B(Cq) exactly as before, except that now we
discard every other vertex from this set, in order to guarantee that these vertices are well-spread.
Similarly, for every variable x of ϕ, we select the set A(x) of vertices on the top boundary of B(x)
exactly as before, and then discard every other vertex from this set.

We select the sets Γ and Γ′′ of vertices on the top and the bottom boundaries of BV exactly as
before, but now we are guaranteed that the vertices in each set are well-spread. The vertices of Z ′

and Γ′′′ are selected like before, except that now discard every other vertex in each set to ensure
that the resulting sets are well-spread.

The remainder of the routing in Lemma 5.2 relies on the constructions of various snakes. For every
snake Y = (Υ1, . . . ,Υr) that the construction uses, it is easy to modify the corresponding corridors,
such that for all 1 ≤ r′ < r, Υr′ ∩Υr′+1 is contained in either the top or the bottom boundary edge
of each corridor. This allows us to use Claim B.3 instead of the original Claim 5.3 in order to route
inside the snakes. Even though each resulting snake in the wall graph will only be able to route
half the number of paths it routed before, the amount of horizontal space that we left between the
various boxes in the construction of the level-(i+ 1) instance is sufficient to ensure that all demand
pairs are routed. As observed above, for each level-i instance I ′ used in the construction of I, the
subset of all demand pairs in M∗1(I), whose destinations lie in B̂(I ′), is either equal to M∗1(I ′) or
to M∗2(I ′), and from the induction hypothesis, each one of these sets of demand pairs has a set of
node-disjoint paths routing it in Ĝ, that is canonical with respect to B̂(I ′). We use this fact to
complete the routing inside the boxes B̂(I ′) of the corresponding level-i instances I ′.

Hardness of NDP on Sub-Cubic Planar Graphs Consider the instances of EDP constructed
above. Each such instance is defined on a sub-cubic planar graph, where the degree of every
terminal is at most 2. It is easy to see that, if we are given a graph G with the above properties,
and any set P of paths whose endpoints are distinct terminals, the paths in P are mutually edge-
disjoint iff they are mutually node-disjoint. Therefore, the number of the demand pairs that can
be routed in the Yes-Instance and the No-Instance via node-disjoint paths remains the same
as for edge-disjoint paths. This completes the proof of Theorem 1.1.

C Maximum Vertex Degree in NDP Instances

Given an instance (G,M) of the NDP problem, we denote by T (M) the set of all vertices that
participate in the demand pairs in M, and we refer to them as terminals. We start by defining
equivalence between NDP instances.

Definition C.1 We say that two instances (G,M), (G′,M′) of the NDP problem are equivalent
iff there is a bijection f : T (M) → T (M′), such that, for every subset M̃ ⊆ M of demand pairs,
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there is a set P of node-disjoint paths in graph G routing all pairs in M̃ iff there is a set P ′ of

node-disjoint paths in graph G′ routing all demand pairs in set M̃′ =
{

(f(s), f(t)) | (s, t) ∈ M̃
}

.

The goal of this section is to prove the following theorem.

Theorem C.1 For any integer d > 3, there is an instance (G,M) of the NDP problem, where G
is a planar graph, such that for every instance (G′,M′) of NDP that is equivalent to (G,M), there
is a vertex in G′ of degree at least d.

In a sense, the above theorem shows that the class of all planar graphs is strictly more general than
the class of all planar graphs with maximum vertex degree at most 3 in the context of the NDP
problem, and so our hardness result in Theorem 1.1 holds even for a restricted family of planar
graphs.

Proof: Instance (G,M) of NDP is defined as follows. Graph G is simply a star graph with
d + 2 vertices (see Figure 17(a)), so V (G) = {v1, . . . , vd+2}, and E(G) = {e1, . . . , ed+1}, where for
1 ≤ i ≤ d+ 1, ei = (vi, vd+2). We let M = {(vi, vj) | 1 ≤ i < j ≤ d+ 2}. It is easy to verify that a
subsetM′ ⊆M of demand pairs can be routed via node-disjoint paths in G if and only if |M′| = 1.
Note that G is planar.

v1 v2 v3 v4 v5 v6

v7

(a) Graph G for the case where d = 5

v1 v2

v3
v4

v5v6

P

v7

(b) Constructing two paths in the case where
u3 6= u4.

Figure 17: Illustration to the proof of Theorem C.1

Assume for contradiction that there is an instance (G′,M′) of NDP that is equivalent to (G,M),
such that the maximum vertex degree in G′ is less than d. For convenience, for 1 ≤ i ≤ d+ 2, we
denote the vertex f(vi) of G′ by vi. Let P be the shortest path in G′ connecting a pair of terminals.
We assume without loss of generality that P connects v1 to v2; so P does not contain any terminals
as inner vertices. Consider the graph H = G′ \ P . We claim that every vertex of {v3, . . . , vd+2}
must belong to a distinct connected component of H. Indeed, if, for example, v3 and v4 belong to
the same connected component, then we can simultaneously route (v3, v4) and (v1, v2) in G′. Since
we cannot do the same in G, the two instances are not equivalent. For 3 ≤ i ≤ d + 2, let Ci be
the connected component of H containing vi, and let ei be any edge connecting a vertex of Ci to
a vertex of P (such an edge must exist as there must be a path connecting vi to v1 in G). Let ui
denote the endpoint of ei that lies on P .

Assume first that for some 3 ≤ i 6= j ≤ d + 2, ui 6= uj . Assume without loss of generality that ui
lies closer to v1 on P than uj . Then we can simultaneously route two pairs (vi, v1) and (vj , v2) via
node-disjoint paths, as follows (see Figure 17(b)). The first path uses the segment of P from v1

to ui, the edge ei, and some path connecting an endpoint of ei to vi inside Ci. The second path
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similarly uses the segment of P from v2 to uj , the edge ej , and some path connecting an endpoint
of ej to vj inside Cj . Clearly, these two paths are disjoint. But we cannot route the pairs (vi, v1)
and (vj , v2) simultaneously in G, and so the two instances are not equivalent.

We conclude that u3 = u4 = · · · = ud+2 must hold. But then G′ must contain a vertex of degree at
least d, a contradiction.

D Maximum Vertex Degree in Planar EDP Instances

In this section we show that there is an instance (G,M) of the EDP problem, where G is a planar
graph, such that for every instance (G′,M′) of EDP that is equivalent to (G,M), where G′ is a
planar graph, at least one vertex of G′ must have degree at least 4. As before, given an instance
(G,M) of the EDP problem, the set of all vertices participating in the demand pairs is denoted by
T (M), and the vertices in this set are called terminals. We say that a subset M̃ ⊆ M of demand
pairs is routable in G iff there is a set P of edge-disjoint paths in G, routing every demand pair in
M̃.

The equivalence between the EDP instances is defined similarly to the equivalence between the NDP
instances, except that now we only consider restricted subsets of demand pairs: a subset M̃ ⊆ M
of demand is called restricted iff every terminal participates in at most one demand pair of M̃. We
note that in the NDP problem, if a set M̃ of demand pairs is routable via node-disjoint paths in a
graph G, then M̃ must be a restricted set; this is not necessarily true for EDP instances. We are
now ready to define the equivalence between the instances of EDP.

Definition D.1 Two instances (G,M) and (G′,M′) of the EDP problem are equivalent iff there
is a bijection f : T (M)→ T (M′), such that for every restricted subset M̃ ⊆ M of demand pairs,
M̃ is routable in G iff the set M̃′ = {(f(s), f(t)) | (s, t) ∈ M̃} of demand pairs is routable in G′.

The goal of this section is to prove the following theorem.

Theorem D.1 There is an instance (G,M) of the EDP problem, where G is a planar graph, such
that for every instance (G′,M′) of EDP that is equivalent to (G,M), where G′ is planar, some
vertex of G′ has degree at least 4.

We note that if we did not require that the sets M̃ are restricted in the definition of the equivalence
between EDP instances, then the theorem would be much easier to prove — in fact one could prove
that for every d, there is an instance (G,M) of EDP where G is planar, such that for every instance
(G′,M′) of EDP equivalent to (G,M), the maximum vertex degree in G′ must be at least d. This
can be done by letting the demand pairs in M correspond to the edges of the star graph with d
leaves.

Proof: We construct an instance (G,M) of EDP with a set T of terminals that consists of 25
vertices, partitioned into 5 subsets T1, . . . , T5 of 5 vertices each. For each 1 ≤ i ≤ 5, we let

Ti =
{
tij | 1 ≤ j ≤ 5

}
, and we let T =

⋃5
i=1 Ti. In order to construct the graph G, we start with

the set T of terminals. For each subset Ti, for 1 ≤ i ≤ 5, we add a vertex ai, that connects to
every terminal in Ti with an edge. For all 1 ≤ i < i′ ≤ 5, we also add the edge (ai, ai′) to the
graph. To summarize, so far, V (G) = T ∪ {a1, . . . , a5}, and E(G) = {(t, ai) | 1 ≤ i ≤ 5, t ∈ Ti} ∪
{(ai, aj) | 1 ≤ i < j ≤ 5}. We fix a drawing of G in the plane, such that there is exactly one crossing
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of the edges in {(ai, aj) | 1 ≤ i < j ≤ 5} and no other crossings. We then replace this crossing with
a vertex b, so that G becomes a planar graph (see Figure 18). Let M contain all pairs (t, t′) of
terminals, where t 6= t′. This finishes the definition of the instance (G,M).
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Figure 18: Graph G.

The following two observations are immediate.

Observation D.2 Let M̂ ⊆M be a restricted set of demand pairs, such that for some 1 ≤ i ≤ 5,
each demand pair in M̂ contains a single distinct terminal of Ti (and another terminal in T \ Ti).
Then M̂ is routable in G iff |M̂| ≤ 4.

Observation D.3 Let M̂ ⊆ M be a set of demand pairs, defined as follows. Consider the graph
H = K5 (a clique on 5 vertices), and denote its vertices by v1, . . . , v5. Set M̂ of demand pairs
contains, for every edge e = (vi, vj) ∈ E(H), a pair (se, te), such that se ∈ Ti and te ∈ Tj. The
vertices se, te for all e ∈ E(H) are chosen in way that ensures that M̂ is a restricted set of demand
pairs. Then M̂ is routable in G.

Assume now for contradiction that there is an instance (G′,M′) of EDP that is equivalent to
(G,M), such that G′ is planar, and the maximum vertex degree in G′ is at most 3.

For convenience, for every terminal t ∈ T , we denote the corresponding terminal f(t) of G′ by t.
We also define the partition {Ti}5i=1 of the new terminals as before. Fix some index 1 ≤ i ≤ 5, and
let (Ai, Bi) be a partition of V (G′) with Ti ⊆ Ai and T \Ti ⊆ Bi that minimizes |E(Ai, Bi)|. Among
all such partitions, choose the one where |Ai| is the smallest. Since instances (G,M), (G′,M′) are
equivalent, from Observation D.2 and the max-flow min-cut theorem, |E(Ai, Bi)| = 4. We now
claim that all sets Ai are mutually disjoint.

Claim D.4 For all 1 ≤ i < j ≤ 5, Ai ∩Aj = ∅.

Proof: For every set U ⊆ V (G′) of vertices, let δ(U) = |E(U, V (G′)\U)|. From the sub-modularity
of cuts:

δ(Ai) + δ(Aj) ≥ δ(Ai \Aj) + δ(Aj \Ai).
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Recall that δ(Ai) = δ(Aj) = 4. From our definition of the sets {Ak}5k=1, Ti ⊆ Ai \ Aj and
Tj ⊆ Aj \ Ai, so δ(Ai \ Aj), δ(Aj \ Ai) ≥ 4. This can only happen if both values are equal to 4,
contradicting our choice of Ai and Aj .

We will show that G′ contains the graph H = K5 as a minor, which will lead to a contradiction,
since G′ is a planar graph. We will embed every vertex vi ∈ V (H) into the subgraph G′[Ai] of G′.
In order to be able to do so, we need to show each such subgraph is connected.

Observation D.5 For all 1 ≤ i ≤ 5, G′[Ai] is connected.

Proof: Assume otherwise, and let C be the set of all connected components of G′[Ai]. By the
definition of Ai, each such connected component must contain at least one terminal of Ti. Assume
for contradiction that |C| > 1. Then there are two terminals of Ti that lie in different connected
components of Ti. Assume w.l.o.g. that these terminals are ti1 and ti2. Consider the following set
M′′ of demand pairs: M′′ contains the pair (ti1, t

i
2), and for all 3 ≤ j ≤ 5, it contains a pair (tij , t

i′
j )

for some index i′ 6= i. It is easy to verify that the set M′′ of demand pairs is restricted and it is

routable in G, and so it must be routable in G′. Each of the pairs
{

(tij , t
i′
j )
}5

j=3
is routed on a path

that must use at least one edge of E(Ai, Bi). But the path routing the pair (ti1, t
i
2) must use two

edges of E(Ai, Bi), which is impossible since |E(Ai, Bi)| = 4.

Let H = K5, and denote V (H) = {v1, . . . , v5}. We define a set M̂ ⊆ M′ of demand pairs exactly
as in Observation D.3. Since the set M̂ of demand pairs is routable in G, it must also be routable
in G′. Let P be the set of edge-disjoint paths routing the set M̂ of demand pairs in G′. For each
edge e = (vi, vi′) ∈ E(H), we let Pi,i′ be the path in P, routing the pair (se, te). Assume that i < i′,
and think of the path Pi,i′ as directed from a terminal in Ti to a terminal in Ti′ . Let u be the last
vertex of Pi,i′ that belongs to Ai, and let u′ be the first vertex of Pi,i′ that appears after u on the
path and belongs to Ai′ . We then let P ′i,i′ be the sub-path of Pi,i′ from u to u′. Note that P ′i,i′ does
not contain any vertex of Ai ∪Ai′ as an inner vertex. We need the following stronger claim.

Observation D.6 Path Pi,i′ does not contain any vertex of
⋃5
k=1Ak as an inner vertex.

Proof: Assume otherwise, and let w ∈ ⋃5
k=1Ak be some vertex that belongs to Pi,i′ as an inner

vertex. Assume that w ∈ Ak. From the above discussion, k 6∈ {i, i′}. But there are four paths in P
that terminate at the vertices of Tk: the paths routing the demand pairs corresponding to the edges
of H that are incident to vk. Each such path contains an edge of E(Ak, Bk), and |E(Ak, Bk)| = 4.
Therefore, path Pi,i′ cannot contain an edge of E(Ak, Bk) and thus it cannot contain a vertex of
Ak.

Let P ′ =
{
P ′i,i′ | Pi,i′ ∈ P

}
. Since the maximum vertex degree in G′ is 3 and the paths in P are

edge-disjoint, they are almost vertex-disjoint: the only way for two paths in P to share a vertex
is when that vertex is an endpoint of one of these paths. It is then easy to see that whenever two
paths in P ′ share a vertex, that vertex must be an endpoint of each of these paths.

It is now immediate to show that H is a minor of G′: we map every vertex vi of H to the connected
subgraph G′[Ai] of G′, and every edge e of H to the path P ′e of P ′. But G′ is a planar graph and
cannot contain a K5-minor, a contradiction.
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