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Abstract13

We study the classical Node-Disjoint Paths (NDP) problem: given an undirected n-vertex graph14

G, together with a set {(s1, t1), . . . , (sk, tk)} of pairs of its vertices, called source-destination, or15

demand pairs, find a maximum-cardinality set P of mutually node-disjoint paths that connect16

the demand pairs. The best current approximation for the problem is achieved by a simple greedy17

O(
√
n)-approximation algorithm. Until recently, the best negative result was an Ω(log1/2−ε n)-18

hardness of approximation, for any fixed ε, under standard complexity assumptions.19

A special case of the problem, where the underlying graph is a grid, has been studied extensively.20

The best current approximation algorithm for this special case achieves an Õ(n1/4)-approximation21

factor. On the negative side, a recent result by the authors shows that NDP is hard to approximate22

to within factor 2Ω(
√

logn), even if the underlying graph is a subgraph of a grid, and all source23

vertices lie on the grid boundary. In a very recent follow-up work, the authors further show that24

NDP in grid graphs is hard to approximate to within factor Ω(2log1−ε n) for any constant ε under25

standard complexity assumptions, and to within factor nΩ(1/(log logn)2) under randomized ETH.26

In this paper we study the NDP problem in grid graphs, where all source vertices {s1, . . . , sk}27

appear on the grid boundary. Our main result is an efficient randomized 2O(
√

logn·log logn)-28

approximation algorithm for this problem. Our result in a sense complements the 2Ω(
√

logn)-29

hardness of approximation for sub-graphs of grids with sources lying on the grid boundary, and30

should be contrasted with the above-mentioned almost polynomial hardness of approximation of31

NDP in grid graphs (where the sources and the destinations may lie anywhere in the grid).32

Much of the work on approximation algorithms for NDP relies on the multicommodity flow33

relaxation of the problem, which is known to have an Ω(
√
n) integrality gap, even in grid graphs,34

with all source and destination vertices lying on the grid boundary. Our work departs from this35

paradigm, and uses a (completely different) linear program only to select the pairs to be routed,36

while the routing itself is computed by other methods.37

1 Supported in part by NSF grants CCF-1318242 and CCF-1616584.
2 Supported in part by NSF grants CCF-1318242 and CCF-1616584.
3 Supported in part by NSF grant CCF-1318242.
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1 Introduction42

We study the classical Node-Disjoint Paths (NDP) problem, where the input consists of43

an undirected n-vertex graph G and a collection M = {(s1, t1), . . . , (sk, tk)} of pairs of its44

vertices, called source-destination or demand pairs. We say that a path P routes a demand45

pair (si, ti) iff the endpoints of P are si and ti. The goal is to compute a maximum-46

cardinality set P of node-disjoint paths, where each path P ∈ P routes a distinct demand47

pair inM. We denote by NDP-Planar the special case of the problem when the underlying48

graph G is planar, and by NDP-Grid the special case where G is a square grid4. We refer to49

the vertices in set S = {s1, . . . , sk} as source vertices; to the vertices in set T = {t1, . . . , tk}50

as destination vertices, and to the vertices in set S ∪ T as terminals.51

NDP is a fundamental graph routing problem that has been studied extensively in both52

graph theory and theoretical computer science communities. Robertson and Seymour [31, 33]53

explored the problem in their Graph Minor series, providing an efficient algorithm for NDP54

when the number k of the demand pairs is bounded by a constant. But when k is a part55

of input, the problem becomes NP-hard [20, 18], even in planar graphs [27], and even in56

grid graphs [26]. The best current approximation factor of O(
√
n) for NDP is achieved by a57

simple greedy algorithm [25]. Until recently, this was also the best approximation algorithm58

for NDP-Planar and NDP-Grid. A natural way to design approximation algorithms for NDP59

is via the multicommodity flow relaxation: instead of connecting each routed demand pair60

with a path, send maximum possible amount of (possibly fractional) flow between them.61

The optimal solution to this relaxation can be computed via a standard linear program.62

The O(
√
n)-approximation algorithm of [25] can be cast as an LP-rounding algorithm of63

this relaxation. Unfortunately, it is well-known that the integrality gap of this relaxation is64

Ω(
√
n), even when the underlying graph is a grid, with all terminals lying on its boundary. In65

a recent work, Chuzhoy and Kim [12] designed an Õ(n1/4)-approximation for NDP-Grid, thus66

bypassing this integrality gap barrier. Their main observation is that, if all terminals lie close67

to the grid boundary (say within distance O(n1/4)), then a simple dynamic programming-68

based algorithm yields an O(n1/4)-approximation. On the other hand, if, for every demand69

pair, either the source or the destination lies at a distance at least Ω(n1/4) from the grid70

boundary, then the integrality gap of the multicommodity flow relaxation improves, and71

one can obtain an Õ(n1/4)-approximation via LP-rounding. A natural question is whether72

the integrality gap improves even further, if all terminals lie further away from the grid73

boundary. Unfortunately, the authors show in [12] that the integrality gap remains at74

least Ω(n1/8), even if all terminals lie within distance Ω(
√
n) from the grid boundary. The75

Õ(n1/4)-approximation algorithm for NDP-Grid was later extended and generalized to an76

4 We use the standard convention of denoting n = |V (G)|, and so the grid has dimensions (
√

n ×
√

n);
we assume that

√
n is an integer.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2018.<article-no>
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Õ(n9/19)-approximation algorithm for NDP-Planar [13].77

On the negative side, until recently, only an Ω(log1/2−ε n)-hardness of approximation was78

known for the general version of NDP, for any constant ε, unless NP ⊆ ZPTIME(npoly logn) [4,79

3], and only APX-hardness was known for NDP-Planar and NDP-Grid [12]. In a recent80

work [15], the authors have shown that NDP is hard to approximate to within a 2Ω(
√

logn)
81

factor unless NP ⊆ DTIME(nO(logn)), even if the underlying graph is a planar graph with82

maximum vertex degree at most 3, and all source vertices lie on the boundary of a single83

face. The result holds even when the input graph G is a vertex-induced subgraph of a84

grid, with all sources lying on the grid boundary. In a very recent work [14], the au-85

thors show that NDP-Grid is 2Ω(log1−ε n)-hard to approximate for any constant ε assuming86

NP * BPTIME(npoly logn), and moreover, assuming randomized ETH, the hardness of ap-87

proximation factor becomes nΩ(1/(log logn)2). We note that the instances constructed in these88

latter hardness proofs require all terminals to lie far from the grid boundary.89

In this paper we explore NDP-Grid. This important special case of NDP was initially motiv-90

ated by applications in VLSI design, and has received a lot of attention since the 1960’s. We91

focus on a restricted version of NDP-Grid, that we call Restricted NDP-Grid: here, in addition92

to the graph G being a square grid, we also require that all source vertices {s1, . . . , sk} lie93

on the grid boundary. We do not make any assumptions about the locations of the des-94

tination vertices, that may appear anywhere in the grid. The best current approximation95

algorithm for Restricted NDP-Grid is the same as that for the general NDP-Grid, and achieves96

a Õ(n1/4)-approximation [12]. Our main result is summarized in the following theorem.97

I Theorem 1. There is an efficient randomized 2O(
√

logn·log logn)-approximation algorithm98

for Restricted NDP-Grid.99

This result in a sense complements the 2Ω(
√

logn)-hardness of approximation of NDP on100

sub-graphs of grids with all sources lying on the grid boundary of [15]5, and should be101

contrasted with the recent almost polynomial hardness of approximation of [14] for NDP-102

Grid mentioned above. Our algorithm departs from previous work on NDP in that it does103

not use the multicommodity flow relaxation. Instead, we define sufficient conditions that104

allow us to route a subset M′ of demand pairs via disjoint paths, and show that there105

exists a subset of demand pairs satisfying these conditions, whose cardinality is at least106

OPT/2O(
√

logn·log logn), where OPT is the value of the optimal solution. It is then enough107

to compute a maximum-cardinality subset of the demand pairs satisfying these conditions.108

We write an LP-relaxation for this problem and design a 2O(
√

logn·log logn)-approximation109

LP-rounding algorithm for it. We emphasize that the linear program is only used to select110

the demand pairs to be routed, and not to compute the routing itself.111

We then generalize this result to instances where the source vertices lie within a prescribed112

distance from the grid boundary.113

I Theorem 2. For every integer δ ≥ 1, there is an efficient randomized
(
δ · 2O(

√
logn·log logn)

)
-114

approximation algorithm for the special case of NDP-Grid where all source vertices lie within115

distance at most δ from the grid boundary.116

5 Note that the two results are not strictly complementary: our algorithm only applies to grid graphs,
while the hardness result is only valid for sub-graphs of grids.
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We note that for instances of NDP-Grid where both the sources and the destinations are117

within distance at most δ from the grid boundary, it is easy to obtain an efficient O(δ)-118

approximation algorithm (see, e.g. [12]).119

A problem closely related to NDP is the Edge-Disjoint Paths (EDP) problem. It is defined120

similarly, except that now the paths chosen to route the demand pairs may share vertices,121

and are only required to be edge-disjoint. The approximability status of EDP is very similar122

to that of NDP: there is an O(
√
n)-approximation algorithm [10], and an Ω(log1/2−ε n)-123

hardness of approximation for any constant ε, unless NP ⊆ ZPTIME(npoly logn) [4, 3]. As124

in the NDP problem, we can use the standard multicommodity flow LP-relaxation of the125

problem, in order to obtain the O(
√
n)-approximation algorithm, and the integrality gap of126

the LP-relaxation is Ω(
√
n) even in planar graphs. Recently, Fleszar et al. [19] designed an127

O(
√
r · log(kr))-approximation algorithm for EDP, where r is the feedback vertex set number128

of the input graph G = (V,E) — the smallest number of vertices that need to be deleted129

from G in order to turn it into a forest.130

Several special cases of EDP have better approximation algorithms: anO(log2 n)-approximation131

is known for even-degree planar graphs [9, 8, 22], and an O(logn)-approximation is known132

for nearly-Eulerian uniformly high-diameter planar graphs, and nearly-Eulerian densely em-133

bedded graphs, including grid graphs [5, 24, 23]. Furthermore, an O(logn)-approximation134

algorithm is known for EDP on 4-edge-connected planar, and Eulerian planar graphs [21]. It135

appears that the restriction of the graph G to be Eulerian, or near-Eulerian, makes the EDP136

problem on planar graphs significantly simpler, and in particular improves the integrality137

gap of the standard multicommodity flow LP-relaxation.138

The analogue of the grid graph for the EDP problem is the wall graph (see Figure 1): the139

integrality gap of the multicommodity flow relaxation for EDP on wall graphs is Ω(
√
n). The140

Õ(n1/4)-approximation algorithm of [12] for NDP-Grid extends to EDP on wall graphs, and141

the 2Ω(
√

logn)-hardness of approximation of [15] for NDP-Planar also extends to EDP on sub-142

graphs of walls, with all sources lying on the top boundary of the wall. The recent hardness143

result of [14] for NDP-Grid also extends to an 2Ω(log1−ε n)-hardness of EDP on wall graphs,144

assuming NP * BPTIME(npoly logn), and to nΩ(1/(log logn)2)-hardness assuming randomized145

ETH. We extend our results to EDP and NDP on wall graphs:146

I Theorem 3. There is an efficient randomized 2O(
√

logn·log logn)-approximation algorithm147

for EDP and for NDP on wall graphs, when all source vertices lie on the wall boundary.148

Figure 1 A wall graph.

Other related work.149

Cutler and Shiloach [17] studied an even more restricted version of NDP-Grid, where all150

source vertices lie on the top row R∗ of the grid, and all destination vertices lie on a single151
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row R′ of the grid, far enough from its top and bottom boundaries. They considered three152

different settings of this special case. In the packed-packed setting, all sources appear consec-153

utively on R∗, and all destinations appear consecutively on R′ (but both sets may appear in154

an arbitrary order). They show a necessary and a sufficient condition for all demand pairs to155

be routable via node-disjoint paths in this setting. The second setting is the packed-spaced156

setting. Here, the sources again appear consecutively on R∗, but all destinations are at a157

distance at least d from each other. For this setting, the authors show that if d ≥ k, then158

all demand pairs can be routed. We note that [12] extended their algorithm to a more159

general setting, where the destination vertices may appear anywhere in the grid, as long as160

the distance between any pair of the destination vertices, and any destination vertex and161

the boundary of the grid, is at least Ω(k). Robertson and Seymour [32] provided sufficient162

conditions for the existence of node-disjoint routing of a given set of demand pairs in the163

more general setting of graphs drawn on surfaces, and they designed an algorithm whose164

running time is poly(n) ·f(k) for finding the routing, where f(k) is at least exponential in k.165

Their result implies the existence of the routing in grids, when the destination vertices are166

sufficiently far from each other and from the grid boundaries, but it does not provide an effi-167

cient algorithm to compute such a routing. The third setting studied by Cutler and Shiloach168

is the spaced-spaced setting, where the distances between every pair of source vertices, and169

every pair of destination vertices are at least d. The authors note that they could not come170

up with a better algorithm for this setting, than the one provided for the packed-spaced171

case. Aggarwal, Kleinberg, and Williamson [1] considered a special case of NDP-Grid, where172

the set of the demand pairs is a permutation: that is, every vertex of the grid participates173

in exactly one demand pair. They show that Ω(
√
n/ logn) demand pairs are routable in174

this case via node-disjoint paths. They further show that if all terminals are at a distance175

at least d from each other, then at least Ω(
√
nd/ logn) pairs are routable.176

A variation of the NPD and EDP problems, where small congestion is allowed, has been a177

subject of extensive study, starting with the classical paper of Raghavan and Thompson [29]178

that introduced the randomized rounding technique. We say that a set P of paths causes179

congestion c, if at most c paths share the same vertex or the same edge, for the NDP and180

the EDP settings respectively. A recent line of work [9, 28, 2, 30, 11, 16, 7, 6] has lead to an181

O(poly log k)-approximation for both NDP and EDP problems with congestion 2. For planar182

graphs, a constant-factor approximation with congestion 2 is known [34].183

Organization.184

The majority of this extended abstract is dedicated to a detailed but informal overview of185

the proofs of Theorem 1 and Theorem 2. The formal proofs, as well as the extension to EDP186

and NDP on wall graphs, are deferred to the full version of the paper.187

2 High-Level Overview of the Algorithm188

The goal of this section is to provide an informal high-level overview of the main result of the189

paper – the proof of Theorem 1. With this goal in mind, the values of various parameters are190

given imprecisely in this section, in a way that best conveys the intuition. The full version191

of the paper contains a formal description of the algorithm and the precise settings of all192

parameters.193
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We first consider an even more restricted special case of NDP-Grid, where all source vertices194

appear on the top boundary of the grid, and all destination vertices appear far enough195

from the grid boundary, and design an efficient randomized 2O(
√

logn·log logn)-approximation196

algorithm A for this problem. We later show how to reduce Restricted NDP-Grid to this197

special case of the problem; we focus on the description of the algorithm A for now.198

We assume that our input graph G is the (` × `)-grid, and we denote by n = `2 the199

number of its vertices. We further assume that the set of the demand pairs is M =200

{(s1, t1), . . . , (sk, tk)}, with the vertices in set S = {s1, . . . , sk} called source vertices; the201

vertices in set T = {t1, . . . , tk} called destination vertices; and the vertices in S ∪ T called202

terminals. Let OPT denote the value of the optimal solution to the NDP instance (G,M).203

We assume that the vertices of S lie on the top boundary of the grid, that we denote by R∗,204

and the vertices of T lie sufficiently far from the grid boundary – say, at a distance at least205

OPT from it. For a subsetM′ ⊆M of the demand pairs, we denote by S(M′) and T (M′)206

the sets of the source and the destination vertices of the demand pairs inM′, respectively.207

As our starting point, we consider a simple observation of Chuzhoy and Kim [12], that gener-208

alizes the results of Cutler and Shiloach [17]. Suppose we are given an instance of NDP-Grid209

with k demand pairs, where the sources lie on the top boundary of the grid, and the destin-210

ation vertices may appear anywhere in the grid, but the distance between every pair of the211

destination vertices, and every destination vertex and the boundary of the grid, is at least212

(8k + 8) – we call such instances spaced-out instances. In this case, all demand pairs inM213

can be efficiently routed via node-disjoint paths, as follows. Consider, for every destination214

vertex ti ∈ T , a square sub-grid Bi of G, of size (2k × 2k), such that ti lies roughly at the215

center of Bi. We construct a set P of k node-disjoint paths, that originate at the vertices of216

S, and traverse the sub-grids Bi one-by-one in a snake-like fashion (see a schematic view on217

Figure 2a). We call this part of the routing global routing. The local routing needs to specify218

how the paths in P traverse each box Bi. This is done in a straightforward manner, while219

ensuring that the unique path originating at vertex si visits the vertex ti (see Figure 2b).220

By suitably truncating the final set P of paths, we obtain a routing of all demand pairs in221

M via node-disjoint paths.222

(a) Global routing. In this figure, the sub-grids Bi

are aligned vertically and horizontally. A similar
(but somewhat more complicated) routing can be
performed even if they are not aligned. For con-
venience we did not include all source vertices and
all paths.

(b) Local routing inside Bi

Figure 2 Schematic view of routing of spaced-out instances.



J. Chuzhoy, D.H.K.Kim and R.Nimavat <article-no>:7

Unfortunately, in our input instance (G,M), the destination vertices may not be located223

sufficiently far from each other. We can try to select a large subset M′ ⊆ M of the224

demand pairs, so that every pair of destination vertices in T (M′) appear at a distance at225

least Ω(|M′|) from each other; but in some cases the largest such setM′ may only contain226

O(OPT/
√
k) demand pairs (for example, suppose all destination vertices lie consecutively227

on a single row of the grid). One of our main ideas is to generalize this simple algorithm to228

a number of recursive levels.229

For simplicity, let us first describe the algorithm with just two recursive levels. Suppose we230

partition the top row of the grid into z disjoint intervals, I1, . . . , Iz. LetM′ ⊆M be a set of231

demand pairs that we would like to route. Denote |M′| = k′, and assume that we are given232

a collection Q of square sub-grids of G, of size (4k′ × 4k′) each (that we call squares), such233

that every pair Q,Q′ ∈ Q of distinct squares is at a distance at least 4k′ from each other.234

Assume further that each such sub-grid Q ∈ Q is assigned a color χ(Q) ∈ {c1, . . . , cz}, such235

that, if Q is assigned the color cj , then all demand pairs (s, t) ∈M′ whose destination t lies236

in Q have their source s ∈ Ij (so intuitively, each color cj represents an interval Ij). Let237

M′j ⊆ M′ be the set of all demand pairs (s, t) ∈ M′ with s ∈ Ij . We would like to ensure238

that |M′j | is roughly k′/z, and that all destination vertices of T (M′j) are at a distance at239

least |M′j | from each other. We claim that if we could find the collection {I1, . . . , Iz} of the240

intervals of the first row, a collection Q of sub-grids of G, a coloring χ : Q → {c1, . . . , cz},241

and a subsetM′ ⊆M of the demand pairs with these properties, then we would be able to242

route all demand pairs inM′.243

In order to do so, for each square Q ∈ Q, we construct an augmented square Q+, by adding244

a margin of k′ rows and columns around Q. Our goal is to construct a collection P of node-245

disjoint paths routing the demand pairs inM′. We start by constructing a global routing,246

where all paths in P originate from the vertices of S(M′) and then visit the squares in247

{Q+ | Q ∈ Q} in a snake-like fashion, just like we did for the spaced-out instances described248

above (see Figure 2a). Consider now some square Q ∈ Q and the corresponding augmented249

square Q+. Assume that χ(Q) = cj , and let Pj ⊆ P be the set of paths originating at the250

source vertices that lie in Ij . While traversing the square Q+, we ensure that only the paths251

in Pj enter the square Q; the remaining paths use the margins on the left and on the right of252

Q in order to traverse Q+. This can be done because the sources of the paths in Pj appear253

consecutively on R∗, relatively to the sources of all paths in P. In order to complete the254

local routing inside the square Q, observe that the destination vertices appear far enough255

from each other, and so we can employ the simple algorithm for spaced-out instances inside256

Q.257

In order to optimize the approximation factor that we achieve, we extend this approach258

to ρ = O(
√

logn) recursive levels. Let η = 2
⌈√

logn
⌉
. We define auxiliary parameters259

d1 > d2 > · · · > dρ > dρ+1. Roughly speaking, we can think of dρ+1 as being a constant260

(say 16), of d1 as being comparable to OPT, and for all 1 ≤ h ≤ ρ, dh+1 = dh/η. The setup261

for the algorithm consists of three ingredients: (i) a hierarchical decomposition H̃ of the grid262

into square sub-grids (that we refer to as squares); (ii) a hierarchical partition I of the first263

row R∗ of the grid into intervals; and (iii) a hierarchical coloring f of the squares in H̃ with264

colors that correspond to the intervals of I, together with a selection of a subsetM′ ⊆ M265

of the demand pairs to route. We define sufficient conditions on the hierarchical system H̃266

of squares, the hierarchical partition I of R∗ into intervals, the coloring f and the subset267

M′ of the demand pairs, under which a routing of all pairs inM′ exists and can be found268

efficiently. For a fixed hierarchical system H̃ of squares, a triple (I, f,M′) satisfying these269

ICALP 2018
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conditions is called a good ensemble. We show that a good ensemble with a large enough270

setM′ of demand pairs exists, and then design an approximation algorithm for computing271

a good ensemble maximizing |M′|. We now describe each of these ingredients in turn.272

2.1 A Hierarchical System of Squares.273

A hierarchical system H̃ of squares consists of a sequence Q1,Q2, . . . ,Qρ of sets of sub-grids274

of G. For each 1 ≤ h ≤ ρ, Qh is a collection of disjoint sub-grids of G (that we refer to as275

level-h squares); every such square Q ∈ Qh has size (dh × dh), and every pair of distinct276

squares Q,Q′ ∈ Qh are within distance at least dh from each other (see Figure 3). We277

require that for each 1 < h ≤ ρ, for every square Q ∈ Qh, there is a unique square Q′ ∈ Qh−1278

(called the parent-square of Q) that contains Q. We say that a demand pair (s, t) belongs279

to the hierarchical system H̃ = (Q1,Q2, . . . ,Qρ) of squares iff t ∈
⋃
Q∈Qρ

Q. We show a280

simple efficient algorithm to construct 2O(
√

logn) such hierarchical systems of squares, so281

that every demand pair belongs to at least one of them. Each such system H̃ of squares282

induces an instance of NDP — the instance is defined over the same graph G, and the set283

M̃ ⊆M of demand pairs that belong to the system H̃. It is then enough to obtain a factor284

2O(
√

logn·log logn)-approximation algorithm for each resulting instance (G,M̃) separately.285

From now on we fix one such hierarchical system H̃ = (Q1,Q2, . . . ,Qρ) of squares, together286

with the set M̃ ⊆M of demand pairs, containing all pairs (s, t) that belong to H̃, and focus287

on designing a 2O(
√

logn·log logn)-approximation algorithm for instance (G,M̃).288

Figure 3 A schematic view of a hierarchical system of squares with 2 levels.

2.2 A Hierarchical Partition of the Top Grid Boundary.289

Recall that R∗ denotes the first row of the grid. A hierarchical partition I of R∗ is a sequence290

I1, I2, . . . , Iρ of sets of sub-paths of R∗, such that for each 1 ≤ h ≤ ρ, the paths in Ih (that291

we refer to as level-h intervals) partition the vertices of R∗. We also require that for all292

1 < h ≤ ρ, every level-h interval I ∈ Ih is contained in a unique level-(h − 1) interval293

I ′ ∈ Ih−1, that we refer to as the parent-interval of I. For every level 1 ≤ h ≤ ρ, we define a294

collection χh of colors, containing one color ch(I) for each level-h interval I ∈ Ih. If I ′ ∈ Ih295

is a parent-interval of I ∈ Ih+1, then we say that color ch(I ′) is a parent-color of ch+1(I).296
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2.3 Coloring the Squares and Selecting Demand Pairs to Route.297

The third ingredient of our algorithm is an assignment f of colors to the squares, and a298

selection of a subset of the demand pairs to be routed. For every level 1 ≤ h ≤ ρ, for299

every level-h square Q ∈ Qh, we would like to assign a single level-h color ch(I) ∈ χh to Q,300

denoting f(Q) = ch(I). Intuitively, if color ch(I) is assigned to Q, then the only demand301

pairs (s, t) with t ∈ Q that we may route are those whose source vertex s lies on the level-h302

interval I. We require that the coloring is consistent across levels: that is, for all 1 < h ≤ ρ,303

if a level-h square is assigned a level-h color ch, and its parent-square is assigned a level-304

(h− 1) color ch−1, then ch−1 must be a parent-color of ch. We call such a coloring f a valid305

coloring of H̃ with respect to I.306

Finally, we would like to select a subset M′ ⊆ M̃ of the demand pairs to route. Consider307

some demand pair (s, t) and some level 1 ≤ h ≤ ρ. Let Ih be the level-h interval to which s308

belongs. Then we say that s has the level-h color ch(Ih). Therefore, for each level 1 ≤ h ≤ ρ,309

vertex s is assigned the unique level-h color ch(Ih), and for 1 ≤ h < ρ, ch(Ih) is the parent-310

color of ch+1(Ih+1). Let Qρ ∈ Qρ be the level-ρ square to which t belongs. We may only311

add (s, t) to M′ if the level-ρ color of Qρ is cρ(Iρ) (that is, it is the same as the level-ρ312

color of s). Notice that in particular, this means that for every level 1 ≤ h ≤ ρ, if Qh is the313

level-h square containing t, and it is assigned the color ch(Ih), then s is assigned the same314

level-h color, and so s ∈ Ih. Finally, we require that for all 1 ≤ h ≤ ρ, for every level-h315

color ch, the total number of all demand pairs (s, t) ∈ M′, such that the level-h color of s316

is ch, is no more than dh+1/16 (if h = ρ, then the number is no more than 1). If M′ has317

all these properties, then we say that it respects the coloring f . We say that (I, f,M′) is a318

good ensemble iff I is a hierarchical partition of R∗ into intervals; f is a valid coloring of the319

squares in H̃ with respect to I; andM′ ⊆ M̃ is a subset of the demand pairs that respects320

the coloring f . The size of the ensemble is |M′|.321

2.4 The Routing.322

We show that, if we are given a good ensemble (I, f,M′), then we can route all demand pairs323

inM′. The routing itself follows the high-level idea outlined above. We gradually construct324

a collection P of node-disjoint paths routing the demand pairs inM′. At the highest level,325

all these paths depart from their sources and then visit the level-1 squares one-by-one, in a326

snake-like fashion, as in Figure 2a. Consider now some level-1 square Q, and assume that327

its level-1 color is c1(I), where I ∈ I1 is some level-1 interval of R∗. Then only the paths328

P ∈ P that originate at the vertices of I will enter the square Q; the remaining paths will329

exploit the spacing between the level-1 squares in order to bypass it; the spacing between the330

level-1 squares is sufficient to allow this. Once we have defined this global routing, we need331

to specify how the routing is carried out inside each square. We employ the same procedure332

recursively. Consider some level-1 square Q, and let P ′ ⊆ P be the set of all paths that visit333

Q. Assume further that the level-1 color of Q is c1(I). Since we are only allowed to have334

at most d2/16 demand pairs inM′ whose level-1 color is c1(I), |P ′| ≤ d2/16. Let Q′ ⊆ Q2335

be the set of all level-2 squares contained in Q. The paths in P ′ will visit the squares of Q′336

one-by-one in a snake-like fashion (but this part of the routing is performed inside Q). As337

before, for every level-2 square Q′ ⊆ Q, if the level-2 color of Q′ is c2(I ′), then only those338

paths of P ′ that originate at the vertices of I ′ will enter Q′; the remaining paths will use339

the spacing between the level-2 squares to bypass Q′. Since |P ′| ≤ d2/16, and all level-2340
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squares are at distance at least d2 from each other, there is a sufficient spacing to allow this341

routing. We continue this process recursively, until, at the last level of the recursion, we342

route at most one path per color, to its destination vertex.343

In order to complete the proof of the theorem, we need to show that there exists a good344

ensemble (I, f,M′) of size |M′| ≥ |OPT|/2O(
√

logn·log logn), and that we can find such an345

ensemble efficiently.346

2.5 The Existence of the Ensemble.347

The key notion that we use in order to show that a large good ensemble (I, f,M′) exists348

is that of a shadow property. Suppose Q is some (d × d) sub-grid of G, and let M̂ ⊆ M349

be some subset of the demand pairs. Among all demand pairs (s, t) ∈ M̂ with t ∈ Q, let350

(s1, t1) be the one with s1 appearing earliest on the first row R∗ of G, and let (s2, t2) be the351

one with s2 appearing latest on R∗. The shadow of Q with respect to M̂ is the sub-path of352

R∗ between s1 and s2. Let NM̂(Q) be the number of all demand pairs (s, t) ∈ M̂ with s353

lying in the shadow of Q (that is, s lies between s1 and s2 on R∗). We say that M̂ has the354

shadow property with respect to Q iff NM̂(Q) ≤ d. We say that M̂ has the shadow property355

with respect to the hierarchical system H̃ = (Q1, . . . ,Qρ) of squares, iff M̂ has the shadow356

property with respect to every square in
⋃ρ
h=1Qh. Let P∗ be the optimal solution to the357

instance (G,M̃) of NDP, where M̃ only includes the demand pairs that belong to H̃. Let358

M∗ ⊆ M̃ be the set of the demand pairs routed by P∗. For every demand pair (s, t) ∈M∗,359

let P (s, t) ∈ P∗ be the path routing this demand pair. Intuitively, it feels like M∗ should360

have the shadow property. Indeed, let Q ∈
⋃ρ
h=1Qh be some square of size (dh × dh), and361

let (s1, t1), (s2, t2) ∈ M∗ be defined for Q as before, so that the shadow of Q with respect362

toM∗ is the sub-path of R∗ between s1 and s2. Let P be any path of length at most 2dh363

connecting t1 to t2 in Q, and let γ be the closed curve consisting of the union of P (s1, t1), P ,364

P (s2, t2), and the shadow of Q. Consider the disc D whose boundary is γ. The intuition is365

that, if (s, t) ∈ M∗ is a demand pair whose source lies in the shadow of Q, and destination366

lies outside of D, then P (s, t) must cross the path P , as it needs to escape the disc D. Since367

path P is relatively short, only a small number of such demand pairs may exist. The main368

difficulty with this argument is that we may have a large number of demand pairs (s, t),369

whose source lies in the shadow of Q, and the destination lies in the disc D. Intuitively, this370

can only happen if P (s1, t1) and P (s2, t2) “capture” a large area of the grid. We show that,371

in a sense, this cannot happen too often, and that there is a subsetM∗∗ ⊆ M∗ of at least372

|M∗|/2O(
√

logn·log logn) demand pairs, such thatM∗∗ has the shadow property with respect373

to H̃.374

Finally, we show that there exists a good ensemble (I, f,M′) with |M′| ≥ |M∗∗|/2O(
√

logn·log logn).375

We construct the ensemble over the course of ρ iterations, starting withM′ =M∗∗. In the376

hth iteration we construct the set Ih of the level-h intervals of R∗, assign level-h colors to all377

level-h squares of H̃, and discard some demand pairs fromM′. Recall that η = 2
⌈√

logn
⌉
. In378

the first iteration, we let I1 be a partition of the row R∗ into intervals, each of which contains379

roughly d1
16η = d2

16 ≤
|M∗|
η vertices of S(M′). Assume that these intervals are I1, . . . , Ir, and380

that they appear in this left-to-right order on R∗. We call all intervals Ij where j is odd381

interesting intervals, and the remaining intervals Ij uninteresting intervals. We discard from382

M′ all demand pairs (s, t), where s lies on an uninteresting interval. Consider now some383

level-1 square Q, and letM(Q) ⊆M′ be the set of all demand pairs whose destination lies384

in Q. Since the original set M∗∗ of demand pairs had the shadow property with respect385
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to Q, it is easy to verify that all source vertices of the demand pairs inM(Q) must belong386

to a single interesting interval of I1. Let I be that interval. Then we color the square Q387

with the level-1 color c1(I) corresponding to the interval I. This completes the first itera-388

tion. Notice that for each level-1 color c1(I), at most d2/16 demand pairs (s, t) ∈ M′ have389

s ∈ I. In the following iteration, we similarly partition every interesting level-1 interval390

into level-2 intervals that contain roughly d3/16 ≤ |M∗|/η2 source vertices ofM′ each, and391

then define a coloring of all level-2 squares similarly, while suitably updating the setM′ of392

the demand pairs. We continue this process for ρ iterations, eventually obtaining a good393

ensemble (I, f,M′). Since we only discard a constant fraction of the demand pairs ofM′ in394

every iteration, at the end, |M′| ≥ |M∗∗|/2ρ = |M∗∗|/2O(
√

logn) ≥ |M∗|/2O(
√

logn·log logn).395

2.6 Finding the Good Ensemble.396

In our final step, our goal is to find a good ensemble (I, f,M′) maximizing |M′|. We show397

an efficient randomized 2O(
√

logn·log logn)-approximation algorithm for this problem. First,398

we show that, at the cost of losing a small factor in the approximation ratio, we can restrict399

our attention to a small collection I1, I2, . . . ,Iz of hierarchical partitions of R∗ into intervals,400

and that it is enough to obtain a 2O(
√

logn·log logn)-approximate solution for the problem of401

finding the largest ensemble (Ij , f,M′) for each such partition Ij separately.402

We then fix one such hierarchical partition Ij , and design an LP-relaxation for the problem403

of computing a coloring f of H̃ and a collectionM′ of demand pairs, such that (Ij , f,M′)404

is a good ensemble, while maximizing |M′|. Finally, we design an efficient randomized405

LP-rounding 2O(
√

logn·log logn)-approximation algorithm for the problem.406

2.7 Completing the Proof of Theorem 1.407

So far we have assumed that all source vertices lie on the top boundary of the grid, and408

all destination vertices are at a distance at least Ω(OPT) from the grid boundary. Let A409

be the randomized efficient 2O(
√

logn·log logn)-approximation algorithm for this special case.410

We now extend it to the general Restricted NDP-Grid problem. For every destination vertex411

t, we identify the closest vertex t̃ that lies on the grid boundary. Using standard grouping412

techniques, at the cost of losing an additional O(logn) factor in the approximation ratio,413

we can assume that all source vertices lie on the top boundary of the grid, all vertices in414 {
t̃ | t ∈ T (M)

}
lie on a single boundary edge of the grid (assume for simplicity that it is the415

bottom boundary), and that there is some integer d, such that for every destination vertex416

t ∈ T (M), d ≤ d(t, t̃) < 2d. We show that we can define a collection Z = {Z1, . . . , Zr} of417

disjoint square sub-grids of G, and a collection I = {I1, . . . , Ir} of disjoint sub-intervals of418

R∗, such that the bottom boundary of each sub-grid Zi is contained in the bottom boundary419

of G, the top boundary of Zi is within distance at least OPT from R∗, Z1, . . . , Zr appear in420

this left-to-right order in G, and I1, . . . , Ir appear in this left-to-right order on R∗. For each421

1 ≤ j ≤ r, we let Mj denote the set of all demand pairs with the sources lying on Ij and422

the destinations lying in Zj . For each 1 ≤ j ≤ r, we then obtain a new instance (G,Mj)423

of the NDP problem. We show that there exist a collection Z of squares and a collection424

I of intervals, such that the value of the optimal solution to each instance (G,Mj), that425

we denote by OPTj , is at most d, while
∑r
j=1 OPTj ≥ OPT/2O(

√
logn·log logn). Moreover, it426

is not hard to show that, if we can compute, for each 1 ≤ j ≤ r, a routing of some subset427
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M′j ⊆ Mj of demand pairs in G, then we can also route all demand pairs in
⋃r
j=1M′j428

simultaneously in G.429

There are two problems with this approach. First, we do not know the set Z of sub-grids of430

G and the set I of intervals of R∗. Second, it is not clear how to solve each resulting problem431

(G,Mj). To address the latter problem, we define a simple mapping of all source vertices432

in S(Mj) to the top boundary of grid Zj , obtaining an instance of Restricted NDP-Grid,433

where all source vertices lie on the top boundary of the grid Zj , and all destination vertices434

lie at a distance at least OPTj ≤ d from its boundary. We can then use algorithm A in435

order to solve this problem efficiently. It is easy to see that, if we can route some subsetM′j436

of the demand pairs via node-disjoint paths in Zj , then we can extend this routing to the437

corresponding set of original demand pairs, whose sources lie on R∗.438

Finally, we employ dynamic programming in order to find the set Z of sub-grids of G and the439

set I of intervals of I. For each such potential sub-grid Z and interval I, we use algorithm440

A in order to find a routing of a large set of demand pairs of the corresponding instance441

defined inside Z, and then exploit the resulting solution values for each such pair (I, Z) in442

a simple dynamic program, that allows us to compute the set Z of sub-grids of G, the set I443

of intervals of I, and the final routing.444

3 Approximation Algorithm for the Special Case with Sources Close445

to the Grid Boundary446

In this section we provide a sketch of the proof of Theorem 2. We assume that we are given447

an instance (G,M) of NDP-Grid and an integer δ > 0, such that every source vertex is at448

a distance at most δ from the grid boundary. Our goal is to design an efficient random-449

ized factor-(δ · 2O(
√

logn·log logn))-approximation algorithm for this special case. For every450

terminal v ∈ S(M) ∪ T (M), let ṽ be the vertex lying closest to v on the boundary of the451

grid G. Using standard grouping techniques, at the cost of losing an O(logn)-factor in the452

approximation ratio, we can assume that there is some integer d, such that for all t ∈ T (M),453

d ≤ d(t, t̃) < 2d.454

Assume first that d ≤ δ · 2O(
√

logn log logn). Let M̂ =
{

(s̃, t̃) | (s, t) ∈M
}
be a new set of455

demand pairs, so that all vertices participating in these demand pairs lie on the boundary456

of G. We can efficiently find an optimal solution to the NDP problem instance (G,M̂) using457

standard dynamic programming. We then show that OPT(G,M̂) = Ω(OPT(G,M)/(δ ·458

2O(
√

logn·log logn))), obtaining an (δ · 2O(
√

logn·log logn))-approximation algorithm.459

From now on we assume that d > δ · 2Ω(
√

logn log logn). Next, we define a new set M̃ of460

demand pairs: M̃ = {(s̃, t) | (s, t) ∈M}, so all source vertices of the demand pairs in M̃ lie461

on the boundary of G, obtaining an instance of Restricted NDP-Grid. Let OPT′ be the value462

of the optimal solution to problem (G,M̃). We show that OPT′ ≥ Ω(OPT(G,M)/δ).463

We then focus on instance (G,M̃) of Restricted NDP-Grid. We say that a path P routing a464

demand pair (s̃, t) ∈ M̃ is canonical iff it contains the original source s. The crux of the proof465

is to show that we can modify the routing produced by the 2O(
√

logn·log logn)-approximation466

algorithm to instance (G,M̃), so that in the resulting routing all paths are canonical. In467

order to do so, we utilize the fact that the destination vertices lie much further from the468

grid boundaries than the source vertices. This creates sufficient margins around the grid469

boundaries that allow us to modify the routing to turn it a canonical one.470
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