
Almost Polynomial Hardness of Node-Disjoint Paths in Grids∗

Julia Chuzhoy
†

Toyota Technological Institute at

Chicago

6045 S. Kenwood Ave

Chicago, IL 60637, U.S.A

cjulia@�ic.edu

David H. K. Kim
‡

Computer Science Department

University of Chicago

1100 E. 58th Street

Chicago, IL 60637, U.S.A

hongk@cs.uchicago.edu

Rachit Nimavat
§

Toyota Technological Institute at

Chicago

6045 S. Kenwood Ave

Chicago, IL 60637, U.S.A

nimavat@�ic.edu

ABSTRACT

In the classical Node-Disjoint Paths (NDP) problem, we are given an

n-vertex graphG = (V ,E), and a collectionM = {(s1, t1), . . . , (sk , tk)}
of pairs of its vertices, called source-destination, or demand pairs.

�e goal is to route as many of the demand pairs as possible, where

to route a pair we need to select a path connecting it, so that all se-

lected paths are disjoint in their vertices. �e best current algorithm

for NDP achieves an O(
√
n)-approximation, while, until recently,

the best negative result was a factor Ω(log
1/2−ϵ n)-hardness of ap-

proximation, for any constant ϵ , unless NP ⊆ ZPTIME(npoly logn).

In a recent work, the authors have shown an improved 2
Ω(
√

logn)
-

hardness of approximation forNDP, unlessNP ⊆ DTIME(nO (logn)),

even if the underlying graph is a sub-graph of a grid graph, and

all source vertices lie on the boundary of the grid. Unfortunately,

this result does not extend to grid graphs.

�e approximability of the NDP problem on grid graphs has re-

mained a tantalizing open question, with the best current upper

bound of Õ(n1/4), and the best current lower bound ofAPX-hardness.

In a recent work, the authors showed a 2
Õ (
√

logn)
-approximation

algorithm for NDP in grid graphs, if all source vertices lie on the

boundary of the grid – a result that can be seen as suggesting that

a sub-polynomial approximation may be achievable for NDP in

grids. In this paper we show that this is unlikely to be the case,

and come close to resolving the approximability of NDP in gen-

eral, and of NDP in grids in particular. Our main result is that

NDP is 2
Ω(log

1−ϵ n)
-hard to approximate for any constant ϵ , assum-

ing that NP * RTIME(npoly logn), and that it is nΩ(1/(log logn)2)
-

hard to approximate, assuming that for some constant δ > 0,

NP * RTIME(2n
δ
). �ese results hold even for grid graphs and

∗
A full version of this paper is available at https://arxiv.org/abs/1711.01980
†

Supported in part by NSF grants CCF-1318242 and CCF-1616584.

‡
Supported in part by NSF grants CCF-1318242 and CCF-1616584.

§
Supported in part by NSF grant CCF-1318242.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

STOC’18, Los Angeles, CA, USA
© 2018 ACM. 978-1-4503-5559-9/18/06. . . $15.00

DOI: 10.1145/3188745.3188772

wall graphs, and extend to the closely related Edge-Disjoint Paths

problem, even in wall graphs.

Our hardness proof performs a reduction from the 3COL(5) problem

to NDP, using a new graph partitioning problem as a proxy. Unlike

the more standard approach of employing Karp reductions to prove

hardness of approximation, our proof is a Cook-type reduction,

where, given an input instance of 3COL(5), we produce a large

number of instances of NDP, and apply an approximation algorithm

for NDP to each of them. �e construction of each new instance of

NDP crucially depends on the solutions to the previous instances

that were found by the approximation algorithm.

CCS CONCEPTS

•�eory of computation→ Network �ows; Routing and net-
work design problems; Problems, reductions and completeness;

ACM Reference format:

Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. 2018. Almost Poly-

nomial Hardness of Node-Disjoint Paths in Grids. In Proceedings of 50th
Annual ACM SIGACT Symposium on the �eory of Computing, Los Angeles,
CA, USA, June 25–29, 2018 (STOC’18), 14 pages.

DOI: 10.1145/3188745.3188772

1 INTRODUCTION

We study the Node-Disjoint Paths (NDP) problem: given an undi-

rectedn-vertex graphG and a collectionM = {(s1, t1), . . . , (sk , tk)}
of pairs of its vertices, called source-destination, or demand pairs,

we are interested in routing the demand pairs, where in order to

route a pair (si , ti), we need to select a path connecting si to ti . �e

goal is to route as many of the pairs as possible, so that the rout-

ing paths are mutually disjoint in their vertices and edges. We let

S = {s1, . . . , sk } be the set of the source vertices, T = {t1, . . . , tk }
the set of the destination vertices, and we refer to the vertices of

S ∪T as terminals. We denote by NDP-Planar the special case of the

problem where the graphG is planar; by NDP-Grid the special case

where G is a square grid; and by NDP-Wall the special case where

G is a wall (see Figure 1 for an illustration of a wall and Section 2

for its de�nition).

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat

NDP is a fundamental problem in the area of graph routing, that

has been studied extensively. Robertson and Seymour [47, 48]

showed, as part of their famous Graph Minors Series, an e�cient

algorithm for solving the problem if the number k of the demand

pairs is bounded by a constant. However, when k is a part of in-

put, the problem becomes NP-hard [22, 29], even in planar graphs

and in grids [37, 39]. �e best current upper bound on the ap-

proximability of NDP is O(
√
n), obtained by a simple greedy al-

gorithm [36]. Until recently, the best known lower bound was an

Ω(log
1/2−ϵ n)-hardness of approximation for any constant ϵ , unless

NP ⊆ ZPTIME(npoly logn) [3, 4], and APX-hardness for the special

cases of NDP-Planar and NDP-Grid [17]. In a recent paper [20],

the authors showed an improved 2
Ω(
√

logn)
-hardness of approx-

imation for NDP, assuming that NP * DTIME(nO (logn)). �is

result holds even for planar graphs with maximum vertex degree 3,

where all source vertices lie on the boundary of a single face, and

for sub-graphs of grid graphs, with all source vertices lying on

the boundary of the grid. We note that for general planar graphs,

the O(
√
n)-approximation algorithm of [36] was recently slightly

improved to an Õ(n9/19)-approximation [18].

�e approximability status of NDP-Grid remained a tantalizing

open question. �e study of this problem dates back to the 70’s,

and was initially motivated by applications to VLSI design. As grid

graphs are extremely well-structured, one would expect that good

approximation algorithms can be designed for them, or that, at the

very least, they should be easy to understand. However, establishing

the approximability of NDP-Grid has been elusive so far. �e simple

greedy O(
√
n)-approximation algorithm of [36] was only recently

improved to a Õ(n1/4)-approximation for NDP-Grid [17], while on

the negative side only APX-hardness is known. In a very recent pa-

per [19], the authors designed a 2
O (
√

logn ·log logn)-approximation

algorithm for a special case of NDP-Grid, where the source vertices

appear on the grid boundary. �is result can be seen as comple-

menting the 2
Ω(
√

logn)
-hardness of approximation of NDP on sub-

graphs of grids with all sources on the grid boundary [20]
1
, and as

suggesting that sub-polynomial approximation algorithms may be

achievable for NDP-Grid.

In this paper we show that this is unlikely to be the case, and come

close to resolving the approximability status of NDP-Grid, and of

NDP in general, by showing that NDP-Grid is 2
Ω(log

1−ϵ n)
-hard to

approximate for any constant ϵ , unless NP ⊆ RTIME(npoly logn).

We further show that it is nΩ(1/(log logn)2)
-hard to approximate, as-

suming that for some constant δ > 0, NP * RTIME(2n
δ
). �ese

hardness results are stronger than the best currently known hard-

ness for the general NDP problem, and should be contrasted with

the 2
O (
√

logn ·log logn)
-approximation algorithm for NDP-Grid with

all sources on the grid boundary [19].

Another basic routing problem that is closely related to NDP is

Edge-Disjoint Paths (EDP). �e input to this problem is the same as

before: an undirected graphG and a setM = {(s1, t1), . . . , (sk , tk)}
of demand pairs. �e goal, as before, is to route the largest number

1
Note that the results are not strictly complementary: the algorithm only works on

grid graphs, while the hardness result is only valid for sub-graphs of grids.

of the demand pairs via paths. However, we now allow the paths to

share vertices, and only require that they are mutually edge-disjoint.

In general, it is easy to see that EDP is a special case of NDP. Indeed,

given an EDP instance (G,M), computing the line graph of the

input graph G transforms it into an equivalent instance of NDP.

However, this transformation may in�ate the number of vertices,

and so it may not preserve approximation factors that depend on

|V (G)|. Moreover, this transformation does not preserve planarity,

and no such relationship is known between NDP and EDP in planar

graphs. �e approximability status of EDP is very similar to that of

NDP: the best current approximation algorithm achieves an O(
√
n)-

ratio [13], and the recent 2
Ω(
√

logn)
-hardness of approximation

of [20], under the assumption that NP * DTIME(nO (logn)), extends

to EDP. Interestingly, EDP appears to be relatively easy on grid

graphs, where it has a constant-factor approximation [5, 34, 35].

�e analogue of grids in the se�ing of EDP seems to be the wall

graph: the approximability status of EDP on wall graphs is similar

to that of NDP on grid graphs, with the best current upper bound

of Õ(n1/4), and the best lower bound of APX-hardness [17]. �e

results of [20] extend to a 2
Ω(
√

logn)
-hardness of approximation for

EDP on sub-graphs of walls, with all source vertices lying on the

wall boundary, under the same complexity assumption. We denote

by EDP-Wall the special case of EDP where the underlying graph

is a wall. We show that our new almost polynomial hardness of

approximation results also hold for EDP-Wall and for NDP-Wall.

Figure 1: An illustration of a grid and a wall graph.

Other Related Work. Several special cases of EDP are known to

have reasonably good approximation algorithms. �ese include an

O(logn)-approximation for both Eulerian and 4-connected planar

graphs [30, 32]; polylogarithmic approximation for bounded-degree

expanders [8, 9, 26, 33, 38] and for graphs in which the value of

the global minimum cut is Ω(log
5 n) [45], and a constant-factor

approximation for trees [15, 27], and grids and grid-like graphs [5,

6, 34, 35]. Recently, Fleszar et al. [25] designed an O(
√
r · log(kr))-

approximation algorithm for EDP, where r is the feedback vertex

set number of the input graph.

A natural variation of NDP and EDP that slightly relaxes the dis-

jointness constraint by allowing a small congestion has been a

subject of extensive study. �e NDP with Congestion (NDPwC)

problem is de�ned exactly like NDP, except that we are also given

an integer c ≥ 1 as part of input, and the solution is allowed to

incur congestion c , that is, each vertex may participate in up to c
paths in the solution. �e EDP with Congestion problem (EDPwC)

is de�ned similarly, except that now the congestion is measured

on the graph edges and not on the vertices. �e famous result of

Almost Polynomial Hardness of Node-Disjoint Paths in Grids STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Raghavan and �ompson [42], that introduced the randomized LP-

rounding technique, obtained a constant-factor approximation for

NDPwC and EDPwC, for a congestion value c = Θ(logn/log logn).
A long sequence of work [2, 10–12, 16, 21, 41, 45] has led to an

O(poly logk)-approximation for NDPwC and EDPwC with con-

gestion bound c = 2. �is result is essentially optimal, since it is

known that for every constant ϵ , and for every congestion value c =
o(log logn/log log logn), both problems are hard to approximate to

within a factor Ω((logn)
1−ϵ
c+1), unless NP ⊆ ZPTIME(npoly logn) [3].

When the input graph is planar, a constant-factor approximation

algorithm for EDPwC with congestion 2 is known [14, 49].

Our Results and Techniques. Our main result is the proof of the

following theorem.

Theorem 1.1. For every constant ϵ > 0, there are no 2
O (log

1−ϵ n)-
approximation algorithms for NDP and for EDP, assuming that
NP * RTIME(npoly logn). Moreover, there are no nO (1/(log logn)2)-
approximation algorithms for NDP and for EDP, assuming that for
some constant δ > 0, NP * RTIME(2n

δ
). �ese results hold even for

NDP-Grid, NDP-Wall, and EDP-Wall.

We now provide a high-level overview of our techniques, focusing

on the hardness of NDP-Grid. �e starting point of our hardness

proof is 3COL(5) — a special case of the 3-coloring problem, where

the underlying graph is 5-regular. We de�ne a new graph parti-

tioning problem, that we refer to as (r ,h)-Graph Partitioning, and

denote by (r, h)-GP. In this problem, we are given a bipartite graph

G̃ = (V1,V2,E) and two integral parameters r ,h > 0. A solution to

the problem is a partition (W1,W2, . . . ,Wr) ofV1∪V2 into r subsets,

and for each 1 ≤ i ≤ r , a subset Ei ⊆ E(Wi) of edges, so that

|Ei | ≤ h holds, and the goal is to maximize

∑r
i=1
|Ei |. A convenient

intuitive way to think about this problem is that we need to parti-

tion G̃ into a large number of subgraphs, in a roughly balanced way

(with respect to the number of edges), so as to preserve as many of

the edges as possible. We show that NDP-Grid is at least as hard

as the (r, h)-GP problem (to within polylogarithmic factors). Our

reduction exploits the fact that routing in grids is closely related to

graph drawing, and that graphs with small crossing number have

small balanced separators. �e (r, h)-GP problem itself appears

similar in �avor to the Densest k-Subgraph problem (DkS). In the

DkS problem, we are given a graph G and a parameter k , and the

goal is to �nd a subset U ⊆ V (G) of k vertices, that maximizes

the number of edges in the induced graph G[U]. Intuitively, in

the (r, h)-GP problem, the goal is to partition the graph into many

dense subgraphs, and so in order to prove that (r, h)-GP is hard to

approximate, it is natural to employ techniques used in hardness

of approximation proofs for DkS. �e best current approximation

algorithm for DkS achieves a n1/4+ϵ
-approximation for any con-

stant ϵ [7]. Even though the problem appears to be very hard to

approximate, its hardness of approximation proof has been elusive

until recently: only constant-factor hardness results were known

for DkS under various worst-case complexity assumptions, and

2
Ω(log

2/3 n)
-hardness under average-case assumptions [1, 23, 31, 43].

In a recent breakthrough, Manurangsi [40] has shown that for

some constant c , DkS is hard to approximate to within a factor

n1/(log logn)c
, under the Exponential Time Hypothesis. Despite our

feeling that (r, h)-GP is somewhat similar to DkS, we were unable

to extend his techniques to this problem, or to prove its hardness

of approximation via other techniques.

To overcome this di�culty, we de�ne a graph partitioning problem

that is slightly more general than (r, h)-GP. �e de�nition of this

problem is somewhat technical and is deferred to Section 3. �is

problem is speci�cally designed so that the reduction to NDP-Grid
still goes through, but it is somewhat easier to control its solutions

and prove hardness of approximation for it. Furthermore, instead

of employing a standard Karp-type reduction (where an instance of

3COL(5) is reduced to a single instance of NDP-Grid, while using

the graph partitioning problem as a proxy), we employ a sequen-

tial Cook-type reduction. We assume for contradiction that an

α-approximation algorithm A for NDP-Grid exists, where α is the

hardness of approximation factor we are trying to achieve. Our

reduction is iterative. In every iteration j, we reduce the 3COL(5)

instance to a collection Ij of instances of NDP-Grid, and apply

the algorithm A to each of them. If the 3COL(5) instance is a Yes-

Instance, then we are guaranteed that each resulting instance of

NDP-Grid has a large solution, and so all solutions returned by A

are large. If the 3COL(5) instance is a No-Instance, then unfortu-

nately it is still possible that the resulting instances of NDP-Grid
will have large solutions. However, we can use these solutions in

order to further re�ne our reduction, and construct a new collection

Ij+1 of instances of NDP-Grid. While in the Yes-Instance case we

will continue to obtain large solutions to all NDP-Grid instances

that we construct, in the No-Instance case, in some iteration of the

algorithm, we will fail to �nd such a large solution. Our reduction

is crucially sequential, and we exploit the solutions returned by

algorithm A in previous iterations in order to construct new in-

stances of NDP-Grid for the subsequent iterations. It is interesting

whether these techniques may be helpful in obtaining new hardness

of approximation results for DkS.

We note that our approach is completely di�erent from the previous

hardness of approximation proof for NDP of [20]. �e proof in [20]

performs a reduction from 3SAT(5). Initially, a simple reduction

from 3SAT(5) to the NDP problem on a sub-graph of the grid graph

is used in order to produce a constant hardness gap. �e resulting

instance of NDP is called a level-1 instance. �e reduction then

employs a boosting technique, that, in order to obtain a level-i
instance, combines a number of level-(i − 1) instances with a single

level-1 instance. �e hardness gap grows by a constant factor from

iteration to iteration, until the desired hardness of approximation

bound is achieved. All source vertices in the constructed instances

appear on the grid boundary, and a large number of vertices are

carefully removed from the grid in order to create obstructions to

routing, and to force the routing paths to behave in a prescribed

way. �e reduction itself is a Karp-type reduction, and eventually

produces a single instance of NDP with a large gap between the

Yes- and No-Instance solutions.

Organization. We start with Preliminaries in Section 2, and intro-

duce the new graph partitioning problem in Section 3. �e hardness

of approximation proof for NDP-Grid appears in Section 4, and the

reduction from the partitioning problem to NDP in Section 5. Some

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat

of the proof details, and the extension to NDP-Wall and EDP-Wall
are deferred to the full version of the paper that is available on

arxiv.

2 PRELIMINARIES

All logarithms in this paper are to the base of 2.

Grid Graphs. For a pair h, ` > 0 of integers, we let Gh, `
denote the

grid of height h and length `. �e set of its vertices is V (Gh, `) =
{v(i, j) | 1 ≤ i ≤ h, 1 ≤ j ≤ `}, and the set of its edges is the union

of two subsets: the set

{
(vi, j ,vi, j+1) | 1 ≤ i ≤ h, 1 ≤ j < `

}
of hor-

izontal edges, and the set

{
(vi, j ,vi+1, j) | 1 ≤ i < h, 1 ≤ j ≤ `

}
of

vertical edges.

Wall Graphs. Let G = G`,h
be a grid of length ` and height h.

Assume that ` > 0 is an even integer, and that h > 0. For every

columnWj of the grid, let e
j
1
, . . . , e

j
h−1

be the edges ofWj indexed

in their top-to-bo�om order. Let E∗(G) ⊆ E(G) contain all edges e
j
z ,

where z , j mod 2, and let Ĝ be the graph obtained fromG \E∗(G),
by deleting all degree-1 vertices from it. Graph Ĝ is called a wall of
length `/2 and height h (see Figure 1).

�e 3COL(5) problem. �e starting point of our reduction is the

3COL(5) problem. In this problem, we are given a 5-regular graph

G = (V ,E). Note that, if n = |V | and m = |E |, then m = 5n/2. We

are also given a set C = {r ,b,д} of 3 colors. A coloring χ : V → C
is an assignment of a color in C to every vertex in V . We say that

an edge e = (u,v) is satis�ed by χ i� χ (u) , χ (v). �e coloring χ is

valid i� it satis�es every edge. We say that G is a Yes-Instance i�

there is a valid coloring χ : V → C. We say that it is a No-Instance

with respect to some 0 < ϵ < 1, i� for every coloring χ : V → C,

at most a (1 − ϵ)-fraction of the edges are satis�ed by χ . We use

the following theorem of Feige et al. [24]:

Theorem 2.1. [Proposition 15 in [24]] �ere is some constant ϵ , such
that distinguishing between theYes-Instances and theNo-Instances
(with respect to ϵ) of 3COL(5) is NP-hard.

A Two-Prover Protocol. We use the following two-prover protocol

for 3COL(5). �e two provers are called the edge-prover and the

vertex-prover. Given a 5-regular graph G, the veri�er selects an

edge e = (u,v) ofG uniformly at random, and then selects a random

endpoint (sayv) of this edge. It then sends e to the edge-prover and

v to the vertex-prover. �e edge-prover must return an assignment

of colors from C tou andv , such that the two colors are distinct; the

vertex-prover must return an assignment of a color from C tov . �e

veri�er accepts i� both provers assign the same color to v . Given a

2-prover game G, its value is the maximum acceptance probability

of the veri�er over all possible strategies of the provers. Notice that,

if G is a Yes-Instance, then there is a strategy of the provers that

guarantees acceptance with probability 1: the provers �x a valid

coloring χ : V → C of G and respond to the queries according to

this coloring. However, ifG is a No-Instance, then for any strategy

of the two provers, the veri�er accepts with probability at most (1−

ϵ/2). Indeed, using standard techniques, we can assume w.l.o.g. that

the strategies of the provers are deterministic. �e deterministic

strategy of the vertex-prover de�nes a coloring of the vertices of

G. �is coloring must dissatisfy at least ϵm edges. �e probability

that the veri�er chooses such an edge is at least ϵ . �e response

of the edge-prover on this edge must di�er from the response of

the vertex-prover on at least one of its endpoints. �e veri�er

chooses this endpoint with probability at least 1/2, and so overall

the veri�er rejects with probability at least ϵ/2. To summarize, if G
is a Yes-Instance, then the value of the corresponding game is 1,

and if it is a No-Instance, then it is at most (1 − ϵ/2).

Parallel Repetition. We perform ` rounds of parallel repetition of

the above protocol, for some integer ` > 0, that may depend on

n = |V (G)|. Speci�cally, the veri�er chooses a sequence (e1, . . . , e`)
of ` edges, where each edge ei is selected independently uniformly

at random from E(G). For each chosen edge ei , one of its endpoints

vi is then chosen independently at random. �e veri�er sends

(e1, . . . , e`) to the edge-prover, and (v1, . . . ,v`) to the vertex-prover.

�e edge-prover returns a coloring of both endpoints of each edge

ei . �is coloring must satisfy the edge, so the two endpoints must

be assigned di�erent colors, but it need not be consistent across

di�erent edges. �e vertex-prover returns a coloring of the vertices

in (v1, . . . ,v`), that also need not be consistent across di�erent

indices (so if vi = vj , we may assign di�erent colors to the two

occurrences). �e veri�er accepts i� for each 1 ≤ i ≤ `, the

coloring of the vertex vi returned by both provers is consistent.

(No veri�cation of consistency is performed across di�erent i’s. So,

for example, if vi is an endpoint of ej for i , j, then it is possible

that the two colorings do not agree and the veri�er still accepts).

We say that a pair (A,A′) of answers to the two queries (e1, . . . , e`)
and (v1, . . . ,v`) is matching, or consistent, i� it causes the veri�er to

accept. We let G`
denote this 2-prover protocol with ` repetitions.

Theorem 2.2 (Parallel Repetition). [28, 44, 46] �ere is a constant
0 < γ ′ < 1, such that for every 2-prover game ˜G, if the value of ˜G

is x , then the value of the game ˜G` , obtained from ` > 0 parallel
repetitions of ˜G, is xγ

′` .

Corollary 2.3. �ere is a constant 0 < γ < 1 independent of `,
such that, if G is a Yes-Instance, then G` has value 1, and if G is a
No-Instance, then G` has value at most 2

−γ ` .

We now summarize the parameters of the game and introduce

some basic notation. Let QE denote the set of all possible queries

to the edge-prover, so each query is an `-tuple of edges, and |QE | =

m` = (5n/2)` . Each query has 6
`

possible answers – 6 colorings

per edge. �e set of feasible answers is the same for each edge-

query, and is denoted byAE
. Similarly, let QV denote the set of all

possible queries to the vertex-prover, so each query is an `-tuple

of vertices, and |QV | = n` . Each query has 3
`

feasible answers

– 3 colorings per vertex. �e set of feasible answers is the same

for each vertex-query, and is denoted by AV
. We think about the

veri�er as choosing a number of random bits, that determine the

choices of the queries Q ∈ QE and Q ′ ∈ QV that it sends to the

provers. We sometimes call each such random choice a “random

string”. �e set of all such choices is denoted by R, where for each

R ∈ R, we denote R = (Q,Q ′), with Q ∈ QE , Q ′ ∈ QV — the two

queries sent to the two provers when the veri�er chooses R. �en

Almost Polynomial Hardness of Node-Disjoint Paths in Grids STOC’18, June 25–29, 2018, Los Angeles, CA, USA

|R | = (2m)` = (5n)` , and each random string R ∈ R is chosen with

the same probability.

A function f : QE ∪QV → AE ∪AV
is called a global assignment

of answers to queries i� for every query Q ∈ QE to the edge-prover,

f (Q) ∈ AE
, and for every query Q ′ ∈ QV to the vertex-prover,

f (Q ′) ∈ AV
. We say that f is a perfect global assignment i� for

every random string R = (QE ,QV), (f (QE), f (QV)) is a matching

pair of answers. We need the following simple theorem.

Theorem 2.4. Assume that G is a Yes-Instance. �en there are 6
`

perfect global assignments f1, . . . , f6` of answers to queries, such that:
(i) for each queryQ ∈ QE to the edge-prover, for each possible answer
A ∈ AE , there is exactly one index 1 ≤ i ≤ 6

` with fi (Q) = A; and
(ii) for each query Q ′ ∈ QV to the vertex-prover, for each possible
answer A′ ∈ AV to Q ′, there are exactly 2

` indices 1 ≤ i ≤ 6
` , for

which fi (Q
′) = A′.

Proof. Suppose G is a Yes-Instance, and let χ be a valid coloring

of V (G). Let π1, . . . ,π6 be 6 di�erent permutations of {r ,д,b}. For

each 1 ≤ i ≤ 6, permutation πi de�nes a valid coloring χi of G: for

every vertex v ∈ V (G), if v is assigned a color c ∈ {C} by χ , then

χi assigns the color πi (c) to v . Notice that for each vertex v and

for each color c ∈ C, there are exactly two indices i ∈ {1, . . . , 6},
such that χi assigns the color c to v . Notice also that for each edge

(u,v), if c, c ′ ∈ C is any pair of distinct colors, then there is exactly

one index i ∈ {1, . . . , 6}, such that u is assigned the color c and v
is assigned the color c ′ by χi .

Let B be the set of all vectors of length `, whose entries belong

to {1, . . . , 6}, so that |B | = 6
`
. For each such vector b ∈ B, we

de�ne a perfect global assignment fb of answers to the queries, as

follows. Let Q ∈ QE be a query to the edge-player, and assume

that Q = (e1, . . . , e`). Fix some index 1 ≤ j ≤ `, and assume that

ej = (vj ,uj). Assume that bj = z, for some 1 ≤ z ≤ 6. We assign to

vj the color χz (vj), and we assign to uj the color χz (uj). Since χz
is a valid coloring of V (G), the two colors are distinct. �is de�nes

an answer A ∈ AE
to the query Q , that determines fb (Q).

Consider now some query Q ′ ∈ QV to the vertex-player, and

assume that Q ′ = (v1, . . . ,v`). Fix some index 1 ≤ j ≤ `, and

assume that bj = z, for some 1 ≤ z ≤ 6. We assign to vj the color

χz (vj). �is de�nes an answer A′ ∈ AV
to the query Q ′, that

determines fb (Q
′). Notice that for each 1 ≤ j ≤ `, the answers that

we choose for the jth coordinate of each query are consistent with

the valid coloring χbj of G . �erefore, it is immediate to verify that

for each b ∈ B, fb is a perfect global assignment.

We now �x some query Q ∈ QE of the edge-prover, and some

answer A ∈ AE
to it. Assume that Q = (e1, . . . , e`), where for

1 ≤ j ≤ `, ej = (vj ,uj). Let c j , c
′
j are the assignments to vj and uj

given by the jth coordinate of A, so that c j , c
′
j . Recall that there

is exactly one index zj ∈ {1, . . . , 6}, such that χzj assigns the color

c j to vj and the color c ′j to uj . Let b∗ ∈ B be the vector, where for

1 ≤ j ≤ `, b∗j = zj . �en fb∗ (Q) = A, and for all b , b∗, fb (Q) , A.

Finally, �x some query Q ′ ∈ QV of the vertex-prover, and some

answer A′ ∈ AV
to it. Let Q ′ = (v1, . . . ,v`). Assume that for each

1 ≤ j ≤ `, the jth coordinate of A′ contains the color c j . Recall that

there are exactly two indices z ∈ {1, . . . , 6}, such that χz assigns

the color c j to vj . Denote this set of two indices by Z j ⊆ {1, . . . , 6}.
Consider now some vector b ∈ B. If, for all 1 ≤ j ≤ `, bj ∈ Z j , then

fb (Q
′) = A′; otherwise, fb (Q

′) , A′. �erefore, the total number

of vectors b ∈ B, for which fb (Q
′) = A′ is exactly 2

`
. �

Two Graphs. Given a 3COL(5) instance G with |V (G)| = n, and an

integer ` > 0, we associate a bipartite graph H , that we call the

constraint graph, with it. For every query Q ∈ QE ∪ QV , there is a

vertexv(Q) in H , while for each random string R = (Q,Q ′), there is

an edge e(R) = (v(Q),v(Q ′)). We denote U E =
{
v(Q) | Q ∈ QE

}
,

and UV =
{
v(Q ′) | Q ′ ∈ QV

}
.

Assume now that we are given some subgraph H ′ ⊆ H of the con-

straint graph. We build a bipartite graph L(H ′) associated with it,

that takes into account the answers to the queries. (It may be con-

venient for now to think that H ′ = H , but later we will use smaller

sub-graphs ofH). �e vertices of L(H ′) are partitioned into two sub-

sets. First, for each edge-query Q ∈ QE with v(Q) ∈ H ′, for each

possible answerA ∈ AE
toQ , we introduce a vertexv(Q,A). We de-

note by S(Q) the set of these 6
`

vertices corresponding toQ , and we

call them a group representingQ . We denote by Û E
the resulting set

of vertices: Û E =
{
v(Q,A) | (Q ∈ QE and v(Q) ∈ H ′),A ∈ AE }

,

and we denote by U1 its resulting partition into groups, U1 ={
S(Q) | Q ∈ QE : v(Q) ∈ H ′

}
.

For the second set of vertices, for each vertex-query Q ′ ∈ QV with

v(Q ′) ∈ H ′, for each possible answer A′ ∈ AV
to Q ′, we introduce

2
`

vertices v1(Q
′,A′), . . . ,v

2
` (Q ′,A′). We call all these vertices

the copies of answer A′ to query Q ′. We denote the resulting set

of vertices by S(Q ′): S(Q ′) =
{
vi (Q

′,A′) | A′ ∈ AV , 1 ≤ i ≤ 2
`
}
,

so |S(Q ′)| = 6
`
. We call S(Q ′) the group representing Q ′. Let ÛV

denote the union of all such sets S(Q ′):

ÛV =
{
vi (Q

′,A′) | (Q ′ ∈ QV and v(Q ′) ∈ H ′),A′ ∈ AV , 1 ≤ i ≤ 2
`
}
,

and letU2 denote its resulting partition into groups:

U2 =
{
S(Q ′) | Q ′ ∈ QV : v(Q ′) ∈ H ′

}
.

�e �nal set of vertices of L(H ′) is Û E ∪ ÛV
. We now de�ne the

set of edges of L(H ′). For each random string R = (QE ,QV) whose

corresponding edge e(R) belongs to H ′, for every answer A ∈ AE

to QE
, let A′ ∈ AV

be the unique answer to QV
consistent with

A. For each copy vi (Q
V ,A′) of answer A′ to query QV

, we add

an edge (v(QE ,A),vi (Q
V ,A′)). Let E(R) denote the set of all such

resulting edges, so |E(R)| = 6
` · 2` = 12

`
. We denote by Ê the set

of all edges of L(H ′), so Ê =
⋃
R:e(R)∈H ′ E(R).

Finally, we de�ne bundles of edges in graph L(H ′). For every vertex

v ∈ Û E ∪ ÛV
, we de�ne a partition B(v) of the set of all edges

incident to v in L(H ′) into bundles, as follows. Fix some group

U ∈ U1 ∪ U2 that we have de�ned. If there is at least one edge

of L(H ′) connecting v to a vertex of U , then we de�ne a bundle

containing all edges connecting v to the vertices of U , and add

this bundle to B(v). �erefore, if v ∈ S(Q), then for each random

string R in which Q participates, with e(R) ∈ H ′, we have de�ned

one bundle of edges in B(v). For each vertex v ∈ Û E ∪ ÛV
, the

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat

set of all edges incident to v is thus partitioned into a collection

of bundles, that we denote by B(v), and we denote β(v) = |B(v)|.
Note that, if v ∈ S(Q) for some query Q ∈ QE ∪ QV , then β(v) is

exactly the degree of the vertex v(Q) in graph H ′. Note also that⋃
v ∈V (H ′) B(v) does not de�ne a partition of the edges of Ê, as each

such edge belongs to two bundles. However, each of

⋃
v ∈Û E B(v)

and

⋃
v ∈Û V B(v) is a partition of Ê. It is easy to verify that every

bundle that we have de�ned contains exactly 2
`

edges.

3 THE (r ,h)-GRAPH PARTITIONING
PROBLEM

We use a new graph partitioning problem as a proxy in order to

reduce the 3COL(5) problem to NDP-Grid. Since its de�nition is

somewhat complex, we start by de�ning its simpler variant, and by

providing some intuition and motivation for the �nal de�nition.

In the basic (r ,h)-Graph Partitioning problem, that we denote by

(r, h)-GP, we are given a bipartite graph G̃ = (V1,V2,E) and two

integral parameters h, r > 0. A solution consists of a partition

(W1, . . . ,Wr) of V1 ∪ V2 into r subsets, and for each 1 ≤ i ≤ r ,

a subset Ei ⊆ E(Wi) of edges, such that |Ei | ≤ h. �e goal is to

maximize

∑
i |Ei |.

One intuitive way to think about this problem is that we need to

partition the vertices of G̃ into r clusters, that are roughly balanced

(in terms of the number of edges in each cluster). However, un-

like the standard balanced partitioning problems, that a�empt to

minimize the number of edges connecting the di�erent clusters,

our goal is to maximize the total number of edges that remain in

the clusters. We suspect that the (r, h)-GP problem is very hard to

approximate, as it appears to be somewhat similar to the Densest

k-Subgraph problem (DkS). Like in DkS, we are looking for dense

subgraphs of G̃ (the subgraphs G̃[Wi]), but unlike DkS, where we

only need to �nd one such subgraph, we need to partition V (G̃)
into a prescribed number of dense subgraphs. We can prove that

NDP-Grid is at least as hard as (r, h)-GP (to within polylogarithmic

factors; see below), but unfortunately we could not prove strong

hardness of approximation for (r, h)-GP. In particular, known hard-

ness proofs for DkS do not seem to generalize to this problem. To

overcome this di�culty, we use a slightly more general problem

in our reduction. Before de�ning this problem, we provide some

intuition.

Intuition: Given a 3COL(5) instance G, we can construct the graph

H , and the graph L(H), as described above. We can then view L(H)

as an instance of (r, h)-GP, with r = 6
`

and h = |R |. Assume that

G is a Yes-Instance. �en we can use the perfect global assign-

ments f1, . . . , fr of answers to the queries, given by �eorem 2.4,

in order to partition the vertices of L(H) into r clustersW1, . . . ,Wr ,

as follows. Fix some 1 ≤ i ≤ r . For each query Q ∈ QE to the

edge-prover, setWi contains a single vertex v(Q,A) ∈ S(Q), where

A = fi (Q). For each query Q ′ ∈ QV to the vertex-prover, set Wi
contains a single vertex vj (Q

′,A′), where A′ = fi (Q
′), and the

indices j are chosen so that every vertex vj (Q
′,A′) participates in

exactly one clusterWi . From the construction of the graph L(H)
and the properties of the assignments fi guaranteed by �eorem 2.4,

we indeed obtain a partitionW1, . . . ,Wr of the vertices of L(H). For

each 1 ≤ i ≤ r , we then set Ei = E(Wi). Notice that for every

query Q ∈ QE ∪ QV , exactly one vertex of S(Q) participates in

each cluster Wi . �erefore, for each group U ∈ U1 ∪ U2, each

clusterWi contains exactly one vertex from this group. It is easy to

verify that for each 1 ≤ i ≤ r , for each random string R ∈ R, set

Ei contains exactly one edge of E(R), and so |Ei | = |R | = h, and

the solution value is h · r . Unfortunately, in the No-Instance, we

may still obtain a solution of a high value, as follows: instead of

distributing, for each query Q ∈ QE ∪ QV , the vertices of S(Q) to

di�erent clustersWi , we may put all vertices of S(Q) into a single

cluster. While in our intended solution to the (r, h)-GP problem

instance each cluster can be interpreted as an assignment of an-

swers to the queries, and the number of edges in each cluster is

bounded by the number of random strings satis�ed by this assign-

ment, we may no longer use this interpretation with this new type

of solutions
2
. Moreover, unlike in the Yes-Instance solutions, if

we now consider some clusterWi , and some random string R ∈ R,

we may add several edges of E(R) to Ei , which will further allow

us to accumulate a high solution value. One way to get around

this problem is to impose additional restrictions on the feasible

solutions to the (r, h)-GP problem, which are consistent with our

Yes-Instance solution, and thereby obtain a more general (and

hopefully more di�cult) problem. But while doing so we still need

to ensure that we can prove that NDP-Grid remains at least as hard

as the newly de�ned problem. Recall the de�nition of bundles in

graph L(H). It is easy to verify that in our intended solution to the

Yes-Instance, every bundle contributes at most one edge to the

solution. �is motivates our de�nition of a slight generalization of

the (r, h)-GP problem, that we call (r ,h)-Graph Partitioning with

Bundles, or (r,h)-GPwB.

�e input to (r,h)-GPwB problem is almost the same as before:

we are given a bipartite graph G̃ = (V1,V2,E), and two integral

parameters h, r > 0. Additionally, we are given a partitionU1 of

V1 into groups, and a partition U2 of V2 into groups, so that for

eachU ∈ U1 ∪U2, |U | = r . Using these groups, we de�ne bundles

of edges as follows: for every vertex v ∈ V1 ∪V2, for each group

U ∈ U1 ∪U2, such that some edge of E connects v to a vertex of

U , the set of all edges that connect v to the vertices of U de�nes a

single bundle. We denote, for each vertex v ∈ V1 ∪V2, by B(v) the

set of all bundles into which the edges incident to v are partitioned,

and by β(v) = |B(v)| the number of such bundles. We also denote

by B =
⋃
v ∈V1∪V2

B(v) – the set of all bundles. Note that as before,

B is not a partition of E, but every edge of E belongs to exactly two

bundles: one bundle in

⋃
v ∈V1

B(v), and one bundle in

⋃
v ∈V2

B(v).
As before, the goal is to compute a partition (W1, . . . ,Wr) ofV1∪V2

into r subsets, and for each 1 ≤ i ≤ r , select a subset Ei ⊆ E(Wi) of

edges, such that |Ei | ≤ h. But now there is an additional restriction:

we require that for each 1 ≤ i ≤ r , for every bundle B ∈ B, Ei
contains at most one edge e ∈ B. As before, the goal is to maximize∑
i |Ei |.

Valid Instances and Perfect Solutions. Given an instance I = (G̃ =
(V1,V2,E),U1,U2,h, r) of (r,h)-GPwB, let β∗(I) =

∑
v ∈V1

β(v).

2
We note that a similar problem arises if one a�empts to design naive hardness of

approximation proofs for DkS.

Almost Polynomial Hardness of Node-Disjoint Paths in Grids STOC’18, June 25–29, 2018, Los Angeles, CA, USA

Note that the value of every solution to I is bounded by β∗(I),
since for every vertex v ∈ V1, for every bundle B ∈ B(v), at most

one edge from the bundle may contribute to the solution value.

Next, we de�ne valid instances; they are de�ned so that the in-

stances that we obtain when reducing from 3COL(5) are always

valid, as we show later.

De�nition 3.1. We say that instance I of (r,h)-GPwB is valid i�

h = β∗(I)/r and h ≥ maxv ∈V1∪V2
{β(v)}.

Recall that for every group U ∈ U1 ∪U2, |U | = r . We now de�ne

perfect solutions to the (r,h)-GPwB problem. We will later show

that our intended solutions in the Yes-Instance are always perfect.

De�nition 3.2. We say that a solution ((W1, . . . ,Wr), (E1, . . . ,Er))
to a valid (r,h)-GPwB instance I is perfect i�: (i) for each group

U ∈ U1 ∪U2, exactly one vertex of U belongs to each clusterWi ;

and (ii) for each 1 ≤ i ≤ r , |Ei | = h.

Note that the value of a perfect solution to a valid instance I is

h · r = β∗(I), and this is the largest value that any solution to a

valid instance can achieve.

From 3COL(5) to (r,h)-GPwB. Suppose we are given an instance

G of the 3COL(5) problem, and an integral parameter ` > 0 (the

number of repetitions). Consider the corresponding constraint

graph H , and suppose we are given some subgraph H ′ ⊆ H . We

de�ne an instance I(H ′) of (r,h)-GPwB, as follows. �e underlying

graph is L(H ′) = (Û E , ÛV , Ê). We set the parameters r = 6
`

and

h = |E(H ′)|. �e partition U1 of Û E
is the same as before: the

vertices of Û E
are partitioned into groups S(Q) — one group for

each query Q ∈ QE with v(Q) ∈ V (H ′). Similarly, the partition

U2 of ÛV
into groups contains, for each query Q ′ ∈ QV with

v(Q ′) ∈ V (H ′), a group S(Q ′). (Recall that for all Q ∈ QE ∪ QV

with v(Q) ∈ H ′, |S(Q)| = 6
`
). We use the following simple claim.

Claim 3.3. Let G be an instance of 3COL(5), ` > 0 an integral pa-
rameter, and H ′ ⊆ H a subgraph of the corresponding constraint
graph. Consider the corresponding instance I(H ′) of (r,h)-GPwB.
�en I(H ′) is a valid instance, and moreover, ifG is a Yes-Instance,
then I(H ′) has a perfect solution.

Proof. We �rst verify that I(H ′) is a valid instance of (r,h)-GPwB.

Recall that for a query Q ∈ QE to the edge-prover and an answer

A ∈ AE
, the number of bundles incident to vertex v(Q,A) in L(H ′)

is exactly the degree of the vertex v(Q) in graph H ′. �e total

number of bundles incident to the vertices of S(Q) is then the degree

ofv(Q) inH ′ times |AE |. �erefore, β∗(I) =
∑
v(Q,A)∈Û E |β(v)| =

|E(H ′)| · |AE | = h · r . It is now immediate to verify that h =
β∗(I)/r . Similarly, for a vertex v = vj (Q

′,A′) ∈ UV
, the number

of bundles incident to v is exactly the degree of v(Q ′) in H ′. Since

h = |E(H ′)|, we get that h ≥ maxv ∈V1∪V2
{β(v)}, and so I(H ′) is a

valid instance.

Assume now thatG is a Yes-Instance. We de�ne a perfect solution

((W1, . . . ,Wr), (E1, . . . ,Er)) to this instance. Let

{
f1, f2, . . . , f6`

}
be the collection of perfect global assignments of answers to the

queries, given by �eorem 2.4. Recall that:

U1 =
{
S(Q) | Q ∈ QE ,v(Q) ∈ H ′

}
, and

U2 =
{
S(Q ′) | Q ′ ∈ QV ,v(Q ′) ∈ H ′

}
,

where each group inU1 ∪U2 has cardinality r = 6
`
. We now �x

some 1 ≤ i ≤ r , and de�ne the setWi of vertices. For each query

Q ∈ QE to the edge-prover with v(Q) ∈ V (H ′), if A = fi (Q), then

we add the vertex v(Q,A) toWi . For each query Q ′ ∈ QV to the

vertex-prover with v(Q ′) ∈ V (H ′), if A′ = fi (Q
′), then we select

some index 1 ≤ j ≤ 2
`
, and add the vertex vj (Q

′,A′) to Wi . �e

indices j are chosen so that every vertexvj (Q
′,A′) participates in at

most one clusterWi . From the construction of the graph L(H ′) and

the properties of the assignments fi guaranteed by �eorem 2.4, it

is easy to verify thatW1, . . . ,Wr partition the vertices of L(H ′), and

moreover, for each group S(Q) ∈ U1 ∪ U2, each setWi contains

exactly one vertex of S(Q).

Finally, for each 1 ≤ i ≤ r , we set Ei = E(Wi). We claim that

for each bundle B ∈ B, set Ei may contain at most one edge of B.

Indeed, let v ∈Wi be some vertex, letU ∈ U1 ∪U2 be some group,

and let B be the bundle containing all edges that connect v to the

vertices of U . SinceWi contains exactly one vertex of U , at most

one edge of B may belong to Ei .

It now remains to show that |Ei | = h for all i . Fix some 1 ≤ i ≤ r .

It is easy to verify that for each random string R = (Q,Q ′) with

e(R) ∈ H ′, set Wi contains a pair of vertices v(Q,A), vj (Q
′,A′),

where A and A′ are matching answers to Q and Q ′ respectively,

and so the corresponding edge connecting this pair of vertices in

L(H ′) belongs to Ei . �erefore, |Ei | = |E(H
′)| = h. �

From (r,h)-GPwB to NDP. �e following theorem is central to our

hardness of approximation proof. Its proof appears in Section 5.

Theorem 3.4. �ere is a constant c∗ > 1, and there is an e�cient ran-
domized algorithm, that, given a valid instance I = (G̃,U1,U2,h, r)

of (r,h)-GPwB with |E(G̃)| = M , constructs an instance ˆI = (Ĝ,M)
of NDP-Grid with |V (Ĝ)| = O(M4

log
2 M), such that the following

hold:

• If I has a perfect solution (of value β∗(I)), then with prob-
ability at least 1

2
over the construction of ˆI, instance ˆI of

NDP-Grid has a solution of value at least β∗(I)/(c∗ log
3 M);

and
• �ere is an e�cient deterministic algorithm, that, given a

solution P∗ to the NDP-Grid problem instance ˆI, constructs
a solution to the (r,h)-GPwB instance I, of value at least
|P∗ |/(c∗ · log

3 M).

Assume now that we are given an instanceG of 3COL(5), an integral

parameter ` > 0, and a subgraph H ′ ⊆ H of the corresponding

constraint graph. Recall that |E(L(H))| = nO (`). We let ĉ be a large

enough constant so that |E(L(H))| ≤ nĉ` , and let c
YI
= (ĉ · c∗)3. We

obtain the following corollary of �eorem 3.4:

Corollary 3.5. Suppose we are given a 3COL(5) instance G that is
a Yes-Instance, an integer ` > 0, and a subgraph H ′ ⊆ H of the

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat

corresponding constraint graph. �en with probability at least 1

2
, the

resulting instance ˆI of NDP-Grid has a solution of value at least
|E(H ′)| · 6`/(c

YI
`3 log

3 n), where n = |V (G)|. (�e probability is over
the random construction of ˆI(H ′)).

Proof. From Claim 3.3, instance I(H ′) = (L(H ′),U1,U2, r ,h) of

(r,h)-GPwB is a valid instance, and it has a perfect solution, whose

value must be β∗ = β∗(I(H ′)) = h · r = |E(H ′)| · 6` . From �eo-

rem 3.4, with probability at least 1/2, instance
ˆI(H ′) of NDP-Grid

has a solution of value at least
|E(H ′) | ·6`

c∗ log
3 M

, where M = |E(L(H ′))|.

Since logM ≤ ĉ` logn, the corollary follows. �

4 THE HARDNESS PROOF

Let G be an input instance of 3COL(5). Recall that γ is the absolute

constant from the Parallel Repetition �eorem (Corollary 2.3). We

will set the value of the parameter ` later, ensuring that ` > log
2 n,

where n = |V (G)|. Let α∗ = 2
Θ(`/logn)

be the hardness of ap-

proximation factor that we are trying to achieve. Given the tools

developed in the previous sections, a standard way to prove hard-

ness of NDP-Grid would work as follows. Given an instance G of

3COL(5) and the chosen parameter `, construct the correspond-

ing graph H (the constraint graph), together with the graph L(H).
�en construct an instance I(H) of (r,h)-GPwB as described in the

previous section, and convert it into an instance
ˆI(H) of NDP-Grid.

We note that, if G is a Yes-Instance, then from Corollary 3.5, with

constant probability there is a solution to
ˆI(H) of value at least

|R | ·6`

cYI`3
log

3 n
. Assume now thatG is a No-Instance. If we could show

that any solution to the corresponding (r,h)-GPwB instance I(H)

has value less than
|R | ·6`

c2

YI
·α ∗`6

log
6 n

, we would be done. Indeed, in such

a case, from �eorem 3.4, every solution to the NDP-Grid instance

ˆI(H) routes fewer than
|R | ·6`

cYIα ∗`3
log

3 n
demand pairs. If we assume for

contradiction that an α∗-approximation algorithm exists for NDP-
Grid, then, if G is a Yes-Instance, the algorithm would return a

solution to
ˆI(H) of value at least

|R | ·6`

cYIα ∗`3
log

3 n
, while, if G is a No-

Instance, no such solution would exist. �erefore, we could use the

α∗-approximation algorithm for NDP-Grid to distinguish between

the Yes- and the No-Instances of 3COL(5). Unfortunately, we are

unable to prove this directly. Our intended solution to the (r,h)-
GPwB instance I(H), de�ned over the graph L(H), for each query

Q ∈ QE ∪ QV , places every vertex of S(Q) into a distinct cluster.

Any such solution indeed has a low value in the No-Instance. But

a cheating solution may place many vertices from the same set S(Q)
into some clusterWj . Such a solution may have a high value, but

it may not translate into a strategy for the two provers with high

acceptance probability. In an extreme case, for each query Q , we

may place all vertices of S(Q) into a single clusterWi . Our main

idea in overcoming this di�culty is to note that such a cheating

solution can be used to compute a partition of the constraint graph

H into 6
`

subgraphs, each of which is signi�cantly smaller than

the original graph H , such that a large fraction of the edges of H
survive the partitioning procedure. Intuitively, if we now restrict

ourselves to only those random stringsR ∈ R, whose corresponding

edges have survived the partitioning procedure, then the problem

does not become signi�cantly easier, and we can recursively apply

the same argument to the resulting subgraphs of H . We make a

signi�cant progress in each such iteration, since the sizes of the

resulting sub-graphs of H decrease very fast. �e main tool that

we use to execute this plan is the following theorem.

Theorem 4.1. Suppose we are given an instance G of 3COL(5) with
|V (G)| = n, an integral parameter ` > log

2 n, some subgraph H ′ ⊆
H of the corresponding constraint graph H , and a parameter P >
1. Consider the corresponding instance I(H ′) of (r,h)-GPwB, and
assume that we are given a solution to this instance of value at least
|E(H ′)| ·6`/α , where α = c2

YI
·α∗ ·`6 log

6 n. �en there is a randomized

algorithm, that, in timeO
(
nO (`) · log P

)
, returns one of the following:

• Either a randomized strategy for the two provers that satis�es,
in expectation, more than a 2

−γ `/2-fraction of the constraints
R ∈ R with e(R) ∈ E(H ′); or

• A collectionH of disjoint sub-graphs ofH ′, such that for each
H ′′ ∈ H , |E(H ′′)| ≤ |E(H ′)|/2γ `/16, and with probability
at least (1 − 1/P),

∑
H ′′∈H |E(H

′′)| ≥
c ′ |E(H ′) |
`2α 2

, for some
�xed constant c ′.

We postpone the proof of the theorem to the following subsection,

a�er we complete the hardness proof for NDP-Grid. We assume

for contradiction that we are given a factor-α∗ approximation algo-

rithmA forNDP-Grid (recall thatα∗ = 2
Θ(`/logn)

). We will use this

algorithm to distinguish between the Yes- and the No-Instances

of 3COL(5). Suppose we are given an instance G of 3COL(5). For

an integral parameter ` > log
2 n, let H be the constraint graph

corresponding to G and `. We next show a randomized algorithm

with running time nO (`), that uses A as a subroutine, in order to

determine whether G is a Yes- or a No-Instance.

�roughout the algorithm, we maintain a collectionH of disjoint

sub-graphs of H , that we sometimes call clusters. SetH is in turn

partitioned into two subsets: setH1 of active clusters, and setH2

of inactive clusters. Consider now some inactive cluster H ′′ ∈ H2.

�is cluster de�nes a 2-prover game G(H ′′), where the queries to

the two provers are:{
QE ∈ QE | v(QE) ∈ V (H ′′)

}
, and{

QV ∈ QV | v(QV) ∈ V (H ′′)
}
,

respectively, and the constraints of the veri�er are:

R(H ′′) =
{
R ∈ R | e(R) ∈ E(H ′′)

}
.

For each inactive cluster H ′′ ∈ H2, we will store a randomized

strategy of the two provers for game G(H ′′), that satis�es at least

a 2
−γ `/2

-fraction of the constraints in R(H ′′).

At the beginning,H contains a single cluster – the graph H , which

is active. �e algorithm is executed whileH1 , ∅, and its execution

is partitioned into phases. In every phase, we process each of the

clusters that belongs to H1 at the beginning of the phase. Each

phase is then in turn is partitioned into iterations, where in every

Almost Polynomial Hardness of Node-Disjoint Paths in Grids STOC’18, June 25–29, 2018, Los Angeles, CA, USA

iteration we process a distinct active cluster H ′ ∈ H1. We now

describe an iteration when an active cluster H ′ ∈ H1 is processed.

(1) Construct an instance I(H ′) of (r,h)-GPwB.

(2) Use �eorem 3.4 to independently construct n4`
instances

ˆI(H ′) of NDP-Grid.

(3) Run the α∗-approximation algorithm A on each such in-

stance
ˆI(H ′). If the resulting solution, for each of these

instances, routes fewer than
|E(H ′) |6`

cYIα ∗`3
log

3 n
demand pairs,

halt and return “G is a No-Instance”.

(4) Otherwise, �x any instance
ˆI(H ′) for whichA returned a

solution of value at least
|E(H ′) |6`

cYIα ∗`3
log

3 n
. Denote |E(L(H ′))| =

M , and recall that M ≤ nĉ` . Use �eorem 3.4 to compute a

solution ((W1, . . . ,Wr), (E1, . . . ,Er)) to the instance I(H ′)
of (r,h)-GPwB, of value at least:

|E(H ′)| · 6`

(c
YI
α∗`3 log

3 n)(c∗ log
3 M)

≥
|E(H ′)| · 6`

c2

YI
α∗`6 log

6 n
=
|E(H ′)| · 6`

α
.

(5) Apply the algorithm from �eorem 4.1 to this solution, with

the parameter P = nc` , for a su�ciently large constant c .

If the outcome is a strategy for the provers satisfying more

than a 2
−γ `/2

-fraction of constraints R ∈ R with e(R) ∈
E(H ′), then declare cluster H ′ inactive and move it toH2;

store the resulting strategy of the provers. Otherwise, let

˜H be the collection of sub-graphs of H ′ returned by the

algorithm. If

∑
H ′′∈H |E(H

′′)| < c ′ |E(H ′)|/(`2α2), then

return “G is a No-Instance”. Otherwise, remove H ′ from

H1 and add all graphs of
˜H toH1.

If the algorithm terminates withH containing only inactive clusters,

then we return “G is a Yes-Instance”. We establish the correctness

of the algorithm in the following two lemmas.

Lemma 4.2. If G is a Yes-Instance, then with high probability, the
algorithm returns “G is a Yes-Instance”.

Proof. Consider an iteration of the algorithm when an active clus-

ter H ′ is processed. Notice that the algorithm may only determine

that G is a No-Instance in Step (3) or in Step (5). We now analyze

these two steps.

Consider �rst Step (3). From Corollary 3.5, with probability at least

1/2, a random instance
ˆI(H ′) of NDP-Grid has a solution of value

at least
|E(H ′) | ·6`

cYI`3
log

3 n
, and our α∗-approximation algorithm to NDP-

Grid must then return a solution of value at least
|E(H ′) | ·6`

cYIα ∗`3
log

3 n
.

Since we use n4`
independent random constructions of

ˆI(H ′), with

high probability, for at least one of them, we will obtain a solution

of value at least
|E(H ′) |6`

cYIα ∗`3
log

3 n
. �erefore, with high probability our

algorithm will not return “G is a No-Instance” due to Step (3) in

this iteration.

Consider now Step (5). �e algorithm can classify G as a No-

Instance in this step only if

∑
H ′′∈H |E(H

′′)| <
c ′ |E(H ′) |
`2α 2

. From

�eorem 4.1, this happens with probability at most 1/P , and from

our se�ing of the parameter P to be nc` for a large enough con-

stant c , with high probability our algorithm will not return “G is a

No-Instance” due to Step (5) in this iteration.

It is not hard to see that our algorithm performs nO (`) iterations,

and so, using the union bound, with high probability, it will classify

G as a Yes-Instance. �

Lemma 4.3. IfG is aNo-Instance, then the algorithm always returns
“G is a No-Instance”.

Proof. From Corollary 2.3, it is enough to show that, whenever

the algorithm classi�es G as a Yes-Instance, there is a strategy

for the two provers, that satis�es more than a fraction-2
−γ `

of the

constraints in R.

Note that the original graph H has at most nĉ` edges. In every

phase, the number of edges in each active graph decreases by a

factor of at least 2
γ `/16

. �erefore, the number of phases is bounded

by O(logn). If the algorithm classi�es G as a Yes-Instance, then it

must terminate when no active clusters remain. In every phase, the

number of edges in

⋃
H ′∈H E(H ′) goes down by at most a factor

`2α2/c ′. �erefore, at the end of the algorithm:

∑
H ′∈H2

|E(H ′)| ≥
|R|

(`2α2/c ′)O (logn)

=
|R |

(`14 · (α∗)2 · log
12 n)O (logn)

=
|R |

(α∗)O (logn)
.

By appropriately se�ing α∗ = 2
Θ(`/logn)

, we will ensure that the

number of edges remaining in the inactive clusters H ′ ∈ H2 is at

least |R |/2γ `/4. Each such edge corresponds to a distinct random

string R ∈ R. Recall that for each inactive cluster H ′, there is

a strategy for the provers in the corresponding game G(H ′) that

satis�es at least |E(H ′)|/2γ `/2 of its constraints. Taking the union

of all these strategies, we can satisfy more than |R |/2γ ` constraints

of R, contradicting the fact that G is a No-Instance. �

Running Time and the Hardness Factor. It is easy to see that our

algorithm has at most nO (`) iterations, where in every iteration it

processes a distinct active clusterH ′ ⊆ H . �e corresponding graph

L(H ′) has at most nO (`) edges, and so each of the nO (`) resulting

instances of NDP-Grid contains at most nO (`) vertices. �erefore,

the overall running time of the algorithm is nO (`). From Lemma 4.2,

if G is a No-Instance, then the algorithm always classi�es it as

such, and if G is a Yes-Instance, then the algorithm classi�es it as

a Yes-Instance with high probability. �e hardness factor that we

obtain is α∗ = 2
Θ(`/logn)

, while we only apply our approximation

algorithm to instances of NDP-Grid containing at most N = nO (`)

vertices. �e running time of the algorithm is nO (`), and it is a

randomized algorithm with a one-sided error.

Se�ing ` = log
p n for a large enough integer p, we obtain α∗ =

2
Θ((logN)1−2/(p+1))

, giving us a 2
(logn)(1−ϵ)

-hardness of approximation

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat

forNDP-Grid for any constant ϵ , assumingNP * RTIME(npoly logn).

Se�ing ` = nδ for some constant δ , we get that N = 2
O (nδ logn)

and α∗ = 2
Θ(nδ /logn)

, giving us a nΩ(1/(log logn)2)
-hardness of ap-

proximation for NDP-Grid, assuming that NP * RTIME(2n
δ
) for

some constant δ > 0.

4.1 Proof of �eorem 4.1

Recall that each edge of graph H ′ corresponds to some constraint

R ∈ R. Let R ′ ⊆ R be the set of all constraints R with e(R) ∈
E(H ′). Denote the solution to the (r,h)-GPwB instance I(H ′) by

((W1, . . . ,Wr), (E1, . . . ,Er)), and let E ′ =
⋃r
i=1

Ei . Recall that for

each random string R ∈ R ′, there is a set E(R) of 12
`

edges in graph

L(H ′) representing R. Due to the way these edges are partitioned

into bundles, at most 6
`

edges of E(R) may belong to E ′. We say

that a random string R ∈ R ′ is good i� E ′ contains at least 6
`/(2α)

edges of E(R), and we say that it is bad otherwise.

Observation 4.4. At least |R ′ |/(2α) random strings of R ′ are good.

Proof. Let x denote the fraction of good random strings in R ′. A

good random string contributes at most 6
`

edges to E ′, while a bad

random string contributes at most 6
`/(2α). If x < 1/(2α), then a

simple accounting shows that |E ′ | < |R ′ | · 6`/α = |E(H ′)| · 6`/α , a

contradiction. �

Consider some random stringR ∈ R ′, and assume thatR = (QE ,QV).

We denote by E ′(R) = E(R) ∩ E ′. Intuitively, say that a clusterWi is

a terrible cluster for R if the number of edges of E(R) that lie in Ei
is much smaller than |Wi ∩ S(Q

E)| or |Wi ∩ S(Q
V)|. We now give a

formal de�nition of a terrible cluster.

De�nition 4.5. Given a random string R = (QE ,QV) ∈ R and an

index 1 ≤ i ≤ 6
`
, we say that a clusterWi is a terrible cluster for R,

if:

• either |E ′(R) ∩ Ei | < |Wi ∩ S(Q
V)|/(8α); or

• |E ′(R) ∩ Ei | < |Wi ∩ S(Q
E)|/(8α).

We say that an edge e ∈ E ′(R) is a terrible edge if it belongs to the

set Ei , whereWi is a terrible cluster for R.

Observation 4.6. For each good random string R ∈ R ′, at most
6
`/(4α) edges of E ′(R) are terrible.

Proof. Assume for contradiction that more than 6
`/(4α) edges

of E ′(R) are terrible. Denote R = (QE ,QV). Consider some such

terrible edge e ∈ E ′(R), and assume that e ∈ Ei for some cluster

Wi , that is terrible for R. We say that e is a type-1 terrible edge i�

|E ′(R) ∩ Ei | < |Wi ∩ S(Q
V)|/(8α), and it is a type-2 terrible edge

otherwise, in which case |E ′(R) ∩ Ei | < |Wi ∩ S(QE)|/(8α) must

hold. Let E1(R) and E2(R) be the sets of all terrible edges of E ′(R)

of types 1 and 2, respectively. �en either |E1(R)| > 6
`/(8α), or

|E2(R)| > 6
`/(8α) must hold.

Assume �rst that |E1(R)| > 6
`/(8α). Fix some index 1 ≤ i ≤ 6

`
,

such that Wi is a cluster that is terrible for R, and |E(R) ∩ Ei | <
|Wi ∩ S(QV)|/(8α). We assign, to each edge e ∈ Ei ∩ E1(R), a

set of 8α vertices of Wi ∩ S(QV) arbitrarily, so that every vertex

is assigned to at most one edge; we say that the corresponding

edge is responsible for the vertex. Every edge of Ei ∩ E
1(R) is now

responsible for 8α distinct vertices ofWi ∩ S(Q
V). Once we �nish

processing all such clustersWi , we will have assigned, to each edge

of E1(R), a set of 8α distinct vertices of S(QV). We conclude that

|S(QV)| ≥ 8α |E1(R)| > 6
`
. But |S(QV)| = 6

`
, a contradiction.

�e proof for the second case, where |E2(R)| > 6
`/(16α) is identical,

and relies on the fact that |S(QE)| = 6
`
. �

We will use the following simple observation.

Observation 4.7. Let R ∈ R ′ be a good random string, with R =

(QE ,QV), and let 1 ≤ i ≤ 6
` be an index, such thatWi is not terrible

for R. �en |Wi ∩ S(Q
V)| ≥ |Wi ∩ S(Q

E)|/(8α) and |Wi ∩ S(Q
E)| ≥

|Wi ∩ S(Q
V)|/(8α).

Proof. Assume �rst for contradiction that |Wi ∩ S(Q
V)| < |Wi ∩

S(QE)|/(8α). Consider the edges of E(R) ∩ Ei . Each such edge

must be incident to a distinct vertex of S(QV). Indeed, if two edges

(e, e ′) ∈ E(R) ∩ Ei are incident to the same vertex vj (Q
V ,A) ∈

S(QV), then, since the other endpoint of each such edge lies in

S(QE), the two edges belong to the same bundle, a contradiction.

�erefore, |Ei ∩ E(R)| ≤ |Wi ∩ S(Q
V)| < |Wi ∩ S(Q

E)|/(8α), con-

tradicting the fact thatWi is not a terrible cluster for R.

�e proof for the second case, where |Wi∩S(Q
E)| < |Wi∩S(Q

V)|/(8α)
is identical. As before, each edge of E(R) ∩ Ei must be incident to a

distinct vertex of S(QE), as otherwise, a pair e, e ′ ∈ E(R) of edges

that are incident on the same vertex v(QE ,A) ∈ S(QE) belong

the the same bundle. �erefore, |Ei ∩ E(R)| ≤ |Wi ∩ S(QE)| <

|Wi ∩ S(Q
V)|/(8α), contradicting the fact thatWi is not a terrible

cluster for R. �

For each good random string R ∈ R ′, we discard the terrible edges

from set E ′(R), so |E ′(R)| ≥ 6
`/(4α) still holds.

Let z = 2
γ `/8

. We say that clusterWi is heavy for a random string

R = (QE ,QV) ∈ R ′ i� |Wi ∩ S(Q
E)|, |Wi ∩ S(Q

V)| > z. We say that

an edge e ∈ E ′(R) is heavy i� it belongs to set Ei , where Wi is a

heavy cluster for R. Finally, we say that a random string R ∈ R ′ is

heavy i� at least half of the edges in E ′(R) are heavy. Random strings

and edges that are not heavy are called light. We now consider two

cases. �e �rst case happens if at least half of the good random

strings are light. In this case, we compute a randomized strategy for

the provers to choose assignment to the queries, so that at least a

2
−γ `/2

-fraction of the constraints in R ′ are satis�ed in expectation.

In the second case, at least half of the good random strings are

heavy. We then compute a partitionH of H ′ as desired. We now

analyze the two cases. Note that if |E(H ′)| < z/(8α), then Case

2 cannot happen. �is is since h = |E(H ′)| < z/(8α) in this case,

and so no random strings may be heavy. �erefore, if H ′ is small

enough, we will return a strategy of the provers that satis�es a

large fraction of the constraints in R ′.

Case 1. �is case happens if at least half of the good random strings

are light. Let L ⊆ R ′ be the set of the good light random strings,

Almost Polynomial Hardness of Node-Disjoint Paths in Grids STOC’18, June 25–29, 2018, Los Angeles, CA, USA

so |L| ≥ |R ′ |/(4α). For each such random string R ∈ L, we let

EL(R) ⊆ E ′(R) be the set of all light edges corresponding to R,

so |EL(R)| ≥ 6
`/(8α). We now de�ne a randomized algorithm to

choose an answer to every query Q ∈ QE ∪ QV with v(Q) ∈ H ′.
Our algorithm chooses a random index 1 ≤ i ≤ r . For every query

Q ∈ QE ∪ QV with v(Q) ∈ H ′, we consider the set A(Q) of all

answersA, such that some vertexv(Q,A) belongs toWi (for the case

where Q ∈ QV , the vertex is of the form vj (Q,A)). We then choose

one of the answers from A(Q) uniformly at random, and assign it

to Q . If A(Q) = ∅, then we choose an arbitrary answer to Q .

We claim that the expected number of satis�ed constraints of R ′ is

at least |R ′ |/2γ `/2. Since L ≥ |R ′ |/(4α), it is enough to show that

the expected fraction the good light constraints that are satis�ed

is at least 4α |L|/2γ `/2, and for that it is su�cient to show that

each light constraint R ∈ L is satis�ed with probability at least

4α/2γ `/2.

Fix one such constraint R = (QE ,QV) ∈ L, and consider an edge

e ∈ EL(R). Assume that e connects a vertex v(QE ,A) to a vertex

vj (Q
V ,A′), and that e ∈ Ei . We say that edge e is happy i� our

algorithm chose the index i , the answer A to query QE
, and the

answer A′ to query QV
. Notice that due to our construction of

bundles, at most one edge e ∈ EL(R)may be happy with any choice

of the algorithm; moreover, if any edge e ∈ EL(R) is happy, then the

constraint R is satis�ed. �e probability that a �xed edge e is happy

is at least 1/(8 · 6`z2α). Indeed, we choose the correct index i with

probability 1/6` . Since e belongs to Ei ,Wi is a light cluster for R,

and so either |S(QE)| ≤ z, or |S(QV)| ≤ z. Assume without loss of

generality that it is the former; the other case is symmetric. �en,

since e is not terrible, from Observation 4.7, |S(QV)| ≤ 8αz, and

so |A(QV)| ≤ 8αz, while |A(QE)| ≤ z. �erefore, the probability

that we choose answer A to QE
and answer A′ to AV is at least

1/(8αz2), and overall, the probability that a �xed constraint R ∈ L

is satis�ed is at least |EL(R)|/(8 · 6`z2α) ≥ 1/(64z2α2) ≥ 4α/2γ `/2,

since z = 2
γ `/8

, and α < 2
γ `/32

.

Case 2. �is case happens if at least half of the good random strings

are heavy. Let R ′′ ⊆ R ′ be the set of the heavy random strings,

so |R ′′ | ≥ |R ′ |/(4α). For each such random string R ∈ R ′′, we let

EH (R) ⊆ E ′(R) be the set of all heavy edges corresponding to R.

Recall that |EH (R)| ≥ 6
`/(8α).

Fix some heavy random string R ∈ R ′′ and assume that R =
(QE ,QV). For each 1 ≤ i ≤ r , let Ei (R) = EH (R) ∩ Ei . Recall

that, if Ei (R) , ∅, then |Wi ∩ S(Q
E)|, |Wi ∩ S(Q

V)| ≥ z must hold,

and, from the de�nition of terrible clusters, |Ei (R)| ≥ z/(8α). It is

also immediate that |Ei (R)| ≤ |E
′(R)| ≤ 6

`
.

We partition the set

{
1, . . . , 6`

}
of indices into at most log(|EH (R)|) ≤

log(6`) classes, where index 1 ≤ y ≤ 6
`

belongs to class Cj (R) i�

2
j−1 < |EH (R) ∩ Ey | ≤ 2

j
. �en there is some index jR , so that∑

y∈CjR (R)
|EH (R) ∩ Ey | ≥ |E

H (R)|/log(6`). We say that R chooses
the index jR . Notice that:

∑
y∈CjR (R)

|EH (R) ∩ Ey | ≥
|EH (R)|

log(6`)
≥

6
`

8`α log 6

.

Moreover,

|CjR (R)| ≥
|EH (R)|

log(6`) · 2jR
≥

6
`

8 · 2jR · `α log 6

. (1)

Let j∗ be the index that was chosen by at least |R ′′ |/log(6`) random

strings, and let R∗ ⊆ R ′′ be the set of all random strings that chose

j∗. We are now ready to de�ne a collection H =
{
H1, . . . ,H6

`

}
of sub-graphs of H ′. We �rst de�ne the sets of vertices in these

subgraphs, and then the sets of edges. Choose a random ordering

of the clustersW1, . . . ,W6
` ; re-index the clusters according to this

ordering. For each query Q ∈ QE ∪ QV with v(Q) ∈ H ′, add the

vertex v(Q) to set V (Hi), where i is the smallest index for which

Wi contains at least 2
j∗−1

vertices of S(Q); if no such index i exists,

then we do not add v(Q) to any set.

In order to de�ne the edges of each graph Hi , for every random

string R = (QE ,QV) ∈ R∗, if i ∈ Cj∗ (R), and bothv(QE) andv(QV)

belong toV (Hi), then we add the corresponding edge e(R) to E(Hi).

�is completes the de�nition of the familyH =
{
H1, . . . ,H6

`

}
of

subgraphs of H ′. We now show that the family H of graphs has

the desired properties. It is immediate to verify that the graphs in

H are disjoint. �e proof of the following claim is deferred to the

full version of the paper.

Claim 4.8. For each 1 ≤ i ≤ 6
` , |E(Hi)| ≤ |E(H

′)|/2γ `/16.

Claim 4.9. E
[∑r

i=1
|E(Hi)|

]
≥

|E(H ′) |
128`2α 2

log
2

6

.

Proof. Recall that |R∗ | ≥ |R ′′ |/log(6`) ≥ |R ′ |/(4α log(6`)). We

now �x R ∈ R∗ and analyze the probability that e(R) ∈
⋃r
i=1

E(Hi).

Assume that R = (QE ,QV). Let J be the set of indices 1 ≤ y ≤ 6
`
,

such that |Wi ∩S(Q
V)| ≥ 2

j∗−1
. Clearly, |J | ≤ 6

`/2j
∗−1

, and v(QV)

may only belong to graph Hi if i ∈ J . Similarly, let J ′ be the set

of indices 1 ≤ y ≤ 6
`
, such that |Wi ∩ S(Q

E)| ≥ 2
j∗−1

. As before,

|J ′ | ≤ 6
`/2j

∗−1
, and v(QE) may only belong to graph Hi if i ∈ J .

Observe that every index y ∈ Cj∗ (R) must belong to J ∩ J ′, and,

since j∗ = jR , from Equation (1), |Cj∗ (R)| ≥
6
`

8·2j
∗
·`α log 6

.

Let y ∈ J ∪ J ′ be the �rst index that occurs in our random ordering.

If y ∈ Cj∗ (R), then edge e(R) is added to Hy . �e probability of this

happening is at least:

|Cj∗ (R)|

|J ∪ J ′ |
≥

6
`/(8 · 2j

∗

· `α log 6)

2 · 6`/2j
∗−1

=
1

32`α log 6

.

Overall, the expectation of

∑r
i=1
|E(Hi)| is at least:

|R∗ |

32`α log 6

≥
|R ′ |

128`2α2
log

2
6

=
|E(H ′)|

128`2α2
log

2
6

.

�

Denote the expectation of

∑r
i=1
|E(Hi)| by µ, and let c = 128 log

2
6,

so that µ = |E(H ′)|/(c`2α2). Let E be the event that

∑r
i=1
|E(Hi)| ≥

|E(H ′)|/(2c`2α2) = µ/2. We claim that E happens with probability

at least 1/(2c`2α2). Indeed, assume that it happens with probability

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat

p < 1/(2c`2α2). If E does not happen, then

∑r
i=1
|E(Hi)| ≤ µ/2, and

if it happens, then

∑r
i=1
|E(Hi)| ≤ |E(H

′)|. Overall, this gives us

that E
[∑r

i=1
|E(Hi)|

]
≤ (1 − p)µ/2 + p |E(H ′)| < µ, a contradiction.

We repeat the algorithm for constructingH O(`2α2
poly logn log P)

times. We are then guaranteed that with probability at least (1−1/P),
event E happens in at least one run of the algorithm. It is easy

to verify that the running time of the algorithm is bounded by

O(nO (`) · log P), since |V (L(H ′))| ≤ nO (`).

5 FROM (r,h)-GPwB TO NDP-Grid

In this section we prove �eorem 3.4, by providing a reduction

from (r,h)-GPwB to NDP-Grid. We assume that we are given an

instance I = (G̃ = (V1 ∪ V2,E),U1,U2,h, r) of (r,h)-GPwB. Let

|V1 | = N1, |V2 | = N2, |E | = M , and N = N1 + N2. We assume that

I is a valid instance, so, if we denote by β∗ = β∗(I) =
∑
v ∈V1

β(v),
then h = β∗/r , and h ≥ maxv ∈V1∪V2

{β(v)}.

We start by describing a randomized construction of the instance

ˆI = (Ĝ,M) of NDP-Grid.

Fix an arbitrary ordering ρ of the groups inU1. Using ρ, we de�ne

an ordering σ of the vertices of V1, as follows. �e vertices that

belong to the same group U ∈ U1 are placed consecutively in

the ordering σ , in an arbitrary order. �e ordering between the

groups in U1 is the same as their ordering in ρ. We assume that

V1 =
{
v1,v2, . . . ,vN1

}
, where the vertices are indexed according

to their order in σ . Next, we select a random ordering ρ ′ of the

groups inU2. We then de�ne an ordering σ ′ of the vertices of V2

exactly as before, using the ordering ρ ′ of U2. We assume that

V2 =
{
v ′

1
,v ′

2
, . . . ,v ′N2

}
, where the vertices are indexed according

to their ordering in σ ′. We note that the choice of the ordering ρ ′

is the only randomized part of our construction.

Consider some vertexv ∈ V1. Recall that B(v) denotes the partition

of the edges incident tov into bundles, where every bundle is a non-

empty subsets of edges, and that β(v) = |B(v)|. Each such bundle

B ∈ B(v) corresponds to a single group U (B) ∈ U2, and contains

all edges that connect v to the vertices of U (B). �e ordering ρ ′ of

the groups inU2 naturally induces an ordering of the bundles in

B(v), where B appears before B′ in the ordering i� U (B) appears

beforeU (B′) in ρ ′. We denoteB(v) =
{
B1(v),B2(v), . . . ,Bβ (v)(v)

}
,

where the bundles are indexed according to this ordering.

Similarly, for a vertex v ′ ∈ V2, every bundle B ∈ B(v ′) corresponds

to a group U (B) ∈ U1, and contains all edges that connect v ′ to

the vertices of U (B). As before, the ordering ρ of the groups inU1

naturally de�nes an ordering of the bundles in B(v ′). We denote

B(v ′) =
{
B1(v

′),B2(v
′), . . . ,Bβ (v ′)(v

′)
}
, and we assume that the

bundles are indexed according to this ordering.

We are now ready to de�ne the instance
ˆI = (Ĝ,M) of NDP-Grid,

from the input instance (G̃ = (V1,V2,E),U1,U2,h, r) of (r,h)-GPwB.

Let λ = 2048 ·
⌈
M2 · logM

⌉
. �e graph Ĝ is simply the (λ × λ)-grid,

soV (Ĝ) = O(M4
log

2 M) as required. We now turn to de�ne the set

M of the demand pairs. We �rst de�ne the setM itself, without

specifying the locations of the corresponding vertices in Ĝ, and

later specify a mapping of all vertices participating in the demand

pairs to V (Ĝ).

Consider the underlying graph G̃ = (V1,V2,E) of the (r,h)-GPwB
problem instance. Initially, for every edge e = (u,v) ∈ E, with u ∈
V1,v ∈ V2, we de�ne a demand pair (s(e), t(e)) representing e , and

add it toM, so that the vertices participating in the demand pairs

are all distinct. Next, we process the vertices v ∈ V1 ∪V2 one-by-

one. Consider �rst some vertex v ∈ V1, and some bundle B ∈ B(v).
Assume that B = {e1, . . . , ez }. Recall that for each 1 ≤ i ≤ z, setM

currently contains a demand pair (s(ei), t(ei)) representing ei . We

unify all vertices s(e1), . . . , s(ez) into a single vertex sB . We then

replace the demand pairs (s(e1), t(e1)), . . . , (s(ez), t(ez)) with the

demand pairs (sB , t(e1)), . . . , (sB , t(ez)). Once we �nish processing

all vertices in V1, we perform the same procedure for every vertex

ofV2: given a vertexv ′ ∈ V2, for every bundle B′ ∈ B(v ′), we unify

all destination vertices t(e) with e ∈ B′ into a single destination

vertex, that we denote by tB′ , and we updateM accordingly. �is

completes the de�nition of the setM of the demand pairs.

Observe that each edge of e ∈ E still corresponds to a unique

demand pair in M, that we will denote by (sB(e), tB′(e)), where

B(e) and B′(e) are the two corresponding bundles containing e .

Given a subset E ′ ⊆ E of edges of G̃, we denote by M(E ′) ={
(sB(e), tB′(e)) | e ∈ E

′
}

the set of all demand pairs corresponding

to the edges of E ′.

In order to complete the reduction, we need to show a mapping of

all source and all destination vertices ofM to the vertices of Ĝ . Let

R′ and R′′ be two rows of the grid Ĝ, lying at a distance at least

λ/4 from each other and from the top and the bo�om boundaries

of the grid. We will map all vertices of S(M) to R′, and all vertices

of T (M) to R′′.

Locations of the sources. Let K1,K2, . . . ,KN1
be a collection of N1

disjoint sub-paths ofR′, where each sub-path contains 1024·dh · logMe
vertices; the sub-paths are indexed according to their le�-to-right

ordering on R′, and every consecutive pair of the paths is separated

by at least 10M vertices from each other and from the le� and the

right boundaries of Ĝ . Observe that the width λ of the grid is large

enough to allow this, as h ≤ M must hold. For all 1 ≤ i ≤ N1, we

call Ki the block representing the vertex vi ∈ V1. We now �x some

1 ≤ i ≤ N1 and consider the blockKi representing the vertexvi . We

map the source vertices sB1(vi), sB2(vi), . . . , sBβ (vi)(vi)
to vertices of

Ki , so that they appear on Ki in this order, so that every consecu-

tive pair of sources is separated by exactly 512 · dh · logM/β(vi)e
vertices.

Locations of the destinations. Similarly, we let K ′
1
,K ′

2
, . . . ,K ′N2

be a

collection of N2 disjoint sub-paths of R′′, each of which contains

1024 · dh · logMe vertices, so that the sub-paths are indexed accord-

ing to their le�-to-right ordering on R′′, and every consecutive pair

of the paths is separated by at least 10M vertices from each other

and from the le� and the right boundaries of Ĝ. We call K ′i the

block representing the vertex v ′i ∈ V2. We now �x some 1 ≤ i ≤ N2

and consider the block K ′i representing the vertex v ′i . We map

the destination vertices tB1(v ′i)
, tB2(v ′i)

, . . . , tBβ (v′i)
(v ′i)

to vertices of

Almost Polynomial Hardness of Node-Disjoint Paths in Grids STOC’18, June 25–29, 2018, Los Angeles, CA, USA

K ′i , so that they appear on K ′i in this order, and every consecutive

pair of destinations is separated by exactly 512 ·
⌈
h · logM/β(v ′i)

⌉
vertices.

�is concludes the de�nition of the instance
ˆI = (Ĝ,M) of NDP-

Grid. We now turn to analyze its properties.

Theorem 5.1. �ere is a deterministic e�cient algorithm, that, given
a valid instance I = (G̃ = (V1,V2,E),U1,U2,h, r) of the (r,h)-GPwB
problem with |E | = M , the corresponding (random) instance ˆI of
NDP-Grid, and a solution P∗ to ˆI, computes a solution to the (r,h)-
GPwB instance I of value at least Ω(|P∗ |/log

3 M).

Proof. LetM∗ ⊆ M be the set of the demand pairs routed by

the solution P∗, and let E∗ ⊆ E be the set of all edges e , whose

corresponding demand pair belongs to M∗. Let G̃ ′ ⊆ G̃ be the

sub-graph of G̃ induced by the edges in E∗. Notice that whenever

two edges of G̃ belong to the same bundle, their corresponding

demand pairs share a source or a destination. Since all paths in P∗

are node-disjoint, all demand pairs inM∗ have distinct sources and

destinations, and so no two edges in E∗ belong to the same bundle.

Note that, if |P∗ | ≤ 2
64h log

3 M , then we can return the solution

((W1, . . . ,Wr), (E1, . . . ,Er)), where W1 = V (G̃) and W2 = W3 =

· · · =Wr = ∅; set E1 contains an arbitrary subset of

⌈
|P∗ |

2
64

log
3 M

⌉
≤ h

edges of E∗, and all other sets Ei are empty. Since no two edges of

E∗ belong to the same bundle, we obtain a feasible solution to the

(r,h)-GPwB problem instance of value Ω(|P∗ |/log
3 M). �erefore,

from now on, we assume that |P∗ | > 2
64h log

3 M .

Our algorithm computes a solution to the (r,h)-GPwB instance I

by repeatedly partitioning G̃ ′ into smaller and smaller sub-graphs,

by employing suitably de�ned balanced cuts.

Recall that, given a graph H, a cut in H is a bi-partition (A,B) of

its vertices. We denote by EH(A,B) the set of all edges with one

endpoint in A and another in B, and by EH(A) and EH(B) the sets

of all edges with both endpoints in A and in B, respectively. Given

a cut (A,B) of H, the value of the cut is |EH(A,B)|. We will omit the

subscript H when clear from context.

De�nition 5.2. Given a graph H and a parameter 0 < ρ < 1, a

cut (A,B) of H is called a ρ-edge-balanced cut i� |E(A)|, |E(B)| ≥
ρ · |E(H)|.

�e following theorem is central to the proof of �eorem 5.1. Due

to lack of space, its proof is deferred to the full version of the paper.

Theorem 5.3. �ere is an e�cient algorithm, that, given a vertex-
induced subgraph H of G̃ ′ with |E(H)| > 2

64h log
3 M , computes a

1/32-edge-balanced cut of H, of value at most |E(H) |
64 logM .

�e proof of the theorem exploits the connection between routing

in grids and graph drawings, and the fact that graphs with low

crossing number have small balanced cuts. We now complete the

proof of �eorem 5.1. Our algorithm maintains a collection G of

disjoint vertex-induced sub-graphs of G̃ ′, and consists of a number

of phases. �e input to the �rst phase is the collection G containing

a single graph - the graph G̃ ′. �e algorithm continues as long as

G contains a graph H ∈ G with |E(H)| > 2
64 · h log

3 M ; if no such

graph H exists, the algorithm terminates. Each phase is executed as

follows. We process every graph H ∈ G with |E(H)| > 2
64 ·h log

3 M
one-by-one. When graph H is processed, we apply �eorem 5.3 to

it, obtaining a 1/32-edge-balanced cut (A,B) of H, of value at most

|E(H) |
64 logM . We then remove H from G, and add H[A] and H[B] to G

instead. �is completes the description of the algorithm. We use

the following claim to analyze it. Due to lack of space, the proof is

deferred to the full version of the paper.

Claim 5.4. LetG′ be the �nal set of disjoint sub-graphs of G̃ ′ obtained
at the end of the algorithm. �en

∑
H∈G′ |E(H)| ≥ Ω(|E(G̃ ′)|), and

|G′ | ≤ r .

We are now ready to de�ne the solution ((W1, . . . ,Wr), (E1, . . . ,Er))
to the (r,h)-GPwB problem instance I. Let G′ be the set of the sub-

graphs of G̃ ′ obtained at the end of our algorithm, and denote

G′ = {H1,H2, . . . ,Hz }. Recall that from Claim 5.4, z ≤ r . For

1 ≤ i ≤ z, we letWi = V (Hi). If |E(Hi)| ≤ h, then we let Ei = E(Hi);

otherwise, we let Ei contain any subset of h edges of E(Hi). Since

|E(Hi)| ≤ 2
64h log

3 M , in either case, |Ei | ≥ Ω(|E(Hi)|/log
3 M).

For i > z, we setWi = ∅ and Ei = ∅. Since, as observed before, no

pair of edges of E∗ belongs to the same bundle, it is immediate to

verify that we obtain a feasible solution to the (r,h)-GPwB problem

instance. From Claim 5.4, the value of the solution is:

r∑
i=1

|Ei | ≥
r∑
i=1

Ω(|E(Hi)|/log
3 M)

= Ω(|E(G̃ ′)|/log
3 M)

= Ω(|P∗ |/log
3 M).

�

�e following theorem concludes the proof of �eorem 3.4. Its

proof is omi�ed due to lack of space.

Theorem 5.5. Suppose we are given a valid instance I = (G̃ =
(V1,V2,E),U1,U2,h, r) of (r,h)-GPwB, such that I has a perfect
solution. �en with probability at least 1/2 over the random choices
made in the construction of the corresponding instance ˆI of NDP-
Grid, there is a solution to ˆI, routing Ω(β∗(I)/log

3 M) demand pairs
via a set of Node-Disjoint paths.

REFERENCES
[1] Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri

Weinstein. 2011. Inapproximabilty of Densest k-Subgraph from Average Case

Hardness.

[2] Ma�hew Andrews. 2010. Approximation Algorithms for the Edge-Disjoint

Paths Problem via Raecke Decompositions. In Proceedings of IEEE FOCS. 277–286.

h�ps://doi.org/10.1109/FOCS.2010.33

[3] Ma�hew Andrews, Julia Chuzhoy, Venkatesan Guruswami, Sanjeev Khanna,

Kunal Talwar, and Lisa Zhang. 2010. Inapproximability of Edge-Disjoint Paths

and low congestion routing on undirected graphs. Combinatorica 30, 5 (2010),

485–520.

[4] Ma�hew Andrews and Lisa Zhang. 2005. Hardness of the undirected edge-

disjoint paths problem. In STOC. ACM, 276–283.

[5] Yonatan Aumann and Yuval Rabani. 1995. Improved bounds for all optical routing.

In Proceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms

https://doi.org/10.1109/FOCS.2010.33

STOC’18, June 25–29, 2018, Los Angeles, CA, USA Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat

(SODA ’95). Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 567–576. h�p://dl.acm.org/citation.cfm?id=313651.313820

[6] B. Awerbuch, R. Gawlick, T. Leighton, and Y. Rabani. 1994. On-line admission

control and circuit routing for high performance computing and communication.

In Proceedings 35th Annual Symposium on Foundations of Computer Science. 412–

423. h�ps://doi.org/10.1109/SFCS.1994.365675

[7] Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan

Vijayaraghavan. 2010. Detecting high log-densities: an O(n1/4
) approximation

for densest k-subgraph. In Proceedings of the 42nd ACM Symposium on �eory of
Computing, STOC 2010, Cambridge, Massachuse�s, USA, 5-8 June 2010. 201–210.

h�ps://doi.org/10.1145/1806689.1806718

[8] Andrei Z. Broder, Alan M. Frieze, Stephen Suen, and Eli Upfal. 1998. Op-

timal Construction of Edge-Disjoint Paths in Random Graphs. SIAM J.
Comput. 28, 2 (1998), 541–573. h�ps://doi.org/10.1137/S0097539795290805

arXiv:h�ps://doi.org/10.1137/S0097539795290805

[9] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. 1992. Existence and Construction

of Edge Disjoint Paths on Expander Graphs. In Proceedings of the Twenty-fourth
Annual ACM Symposium on �eory of Computing (STOC ’92). ACM, New York,

NY, USA, 140–149. h�ps://doi.org/10.1145/129712.129727

[10] Chandra Chekuri and Julia Chuzhoy. [n. d.]. Half-Integral All-or-Nothing Flow.

Unpublished Manuscript.

[11] Chandra Chekuri and Alina Ene. 2013. Poly-logarithmic Approximation for

Maximum Node Disjoint Paths with Constant Congestion. In Proc. of ACM-SIAM
SODA.

[12] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. 2005. Multicommodity

�ow, well-linked terminals, and routing problems. In Proc. of ACM STOC. 183–

192.

[13] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. 2006. An O (
√
n)

Approximation and Integrality Gap for Disjoint Paths and Unspli�able Flow.

�eory of Computing 2, 1 (2006), 137–146.

[14] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. 2009. Edge-disjoint

paths in planar graphs with constant congestion. SIAM J. Comput. 39, 1 (2009),

281–301.

[15] Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. 2007. Multicom-

modity Demand Flow in a Tree and Packing Integer Programs. ACM Trans.
Algorithms 3, 3, Article 27 (Aug. 2007). h�ps://doi.org/10.1145/1273340.1273343

[16] Julia Chuzhoy. 2016. Routing in Undirected Graphs with Constant Congestion.

SIAM J. Comput. 45, 4 (2016), 1490–1532. h�ps://doi.org/10.1137/130910464

[17] Julia Chuzhoy and David H. K. Kim. 2015. On Approximating Node-Disjoint Paths

in Grids. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM2015, August 24-26, 2015, Princeton,
NJ, USA (LIPIcs), Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim

(Eds.), Vol. 40. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 187–211.

h�ps://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.187

[18] Julia Chuzhoy, David H. K. Kim, and Shi Li. 2016. Improved Approximation for

Node-disjoint Paths in Planar Graphs. In Proceedings of the 48th Annual ACM
SIGACT Symposium on �eory of Computing (STOC 2016). ACM, New York, NY,

USA, 556–569. h�ps://doi.org/10.1145/2897518.2897538

[19] Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. 2017. Improved Approxi-

mation Algorithm for Node-Disjoint Paths in Grid Graphs with Sources on Grid

Boundary. (2017). Unpublished Manuscript.

[20] Julia Chuzhoy, David H. K. Kim, and Rachit Nimavat. 2017. New hardness results

for routing on disjoint paths. In Proceedings of the 49th Annual ACM SIGACT
Symposium on �eory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017. 86–99. h�ps://doi.org/10.1145/3055399.3055411

[21] Julia Chuzhoy and Shi Li. 2016. A Polylogarithmic Approximation Algorithm

for Edge-Disjoint Paths with Congestion 2. J. ACM 63, 5 (2016), 45:1–45:51.

h�p://dl.acm.org/citation.cfm?id=2893472

[22] Shimon Even, Alon Itai, and Adi Shamir. 1976. On the Complexity of Timetable

and Multicommodity Flow Problems. SIAM J. Comput. 5, 4 (1976), 691–703.

h�ps://doi.org/10.1137/0205048

[23] Uriel Feige. 2002. Relations Between Average Case Complexity and Approx-

imation Complexity. In Proceedings of the �iry-fourth Annual ACM Sympo-
sium on �eory of Computing (STOC ’02). ACM, New York, NY, USA, 534–543.

h�ps://doi.org/10.1145/509907.509985

[24] Uriel Feige, Magnús M. Halldórsson, Guy Kortsarz, and Aravind Srinivasan. 2003.

Approximating the Domatic Number. SIAM J. Comput. 32, 1 (Jan. 2003), 172–195.

h�ps://doi.org/10.1137/S0097539700380754

[25] Krzysztof Fleszar, Ma�hias Mnich, and Joachim Spoerhase. 2016. New Algo-

rithms for Maximum Disjoint Paths Based on Tree-Likeness. In 24th Annual
European Symposium on Algorithms (ESA 2016) (Leibniz International Proceedings
in Informatics (LIPIcs)), Piotr Sankowski and Christos Zaroliagis (Eds.), Vol. 57.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 42:1–

42:17. h�ps://doi.org/10.4230/LIPIcs.ESA.2016.42

[26] Alan M. Frieze. 2000. Edge-disjoint Paths in Expander Graphs. In Proceedings of
the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’00).

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 717–725.

h�p://dl.acm.org/citation.cfm?id=338219.338631

[27] N. Garg, V.V. Vazirani, and M. Yannakakis. 1997. Primal-dual approximation

algorithms for integral �ow and multicut in trees. Algorithmica 18, 1 (1997),

3–20. h�ps://doi.org/10.1007/BF02523685

[28] �omas Holenstein. 2007. Parallel Repetition: Simpli�cations and the No-

signaling Case. In Proceedings of the �irty-ninth Annual ACM Symposium on
�eory of Computing (STOC ’07). ACM, New York, NY, USA, 411–419. h�ps:

//doi.org/10.1145/1250790.1250852

[29] R. Karp. 1975. On the Complexity of Combinatorial Problems. Networks 5 (1975),

45–68. Issue 1.

[30] Ken-Ichi Kawarabayashi and Yusuke Kobayashi. 2013. An O(log n)-

Approximation Algorithm for the Edge-Disjoint Paths Problem in Eulerian Pla-

nar Graphs. ACM Trans. Algorithms 9, 2, Article 16 (March 2013), 13 pages.

h�ps://doi.org/10.1145/2438645.2438648

[31] Subhash Khot. 2004. Ruling Out PTAS for Graph Min-Bisection, Densest Sub-

graph and Bipartite Clique. In Proceedings of the 45th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’04). IEEE Computer Society, Washington,

DC, USA, 136–145. h�ps://doi.org/10.1109/FOCS.2004.59

[32] Jon Kleinberg. 2005. An Approximation Algorithm for the Disjoint Paths Problem

in Even-Degree Planar Graphs. In Proceedings of the 46th Annual IEEE Sympo-
sium on Foundations of Computer Science (FOCS ’05). IEEE Computer Society,

Washington, DC, USA, 627–636. h�ps://doi.org/10.1109/SFCS.2005.18

[33] J. Kleinberg and R. Rubinfeld. 1996. Short Paths in Expander Graphs. In

Proceedings of the 37th Annual Symposium on Foundations of Computer Sci-
ence (FOCS ’96). IEEE Computer Society, Washington, DC, USA, 86–95. h�p:

//dl.acm.org/citation.cfm?id=874062.875507

[34] Jon M. Kleinberg and Éva Tardos. 1995. Disjoint Paths in Densely Embedded

Graphs. In Proceedings of the 36th Annual Symposium on Foundations of Computer
Science. 52–61.

[35] Jon M. Kleinberg and Éva Tardos. 1998. Approximations for the Disjoint Paths

Problem in High-Diameter Planar Networks. J. Comput. Syst. Sci. 57, 1 (1998),

61–73.

[36] Stavros G. Kolliopoulos and Cli�ord Stein. 2004. Approximating disjoint-path

problems using packing integer programs. Mathematical Programming 99 (2004),

63–87. h�ps://doi.org/10.1007/s10107-002-0370-6

[37] MR Kramer and Jan van Leeuwen. 1984. �e complexity of wire-routing and

�nding minimum area layouts for arbitrary VLSI circuits. Advances in computing
research 2 (1984), 129–146.

[38] Tom Leighton and Satish Rao. 1999. Multicommodity Max-�ow Min-cut �eo-

rems and �eir Use in Designing Approximation Algorithms. J. ACM 46, 6 (Nov.

1999), 787–832. h�ps://doi.org/10.1145/331524.331526

[39] James F. Lynch. 1975. �e Equivalence of �eorem Proving and the Intercon-

nection Problem. SIGDA Newsl. 5, 3 (Sept. 1975), 31–36. h�ps://doi.org/10.1145/

1061425.1061430

[40] Pasin Manurangsi. 2017. Almost-polynomial ratio ETH-hardness of approx-

imating densest k-subgraph. In Proceedings of the 49th Annual ACM SIGACT
Symposium on �eory of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017. 954–961. h�ps://doi.org/10.1145/3055399.3055412

[41] Harald Räcke. 2002. Minimizing Congestion in General Networks. In Proc. of
IEEE FOCS. 43–52.

[42] Prabhakar Raghavan and Clark D. �ompson. 1987. Randomized rounding: a

technique for provably good algorithms and algorithmic proofs. Combinatorica
7 (December 1987), 365–374. Issue 4. h�ps://doi.org/10.1007/BF02579324

[43] Prasad Raghavendra and David Steurer. 2010. Graph Expansion and the Unique

Games Conjecture. In Proceedings of the Forty-second ACM Symposium on �eory
of Computing (STOC ’10). ACM, New York, NY, USA, 755–764. h�ps://doi.org/10.

1145/1806689.1806792

[44] Anup Rao. 2008. Parallel Repetition in Projection Games and a Concentration

Bound. In Proceedings of the Fortieth Annual ACM Symposium on �eory of
Computing (STOC ’08). ACM, New York, NY, USA, 1–10. h�ps://doi.org/10.1145/

1374376.1374378

[45] Satish Rao and Shuheng Zhou. 2010. Edge Disjoint Paths in Moderately Con-

nected Graphs. SIAM J. Comput. 39, 5 (2010), 1856–1887.

[46] Ran Raz. 1998. A Parallel Repetition �eorem. SIAM J. Comput. 27, 3 (June 1998),

763–803. h�ps://doi.org/10.1137/S0097539795280895

[47] N. Robertson and P. D. Seymour. 1990. Outline of a disjoint paths algorithm. In

Paths, Flows and VLSI-Layout. Springer-Verlag.

[48] Neil Robertson and Paul D Seymour. 1995. Graph minors. XIII. �e disjoint paths

problem. Journal of Combinatorial �eory, Series B 63, 1 (1995), 65–110.

[49] Loı̈c Seguin-Charbonneau and F. Bruce Shepherd. 2011. Maximum Edge-Disjoint

Paths in Planar Graphs with Congestion 2. In Proceedings of the 2011 IEEE 52Nd
Annual Symposium on Foundations of Computer Science (FOCS ’11). IEEE Com-

puter Society, Washington, DC, USA, 200–209. h�ps://doi.org/10.1109/FOCS.

2011.30

http://dl.acm.org/citation.cfm?id=313651.313820
https://doi.org/10.1109/SFCS.1994.365675
https://doi.org/10.1145/1806689.1806718
https://doi.org/10.1137/S0097539795290805
http://arxiv.org/abs/https://doi.org/10.1137/S0097539795290805
https://doi.org/10.1145/129712.129727
https://doi.org/10.1145/1273340.1273343
https://doi.org/10.1137/130910464
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.187
https://doi.org/10.1145/2897518.2897538
https://doi.org/10.1145/3055399.3055411
http://dl.acm.org/citation.cfm?id=2893472
https://doi.org/10.1137/0205048
https://doi.org/10.1145/509907.509985
https://doi.org/10.1137/S0097539700380754
https://doi.org/10.4230/LIPIcs.ESA.2016.42
http://dl.acm.org/citation.cfm?id=338219.338631
https://doi.org/10.1007/BF02523685
https://doi.org/10.1145/1250790.1250852
https://doi.org/10.1145/1250790.1250852
https://doi.org/10.1145/2438645.2438648
https://doi.org/10.1109/FOCS.2004.59
https://doi.org/10.1109/SFCS.2005.18
http://dl.acm.org/citation.cfm?id=874062.875507
http://dl.acm.org/citation.cfm?id=874062.875507
https://doi.org/10.1007/s10107-002-0370-6
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1145/3055399.3055412
https://doi.org/10.1007/BF02579324
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/1806689.1806792
https://doi.org/10.1145/1374376.1374378
https://doi.org/10.1145/1374376.1374378
https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1109/FOCS.2011.30
https://doi.org/10.1109/FOCS.2011.30

	Abstract
	1 Introduction
	2 Preliminaries
	3 The (r,h)-Graph Partitioning Problem
	4 The Hardness Proof
	4.1 Proof of Theorem 4.1

	5 From (r,h)-GPwB to NDP-Grid
	References

