
Algorithms for Single-Source Vertex Connectivity

Julia Chuzhoy
Toyota Technological Institute

Chicago, IL 60637
cjulia@tti-c.org

Sanjeev Khanna∗

University of Pennsylvania
Philadelphia PA 19103
sanjeev@cis.upenn.edu

August 27, 2008

Abstract

In the Survivable Network Design Problem (SNDP) the goal is to find a minimum cost subset of
edges that satisfies a given set of pairwise connectivity requirements among the vertices. This general
network design framework has been studied extensively and is tied to the development of major algorith-
mic techniques. For the edge-connectivity version of the problem, a 2-approximation algorithm is known
for arbitrary pairwise connectivity requirements. However, no non-trivial algorithms are known for its
vertex connectivity counterpart. In fact, even highly restricted special cases of the vertex connectivity
version remain poorly understood.

We study the single-source k-vertex connectivity version of SNDP. We are given a graph G(V,E)
with a subset T of terminals and a source vertex s, and the goal is to find a minimum cost subset
of edges ensuring that every terminal is k-vertex connected to s. Our main result is an O(k log n)-
approximation algorithm for this problem; this improves upon the recent 2O(k2) log4 n-approximation.
Our algorithm is based on an intuitive rerouting scheme. The analysis relies on a structural result that
may be of independent interest: we show that any solution can be decomposed into a disjoint collection
of multiple-legged spiders, which are then used to re-route flow from terminals to the source via other
terminals.

We also obtain the first non-trivial approximation algorithm for the vertex-cost version of the same
problem, achieving an O(k7 log2 n)-approximation.

1 Introduction

In the Survivable Network Design problem (SNDP) we are given a graph G = (V,E) with costs on edges
and integral connectivity requirements ru,v ≥ 0 for all u, v ∈ V . The goal is to find a minimum-cost subset
E′ ⊆ E of edges, such that every pair u, v of vertices has at least ru,v disjoint paths connecting them in the
graph induced by E′. There are two basic versions of SNDP: in the edge connectivity version (EC-SNDP),
the ru,v paths connecting u and v are required to be edge disjoint, while in the vertex connectivity version
(VC-SNDP) they are required to be vertex disjoint. We denote by n the number of vertices in the graph, and
by k the largest connectivity requirement, k = maxu,v {ru,v}.
∗Supported in part by a Guggenheim Fellowship, an IBM Faculty Award, and by NSF Award CCF-0635084.

1

This general framework is very versatile, and several classical optimization problems, such as minimum
spanning tree and minimum Steiner tree are captured as special cases of SNDP. Consequently, the problem
has received considerable attention, and in fact the study of SNDP is linked to the development of several
fundamental paradigms in algorithm design. Agrawal, Klein and Ravi [1] showed a 2-approximation algo-
rithm for the restricted version of SNDP where ru,v ∈ {0, 1} for all u, v (notice that for this case VC-SNDP
and EC-SNDP are equivalent). This result is among the first applications of the primal-dual paradigm to
approximation algorithms, and this approach was later successfully used to design algorithms for higher
connectivity values for EC-SNDP [18, 16], eventually leading to an O(log k)-approximation [17]. The best
current approximation ratio of 2 is achieved by an iterative LP-rounding algorithm due to Jain [19]. Both
the primal-dual schema and the iterative rounding technique have been extensively used in approximation
algorithm design.

It is not hard to see that EC-SNDP can be cast as a special case of VC-SNDP. Since we have not found any
references in the literature, for sake of completeness, we provide the proof of this fact in the Appendix. (We
note that Galil and Italiano [15] showed this relationship between edge and vertex versions of the minimum
k-connected subgraph problem, a special case of SNDP where for each u, v ∈ V , ru,v = k). Despite the
fact that the edge version has been extensively studied and is well understood today, little is known about
VC-SNDP. To the best of our knowledge, no approximation algorithm is known for this problem, outside for
the trivial algorithm, that finds, for each u, v ∈ V , the cheapest collection of ru,v vertex disjoint paths and
outputs the union of these paths. On the hardness side, Kortsarz et. al. [22] showed that, in sharp contrast to
the edge connectivity version, VC-SNDP is hard to approximate up to 2log1−ε n factor for any ε > 0, when
k is polynomially large in n. This has been recently improved by Chakraborty et. al. [7] to a kε-hardness
of approximation for all k > k0, where ε, k0 are fixed constants. The restricted special case where all
connectivity requirements ru,v ∈ {0, 1, 2} was shown to have a 2-approximation algorithm by Fleischer et.
al. [12]. Their algorithm is based on an application of the iterative rounding technique of Jain [19] to the
set-pair LP-relaxation of Frank and Jordan [13]. Our current lack of understanding of VC-SNDP is perhaps
best highlighted by the following state of affairs. When each connectivity requirement ru,v ∈ {0, 3}, the
best known approximation factor is polynomially large while nothing more than APX-hardness is known on
the hardness side.

In this paper we focus on the single-source version of VC-SNDP, where we are given a set T ⊆ V of
terminals and a special vertex s ∈ V \ T called the source. The only non-zero connectivity requirements
are between the terminals and the source, i.e., rs,t > 0 for all t ∈ T and all other requirements are 0. When
rs,t = k for all t ∈ T , we refer the problem as the single-source k-vertex connectivity problem.

Even for this restricted case of VC-SNDP, little has been known until recently. A trivialO(n) approximation
can be achieved by connecting each terminal t ∈ T to the source by cheapest collection of k vertex disjoint
paths, that can be found via min-cost flow computations. Until recently, even for constant values of k ≥
3, only an O(n)-approximation was known with no super-constant hardness bounds. On the other hand,
the current best inapproximability factor of Ω(log n), due to Kortsarz et. al. [22], only holds when k is
polynomially large in n. Only recently, Chakraborty et. al. [7] obtained the first non-trivial approximation
ratios for k ≥ 3; they give an 2O(k2) log4 n-approximation algorithm for single-source k-vertex connectivity.
Concurrently and independently of this work, Chekuri and Korula [8], building on the ideas in [7], have
recently given an O(kO(k) log n)-approximation algorithm for single-source k-vertex connectivity. Their
approach is based on analyzing the dual of the natural LP relaxation for the problem. They also obtain a
similar approximation guarantee for the more general single-source rent-or-buy network design problem.

We also study the vertex-cost variation of VC-SNDP where the costs are on vertices instead of edges.

2

Specifically, the goal is to find a minimum-cost subset V ′ ⊆ V of vertices, such that in the graph induced by
V ′, for every pair u, v ∈ V of vertices there are ru,v vertex disjoint paths connecting u to v. We focus again
on the single-source version. When k = 1 the problem becomes equivalent to the node-weighted Steiner
tree problem, for which O(log n)-approximation is known [21]. On the other hand, even this special case
can be shown to be Ω(log n)-hard by a reduction from Set Cover problem [25, 11]. It is interesting that even
for k = 1 the edge and the vertex weighted versions exhibit such different behavior.

Related Work We note that for some special cases of VC-SNDP better algorithms are known. The k-
vertex connected spanning subgraph problem, a special case of VC-SNDP where for all u, v ∈ V ru,v = k,
has been studied extensively. Cheriyan et al. [5, 6] gave an O(log k)-approximation algorithm for this
case when k ≤

√
n/6, and an O(

√
n/ε)-approximation algorithm for k ≤ (1 − ε)n. For large k, Ko-

rtsarz and Nutov [24] improved the preceding bound to an O(ln k · min{
√
k, n

n−k ln k})-approximation.
Fakcharoenphol and Laekhanukit [10] improved it to an O(log n log k)-approximation, and further ob-
tained an O(log2 k)-approximation for k < n/2. The iterative rounding technique has been used to give
a 2-approximation for arbitrary rij values for a variant of VC-SNDP known as the element connectivity
problem [12, 6]. Frank and Tardos [14] gave a polynomial time algorithm for finding a minimum cost
k-outconnected subdigraph of a directed graph. This result has been used to obtain a 2-approximation al-
gorithm for single-source k-vertex connectivity when T contains all vertices in G except the source, and
the costs form a metric [20]. Better approximation ratios have also been obtained for variants of vertex-
connectivity problems assuming uniform cost or metric cost on the edges (see, for example, [20, 23, 4]).

Our Results Our main result is stated below.

Theorem 1 There is a randomized polynomial time O(k log n)-approximation algorithm for the edge cost
version of single-source k-vertex connectivity.

This result improves upon the 2O(k2) log4 n-approximation by Chakraborty et. al. [7]. Our algorithm and
its analysis rely on a new result about the structure of solutions for single-source k-vertex connectivity.

For the vertex cost version we obtain a similar result, albeit with somewhat weaker ratios.

Theorem 2 There is a randomized polynomial time O(k7 log2 n)-approximation algorithm for the vertex
cost version of single-source k-vertex connectivity.

To the best of our knowledge, no non-trivial approximation algorithm was previously known for the vertex
cost version.

The subset k-connectivity problem is a special case of VC-SNDP, where we are given a subset T ⊆ V of
terminals, and connectivity requirements are rt,t′ = k for all t, t′ ∈ T , with all other requirements being 0.
Any α-approximation algorithm for the single source k-vertex connectivity problem can be converted into
a kα-approximation algorithm for subset k-connectivity problem, in both edge and vertex cost scenarios
(see e.g. Theorem 7 in [7]). It is also easy to see that an α-approximation algorithm for the single-source
k-vertex connectivity implies a kα-approximation for single-source VC-SNDP, where rt,s ∈ {0, 1, ..., k}
can be arbitrary, in both edge cost and vertex cost scenarios. We thus obtain the following results:

Theorem 3 In the edge cost model, there is a randomized polynomial time O(k2 log n)-approximation al-
gorithm for both single-source VC-SNDP and the subset k-connectivity problem. In the vertex cost model,
there is a randomized polynomial time O(k8 log2 n)-approximation algorithm for both single-source VC-
SNDP and the subset k-connectivity problem.

3

Techniques It is easy to obtain an O(|T |)-approximation for both edge and vertex cost versions of single-
source k-vertex connectivity: for each terminal t ∈ T , find minimum cost k vertex disjoint paths connecting
t to s and output the union of all such paths for all t ∈ T . The worst case scenario for such an algorithm
is when the same edge is used by many terminals when connecting to the source in the optimal solution.
Since the algorithm connects each one of the terminals to the source separately, without considering possible
sharing of edges by the terminals, we may end up paying |T | times the cost of the optimal solution. However,
if edges are heavily shared by the terminals in the optimal solution (when connecting to the source), the
solution induces high connectivity among the terminals. This observation motivates our algorithm. We
compute, for each terminal t ∈ T , the cheapest collection of k vertex disjoint paths connecting t to vertices
in (T ∪ {s}) \ {t}. Let E(t) be the set of edges participating in these paths. We identify a large subset T ′

of terminals, such that every t ∈ T ′ is k-vertex connected to (T ∪ {s}) \ T ′ by edges in E(t), and solve the
problem recursively on T \ T ′.

The heart of the analysis lies in proving that total cost of edges in setsE(t), t ∈ T is bounded byO(k ·OPT).
The main ingredient of our proof is a prefix decomposition theorem, which may be of independent interest.
Consider an optimal solution OPT, and for each terminal t ∈ T , letB(t) be a k-tuple of vertex disjoint paths
connecting t to s. A path p is said to be a prefix of f ∈ B(t) iff p is a sub-path of f containing t. We show
that we can define, for each t ∈ T and f ∈ B(t) a prefix p(f) of f , such that the resulting set of prefixes
forms a collection of “spiders”. The internal vertices of different spiders are disjoint, and each spider has
at least two legs, while every leg of a spider originates at a distinct terminal. Notice that in general it is not
hard to define prefix p(f) for each path f so that the set of prefixes forms a collection of internally disjoint
spiders, as long as we allow one-legged spiders. However it is crucial for us that the spiders have at least
two legs, since we use them to connect terminals to one another. This requirement makes the task of prefix
decomposition more challenging, and it is not even clear a priori why such a decomposition should exist.
The resulting spiders provide a convenient way of connecting the terminals to one another, which can be
thought of as re-routing the flow from a terminal t ∈ T to s via other terminals. Since the spiders do not
share any edges, the cost of this re-routing is close to the cost of the optimal solution.

This approach allows us to obtain an O(k log n)-approximation for the edge cost version. In order to obtain
an approximation algorithm for the vertex cost version, we start with the prefix decomposition theorem
again. However, since the costs are now on vertices, we cannot use the spiders to construct the k-tuples of
paths connecting each terminal t to (T ∪ {s}) \ {t}. The reason is that a spider may have many legs, and
each path re-routed through the spider will use the vertex that serves as the spider head. Therefore, if we
find the k-tuple of paths connecting each terminal t to (T ∪ {s}) \ {t} separately, we may end up paying
very high cost. Instead, the spider decomposition theorem allows us to write a strong linear program. We
then round a fractional solution to this LP to obtain the desired collection of vertices that k-vertex connects
each terminal t to (T ∪ {s}) \ {t}, and whose cost is close to OPT.

Organization: Section 2 formally defines the single-source k-vertex connectivity problem, and introduces
some notation that we use throughout the paper. In Sections 3 and 5, we study the problem in the edge cost
model and vertex cost model, establishing Theorems 1 and 2, respectively. The proof of both these results
relies on a structural result that we refer to as the Prefix Decomposition theorem, and establish in Section 4.
We conclude with some future directions in Section 6.

4

2 Preliminaries
In the single-source k-vertex connectivity problem, we are given a graph G(V,E), a source s, a subset
T ⊆ V of terminals, and an integer k. In the edge-cost version, we are given a cost function c on edges, and
the goal is to find a minimum cost subset E′ of edges such that each terminal t is k-vertex connected to s in
the graph induced by the edges in E′. In the vertex-cost version, we are given a cost function c on vertices,
and the goal is to find a minimum cost subset V ′ of vertices, such that in the graph induced by V ′ every
terminal t is k-vertex connected to source s. For any subset T ′ of terminals, we denote by T ′+ = T ′ ∪ {s}.

Let T ′ ⊆ T be any subset of terminals. We say that a terminal t is weakly k-connected to set T ′+\{t} if there
exist k internally vertex-disjoint paths from t to T ′+ \ {t}. We say that terminal t is strongly k-connected to
set T ′+ \ {t} if there exist k internally vertex-disjoint paths from t to T ′+ \ {t} such that each terminal in
(T ′ \{t}) is an end-point of at most one such path. Note that if t is strongly k-connected to (T ′ \{t})∪{s},
then if we delete any subset X ⊆ V \ {s, t} of size at most (k − 1), terminal t remains connected by a path
to some vertex in T ′ ∪ {s}.

The cost function c can be naturally extended to subsets of edges (vertices) in the edge cost (vertex cost)
model. Moreover, given a collection of paths P , slightly abusing the notation, we will use c(P) to denote
the sum of the costs of edges (vertices) on P in edge cost (vertex cost) model. Finally, we will use OPT to
denote both an optimal solution as well as its cost.

3 Single-Source VC-SNDP with Edge Costs
In this section we sketch the proof of Theorem 1. Our algorithm and its analysis are based on establishing
the following property. For each terminal t, let Et be any minimum cost subset of edges, such that in the
graph induced by Et, t is strongly k-connected to the set T+ \ {t}. Then

∑
t∈T c(Et) = O(k · OPT). Note

that the bound on
∑

t∈T c(Et) holds without accounting for any sharing of edges among the solutions that
strongly k-connect the terminals. We will show that this separability property naturally lends itself to a
recursive algorithm for solving the single-source k-vertex connectivity problem.

3.1 Algorithm Description
The algorithm consists of the following three steps:

1. If |T | ≤ 10k: for each terminal t ∈ T , find a minimum cost subset Et ⊆ E of edges, such that t is
k-vertex connected to the source s in the graph Gt = (V,Et). Stop and output ∪t∈TEt. Otherwise:
for each terminal t ∈ T , find a minimum cost subset Et ⊆ E of edges, such that t is strongly k-
connected to the set T+ \ {t} in the graph Gt = (V,Et). Let B(t) denote the set of k vertex disjoint
paths strongly connecting t to T+ \ {t} realized by the edges in Et, and let Γ =

∑
t∈T c(Et).

2. Identify a subset T ′ ⊆ T of size
⌈
|T |

4(k+1)

⌉
such that (a) for each t ∈ T ′, the paths in B(t) terminate

only on vertices in T+ \ T ′, and (b)
∑

t∈T ′ c(Et) ≤ Γ/2k. Define E′ = ∪t∈T ′Et.

3. Recursively solve the problem on the set T ′′ = T \ T ′ of terminals. Let E′′ be the set of edges in the
recursive solution. Output E′ ∪ E′′ as the final solution.

Step (1) can be implemented by performing a standard min-cost max flow computation for each terminal
t. Step (3) is a straightforward recursive computation. We now describe the implementation of step (2).

5

We construct a graph H(VH , EH) with a vertex vt for each terminal t. A vertex vt is connected in H to
all vertices vt′ such that a path in B(t) ends at terminal t′. It is readily seen that for any subset U ⊆ VH ,
the graph induced by vertices in U contains a vertex of degree at most 2k. This allows us to compute in
polynomial-time a coloring ofH with 2k+1 colors 1 We now mark all vertices vt such that c(Et) ≤ 2Γ

|T | . By

the pigeonhole principle, there exists a color class that contains at least |T |
4(k+1) marked vertices. Let T ′ be

an arbitrary subset of
⌈
|T |

4(k+1)

⌉
terminals corresponding to the marked vertices in this color class. Clearly,

∑
t∈T ′

c(Et) ≤
(

2Γ
|T |

)
·
⌈
|T |

4(k + 1)

⌉
≤ Γ

2k
.

3.2 Cost and Feasibility Analysis

A straightforward induction on the recursion depth allows us to prove the following lemma.

Lemma 3.1 The algorithm outputs a feasible solution for the single-source k-vertex connectivity.

Proof: We prove the lemma by induction on the recursion depth. Clearly, when |T | ≤ 10k, the output of
the algorithm is a feasible solution for the set T of terminal. Assume now that |T | > 10k, and that E′′ is
a feasible solution for the instance defined by the set T ′′ of terminals. We show that E′ ∪ E′′ is a feasible
solution for T . Consider some terminal t ∈ T . If t ∈ T ′′, then by the induction hypothesis, t is k-vertex
connected to s in the graph induced by E

′′
. Assume now that t ∈ T ′. If t is not k-vertex connected to s

in the graph G∗ = (V,E′ ∪ E′′), there exists a subset X ⊆ V \ {s, t} of (k − 1) vertices whose removal
from G∗ separates t from s. However, since t is strongly k-vertex connected to T ′′ ∪ {s} in graph induced
by E′, it remains connected to some t′ ∈ T ′′ ∪ {s} even after X is removed from G∗. If t′ = s we are done.
Otherwise, t′ ∈ T ′′, and by induction hypothesis t′ is k-vertex connected to s in G∗. Therefore, even when
X is removed from G∗, t remains connected to t′ and t′ remains connected to s in G∗. A contradiction.

We will show that the cost Γ in Step (1) of the algorithm isO(k)·OPT. Assuming this property, we can bound
the cost of the solution produced by the algorithm using the recurrence: α(p) ≤ α

(
p− p

4(k+1)

)
+O(OPT),

where α(p) denotes the worst-case cost of a solution output by our algorithm when given as input a subset
T ′ ⊆ T of p terminals. It is easy to verify that α(|T |) = O(k log |T |) · OPT. The remainder of this section
is devoted to proving that Γ = O(k) · OPT. The main ingredient of our proof is a Prefix Decomposition
Theorem that may be of independent interest. We need the following definitions.

Definition 1 (Canonical Spider) LetM be any collection of simple paths, such that each path p ∈M has
a distinguished endpoint t(p), and the other endpoint is denoted by v(p). We say that paths inM form a
canonical spider iff |M| > 1 and there is a vertex v, such that for all p ∈ M, v(p) = v. Moreover, the only
vertex that appears on more than one path ofM is v. We refer to v as the head of the spider, and the paths
ofM are called the legs of the spider.

Definition 2 (Canonical Cycle) LetM = {g1, . . . , gh} be any collection of simple paths, where each path
gi has a distinguished endpoint t(gi) that does not appear on any other path inM, and the other endpoint
is denoted by v(gi). We say that paths ofM form a canonical cycle, iff (a) h is an odd integer, (b) for every
path gi, 1 ≤ i ≤ h, there is a vertex v′(gi) such that v′(gi) = v(gi−1) (here we use the convention that

1At each recursive step, delete a vertex vt of degree at most 2k, recursively color the remaining graph with (2k + 1) colors, and
then insert back vt by assigning it one of the (2k + 1) colors that is absent in its neighborhood.

6

g0 = gh), and (c) no vertex of gi appears on any other path ofM, except for v′(gi) that belongs to gi−1

only and v(gi) that belongs to gi+1 only (see Figure 1).

!

!

"#

"$

"%

"&
'("%)

*("%)

*+("%)

Figure 1: A canonical cycle

Assume now that we are given any collection P of paths, where every path f ∈ P has a distinguished
endpoint t(f). For f ∈ P , we say that a sub-path p of f is a prefix of f iff t(f) ∈ p.

Theorem 4 (Prefix Decomposition) Given any collection P of paths, where every path f ∈ P has a dis-
tinguished endpoint t(f) that does not appear on any other path of P , we can find, in polynomial time, for
each path f ∈ P , a prefix p(f), such that in the graph induced by {p(f) | f ∈ P}, the prefixes appearing in
each connected component either form a canonical spider, a canonical cycle, or the connected component
contains exactly one prefix p(f), where p(f) = f for some f ∈ P .

We defer the proof of the Prefix Decomposition Section to next section, and we proceed to show that this
theorem implies that Γ = O(k · OPT).

Fix an optimal solution OPT. For each t ∈ T , fix a k-tuple of internally vertex-disjoint paths B(t) that
connects t to s in OPT. We now define k-tuple B′(t) of paths as follows. For each f ∈ B(t), if f contains
any terminal as intermediate vertex, let t′(f) be the first such terminal, and otherwise let t′(f) = s. In
order to obtain B′(t), we replace each path f ∈ B(t) by its sub-path that starts at t and ends at t′(f). Let
ϕ∗(t) = {t′(f) | f ∈ B′(t), t′(f) 6= s} (it is possible that ϕ∗(t) = ∅). Notice that now no terminals appear
as intermediate vertices on paths

⋃
t∈T B

′(t), and each path in B′(t) terminates at a vertex in ϕ∗(t) ∪ {s}.
For any terminal t ∈ T and path f ∈ B′(t), we say that p is a prefix of f iff p is a sub-path of f containing
t. We say that all paths f ∈ B′(t) belong to t. If f belongs to terminal t and p is a prefix of f , we say that p
belongs to t as well.

Using the Prefix Decomposition Theorem, we can obtain the following theorem and its corollary that shows
Γ = O(k · OPT).

Theorem 5 (Weak k-connectivity) Let T ′ ⊆ T be any subset of terminals, such that for each t ∈ T ′,
T ′ ∩ ϕ∗(t) = ∅. For each t ∈ T ′, let Ht be a minimum-cost k-tuple of internally vertex disjoint paths
that do not contain terminals as intermediate vertices, where each path f ∈ Ht connects t to a vertex in
(T ′ ∪ ϕ∗(t) ∪ {s}) \ {t}, and where each terminal in ϕ∗(t) is an end-point of at most one path of Ht. Let
Et be the set of edges appearing on paths of Ht. Then

∑
t∈T c(Et) ≤ 2OPT.

7

Proof: Consider some terminal t ∈ T ′ and the corresponding set B′(t) of paths. Recall that t does not
appear on any path in B′(t′) for t′ ∈ T ′ \ {t}. We create k copies of t and use a distinct copy for each path
in B′(t). Let B′′(t) be the resulting set of paths, and for each f ∈ B′(t), let γ(f) denote the corresponding
path. If t(f) = t, then we say that γ(f) belongs to t, and denote by t(γ(f)) the corresponding copy of t. If
p is a prefix of γ(f), then we also say that p belongs to t.

Set P =
⋃
t∈T ′ B

′′(t). We apply the Prefix Decomposition theorem to P , and obtain, for each t ∈ T
and f ∈ B′′(t) a prefix p(f). Let P1, . . . ,Ps be the partition of the prefixes guaranteed by the Prefix
Decomposition Theorem. Fix some terminal t ∈ T ′, and let B′′(t) = {f1(t), . . . , fk(t)}. We construct a
collectionHt = {f ′1(t), . . . , f ′k(t)} of internally vertex disjoint paths connecting t to (T ′∪ϕ∗(t)∪{s})\{t},
such that each terminal in ϕ∗(t) serves as endpoint of at most one such path, as follows. Consider some
i : 1 ≤ i ≤ k, and assume that p(fi(t)) ∈ Pj . We consider now three cases:

Case 1: If p(fi(t)) = fi(t), then we set f ′i(t) = fi(t). Notice that in this case f ′i(t) terminates at a vertex
in {s} ∪ ϕ∗(t).

Case 2: Otherwise, if Pj is a canonical cycle, (g1, . . . , gh), where p(fi(t)) = gi′ , then f ′i(t) is the con-
catenation of gi′ and the portion of gi′+1 lying between v′(gi′+1) and t(gi′+1), where copies of ter-
minals are replaced by the corresponding terminals. Notice that f ′i(t) terminates at some terminal
t′ ∈ T ′ \ {t}.

Case 3: Otherwise, Pj is a canonical spider whose head v 6∈ T+. Let L = p(fi(t)) be the leg of the spider
corresponding to the prefix of fi(t), and let L′ be the next leg in the circular order (notice that the
spider must contain at least two legs in this case). We define f ′i(t) to be the concatenation of L and
L′, replacing copies of terminals by the corresponding terminals. Notice that f ′i(t) terminates at some
terminal t′ ∈ T ′ \ {t}.

We have thus defined a k-tupleHt of paths connecting t to (T ′∪ϕ∗(t)∪{s})\{t}. We claim that these paths
do not share internal vertices. Consider two paths f ′i(t), f

′
i′(t) ∈ Ht, and assume that f ′i(t) ∈ Pj , f ′i′(t) ∈

Pj′ . Since Pj ,Pj′ are disjoint whenever j 6= j′, assume that j = j′. Then Pj must contain more than one
prefix, and therefore it is either a canonical spider or a canonical cycle. Assume first that Pj is a canonical
spider. Then the head of the spider, v belongs to both fi(t) and fi′(t). Since fi(t) and fi′(t) are vertex
disjoint, this implies that v = s and therefore Case 1 has been applied to both fi(t) and fi′(t). It follows
that f ′i(t) and f ′i′(t) do not share internal vertices. Assume now that Pj is a canonical cycle. Prefixes of
paths fi(t), fi(t′) may appear on the same canonical cycle, but since they do not share any vertices, they
do not appear on the cycle consecutively. Therefore, f ′i(t) and f ′i′(t) are vertex disjoint. Finally, observe
that each terminal t′ ∈ ϕ∗(t) may appear as an endpoint of f ′i(t) only if fi(t) contains t′. Since paths
f1(t), . . . , fk(t) do not share any vertices outside of s and t, terminal t′ may serve as an endpoint of at most
path in f ′1(t), . . . , f ′k(t).

Let Et be the union of edges on paths f ′1(t), · · · , f ′k(t). We now show that
∑

t∈T c(Et) ≤ 2OPT. Consider
any edge e that is used by the optimal solution. Since the vertices appearing on the paths in P1, . . . ,Ps are
disjoint, e belongs to at most one such set Pj . If Pj is a canonical spider, let t be the terminal to which
the leg L of the spider, on which e lies, belongs. If the head of Pj is in T+, then e only belongs to Et.
Otherwise, assume that the head of Pj is not in T+. Let L′ be the leg of spider that appears before L in
the fixed circular order, and let t′ be the terminal to which the corresponding prefix belongs. Then e only

8

belongs to Et and Et′ . Assume now that Pj is a canonical cycle (g1, . . . , gh), and assume that e lies on
gx. Let t be the terminal to which gx belongs and let t′ be the terminal to which gx−1 belongs. Then e
only belongs to Et and Et′ . Finally, in the case that Pj contains a single path fi(t) = p(fi(t)), edge e only
belongs to Et. Therefore, the contribution of e to

∑
t∈T |Et| is at most 2.

Corollary 1 (Strong k-connectivity) For each t ∈ T , let Et be a minimum cost subset of edges in G that
ensures that t is strongly k-connected to the set T+ \ {t}. Then

∑
t∈T c(Et) ≤ O(k · OPT).

Proof: We give an iterative procedure to prove this claim. We perform 2k iterations, and at the end of each
iteration i, we produce for each terminal t, a k-tuple of internally vertex-disjoint paths, denoted by Pi(t),
such that

• each path in Pi(t) connects t to a vertex in the set (T+ \ {t}) and it does not contain any terminals as
internal vertices,

• no terminal in t′ ∈ (T \{t}) is an end-point of more than 2k paths in P1(t)∪P2(t), . . . ,∪P2k(t), and

•
∑

t∈T c(Pi(t)) ≤ (18k + 3) · (OPT).

We show how to construct such path sets Pi(t) below; first we show why the theorem follows from the
existence of these path sets.

Aggregating over the 2k iterations, it is easy to see that each terminal t is able to send a total of 2k2 units of
flow integrally to the set (T+ \ {t}), with no terminal in (T \ {t}) receiving more than 2k units of flow, and
no non-terminal appearing as an intermediate vertex on more than 2k paths. The total cost of this solution
is O(k2OPT), even when each terminal pays separately for the set of edges it uses.

Now fix any terminal t. If we scale down the integral flow solution generated above by a factor of 2k, then
we obtain a fractional solution whereby each terminal t is able to send k units of flow to the set (T+ \ {t}),
with at most a unit of flow passing through or terminating at any vertex in V \ {s, t}. By the integrality
of the minimum cost flow, it follows that there is an integral solution of cost at most that of this fractional
solution such that each terminal t strongly k-connects to the set (T+ \ {t}). The theorem then follows since
total cost of the scaled fractional solutions for all terminals is O(k ·OPT). We now show how to implement
each iteration.

For each terminal t ∈ T , we will create a set ϕi(t) of size at most 3k at the end of each iteration i. We start
by initializing ϕ0(t) to be ϕ∗(t) for each terminal t ∈ T . Now at the beginning of iteration i, we create a
graph H(VH , EH) which contains a vertex vt for each terminal t. There is an edge between two vertices vt
and vt′ in H iff either t′ ∈ ϕi−1(t) or t ∈ ϕi−1(t′). Since we will ensure that |ϕi−1(t)| ≤ 3k, it is easy to
see that any U ⊆ VH , the subgraph H ′ of H induced by the vertices in U has at most 3k|U | edges. Hence
H ′ must contain a vertex of degree at most 6k. This property is sufficient to recursively color vertices of H
with 6k + 1 colors. Let T1, T2, . . . , Tp be the resulting color classes, i.e., Tj contains all terminals t such
that vt is assigned color j in H .

Fix some color class Tj , 1 ≤ j ≤ p. We apply Theorem 5 to Tj to obtain, for each terminal t ∈ Tj , a
collection Pi(t) of k paths Pi(t) = {f ′1(t), . . . , f ′k(t)}, connecting t to Tj ∪ ϕ∗(t) ∪ {s}. These paths are
internally vertex disjoint and their internal vertices are non-terminals. Moreover, every terminal t′ ∈ ϕ∗(t)

9

may serve as an endpoint of at most one path in Pi(t). Let Ei(t) denote the union of edges on paths in
Pi(t). Then for each color class Tj ,

∑
t∈Tj c(Ei(t)) ≤ 2OPT, and

∑
t∈T c(Ei(t)) ≤ (6k + 1) · (2OPT) ≤

O(k · OPT).

For each terminal t, the set ϕi(t) is defined as follows: it contains all the terminals in ϕ∗(t), and also all
terminals t′ that have appeared as endpoints in at least k paths in sets P1(t), . . . , Pi(t). Since |ϕ0(t)| =
|ϕ∗(t)| ≤ k, and |Ph(t)| = k for each 1 ≤ h ≤ i, |ϕi(t)| ≤ k + i. Any terminal in ϕ0(t) can appear as
endpoint of at most one path in Ph(t) for each iteration h. Any terminal in T \ (ϕ0(t) ∪ {t}) can appear
as endpoint on at most (2k − 1) paths over all iterations. No terminal appears as an intermediate vertex on
paths Pi(t). Thus this ensures that no terminal in T \ {t} receives more than 2k units of flow from t over all
the iterations.

4 Proof of the Prefix Decomposition Theorem

We now prove Theorem 4. Note that the Prefix Decomposition theorem is a structural result, independent of
the underlying cost model (that is edge or vertex costs). We will thus also utilize this result in designing an
algorithm for the vertex costs case.

We start with the set P of paths, where each path f ∈ P has one distinguished endpoint t(f) that does not
appear on any other paths in P , and the other endpoint is denoted by z∗(f). We will view path f as starting
at t(f) and ending at z∗(f). Throughout the algorithm we will define prefixes of paths in P . Prefix of a path
f is denoted by p(f), and it is defined to be the portion of f between t(f) and some other vertex z(f) ∈ f .
At the beginning of the algorithm, z(f) = z∗(f) for all f . Throughout the algorithm, path f is trimmed by
moving z(f) closer to t(f). We can trim a path several times, and during the execution of the algorithm the
prefix may only become shorter.

Definition 3 (Canonical Set) Let P ′ ⊆ P be any set of paths. A set of prefixes p(f) for f ∈ P ′ is said to
form a canonical set iff in the graph induced by the prefixes {p(f) | f ∈ P ′}, each connected component is
either a canonical spider, a canonical cycle, or it contains a single prefix p(f) = f for some f ∈ P .

In order to complete the proof of the Prefix Decomposition theorem, it is enough to show that we can define,
for each path f ∈ P a prefix p(f), such that the set of prefixes of paths in P forms a canonical set.

We show an algorithm that finds such prefixes p(f). We start with the set P of paths and prefixes p(f) = f
for all f ∈ P . Throughout the algorithm we will maintain a collection D of dead paths, and all other paths
in P are referred to as live paths. If f is a live path, then we refer to p(f) as a live prefix. At the beginning,
D contains a path f ∈ P iff none of the vertices of f belongs to other paths in P . Clearly, prefixes in D
form a canonical set.

Definition 4 (Special Vertices) For any live path f , we say that u is a special vertex of p(f) if u belongs to
another live prefix. The ith special vertex of f (counting from t(f)), is denoted by ui(f).

Note that multiple special vertices on f might result due to intersections of f with another path f ′, so ui(f)
and uj(f) may be a result of the intersection with the same path. We maintain the following invariants
throughout the algorithm:

C1. The set of path prefixes in D forms a canonical set.

10

We define a set U of vertices as follows. For each connected component P ′ of D, if P ′ is a canonical
spider, then U contains its head, and if P ′ contains only one prefix p(f) = f for some f ∈ P , then U
contains z∗(f).

C2. The only vertices that dead paths and live paths may share are vertices in U . For any live path f , its
prefix p(f) may contain at most one vertex in U . If p(f) contains a vertex of U , then this vertex must
be z(f), the last vertex of p(f).

C3. For a live path f , one of the following conditions must hold:

• p(f) contains a vertex in U (and this is the last vertex of p(f)).

• p(f) does not contain any vertex in U but z(f) = z∗(f).

• p(f) neither contains a vertex in U nor is z(f) = z∗(f), but there is another live path f ′ 6= f
such that z(f) is the first special vertex of f ′. We refer to f ′ as a witness for f , denoted by
f ′ = W (f). Note that W (f) is defined only if the first two conditions do not hold.

The algorithm works in iterations. In each iteration, we either trim prefixes of some live paths, or move some
live paths to set D. At the beginning of the algorithm, it is easy to see that properties C1–C3 hold. Assume
these properties hold before the current iteration. We show how to perform an iteration and maintain the
properties. The algorithm ends when D = P . It will be clear from the description given below that each
iteration can be executed in polynomial time. We will use the following easy observation in our analysis:

Proposition 1 Assume we have a collection of pathsD, and prefixes of paths in P for which properties C1–
C3 hold. Let f be any live path, v ∈ p(f) be any special vertex of f , and f ′ be a live path whose first special
vertex is v. Then if we trim f at vertex v by setting z(f) = v, and either set W (f) = f ′ or add v to U ,
property C3 continues to hold.

Proof: Note that no assertion is being made about maintaining properties C1 or C2. The only potential
problem is paths f∗ for which W (f∗) = f . In this case p(f∗) must contain u1(f), the first special vertex of
f . But since we trim f at its special vertex and do not trim f∗, u1(f) continues to be the first special vertex
of p(f), that belongs to p(f∗).

Iteration Description: We now describe how an iteration of the algorithm is executed.

At the beginning of an iteration, each live path f marks its first special vertex u1(f). If no such vertex exists,
then f marks the vertex z(f). Note that if p(f) does not contain any special vertices then z(f) = z∗(f) or
z(f) ∈ U must hold by Invariant C3. We then perform one of the next five steps. We consider the steps in
the order in which they appear, and perform the earliest listed step that is applicable. After an applicable
step is executed, the iteration ends and we proceed to the next iteration. As long as the set of live paths is
non-empty, we will show that one of the steps below necessarily applies.

Step 1 Is performed if some path f marks its vertex z(f), and either z(f) ∈ U or z(f) = z∗(f). We add f
to D, where it either becomes part of an existing canonical spider or defines a new connected component.

• If z(f) ∈ U , then p(f) becomes part of an existing canonical spider. Notice that p(f) does not share
any vertices (except for z(f)) with another live prefix, and therefore, properties C1 and C2 still hold.
It is impossible that f = W (f ′) for some live path f ′, since the only vertex that f shares with any
other live prefix is z(f), which belongs to U . Therefore, property C3 is still true.

11

• If z(f) = z∗(f) 6∈ U , then f defines a new connected component inD, and we add z∗(f) to U . Since
z(f) = z∗(f), we have that p(f) = f . It is easy to see that properties C1–C3 still hold.

The case when some path f marks a vertex z(f), and neither z(f) ∈ U nor z(f) = z∗(f) (and therefore,
z(f) is a special vertex for f), will be handled as one of the cases in Step 2. Notice that in this case, by
property C3, W (f) must exist, and both f and W (f) mark the same vertex z(f).

Step 2 Is performed if there are two or more paths that marked the same vertex v. Let F = {f1, . . . , fh} be
the set of all paths that marked v, and let F ′ be the collection of all other live paths whose prefixes contain
v (possibly F ′ = ∅). We perform the following actions: (i) the prefixes of all paths in F and F ′ are trimmed
at v, (ii) the paths in F are added to set D of dead paths, and (iii) the vertex v is added to the set U . Notice
that prefixes of paths of F form a canonical spider, and the only vertex they share with any live prefixes is
v, while they do not share any vertex with dead prefixes. It is thus easy to see that properties C1 and C2 still
hold. We can use Proposition 1 to prove that property C3 is also still true (we can think about this process
as trimming paths in F and F ′ one by one and using Proposition 1 after each step to show that property C3
is maintained).

Step 3 Is performed if there are two live paths f, f ′, and f ′ marked some vertex v that lies strictly between
t(f) and z(f) on p(f). We then trim path f at v by setting z(f) = v andW (f) = f ′. Clearly, properties C1–
C2 still hold, and we can invoke Proposition 1 to see that property C3 is still true (as v must be a special
vertex of f).

Assume now that we have been unable to perform any of the Steps 1 through 3. This means that for each
path f ′, if v is the vertex that f ′ has marked, then v 6= z(f ′) and v is the last vertex on some other path f .
We will say that f ′ gives its token to f . If there are several paths containing v, then f ′ gives its token to all
these paths.

Proposition 2 If none of the Steps 1 through 3 is applicable, then the token distribution results in each live
path giving and receiving exactly one token.

Proof: From the description above, it is clear that each path gives at least one token. We will argue that no
path can receive more than one token. This clearly implies that every path gives and receives exactly one
token. Suppose there exists a path f that receives two or more tokens. Since Step 3 is not applicable, two or
more paths must have marked z(f). But then Step 2 is applicable, a contradiction.

Proposition 3 If none of the Steps 1 through 3 is applicable, then

• the prefix of each live path f has at least two special vertices u1(f) and u2(f);

• no live prefix contains a vertex from the set U ; and

• if f ′ gives token to f and z(f) 6= z∗(f) then W (f) = f ′.

Proof: By Proposition 2, we know that each live path f gives a token by marking the vertex u1(f). Since
each live path f also receives a token, some path f ′ must have marked a vertex u that lies on p(f). If
u = u1(f) then Step 2 would have been applicable. So u must be distinct from u1(f). Hence u2(f) must
exist.

12

To see that no live prefix contains a vertex of U , note that if a path f contains a vertex of U , then it must
be z(f) by Property C2. Since z(f) has been marked by path f ′ = W (f), and z(f) ∈ U , it follows that
z(f) = z(f ′). We should have then executed Step 1.

By Proposition 2, for each live path f , there is a unique live path f ′ that gives a token to f . Hence f ′ is the
unique live path that contains z(f) as its first special vertex. It follows that W (f) = f ′.

Step 4 Is performed if for some f , the path f ′ to which f gave its token also contains u2(f). This means that
f ′ meets f at least twice: first at u2(f) then at u1(f). We can then trim f ′ at u2(f) by setting z(f ′) = u2(f).
We set W (f ′) = f as before. It is easy to see that all properties continue to hold, since now u2(f) becomes
the first special vertex of f .

Assume that none of the Steps 1 through 4 are applicable. We create a directed graph where for every live
path f , there is a vertex wf . We connect wf to wf ′ iff the path f∗ that gave its token to f has u2(f∗)
belonging to f ′. Notice that the out-degree of every vertex in this graph is at least 1, and since Step 4 was
not applicable, no self-loops can exist. Therefore, we can find a simple cycle in this graph. Assume that the
paths corresponding to the vertices on the cycle are f1, . . . , fh (we use the convention that fh+1 = f1). For
each i : 1 ≤ i ≤ h, let f ′i be the path that gave its token to fi. Then u2(f ′i) belongs to fi+1 (see Figure 2).
We will need the following simple observation.

Proposition 4 For each i : 1 ≤ i ≤ h, u2(f ′i) lies strictly between t(fi+1) and z(fi+1).

Proof: Assume for contradiction that u2(f ′i) = z(fi+1) (it is impossible that u2(f ′i) = t(fi+1)). Then path
f ′i+1, which has marked z(fi+1) has two paths intersecting it at z(fi+1), which is impossible since every
path gives and receives exactly one token.

We say that path fi is bad iff for some j : 1 ≤ j ≤ h, fi = f ′j , and u2(f ′i−1) = u1(fi). If no bad paths exist
in our cycle, we perform Step 5.

… …

f1 f2 f3 fh

u2(f1’)

z(f1)=u1(f1’)

f1’ f2’ f3’ fh-1’ fh’…

Figure 2: Before the execution of step (5).

Step 5 We trim each path fi, 1 ≤ i ≤ h, by setting z(fi) = u2(f ′i−1) and setting W (fi) = f ′i−1 (See

13

Figure 3). It is easy to see that properties C1 and C2 continue to hold. We now focus on showing that
property C3 still holds as well. We only perform trimming of paths {fi}hi=1. So we only need to take care
of two cases:

• For each path fi ∈ {f1, . . . , fh}, we need to show that after the trimming fi contains the first special
vertex of W (fi) = f ′i−1, and this is the last vertex z(fi) of p(fi).

• If f 6∈ {f1, . . . , fh}, and W (f) = fi, then we need to show that f contains the first special vertex of
fi, and it is the last vertex of p(f).

For the second case, observe that fi has been trimmed on its special vertex, and f has not been trimmed in
this iteration. Therefore, we can use arguments similar to Proposition 1 to show that f still contains the first
special vertex of fi.

… … … …

(a) (b)

f1 f2 f3 fh

f1’ f2’ f3’ fh-1’ fh’
…

f1 f2 f3 fh

f1’ f2’ f3’ fh-1’ fh’
…

Figure 3: Illustration of step (5)

Consider now the first case. Recall that from Proposition 4, the trimming of fi−1 made it shorter by at least
one edge. Therefore, after the trimming, fi−1 does not contain u1(f ′i−1), which stops being the first special
vertex of f ′i−1. (Recall that fi−1 and f ′i−1 are the only paths that contained u1(f ′i−1), since otherwise f ′i−1

gives at least two tokens). If we show that u2(f ′i−1) continues to belong to f ′i−1 after the trimming step, then
it now becomes the first special vertex of f ′i−1. Vertex u2(f ′i−1) belongs to fi even after trimming, and is
the last vertex of p(fi). We only need to show that u2(f ′i−1) still belongs to f ′i−1 after the trimming. The
only way f ′i−1 has been trimmed is if f ′i−1 = fj for some j. If u2(f ′i−1) does not belong to the new prefix
of f ′i−1 = fj is then u2(f ′j−1), at which fj has been trimmed lies before u2(fj) on its prefix. But since
u2(f ′j−1) is a special vertex of fj , it must be that u2(f ′j−1) = u1(fj), and since fj = f ′i−1, we have that fj
is a bad path, a contradiction.

Step 6 If none of the above steps has been performed, then there is a bad path f = fi = f ′j whose vertex
wf belongs to the cycle. We prove that in this case, every path fj is bad, and a subset of prefixes of
{f1, . . . , fh} = {f ′1, . . . , f ′h}, form a canonical cycle that can be added to the set D. We start with the
following claim:

14

Claim 1 If fi = f ′j is bad, then fj is also bad and fj = f ′i−1.

Proof: Let g = f ′i−1. Since fi is bad, its first special vertex is the second special vertex of g. Therefore,
fi gave its token to g, and the prefix of g currently ends at z(g) = u1(f). Thus, g has exactly two special
vertices: u1(g) and u2(g) = z(g). Since fi = f ′j , and fj is the path to which f ′j gave its token, it follows
that fj = g = f ′i−1. Consider now f ′j−1. Its second special vertex u = u2(f ′j−1) belongs to g and must be a
special vertex of g. From Proposition 4, it cannot be the last vertex of g, z(g) = u2(g). So it must be u1(g).
It follows that g = fj = f ′i−1 is also bad.

! ! !

! ! !

! ! !

! ! !

! ! !

! ! !

f1 f2 fi=f fj=g fh

u2(g)=u1(f)

f’1 f’if’i-1=g f’j-1 f’j=f f’h-1 f’h

Figure 4: Proof of claim 1

Corollary 2 If fi = f ′j is bad, then fi−1 is bad and fi−1 = f ′j−1.

Proof: Assume that fi = f ′j is bad. Then from Claim 1, fj is bad and fj = f ′i−1. We now apply the same
claim again to fj serving as fi and f ′i−1 serving as f ′j . We get that fi−1 is also bad and fi−1 = f ′j−1.

From the above corollary, all paths F = {f1, . . . , fh} are bad, and F = {f ′1, . . . , f ′h}. If fi = f ′j is bad, then
since fj+1 is also bad, the second special vertex of fi = f ′j is the first special vertex of fi, and so it is also
the last vertex of p(fi). It follows that every prefix p(fi), for fi ∈ F , contains exactly two special vertices:
v1(fi) and v2(fi) = z(fi). Moreover, v1(fi) = v2(f ′i−1) and no other live path contains it; v2(fi) = v1(f ′i)
and no other live path contains it. Let h′ : 1 ≤ i ≤ h be such that f1 = f ′h′ . Considered the ordered set of
prefixesM = (p(f1), p(f ′1), p(f2), p(f ′2), . . . , p(f ′h′−1), p(fh′)). Notice that the number of prefixes inM
is odd. From the above discussion, prefixes inM form a canonical cycle. Moreover, vertices appearing on
the prefixes inM do not appear on any other live prefixes and do not belong to paths in D. We move the
paths whose prefixes belong toM to D.

5 Single-Source VC-SNDP with Vertex Costs
We now consider the case when the costs are on vertices. We are given a graph G = (V,E) with cost
c(v) ≥ 0 for each vertex v ∈ V , a subset T ⊆ V of terminals, and a source s ∈ V \ T . The goal is to find
a minimum cost subset V ′ ⊆ V of vertices, such that in the graph induced by V ′ every terminal is k-vertex

15

connected to s. For each subset T ′ ⊆ T of terminals, we again denote by T ′+ the set T ′ ∪ {s} of vertices.
We assume w.l.o.g. that the cost of every vertex in T+ is 0 since any solution must include them. The main
theorem of this section is the following.

Theorem 6 Let G = (V,E) be any instance of single-source k-vertex connectivity problem with terminal
set T , source s and vertex costs c. Given any subset T ′ ⊆ T of terminals, there is a randomized polynomial
time algorithm that finds, with high probability, a subset V ′ ⊆ V of vertices of cost O(OPT · k log n) with
the following properties. The graph induced by V ′ contains, for each t ∈ T ′, a k-tuple F (t) of internally
vertex disjoint paths. Each path in F (t) connects t to some vertex in T+\{t}, while for terminals t′ ∈ T \T ′
at most one path in F (t) terminates at t′. Moreover, paths in F (t) do not contain any terminals of T as
intermediate vertices.

Before proving this theorem, we first show that it suffices to get an O(k7 log2 n)-approximation algorithm
for the vertex costs version of single-source k-vertex connectivity. We need the following analogue of
Corollary 1.

Corollary 3 There is a randomized polynomial time algorithm, that finds, with high probability, a subset
V ′ ⊆ V of vertices of cost O(OPT · k6 · log n), such that in the graph induced by V ′ every terminal t ∈ T
is strongly k-vertex connected to T+ \ {t}.

Proof: We will define an iterative process, consisting of 4k2 iterations. The input to iteration i contains, for
each terminal t ∈ T , a set ϕi−1(t) of forbidden terminals, with |ϕi(t)| ≤ ik for all i. As input to the first
iteration, ϕ0(t) = ∅ for all t ∈ T .

Iteration i proceeds as follows. First, we construct a graph H of terminals as before. There is a vertex vt
for each terminal t ∈ T , and there is an edge between t and t′ iff t′ ∈ ϕi−1(t) or t ∈ ϕi−1(t′). Since
|ϕi−1(t)| ≤ 4k3 for all i, we can color this graph with p = 8k3 + 1 colors. Let T1, . . . , Tp be the partition of
terminals according to their color classes. For each color class Tj , we then apply Theorem 6 with T ′ = Tj to
obtain a subset V i

j of vertices and a k-tuple Pi(t) of internally vertex disjoint paths for each t ∈ Tj , that are
contained in the graph induced by V i

j . Recall that each path in Pi(t) terminates at a vertex in T+ \ {t}, with
at most one path terminating at any terminal t′ ∈ T \ Tj . Finally, we define ϕi(t) as follows: ϕi(t) contains
all terminals t′, such that at least one path in sets P1(t), . . . , Pi(t) terminates at t′. Since |Pj(t)| = k for all
j, we have that |ϕi(t)| ≤ ik for all i.

Let V i =
⋃p
j=1 V

i
j and let V ′ =

⋃4k2

i=1 V
i. Then for all 1 ≤ i ≤ 4k2, c(V i) ≤ O(OPT · k4 log n) and

c(V ′) ≤ O(OPT · k6 log n).

It remains to show that each terminal t is strongly k-connected to T+ \ {t} in the graph induced by V ′. Fix
a terminal t ∈ T and consider the k-tuples of paths P1(t), . . . , P4k2(t). For each i : 1 ≤ i ≤ 4k2, let Di be
the set of terminals t′ that do not belong to ϕi−1(t) such that at least one path in Pi(t) terminates at t′, and
let D′i be the set of terminals t′ that belong to ϕi−1(t) such that at least one path in Pi(t) terminates at t′ (for
t′ ∈ D′i there is exactly one such path).

For each j : 1 ≤ j ≤ 2k, we say that a terminal t′ is j-bad iff t′ ∈ Dk(j−1)+1 ∪ · · · ∪ Dkj and the total
flow that t sends to t′ is more than 4k2 − k(j − 1). Assume first that there is some j : 1 ≤ j ≤ 2k such
that no terminal is j-bad. Consider the flow-paths defined by the k-tuples Pk(j−1)+1(t), . . . , P4k2(t), where
one unit of flow is sent along each path. The total flow that t sends via these k-tuples is k(4k2 − k(j − 1)).
Since each k-tuple of paths is internally vertex disjoint, every non-terminal vertex has at most 4k2−k(j−1)

16

flow units passing through it. We claim that every terminal t′ receives at most 4k2 − k(j − 1) flow units.
Assume otherwise and let t′ be a terminal that receives more than 4k2 − k(j − 1) flow units via paths in
Pk(j−1)+1(t), . . . , P4k2(t). Let Dh be the first set in which t′ appears, k(j − 1) + 1 ≤ h ≤ 4k2. Then
for each i > h, at most one flow unit is sent to t′ via Pi. Since Ph(t) sends at most k flow units to t′, it
must be the case that k(j − 1) + 1 ≤ h ≤ kj and thus t′ is j-bad, a contradiction. In total we have that
k(4k2 − k(j − 1)) flow units are sent from t, with at most 4k2 − k(j − 1) flow units going through any
vertex and at most 4k2 − k(j − 1) flow units terminating at any terminal. We can scale this flow down by
the factor of 4k2 − k(j − 1) and obtain a fractional flow that sends k units from t to T+ \ {t}, such that
at most one flow unit passes through every non-terminal vertex, and at most one flow unit terminates at any
terminal. From the integrality of flow, t is strongly k-vertex connected to T+ \ {t} in the graph induced by
V ′.

Assume now that for each j : 1 ≤ j ≤ 2k there is a j-bad terminal, denoted by tj . This means that
tj ∈ Dk(j−1)+1 ∪ · · · ∪Dkj and the total flow that t sends to tj is at least 4k2 − k(j − 1). If we consider
the k-tuples P2k2+1(t), . . . , P4k2(t) of paths, then they must send at least 2k2 − k flow units to each tj ,
1 ≤ j ≤ 2k. So in total these k-tuples have to send 2k(2k2 − k) = 4k3 − 2k2 flow units to t1, . . . , t2k,
while each one of the 2k2 k-tuples actually only sends k flow units, which is impossible.

We now state our algorithm for the vertex costs case.

1. If |T | ≤ 10k: for each terminal t ∈ T , find a minimum cost subset Vt ⊆ V of vertices, such that t is
k-vertex connected to the source s in the graph induced by Vt. Stop and output ∪t∈TVt. Otherwise,
using Corollary 3, find a set V ′ of vertices of cost O(OPT · k6 · log n), such that in the graph induced
by V ′ every terminal t ∈ T is strongly k-vertex connected to T+ \ {t}. Let F (t) denote the k-tuple
of paths that strongly k-vertex connect t to T+ \ {t}.

2. Identify a subset T ′ ⊆ T of size
⌈
|T |

2(k+1)

⌉
such that for each t ∈ T ′, the paths in F (t) terminate only

on vertices in T+ \ T ′.

3. Recursively solve the problem on the set T ′′ = T \ T ′ of terminals. Let V ′′ be the set of vertices in
the recursive solution. Output V ′ ∪ V ′′ as the final solution.

Using similar arguments as in Lemma 3.1 it is easy to see that the algorithm outputs a feasible solution. The
total depth of recursion is bounded by O(k log n) and thus the solution cost is at most O(OPT · k7 log2 n).

The proof of Theorem 6 is based on rounding an LP relaxation for computing a minimum cost spider
decomposition. We next present the details of this process.

5.1 An LP Relaxation for Minimum Cost Spider Decomposition

Fix an optimal solution OPT for the given instance of the single-source k-vertex connectivity problem. For
each terminal t ∈ T , let B(t) be a k-tuple of vertex disjoint paths connecting t to s in OPT. As before,
for each f ∈ B(t) we construct a path f ′ as follows: if f does not contain any terminals as intermediate
vertices then f ′ = f . Otherwise, f ′ is a prefix of f that starts at t, ends at some terminal and does not
contain any terminals as internal vertices. Let B′(t) be the set of corresponding paths f ′ for f ∈ B(t),
and let ϕ∗(t) denote the set of endpoints of paths in B′(t), excluding s and t (note that 0 ≤ |ϕ∗(t)| ≤ k).
Let P =

⋃
t∈T ′ B

′(t). We construct a new set P ′ of paths from P , as follows. For each terminal t ∈ T ′,

17

we replace every appearance of t on paths B′(t) by a copy of t, obtaining a k-tuple B′′(t) ⊆ P ′ of paths.
For each path f ∈ B′′(t), we say that f belongs to t, and we say that each prefix p of f belongs to t as
well. We set P ′ =

⋃
t∈T ′ B

′′(t). We can now apply the Prefix Decomposition theorem to P ′ and obtain, for
each f ∈ P ′, a prefix p(f). Let R be the set of the resulting prefixes, and let H1, . . . ,Hh be the partition
of R according to the connected components in the graph induced by R. Consider some component Hi,
1 ≤ i ≤ h that forms a canonical cycle. We need to further decompose Hi into a collection of spiders, as
follows. Let g1, . . . , gh denote the collection of prefixes inHi, and recall that h is odd. Let f1, . . . , fh be the
collection of paths in P ′ such that p(fj) = gj for all 1 ≤ j ≤ h. Consider the paths g1, g3, g5 . . . , gh. There
must exist a pair of consecutive paths in this sequence, g2j−1, g2j+1 which belong to distinct terminals:
otherwise, g1 and gh belong to the same terminal t, and this is impossible since g1 and gh share a vertex.
Assume that g2j−1 and g2j+1 belong to distinct terminals. For convenience, we change the indexing of the
paths so that g2j becomes g1, but the circular ordering of the paths does not change.

For each i : 1 ≤ i < h/2, we trim the prefix of g2i at vertex v′(g2i). Now the graph defined by the union
of these prefixes decomposes into bh/2c 2-legged spiders, where the spiders are defined by the prefixes of
g2i and g2i−1 for 1 < i < h/2. Since these two prefixes intersect, they must belong to distinct terminals.
Additionally, we get a 3-legged spider defined by the prefixes of g1, g2 and gh (see Figure 5). Notice that
this is not a canonical spider, since there is no vertex appearing on all three prefixes. We have ensured that
g2 and gh belong to distinct terminals. Since g1 intersects both these paths, all three paths belong to distinct
terminals. We perform this decomposition on every component Hi whose prefixes form a canonical cycle.
LetR′ denote the resulting set of prefixes.

…

…

!!

!"

!#

!!

…

…

!!

!"

!#

!!

"!!!!"

"!!!"" "!!!""

"!!!!"

Figure 5: Decomposition of canonical cycles into spiders.

Finally, we obtain a collection R′′ of paths from R′ by replacing each copy of every terminal t ∈ T on
prefixes of paths B′′(t) by terminal t itself. For each terminal t ∈ T ′, let B∗(t) denote the k-tuple of
prefixes corresponding to the paths in B′′(t). We therefore obtain a collection of spiders, whose internal
vertices are completely disjoint, but endpoints and heads may be shared by several spiders. We have spiders
of two types: those whose head is either a terminal or the source s may have one or more legs; other spiders
must have at least two legs each. Moreover, no terminal appears as an intermediate vertex on legs of any
spider, and for every terminal t ∈ T , all k prefixes in B∗(t) belong to distinct spiders whose heads are
distinct vertices in V \ {t}. We will write an LP relaxation for finding such a spider decomposition of
minimum cost, and round the solution. The goal of the rounding procedure is to find a subset V ′ ⊆ V of
vertices of cost O(OPT · k log n) and a k-tuple F (t) of paths for each terminal t ∈ T ′, that are contained
in the graph induced by V ′, such that the paths in F (t) are internally vertex disjoint and do not contain any

18

terminals as intermediate vertices. Moreover, for each t′ ∈ T \ T ′, at most one path in F (t) may terminate
at t′.

Let V ∗ = V \ T+. We start by constructing a directed graph G′ = (V ′, E′), as follows. For each vertex
v ∈ V ∗, we create two copies, hv, `v. The copy hv corresponds to vertex v being a head of a spider, and
the copy `v corresponds to vertex v being an intermediate vertex. The cost of each copy is c(v). We set
V ′ = {hv, `v | v ∈ V ∗} ∪ T ∪ {s}. For each edge e = (u, v) ∈ E, we add all possible edges between
the copies of u, v (there are two such copies for non-terminals and one copy for terminal vertices). Now to
obtain set E′ of edges, we remove all edges leaving hv for all v ∈ V , and we remove all edges leaving s.
We also remove all edges leaving terminals t ∈ T \ T ′.

For every vertex v ∈ V ∗, we have two variables: xv, yv. Variable xv indicates whether or not v is used as a
spider-head, and variable yv indicates whether or not v is used as an intermediate vertex.

We will think of each terminal ti as sending k units of flow from ti to spider-heads; we will refer to this as
the flow of type i. The total congestion on intermediate vertices is at most 1. The total congestion allowed
on spider-heads is unrestricted, but congestion with respect to each flow type is restricted to be at most 1 and
no flow of type i can terminate at ti. Recall that any terminal t ∈ T may also serve as a spider-head. In this
case again the total congestion is unrestricted but congestion with respect to each flow type is at most 1. For
each vertex u we denote by δ−(u) and δ+(u) the set of incoming and outgoing edges in G′, respectively.
Also, for each edge e and flow type i, we use variable fi(e) to denote the flow of type i traversing edge e.

min
∑

v∈V ∗ c(v)(xv + yv)
s.t.

xv + yv ≤ 1 ∀v ∈ V ∗∑
e∈δ+(ti)

fi(e) = k ∀ti ∈ T ′ (k units of flow leave ti)
fi(e) = 0 ∀ti ∈ T ′, e ∈ δ−(ti) (no type i flow enters ti)
fj(e) = 0 ∀ti, tj ∈ T ′, j 6= i,∀e ∈ δ+(ti) (no flow of type j leaves ti)∑

e∈δ+(`v) fi(e) =
∑

e∈δ−(`v) fi(e) ∀v ∈ V ∗, ti ∈ T ′ (flow conservation)∑
e∈δ−(`v)

∑
i fi(e) = yv ∀v ∈ V ∗ (total congestion on

intermediate vertices)∑
e∈δ−(hv) fi(e) ≤ xv ∀v ∈ V ∗, ti ∈ T ′ (congestion due to flow of type i∑
e∈δ−(tj)

fi(e) ≤ 1 ∀tj ∈ T, ti ∈ T ′, i 6= j on spider-head vertices)∑
e∈δ−(hv)

∑
i fi(e) ≥ 2xv ∀v ∈ V ∗ (at least two spider legs)

fi(e), xv, yv ≥ 0 ∀v ∈ V ∗, ti ∈ T ′, e ∈ E′

Observe that the spider-decomposition of the optimal solution defined by the set R′′ of prefixes provides a
feasible solution to the LP of cost at most OPT. We now fix the optimal feasible solution of the LP and
round it.

5.2 The Rounding Algorithm

As a pre-processing step, we perform a suitable flow-path decomposition of a fractional solution to the above
LP. Let ε > 0 be a sufficiently small value such that each xv and yv value can be expressed as an integer
multiple of ε. For each terminal ti ∈ T ′, we build k/ε flow-paths, each carrying ε units of flow of type i.

19

Each flow-path starts at ti and ends either at s, or tj ∈ T \ {ti}, or hv for some v ∈ V \ (T ∪{s}). All other
vertices on the flow-path are intermediate vertices `v. Our LP constraints ensure that the total congestion on
the inner vertices `v is at most yv. No flow goes through the spider-head vertices hv, and at most xv flow
units of each type terminate at hv. For terminal ti ∈ T , no flow of type j 6= i goes through ti, and at most
one unit of that flow may terminate at ti, but the total amount of flow terminating at ti is unrestricted. For
the source vertex s, there is no restriction on the amount of flow of each type terminating at s.

Given a flow-path decomposition as above, the rounding algorithm performs the following three steps: flow
pairing, sampling of spider-head vertices, and sampling of flow-paths. The flow pairing step is performed
once at the beginning of the algorithm, and the next two steps are performed (4k log n) times.

Step 1 (Flow Pairing): Consider some spider-head non-terminal vertex hv and the set F of flow-paths
terminating at hv. Recall that the total amount of flow terminating at hv is at least 2xv, and the total amount
of flow of each type is at most xv. For each flow-path f terminating at hv, we find another flow-path R(f)
terminating at hv, such that:

• f and R(f) belong to different terminals (different flow-types).

• For each flow-path f ′, there are at most two paths f for which R(f) = f ′.

• If R(f ′) = R(f ′′) = f then f ′ and f ′′ belong to different terminals.

We find the pairing as follows: while F contains at least two flow paths f, f ′ that belong to different
terminals, we set R(f) = f ′ and R(f ′) = f and remove f, f ′ from F . When this process can no longer be
performed, set F contains paths belonging to one terminal, ti. Let F ′ be the set of all flow-paths belonging
to ti that terminate at hv. Notice that it is possible that for some f ∈ F ′, R(f) has already been defined.
The total flow on paths in F ′ is at most xv. But the LP ensures that the flow from terminals tj 6= ti to hv
is at least xv. So for each flow-path f ∈ F we can find a distinct path f ′ that terminates at hv and belongs
to a terminal different from ti. We set R(f) = f ′. (Notice that for paths f ∈ F ′ for which R(f) has been
previously defined, we re-define R(f) here).

The next two steps are repeated (4k log n) times.

Step 2 (Sampling of Spider Head Vertices): In this step, each spider-head vertex hv is selected into set
H with probability xv.

Step 3 (Flow Sampling): Our final step is the flow sampling step. For each terminal ti, we divide its set
of flow paths into two subsets, F1(ti) and F2(ti). The set F1(ti) consists of flow paths that terminate at
T+ \ {ti}. The set F2(ti) consists of flow paths that terminate at some spider-head vertex hv.

• For each flow path f ∈ F1(ti), we sample f with probability ε.

• For flow paths in F2(ti), we perform the following random experiment. Let δv(ti) denote the total
flow from terminal ti to a spider-head vertex hv ∈ H along the flow paths in F2(ti). With probability
δv(ti)
xv

, we choose to route through the vertex hv. If we choose to route through hv, then we sample

20

uniformly at random a flow path f ∈ F2(ti) connecting ti to hv. If f is selected then we select R(f)
as well.

We set V ′ to contain all the vertices v for which hv ∈ H or `v belongs to one of the flow-paths that we have
selected (in addition to vertices in {s} ∪ T).

5.3 Cost and Feasibility Analysis

We first show that the expected cost of vertices in set V ′ is at most O(k log n)OPT. We will then prove
that for each terminal ti ∈ T ′, the graph induced by V ′ contains a set F (ti) of k paths with the desired
properties.

Expected Cost: We start by bounding the expected solution cost. We need to analyze only the expected
cost of vertices in V \ T+. Vertex v belongs to the solution if hv ∈ H , or `v belongs to one of the paths we
selected. The probability that hv ∈ H is O(xv · k log n).

Consider now vertex `v ∈ V ′. Recall that the total flow that goes through `v is at most yv. Let f be any
flow-path traversing v. If it terminates in s or one of the terminals, then the probability that we select it is
O(ε · k log n). Assume now that it terminates at some spider-head hv′ . Then the probability that hv′ ∈ H
is O(xv′ · k log n). The probability that either f is sampled, or one of the at most two paths f ′ for which
R(f ′) = f is sampled, given that hv′ is selected is O(ε/xv′).

So overall f is added to the solution with probability at most O(ε · k log n). Using the union bound, the
probability that any path containing `v is chosen is at most O(yv · (k log n)). Overall, the expected cost of
vertex v is at most (xv + yv)c(v) ·O(k log n), and the expected solution cost is O(k log n)OPT.

Feasibility: We now show that the solution produced by the above random process is feasible with high
probability.

Lemma 5.1 With high probability, for each terminal ti ∈ T , there is a k-tuple F (ti) of k internally vertex
disjoint paths in the graph induced by V ′, where each path f ∈ F (ti) connects ti to T+ \ {ti} and does
not contain terminals as intermediate vertices. Moreover, for each t′ ∈ T \ T ′, at most one path in F (ti)
terminates at t′.

Proof: Fix some terminal ti. We construct an auxiliary graph Gi as follows. Graph Gi contains ti as a
source and S as a super-sink. Graph Gi is identical to G, except that all vertices in T ′+ \ {ti} are merged
into the super-sink S. Additionally, for each t′ ∈ T \ T ′, we add an edge from t′ to S. We set the capacity
of each vertex v ∈ V ∗ to be xv + yv, and capacity of each terminal t ∈ T \ T ′ to be 1.

For each flow-path f of type i in the LP-solution, if f terminates at s or tj , j 6= i, we add path f to the graph
Gi: we replace each `v on the path by v; if tj ∈ T ′+ \ {ti} then the new path terminates at S; otherwise
after reaching tj it continues directly to S. If f terminates at some vertex hv, we add a new flow-path that
consists of concatenation of f and R(f) to Gi: we replace hv by v and `v′ by v′ for all v′ on the new path.
Notice that the terminal tj where R(f) starts belongs T ′+, and so the new path terminates at S.

Observe that we now send k units of flow from ti to S in Gi. We first argue that resulting flow obeys the
capacities assigned to the vertices. Consider some vertex v ∈ V ∗, and let f be a flow-path in Gi traversing
v. We group such paths into three sets: S1(v), S2(v) and S3(v). If f was obtained from a path f ′ in G′ that

21

terminates in hv, then f ∈ S1(v). Otherwise, f was obtained from a concatenation of paths f ′, f ′′ in G′.
Assume w.l.o.g. that f ′ is the path that belongs to ti. If `v ∈ f ′ then f ∈ S2(v); otherwise, `v ∈ f ′′ and
we set f ∈ S3(v). The total flow on paths in S1(v) is bounded by xv. The total flow on paths in S2 and
S3 is bounded by yv: the flow traversing vertex `v in G′ is at most yv. If f ′′ is any flow-path that belongs
to a terminal other than ti and traverses `v, then there is at most one path f ′ belonging to ti for which
R(f ′) = f ′′. Therefore, the total flow via vertex v in Gi is at most xv + yv. Consider now some terminal
t ∈ T \ T ′. The total flow of type i entering t is 1, and therefore at most 1 unit of flow is routed through t.

Notice that in order to complete the proof, it is enough to show that with high probability, after the flow
sampling step, there are k vertex disjoint paths connecting ti to S in Gi. Assume otherwise. Then there
exists a separator X of size (k − 1) that separates ti from S in Gi after flow sampling. For each subset X
of k − 1 vertices in Gi, with S, ti 6∈ X , let Ei(X) denote the event that X separates ti from S after the flow
sampling. Before the flow sampling step, the graph Gi contains a collection D(ti) of flow paths carrying
at least one unit of flow from ti to S such that no flow path contains any vertex from X . Thus if the event
Ei(X) occurs, we did not sample any path in D(ti). We now bound the probability of the event Ei(X). Let
F ′1(ti) denote the set of flow paths in F1(ti) when mapped to the graph Gi. Similarly, let F ′2(ti) denote the
set of flow paths in F2(ti) when mapped to the graph Gi.

Consider first the case when the total flow on paths in F ′1(ti)∩D(ti) is at least 1/2, so |F ′1(ti)∩D(ti)| ≥ 1
2ε .

For each path f ∈ F ′1(ti) ∩D(ti), we define a random variable γ(f) that is equal to 1 if f is selected and
equal to 0 otherwise. Let γ =

∑
f∈F ′1(ti)∩D(ti)

γ(f). The probability that none of the paths in F ′1(ti)∩D(ti)
is chosen in any given iteration of Step (3) is

Pr[γ = 0] =
∏

f∈F ′1(ti)∩D(ti)

(1− ε) ≤ e−
1
2 .

Then the probability that γ = 0 in each one of the (4k log n) independent trials of Step (3) can be bounded
by e−

1
2

(4k logn) ≤ n−2k.

Suppose now that flow paths in F ′2(ti) ∩ D(ti) carry more than 1/2 unit of flow. We now analyze the
probability that no path in F ′2(ti) is chosen by analyzing the probability of failure in a single iteration of the
steps (2) and (3) above. For each spider-head vertex hv, let Zv be a 0/1 random variable that is 1 if and only
if each of the following events occurs:

• The vertex hv is chosen in step (2).

• We chose to route through the vertex hv in step (3) along a path in the set F ′2(ti) ∩D(ti).

We define Z =
∑

hv
Zv. Clearly, the set X disconnects ti from T \ {ti} only if Z = 0. So we would like

to bound the probability of this event. Note that the variables Zv are independent of each other. Let δ′v(ti)
denote the total flow from terminal ti to a spider-head vertex hv ∈ H along the flow paths in F ′2(ti)∩D(ti).
For each Zv, we have

Pr[Zv = 1] = xv ·
δv(ti)
xv

· δ
′
v(ti)
δv(ti)

= δ′v(ti).

Thus using the fact that
∑

v δ
′
v(ti) ≥ 1/2, we get

22

Pr[Z = 0] =
∏
v

Pr[Zv = 0] =
∏
v

(
1− δ′v(ti)

)
≤ e−

∑
v δ
′
v(ti) ≤ e−1/2.

Then the probability that Z = 0 in each one of the (4k log n) independent trials of Steps (2) and (3) can be
bounded by e−

1
2

(4k logn) ≤ n−2k.

Hence in each case above, the probability of the event Ei(X) can be bounded by n−2k. To complete the
proof, using the union bound, we get

∑
ti∈T

∑
X⊂V (Gi)\{S,ti},
|X|=k−1

Pr[Ei(X)] ≤ n · nk−1 · 1
n2k

=
1
nk

6 Concluding Remarks
The results in this paper represent progress towards closing the gaps in our understanding of the approxima-
bility of single-source k-vertex connectivity. While there still remains a separation between the upper and
lower bounds in the single-source vertex connectivity, the gap in the upper and lower bounds for the general
VC-SNDP is far more striking. For any fixed k ≥ 3, the upper bound is a polynomial-ratio approxima-
tion algorithm while the lower bound is an APX-hardness. Perhaps both the approximability factor and the
hardness factor can be much improved.

References

[1] A. Agrawal, P. N. Klein, and R. Ravi. When trees collide: An approximation algorithm for the gener-
alized steiner problem on networks. SIAM Journal of Computing, 24(3):440–456, 1995.

[2] V. Auletta, Y. Dinitz, Z. Nutov, and D. Parente. A 2-approximation algorithm for finding an optimum
3-vertex-connected spanning subgraph. Journal of Algorithms, 32(1):21–30, 1999.

[3] M. Bern and P. Plassmann. The steiner problem with edge lengths 1 and 2. Information Processing
Letters, 32:171–176, 1989.

[4] J. Cheriyan, T. Jordan, and Z. Nutov. On rooted node-connectivity problems. Algorithmica, 30(3):353–
375, 2001.

[5] J. Cheriyan, S. Vempala, and A. Vetta. An approximation algorithm for the minimum-cost k-vertex
connected subgraph. SIAM Journal of Computing, 32(4):1050–1055, 2003.

[6] J. Cheriyan, S. Vempala, and A. Vetta. Network design via iterative rounding of setpair relaxations.
Combinatorica, 26(3):255–275, 2006.

[7] T. Chakraborty, J. Chuzhoy, and S. Khanna. Network Design for Vertex Connectivity. In Proceedings
of ACM Symposium on Theory of Computing (STOC), 2008.

23

[8] C. Chekuri and N. Korula. Single-sink network design with vertex connectivity Requirements.
Manuscript, April 2008.

[9] Y. Dinitz and Z. Nutov. A 3-approximation algorithm for finding optimum 4, 5-vertex-connected
spanning subgraphs. Journal of Algorithms, 32(1):31–40, 1999.

[10] J. Fakcharoenphol and B. Laekhanukit. An O(log2 k)-approximation algorithm for the k-vertex con-
nected subgraph problem. In Proceedings of ACM Symposium on Theory of Computing (STOC), 2008.

[11] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM 45(4) pp. 634-652,
1998.

[12] L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms for min-
imum cost vertex connectivity problems. Journal of Computer and System Sciences, 72(5):838–867,
2006.

[13] A. Frank and T. Jordan. Minimal edge-coverings of pairs of sets. Journal of Combinatorial Theory,
Series B, 65(1):73–110, 1995.

[14] A. Frank and E. Tardos. An application of submodular flows. Linear Algebra and its Applications,
114-115:329–348, 1989.

[15] Z. Galil and G. Italiano. Reducing edge connectivity to vertex connectivity. ACM SIGACT News,
22(1), pp. 57–61, 1991.

[16] M. Goemans and D. Williamson. The primal-dual method for approximation algorithms and its appli-
cation to network design problems. In Approximation Algorithms, D. Hochbaum, Ed., PWS, 1997.

[17] M. X. Goemans, A. V. Goldberg, É. Tardos, S. A. Plotkin, D. B. Shmoys, and D. P. Williamson.
Improved approximation algorithms for network design problems. In Proceedings of the fifth annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 223–232, 1994.

[18] M. X. Goemans, M. Mihail, V. Vazirani, and D. P. Williamson. A primal-dual approximation algorithm
for generalized steiner network problems. Combinatorica, 15(3):435–454, 1995.

[19] K. Jain. Factor 2 approximation algorithm for the generalized steiner network problem. In Proceedings
of the thirty-ninth annual IEEE Foundations of Computer Science (FOCS), pages 448–457, 1998.

[20] S. Khuller and B. Raghavachari. Improved approximation algorithms for uniform connectivity prob-
lems. Journal of Algorithms, 21(2):434–450, 1996.

[21] P. N. Klein and R. Ravi. A Nearly Best-Possible Approximation Algorithm for Node-Weighted Steiner
Trees. Journal of Algorithms, 19 (1): 104–115, 1995.

[22] G. Kortsarz, R. Krauthgamer, and J. R. Lee. Hardness of approximation for vertex-connectivity net-
work design problems. SIAM Journal of Computing, 33(3):704–720, 2004.

[23] G. Kortsarz and Z. Nutov. Approximating node connectivity problems via set covers. Algorithmica,
37(2):75–92, 2003.

[24] G. Kortsarz and Z. Nutov. Approximating k-node connected subgraphs via critical graphs. SIAM
Journal of Computing, 35(1):247–257, 2005.

24

[25] C. Lund, and M. Yannakakis. On the hardness of approximating minimization problems. J.ACM 41, 5,
960–981, 1994.

[26] R. Ravi and D. P. Williamson. An approximation algorithm for minimum-cost vertex-connectivity
problems. Algorithmica, 18(1):21–43, 1997.

A Reducing Edge Connectivity to Vertex Connectivity

In this section we show that EC-SNDP is a special case of VC-SNDP. Our reduction also works in the
single-source scenario and proves that the single source EC-SNDP is a special case of the single-source
VC-SNDP.

Theorem 7 Given any instance G of EC-SNDP, we can construct, in polynomial time, an instance G′ of
VC-SNDP, such that the optimal solutions of both instances have the same cost. If G is an instance of
single-source EC-SNDP then G′ is an instance of single-source VC-SNDP.

Proof: Let G = (V,E) be an instance of EC-SNDP, with costs c(e) on edges e and connectivity require-
ments ru,v for u, v ∈ V . We construct an instance G′ = (V ′, E′) of VC-SNDP as follows.

For each v ∈ V , and each e ∈ E that is adjacent to v, we create a vertex ev. Let Z(v) = {ev | v ∈ e ∈ E}.
Set V ′ of vertices is then V ′ = V ∪ {Z(v) | v ∈ V }. Set E′ of edges consists of two sets, E′ = E1 ∪ E2.
The set E1 contains special edges defined as follows: for each edge e = (u, v) ∈ E, there is a special edge
(eu, ev) ∈ E1 whose cost is c(e). Set E2 of edges contains non-special edges whose cost is 0. For each
vertex v ∈ V , we add a non-special edge between each pair of vertices in set {v} ∪ Z(v). Let E(v) denote
the set of these edges. Notice that in the graph induced by E2, for each v ∈ V there is a separate connected
component, which is a clique on vertices {v} ∪ Z(v).

Connectivity requirements are defined as follows: for each u, v ∈ V , the connectivity requirement is the
same as in the original instance. For any other pair of vertices the connectivity requirement is 0. Notice that
if G is an instance of single-source EC-SNDP then G′ is an instance of single-source VC-SNDP.

Let E∗ be any solution to the EC-SNDP instance G. We show a solution E∗∗ to the VC-SNDP instance G′

of the same cost. The solution is defined as follows. For each e = (u, v) ∈ E∗, we add (eu, ev) to E∗∗. We
also add all non-special edges of E2 to E∗∗. Clearly the cost of E∗∗ is the same as the cost of E∗. We now
show that it is a feasible solution to the VC-SNDP instance. Fix a pair u, v ∈ V of vertices, and let P be the
set of ru,v edge disjoint paths connecting u to v in OPT. For each path p ∈ P , we define a path h(p) in the
sub-graph of G′ induced by E∗∗, so that the set P ′ = {h(p) | p ∈ P} of paths is vertex disjoint, and every
path in the set connects u to v. Let p = (v = v1, v2, . . . , vq = u), and let ei = (vi, vi+1) for 1 ≤ i < q. We
define path h(p) = (v = v1, e

1
v1 , e

1
v2 , e

2
v2 , . . . , e

q−1
vq−1 , e

q−1
vq , vq = u). It is easy to see that for p, p′ ∈ P the

resulting paths h(p), h(p′) are vertex disjoint: the only vertices appearing on h(p) are of the form ez , where
e belongs to p. Therefore, if h(p), h(p′) share an intermediate vertex, the paths p, p′ must share an edge,
which is a contradiction.

We now show that the other direction also holds. Let E∗ be any solution to the VC-SNDP instance. We
show a solution E∗∗ to the EC-SNDP instance of the same cost. Solution E∗∗ is defined as follows: for each
special edge (eu, ev) ∈ E∗, we add e to E∗∗. Clearly, the cost of E∗∗ is the same as the cost of E∗. We now
show that this defines a feasible solution. Let u, v ∈ V be any pair of vertices and let P be the set of ru,v

25

vertex disjoint paths connecting u to v in the sub-graph of G′ induced by E∗. We define, for each p ∈ P , a
path h(p) connecting u to v in the sub-graph of G induced by E∗∗, so that for each pair p, p′ ∈ P , the paths
h(p), h(p′) are edge disjoint.

Let p ∈ P be a path connecting u to v in E∗. Let (ex, ey), (ex′ , ey′) be any pair of successive special edges
on p. Recall that in the graph induced by set E2 of non-special edges the connected components correspond
to sets Z(v′) of vertices, for all v′ ∈ V . Therefore, y = x′ must hold. Assume that the special edges
appearing on path p are: (e1

v1 , e
1
v2), (e2

v2 , e
2
v3), . . . , (eq−1

vq−1 , e
q−1
vq). Then v1 = v and vq = u must hold. We

now define h(p) = (v1, v2, . . . , vq). It now only remains to show that if p, p′ ∈ P , p 6= p′, then h(p), h(p′)
are edge disjoint. Assume otherwise, and let e = (x, y) be some edge appearing on both paths. Then both
ex and ey appear on both p and p′ as intermediate vertices, a contradiction.

26

