COVERING PROBLEMS WITH HARD CAPACITIES*
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Abstract. We consider the classical vertex cover and set cover problems with hard capacity
constraints. This means that a set (vertex) can only cover a limited number of its elements (adja-
cent edges) and the number of available copies of each set (vertex) is bounded. This is a natural
generalization of the classical problems that also captures resource limitations in practical scenarios.

We obtain the following results. For the unweighted vertex cover problem with hard capacities
we give a 3-approximation algorithm which is based on randomized rounding with alterations. We
prove that the weighted version is at least as hard as the set cover problem, yielding an interesting
separation between the approximability of weighted and unweighted versions of a “natural” graph
problem. A logarithmic approximation factor for both the set cover and the weighted vertex cover
problem with hard capacities follows from the work of Wolsey [30] on submodular set cover. We
provide here a simple and intuitive proof for this bound.
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1. Introduction. The set cover problem is defined as follows. Let E = {1,...,n}j
be a ground set of elements and let S be a collection of sets defined over E. Each
S € S has a non-negative cost w(S) associated with it. A cover is a collection of sets
such that their union is E. The goal is to find a cover of minimum cost. The set cover
problem is a classic NP-hard problem that has been studied extensively in the litera-
ture, and the best approximation factor achievable for it is ©(logn) [9, 11, 20, 22].

We consider in this paper the set cover problem with capacity constraints, or the
capacitated set cover problem. We assume that each set S € S has a capacity k(S)
associated with it, meaning that it can cover at most k(S) elements.

Generally, capacitated covering problems come in two flavors. In the case of soft
capacities, an unbounded number of copies of each covering object is available. In the
case of hard capacities, which is considered in this paper, each covering object (set .S)
has a bound (denoted by m(S)) on the number of available copies. Thus, a cover C
is a multi-set of input sets that can cover all the elements, while C contains at most
m(S) copies of each S € S, and each copy covers at most k(S) elements.

The capacitated (multi)-set cover problem is a natural generalization of a basic
and well-studied problem that captures practical scenarios where resource limitations
are present.

A special case of the capacitated set cover problem that we consider is the ca-
pacitated vertex cover problem, defined as follows. An undirected graph G = (V, E)
is given and each vertex v € V is associated with a cost w(v), a capacity k(v), and
a multiplicity m(v) (we assume that no parallel edges are present). The goal is to
find a minimum cost multi-set U of vertices that cover all the edges, such that for
each vertex v € V, at most m(v) copies appear in U, and each copy covers at most
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k(v) edges adjacent to v. The capacitated vertex cover problem generalizes the well
known vertex cover problem, probably one of the most studied problems (see [19]
for an overview) in the area of approximation algorithms. The best currently known

o . logl
approximation factor for vertex cover is 2 — %g“\/vﬂ [3, 18].

The capacitated vertex cover problem was first introduced by Guha, Hassin,
Khuller and Or [17]. They considered the version of the problem with soft capacities,
a special case where the number of available copies of each vertex is unbounded. A
straightforward rounding of a linear programming relaxation of the problem gives a 4-
approximate solution. Guha et al. [17] show a 2-approximation primal-dual algorithm
and they also give a 3-approximation for the case where each edge e € E has an (un-
splittable) demand d(e). (Gandhi et al. [13] provide further results on the capacitated
vertex cover problem with soft capacities.) Guha et al. [17] motivate the study of
the vertex cover problem with soft capacities by an application in glycobiology. The
problem emerged in the redesign of known drugs involving glycoproteins and can be
represented as an instance of the capacitated vertex cover problem.

Two other closely related capacitated covering problems are capacitated facility
location and capacitated k-median. In both problems, the input consists of a set of
facilities and a set of clients. For each facility and each client, there is a distance that
defines the cost of assigning the client to the facility. Each facility f has a capacity
k¢, and a number of available copies my. Each client ¢ has a demand d;. The goal is
to open facilities and to assign all the clients to them. In the facility location problem,
each facility f has a cost wy. Any number of facilities can be opened, as long as the
number of copies of any facility f does not exceed mys. The cost of a solution is the
total cost of the open facilities plus the assignment costs of the clients. In the k-
median problem, we are given a bound k on the number of facilities. A solution must
contain at most k facilities and the cost of the solution is the sum of the assignments
costs of the clients to the facilities. The capacitated set cover problem is a special
case of facility location with hard capacities, where all the distances are either 0 or
oo (note that this distance function is not a metric). Bar-Ilan et al. [2] gave an
O(logn + log M)-approximation for the facility location with hard capacities, where
M is the value of the maximum input parameter.

Prior Work. There is extensive research on the set cover problem and the reader
is referred to the surveys in [15, 7, 1, 26, 19]. The set cover problem is known
to be Q(logn) hard to approximate [11, 23]. A greedy heuristic gives an O(logn)-
approximation [9, 22] for the set cover problem.

Wolsey [30] considered the submodular set cover problem. Let f be an integer
valued function defined over all subsets of a finite set of elements £. Function f is
called non-decreasing if f(S) < f(T) for all S C T C E, and submodular if f(S) +
f(I)> f(SNT)+ f(SUT) for all S,T C E. The input to the submodular set cover
problem is a family S of subsets of E together with a non-negative cost function. There
is a non-negative non-decreasing submodular function f defined over all collections
of the input sets. The goal is to find a minimum cost collection P of sets, such that
f(P) = f(S). The special case where f(S) = | Uges S| for each set S € S is the
classical set cover problem.

Consider the capacitated set cover problem. We can assume without loss of
generality that the multiplicities of all the sets are unit as is the case in the submodular
set cover problem by viewing each one of the m(S) copies of each set S € S as a
distinct set. For any family A of input sets, define f(.A) to be the maximum number
of elements that A can cover (given the capacity constraints). It is not hard to see that
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f is a non-decreasing non-negative submodular function. Wolsey [30] showed using
dual fitting that the approximation factor of a greedy heuristic for the submodular
set cover problem is 1+ O(log fmax), where fmax = maxses f({S}).

Metric facility location is a well-studied special case of the facility location prob-
lem, where the distance function defined on the clients is a metric. Many heuristics, as
well as approximation algorithms with bounded performance guarantees, were devel-
oped for this version [6, 25, 27, 29]. For the metric facility location problem with hard
capacities, P4l, Tardos and Wexler [28] gave a (9+ ¢)-approximation using local search.
This result has been improved to (8 + ¢)-approximation by Mahdian and P4l [24], and
the best currently known approximation is (6 + €), due to Zhang, Chen and Ye [31],
and Garg, Khandekar and Pandit [16]. Unlike the facility location problem, it is
not known whether the capacitated k-median problem has a constant approximation,
even if the capacities are soft. Bartal et al. [4] show a constant factor bi-criteria ap-
proximation for the soft capacities version, where the number of open facilities k is
exceeded by at most a constant. Chuzhoy and Rabani [8] provide a different constant
factor bi-criteria approximation for the same problem. In their algorithm, the capac-
ities are violated by at most a constant factor, while the number of open facilities is
guaranteed to be at most k.

1.1. Our Contribution. Our first result is a randomized 3-approximation algo-
rithm for the unweighted capacitated vertex cover problem in simple graphs (i.e., with
no parallel edges). Our algorithm uses randomized rounding with alterations. The
first rounding step in our algorithm applies randomized rounding where the probabil-
ities are derived from a solution to a linear programming relaxation of the problem.
However, the rounding may not yield a feasible cover and therefore we need to add
more vertices to the cover. This is done in the alteration step. Our analysis uses
a charging scheme to bound the number of vertices that are added to the cover in
this step. We also prove that the more general version where edges have unsplittable
demands is not approximable in the presence of hard capacities. Contrast this with
the 3-approximation algorithm of Guha et al. [17] for this case (with soft capacities).

We next consider the weighted capacitated vertex cover problem and prove that it
is set-cover hard. This means that the best approximation factor that can be achieved
for this problem is Q(logn). Our hardness proof holds even for the case of {0,1}
weights and unit multiplicity. Interestingly, we are not aware of any other “natural”
graph problem where there is a logarithmic separation between the approximability of
weighted and unweighted versions. (However, there are several examples of problems
where the unweighted version is polynomially solvable while the weighted version is
NP-hard.)

We leave open the version of the capacitated vertex cover problem where the
graph is unweighted, yet there are parallel edges. Our constant-factor approxima-
tion algorithm is not applicable to this version of the problem. Following our work,
Gandhi et al. [12] obtained a 2-approximation for the unweighted vertex cover with
hard capacities, using a modification of our algorithm.

We proceed to consider the capacitated set cover problem. As already noted, it
follows from Wolsey’s work [30] that a natural greedy heuristic achieves an approxi-
mation factor of O(logn) for this problem. We note that the integrality gap of the
natural linear programming relaxation of the problem is unbounded, similar to the
case of facility location with hard capacities [28]. Indeed, Wolsey uses a different lin-
ear programming formulation (see Section 6 for a formulation of the linear program).
We consider the same greedy heuristic as Wolsey and provide a direct combinatorial



4 J. CHUZHOY AND J. (S.) NAOR

proof of the approximation factor of this heuristic. We believe that our proof is sim-
ple and intuitive. We note that the main obstacle in applying the “standard” (set
cover) charging scheme in the presence of hard capacities is that it is not clear how
to “charge” the sets in the optimal solution for the sets in the solution computed by
the greedy algorithm. Since there are hard capacities, the assignment of elements to
sets in the cover is dynamic, and, moreover, elements may be covered and uncovered
several times during the iterations of the algorithm.

The paper is organized as follows. In Section 3, we show a 3-approximation al-
gorithm for unweighted capacitated vertex cover. In section 4.1 we show that the
weighted capacitated vertex cover problem is at least as hard as the set cover prob-
lem, even in the case where m(v) = 1 for all v € V. In Section 4.2 we consider
the version where edges have unsplittable demands and show that this version is not
approximable in the presence of hard capacities. In Section 5 we provide a descrip-
tion of the greedy algorithm for the set cover problem with hard capacities, and give
a simple proof that the algorithm achieves an O(logn)-approximation, implying an
O(log |V |)-approximation for the weighted capacitated vertex cover problem. In Sec-
tion 6 we discuss extensions of the algorithm to more general covering problems, such
as submodular set cover and multi-set multi-cover.

2. Preliminaries. A set cover instance with hard capacities contains a ground
set of elements £ = {1,...,n} and a collection of sets S defined over E. Each set
S € 8§ is associated with a non-negative cost w(S), a capacity k(S) that bounds the
number of elements it can cover, and a bound m(S) on the number of available copies
of S. Let P be a multi-set of sets from S. Then C C P x E is called a partial cover
iff for each (S,e) € C, e € S. We say that element e € E is covered by S in C if
(S,e) € C. Without loss of generality we can assume that each element e € F is
covered in C at most once. Cover C is feasible if P contains at most m(S) copies of
each S € S, and each copy covers at most k(S) elements. The value of C, i.e., the
number of elements it covers, is denoted by |C|. Given a multi-set P, denote by f(P)
the maximal value of a feasible (partial) cover C C P x E. The cost of C is defined
to be the sum of the costs of the sets belonging to P. We start by showing that when
P is fixed, a feasible cover C' C P x E of value f(P) can be computed in polynomial
time.

LEMMA 2.1. Given an instance of set cover with hard capacities and a multi-set
P of sets from S, a cover C of value f(P) can be computed in polynomial time. In
particular, it can be established whether P defines a feasible solution to the set cover
problem.

Proof. For each S € S, let m?(S) denote the number of copies of S that appear
in P. We build the following directed network. Let G = (L, R, E') be the directed
incidence graph of P and E, i.e., L contains a vertex for each copy of each set in P:
L ={v(9)| S €8,1<i<mP(S)}, R=E. For each v;(S) € L, e € R, there is
an edge (v;(S),e) € E' of capacity 1 iff e € S. Add a source vertex s and an edge
(s,v4(8)) of capacity k(S) for each S € S,1 < i < mP(S). Add a sink vertex ¢ an
edge (e, t) of capacity 1 for each e € E.

Consider the maximum flow in this network. The value of the flow is at least f(P),
since the optimal cover defines a feasible flow in the network. Also, the maximum
flow in the network is integral, and thus it induces a feasible partial cover of the same
value.

Clearly, P is a feasible solution to the set cover problem iff f(P) = |E| and for
each S € S, m?(S) <m(S). O
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Since vertex cover with hard capacities is a special case of set cover with hard
capacities, (where each vertex v € V can be viewed as a set whose elements are the
edges adjacent to v), all the above definitions, as well as Lemma 2.1, can also be
applied to the vertex cover problem.

3. Vertex Cover with Hard Capacities. In this section, we show a random-
ized 3-approximation algorithm for the unweighted capacitated vertex cover problem.
Our starting point is the following linear programming relaxation of the problem. For
v € V, let z(v) be a variable indicating the number of copies of v that belong to the
cover. For e = (u,v) € E, let y(e,v) be a variable indicating whether vertex v covers
edge e. Denote by (z,y) a solution to (UVC). For each v € V', N(v) denotes the set
of edges adjacent to v.

min Z z(v) (UVQ)
veV
s.t.
y(e,u) + y(e,v) =1 for all e = (u,v) € E (1)
y(e,v) < z(v) forallee E,veEe (2)
> yle,v) <k(v) - z(v) forallveV (3)
€N ()
z(v),y(e,v) > 0 forallveV,ee E
z(v) < m(v) forallveV

LEMMA 3.1. Let (z,y) be a feasible solution to (UVC), where x is integral. Then,
there ezists a feasible solution (z,y') to (UVC) where y' is integral. Moreover, this
solution can be computed in polynomial time (given z).

Proof. Let U be the multi-set of vertices defined by z, i.e., for each vertex v € V,
there are exactly z(v) copies of v in U. We use Lemma 2.1 to compute an (integral)
cover y' of the edges by vertices in U. Note that y induces a fractional flow of value
|E| in the network constructed in the proof of Lemma 2.1. Thus, f(U) = |E|, and
therefore, in ¢', all the edges are covered. O

3.1. A Simple 8-Approximation Algorithm. In this section we show a sim-
ple 8-approximation algorithm for the special case of unit multiplicities (i.e., for each
vertex exactly one copy is available). The description and the analysis of the algo-
rithm are presented in an informal way. The goal is to give an intuitive explanation
of the ideas behind the algorithm. The next section contains a formal description
and analysis of a modified (and more complicated) version of the algorithm, which
achieves a 3-approximation for the general version (with arbitrary multiplicities).

Let (z,y) be a fractional optimal solution to (UVC). We will find a feasible solu-
tion (z',y") where 2’ is integral and the expected cost is at most 8 times the cost of
the original solution (z,y). By Lemma 3.1, (z',3') can be converted into an integral
solution of the same cost. The algorithm consists of three steps.

Step 1: (Setting it up). We define U = {v | z, > 1 }. Note that each edge e € E
has at least one endpoint in U. Let U = V \ U, and let E’ denote all the edges with
one endpoint in U. Thus, we have two types of edges: edges with both endpoints in
U, and edges with one endpoint in U, and one endpoint in U. Figure 3.1 shows the
partition of the input graph vertices into sets U, U, and the types of edges present in
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the graph.

U E' U

F1G. 3.1. The sets U and U

For each vertex u € U, let N'(u) denote the set of edges in E' incident to u. Set
Lu) =3 ceniw ¥(ew) and r(u) = 3o _(, et (u) ¥(€v) = [N'(u)| — £(u). Note that
the value of £(u) denotes the total contribution of u to the coverage of edges in N'(u)
(or the “budget” of u), and r(u) denotes the total contribution of vertices in U to the
coverage of these edges (or the “deficit” of u). The idea is to choose a small subset of
vertices I C U, such that each u € U can receive a contribution of at least r(u) from
the vertices in I for covering the edges in N'(u). The coverage of the edges with both
endpoints in U remains the same as in the LP solution. The construction of set I is
performed in two steps: randomized rounding and then alterations.

Step 2: (Randomized rounding). Each vertex v € U is chosen randomly and
independently into I with probability 2z,. Consider some edge e = (u,v) with u € U,
v € I. We set the contribution of v to the coverage of e to be z(e,v) = %
Note that since y(e,v) < z(v) is required in (UVC), z(e,v) < 1, and it follows from
Constraint (3) that the capacity of v is not exceeded. If vertex u € U receives a
contribution of at least r(u) from the vertices in I, then the budget of u is sufficient
to complete the fractional cover of all the edges adjacent to u. However, it is still
possible that some vertices u € U receive a contribution smaller than r(u). This is
corrected in the next step.

Step 3: (Alterations). We denote by P the vertices in U that are in “deficit”, i.e.,

P={uet| 3 ) <rw

e=(v,u)€E’ wel

We proceed iteratively. In each iteration, a new vertex v which fractionally covers
some edges adjacent to vertices in P is added to I. Then set P is updated. We continue
until P becomes an empty set. The cost of the newly added vertices is charged to the
vertices in P.

An iteration is performed as follows. (See Fig. 3.2.) Let u be some vertex in P.
Then there is at least one edge e = (v,u) € E', where v ¢ I. Add v to I. For each
edge ¢ = (v,w), where w € P,w # u, set the contribution of v to the coverage of €’
to be z(e',v) = y(%'v;’) The contribution of v to the coverage of e is defined to be the
minimum between 1 and the remaining capacity of v (which must be at least y(e, v)).
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The cost of v is charged to the vertices in P as follows. Each w € P, w # u such that
e' = (w,v) € E, pays z(e',v), which is exactly the contribution of v to the coverage
of edge €'. The remaining cost is charged to u.

|

U E'

F1G. 3.2. A Step (3) iteration

Observe that at the end of this procedure, the cost charged to each vertex u € P
is at most 7(u) + 1: Let ¢ be the last iteration when u belongs to P. In each iteration,
u is charged with the amount which is bounded by the contribution it receives in this
iteration. Once the total contribution exceeds r(u), u is removed from P. So at the
beginning of iteration 4, the total amount charged to u does not exceed r(u), and u
pays at most 1 in iteration .

Analysis. The cost of the algorithm is divided into three parts.
1. The cost incurred in Step 1 is at most 2, ;; z(u).
2. The expected cost of randomized rounding is at most 2 7 Zu.
3. The expected cost of Step 3 is bounded as follows. Consider some u € U.

o If r(u) < 2, then u pays at most r(u) + 1 = 3 for Step 3.

o Assume that r(u) > 2. In this case the probability that u belongs to P
after Step 2 is at most % (this follows from a simple application of the
Chebyshev inequality; since the next section contains a similar proof, we
omit the proof here). Therefore, the expected cost incurred by w is at
most Tf—u) <(r(u) +1) < 3.

In total, the expected cost of Step 3 is at most 3|U| <6, z(u).
Summing up over the three steps, the expected cost of the solution is bounded by

S-Zx(u)+22x(v)§8-2x(v).

uelU veU vEV

3.2. A 3-approximation Algorithm. In this section we show a randomized
3-approximation algorithm for vertex cover with hard capacities and arbitrary mul-
tiplicities. The algorithm is based on the ideas presented in the previous section.
Consider a fractional optimal solution (z,y) to (UVC). We show how to round this
solution, obtaining a feasible solution (z',y'), where z’ is integral. By Lemma 3.1,
z' induces an integral capacitated vertex cover. As before, the rounding algorithm
consists of three major steps.

Step 1: (Setting it up). We need the following definitions.

e Define U = {u | #(u) > 1} and U = V'\U. Let U’ be the multiset of vertices,
where for each u € U, there are [2(u)] copies of u in U".
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e Define E' to be the set of edges with one endpoint in U and the other endpoint
in U.

e For each u € V, N'(u) = E' N N(u).

e For each u € U, define:
Uu) = Deen (u) ¥(&w),
F(8) = T oyt 906 0) = IN'(w)] = £(u).
Note that the value of £(u) denotes the total contribution of u to the coverage
of edges in N'(u), and (u) denotes the total contribution of vertices in U to
the coverage of these edges.

e For each u € U, define €(u) = % — 1, and A(u) = (1 — 2¢(u))r(u). The
meaning of these variables is explained below.

The constraints of (UVC) guarantee that each edge e = (u,v) € E has at least
one endpoint in U: Since y(e,u) + y(e,v) = 1, y(e,u) < z(u), and yle,v) < z(v), it
follows that either z(u) > % or #(v) > % must hold.

Consider a vertex u € U. Let (u,v) be some edge, such that v € U. Since
y(e,v) < z(v) < 3, it follows that z(u) > y(e,u) > 2. It also follows that for each
u € U, £(u) > 2r(u), since y(e,u) > 2y(e,v) for each (u,v) € N'(u).

Our cover is going to contain the vertices of U’ together with a subset I C U,
such that U’ U I can fractionally cover all the edges. (By Lemma 3.1, U’ U I is also
an integral feasible vertex cover.)

First, we round up z(u) to be equal to [z(u)] for each vertex u € U. As a result, u
can increase its contribution to the coverage of the edges belonging to N'(u) by a factor
of [z(u)] /z(u), i-e., now it can contribute %l(u) to the coverage of N'(u). By the
definition of €(u), the new contribution of u is at least £(u)(1+€(u)) > £(u)+27r(u)e(u).
If e(u) > 1, then this is enough to complete the coverage of N'(u). Therefore, assume
that e(u) < % To complete the fractional cover, we need an additional coverage of
value (1 — 2¢(u))r(u) = h(u) from vertices belonging to U, since £(u) + r(u) suffices
to cover N'(u). Our goal in the next two steps is to find I C U such that for each
u € U, the vertices from I can contribute at least h(u) to the coverage of N'(u).

Step 2: (Randomized rounding). Each vertex v € U is independently chosen to
be in I with probability equal to 3z(v). Note that for each v € U, we add at most
one copy of v to I. For each vertex v € I, for each e € N'(v), define a new cover of
edge e by vertex v: z(e,v) = %

Step 3: (Alterations). In this step we start with a feasible fractional solution
(z',y") and iteratively alter it until ' becomes integral, while maintaining feasibility
of (z',y'). We denote by P the vertices in U that are in “deficit”, i.e.,

P=quel| Z z(e,v) < h(u)

e=(v,u)EFE' vel

Our initial feasible solution (z',y’) for (UVC) is defined as follows: If v € U, then
z'(v) = [z#(v)]. If v € I, then 2'(v) = 1. Otherwise z'(v) = z(v). For e = (u,v),
y'(e,v) and y'(e,u) are defined as follows.

o If u,v € U, then y'(e,u) = y(e,u) and y'(e,v) = y(e,v).

o If u e U\ P: if v € I, then y'(e,v) = 2(e,v), else y'(e,v) = 0. Set y'(e,u) =
1— y'(e,v). Note that since u ¢ P, it has enough capacity to complete the
cover of N'(u).
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e Ifu € P: ifv € I, then y'(e,v) = z(e,v) and y'(e,u) = 1 —z(e,v). (Note that
y'(e,u) < yle,u), since z(e,v) > y(e,v)). Else (v € I), set y'(e,u) = y(e,u)
and y'(e,v) = y(e,v).
It is easy to see that (z',y') is a feasible solution for (UVC). We now show how to get
rid of P by adding new vertices to I. We charge the cost of the new vertices added
to I to the vertices of P.
PROCEDURE ELIMINATE.
While P # 0:
1. Let u € P, e = (u,v) € E', such that v € U \ I (there must be at least one
such v). Let P ={w € P | w #u, ¢ = (w,v) € E'}.
2. Add v to I (set z'(v) =1).
Update the cover: For each w € P’ where ¢’ = (v,w) € E', set y'(e',v) :=
z(e',v) = y(%;;;’) Set y'(e,w) := 1 — y'(e’,v). Note that the value of
y'(e',w) can only decrease. Set y'(e,v) to be the minimum between 1
and the remaining capacity of v (which must be at least y(e,v)). Set
y’(ea u) =1- yl(ea U)'
Update the set P: For each w € P for which Z y'(e,a) > h(w),
e=(w,a):a€l
remove w from P. Update the cover of N'(w) as follows. For each
e = (b,w) € E' such that b ¢ I, set y'(e,b) = 0 and y'(e,w) = 1. Note
that w has enough capacity to cover all such edges.
It is easy to see that feasibility is maintained after each iteration. The number of
iterations of PROCEDURE ELIMINATE is bounded by |U]|, since |I| is increased by one
in each iteration. At the end, when P becomes empty, for each v with z'(v) < 1, we
set z'(v) = 0. In the final solution, for each v € U U I, z(v) = 1, and for all other
vertices v, z(v) = 0. The next theorem follows from the discussion.
THEOREM 3.2. The algorithm computes a feasible solution (z',y') to (UVC),
where z' is integral. To obtain an integral capacitated vertex cover, we apply Lemma
3.1 to the solution (z',y').

3.3. Analysis. The analysis of the rounding is divided into two parts.

Charging scheme for Step (3). We show that we can charge the cost of adding
vertices to I in PROCEDURE ELIMINATE to the vertices in P, such that each u € P
pays at most h(u) + 1. Consider an iteration of PROCEDURE ELIMINATE. We charge
the vertices of P’ U {u} for adding v to I. Each w € P', where ¢’ = (w,v) € E', pays
z(e',v) (which is exactly the contribution of v to the cover of e'). Vertex u pays the
remaining cost (if any remains), which is also at most the contribution of v to the
cover of the edge (u,v). We now bound the total amount charged to a € P. While
a is still in P, in each iteration it pays at most the amount of coverage that edges in
N'(a) get from the newly added vertex v. Once the coverage of N'(a) coming from
vertices in I exceeds h(a), a is removed from P. Therefore, in total a pays at most
h(a) + 1.

Bounding the cost. We now bound the total cost of the solution produced.

Cram 3.3. Let u € U such that r(u) > Mw. Then, the probability that

u € P after Step (2) is at most 4(1+6(2)) OB
Proof. Consider e = (u,v) € N'(u). We define the random variable

. z(e,v) vel
€710 otherwise
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Variables ¢, are independent since there are no parallel edges in the graph. Note that:
e u € Piff Z te < h(u).
eEN'(u)
e The expectation of 3, i (, t(€) is:

M = Exp Z te
eEN'(u)

= Z 3z(e,v) - z(v)
e=(v,u)EN'(u)
= 3r(u).

e The variance of 3y () t(e) is:

02 = Var Z te
e€N'(u)
= Z 22(e,v) - 3z(v) - (1 — 3z(v))
e=(u,v)EN'(u)
< p.

When applying Chebyshev’s Inequality to the random variable N'(u) tes it follows
that

Prob Z te < h(u)
e€N'(u)

< Prob Z te —p| > p—r(u)(l—2¢e(u))
eEN'(u)

= Prob Z te —p| > 2r(u)(1 + €(u))
e€EN'(u)

02

S W) 1+ @)’
3
S @)+ e(w)?

We are now ready to compute the expected cost of the solution.
e For v € U, the expected cost we pay in Step (2) is 3z(v).
e For u € U, where N'(u) = 0 or €(u) > 1, we pay at most 3z(u) in Step (1),
and we do not pay in Step (3).
e For u € U, where N'(u) # 0 and €(u) < 1: for the sake of convenience, denote
k= [z(u)], e = €(u), £ = z(u). Consider two cases:
- Ifr(u) > m, then in Step (1) we pay k for the copies of u we use. In
Step (3), we pay at most h(u) + 1 with probability at most W.
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Thus, the expected cost is bounded by

h*““**”'z@m%:sa:k+“1—%ﬂw*+”zz3§::ﬁ
:k+3(1—26)+ 3
iirer T arwiTep
Sk+1+%%£%g.

- If r(u) < 4(137)2, then in Step (1) we pay k for the copies of u, and at
most h(u) + 1 in Step (3). In total we pay:

E+1+4+h(u)=k+14+(1—-2¢)r(u)

3(1 — 2¢)
<k4+14+-——.
SR 4(1 +¢)?
In both cases it suffices to prove that
3(1 — 2¢)
1+-———5 <3z
k+1+ 41+ 62 <3z
Since z = 1L+e’ this is equivalent to showing that:
3(1-2 3k
A Gl

41 +€)2 — 1+4¢€
CrLAmM 3.4. Foranyk>1,0<e< %, the following inequality holds:

3(1 — 2e¢) 3k
<
4(14+¢€)? ~ 1+e¢

k+1+

Proof.
The claim is equivalent to:

3 3(1 - 2¢)
L DI
ko 1+e)+ T aaree =°

Note that 1 — 1%5 < 0fore< % Therefore, the left hand side is maximized

when k£ = 1, and it is enough to prove that:

3 3(1 — 2¢)
2 — <0.
1+e 41 +¢€)?2 —

This is equivalent to

82 —-2—-1<0

which holds for all e, 0 < € < % O
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4. Hardness Results.

4.1. Weighted Vertex Cover. We show that the capacitated vertex cover with
arbitrary weights is at least as hard to approximate as the set cover problem. Given an
instance of the set cover problem, let G = (L, R, E') be its bipartite incidence graph,
where L =8, R = E, (S,¢e) € E' iff e € S. For each vertex v in the graph, let 6(v)
denote its degree. For each v € L, define w(v) to be the weight of the corresponding
set, and k(v) = 6(v). For each v € R, define w(v) = 0, and k(v) = §(v) — 1. For
each vertex v in the graph, define the multiplicity to be m(v) = 1. Given a solution
to the set cover instance, the solution to the capacitated vertex cover consists of all
the vertices of R and the vertices from L corresponding to the sets in the set cover.
The set vertices can cover all their adjacent edges. Since each element is covered in
the set cover solution, for each v € R, at least one of its adjacent edges is covered by
a set vertex, so v has enough capacity to cover the remaining edges. The converse is
also true. Given a feasible solution to the vertex cover problem, we can find a feasible
solution to the set cover problem of the same cost. The solution to the set cover
problem consists of the sets corresponding to the vertices of L that participate in the
solution of the vertex cover instance.

4.2. Vertex Cover with Unsplittable Demands. We assume that each edge
e has a demand d(e) that must be supplied by one of its endpoints. For each v € V,
the sum of the demands of the adjacent edges that v supplies must not exceed the
capacity k(v). It is impossible to approximate this problem, since, given a problem
instance, it is NP-hard to answer the question whether V' (the set of all the vertices
in the problem instance) is a feasible vertex cover, even if the demands are given in
unary. The reduction is from the 3-partition problem, which is defined as follows. We
are given a bound B € ZT and a collection of 3m numbers, ai,..., a3y, such that
Zf;"l a; = mB, and for each i : 1 < i < 3m, B/4 < a; < B/2. The question is
whether the numbers can be partitioned into m sets, such that the sum of numbers in
each set is B. Note that if such a partition exists, each set will contain exactly three
numbers. This problem is NP-hard in the strong sense (i.e., it is NP-hard even if the
numbers are given in unary) [14].

The reduction proceeds as follows. We have 3m vertices vy, ..., vs,, representing
the 3m numbers. The capacity of vertex v;, 1 < i < 3m is (m — 1)a;. We also have m
vertices w1, ..., U, representing the sets, and the capacity of each such vertex is B.
Thus, the set of verticesis V = {v; | 1 < i <3m}U{u; | 1 <j < m}. For each v;,u;:
1 <i<3m,1<j<m, there is an edge between the two vertices with demand a;.
Suppose there is a valid partition of the 3m numbers into m sets Si,...,Sy;. Then
for each vertex uj;, 1 < j < m and for each vertex v;, 1 < ¢ < 3m, such that a; € S;,
vertex u; covers the edge connecting u; and a;. As the sum of the numbers in each
S; is exactly B, the capacity of u; is enough to cover all these edges. Now for each
vertex v;, 1 < i < 3m, one of the edges adjacent to this vertex is covered by one
of the vertices uy,-..,u;, and therefore the capacity of v; is sufficient to cover the
remaining (m — 1) edges.

The converse direction is also true. Suppose the set V' of vertices can cover all
the edges. We show a valid partition of the input elements into m sets Si,...,Sn.
Note that each vertex v;, 1 < ¢ < 3m, has enough capacity to cover only (m — 1) of
its adjacent edges. Therefore, at least one edge adjacent to v; is covered by some wu;,
1 < j <m. Set S; contains all such elements a; for which vertex u; covers the edge
that connects it with v;. As the capacities of the vertices u;, 1 < j < m, are B, the
elements in each set sum up also to at most B. Thus, a solution to the capacitated
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vertex cover problem defines a solution to the 3-partition problem.

5. Set Cover with Hard Capacities. In this section we consider the set cover
problem with hard capacities. For the sake of simplicity, we assume that for each set
S € 8, only one copy is available, i.e., m(S) = 1. If this is not the case, we can view
each available copy of each set as a distinct set. Note that the input size remains
polynomial, as at most n copies of each set are needed. Thus, given two families
A,B C S of sets, their union is now defined as usual: AUB={S|S € Aor S € B}.

We need the following notation. Let 7 C S be a collection of sets and let f(7)
denote the maximum number of elements that the sets belonging to 7 can cover
without violating the capacity constraints. Note that f(7) can be computed using
Lemma 2.1. For S € S, define fr(S) = f(T U{S}) — f(T) (ie., fr(S) is the
increase in the number of elements that can be covered when S is added to set family
T). Consider the following greedy algorithm for the set cover problem with hard
capacities.

ALGORITHM GREEDY COVER:
1. Initially, P = 0.
2. While P is not a feasible capacitated set cover:
(a) Let S = argming. ,(s)>0 ;‘;(—(?)
(b) Add S to P.

Wolsey [30] showed using the dual fitting technique that ALGORITHM GREEDY
COVER achieves an approximation factor of O(log(maxg |S|)). We show a simpler
and a more intuitive charging scheme that proves the same result.

Let 7 C S be a collection of sets, and let C C T x E be a feasible partial cover.
Denote by |C| the number of elements covered by C. We can assume without loss of
generality that no element is covered by more than one set in 7. For each 7' C T,
we denote by C7+ the projection of C on 7', and by fc(7') the number of elements
covered by sets belonging to 7' in C. We need the following lemma.

LEMMA 5.1. Consider an instance of the set cover problem with hard capacities.
Let T be a feasible cover and let T1,7T2 be a partition of T into two disjoint subsets.
Then, there is a feasible cover C C T x E, such that all the elements are covered in
C and fc(Th) = f(Th)-

Proof. Let C C T x E be a feasible cover, where each element e € F is covered by
some S € T, and assume that fo(71) < f(71). Let C' C 71 X E be a feasible partial
cover, where for(T1) = f(71). Since C' is a partial cover, some elements may not
be covered in C'. We gradually change the cover C, while maintaining its feasibility,
until the lemma is satisfied. Perform the following procedure:

While fo(T7) < (T2):
1. Let S € 71 be a set, such that S covers fewer elements in C than it
does in C'. There is at least one such set since fo(71) < f(71)-
2. Let e € E be an element covered by S in C’, but covered by some
T # S in C. (Note that T can belong to either 71 or 7).
3. Change C so that e is covered by S, i.e., remove (T, e) and add (5, ¢)
to C.

It is clear that we can perform the procedure and maintain a feasible cover C,
while fc(71) < f(71). Once a pair (S,e) € C' is added to C, it remains there till
the end of the procedure. Thus, the number of iterations is bounded by |C’| and is
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therefore finite. Upon termination of the procedure, we have a cover C' that satisfies
the conditions of the lemma. O

We now proceed with analyzing ALGORITHM GREEDY COVER. Denote the solu-
tion computed by ALGORITHM GREEDY COVER by P = {S1, Sa, ..., Sk}, and assume
that the sets are added to the solution by the algorithm in this order. For each i,
0<i<k,let P; ={51,952,...,S5:} be the solution at the end of iteration ;. Let OPT
be an optimal solution. We “replay” the algorithm, while charging the costs of the
sets added to P by ALGORITHM GREEDY COVER to the sets in OPT.

Start with Py = (. For each S € OPT, let ao(S) be the number of elements
covered by S in OPT (assuming every element is covered by exactly one set in OPT).
For each iteration ¢ of ALGORITHM GREEDY COVER, new values a;(S) of sets in
OPT \ P; are defined. The following invariant holds throughout the analysis: we
can cover all the elements by the sets in OPT U P;, even if the capacities of sets
S € OPT \ P; are restricted to be a;(5).

The invariant is clearly true for Py and ag. Consider iteration i of ALGORITHM
GREEDY COVER. We add set S; to the solution. Since the invariant holds for P;_1,
a;_1, the collection of sets P;UOPT is a feasible cover, even if we restrict the capacities
of sets S € OPT \ P; to be a;_1(S). By Lemma 5.1, there is a feasible cover C' C
(P; UOPT) x E, where the sets in P; cover exactly f(P;) elements and each set
S € OPT \ P; covers at most a;_1(S) elements. For each S € OPT \ P;, define a;(S)
to be the number of elements covered by S in C. Note that a;(S) < a;—1(S).

If S; € OPT, we do not charge any sets for its cost, since OPT also pays for
it. Otherwise, suppose fp, ,(S;) = n;. The number of elements covered by sets in
OPT\'P»L in C'is ZSEOPT\P,- a; 1 (S)—nz Therefore, ZSEOPT\Pi (ai,l(S) —az(S)) =
n;. We charge each S € OPT \ P; with @ - (a;—1(8) — a;(9)). Note that the total
cost charged to the sets in OPT in this iteration is exactly w(S;).

‘We now bound the cost charged to each S € OPT. If S € P, let j denote the last
iteration before S is added to P (i.e., S is added to P at iteration j + 1). Otherwise,
let j be the first iteration after which a; = 0 (note that the equality holds for the last
iteration). For each i < j, at the beginning of iteration i, fp,_,(S) > a;—1(S). This
follows from the way the value of a;_1(S) is determined. Since ALGORITHM GREEDY
()

5

COVER chooses a set other than S in this iteration, %‘?) < TS Therefore, the

total value charged to S is:

—ai($))
CIN

_ (ai—1(S) — ai(S)) wfjl) < w(S) Z (%—15;5‘_)1

i=1

ai_l(S)—ai(S)

Observe that for each ¢ : 1 <7 < j, the term can be written as

a,-_l(S)

ai_l(S) ai_l(S)
1 1
> < X 7
t=a;(S)+1 ai-1(5) £=a;(S)+1 t

Thus, the value charged to S is bounded by w(S)H(|S]) and the total cost of the
solution is at most OPT(1 + In(maxg |S|)).

6. Extensions.

6.1. Submodular Set Cover. Recall the submodular set cover problem. Let
f be an integer valued function defined over all subsets of a finite set F of elements.
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Function f is called non-decreasing if f(S) < f(T) for all S C T C E, and submodular
if f(S)+ f(T)> f(SNT)+ f(SUT) for all S,T C E. The input to the submodular
set cover problem is a family S of subsets of E together with a non-negative cost
function. There is a non-decreasing non-negative integer-valued submodular function
f defined over all collections of the input sets. The goal is to find a minimum cost
collection P C 8 of sets, such that f(P) = f(S).

It is not hard to show that the natural linear programs for the set cover problem
with hard capacities, as well as the more general submodular set cover problem, have
an unbounded integrality gap. We note that ALGORITHM GREEDY COVER can be
applied to the general submodular set cover problem as well. Indeed, Wolsey [30]
showed using the dual fitting technique that ALGORITHM GREEDY COVER achieves
a 1 + O(log(fmax))-approximation for this problem, where fmax = maxscs f({S}).
For the sake of completeness, we describe Wolsey’s linear program (SSC) below. As
before, for 7 C S and S € S, fr(9) = f(TU{S}) — f(T). For each set S € S,
there is an indicator variable z(S) showing whether S is in the solution. The goal is
to minimize the solution cost, i.e., Z w(S)z(9).

ses

Consider now some collection of input sets 7 C &, and suppose f(S) — f(7) > 0.
Let P denote any feasible solution and P' =P\ 7. As f(S) — f(7) > 0, some sets in
S\ 7 must be in the solution, i.e., P’ is non-empty. Moreover, f(P'UT) — f(T) >
f(8)— f(T). Note that due to the submodularity of f, > ¢ p (F({SIUT) = f(T)) >
f(P'UT)—f(T), and therefore Y g f7(S) > f(S)—f(T) must hold. This condition
is expressed by the set of constraints (1).

min Y w(S)z(S) (SSC)
Ses
s.t.
D r(S)z(S) > f(S)-f(T) VTCS (1)
S¢T
z(8) >0 VSeS

We show that our analysis of ALGORITHM GREEDY COVER can be extended to
prove a similar approximation guarantee for the submodular set cover problem.

Denote by P = {81, S2, ..., Sk} the solution computed by ALGORITHM GREEDY
COVER, and assume that the sets are added to the solution by the algorithm in this
order. For each i, 0 <13 < k, let P; = {51, Sa,...,Si} be the solution at the end of
iteration ¢. Let OPT be an optimal solution. Choose an arbitrary ordering of sets in
OPT, such that the sets in P N OPT appear at the beginning, in the same order in
which they are added to the solution by ALGORITHM GREEDY COVER. For each j,
let 7; denote the first j sets in OPT.

Consider some iteration ¢ of the algorithm. Let S € OPT, and assume that S is
the jth set in OPT. Define:

a;i(S) = f(T; UP;) — f(T;-1 UPy)

If S; € OPT, then we do not have to charge its cost to sets in OPT. Otherwise,
each set S € OPT \ P; is charged with %(ai,l(ﬁ — a;i(S)).
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Observe that the amount charged in iteration ¢ to sets in OPT \ S; is at least
w(S;). This is true, since:

Z (a;—1(S) —ai(9)) = Z(f('ﬁ' UPi—1) — f(Tj—1 UPi_1))

SEOPT\P;

- S (T UP) = £(Tia UPY)

= f(OPTUPi-1) — f(Pi—1) — f(OPT UP;) + f(P:)
= f(OPT) — f(OPT) + f(Pi) — f(Pi-1)
= f(Pi) — f(Pi-1)

Observe also, that at the beginning of iteration ¢+ 1, for each S € OPT\P;, f({S}) >
a;(S): Since f({S}) > f({S}IUP;)—f(P;) (due to the submodularity of f), it is enough
to show that

FHASYUP:) — f(Pi) > f(T; UP:) — f(Tj-1 UPi).

Rearranging the sides, this is equivalent to

FHSYUP) + f(Tj-a UPi) > f(T; UP:) + f(Pi)

which holds by the submodularity of f.

Using the same reasoning as in the case of the proof of the set cover with hard
capacities, the total amount charged to any S € OPT is at most w(S)H(|S]), and
the total cost of the solution is bounded by OPT(1 + In(maxg f({S}))).

6.2. Multi-set Multi-cover. An interesting special case of the submodular set
cover problem is the multi-set multi-cover problem. In this problem, the input sets
are actually multi-sets, i.e. an element e € E can appear in S; € S more than once,
and the elements have splittable demands. An integer programming formulation of
the multi-set multi-cover problem with unbounded set capacities is the following:
min{w?z | Az > d,0 <z < b,z € Z}. The constraints z < b are called multiplicity
constraints, and they generally make covering problems much harder, as the natural
linear programming relaxation has an unbounded integrality gap. Dobson [10] gives
a combinatorial greedy H(maxi<j<m D, ;<;<, Aij)-approximation algorithm, where
H (t) is the tth harmonic number. This is a logarithmic approximation factor for the
case where 4 is a {0, 1} matrix (set multi-cover), but can be as bad as a polynomial
approximation bound in the general case (multi-set multi-cover). Recently, Carr,
Fleischer, Leung and Phillips [5] gave a p-approximation algorithm, where p denotes
the maximum number of variables in any constraint. Their algorithm is based on a
linear relaxation in the spirit of (SSC). Using similar ideas for strengthening the linear
program, Kolliopoulos and Young [21] obtained an O(logn)-approximation.

We can assume again that the multiplicities of the sets are unit, by viewing each
copy of each set as a distinct set. We can then define, for each collection 7 of input
sets, f(7T) to be the maximum number of elements that can be covered by 7 (with
the capacity constraints). It is not hard to see that f is a non-negative non-decreasing
submodular function, and thus the algorithm of Wolsey and our analysis hold for this
case.
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Notice that the number of sets now is not necessarily polynomial, as the initial
set multiplicities m(S) for S € S are not necessarily polynomial in the input size.
However, the function f(7) can still be computed in polynomial time. Thus, ALGO-
RITHM GREEDY COVER can be implemented to run in polynomial time, achieving an
approximation ratio of O(log(maxscs |S])).
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