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Abstract

We study algorithmic problems that are motivated by bandwidth trading in next generation networks.
Typically, bandwidth trading involves sellers (e.g., network operators) interested in selling bandwidth
pipes that offer to buyers a guaranteed level of service for a specified time interval. The buyers (e.g.,
bandwidth brokers) are looking to procure bandwidth pipes to satisfy the reservation requests of end-users
(e.g., Internet subscribers). Depending on what is available in the bandwidth exchange, the goal of a buyer
is to either spend the least amount of money to satisfy all the reservations made by its customers, or to
maximize its revenue from whatever reservations can be satisfied.

We model the above as a real-time non-preemptive scheduling problem in which machine types corre-
spond to bandwidth pipes and jobs correspond to the end-user reservation requests. Each job specifies a
time interval during which it must be processed and a set of machine types on which it can be executed.
If necessary, multiple machines of a given type may be allocated, but each must be paid for. Finally, each
job has a revenue associated with it, which is realized if the job is scheduled on some machine.

There are two versions of the problem that we consider. In the cost minimization version, the goal is
to minimize the total cost incurred for scheduling all jobs, and in the revenue maximization version the
goal is to maximize the revenue of the jobs that are scheduled for processing on a given set of machines.
We consider several variants of the problems that arise in practical scenarios, and provide constant factor
approximations.

1 Introduction

We study algorithmic problems involving bandwidth trading in next generation networks. As network opera-
tors are building new high-speed networks, they look for new ways to sell or lease their plentiful bandwidth.
At the same time there are emerging potential buyers of bandwidth, such as virtual network carriers, who
would like to be able to expand capacity easily and rapidly to meet the ever-changing demands of their cus-
tomers. Similarly, many companies are looking for ways to be able to reserve bandwidth for on-off events
such as video-conferences. Finally, there are network subscribers who would like to be able to buy band-
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width for the duration of a webcast, pay-per-movie on the web, etc. In this paper we consider some of the
algorithmic problems arising in this context.

1.1 Bandwidth Trading in Practice
Our work is motivated by the emerging business model being discussed in the networking community, which
we briefly describe here. (More details can be found, for example, at [19].) Although bandwidth ex-
change/trading is not new, the traditional methodology is often marred by long periods of binding contracts
and slow provisioning time. With the recent advances in network technologies, however, there has been a
tremendous leap forward both in network capacity and provisioning times. It is now possible to quickly
provision end-to-end protocol-independent light paths with a specified Service Level Agreement (SLA) that
takes into account QoS, bandwidth, restoration level, etc., in order to rapidly meet the changing bandwidth
demands of network users. In addition, many identical low bandwidth data streams can be multiplexed over
a single light path in the core network, thus enabling a core network operator to sell bandwidth at smaller
granularities.

Driven to meet demands for high-speed data-centric applications, various upstart network carriers have
been rolling out networks with vast amounts of excess capacity. With all this capacity up for grabs, a new
generation of resellers, wholesalers, and on-line bandwidth brokers are poised to resell it to customers. Lead-
ing the pack in the bandwidth commodity effort are a host of real-time on-line trading centers pioneered by
the likes of Band-X and RateXchange.

Typically, bandwidth trading involves a bandwidth exchange which includes a marketplace for suppliers
and buyers of bandwidth and a set of pooling points which are used for actually providing the bandwidth
upon settlement. Physically, a pooling point may be a fiber interconnection and switching site in a particu-
lar geographical location, with co-located points of pres-
ence for buyers (e.g., ISPs) and suppliers (e.g., long haul
carriers). In the pooling point, the buyer’s network inter-
faces with the supplier’s high-speed optical network, and
data passing between the two is converted from electri-
cal packets to optical signal and vice versa. It is assumed
that a bandwidth exchange trades well-defined bandwidth
contracts [6, 12]. Each contract refers to a bandwidth
segment between two pooling points, where a bandwidth
segment is an abstraction of one or more high-capacity
networks providing connectivity between the two pooling
points. Each bandwidth contract describes the duration
for which connectivity will be made available as well as
a Service Level Agreement (SLA) that takes into account
QoS, bandwidth, restoration level, etc., bandwidth The in-
set, taken from the web site of IBM Zürich Research [19], summarizes the situation by showing an example
of a bandwidth segment being offered between two pooling points connected to buyers’ networks.

Optical technologies play a central role in next generation networks. A single strand of optical fiber is
now capable of carrying a large number of high bandwidth data streams, each of which can be individually
managed. Typically, a low bandwidth data stream is dedicated to a single end-user at any given time, but
may be shared over time by multiple end-users, where the switch from one user to another is provisioned
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almost instantaneously. A core optical network operator is therefore able to trade a large number of identical
bandwidth contracts (with same attributes), each corresponding to a low bandwidth data stream, all of which
are multiplexed over a single high bandwidth light path. For practical purposes, one can therefore assume that
an unlimited number of “copies” of each contract are available.

Finally, buyers are themselves service providers to their clients—the end users. End users generate band-
width requests which are called forward reservations. Each forward reservation specifies the two endpoints
(which translate into two pooling points) between which the bandwidth reservation is required, the time inter-
val for which it is required, any other attributes of the connection (QoS, restoration level, etc.), and the revenue
obtained by honoring the reservation. Buyers in the bandwidth exchange, who may be ISPs, bandwidth bro-
kers, etc., are looking to procure bandwidth contracts to satisfy at the cheapest cost the forward reservation
requests made by their clients (e.g., network subscribers, companies, or virtual network operators). A single
procured bandwidth contract can be used to serve a set of “non-overlapping” forward reservation requests.
Depending on what is available in the bandwidth exchange, the goal of a buyer is to either spend the least
amount of money to buy enough bandwidth contracts to satisfy all the reservations, or, if the reservations
cannot be all satisfied, to maximize its revenue from whatever reservations are possible.

Combining Contracts. Given a bandwidth exchange, a contract graph [6, 12, 19] is defined to be a graph
whose nodes are the pooling points and edges represent the traded contracts. Several point-to-point segments
(on a path in the graph) can be assembled to connect any two geographical locations. This leads to a new
(path) contract whose attributes depend on the choice of the path in the contract graph. We stress that the
new contract is indivisible. For example, consider three pooling points A, B, and C. Suppose that an (A,B)
contract and a (B,C) contract are combined into an (A,C) contract. Then, the (A,C) contract cannot be used
to also route traffic from A to B or from B to C, since this would require optical-to-electrical followed by an
electrical-to-optical conversion at point B. Such conversions introduce substantial delays at the intermediate
points and deteriorate end-to-end QoS, thus defeating the purpose of high-speed optical routing.

In general, we can assume that if a pair of pooling points have a point-to-point contract between them,
then that is the cheapest way to connect the two points (for those attributes), since we consider a highly liquid
bandwidth market in which arbitrage opportunities [7] are instantaneously removed. (A geographic arbitrage
arises, for example, if the price of an indivisible point-to-point contract between New York and London is
more than the price of a path contract with the same attributes that goes via Los Angeles.)

1.2 Wavelength Assignment in Optical Line Systems
Another motivation for the problems we consider comes from wavelength assignment in optical line systems
[20] such as those involving DWDMs. An optical line system is a collection of nodes called Mesh Optical
Add and Drop Multiplexers (MOADM) arranged in a line, with adjacent nodes connected by optical fibers. A
demand enters the line system at one node and exits at some other node, and is routed on the same wavelength
on the fibers connecting all the intermediate nodes. The set of wavelengths available on each fiber connecting
two adjacent MOADM (say node i and i + 1) may differ from fiber to fiber, and it is a function of the fiber
characteristics, and also of the wavelengths which have been used up by previously provisioned demands.
Given a set of demands, the problem is to assign wavelengths to them so that no two demands use the same
wavelength on the same fiber.

We note that any optical line system as described above can be viewed as a set of windows, I, where each
I ∈ I is an interval corresponding to a single wavelength which is available between the two end-points of I .
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Given a set of demands D (i.e., D is a set of intervals), the wavelength assignment problem corresponds to
packing the intervals belonging to D into I such that intervals packed into a window I ∈ I do not overlap.

1.3 Model Description, Notation and Terminology
We model bandwidth trading as a real-time scheduling problem. As explained above, a bandwidth contract
can only be used for routing traffic between its two end points. Therefore, we only need to consider the
bandwidth trading problem for a single pair of pooling points. We view the bandwidth contracts as a set
of machines of different types, where identical bandwidth contracts (with the same attributes) correspond to
machines of the same type. Each machine type has a cost per machine. We can assume that an unlimited
number of machines are available from each type, since the available bandwidth on the light paths in the core
network is greater by many orders of magnitude than the end-user bandwidth requirement for any single data
stream. The jobs correspond to reservation requests made by end users. Each job needs to be processed during
a specified time interval, and it can only be processed on a machine of one of several specified types. Each
job has a value associated with it corresponding to the revenue obtained for processing the job. At most one
job can be scheduled on any machine at any given time (since no two overlapping reservation requests can be
served by the same bandwidth contract).

In the cost minimization version of the problem, the goal is to find a set of machines of minimum cost
so as to be able to schedule all the jobs on the machines. In this version of the problem we ignore the job
revenues. In the revenue maximization version, the goal is to maximize the total revenue by selecting a subset
of the jobs that can be scheduled using a given set of machines. In this version of the problem we ignore the
machine costs.

Formally, we have a set of m machine types T = {T1, . . . , Tm}. A cost, or weight, w(Ti) ≥ 0, is incurred
for allocating a machine of type Ti. There are n jobs belonging to an input set of jobs J , where each job j is
associated with the following parameters: a revenue w(j) ≥ 0, a set S(j) ⊆ T of machine types on which
this job can be processed, and a time interval I(j) during which the job is to be processed. For simplicity,
the job intervals are half open—closed on the left and open on the right. We sometimes refer to a job and its
interval interchangeably. At most one job can be processed on a given machine at any given moment.

1.3.1 The Problems

The general version of the cost minimization problem, where the sets S(j) of machine types are arbitrary, is
essentially equivalent (approximation-wise) to set cover. (Hardness can be shown by a simple reduction in
which set elements become non-overlapping jobs and each set becomes a machine capable of processing only
the jobs corresponding to the set’s elements. Logarithmic approximability was shown by Jansen [11].) In
practice, however, the definition of the sets S(j) is usually based on properties of the machines and thus has a
computationally more convenient structure. We consider two variants arising naturally in bandwidth trading
and other real world applications.

Cost minimization with machine time intervals. Machine types are defined by time intervals. Each type
Ti is associated with a time interval I(Ti) during which machines of this type are available. A job can
be processed by every machine that is available throughout its processing interval. Thus the sets S(j)
are defined by: S(j) = {Ti ∈ T | I(j) ⊆ I(Ti)}. In the unweighted case all types have unit cost
(w(Ti) = 1 for all i), and in the weighted case costs are arbitrary.
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Cost minimization with machine strengths. There is a linear order of strength defined on the machine
types, T1 ≺ T2 ≺ · · · ≺ Tm, such that a job that may be processed by a machine of a given type may
also be processed on every stronger machine, i.e., for all jobs j, S(j) has the form {Tij , Tij+1, . . . , Tm}.
We also assume that the stronger a machine is, the higher its cost (otherwise there is no point in using
weaker machines). The linear order models a situation in which the SLA’s are contained in each other
in terms of the capabilities they specify.

We comment that no bounded approximation factors are possible for these problems (unless P = NP) if
only a limited number of machines is available from each type, since it is NP-hard even to decide whether
all the jobs can be scheduled on all available machines (ignoring types). We show this by demonstrating a
reduction from the circular arc coloring problem,∗ which is known to be NP hard [9]. Given a circular arc
graph and an integer k, pick a point on the circle, and consider the set A of arcs containing the point. These
arcs constitute a clique in the graph (and so must use |A| different colors). Let B be the set of remaining
arcs and let Ā be the set of complements of the arcs in A. The arcs Ā ∪ B induce an interval graph in
the obvious manner, and we identify the arcs with these intervals. Construct an instance of the scheduling
problem as follows. For each interval I ∈ B define a job whose interval is I . For each interval I ∈ Ā define
a machine which is available in I . Finally, add another k − |A| machines that are always available (for a
total of k machines). Clearly, scheduling all jobs is feasible if and only if coloring the original circular arc
graph by k colors is possible. (The machines correspond to colors. Each arc in A is colored by the machine
corresponding to its complement, and each arc in B is colored by the machine to which its corresponding job
is assigned.)

We also consider the revenue maximization version.

Revenue maximization. We are given a collection M of machines (presumably, already paid for) and we
wish to select a maximum revenue subset of the jobs that can be scheduled on these machines. Every
job j specifies an arbitrary set, S(j) ⊆M, of machines on which it can be scheduled.

1.4 Our Contribution
The problems we consider are NP-hard. We present the first polynomial-time constant-factor approximation
algorithms for both versions of the problem (cost minimization and revenue maximization).

In Section 2 we consider the cost minimization problem with machine time intervals. We describe a 3-
approximation algorithm for the weighted case and a 2-approximation algorithm for the unweighted case. We
also show how to extend our algorithm (for the weighted case) to a prize collecting version of the problem,
where it is not necessary to schedule all the jobs but there is a fine to be paid for each unscheduled job.

Our algorithm for the weighted case is based on a linear programming relaxation and it is a variant of
the (combinatorial) primal-dual schema [18]. It is rather unique in that it copes with the difficulty posed
by a constraint matrix containing both positive and negative entries. It is an interesting fact that the primal-
dual schema is often incapable of dealing with both positive and negative coefficients. Our algorithm is
also unconventional in that it departs from the common dual-ascent, reverse-delete paradigm. Rather than
generating a minimal solution via a simple reverse-delete stage, we iteratively improve our schedule by a
selective rescheduling of jobs which obviates some of the machines in our schedule. While our algorithm is

∗The circular arc coloring problem is the following. Given a circular arc graph (in circular arc representation) and an integer k,
determine whether the vertices can be colored by k colors (such that no two adjacent vertices share the same color).
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not the only primal-dual algorithm with these traits, there haven’t been many such algorithms proposed to date.
(The only other such algorithm we are aware of is Jain and Vazirani’s algortihm for facility location [10].)

In Section 3, we show a 2-approximation algorithm for the cost minimization problem with machine
strengths. Both this algorithm and the algorithm for the unweighted version of the cost minimization problem
with machine time intervals employ simple combinatorial lower bounds on the problems.

We conclude with the revenue maximization problem in Section 4. We present a (1−1/e)-approximation
algorithm for this problem. This result improves on the approximation factor of 1/2 implicit in [3] for this
problem.

1.5 Related work
Kolen and Kroon [13, 15] and Jansen [11] considered the same scheduling model as ours in the context of
aircraft maintenance. When aircraft arrive at the airport, they must be inspected by ground engineers between
their arrivals and departures. There are different types of aircraft, and different types of engineer licenses, and
there is an aircraft-type/engineer-license-type matrix specifying which license type permits an engineer to
work on which aircraft type. In addition, the engineers work in shifts. The cost of assigning an engineer to an
aircraft inspection job depends on the engineer’s license type and the shift during which the inspection must
be carried out. The goal is to enlist a minimum-cost multi-set of “engineer instances” to handle all aircraft
inspections, where an engineer instance is defined by a (license,shift) pair. In our model, jobs correspond to
inspections of aircraft, and machine types correspond to (license,shift) pairs.

Kolen and Kroon [13] study the computational complexity of this problem with respect to different air-
craft/engineers matrices, when all the shifts are the same. In particular, their work implies that the cost
minimization problem we consider in Section 3 is NP-hard. In [15], Kolen and Kroon study another version
of this problem, where all the aircraft and license types are the same, and there are different time shifts. They
show that the problem is NP-hard even for unit costs, implying that the problems we consider in Sections 2.1
and 2.2 are NP-hard as well. Jansen [11] gives an O(log n)-approximation algorithm for the general problem,
with both aircraft/license types and time shifts. When all the shifts are the same and all aircraft types are
identical, the problem reduces to optimal coloring of interval graphs, and has a polynomial time algorithm
[1].

Maximizing the throughput (revenue in our terminology) in real-time scheduling was studied extensively
in [3, 4, 17, 5, 8]. They focused on the case where for each job, more than one time interval in which it
can be performed is specified, while machines are available continuously. As here, jobs are scheduled non-
preemptively and at each point of time only one job can be scheduled on a given machine. This model
captures many applications, e.g., scheduling a space mission, bandwidth allocation, and communication in
a linear network. The results of [3] on maximizing the throughput of unrelated parallel machines imply
an approximation factor of 1/2 for our revenue maximization problem. This result was improved in [8] to
(1 − 1/e − ε) (for any constant ε) for the unweighted version of the problem. The revenue maximization
problem with machine time intervals was studied by Kolen and Kroon [14] (see also Kolen and Lenstra [16,
pp. 1901-1903]). They solved the problem optimally with a dynamic programming algorithm whose running
time is O(nm). This implies that the problem is polynomial-time solvable for a constant number of machines.

The wavelength assignment problem in optical line systems is studied in [20]. Their result implies that
the resulting interval packing problem (which is a decision version of our revenue maximization problem) as
described in Section 1.2 is NP-complete.
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2 Cost Minimization with Machine Time Intervals

In this section we develop approximation algorithms for the special case of the cost minimization problem
where each machine type Ti has a time interval I(Ti) during which the machines of this type are available.
The sets S(j) of machine types allowable for job j are defined as follows: S(j) = {Ti ∈ T | I(j) ⊆ I(Ti)}.
We present a 3-approximation algorithm for the weighted case and its prize collecting version, and a 2-
approximation algorithm for the unweighted case.

2.1 The Weighted Case
Our algorithm for the weighted case is based on the primal-dual schema for approximation algorithms. The
linear programming (LP) formulation of the problem contains two sets of variables: {xi} and {yij}. For
each machine type Ti, variable xi represents the number of machines allocated of type Ti, and for every pair
of machine type Ti and job j such that I(j) ⊆ I(Ti), variable yij indicates whether job j is assigned to a
machine of type Ti. We also use the following notation: E is the set of left endpoints of the job intervals, and
for t ∈ E, J(t) is the set of jobs containing t (but recall that jobs intervals are closed on the left and open on
the right). The linear program is:

Min
m
∑

i=1

w(Ti)xi s.t.

n
∑

i=1

yij ≥ 1, ∀j ∈ J ; (1)

xi −
∑

j∈J(t)

yij ≥ 0, ∀1 ≤ i ≤ m, ∀t ∈ E ∩ I(Ti); (2)

x, y ≥ 0. (3)

(The sums in Constraints (1) and (2) should be understood to include only variables yij that are defined.) The
dual variables are {αj} and

{

βt
i

}

, corresponding to Constraints (1) and (2), respectively. The dual program
is:

Max
∑

j∈J

αj s.t.
∑

t∈E∩I(Ti)

βt
i ≤ w(Ti), ∀1 ≤ i ≤ m; (4)

αj −
∑

t∈E∩I(j)

βt
i ≤ 0, ∀1 ≤ i ≤ m, ∀j s.t. I(j) ⊆ I(Ti); (5)

α, β ≥ 0. (6)

Our algorithm proceeds in two phases. In the first phase it constructs a feasible schedule by iteratively
allocating machines and scheduling jobs on them. In the second phase it improves the solution by consid-
ering the allocated machines in reverse order and (possibly) eliminates some of them, rescheduling jobs as
necessary.

Phase 1: dual ascent. As mentioned, the first phase allocates machines and schedules jobs. Accordingly, at a
given moment during this phase there are scheduled and unscheduled jobs, and allocated and unallocated ma-
chines and machine types. Initially all jobs are unscheduled, all machines and machine types are unallocated,
and all dual variables are set to 0.
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Phase 1 iterates as long as there are unscheduled jobs. The kth iteration proceeds as follows. Let tk ∈ E
be such that a maximum number of unscheduled jobs contain tk, and let nk denote the number of these jobs.
Let Tk be the set of all un-allocated machine types whose intervals contain tk. We increase βtk

i for all i such
that Ti ∈ Tk uniformly at the same rate until some constraint of type (4) becomes tight, i.e., we increase each
of the βs in question by δk = min{w(Ti)−

∑

t∈E∩I(Ti)
βt

i |Ti ∈ Tk}. All the machine types that become tight
are considered allocated from now on. For each currently unscheduled job j whose interval is contained in
the interval of one of these newly allocated machine types, we allocate a separate machine of the appropriate
type, say Ti, schedule j on it, and set αj =

∑

t∈E∩I(j) β
t
i .

We claim that the dual solution thus constructed is feasible. Clearly, the algorithm satisfies constraints (4)
and (6) at all times. To see that the solution satisfies all constraints of type (5) as well, consider any such
constraint αj −

∑

t∈E∩I(j) β
t
i . Suppose job j was scheduled in the kth iteration. Following the kth iteration,

αj remains unchanged and the sum of βs can only increase, so it suffices to show that the constraint is satisfied
at the end of the kth iteration. Let Ti′ be the type of the machine on which job j was scheduled. If i = i′, the
constraint is satisfied by equality. Otherwise, machine type Ti could not have been allocated prior to the kth
iteration (for otherwise job j would have already been scheduled by the time the kth iteration commenced),
and thus, for all t ∈ E ∩ I(j), the values of βt

i and βt
i′ must have increased identically during the first k

iterations. Thus,
∑

t∈E∩I(j) β
t
i =

∑

t∈E∩I(j) β
t
i′ at the end of the kth iteration, and the claim follows.

Phase 2: reverse reschedule & delete. Let M be the set of machines allocated in the first phase. Later on
we describe a reverse reschedule & delete procedure that returns a feasible schedule using a subsetM′ ⊆M
of machines which has the property that for all k, the number of machines in M′ of types from Tk is at most
3nk. We note that in standard primal-dual algorithms the second phase is a simple reverse delete phase, whose
purpose is to yield a minimal solution. The approximation guarantee then follows from an upper bound on
minimal solutions. In our case, we do not know how to find a minimal solution. In fact, even determining
whether all jobs can be scheduled on a given set of machines is NP-hard. We therefore do not attempt to find
a minimal solution, but instead, gradually discard some of the machines in a very special manner designed to
achieve the above property.

Analysis. Let (α, β) be the dual solution constructed in Phase 1 and let (x, y) be the primal solution cor-
responding to the schedule generated in Phase 2. To show that this schedule is 3-approximate, it suffices to
prove that

∑m
i=1 w(Ti)xi ≤ 3

∑

j∈J αj . This inequality follows from the next two claims.

Claim 1
∑

i∈T

w(Ti)xi ≤ 3
∑

k

nkδk.

Proof: For each allocated machine type Ti, w(Ti) equals the sum of δk taken over all k such that machine type
Ti was unallocated at the beginning of the kth iteration and tk ∈ I(Ti). Thus,

∑

i∈T w(Ti)xi =
∑

k δkmk,
where mk is the number of machines of types in Tk used by the final schedule. The claim then follows, since
mk ≤ 3nk.

Claim 2
∑

j∈J

αj =
∑

k

nkδk.

Proof: For each job j, αj is the sum of all δk such that job j was still unscheduled at the beginning of the
kth iteration and tk ∈ I(j). For each iteration k, the number of jobs that were unscheduled at the beginning
of the kth iteration and contain tk is exactly nk.

The reverse reschedule & delete procedure. LetM be the set of machines used in the schedule constructed
in the first phase, and let Mk ⊆ M be the subset of machines of types in Tk. The purpose of the reverse
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Mmid

Mleft

tk
t

Figure 1: Rescheduling left jobs. Note that the jobs originally scheduled onMmid stay in place.

reschedule & delete procedure is to prune each machine set Mk, leaving only 3nk (or less) of its members
allocated, yet manage to feasibly schedule all of the jobs on the surviving machines. To achieve this we
consider the setsMk in reverse order (decreasing k), and prune each in turn.

The pruning procedure forMk is the following. If |Mk| ≤ 3nk, we do nothing. Otherwise, consider the
jobs currently assigned to machines in Mk. They are of three possible types: left jobs, which lie entirely to
the left of tk; right jobs, which lie entirely to the right of tk; and middle jobs, which cross tk.

The middle jobs are easiest. The number of middle jobs is exactly nk (by definition), so they are currently
scheduled on nk different machines. We retain these machines, denoting them Mmid, and the scheduling of
all jobs currently assigned to them (these may include some right jobs or left jobs in addition to all middle
jobs).

The remaining left jobs are scheduled in the following manner (see Figure 1). First note that |Mk \
Mmid| ≥ 2nk, since |Mk| > 3nk. Denote by Mleft the set of nk machines in Mk \Mmid with leftmost left
endpoints. Observe that the intervals of these machines all contain tk by definition (as do the intervals of all
machines inMk). Let t be the rightmost endpoint among the left endpoints of machines inMleft. All left jobs
whose left endpoints are strictly to the left of t must be currently scheduled on machines inMleft, so we leave
them intact. We proceed to reschedule all remaining left jobs greedily in order of increasing left endpoint.
Specifically, for each job j we select any machine in Mleft on which we have not already rescheduled a job
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that conflicts with j, and schedule j on it. To see that this is always possible, observe that all nk machines
are available between t and tk, and thus if a job cannot be scheduled, then its left endpoint must be contained
in nk other jobs that were scheduled on machines in Mk. These nk + 1 jobs were therefore unscheduled at
the beginning of the kth iteration (since we are pruning the setsMk in reverse order), but this contradicts the
definition of nk, as these jobs all intersect at one time point.

The remaining right jobs are scheduled in a symmetric manner on the nk machines in M \Mmid with
rightmost right endpoints. Some (or all) of these machines may belong to Mleft, and therefore may already
have left jobs scheduled on them, but that is not a problem because the intervals of left jobs and right jobs do
not intersect.

2.1.1 The Prize Collecting Version of the Problem

In the prize collecting version of the problem we are not obligated to schedule all jobs, but must pay a penalty
p(j) for each job j that we reject. To cope with this added complication we need to modify the linear program.
For each job j ∈ J , we introduce a new variable zj that indicates whether j is rejected. The modified linear
program is:

Min
m
∑

i=1

w(Ti)xi +
∑

j∈J

p(j)zj s.t.
n
∑

i=1

yij + zj = 1, ∀j ∈ J ; (7)

xi −
∑

j∈J(t)

yij ≥ 0, ∀1 ≤ i ≤ m, ∀t ∈ E ∩ I(Ti); (8)

x, y, z ≥ 0; (9)

and the dual program is:
Max

∑

j∈J

αj s.t.
∑

t∈E∩I(Ti)

βt
i ≤ w(Ti), ∀1 ≤ i ≤ m; (10)

αj −
∑

t∈E∩I(j)

βt
i ≤ 0, ∀1 ≤ i ≤ m, ∀j s.t. I(j) ⊆ I(Ti); (11)

αj ≤ p(j), ∀j ∈ J ; (12)

β ≥ 0. (13)

The algorithm needs to be modified too. We begin with Phase 1 (dual ascent). As before, machines and
machine types may be in the allocated or unallocated states, and jobs may be in the scheduled or unscheduled
states, but they may now also be in a third state, namely rejected. (Of course, the states are mutually exclusive.)
Initially all machines and machine types are unallocated, and all jobs are unscheduled.

The kth iteration proceeds as follows. As before, let tk ∈ E be such that a maximum number of
unscheduled jobs contain tk, and let nk denote the number of these jobs. Let Tk be the set of all unal-
located machine types whose intervals contain tk. We increase uniformly at the same rate the dual vari-
ables βtk

i for all i such that Ti ∈ Tk, and αj for all unscheduled jobs j such that tk ∈ I(j). We in-
crease these variables until some constraint of type (10) or (12) becomes tight, i.e., we increase each by
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δk = min{min{w(Ti)−
∑

t∈E∩I(Ti)
βt

i |Ti ∈ Tk},min{p(j)−αj | j ∈ I(j) and is unscheduled }}. We then
reject every unscheduled job whose corresponding constraint (12) becomes tight, and allocate every unallo-
cated machine type whose corresponding constraint (10) becomes tight. For each remaining unscheduled job
j whose interval is contained in the interval one of the newly allocated machine types we allocate a separate
machine of the appropriate type and schedule j on it. In anticipation of Phase 2 and the analysis, we let rk

denote the number of jobs rejected in the kth iteration.

It is not difficult to see that the dual solution remains feasible at all times. Constraints (10), (12), and (13)
are clearly always satisfied. Every constraint of type (11), corresponding to machine type Ti and job j, is
also initially satisfied, and subsequently, whenever αj increases, the sum of βs increases by the same amount.
Since the βs never decrease, the constraint remains satisfied throughout the phase.

Phase 2 proceeds exactly as before, except that the number of middle jobs assigned to machines inMk is
now nk−rk (rather than nk), and so we do the pruning if |Mk| > 3nk−rk, and end up with at most 3nk−rk

machines fromMk in the final schedule.

Let (α, β) be the dual solution obtained at the end of Phase 1, and let (x, y, z) be the primal solution
corresponding to the final schedule. To show that the schedule is 3-approximate, it suffices to prove that
∑m

i=1 w(Ti)xi +
∑

j∈J p(j)zj ≤ 3
∑

j∈J αj . This inequality follows from the next three claims.

Claim 3
∑

j∈J

p(j)zj =
∑

k

δkrk.

Proof: First observe that for all jobs j, αj can increase from its initial value of 0 only once, since it increases
during Phase 1 only in iterations k such that tk ∈ I(j), and then the job becomes either rejected or scheduled.
Now consider the kth iteration of Phase 1. Suppose job j was rejected in this iteration. Then αj must have
increased during this iteration from 0 to p(j), implying that p(j) = δk. This is true for all the jobs rejected in
the kth iteration (i.e., they must all have penalty equal to δk). The claim follows immediately.

Claim 4
∑

i∈T

w(Ti)xi ≤
∑

k

δk(3nk − rk).

Claim 5
∑

j∈J

αj =
∑

k

δknk.

The proofs of Claims 4 and 5 follow the same lines as the proofs of Claims 1 and 2 in the previous section
and are very similar to them.

2.2 The Unweighted Case
We present a 2-approximation algorithm for this case. Let L be the set of left endpoints of job intervals. For
each point of time t ∈ L, let nt be the number of jobs whose intervals contain t. The algorithm consists of
two stages. In the first stage it solves the optimization problem of allocating a minimum number of machines
such that for all t ∈ L, at least nt of the allocated machines are available at time t. In the second stage it
schedules the jobs using at most twice the number of machines allocated in the first stage.

Stage 1. Scan the points of time in L in left-to-right order. For each point t ∈ L, Let n′
t be the number of

machines that are available at time t and have already been allocated. If n′
t < nt, allocate another nt − n′

t

machines of type Tt, where Tt is the machine type with the rightmost right endpoint among all machines
available at time t.

Proposition 6 The solution found in Stage 1 is optimal.
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Proof: We say that a time point t ∈ L is covered by a set of machinesM ifM contains at least nt machines
that are available at time t. Let ti be the time point considered in the ith iteration of Stage 1, and let Mi be
the set of machines allocated in the first i iterations of Stage 1. We prove by induction that for all i, there
exists an optimal solution that containsMi. For i = 0,Mi = ∅ and the claim holds trivially. Consider i > 0.
By the induction hypothesis there exists an optimal solutionM∗ such thatMi−1 ⊆M

∗. If no new machines
are allocated in the ith iteration, then Mi = Mi−1 ⊆ M

∗. Otherwise, there are at least nti − n′
ti

machines
inM∗ \Mi−1 that are available at time ti. We remove any nti − n′

ti
of them fromM∗ and replace them by

the newly allocated machines Mi \Mi−1. This cannot affect the feasibility because all time points tj < ti
remain covered byMi−1, and the choice ofMi \Mi−1 as machines with the rightmost right endpoints that
are available at time ti guarantees that they are all available at all times tj ≥ ti at which any of the machines
they replace are available.

Remark 7 A different approach to the solution of the optimization problem of Stage 1 is through the natural
integer linear program for this problem. It is easy to see that the constraint matrix defining the linear program
is totally unimodular (TUM) and thus the optimal solution to the linear program is always integral.

Stage 2. Let M be the set of machines allocated in Stage 1. Order the jobs by their left endpoint (from left
to right) and schedule them in this order on machines in M. Select for each job any machine on which no
previously scheduled jobs intersect with the present job. The machine selected must also satisfy the condition
that its time interval contains the job’s left endpoint (though not necessarily the job’s entire interval). The
resultant schedule might, of course, be infeasible, due to jobs extending beyond the right endpoints of the
machines on which they are scheduled, but at most one job per machine may do so. Fix the schedule by
allocating new machines, one for each of these jobs. At most |M| new machines are added to the schedule.

Theorem 8 Stage 2 returns a 2-approximate solution.

Proof: The initial (infeasible) schedule constructed in Stage 2 contains all jobs, for if Stage 2 cannot schedule
some job, then there are at least k other jobs containing its left endpoint ti ∈ L, where k is the number of
machines in M available at time ti. This implies nti > k, contradicting the fact that at each point of time
t ∈ L, at least nt machines are allocated in Stage 1. Thus, the final schedule constructed in Stage 2 is feasible
and it uses at most 2|M| machines. Since |M| is clearly a lower bound on the optimum, the solution is
2-approximate.

3 Cost Minimization with Machine Strengths

In this section we present a 2-approximation algorithm for the special case of the cost minimization problem
where there is a linear order of strength on the machine types T1 ≺ T2 ≺ · · · ≺ Tm, such that a job that may
be processed by a machine of a given type may also be processed on every stronger machine. In other words,
S(j) has the form {Tij , Tij+1, . . . , Tm} for all j ∈ J . We also assume that the stronger a machine, the higher
its cost, i.e., w(Ti) < w(Ti+1) (otherwise there is no point in ever using weaker machines). We say that job j
exists at time t if t ∈ I(j).

For 1 ≤ i ≤ m, let ni be the maximum cardinality of a set of jobs that all exist simultaneously at some
time point and all require machines of type Ti or stronger. Clearly, every feasible schedule requires at least
ni machines of type Ti or stronger, for all i. Thus, the cost of an optimal schedule is at least as high as the
minimum cost of a set of machines with the property that for all i, the set contains at least ni machines of
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type Ti or stronger. Define nm+1 = 0. Consider a set of machines M consisting of ni − ni+1 machines of
type Ti, for all 1 ≤ i ≤ m (note that ni ≥ ni+1 for all i, and the number of machines allocated in M of
type Ti or stronger is ni). Then M has the above property, and because stronger machines cost more than
weaker ones, M is a minimum cost set with this property. Thus the cost of M is a lower bound on the cost
of optimal solution. We show how to schedule all jobs on a set of machines containing at most two copies of
each machine inM. This schedule is therefore 2-approximate.

Let M1, . . . ,Mk (where k = n1) be the machines in M ordered from weakest to strongest. Construct
an initial infeasible schedule as follows. Consider the machines in order from M1 to Mk. For each Mi,
construct a schedule containing a subset of the jobs as follows. First, schedule on Mi all of the currently
unscheduled jobs that can be processed on it. Ignore job overlap when constructing this schedule. Then,
iterate: as long as there is a job j scheduled on Mi that is fully contained in the union of other jobs scheduled
on Mi, un-schedule job j. Although the schedule thus constructed for Mi may contain overlapping jobs, it
has the redeeming property that the interval graph it induces is 2-colorable, as it is an easy fact that if three
intervals intersect, at least one of them must be contained in the union of the other two. Having constructed
the initial schedule (on all machines), color the induced interval graph on each machine with two colors and
create a feasible schedule by using two copies ofM, one for each color class.

It remains to show that the initial schedule contains all jobs. Restricting our attention to this schedule, we
say that a time point t is covered on machine Mi if there is job containing t scheduled on Mi. By construction,
the set of points covered on Mi is precisely the union of all jobs that could be processed on Mi and were still
unscheduled when the algorithm reached Mi. It follows that if a time point t is not covered on Mi, then every
job that contains it either cannot be processed on Mi, or is scheduled on some machine Mi′ , i′ < i. Thus,
suppose the algorithm fails to schedule some job j. Let t be any time point in j. Then t must be covered on the
strongest machine, i.e., Mk, since it is contained in an unscheduled job (namely j) that can be processed on it.
Let i be minimal such that t is covered on machines Mi,Mi+1, . . . ,Mk. Let J ′ be the set of jobs scheduled
on these machines that contain t. Assuming i > 1, point t is not covered on Mi−1 by definition. Thus, by
our previous observation, all of the jobs in J ′ ∪ {j} cannot be processed on Mi−1, and one (or two) of them
are scheduled on Mi, so Mi is strictly stronger than Mi−1. Let Tl−1 be the type of machine Mi−1. Then, all
the jobs from J ′ ∪ {j} require machines of type at least as strong as Tl. Thus, |J ′ ∪ {j}| ≤ nl. On the other
hand, the number of available machines of types Tl or stronger is less than |J ′ ∪ {j}|, which is at most nl,
contradicting the fact that M contains nl such machines. In the case i = 1 we get a contradiction directly:
n1 ≥ |J

′ ∪ {j}| ≥ k + 1 > n1.

Theorem 9 Our algorithm returns a 2-approximate solution.

4 Revenue Maximization

In the revenue maximization problem, we are given a set of machines M = {M1, . . . ,Mm} (presumably,
already paid for) and a set of jobs J . Since the set of machines is fixed here, we identify machines with
machine types. For each job j ∈ J , there is a time interval I(j) during which it should be processed and a
non-negative profit (or weight) w(j) associated with it. Every job j specifies an arbitrary set, S(j) ⊆ M,
of machines on which it can be scheduled. The goal is to find a feasible schedule of a subset of the jobs on
the machines that maximizes the total profit of the jobs scheduled. We present a (1 − 1/e)-approximation
algorithm for this problem. Our approach is to cast the problem as an integer problem and solve its linear
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programming relaxation. We then obtain an integral solution by randomly rounding the optimal fractional
solution found for the LP relaxation.

The Linear Program: For each job j and for each machine Mi, there is a variable xij that indicates whether
job j is scheduled on machine Mi. (If job j cannot be scheduled on machine Mi, we add a constraint xij = 0.
These constraints are not shown below.) Also, recall that E is the set of left endpoints of the job intervals, and
for t ∈ E, J(t) is the set of jobs containing t.

Max
∑

j∈J

∑

Mi∈S(j)

w(j)xij s.t.

m
∑

i=1

xij ≤ 1, ∀j ∈ J ; (14)

∑

j∈J(t)

xij ≤ 1, ∀i ∈ {1, . . . ,m}, ∀t ∈ E; (15)

x ≥ 0. (16)

Constraints (14) guarantee that each job is scheduled at most once. Constraints (15) guarantee that each
machine executes at most one job at each time point.

Randomized Rounding: Let x be an optimal fractional solution. Choose N to be the smallest integer such
that N · xij is integral for all i, j. The rounding is done on each machine separately. For each machine Mi,
perform the following steps:

1. Construct an interval graph I as follows. For each job j, add N · xij copies of the time interval I(j) to
I. Note that at each time point, the sum of the fractions of the jobs that are executed on machine Mi is
at most 1. Thus the size of the maximum clique in the interval graph I is at most N .

2. Color I with N colors. Each color class induces a feasible schedule on machine Mi.

3. Choose one of the color classes uniformly at random. Schedule on Mi all the jobs that have time
intervals belonging to this color class.

If a job is scheduled on more than one machine, arbitrarily un-assign it from all but one machine.

We now estimate the expected revenue of the schedule thus generated. For each job j, let xj = Σm
i=1xij .

For a job j, the probability of its being scheduled on a particular machine Mi is exactly xij . Therefore, the
probability that it is not assigned to Mi is 1− xij . Thus, the probability that it is not assigned to any machine
is

m
∏

i=1

(1− xij) ≤
m
∏

i=1

(

1−
xj

m

)

=
(

1−
xj

m

)m

< e−xj .

The probability that job j appears in the final schedule is therefore not less than 1 − e−xj ≥ (1 − 1/e)xj ,
where the inequality follows from the fact that the real function 1 − e−x − (1 − 1/e)x is non-negative in
the range 0 ≤ x ≤ 1 (as can easily be seen by differentiation). Thus, the expected revenue is at least
(1− 1/e)

∑

j w(j)xj . The next theorem follows from the discussion above.

Theorem 10 The algorithm yields a (1− 1/e)-approximate solution.
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We remark that there is no need to build the interval graph I explicitly, i.e., to replicate intervals. We
can base the rounding for machine Mi on the following assignment to color classes (which is computable
in strongly polynomial time). To understand the color class construction, it is convenient to consider the
following strip packing problem. Each job j is identified with an axis parallel rectangle of size |I(j)| × xij

(where I(j) is the horizontal dimension). The problem is to pack (without overlap) all of the rectangles
into an infinite horizontal unit-width strip (representing time), subject to the following rules. The horizontal
location of rectangle j is fixed—it is the interval I(j). The vertical location, however, may be chosen freely.
Furthermore, it is permitted to cut the rectangle into a number of horizontal slices and position the slices
(vertically) independently. Figure 2 shows an example of a possible packing of five jobs.
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Figure 2: A packing of five jobs

We construct a packing as follows. We sort the jobs by increasing left endpoint and pack them in this
order. Whenever we pack a rectangle slice, we conceptually pass infinite lines through its two horizontal
sides, thus partitioning the strip into horizontal sub-strips, indicated by the dotted lines in Figure 2. Suppose
we have already packed several jobs, and are now processing job j. We cut rectangle j into slices, packing
each into one of the sub-strips (choosing, of course, sub-strips that are not obstructed by previously packed
rectangles). The rectangle is sliced up in such a manner that the width (i.e., the vertical dimension) of each
slice equals the width of the sub-strip into which it is packed, except, possibly, for the width of the last slice,
which might be smaller. If it is smaller, we pack this slice flush against the bottom (or top) of its sub-strip.
We then conceptually extend the sides of the new slices to the left and to the right. Doing so can increase the
number of sub-strips by at most 1. (The number will increase only if the last slice’s width is smaller than the
width of its sub-strip, in which case the sub-strip will be partitioned into two sub-strips.) Thus, packing the
mth jobs entails cutting it into at most m slices, and so the whole process can be carried out in O(n2) time.
The result is a packing of the rectangles and a partitioning of the strip into at most n + 1 sub-strips such that
no two rectangle slices overlap horizontally anywhere inside of any of the sub-strips. We can therefore think
of each sub-strip as a color class.

Given the packing and partitioning of the strip into sub-strips, we select one of the sub-strips at random,
and assign the jobs represented in it to machine Mi. The random choice is not made uniformly, though.
Rather, the probability of selecting a sub-strip equals its width. This ensures that the probability that job j is
scheduled on machine Mi is exactly xij , and thus the analysis remains unchanged.

We also remark that the algorithm can be derandomized without decreasing the approximation factor
using the method of conditional expectations (see for example [2]). Since this method is standard by now, we
only sketch how to apply it to our algorithm. The idea is to perform a search in the sample space associated
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with the random variables, so as to find a good schedule. In our case each random variable corresponds to the
choice of a color class for one machine. The random variables are considered one-by-one. At the kth step of
the derandomization, the values of the first k − 1 variables have already been set (i.e., the color classes have
already been chosen for k − 1 machines), and one variable is currently being considered. We compute the
conditional expected revenue for each outcome (i.e., choice of color class) of the random variable, where the
expectation is on the outcomes of all remaining random variables, conditioned on the choices already made
for the first k − 1 variables and the outcome under consideration of the kth variable. We set the kth variable
to the outcome maximizing this conditional expectation. The conditional expectations can be computed given
the color classes for each machine in a manner easily derived from our above analysis of the algorithm.

Remark 11 A similar algorithm can be used to obtain a (1 − 1/e)-approximation for the more general
problem where each job j has a release date rj , a deadline dj and a processing time pj , and dj − rj < 2pj

for all j.
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