
New Hardness Results for Congestion Minimization

and Machine Scheduling

JULIA CHUZHOY

CSAIL MIT and Dept. of CIS, University of Pennsylvania

and

JOSEPH (SEFFI) NAOR

Computer Science Dept., Technion

We study the approximability of two natural NP-hard problems. The first problem is congestion

minimization in directed networks. In this problem, we are given a directed graph and a set of
source-sink pairs. The goal is to route all the pairs with minimum congestion on the network
edges. The second problem is machine scheduling, where we are given a set of jobs, and for each
job, there is a list of intervals on which it can be scheduled. The goal is to find the smallest
number of machines on which all jobs can be scheduled such that no two jobs overlap in their
execution on any machine. Both problems are known to be O(log n/ log log n)-approximable via
the randomized rounding technique of Raghavan and Thompson. However, until recently, only
Max SNP hardness was known for each problem. We make progress in closing this gap by showing
that both problems are Ω(log log n)-hard to approximate unless NP ⊆ DTIME(nO(log log log n)).

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Network

problems; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Computations on discrete structures

General Terms: Theory

Additional Key Words and Phrases: Hardness of approximation, congestion minimization, network
routing, scheduling, resource minimization

1. INTRODUCTION

In this paper we study the approximability of the congestion minimization and
the machine scheduling problems. Both these problems deal with resource min-
imization, though in different contexts: congestion minimization aims at routing
source-sink pairs in a network, so as to minimize edge congestion, while in the ma-
chine scheduling problem the goal is to schedule jobs on machines, while minimizing
the number of machines used. Congestion minimization and machine scheduling
are probably the most natural resource minimization problems in their respective
areas (network routing / scheduling), and each one of the two problems is associated

Julia Chuzhoy, Computer Science and Artificial Intelligence Lab, MIT and Dept. of Computer
and Information Science, University of Pennsylvania. Email: cjulia@csail.mit.edu. Work done

while the author was a graduate student at the Computer Science Department at the Technion.
Joseph (Seffi) Naor, Computer Science Dept., Technion, Haifa 32000, Israel. E-mail:
naor@cs.technion.ac.il. Research supported in part by the United States-Israel Binational Sci-
ence Foundation Grant No. 2002-276 and by EU contract IST-1999-14084 (APPOL II).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–15.

2 · J. Chuzhoy and J. (S.) Naor

with a rich and well-studied family of closely related problems. Though congestion
minimization and machine scheduling might seem very different at the first sight, it
turns out that there is an interesting connection between them, which is exploited
in our inapproximability results.

In the congestion minimization problem, we are given a graph (directed or undi-
rected) and a collection of source-sink pairs. The goal is to find the smallest integer
c ≥ 1 such that every input source-sink pair can be connected by a simple path,
while the number of paths passing through any edge does not exceed c. The con-
gestion minimization problem can be relaxed by formulating it in a natural way as
a multicommodity flow linear program. A classical result of Raghavan and Thomp-
son [Raghavan and Thompson 1987] shows that a randomized rounding of the mul-
ticommodity flow relaxation yields an approximation factor of O(log n/ log log n)
for both undirected and directed graphs, where n denotes the number of vertices.
This is the best currently known approximation factor for congestion minimization,
and to the best of our knowledge, no non-trivial hardness of approximation results
have been known prior to this work.

In the machine scheduling problem, we are given a set of n jobs and for each
job a set of time intervals is specified. A job is scheduled by choosing one of its
associated time intervals. The goal is to schedule all the jobs using the minimum
number of machines, such that no two jobs assigned to a machine overlap in time.
There are two popular versions of machines scheduling: In the discrete version,
the intervals belonging to each job are listed explicitly; in the continuous version,
for each job j, a processing time pj, a release date rj and a deadline dj are given,
and job j can be scheduled on any time interval of length pj that lies between its
release date and deadline. The best currently known approximation factor for the
discrete machine scheduling problem is O(log n/ log log n), and it is achieved via
the randomized rounding technique of Raghavan and Thompson [Raghavan and
Thompson 1987]. However, for the continuous version of the problem, Chuzhoy et
al. [Chuzhoy et al. 2004] obtained an O

(√
log n

)

approximation. They also showed
a constant approximation for the special case of the continuous version, where the
optimal solution uses a constant number of machines.

1.1 Our Results

We prove hardness of approximation for congestion minimization in directed net-
works and for the machine minimization problem with discrete input. For both
problems, we show that there is no c log log n-approximation algorithm for some
constant c, unless NP ⊆ DTIME(nO(log log log n)). The hardness of discrete ma-
chine scheduling holds for the special case where all the jobs can scheduled on a
single machine. Our results give the first non-trivial inapproximability bounds for
the well-studied classical problem of congestion minimization. Subsequent to our
work, Andrews and Zhang [Andrews and Zhang 2005b] proved an Ω

(

log log1−ǫ n
)

-
hardness of undirected congestion minimization, under the assumption that NP is
not contained in ZPTIME

(

npoly log n
)

. Recently, Andrews and Zhang [Andrews

and Zhang 2006] showed that directed congestion minimization is Ω(log1−ǫ n)-hard
to approximate unless NP ⊆ ZPTIME

(

npoly log n
)

. This was improved by Chuzhoy

and Khanna [Chuzhoy and Khanna 2006] to Ω
(

log n
log log n

)

-hardness, under the same

Journal of the ACM, Vol. V, No. N, Month 20YY.

New Hardness Results for Congestion Minimization · 3

complexity assumption, thus resolving the approximability of this problem up to a
constant factor. We note that these results do not extend to the machine scheduling
problem.

1.2 Related Problems

The edge disjoint paths problem (EDP) is closely related to congestion minimiza-
tion. EDP is defined exactly like the congestion minimization problem, except that
now, instead of routing all the source-sink pairs while minimizing the congestion, the
objective is to connect the maximum number of source-sink pairs via edge-disjoint
paths (i.e., no congestion is allowed). This is a fundamental problem, extensively
studied, and the best known approximation factors are Õ(min(n2/3,

√
m)) for di-

rected graphs [Chekuri and Khanna 2003; Kleinberg 1996; Kolliopoulos and Stein
1998; Srinivasan 1997; Varadarajan and Venkataraman 2004], and O(

√
n) for undi-

rected and directed acyclic graphs [Chekuri et al. 2006b] (here n and m denote the
number of vertices and edges respectively in the input graph). In directed graphs,

this is matched by an Ω(m
1

2
−ǫ)-hardness due to Guruswami et al. [Guruswami et al.

2003; Chekuri and Khanna 2003]. For undirected EDP, Andrews and Zhang [An-

drews and Zhang 2005c] showed an Ω(log
1

3
−ǫ n) hardness, and this has recently

been improved to Ω(log
1

2
−ǫ n) [Chuzhoy and Khanna 2005].

An interesting problem, which can be seen as lying between the EDP and the con-
gestion minimization problems, is EDP with congestion (EDPwC). This problem is
defined exactly like EDP, except that an integer c bounding the allowed congestion
is given as part of the input. The goal is again to route the maximum possible num-
ber of source-sink pairs, while the number of paths using any edge is restricted to be
at most c. Notice that in this problem, the objective function is the same as in EDP
- maximizing the number of routed source-sink pairs, while some fixed allowed con-
gestion c is given as a part of problem input. The performance of approximation
algorithms for EDPwC is usually measured with respect to the optimal solution
with congestion 1. On the positive side, for constant congestion c ≥ 2, an O(n1/c)
approximation is known [Azar and Regev 2001; Baveja and Srinivasan 2000; Kol-
liopoulos and Stein 1998]. When the congestion is allowed to be O(log n/ log log n),
we get a constant approximation via randomized rounding [Raghavan and Thomp-
son 1987]. For planar graphs, there is an O(log n)-approximation when congestion
2 is allowed [Chekuri et al. 2004; 2005], and a constant approximation with conges-
tion 4 [Chekuri et al. 2006a]. On the negative side, it has been shown by [Andrews
and Zhang 2005a; Chuzhoy and Khanna 2005; Guruswami and Talwar 2005; An-
drews et al. 2005] that for any c = o(log log n/ log log log n), the EDPwC problem is

Ω(log1/γc)-hard to approximate, for some constant γc depending only on c. More-
over, it is shown that even when c = O(log n log n/ log log log n), EDPwC is still
hard to approximate up to some super-constant factor.

The throughput maximization problem is defined exactly like machine schedul-
ing, except that here the number of machines is fixed and the goal is to find a
maximum cardinality subset of jobs that can be scheduled on the given number of
machines. Several constant factor approximation algorithms for this problem are
known [Bar-Noy et al. 2001; Erlebach and Spieksma 2003; Bar-Noy et al. 2001;
Berman and DasGupta 2000; Chuzhoy et al. 2001]. We note that this problem is

Journal of the ACM, Vol. V, No. N, Month 20YY.

4 · J. Chuzhoy and J. (S.) Naor

NP-hard in the strong sense for a single machine (even for continuous input) and
in fact it is one of the original NP-hard problems in Garey and Johnson [Garey
and Johnson 1979]. In the notation convention of [Lawler et al. 1993], the con-
tinuous version is denoted by 1|rj |

∑

j Ūj . For discrete input the problem on a
single machine is also known as the job interval selection problem. Erlebach and
Spieksma [Erlebach and Spieksma 2003] showed that it is Max-SNP hard, thus
resolving the approximability of the discrete version to within constant factors. In-
terestingly, our results show that the discrete and the continuous versions of the
machine minimization problem have different approximation factors (we show that
the discrete version of machine minimization is Ω(log log n)-hard to approximate,
even if the optimal solution uses one machine, while the continuous version is known
to have an O(

√
log n)-approximation, and the special case where the optimal solu-

tion schedules all the jobs on one machine has a constant approximation [Chuzhoy
et al. 2004]). No such separation is known for the discrete and continuous versions
of the throughput maximization problem.

1.3 Our Techniques

We start by defining a natural special case of the machine scheduling problem which
we call the restricted machine scheduling problem. In this problem, we assume that
for each job, all the time intervals associated with it are disjoint. We perform a
simple reduction that shows that restricted machine scheduling can be viewed as
a special case of the congestion minimization problem on directed graphs. The
main technical part of the paper is devoted to proving that the restricted machine
scheduling problem is hard to approximate.

The hardness of restricted machine scheduling is shown via a PCP reduction.
We construct a problem instance consisting of r = Ω(log log n) layers, where each
layer is a reduction from the gap version of the 3SAT(5) problem to the machine
scheduling problem itself. To be more specific, we first construct a basic instance
of the machine scheduling problem, which depends on the input 3SAT(5) formula
and a number of parameters. Each layer in the final machine scheduling instance is
actually a basic instance, which is constructed using different parameters for each
layer. Interestingly, the basic instance by itself is not a hard machine minimization
instance. In fact, all the jobs in the basic instance can easily be scheduled on
one machine. However, the basic instance does have some interesting properties
which are exploited to prove the hardness of the overall construction. Thus, it
is the careful combination of layers of basic instances, together with their special
properties, that makes the final problem instance hard to approximate.

We believe our result opens up several interesting avenues for future research.
We study a very restricted special case of the congestion minimization problem,
namely the restricted machine scheduling, and we prove that it is hard to approxi-
mate. Intuitively, the congestion minimization problem looks much richer and more
complex than the scheduling problem we consider. It would be interesting to under-
stand whether the machine scheduling problem indeed captures the hardness of the
congestion minimization problem in its full generality, i.e., is machine scheduling
as hard to approximate as congestion minimization.

Our techniques involve a recursive layered construction of the final instance.
This approach has proved useful in many other hardness of approximation results.

Journal of the ACM, Vol. V, No. N, Month 20YY.

New Hardness Results for Congestion Minimization · 5

However, a usual practice is to start with a single layer corresponding to an instance
which is hard to approximate up to some constant factor, and then amplify this
factor by recursively adding new layers. An interesting feature of our construction
is that in our case, each layer, when viewed as a machine minimization problem
instance, is easily solvable in polynomial time, while the final instance is hard to
approximate.

2. PRELIMINARIES

The input to the congestion minimization problem is a graph G = (V, E), either
directed or undirected, with a collection {(s1, t1), . . . , (sk, tk)} of source-sink pairs.
The goal is to find the smallest integer c such that each input pair can be connected
by a simple path, while the number of paths passing through any edge is at most
c.

The input for the discrete machine scheduling problem is a set J of n jobs, where
for each job j ∈ J an explicitly specified set I(j) of time intervals is given. These
time intervals are also called job intervals. A job j is scheduled by choosing one of
the time intervals in I(j). The task is to schedule all the jobs using a minimum
number of machines, such that no two jobs assigned to a machine overlap in time.
In the restricted machine scheduling the time intervals I(j) associated with each
job j ∈ J are disjoint.

We show that the restricted machine scheduling problem is Ω(log log n)-hard to
approximate unless NP ⊆ DTIME(nO(log log log n)). Clearly, the restricted machine
scheduling problem is a special case of the general machine scheduling problem. We
also show that the restricted discrete machine scheduling problem is a special case
of the congestion minimization problem on directed networks. Thus the hardness
result holds for both these problems.

3. FROM MACHINE SCHEDULING TO CONGESTION MINIMIZATION

In this section we show a reduction from the restricted machine scheduling problem
to the directed congestion minimization problem. The main result of this section
is summarized in the following theorem.

Theorem 3.1. For any instance of restricted machine scheduling, there is an
instance of directed congestion minimization, which can be constructed in polyno-
mial time, such that minimum congestion equals the minimum number of machines
needed to schedule all the jobs.

Proof. Suppose we are given an instance of machine scheduling, where for each
job, all its intervals are mutually disjoint. Let D be the set of all the points on
the time line where some job interval starts or finishes. Denote these points by
d1 ≤ d2 ≤ · · · ≤ dN . The corresponding congestion minimization problem is
defined as follows. For each job j ∈ J , there is a source sj and a destination tj .
The vertex set V is:

V = D ∪ {sj, tj | j ∈ J}
There are two sets of edges. The first set is E1 = {(di, di+1) | 1 ≤ i < N}. In

order to define the second set of edges, E2, consider some job j ∈ J and one of
its time intervals I ∈ I(j). Let l(I) : 1 ≤ l(I) ≤ N denote the index of the left

Journal of the ACM, Vol. V, No. N, Month 20YY.

6 · J. Chuzhoy and J. (S.) Naor

endpoint of I, and let r(I) : 1 ≤ r(I) ≤ N denote the index of the right endpoint
of I. Then there is a pair of edges (sj , dl(I)), (dr(I), tj) in E2. More formally,

E2 = {(sj , dl(I)), (dr(I), tj) | j ∈ J, I ∈ I(j)}.
The set of edges in our congestion minimization instance is E = E1 ∪E2. For each
job interval I, let P (I) denote the path (dl(I) → dl(I)+1 → · · · → dr(I)).

We can assume, without loss of generality, that in any solution to the congestion
minimization problem, each demand j is routed via a path of the form (sj →
P (I) → tj), where I ∈ I(j). This is the case since after leaving sj , the path must
continue to some dl(I) for some I ∈ I(j). Then, it is impossible for the path to
leave P (I) before arriving at dr(I), since the only way to do so is via some tj′ ,
j′ 6= j. But, as no edges are leaving tj′ , the path will not be able to arrive at tj .
Therefore, the path must be of the form (sj → P (I) → · · · → tj). If the path does
not go directly to tj after leaving P (I), we can reroute it, so that the path becomes
(sj → P (I) → tj), since this can only decrease the congestion.

Thus, for each demand j, the path (sj → P (I) → tj), via which commodity j
can be routed, translates to a job interval I ∈ I(j), where job j can be scheduled,
and vice versa. It is therefore easy to see that the minimum number of machines
needed to schedule all the jobs equals the minimum congestion needed to route all
the demands.

It is clear from Theorem 3.1 that restricted machine scheduling can be viewed
as a special case of directed congestion minimization. Therefore, any hardness of
approximation result for the restricted machine scheduling problem holds for the
directed congestion minimization problem as well.

4. HARDNESS OF RESTRICTED MACHINE SCHEDULING

4.1 Preliminaries

The hardness of restricted machine scheduling involves a reduction from the gap
version of Exact MAX 3SAT(5), which is defined as follows. The input is a CNF
formula with n variables and 5n/3 clauses. Each clause contains exactly 3 literals,
and each variable appears in exactly 5 different clauses. The goal is to find an
assignment maximizing the number of satisfied clauses. The following theorem is
one of the several alternative statements of the famous PCP theorem [Arora and
Safra 1998; Arora et al. 1998].

Theorem 4.1. There is some constant ǫ > 0, such that it is NP-hard to distin-
guish between a satisfiable 3SAT(5) formula, and a formula where no assignment
can satisfy more than a fraction (1 − ǫ) of the clauses.

Definition 4.2. A 3SAT(5) formula ϕ is called a Yes-Instance if it is satisfiable.
It is called a No-Instance if no assignment satisfies more than a fraction (1 − ǫ)
of the clauses.

In our reduction, we start from a 3SAT(5) formula ϕ on n variables and produce
an instance of restricted machine scheduling problem with at most nO(log log log n)

jobs. If ϕ is a Yes-Instance, then all the jobs can be scheduled on one machine.
If ϕ is a No-Instance, then at least c log log n machines are needed. The hardness

Journal of the ACM, Vol. V, No. N, Month 20YY.

New Hardness Results for Congestion Minimization · 7

result therefore follows from the reduction and Theorem 4.1. Our reduction uses
the Raz verifier with ℓ = Θ(log log log n) repetitions, which is described next.

The Raz verifier for MAX 3SAT(5) with ℓ repetitions receives as input a 3SAT(5)
formula ϕ, performs some interaction with two provers, at the end of which it either
accepts or rejects. The actions of the verifier are as follows:

—Choose, uniformly and independently, ℓ clauses C1, . . . , Cℓ from the formula ϕ
and send the indices of these clauses to Prover 1.

—In each clause Ci, 1 ≤ i ≤ ℓ, choose a random variable xi ∈ Ci, which is called a
distinguished variable, and send the indices of these variables to Prover 2.

—Receive the answers of the provers to the queries. Prover 1 is expected to send
an assignment to the variables that appear in the clauses C1, . . . , Cℓ. Prover 2 is
expected to send an assignment to the variables x1, . . . , xℓ.

—Check that for each clause Ci, 1 ≤ i ≤ ℓ, the assignment sent by Prover 1 satisfies
the clause. If this is not true, reject.

—Check that for each i, 1 ≤ i ≤ ℓ, the assignments of Prover 1 and Prover 2 to xi

are identical, and accept or reject accordingly.

The following theorem follows from Theorem 4.1 combined with the Raz Parallel
Repetition Theorem [Raz 1998].

Theorem 4.3. There is a constant α > 0, such that:

—If ϕ is a Yes-Instance, then there is a strategy of the provers that makes the
verifier accept always.

—If ϕ is a No-Instance, then no matter what the strategy of the provers is, the
verifier accepts with probability at most 2−αℓ.

We view the Raz verifier with ℓ repetitions as the following constraint satisfaction
problem. We have a set X of variables, containing one variable x for each possible
query to Prover 1 (i.e., for each possible sequence of ℓ clauses). The range of
variable x is denoted by Ax, and it consists of all the possible answers of Prover 1
to the query corresponding to x, that satisfy all the clauses in the query. Clearly,
|Ax| = 7ℓ, and |X | = (5n/3)ℓ. Similarly, we also have a set Y of variables, that
contains one variable y for each possible query to Prover 2 (i.e., for each possible
sequence of ℓ variables of formula ϕ). The range of variable y, which is denoted by
Ay, is the set of all the possible answers of Prover 2 to the query. Thus, |Ay | = 2ℓ,
and |Y | = nℓ.

We denote the set of constraints by Φ. For each random string r of the verifier,
there is a constraint (x, y) ∈ Φ, where x ∈ X is the query sent to Prover 1 and y ∈ Y
is the query sent to Prover 2, if the verifier chooses random string r. Constraint
(x, y) is satisfied, if and only if the assignments to x and y are consistent, i.e., the
assignment to y and the projection of the assignment to x onto the distinguished
variables are identical. Note that for each possible assignment to x, there is exactly
one assignment to y that satisfies the constraint (x, y). Therefore, each constraint
(x, y) defines a function πx,y : Ax → Ay.

The next corollary is an easy consequence of Theorem 4.3.

Journal of the ACM, Vol. V, No. N, Month 20YY.

8 · J. Chuzhoy and J. (S.) Naor

Corollary 4.4. If ϕ is a Yes-Instance, then there is an assignment to X∪Y ,
such that all the constraints in Φ are satisfied. If ϕ is a No-Instance, then no
assignment satisfies more than a fraction 2−αℓ of the constraints.

We call the constraints in Φ “type x-y constraints”. We define another set Ψ of
constraints, called “type x-x constraints”. Consider some x1, x2 ∈ X . There is a
constraint (x1, x2) ∈ Ψ if and only if there is some y ∈ Y , such that (x1, y) ∈ Φ and
(x2, y) ∈ Φ. Let a1 ∈ Ax1

and a2 ∈ Ax2
be assignments to x1 and x2, respectively.

Then, the constraint (x1, x2) is satisfied if and only if for every y ∈ Y , such that
(x1, y) ∈ Φ and (x2, y) ∈ Φ, assignments a1 and a2 imply the same assignment to
y, i.e., πx1,y(a1) = πx2,y(a2). In this case we say that a1 and a2 are consistent.

Note that each x ∈ X participates in exactly 3ℓ constraints in Φ, and each y ∈ Y
participates in exactly 5ℓ constraints in Φ. Therefore, for each x ∈ X , there are at
most 15ℓ constraints in Ψ in which x participates.

4.2 The Construction

We show that there is no efficient algorithm, which distinguishes between the in-
stances in which all the jobs can be scheduled on one machine, and the instances
in which at least c log log n machines are needed.

Our hardness proof is inspired and motivated by the hardness results for hyper-
graph covering which recently appeared in [Dinur et al. 2002; Dinur et al. 2003]. The
starting point of our reductions is the Raz verifier for 3SAT(5). Given a 3SAT(5)
formula ϕ on n variables, we construct a discrete machine scheduling instance where
the size of the construction is N = nO(log log log n). If ϕ is satisfiable, then all the
jobs can be scheduled on a single machine. If no assignment can satisfy more than
a fraction (1− ǫ) of the clauses in ϕ, then we need at least Ω(log log N) machines to
schedule all the jobs. The reduction to the machine scheduling problem is performed
in two stages. First, given the input formula ϕ, we construct a “basic instance” of
discrete machine scheduling. In the second stage, we combine Θ(log log n) layers of
the basic instance in a special way to obtain the final construction.

4.2.1 The Basic Instance. In this section we construct an instance of the re-
stricted discrete machine scheduling problem, which is called “the basic instance”
and discuss its properties. In our final reduction, we are going to construct a number
of such basic instances, and combine them together to obtain the final scheduling
problem.

A basic instance is determined by the input 3SAT(5) formula ϕ, and by the
following parameters:

—Integer k.

—For each x ∈ X , there is a collection of k(x) ≤ k subsets of assignments,
Ax

1 ,Ax
2 , . . . ,Ax

k(x) ⊆ Ax. For each i, |Ax
i | ≥ |Ax| − log log n.

The parameter ℓ (number of repetitions in the Raz verifier) is always the same,
ℓ = 3

α log log log n, where α is the constant from Theorem 4.3. We note that in
our final construction where we combine several basic instances, the integer k and
the sets Ax

1 ,Ax
2 , . . . ,Ax

k(x) will be determined separately for each one of the basic
instances.

Journal of the ACM, Vol. V, No. N, Month 20YY.

New Hardness Results for Congestion Minimization · 9

... ...

...

... ...

I(x)

I(Ax
1) I(Ax

2) I(Ax
k(x))

in A
x
1

Ix
1 (a1) Ix

1 (a2)

Assignments

...

Ix
i (a)

j1

Jobs in J ′

j2 j3

Job j1 can be
scheduled here

Fig. 1. The “virtual” intervals and the jobs

We now define the basic instance. Intuitively, the time intervals represent vari-
ables and their possible assigned values, while jobs correspond to constraints. De-
note the set of jobs by J . For each job j ∈ J , denote by I(j) its set of its intervals,
i.e., the time intervals in which the job can be scheduled.

First, we define a collection of “virtual” intervals on the time line, which are not
part of the problem input, but which will be useful later when we define the jobs
and their intervals.

—For each variable x ∈ X , there is an interval representing x and denoted by I(x).
This interval is called a variable interval. All variable intervals are equal-sized
and non-overlapping.

—The variable interval I(x) is further subdivided into k(x) non-overlapping equal
sized intervals representing the input subsets of assignments Ax

i , 1 ≤ i ≤ k(x).
An interval corresponding to Ax

i is denoted by I(Ax
i)

—Finally, each interval I(Ax
i) is divided into |Ax

i | equal-sized non-overlapping in-
tervals. Each such interval represents an assignment a ∈ Ax

i . We denote this
interval by Ix

i (a). Note that the assignment a may appear in several subsets of
assignments and thus will have several intervals.

We proceed to define the set of jobs J and the job intervals. The job intervals will
be given implicitly, as follows. First, we will specify, for each assignment interval
Ix
i (a), a subset of jobs “belonging” to it. In order to define the final job intervals,

suppose that for some assignment interval Ix
i (a), the subset of jobs belonging to it

is J ′ ⊆ J . Then, the “virtual” interval Ix
i (a) is further divided into |J ′| equal-sized

non-overlapping subintervals, where each subinterval corresponds to exactly one
job j ∈ J ′, and j can be scheduled in this subinterval. Thus, given a job j, for each
assignment interval Ix

i (a) to which j belongs, there is some subinterval of Ix
i (a),

such that j can be scheduled on this subinterval, i.e., the subinterval is in I(j) (See
Figure 1).

We are now ready to define the set of jobs J and the job intervals. Consider
variables x, x′ ∈ X , such that there is a constraint (x, x′) ∈ Ψ. Consider some Ax

i

and Ax′

i′ , 1 ≤ i ≤ k(x), 1 ≤ i′ ≤ k(x′). There is a job j = j(Ax
i ,Ax′

i′), if and only

if there is no pair of assignments a1 ∈ Ax \ Ax
i , a2 ∈ Ax \ Ax′

i′ , such that a1 and

a2 are consistent. If job j = j(Ax
i ,Ax′

i′) exists, then it belongs to all the intervals

Ix
i (a) and Ix′

i′ (a′), for all a ∈ Ax
i , a′ ∈ Ax′

i′ (see Figure 2).
This finishes the description of the basic instance construction. Observe that for

Journal of the ACM, Vol. V, No. N, Month 20YY.

10 · J. Chuzhoy and J. (S.) Naor

...

...

I(Ax
i)

a1 a2 a3

I(Ax′

i′)

Job j can be
scheduled on
any of these
intervals

Fig. 2. The intervals in I(j)

each job j, the intervals in I(j) are non-overlapping, and thus we indeed construct
an instance of the restricted machine scheduling. Actually, all the job intervals in
the above instance are non-overlapping, and thus we can easily schedule all the jobs
on one machine, by choosing one arbitrary interval in I(j) for each job j. We next
establish some structural properties of the solutions corresponding to the Yes and
the No instances of the input 3SAT(5) formula. It might be not apparent to the
reader at this point why these properties are useful. In particular, these properties
will of course not show that the basic instance is hard to approximate. However,
these properties will be crucial when proving hardness of the final instance.

Yes-Instance. Consider any feasible solution to the scheduling problem defined
above. For any interval Ix

i (a), we say the interval is used by the solution, if there
is some job which is scheduled inside this interval.

Claim 4.5. Suppose the initial 3SAT(5) formula ϕ is a Yes-Instance. For
each x ∈ X, let f(x) denote the assignment to x obtained from the satisfying
assignment to ϕ. Then, there is a way to schedule all the jobs, such that the only
intervals Ix

i (a) that are used are those for which a = f(x) (i.e., only intervals
corresponding to the satisfying assignment are used).

Proof. Consider some job j = j(Ax
i ,Ax′

i′). Let a = f(x) and a′ = f(x′). Clearly,
a and a′ are consistent. So, by the definition of j, it is impossible that a 6∈ Ax

i and

also a′ 6∈ Ax′

i′ (in such a case the job j would not have existed). Therefore, in case

a ∈ Ax
i , we can schedule j in its interval in Ix

i (a), and in case a′ ∈ Ax′

i′ , we can
schedule j in its interval in Ix

i′ (a
′).

No-Instance. Consider any feasible solution to the scheduling problem defined
above. We say that interval I(Ax

i) is used by the solution, if there is some job
scheduled inside this interval. We say that the variable x ∈ X is good, if all the
intervals I(Ax

i), 1 ≤ i ≤ k(x), are used by the solution. The next claim states that
in any solution of the No-Instance, at least half the variables are good. We note
that this is not necessarily the case in the Yes-Instance: it is possible that for
most variables x, the satisfying assignment f(x) does not belong to some of the
sets Ax

i , and thus x would not be a good variable in the solution described above.

Claim 4.6. Suppose the initial 3SAT formula ϕ is a No-Instance. Then, in
any solution of the above scheduling problem, at least half the variables are good.

Journal of the ACM, Vol. V, No. N, Month 20YY.

New Hardness Results for Congestion Minimization · 11

Proof. Assume for contradiction that there is a solution for which less than half
the variables are good. Let X ′ be the subset of variables that are not good. For each
x ∈ X ′, there is at least one interval I(Ax

i) which is not used (if there are several
such intervals, fix any of them). Denote the index of the corresponding subset of
assignments by i = i(x). Let B(x) = Ax \ Ax

i(x). Recall that |B(x)| ≤ log log n.

Intuitively, the idea of the proof is the following. Since more than half the vari-
ables are not good, we have a constant fraction of x-x-type constraints (x, x′), where
x, x′ ∈ X ′. Consider any such constraint (x, x′). Since x, x′ belong to X ′, there are
two corresponding intervals I(Ax

i(x)), I(Ax′

i(x′)) that are not used by the solution.
Since all the jobs are scheduled, this means that there is no job that corresponds to
these two intervals, and therefore the complements of their assignment sets (B(x)
and B(x′)) contain a pair of matching assignments. Furthermore, for each variable
x ∈ X ′, the size of B(x) is small. Therefore, if we randomly choose, for each x ∈ X ′,
an assignment in B(x), we will satisfy a large fraction of x-x constraints. Using
a similar reasoning, we show that we can also satisfy a large fraction of x-y type
constraints, thus contradicting Corollary 4.4.

We now provide a formal proof. Let Φ′ ⊆ Φ be the subset of x-y constraints
in which the variables from X ′ participate. As |X ′| ≥ 1

2 |X |, and each variable
participates in the same number of x-y constraints, |Φ′| ≥ 1

2 |Φ|. We show an
assignment to X ∪ Y that satisfies a large fraction of the constraints in Φ′. For
each x ∈ X ′, we randomly choose one of the assignments in B(x), uniformly and
independently.

Now, consider some y ∈ Y that participates in some constraint (x, y) ∈ Φ′ for
some x ∈ X ′. Denote x by xy (if there are several such variables x, then fix any of
them as xy.) Let a ∈ B(x) be the assignment chosen by xy. Then, the assignment
to y is πxy,y(a). For all the other variables in X∪Y , fix the assignments arbitrarily.

We now compute the expected fraction of constraints in Φ′ which are satisfied
by this assignment. Consider some constraint (x, y) ∈ Φ′. If x = xy, then clearly,
the constraint is satisfied. Otherwise, suppose that x′ = xy , where x′ 6= x, x′ ∈ X ′.

Since the intervals I(Ax
i(x)) and I(Ax′

i(x′)) are not used by the solution, and since

all the jobs are scheduled, there is no job j(Ax
i(x),Ax′

i(x′)). Therefore, there are two

assignments, a ∈ B(x) and a′ ∈ B(x′), which are consistent. If these assignments
are chosen by x and x′, the constraint (x, y) is satisfied. The probability that this
happens is at most 1

|B(x)||B(x′)| ≥ 1
(log log n)2 .

Thus, the expected fraction of satisfied constraints is at least 1
2(log log n)2 , since

|Φ′| ≥ 1
2 |Φ|. As ℓ = 3

α log log log n, we have that the fraction of satisfied constraints
is 1

2(log log n)2 > 2−αℓ, contradicting Corollary 4.4.

Construction size. We have |X | = (5n/3)ℓ, and each variable x ∈ X has at
most k subsets of assignments Ax

i . Consider some Ax
i . There are at most 15ℓ

variables x′ such that there is a constraint (x, x′) ∈ Ψ. For each such x′, for each
i′, 1 ≤ i′ ≤ k, there might be a job j(Ax

i ,Ax′

i′). Therefore, there are at most
(5n/3)ℓk215ℓ jobs.

Each job has at most 7ℓ intervals which are contained inside the same variable
interval. So the total number of job intervals is bounded by:

Journal of the ACM, Vol. V, No. N, Month 20YY.

12 · J. Chuzhoy and J. (S.) Naor

...

...

...

...

...

I(x)

Layer i

I(Ax
1) I(Ax

k(x))

Layer i − 1
j1 j2

a1 a2

I(Ax
1)

I(Ax
k′(x))

Fig. 3. Layer i construction

2 · (5n/3)ℓ15ℓ7ℓk2 ≤ nc′ log log log nk2

for some constants c′. Note that each variable interval I(x) is subdivided into at
most k215ℓ7ℓ = k2(log log n)c′′ job intervals, for some constant c′′.

4.2.2 The Final Construction. We use r = 1
log 3 · log log n copies of the basic

construction, setting the parameters of the basic instances appropriately. We refer
to the copies of the basic construction as layers. The layers are combined in the
following way.

First, for each x ∈ X , we fix some interval I(x) on the time line. All the
intervals I(x) are equal-sized and non-overlapping. Interval I(x) serves as the
variable interval representing x in each one of the r layers.

We now describe layer 1. The parameter k for layer 1 is k1 = 1, and for each
x ∈ X , k1(x) = 1 and Ax

1 = Ax.
Description of layer i: Consider some x ∈ X . Interval I(x) in layer (i − 1) is

subdivided into at most k2
i−1(log log n)c′′ job intervals. For each such job interval

I, we define a subset of assignments to x, AI(x). Interval I becomes the interval
corresponding to set AI(x) in the construction of layer i (see Figure 3). Thus,
ki(x) is exactly the number of job intervals inside I(x) in layer (i − 1), and ki =
k2

i−1(log log n)c′′ .
Given job interval I in layer (i−1), we now only need to define the corresponding

subset of assignments AI(x). Observe that I, being a job interval, is completely
contained in some layer-(i − 1) assignment interval, representing some assignment
ai−1. This assignment interval is in turn contained in some layer-(i−2) assignment
interval representing some assignment ai−2, and so on. Thus, we have a collection
of (i − 1) assignments a1, . . . , ai−1. The subset of assignments AI(x) is defined as
follows: AI(x) = Ax \ {a1, . . . , ai−1}. Note that since there are less than log log n
layers, |AI(x)| ≥ |Ax| − log log n as required.

Yes-Instance

Claim 4.7. If ϕ is a Yes-Instance, then it is possible to schedule all the jobs
on one machine.

Proof. In each layer, we use the solution defined in the previous section, i.e.,

Journal of the ACM, Vol. V, No. N, Month 20YY.

New Hardness Results for Congestion Minimization · 13

for each variable x, we only use intervals corresponding to the satisfying assignment
f(x).

Observe that the construction is defined in such a way, that if some interval in
layer i representing some assignment a ∈ Ax overlaps with some interval in layer i′

representing some assignment a′ ∈ Ax, and i 6= i′, then a 6= a′. (This follows from
the definition of AI(x).) Therefore, in our schedule, all the jobs are scheduled on
non-overlapping intervals.

No-Instance. We show that if ϕ is a No-Instance, then any solution uses at
least 1

2 log 3 log log n machines. We start with the following claim.

Claim 4.8. Consider a feasible solution to the scheduling problem. Let x ∈ X,
and suppose x is a good variable in q layers. Then the schedule uses at least q
machines for the jobs that are scheduled inside the time interval I(x).

Recall that if ϕ is a No-Instance, then at least half the variables are good in
each layer. Therefore, there is at least one variable x which is good in at least half
the layers. Combining this with Claim 4.8, we have the following corollary:

Corollary 4.9. If φ is a No-Instance, then any solution to the scheduling
problem uses at least 1

2 log 3 · log log n machines.

Proof of Claim 4.8. We denote the layers in which variable x is good by i1 <
i2 < · · · < iq. Recall that if x is good in some layer h, then we use all the intervals
I(Ax

i), 1 ≤ i ≤ kh(x).
Since x is good in layer i1, there is at least one layer-i1 job j scheduled in I(x).

Consider the interval I1 on which it is scheduled. By the construction, there is
at least one interval I(Ax

i) in layer i2 that is completely contained in the interval
I1. Since variable x is good in layer i2, the interval I(Ax

i) is used by the solution,
and there is at least one layer i2 job scheduled in it. Denote the corresponding job
interval I2. Continuing in the same fashion, we obtain a sequence of q intervals
Iq ⊆ · · · ⊆ I2 ⊆ I1, where for each a : 1 ≤ a ≤ q, Ia is a job interval in layer ia, and
there is a job scheduled in it.

Thus, we have a nested set of q job intervals, and therefore at least q machines
are needed for scheduling them.

The Construction Size. The size of the construction is dominated by the size
of the last layer, which is bounded by:

nc′ log log log n(log log n)c′′k2
r .

Recall that the recursive formula for k is: k1 = 1; ki = k2
i−1(log log n)c′′ . Clearly,

ki ≤ (log log n)c′′3i

.
In total, the size of the construction is at most:

N = nc′ log log log n(log log n)c′′(log log n)c′′3r

≤ nc′ log log log n · 2O(log n log log log n)

= nO(log log log n)

Journal of the ACM, Vol. V, No. N, Month 20YY.

14 · J. Chuzhoy and J. (S.) Naor

since r = 1
log 3 log log n. Clearly, r = Θ(log log N). We have thus proved the

following theorem.

Theorem 4.10. Let N denote the size of the discrete machine scheduling prob-
lem. Then there is no c log log N–approximation algorithm for machine scheduling,
for some constant c, unless NP ⊆ DTIME(nO(log log log n)).

Combining Theorem 4.10 together with Theorem 3.1, we have the following corol-
lary:

Corollary 4.11. Let N denote the size of the directed congestion minimization
problem. Then there is no c log log N–approximation algorithm for directed conges-
tion minimization, for some constant c, unless NP ⊆ DTIME(nO(log log log n)).

ACKNOWLEDGMENTS

We would like to thank Sudipto Guha and Sanjeev Khanna for many fruitful dis-
cussions and helpful suggestions.

REFERENCES

Andrews, M., Chuzhoy, J., Khanna, S., and Zhang, L. 2005. Hardness of the undirected edge-
disjoint paths problem with congestion. In Proceedings of the 46th Annual IEEE Symposium

on Foundations of Computer Science. 226–244.

Andrews, M. and Zhang, L. 2005a. Hardness of the edge-disjoint paths problem with congestion.

Andrews, M. and Zhang, L. 2005b. Hardness of the undirected congestion minimization. In
Proceedings of the 37th ACM Symposium on Theory of Computing. ACM, 284–293.

Andrews, M. and Zhang, L. 2005c. Hardness of the undirected edge-disjoint paths problem. In
Proceedings of the 37th ACM Symposium on Theory of Computing. ACM, 278–283.

Andrews, M. and Zhang, L. 2006. Logarithmic hardness of the directed congestion minimization
problem. In Proceedings of the 38th ACM Symposium on Theory of Computing. ACM, 517–526.

Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1998. Proof verification and
the hardness of approximation problems. Journal of the ACM 45, 3, 501–555.

Arora, S. and Safra, S. 1998. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM 45, 1, 70–122.

Azar, Y. and Regev, O. 2001. Strongly polynomial algorithms for the unsplittable flow problem.
In Proceedings of the 8th Conference on Integer Programming and Combinatorial Optimization.
15–29.

Bar-Noy, A., Bar-Yehuda, R., Freund, A., Naor, J., and Schieber, B. 2001. A unified
approach to approximating resource allocation and scheduling. JACM 48, 5, 1069–1090.

Bar-Noy, A., Guha, S., Naor, J., and Schieber, B. 2001. Approximating the throughput of
multiple machines under real-time scheduling. SIAM Journal on Computing 31, 331–352.

Baveja, A. and Srinivasan, A. 2000. Approximation algorithms for disjoint paths and related

routing and packing problems. Mathematics of Operations Research 25, 255–280.

Berman, P. and DasGupta, B. 2000. Multi-phase algorithms for throughput maximization for
real-time scheduling. Journal of Combinatorial Optimization 4, 3 (Sept.), 307–323.

Chekuri, C. and Khanna, S. 2003. Edge disjoint paths revisited. In Proceedings of the 14th

ACM-SIAM Symposium on Discrete Algorithms. 628–637.

Chekuri, C., Khanna, S., and Shepherd, F. B. 2004. Edge disjoint paths in planar graphs. In
Proceedings of the 45th IEEE Annual Symposium on Foundations of Computer Science. 71–80.

Chekuri, C., Khanna, S., and Shepherd, F. B. 2005. Multicommodity flow, well-linked ter-
minals, and routing problems. In Proceedings of the 37th ACM Symposium on Theory of

Computing. 183–192.

Journal of the ACM, Vol. V, No. N, Month 20YY.

New Hardness Results for Congestion Minimization · 15

Chekuri, C., Khanna, S., and Shepherd, F. B. 2006a. Edge-disjoint paths in planar graphs with

constant congestion. In Proceedings of the 38th ACM Symposium on Theory of Computing.
757–766.

Chekuri, C., Khanna, S., and Shepherd, F. B. 2006b. An o(
√

n)-approximation for edp in
undirected graphs and directed acyclic graphs. Theory of Computing 2, 137–146.

Chuzhoy, J., Guha, S., Khanna, S., , and Naor, J. 2004. Machine minimization for scheduling
jobs with interval constraints. In Proc. of the 45th Annual IEEE Symposium on Foundations

of Computer Science. 81–90.

Chuzhoy, J. and Khanna, S. 2005. New hardness results for undirected edge disjoint paths.
Manuscript.

Chuzhoy, J. and Khanna, S. 2006. Congestion minimization in directed graphs. Manuscript.

Chuzhoy, J., Ostrovsky, R., and Rabani, Y. 2001. Approximation algorithms for the job inter-
val selection problem and related scheduling problems. In Proc. of the 42nd IEEE Symposium

on Foundations of Computer Science. 348–356.

Dinur, I., Guruswami, V., and Khot, S. 2002. Vertex cover on k-uniform hypergraphs is hard
to approximate within factor (k − 3 − ǫ). Tech. Rep. TR02-027.

Dinur, I., Guruswami, V., Khot, S., and Regev, O. 2003. A new multilayered PCP and the
hardness of hypergraph vertex cover. In Proceedings of the 35th ACM Symposium on Theory

of Computing. 595–601.

Erlebach, T. and Spieksma, F. C. R. 2003. Interval selection: Applications, algorithms, and
lower bounds. J. Algorithms 46, 1, 27 – 53.

Garey, M. R. and Johnson, D. S. 1979. Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman.

Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., and Yannakakis, M. 2003. Near-
optimal hardness results and approximation algorithms for edge-disjoint paths and related
problems. Journal of Computer and System Sciences 67, 3, 473–496.

Guruswami, V. and Talwar, K. 2005.

Kleinberg, J. M. 1996. Approximation algorithms for disjoint paths problems. Ph.D. thesis,
MIT, Cambridge, MA.

Kolliopoulos, S. G. and Stein, C. 1998. Approximating disjoint-path problems using greedy
algorithms and packing integer programs. In Proceedings of the 6th Conference on Integer

Programming and Combinatorial Optimization. ACM, 153 – 168.

Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., and Shmoys, D. B. 1993. Sequencing and
scheduling: Algorithms and complexity. In Handbooks in Operations Research and Management

Science, Vol.4: Logistics for Production and Inventory. North Holland, 445–522.

Raghavan, P. and Thompson, C. D. 1987. Randomized rounding: A technique for provably
good algorithms and algorithmic proofs. Combinatorica 7, 365–374.

Raz, R. 1998. A parallel repetition theorem. SIAM J. Comput. 27, 3, 763–803.

Srinivasan, A. 1997. Improved approximations for edge-disjoint paths, unsplittable flow, and
related routing problems. In Proceedings of the 38th Annual Symposium on Foundations of

Computer Science. 416–425.

Varadarajan, K. and Venkataraman, G. 2004. Graph decomposition and a greedy algorithm
for edge-disjoint paths. In Proceedings of the 15th ACM-SIAM Symposium on Discrete Algo-

rithms. 379–380.

Received Month Year; revised Month Year; accepted Month Year

Journal of the ACM, Vol. V, No. N, Month 20YY.

