New Hardness Results for Congestion Minimization and
Machine Scheduling

Julia Chuzhoy *

ABSTRACT

We study the approximability of two natural NP-hard prob-
lems. The first problem is congestion minimization in di-
rected networks. We are given a directed capacitated graph
and a set of source-sink pairs. The goal is to route all pairs
with minimum congestion on the network edges. A special
well-studied case of this problem is the edge-disjoint paths
problem where all edges have unit capacities. The second
problem is discrete machine scheduling problem where we
are given a set of jobs, and for each job, a list of inter-
vals in which it can be scheduled. The goal is to find the
smallest number of machines on which all jobs can be sched-
uled such that no two jobs overlap in their execution on any
machine. Both problems are known to be O(log n/ log log n)-

approximable via the randomized rounding technique of Ragha-

van and Thompson. However, until recently, only a Max
SNP hardness was known for each problem. We make some
progress in closing this gap by showing that both problem

are Q(log log n)-hard to approximate unless NP C DTII\/IE(nO(

Our hardness for the congestion minimization holds for the
special case of edge-disjoint paths itself.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2.1 [Dis-
crete Mathematics]: Combinatorics.

General Terms
Algorithms, Theory.

*Computer Science Dept., Technion, Haifa 32000, Israel. E-
mail: cjulia@cs.technion.ac.il.

'Computer Science Dept., Technion, Haifa 32000, Israel. E-
mail: naor@cs.technion.ac.il. Research supported in part
by the United States-Israel Binational Science Foundation
Grant No. 2002-276 and by EU contract 1ST-1999-14084
(APPOL II).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STOC ' 04, June 13-15, 2004, Chicago, lllinois, USA.

Copyright 2004 ACM 1-58113-852-0/04/0006 ...$5.00.

Joseph (Seffi) Naor

Keywords

Approximation Algorithms, Machine Scheduling, Conges-
tion Minimization, Hardness of Approximation.

1. INTRODUCTION

This paper considers hardness of approximation for con-
gestion minimization and machine scheduling problems. In
the congestion minimization problem, we are given a graph
with edge capacities and a collection of source-sink pairs.
The goal is to find the smallest factor a such that each input
pair can be connected by a simple path without exceeding
the edge capacities by more than a factor of @. The special
case where all edge capacities are unit is known as the edge
disjoint paths (EDP) problem. The congestion minimiza-
tion problem can be relaxed by formulating it in a natural
way as a multicommodity flow linear program. A classical

loglorelsult) of Raghavan and Thompson [19] shows that a ran-

o8 7
omized rounding of the multicommodity flow relaxation

yields that a = O(logn/loglogn) on both undirected and
directed graphs, where n denotes the number of vertices in
the graph.

A closely related problem is the throughput maximization
version of EDP, where the objective is to connect a maxi-
mum number of source-sink pairs via edge-disjoint paths.
This is a fundamental problem, extensively studied, and the
best known approximation factors are O(min{n?/® \/m})
for undirected graphs and O(min{n*/®, \/m}) for directed
graphs [6]. As for hardness of approximation, in directed
graphs, an Q(n1/2_€:)-hardness is known for any € > 0 [13,
6], and for undirected graphs, only a Max SNP-hardness
result is known.

In the discrete machine scheduling problem, we are given
a set of n jobs and for each job an ezplicitly specified set
of time intervals. A job is scheduled by choosing one of
its associated time intervals. The task is to schedule all the
jobs using a minimum number of machines, such that no two
jobs assigned to a machine overlap in time. Alternatively,
the input to the machine scheduling problem can be given by
defining for each job 7, a processing time p;, and an allowed
window of time W;. Job j can be scheduled in any time
interval of length p; which is entirely contained in W;. We
refer to the latter type of input as continuous, in contrast to
discrete input (previously defined), where the allowed set of
time intervals is given explicitly.

A related problem is the real time scheduling problem or
the throughput maximization problem, where the number of
machines is fixed and the goal is to find a maximum revenue

subset of jobs that can be scheduled on the given set of
machines. Several constant factor approximation algorithms
for this problem were given recently [4, 11, 3, 5, 8. We
note that this problem is NP-hard in the strong sense for
a single machine (even for continuous input) and in fact it
is one of the original problems in Garey and Johnson [12].
In the notation convention of [18], the continuous version is
denoted by 1[r;| >, U,. For discrete input the problem on
a single machine is also known as the job interval selection
problem (JISP). Spieksma [11] showed that it is Max SNP
hard to approximate, thus resolving the approximability of
the discrete version to within constant factors.

1.1 Our Results

We prove hardness of approximation for congestion min-
imization in directed networks and for the machine mini-
mization problem with discrete input. For both problems,
we show that there is no clog log n-approximation algorithm
for some constant c, unless NP C D—I'II\/IE(nO(1°g1°g1°g “)).
Our hardness result for congestion minimization holds even
for the special case of edge disjoint paths (i.e., unit capaci-
ties). Similarly, the hardness of discrete machine scheduling
holds for the special case when the optimal algorithm can
schedule all jobs on a single machine.

Very recently, Chuzhoy et al. [7] obtained a a v/logn ap-
proximation factor for machine scheduling with continuous
input. They also showed a constant approximation for the
special case where an optimal solution uses a constant num-
ber of machines. The hardness of machine scheduling with
discrete input should be contrasted with this result. Inter-
estingly, for the throughput maximization version, a separa-
tion between the approximability of continuous and discrete
inputs is not known.

Our hardness proof is inspired and motivated by the hard-
ness results for hypergraph covering which recently appeared
in [9, 10]. The starting point of our reductions is the Raz
verifier for 3SAT(5). Given a 3SAT(5) formula ¢ on n vari-
ables, we construct a discrete machine scheduling instance
where the size of the construction is N = n@Ucgloglosn) ¢
 1s satisfiable, then all the jobs can be scheduled on a single
machine. If no assignment can satisfy more than a fraction
(1—¢) of the clauses in ¢, then we need at least Q(loglog N)
machines to schedule all the jobs. The reduction to the ma-
chine scheduling problem is performed in two stages. First,
given the input formula ¢, we construct a “basic instance”
of discrete machine scheduling. The construction of the ba-
sic instance uses ideas from [9, 10]. In the second stage, we
combine O(loglog n) layers of the basic instance in a special
way to obtain the final construction. We then show that
the hard instances for discrete machine scheduling that we
construct have a special structure that allows us to reduce
the problem to directed congestion minimization.

Our results give the first non-trivial inapproximability
bounds for the well-studied classical problem of congestion
minimization. We note that until recently, it has been a
common belief that so-called natural NP-hard optimization
problems fall within only very few approximability classes.
For example, for minimization problems, they either have a
constant approximation factor, or a logarithmic factor, or
higher approximation factors. This assumption was sup-
ported to some extent by previous work on constraint sat-
isfaction problems [15, 16, 17]. It turns out that this is
an overly simplistic view of the terrain of approximation

algorithms. Our results demonstrate two natural problems

whose approximability threshold is sandwiched between ©(log log n)

and ©(logn/loglogn).

2. PRELIMINARIES

The input to the congestion minimization problem, is a
graph, either directed or undirected, with edge capacities
and a collection of source-sink pairs. The goal is to find the
smallest factor o such that each input pair can be connected
by a simple path without exceeding the edge capacities by
more than a factor of a.

The input for the discrete machine scheduling problem is
a set of n jobs, where for each job an explicitly specified set
of time intervals is given. The time intervals are also called
job intervals. A job is scheduled by choosing one of the
time intervals it is associated with. The task is to schedule
all the jobs using a minimum number of machines, such
that no two jobs assigned to a machine overlap in time. In
the restricted discrete machine scheduling the time intervals
associated with each job are disjoint.

We show that the restricted machine scheduling is Q(log log n)-

hard to approximate unless NP C DTII\/IE(nO(l"gh’gl"g ")).
Clearly, the restricted machine scheduling is a special case of
the general discrete machine scheduling problem. Later on
we also show that the restricted discrete machine schedul-
ing problem is a special case of the congestion minimiza-
tion problem. Thus the hardness result holds for both these
problems.

The hardness of the restricted discrete machine scheduling
involves a reduction from the gap version of Exact MAX

3SAT(5).

DEFINITION 1. Ezact MAX 3SAT(5) problem is defined
as follows. The input is a CNF formula with n variables
and 5n/3 clauses. FEach clause contains exactly 3 literals,
and each variable appears in exactly 5 different clauses. The
goal is to find an assignment which maximizes the number
of satisfied clauses.

The following well known theorem was proved by [1].

THEOREM 1. There is some constant € > 0, such that it
is NP-hard to distinguish between a satisfiable 3SAT(5) for-
mula, and a formula where no assignment can satisfy more
than a fraction (1 — €) of the clauses.

DEFINITION 2. A 8SAT(5) formula ¢ is called a yes-instance

if it is satisfiable. It is called a no-instance if no assignment
satisfies more than a fraction (1 — €) of the clauses.

In our reduction, we start from a 3SAT(5) formula ¢ on
n variables and produce an instance of restricted machine
scheduling problem with at most nOUegloglogn) johe If ¢ is
a yes-instance, then all the jobs can be scheduled on one ma-
chine. If ¢ is a no-instance, then at least cloglog n machines
are needed. The hardness result therefore follows from the
reduction and Theorem 1.

Our reduction uses a Raz verifier with I = ©(loglog log n)
repetitions, which is described next.

2.1 Raz Verifier
A Raz verifier for MAX 3SAT(5) with [repetitions re-

ceives as input a 3SAT(5) formula ¢, performs some inter-
action with two provers, at the end of which it either accepts
or rejects. The actions of the verifier are as follows:

e Choose, uniformly and independently, a random se-
quence of I clauses C1, ..., C; from the formula ¢ and
send the indices of these clauses to prover 1.

e In each clause C;, 1 <1 <, choose a random variable
z; € C;, which is called a distinguished variable, and
send the indices of these variables to prover 2.

e Receive the answers of the provers to the queries. Prover
1 is expected to send an assignment to the variables
that appear in the clauses Ci,...,C;. Prover 2 is ex-
pected to send an assignment to the variables z1, ..., z;.

e Check that for each clause C;, 1 <1 < I, the assign-
ment sent by prover 1 satisfies the clause. If this is not
true, reject.

o Check that for each i, 1 <1 < I, the assignments of
prover 1 and prover 2 to z; are identical, and accept
or reject accordingly.

The following well known theorem follows from [2, 1, 20].

THEOREM 2. There is a universal constant o > 0, such
that:

o [If v is a yes-instance, then there is a strategy of the
provers that makes the verifier accept always.

o [fy is a no-instance, then no matter what the strategy
of the provers is, the verifier accepts with probability
S 2—al‘

We view the Raz verifier with [repetitions as the follow-
ing constraint satisfaction problem. We have a set X of
variables, containing one variable z for each possible query
to prover 1 (i.e., for each possible sequence of ! clauses). The
range of variable z is denoted by .A,, and it consists of all
the possible answers of prover 1 to the query correspond-
ing to z, that satisfy all the clauses in the query. Clearly,
|A;| = 7%, and | X| = (5n/3)". Similarly, we also have a set
Y of variables, that contains one variable y for each pos-
sible query to prover 2 (i.e., for each possible sequence of
I variables of formula ¢). The range of variable y, which
is denoted by Ay, is the set of all the possible answers of
prover 2 to the query. Thus, |A,| = 2', and |Y| = n'.

We denote the set of constraints by ®. For each random
string r of the verifier, there is a constraint (z,y) € ®, where
x € X is the query sent to prover 1 and y € Y is the query
sent to prover 2, if the verifier chooses random string r.
Constraint (z,y) is satisfied, if and only if the assignments
to z and y are consistent, i.e., the assignment to y and the
projection of the assignment to z onto the distinguished vari-
ables are identical. Note that for each possible assignment
to z, there is exactly one assignment to y that satisfies the
constraint (z,y). Therefore, each constraint (z,y) defines a
function 75,y : Az = Ay.

The next corollary is an easy consequence of Theorem 2.

COROLLARY 3. If ¢ is a yes-instance, then there is an
assignment to X UY, such that all the constraints in ® are
satisfied. If ¢ is a no-instance, then no assignment satisfies
more than a fraction 27" of the constraints.

We call the constraints in ® “type z-y constraints”. Fol-
lowing [9, 10], we define another set ¥ of constraints, called

“type z-z constraints”. Consider some z1,z2 € X. There is
a constraint (z1,z2) € U if and only if there is some y € Y,
such that (z1,y) € ® and (z2,y) € ®. Let ay € A;, and
az € Az, be assignments to z; and z» respectively. Then,
the constraint (zi,z2) is satisfied if and only if for every
y € Y, such that (z1,y) € ® and (z2,y) € @, a; and a3
imply the same assignment to y, i.e., g, y(a1) = 7z, y(az).
In this case we say that a; and az are consistent.

Note that each z € X participates in exactly 3' constraints
in ®, and each y € Y participates in exactly 5' constraints
in ®. Therefore, for each z € X, there are at most 15
constraints in ¥ in which z participates.

3. MACHINE SCHEDULING HARDNESS

In this section we show that a cloglog n—approximation
algorithm for restricted machine scheduling, for some con-

stant c, does not exist unless NP C DTIME (no(1°g log log ")).

In particular, we show that it is impossible to distinguish in
polynomial time, between the instances in which all the jobs
can be scheduled on one machine, and the instances in which
at least cloglog n machines are needed.

3.1 The Basic Instance

In this section we construct an instance of the restricted
discrete machine scheduling problem which is called “the
basic instance”, and discuss its properties. In our reduction,
we are going to construct a number of such basic instances,
and combine them together in a special way to obtain the
final scheduling problem.

A basic instance is determined by the input 3SAT(5) for-
mula ¢, and by the following parameters:

e Integer k.

e For each z € X, a collection of k(z) < k subsets
of assignments, A7, A7, ... ,Ai(m) C A,. For each 1,
|A7[> |Az| — loglog n.

The parameter ! (number of repetitions in the Raz veri-
fier) is always the same, [= %log loglog n. We note that
in our final construction where we combine several basic in-
stances, the integer k and the sets A7, A5, ... ,Ai(x) will be
determined separately for each of the basic instances.

We now define the scheduling instance. Denote the set
of jobs by J. For each job 5 € J, denote by I(j) its set
of job intervals, i.e., the time intervals in which it can be
scheduled.

First, we define a collection of “virtual” intervals on the
time line, which are not part of the problem input, but which
will be useful later when we define the jobs and their inter-
vals.

e For each variable z € X, there is an interval represent-
ing z and denoted by I(z). This interval is called a
variable interval. All variable intervals are equal-sized
and non-overlapping.

o The variable interval I(z) is further subdivided into
k(z) non-overlapping equal sized intervals representing
the input subsets of assignments A¥, 1 < i < k(z). An
interval corresponding to A7 is denoted by I(AY)

o Finally, each interval /(A7) is divided into |A¥| equal-
sized non-overlapping intervals. Fach such interval

1(X)

I(A%) IA%)

al a2

Assignments
in AY

@

X
A TR EE

JobsinJ

j1canbe
scheduled
here

Figure 1: The “virtual” intervals and the jobs

represents an assignment a € A7. We denote this
interval by I7(a). Note that the assignment a may
appear in several subsets of assignments and thus will
have several intervals.

We proceed to define the set of jobs J and the job in-
tervals. Job intervals will be given implicitly, by defining,
for each assignment interval I7(a), the jobs belonging to it,
as follows. Suppose that for each interval I7(a), there is
a subset of jobs J' C J, belonging to it. Then, the “vir-
tual” interval I7(a) is further divided into |.J'| equal-sized
non-overlapping subintervals, where each subinterval corre-
sponds to exactly one job 7 € J', and j can be scheduled in
this subinterval. Thus, given a job j, for each interval I7(a)
to which j is assigned, there is some subinterval of I7(a) in
1),

We are now ready to define the set of jobs J and the
job intervals. Consider variables z, 2’ € X, such that there
is a constraint (r,z') € ¥. Consider some A7 and Af,l,
1 <i<k(x),1 <4 <k(z'). Thereis a job j = j(A?, A%),
if and only if there is no pair of consistent assignments a; €
A\ A? as € A, \ A% . 1f job j = j(A?, A%) exists, then it
belongs to all the intervals I (a) and Iﬁl(a')7 for all a € A7,
a € .Af,l.

I(AY)

al az a3

Job j can be
scheduled on
any of these
intervals

s & 4 T

Figure 2: The intervals in /()

Observe that for each job j, the intervals in /(j) are non-
overlapping.

Yes Instances

Consider any feasible solution to the scheduling problem de-
fined above. For any interval I(a), we say the interval is
used by the solution, if there is some job which is scheduled
inside this interval. Note that in the solution the jobs are
scheduled in non-overlapping intervals, therefore it is always
possible to schedule all the jobs on a single machine.

CLAM 4. Suppose the initial 3SAT(5) formula ¢ is a yes-
instance, and let f(x), for allz € X, denote the assignment
to x obtained from the salisfying assignment to ¢. Then
there s a schedule of all the jobs, that uses only such in-
tervals I (a), for which a = f(z) (i.e., only intervals corre-
sponding to the satisfying assignment).

Proor. Consider some job j = j(.Af”,.Af,’). Let a = f(z)
and a’ = f(z'). Clearly, a and a' are consistent. So by the
definition of j, it is impossible that a € A? and also o’ & .Af,l
(in such a case the job 7 would not have existed). Therefore,

in case a € A7, we can schedule j in its interval in I (a),

I
T

and in case a' € A%, we can schedule j in its interval in

Ii(a). O

No Instances

Consider any feasible solution to the scheduling problem de-
fined above. We say that interval (A7) is used by the so-
lution, if there is some job scheduled inside this interval.
We say the variable interval I(z) is good, if all the intervals
I(A?), 1 <1< k(z), are used by the solution.

CrLAM 5. Suppose the initial 3SAT formula ¢ is a no-
instance. Then, in any solution of the above scheduling prob-
lem, at least half the variables are good.

Note that in a yes-instance this is not necessarily the case.
It is possible that for most of the variables z, the satisfying

assignment f(zr) does not belong to some of the Af, and
thus z would not be good in the solution described above.

PROOF OF CLATM 5. Let X' be the subset of variables
that are not good, and let ® C ® be the subset of z-y
constraints in which the variables from X' participate. As
| X' > %|X|, and each variable participates in the same
number of z-y constraints, [¢'| > 1|®|. We show an assign-
ment to X UY that satisfies a large fraction of the constraints

. 1
in ¢

For each z € X', there is at least one interval I(.A?) which
is not used (if there are several such intervals, fix any of
them). Denote the index of the corresponding subset of
assignments by ¢ = i(z). Let B(z) = A, \Af(x). Recall that
|B(z)| <loglogn. Foreach z € X', we randomly choose one
of the assignments in B(z), uniformly and independently.

Now, consider some y € Y that participates with x €
X' in a constraint in ®', and denote z by z,. (If there
are several such variables z, then fix any of them as z,.)
Let a € B(z) be the assignment chosen by z,. Then, the
assignment to y is 7z, y(a).

For all the other variables in X UY, fix the assignments
arbitrarily.

We now compute the expected fraction of constraints in
®' which are satisfied by this assignment. Consider some
constraint (z,y) € ®'. If # = z,, then clearly, the con-
straint is satisfied. Otherwise, suppose that s’ = x,. Since
the intervals I(Af,)) and I(.Af(lx,)) are not used by the
solution, and since all the jobs are scheduled, there is no
job j(Af(z),Af(lxl)). Therefore, there are two assignments,
a € B(z) and o' € B(z'), which are consistent. If these
assignments are chosen by z and z’', the constraint (z,y) is
satisfied. The probability that this happens is > m.

Thus, the expected fraction of satisfied constraints is at
least m, since |®'] > 1|®|. Since I = 2logloglogn,
m > 27 contradicting Corollary 3. [

Size of the Construction

We have | X| = (5n/3)", and each variable # € X has at most
k subsets of assignments .A¥. Consider some A¥. There
are at most 15" variables ' such that there is a constraint
(z,3') € U. For each such ', for each i, 1 < i’ <k, there

might be a job j(.Af,.Af/). Therefore, there are at most
(5n/3)'k?*15' jobs.

Each job has at most 7' intervals which are contained
inside the same variable interval. So the total number of job
intervals is bounded by:

(57’2/3)l15l7lk2 S nc’ log log log n(log log n)c”k2

for some constants c¢’, c”. Note that each variable interval
\ 1
I(x) is subdivided into at most k*(loglogn)® job intervals.

3.2 The Overall Construction

We use r = ﬁ -loglog n copies of the basic construction,
setting the parameters of the basic instances appropriately.
We refer to the copies of the basic construction as layers.
The layers are combined in a special way.

First, for each z € X, we fix some interval I(z) on the
time line. All the intervals /(z) are equal-sized and non-
overlapping. Interval I(z) serves as the variable interval
representing z in each one of the r layers.

We now describe layer 1. The parameter k for layer 1 is
ki1 =1, and for each z € X, ki1(z) =1 and A7 = A,.

Description of layer i: Consider some z € X. Interval I(z)
in layer (i — 1) is subdivided into at most k7_;(loglog n)C”
job intervals. For each such job interval I, we define a subset
of assignments to z, Ar(z). Interval I becomes the interval
corresponding to Az(z) in the construction of layer i. Thus,
ki(z) is exactly the number of job intervals inside I(z) in

layer (i — 1), and k; = k7, (log log n)C”.

1(x)

IAY) AL
layer i—1 _a a2
i1 j2
EN)
layer i ! I(A—VX
X .
I(AY) K ()

Figure 3: Layer i construction

Given job interval [in layer (z — 1), we only need now to
define the corresponding subset of assignments A7(z). Ob-
serve that I, being a job interval, is completely contained in
some layer-(i— 1) assignment interval, representing some as-
signment a;_1. This assignment interval is in turn contained
in some layer-(i — 2) assignment interval representing some
assignment a;_s, and so on. Thus, we have a collection of
(i — 1) assignments ai,...,a;—1. The subset of assignments
Ar(z) is defined as follows: Aj(z) = Az \ {a1,...,ai—1}.
Note that since there are less than log log n layers, |A7(z)| >
| Az| —loglog n as required.

Yes Instances

CrLAa 6. If ¢ is a yes-instance, then it is possible to
schedule all the jobs on one machine.

PrOOF. In each layer, we use the solution defined in the
previous section, i.e., for each variable z, we only use inter-
vals corresponding to the satisfying assignment f(z).

Observe that the construction is defined in such a way,
that if some interval in layer : representing some assignment
a € A, overlaps with some interval in layer j represent-
ing some assignment a' € A,, and 1 # j, then a # d’.
(This follows from the definition of Az(z).) Therefore, in
our schedule, all the jobs are scheduled in non-overlapping
intervals. [

No Instances

We show that if ¢ is a no-instance, then any solution uses at

least 2101g3 log log n machines. We start with the following

claim.

CrAamM 7. Consider a feasible solution to the scheduling
problem. Let x € X, and suppose x is a good variable in q
layers. Then the schedule uses at least q machines for the
jobs that are scheduled inside the time interval I(z).

Recall that if ¢ is a no-instance, then at least half the
variables are good in each layer. Therefore, there is at least
one variable z which is good in at least half the layers. Thus,
the schedule uses at least @ - log log n machines.

Proor oF CramM 7. We denote the layers in which z is
good by 11 <12 < - < 14. Recall that if = is good in some
layer j, then we use all the intervals I(A?), 1 <1 < k;(=z).

Since z is good in layer 11, there is at least one layer 1 job
j scheduled in I(z). Consider the interval I; on which it is

scheduled. By the construction, there is at least one interval
I(A?) in layer 1> that is completely contained in the interval
I,. Since variable z is good in layer iz, the interval I(A7)
is used by the solution, and there is at least one layer 72 job
scheduled in it. Denote the corresponding job interval 5.
Continuing in the same fashion, we obtain a sequence of ¢
intervals I, C --- C I C I, where foreacha:1 < a <g,
I, is a job interval in layer 1,, and there is a job scheduled
in it.

Thus, we have a nested set of ¢ job intervals, and therefore
at least ¢ machines are needed for scheduling them. [

The Construction Size

The size of the construction is dominated by the size of the
last layer, which is bounded by:

"loglog1l 2
n® °8 88 (loglogn) k,

The recursive formula for k is: k1 = 1; k; = k7_; (log log n)cu.

Clearly, k; < (loglog n:)cusi.
In total, the size of the construction is at most:

N = e losloglogn (loglog n)cu (loglog n)cusr

< nc’ logloglogn 20(10g nlogloglog n)

— nO(log log log n)

since r = ~-loglogn. Clearly, r = O(loglog N). We
have thus proved the following theorem.

THEOREM 8. There is no cloglog n—approzimation algo-
rithm for machine scheduling, for some constant c, unless

NP C DTIME(nCUcgloglog n)y

4. HARDNESSOFDIRECTED CONGESTION

MINIMIZATION

In this section we show that congestion minimization for
the directed edge-disjoint paths is Q(loglog n)-hard to ap-
proximate, unless NP C DTII\/IE(nO(bg1°’51°g ”)). The hard-
ness result follows from the result for machine scheduling,
and a simple reduction from the restricted machine schedul-
ing.

THEOREM 9. Suppose we are given an instance of restricted

machine scheduling. Then there is an instance of congestion
minimization, which can be constructed in polynomial time,
where the minimum congestion equals the minimum number
of machines needed to schedule all the jobs.

Observe that in our hardness result for machine schedul-
ing, the intervals belonging to each job are mutually disjoint
(in fact, all the job intervals from the same layer are mutu-
ally disjoint). Therefore, the next corollary follows from
Theorem 8 and Theorem 9.

COROLLARY 10. There is no cloglog n—approzximation al-
gorithm for congestion minimization in directed networks,
for some constant c, unless NP C D—I'II\/IE(nO(bg1°gl°g "))‘

PrROOF OF THEOREM 9. Suppose we are given an instance
of machine scheduling where for each job all its intervals are

mutually disjoint. Let DD be the set of all the points on the
time line where some job interval starts or finishes. Denote
these points by di < d» < --- < dn. The corresponding
congestion minimization problem is defined as follows. For
each job 3 € J, there is a source s; and a destination ¢;.
The vertex set V is defined as follows:

V=DuU{s;,t;|j€J}

There are two sets of edges. The first set is By = {(di, di+1) |
1 < i < N}. In order to define the second set of edges,
FE>, consider some job 5 € J and one of its time intervals
I €1(j). Let I(J) : 1 < I(I) < N denote the index of the
left endpoint of I, and let r(I) : 1 < r(I) < N denote the
index of the right endpoint of I. Then there is a pair of
edges (s;,di(n)), (drp), tj) in E2. More formally,

B> = {(sj,dun)), (drry, t5) 1 7 € J, 1 € 1(5)}

The set of edges in our congestion minimization problem
is B = FE; UFE», and all the edges have unit capacity.

For each job interval I, let P(I) denote the path (dy(;) =
dl(])+1 — s> dr(])).

We can assume w.l.o.g., that in any solution for the con-
gestion minimization problem, each commodity j is routed
via a path of the form (s; — P(I) — t;). This is because
after leaving s;, the path must continue to some d;y) for
some I € I(j). After that, it is impossible that the path
leaves P(I) before arriving at d,(;), since the only way to
do so is via some t;/, ' # j. But as no edges are leaving t;/,
it is impossible for the path to arrive at t;. Therefore, the
path must be of the form (s; — P(I) — --- — t;). If the
path does not go directly to ¢; after leaving P(I), we can
reroute it, so the path becomes (s; — P(I) — t;). This can
only decrease the congestion.

Thus, for each commodity 7, each path (s; = P(I) — t;)
via which commodity j can be routed translates to a job
interval I € I(j) where job j can be scheduled and vice
versa. It is therefore easy to see that the minimum number of
machines needed to schedule all the jobs equals the minimum
congestion needed to route all the commodities. [

Acknowledgements

We would like to thank Sudipto Guha and Sanjeev Khanna
for many fruitfull discussions and helpful suggestions.

5. REFERENCES

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and
M. Szegedy. Proof verification and the hardness of
approximation problems. Journal of the ACM,
45(3):501-555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs:
A new characterization of NP. Journal of the ACM,
45(1):70-122, 1998.

[3] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and
B. Schieber. A unified approach to approximating
resource allocation and scheduling. Journal of the
ACM, 48(5):1069-1090, 2001.

[4] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber.
Approximating the throughput of multiple machines
under real-time scheduling. STAM Journal on
Computing, 31:331-352, (2001).

(5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

P. Berman and B. DasGupta. Multi-phase algorithms
for throughput maximization for real-time scheduling.
Journal of Combinatorial Optimization, 4(3):307-323,
2000.

C. Chekuri and S. Khanna. Edge disjoint paths
revisited. In Proceedings of the 14th ACM-SIAM
Symposium on Discrete Algorithms, pages 628-637,
2003.

J. Chuzhoy, S. Guha, S. Khanna, and J. Naor.
Approximation algorithms for machine scheduling.
Manuscript, 2003.

J. Chuzhoy, R. Ostrovsky, and Y. Rabani.
Approximation algorithms for the job interval
selection problem and related scheduling problems. In
Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, pages 348-356,
2001.

I. Dinur, V. Guruswami, and S. Khot. Vertex cover on
k-uniform hypergraphs is hard to approximate within
factor (k — 3 — €). ECCC Report TR02-027, Electronic
Colloquium on Computational Complexity, 2002.

I. Dinur, V. Guruswami, S. Khot, and O. Regev. A
new multilayered PCP and the hardness of
hypergraph vertex cover. In Proceedings of the 35th
ACM Symposium on Theory of Computing, pages
595-601, 2003.

T. Erlebach and F. C. R. Spieksma. Interval selection:
Applications, algorithms, and lower bounds. J.
Algorithms, 46(1):27-53, 2003.

M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

V. Guruswami, S. Khanna, R. Rajaraman,

B. Shepherd, and M. Yannakakis. Near-optimal
hardness results and approximation algorithms for
edge-disjoint paths and related problems. In
Proceedings of the 31st Annual ACM Symposium on
Theory of Computing, pages 19-28, 1999.

E. Halperin and R. Krauthgamer. Polylogarithmic
inapproximability. In Proceedings of the 35th ACM
Symposium on Theory of Computing, pages 585-594,
2003.

S. Khanna, M. Sudan, L. Trevisan and

D.P. Williamson. The approximability of constraint
satisfaction problems. STAM Journal on Computing
(SICOMP), 30(6), pages 1863-1920, 2000.

S. Khanna, M. Sudan, and L. Trevisan. Constraint
satisfaction: the approximability of minimization
problems. in Proc. 12th Annual IFEE Computational
Complexity Conference (CCC), pages 282-296, 1997.
S. Khanna, M. Sudan and D.P. Williamson. A
complete classification of the approximability of
maximization problems derived from boolean
constraint satisfaction. In Proc. 29th Annual ACM
Symposium on Theory of Computing (STOC), pages
11-20, 1997.

E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan,
and D. B. Shmoys. Sequencing and scheduling:
Algorithms and complexity. In Handbooks in
Operations Research and Management Science, Vol. 4:
Logistics for Production and Inventory, pages 445-522,
North Holland, 1993.

[19] P. Raghavan and C. D. Thompson. Randomized
rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7:365-374,
1987.

[20] R. Raz. A parallel repetition theorem. STAM Journal
on Computing, 27(3):763-803, 1998.

