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ABSTRACT
We study the Minimum Crossing Number problem: given an
n-vertex graph G, the goal is to find a drawing of G in the
plane with minimum number of edge crossings. This is one
of the central problems in topological graph theory, that has
been studied extensively over the past three decades. The
first non-trivial efficient algorithm for the problem, due to
Leighton and Rao, achieved an O

`
n log4 n

´
-approximation

for bounded degree graphs. This algorithm has since been
improved by poly-logarithmic factors, with the best current

approximation ratio standing on O
“
n · poly(d) · log3/2 n

”
for graphs with maximum degree d. In contrast, only APX-
hardness is known on the negative side.

In this paper we present an efficient randomized algo-
rithm to find a drawing of any n-vertex graph G in the
plane with O

`
OPT10 · poly(d · logn)

´
crossings, where OPT

is the number of crossings in the optimal solution, and d
is the maximum vertex degree in G. This result implies

an Õ
“
n9/10 · poly(d)

”
-approximation for Minimum Crossing

Number, thus breaking the long-standing Õ(n)-approximation
barrier for bounded-degree graphs.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems

General Terms
Theory, Algorithms

1. INTRODUCTION
A drawing of a graphG in the plane is a mapping, in which

every vertex of G is mapped into a point in the plane, and
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every edge into a continuous curve connecting the images of
its endpoints. We assume that no three curves meet at the
same point, and no curve contains an image of any vertex
other than its endpoints. A crossing in such a drawing is
a point where the images of two edges intersect, and the
crossing number of a graph G, denoted by OPTcr(G), is the
smallest number of crossings achievable by any drawing of
G in the plane. The goal in the Minimum Crossing Number
problem is to find a drawing of the input graph G with
minimum number of crossings. We denote by n the number
of vertices in G, and by dmax its maximum vertex degree.

The concept of the graph crossing number dates back to
1944, when Pál Turán has posed the question of determining
the crossing number of the complete bipartite graph Km,n.
This question was motivated his work at a brick factory
(see Turán’s account in [29]). Later, Anthony Hill (see [14])
has posed the question of computing the crossing number
of the complete graph Kn. Since then, the problem has
become a subject of intense study, with hundreds of papers
written on the subject (see, e.g. the extensive bibliography
maintained by Vrt’o [30].) Despite this enormous stream of
results and ideas, some of the most basic questions about the
crossing number problem remain unanswered. For example,
the crossing number of K11 was established just a few years
ago ([25]), while the answer for Kt, t ≥ 13, remains elusive.
We note that in general OPTcr(G) can be as large as Ω(n4),
for example for the complete graph. In particular, one of
the famous results in this area, due to Ajtai et al. [1] and
Leighton [20] states that if |E(G)| ≥ 4n, then OPTcr(G) =
Ω(|E(G)|3/n2).

In this paper we focus on the algorithmic aspect of the
problem. The first non-trivial algorithm for Minimum Cross-
ing Number was obtained by Leighton and Rao [21], who
combined their breakthrough result on balanced separators
with the techniques of Bhatt and Leighton [4] for VLSI de-
sign, to obtain an algorithm that finds a drawing of any
bounded-degree n-vertex graph with at most O(log4 n) ·(n+
OPTcr(G)) crossings. This bound was later improved to
O(log3 n) · (n+OPTcr(G)) by Even, Guha and Schieber [10],
and the new approximation algorithm of Arora, Rao and
Vazirani [3] for Balanced Cut gives a further improvement
to O(log2 n) ·(n+OPTcr(G)), thus implying an O(n · log2 n)-
approximation for Minimum Crossing Number on bounded-
degree graphs. This result can also be extended to general
graphs with maximum vertex degree dmax, where the ap-
proximation factor becomesO(n·poly(dmax)·log2 n). Chuzhoy,
Makarychev and Sidiropoulos [9] have recently improved this

result to an O(n · poly(dmax) · log3/2 n)-approximation. On



the negative side, the problem was shown to be NP-complete
by Garey and Johnson [11], and remains NP-complete even
on cubic graphs [15]. More surprisingly, even in the very re-
stricted case, where the input graph G is obtained by adding
a single edge to a planar graph, the problem is still NP-
complete [6]. The NP-hardness proof of [11], combined with
the inapproximability result for Minimum Linear-Arrangement
[2], implies that there is no PTAS for Minimum Crossing
Number unless NP has randomized subexponential time al-
gorithms.

To summarise, although current lower bounds do not rule
out the possibility of a constant-factor approximation for the
problem, the state of the art, prior to this work, only gives
an Õ(n · poly(dmax))-approximation. In view of this glaring
gap in our understanding of the problem, a natural ques-
tion is whether we can obtain good algorithms for the case
where the optimal solution cost is low — arguably, the most
interesting setting for this problem. A partial answer was
given by Grohe [13], who showed that the problem is fixed-
parameter tractable. Specifically, Grohe designed an exact
O(n2)-time algorithm, for the case where the optimal solu-
tion cost is bounded by a constant. Later, Kawarabayashi
and Reed [19] have shown a linear-time algorithm for the
same setting. Unfortunately, the running time of both algo-
rithms depends super-exponentially on the optimal solution
cost.

Our main result is an efficient randomized algorithm, that,
given as input any n-vertex graph with maximum degree
dmax, with high probability produces a drawing of G with
O
`
(OPTcr(G))10 · poly(dmax · logn)

´
crossings. In particu-

lar, we obtain anO
“
n9/10 · poly(dmax · logn)

”
-approximation

for general graphs, and an Õ(n9/10)-approximation for bounded-
degree graphs, thus breaking the long standing barrier of
Õ(n)-approximation for this setting.

We note that many special cases of the Minimum Crossing
Number problem have been extensively studied, with bet-
ter approximation algorithms known for some. Examples
include k-apex graphs [8, 9], bounded genus graphs [5, 16,
12, 17, 9] and minor-free graphs [32]. Further overview of
work on Minimum Crossing Number can be found in the ex-
positions of Richter and Salazar [27], Pach and Tóth [24],
Matoušek [23], and Székely [28].

Our results and techniques.
Our main result is summarized in the following theorem.

Theorem 1.1 There is an efficient randomized algorithm,
that, given any n-vertex graph G with maximum degree dmax,
with high probability finds a drawing of G in the plane with
O
`
(OPTcr(G))10 · poly(dmax · logn)

´
crossings.

Combining this theorem with the algorithm of Even et
al. [10], we obtain the following corollary.

Corollary 1.1 There is an efficient randomized approxima-
tion algorithm for Minimum Crossing Number, whose approx-

imation factor is O
“
n9/10 · poly(dmax · logn)

”
.

We now give an overview of our techniques. Instead of
directly solving the Minimum Crossing Number problem, it
is more convenient to work with a closely related problem
– Minimum Planarization. In this problem, given a graph G,

the goal is to find a minimum-cardinality subset E∗ of edges,
such that the graph G \ E∗ is planar. The two problem are
closely related, and this connection was recently formalized
by [9], in the following theorem:

Theorem 1.2 ([9]) Let G = (V,E) be any n-vertex graph
of maximum degree dmax, and suppose we are given a subset
E∗ ⊂ E of edges, |E∗| = k, such that G\E∗ is planar. Then
there is an efficient algorithm to find a drawing of G in the
plane with at most O

`
d3
max · k · (OPTcr(G) + k)

´
crossings.

Therefore, in order to solve the Minimum Crossing Number
problem, it is sufficient to find a good solution to the Mini-
mum Planarization problem on the same graph. We note that
an O(

√
n logn ·dmax)-approximation algorithm for the Min-

imum Planarization problem follows easily from the Planar
Separator theorem of Lipton and Tarjan [22] (see e.g. [9]),
and we are not aware of any other algorithmic results for the
problem. Our main technical result is the proof of the fol-
lowing theorem, which, combined with Theorem 1.2, implies
Theorem 1.1.

Theorem 1.3 There is an efficient randomized algorithm,
that, given an n-vertex graph G = (V,E) with maximum
degree dmax, finds a subset E∗ ⊆ E of edges, such that G\E∗
is planar, and with high probability

|E∗| = O
`
(OPTcr(G))5 poly(dmax · logn)

´
.

We now describe our main ideas and techniques. Given an
optimal solution ϕ to the Minimum Crossing Number problem
on graph G, we say that an edge e ∈ E(G) is good iff it
does not participate in any crossings in ϕ. For convenience,
we consider a slightly more general version of the problem,
where, in addition to the graph G, we are given a simple
cycle X ⊆ G, that we call the bounding box, and our goal
is to find a drawing of G, such that the edges of X do not
participate in any crossings, and all vertices and edges of
G\X appear on the same side of the closed curve to which X
is mapped. In other words, if γX is the simple closed curve to
which X is mapped, and F1, F2 are the two faces into which
γX partitions the plane, then one of the faces F ∈ {F1, F2}
must contain the drawings of all the edges and vertices of
G \ X. Such a drawing is called a drawing of G inside the
bounding box X. Since we allowX to be empty, this is indeed
a generalization of the Minimum Crossing Number problem.
In fact, from Theorem 1.2, it is enough to find what we call
a weak solution to the problem, namely, a small-cardinality
subset E∗ of edges with E∗ ∩ E(X) = ∅, such that there
is a planar drawing of the remaining graph G \ E∗ inside
the bounding box X. Our proof consists of three major
ingredients that we describe below.

The algorithm is iterative. Throughout the algorithm, we
gradually remove some edges from the graph, and gradually
build a planar drawing of the remaining graph. One of the
central notions we use is that of graph skeletons. A skeleton
K of graph G is simply a sub-graph of G, that contains
the bounding box X, and has a unique planar drawing (for
example, it may be convenient to think of K as being 3-
vertex connected). Given a skeleton K, and a small subset
E′ of edges (that we eventually remove from the graph), we
say that K is an admissible skeleton iff all the edges of K
are good, and each connected component of G \ (K ∪ E′)
contains only a small number of vertices (say, at most (1−



1/ρ)n, for some balance parameter ρ). Since K has a unique
planar drawing, and all of its edges are good, we can find its
unique planar drawing efficiently, and it must be identical
to the drawing ϕK of K induced by the optimal solution
ϕ. Let F be the set of faces in this drawing. Since K only
contains good edges, for each connected component C of
G \ (K ∪ E′), all edges and vertices of C must be drawn
completely inside one of the faces FC ∈ F in ϕ. Therefore,
if, for each such connected component C, we can identify
the face FC inside which it needs to be embedded, then
we can recursively solve the problems induced by each such
component C, together with the bounding box formed by the
boundary of FC . In fact, given an admissible skeleton K, we
show that we can find a good assignment of the connected
components of G \ (K ∪ E′) to the faces of F , so that, on
the one hand, all resulting sub-problems have solutions of
total cost at most OPTcr(G), while, on the other hand, if
we combine weak solutions to these sub-problems with the
set E′ of edges, we obtain a feasible weak solution to the
original problem. The assignment of the components to the
faces of F is done by reducing the problem to an instance
of the Min-Uncut problem. We defer the details of this part
to later sections, and focus here on finding an admissible
skeleton K.

Our second main ingredient is the use of well-linked sets
of vertices, and well-linked balanced bi-partitions. Given a
set S of vertices, let G[S] be the sub-graph of G induced
by S, and let Γ(S) be the subset of vertices of S adjacent
to the edges in E(S, S). Informally, we say that S is α-
well-linked, iff every pair of vertices in Γ(S) can send one
flow unit to each other, with overall congestion bounded by
α|Γ(S)|. We say that a bi-partition (S, S) of the vertices
of G is ρ-balanced and α-well-linked, iff |S|, |S| ≥ n/ρ, and
both S and S are α-well-linked. Suppose we can find a ρ-
balanced, α-well linked bi-partition of G (it is convenient to
think of ρ, α = poly(dmax · logn)). In this case, we show
a randomized algorithm, that w.h.p. constructs an admis-
sible skeleton K, as follows. Let P,P ′ be the collections
of the flow-paths in G[S] and G[S] respectively, guaranteed
by the well-linkedness of S and S. Since the congestion on
all edges is relatively low, only a small number of paths in
P ∪P ′ contain bad edges. Therefore, if we choose a random
collection of paths from P and P ′ with appropriate proba-
bility, the resulting skeleton K, obtained from the union of
these paths, is unlikely to contain bad edges. Moreover, we
can show that w.h.p., every connected component of G \K
only contains a small number of edges in E(S, S). It is still
possible that some connected component C of G\K contains
many vertices of G. However, only one such component C
may contain more than n/2 vertices. Let E′ be the subset of
edges in E(S, S), that belong to C. Then, since the original
cut (S, S) is ρ-balanced, once we remove the edges of E′ from
C, it will decompose into small enough components. This
will ensure that all connected components of G \ (K ∪ E′)
are small enough, and K is admissible.

Using these ideas, given an efficient algorithm for com-
puting ρ-balanced α-well-linked cuts, we can obtain an al-
gorithm for the Minimum Crossing Number problem. Unfor-
tunately, we do not have an efficient algorithm for computing
such cuts. We can only compute such cuts in graphs that
do not contain a certain structure, that we call nasty ver-
tex sets. Informally, a subset S of vertices is a nasty set,
iff |S| >> |E(S, S)|2, and the sub-graph G[S] induced by

S is planar. We show an algorithm, that, given any graph
G, either produces a ρ-balanced α-well linked cut, or finds
a nasty set S in G. Therefore, if G does not contain any
nasty sets, we can compute the ρ-balanced α-well-linked bi-
paritition of G, and hence obtain an algorithm for Minimum
Crossing Number. Moreover, given any graph G, if our al-
gorithm fails to produce a good solution to the Minimum
Crossing Number problem on G, then w.h.p. it returns a
nasty set of vertices in G.

The third major component of our algorithm is handling
the nasty sets. Suppose we are given a nasty set S, and
assume for now that it is also α-well-linked for some param-
eter α = poly(logn). Let Γ(S) denote the endpoints of the
edges in E(S, S) that belong to S, and let |Γ(S)| = z. Re-
call that |S| >> z2, and G[S] is planar. Intuitively, in this
case we can use the z × z grid to “simulate” the sub-graph
G[S]. More precisely, we replace the sub-graph G[S] with
the z × z grid ZS , and identify the vertices of the first row
of the grid with the vertices in Γ(S). We call the resulting
graph the contracted graph, and denote it by G|S . Notice
that the number of vertices in G|S is smaller than that in G.
When S is not well-linked, we perform a simple well-linked
decomposition procedure to partition S into a collection of
well-linked subsets, and replace each one of them with a
grid separately. Given a drawing of the resulting contracted
graph G|S , we say that it is a canonical drawing if the edges
of the newly added grids do not participate in any crossings.
Similarly, we say that a planarizing subset E∗ of edges is a
weak canonical solution for G|S , iff the edges of the grids
do not belong to E∗. We show that the crossing number
of G|S is bounded by poly(dmax · logn)OPTcr(G), and this
bound remains true even for canonical drawings. On the
other hand, we show that given any weak canonical solu-
tion E∗ for G|S , we can efficiently find a weak solution of
comparable cost for G. Therefore, it is enough to find a
weak feasible canonical solution for graph G|S . However,
even the contracted graph G|S may still contain nasty sets.
We then show that, given any nasty set S′ in G|S , we can
find another subset S′′ of vertices in the original graph G,
such that the contracted graph G|S′′ contains fewer vertices
than G|S . The crossing number of G|S′′ is again bounded
by poly(dmax · logn)OPTcr(G) even for canonical drawings,
and a weak canonical solution to G|S′′ gives a weak solution
to G as before.

Our algorithm then consists of a number of stages. In
each stage, it starts with the current contracted graph G|S
(where in the first stage, S = ∅, and G|S = G). It then
either finds a good weak canonical solution for problem G|S ,
thus giving a feasible solution to the original problem, or
returns a nasty set S′ in graph G|S . We then construct
a new contracted graph G|S′′ , that contains fewer vertices
than G|S , and becomes the input to the next stage.

Organization.
We start with some basic definitions, notation, and gen-

eral results on cuts and flows in Section 2. We then present
a more detailed algorithm overview in Section 3. Section 4
is devoted to the graph contraction step, and the rest of the
algorithm is outlined in Section 5. Our conclusions appear
in Section 6. Due to lack of space, we are unable to pro-
vide a detailed description of the algorithm and the proof
of its correctness. A full version of the paper, containing
the detailed algorithm description and correctness proof is



available from the author’s web-page, and as arXiv report,
arXiv:1012.0255v1.

2. PRELIMINARIES AND NOTATION
In order to avoid confusion, throughout the paper, we de-

note the input graph by G, with |V (G)| = n, and maximum
vertex degree dmax. In statements regarding general arbi-
trary graphs, we will denote them by G, to distinguish them
from the specific graph G.

2.1 General Notation
We use the words“drawing”and“embedding”interchange-

ably. Given any graph G, a drawing ϕ of G, and any sub-
graph H of G, we denote by ϕH the drawing of H induced
by ϕ, and by crϕ(G) the number of crossings in the drawing
ϕ of G. Notice that we can assume w.l.o.g. that no edge
crosses itself in any drawing. For any pair E1, E2 ⊆ E(G)
of subsets of edges, we denote by crϕ(E1, E2) the number
of crossings in ϕ in which the images of the edges of E1 in-
tersect the images of the edges of E2, and by crϕ(E1) the
number of crossings in ϕ in which the images of the edges of
E1 intersect with each other. Given two disjoint sub-graphs
H1, H2 of G, we will sometimes write crϕ(H1, H2) instead
of crϕ(E(H1), E(H2)), and crϕ(H1) instead of crϕ(E(H1)).
If G is a planar graph, and ϕ is a drawing of G with no
crossings, then we say that ϕ is a planar drawing of G. For
a graph G = (V,E), and subsets V ′ ⊆ V , E′ ⊆ E of its
vertices and edges respectively, we denote by G[V ′], G \ V ′,
and G \E′ the sub-graphs of G induced by V ′, V \ V ′, and
E \ E′, respectively.

Definition 2.1 Let γ be any closed simple curve, and let
F1, F2 be the two faces into which γ partitions the plane.
Given any drawing ϕ of a graph G, we say that G is em-
bedded inside γ, iff one of the faces F ∈ {F1, F2} contains
the images of all edges and vertices of G (the images of the
vertices of G may lie on γ). Similarly, if C ⊆ G is a simple
cycle, then we say that G is embedded inside C, iff the edges
of C do not participate in any crossings, and G \ E(C) is
embedded inside γC – the simple closed curve to which C is
mapped.

Given a graph G and a bounding box X, we define the
problem π(G,X), that we use extensively.

Definition 2.2 Given a graph G and a simple (possibly empty)
cycle X ⊆ G, called the bounding box, a strong solution for
problem π(G,X), is a drawing ψ of G, in which G is embed-
ded inside the bounding box X, and its cost is the number
of crossings in ψ. A weak solution to problem π(G,X) is a
subset E′ ⊆ E(G) \ E(X) of edges, such that G \ E′ has a
planar drawing, in which it is embedded inside the bounding
box X.

Notice that in order to prove Theorem 1.3, it is enough to
find a weak solution for problem π(G, X0), where X0 = ∅,
of cost O

`
(OPTcr(G))5 poly(dmax · logn)

´
.

Definition 2.3 For any graph G = (V,E), a subset V ′ ⊆ V
of vertices is called a c-separator, iff |V ′| = c, and the graph
G \ V ′ is not connected. We say that G is c-connected iff it
does not contain c′-separators, for any 0 < c′ < c.

We will use the following three well-known results:

Theorem 2.1 (Whitney [31]) Every 3-connected planar graph
has a unique planar drawing.

Theorem 2.2 (Hopcroft-Tarjan [18]) For any graph G, there
is an efficient algorithm to determine whether G is planar,
and if so, to find a planar drawing of G.

Theorem 2.3 (Ajtai et al. [1], Leighton [20]) Let G be any
graph with n vertices and m ≥ 4n edges. Then OPTcr(G) =
Ω(m3/n2) = Ω(n).

2.2 Well-linkedness

Definition 2.4 Let G = (V,E) be any graph, and J ⊆
V any subset of its vertices. We denote by outG(J) =
EG(J, V \ J), and we call the edges in outG(J) the terminal
edges for J . For each terminal edge e = (u, v), with u ∈ J ,
v 6∈ J , we call u the interface vertex and v the terminal
vertex for J . We denote by ΓG(J) and TG(J) the sets of
all interface and terminal vertices for J , respectively, and
we omit the subscript G when clear from context (see Fig-
ure 2.1).

Γ(J)
J

T (J)

out(J)

Figure 2.1: Terminal edges, and terminal and inter-
face vertices for set J.

Definition 2.5 Given a graph G, a subset J of its vertices,
and a parameter α > 0, we say that J is α-well-linked, iff for
any partition (J1, J2) of J , if we denote by T1 = out(J1) ∩
out(J), and by T2 = out(J2) ∩ out(J), then |E(J1, J2)| ≥
α ·min {|T1|, |T2|}

Notice that if G is a connected graph and J ⊂ V (G) is
α-well-linked for any α > 0, then G[J ] must be connected.
Finally, we define ρ-balanced α-well-linked bi-partitions.

Definition 2.6 Let G be any graph, and let ρ > 1, 0 < α ≤
1 be any parameters. We say that a bi-partition (S, S) of
V (G) is ρ-balanced and α-well-linked, iff |S|, |S| ≥ |V (G)|/ρ
and both S and S are α-well-linked.

2.3 Canonical Vertex Sets and Solutions
As already mentioned in the Introduction, we will perform

a number of graph contraction steps on the input graph
G, where in each such graph contraction step, a sub-graph
of G will be replaced with a grid. So in general, if H is
the current graph, we will also be given a collection Z of
disjoint subsets of vertices of H, such that for each Z ∈ Z,
H[Z] is the kZ × kZ grid, for some kZ ≥ 2. We will also
ensure that ΓH(Z) is precisely the set of the vertices in the
first row of the grid H[Z], and the edges in outH(Z) form a



matching between ΓH(Z) and TH(Z). Given such a graph
H, and a collection Z of vertex subsets, we will be looking
for solutions in which the edges of the grids H[Z] do not
participate in any crossings. This motivates the following
definitions of canonical vertex sets and canonical solutions.

Assume that we are given a graph G and a collection Z
of disjoint subsets of vertices of G, (but some vertices of G
may not belong to any subset Z ∈ Z).

Definition 2.7 We say that a subset J ⊆ V of vertices
is canonical for Z iff for each Z ∈ Z, either Z ⊆ J , or
Z ∩ J = ∅.

We next define canonical drawings and canonical solutions
w.r.t. the collection Z of subsets of vertices:

Definition 2.8 Let G = (V,E) be any graph, and Z any
collection of disjoint subsets of vertices of G. We say that
a drawing ϕ of G is canonical for Z iff for each Z ∈ Z,
no edge of G[Z] participates in crossings. Similarly, we say
that a solution E∗ to the Minimum Planarization problem on
G is canonical for Z, iff for each Z ∈ Z, no edge of G[Z]
belongs to E∗.

Definition 2.9 Given a graph G, a simple cycle X ⊆ G
(that may be empty), and a collection Z of disjoint subsets
of vertices of G, a strong solution to problem π(G,X,Z) is a
drawing ψ of G, in which the edges of E(X)∪

`S
Z∈Z E(G[Z])

´
do not participate in any crossings, and G is embedded in-
side the bounding box X. The cost of the solution is the
number of edge crossings in ψ. A weak solution to problem
π(G,X,Z) is a subset E′ ⊆ E(G)\E(X) of edges, such that
graph G \ E′ has a planar drawing inside the bounding box
X, and for all Z ∈ Z, E′ ∩ E(G[Z]) = ∅.

We will sometimes use the above definition for problem
π(G′, X,Z), where G′ is a sub-graph of G. That is, some
sets Z ∈ Z may not be contained in G′, or only partially
contained in it. We can then define Z ′ to contain, for each
Z ∈ Z, the set Z ∩ V (G′). We will sometimes use the
notion of weak or strong solution to problem π(G′, X,Z) to
mean weak or strong solutions to π(G′, X,Z ′), to simplify
notation.

2.4 Well-linked Decompositions
The next theorem summarizes well-linked decomposition

of graphs, which has been used extensively in graph decom-
position (e.g., see [7, 26]).

Theorem 2.4 (Well-linked decomposition) Given any
graph G = (V,E), and any subset J ⊆ V of vertices, we
can efficiently find a partition J of J , such that each set
J ′ ∈ J is α∗-well-linked for α∗ = Ω(1/(log3/2 n log logn)),
and

P
J′∈J | out(J ′)| ≤ 2| out(J)|.

We now define some additional properties that set J may
possess, that we use throughout the paper. We will then
show that if a set J has any collection of these properties,
then we can find a well-linked decomposition J of J , such
that every set J ′ ∈ J has these properties as well.

Definition 2.10 Given a graph G and any subset J ⊆ V (G)
of its vertices, we say that J has property (P1) iff the ver-
tices of T (J) are connected in G \ J . We say that it has

property (P2) iff there is a planar drawing of J in which all
interface vertices Γ(J) lie on the boundary of the same face,
that we refer to as the outer face. We denote such a planar
drawing by π(J). If there are several such drawing, we select
any of them arbitrarily.

The next theorem is an extension of Theorem 2.4, and its
proof is omitted due to lack of space.

Theorem 2.5 Suppose we are given any graph G = (V,E),
a subset J ⊆ V of vertices, and a collection Z of disjoint
subsets of vertices of V , such that each set Z ∈ Z is 1-
well-linked. Then we can efficiently find a partition J of
J , such that each set J ′ ∈ J is α∗-well linked for α∗ =
Ω(1/(log3/2 n log logn)), and

P
J′∈J | out(J ′)| ≤ 2| out(J)|.

Moreover, if J has any combination of the following three
properties: (1) property (P1); (2) property (P2); (3) it is a
canonical set for Z, then each set J ′ ∈ J will also have the
same combination of these properties.

Throughout the paper, we use α∗ to denote the parameter
from Theorem 2.5.

3. HIGH LEVEL ALGORITHM OVERVIEW
In this section we provide a high-level overview of the

algorithm. We start by defining the notion of nasty vertex
sets.

Definition 3.1 Given a graph G, we say that a subset S ⊆
V (G) of vertices is nasty iff it has properties (P1) and (P2),

and |S| ≥ 216·d6max
(α∗)2 · |Γ(S)|2, where α∗ is the parameter from

Theorem 2.5.

Note that we do not require that G[S] is connected.
For the sake of clarity, let us first assume that the input

graph G contains no nasty sets. Fix any optimal drawing ϕ
of G. An edge of G is called good iff it does not participate in
any crossings in ϕ. Our algorithm then proceeds as follows.
We use a balancing parameter ρ = O(OPTcr(G) ·poly(dmax ·
logn)) whose exact value is set later. The algorithm has
O(ρ · logn) iterations. At the beginning of each iteration h,
we are given a collection G1, . . . , Gkh of kh ≤ OPTcr(G) sub-
graphs of G, together with bounding boxes Xi ⊆ Gi for all
i. The graphs Gi are completely disjoint, except that they
may share vertices or edges that belong to their bounding
boxes. We are also guaranteed that w.h.p., there is a strong
solution to each problem π(Gi, Xi), of total cost at most
OPTcr(G). In the first iteration, k1 = 1, and the only graph
is G1 = G, whose bounding box is X0 = ∅.

We now proceed to describe each iteration. The idea is to
find a skeleton Ki for each graph Gi, with Xi ⊆ Ki, such
that Ki only contains good edges — that is, edges that do
not participate in any crossings in the fixed optimal solu-
tion ϕ, and Ki has a unique planar drawing, in which Xi
serves as the bounding box. Therefore, we can efficiently
find the drawing ϕKi of the skeleton Ki, induced by the op-
timal drawing ϕ. We then decompose the remaining graph
Gi\E(Ki) into clusters, by removing a small subset of edges
from it, so that, on the one hand, for each such cluster C, we
know the face FC of ϕKi where we should embed it, while
on the other hand, different clusters C,C′ do not interfere
with each other, in the sense that we can find an embedding



of each one of these clusters separately, and their embed-
dings do not affect each other. For each such cluster C, we
then define a new problem π(C, γ(FC)), where γ(FC) is the
boundary of the face FC . We will ensure that all resulting
sub-problems have strong solutions whose total cost is at
most OPTcr(G). In particular, there are at most OPTcr(G)
resulting sub-problems, for which ∅ is not a feasible weak so-
lution. Therefore, in the next iteration we will need to solve
at most OPTcr(G) new sub-problems. The main challenge
is to find, for each graph Gi, a skeleton Ki, such that the
number of vertices in each resulting cluster C is bounded by
roughly (1 − 1/ρ)|V (Gi)|, so that the number of iterations
is indeed bounded by O(ρ logn). We need this bound on
the number of iterations, since the probability of successfully
constructing the skeletons in each iteration is only (1−1/ρ).
Roughly speaking, we are able to build the skeleton as re-
quired, if we can find a ρ-balanced α-well-linked bipartition
of the vertices of Gi, where α = 1/ poly(dmax ·logn). We are
only able to find such a partition if no nasty sets exist in G.
More precisely, we show an efficient algorithm, that either
finds the desired bi-partition, or returns a nasty vertex set.

In order to obtain the whole algorithm, we therefore need
to deal with nasty sets. We do so by performing a graph
contraction step, which is formally defined in the next sec-
tion. Informally, given a nasty set S, we find a partition
X of S, such that for every pair X,X ′ ∈ X , the graphs
G[X],G[X ′] share at most one vertex, and no edges. The
unique vertex v ∈ X ∩ X ′ must belong to the interface of
both X and X ′. Each such set X is also α∗-well-linked, has
properties (P1) and (P2), and

P
X∈X |Γ(X)| ≤ O(|Γ(S)|).

We then replace each sub-graph G[X] of G by a grid ZX ,
whose interface is Γ(X). After we do so for each X ∈ X , we
denote by G|S the resulting contracted graph. Notice that
we have replaced G[S] by a much smaller graph, whose size
is bounded by O(|Γ(S)|2). Let Z denote the collection of
sets V (ZX) of vertices, for X ∈ X . We then show that the
cost of the optimal solution to problem π(G|S , ∅,Z) is at
most poly(dmax · logn)OPTcr(G). Therefore, we can restrict
our attention to canonical solutions only. We also show that
it is enough to find a weak solution to problem π(G|S , ∅,Z),
in order to obtain a weak solution for the whole graph G.
Unfortunately, we do not know how to find a nasty set S,
such that the corresponding contracted graph G|S contains
no nasty sets. Instead, we do the following. Let H = G|S be
the current graph, which is a result of the graph contraction
step on some set S of vertices, and let Z be the correspond-
ing collection of sub-sets of vertices representing the grids.
Suppose we can find a nasty canonical set R in the graph H.
We show that this allows us to find a new set S′ of vertices
in G, such that the contracted graph G|S′ contains fewer
vertices than G|S .

Returning to our algorithm, let G|S be the current con-
tracted graph. We show that with high probability, the
algorithm either returns a weak solution for G|S of cost

O
`
(OPTcr(G))5 poly(dmax · logn)

´
, or it returns a nasty canon-

ical subset S′ of G|S . In the former case, we can recover a
good weak solution for the original graph G. In the latter
case, we find a subset S′′ of vertices in the original graph G,
and perform another contraction step on G, obtaining a new
graph G|S′′ , whose size is strictly smaller than that of G|S .
We then apply the algorithm to graph G|S′′ . Since the total
number of graph contraction steps is bounded by n, after n
such iterations, we are guaranteed w.h.p. to obtain a weak

feasible solution of cost O
`
(OPTcr(G))5 poly(dmax · logn)

´
to π(G, ∅), thus satisfying the requirements of Theorem 1.3.
We now turn to formal description of the algorithm. One of
the main ingredients is the graph contraction step, summa-
rized in the next section.

4. GRAPH CONTRACTION STEP
The input to the graph contraction step consists of the

input graph G, and a subset S ⊆ V (G) of vertices, for
which properties (P1) and (P2) hold. It will be convenient
to think of S as a nasty set, but we do not require it.

Let C = {G1, . . . , Gq} be the set of all connected compo-
nents of G[S]. For each 1 ≤ i ≤ q, let Γi = V (Gi) ∩ Γ(S) =
Γ(V (Gi)) be the set of the interface vertices of Gi. The goal
of the graph contraction step is to find, for each 1 ≤ i ≤ q,
a partition Xi of the set V (Gi), that has the following prop-
erties. Let X =

Sq
i=1 Xi.

C1. Each set X ∈ X is α∗-well-linked, and has properties
(P1) and (P2). Moreover, there is a planar drawing
π′(X) of G[X], and a simple closed curve γX , such
that G[X] is embedded inside γX in π′(X), and the
vertices of Γ(X) lie on γX .

C2. For each X ∈ X , either |Γ(X)| = 2, or there is a
partition (C∗X , R1, . . . , Rt) of X, such that G[C∗X ] is
2-connected and Γ(X) ⊆ C∗X . Moreover, for each 1 ≤
t′ ≤ t, there is a vertex ut′ ∈ C∗X , whose removal from
G[X] separates the vertices of Rt′ from the remaining
vertices of X.

C3. For each pair X,X ′ ∈ X , the two sets of vertices are
completely disjoint, except for possibly sharing one in-
terface vertex, v ∈ Γ(X) ∩ Γ(X ′).

C4. For each 1 ≤ i ≤ q, if Γ′i =
S
X∈Xi

Γ(X), then |Γ′i| ≤
9|Γi|.

C5. For each X ∈ X , |X| ≥ (α∗|Γ(X)|)2/64d2
max.

For each set X ∈ X , we now define a new graph Z′X , that
will eventually replace the sub-graph G[X] in G. Intuitively,
we need Z′X to contain the vertices of Γ(X) and to be 1-
well-linked w.r.t. these vertices. We also need it to have
a unique planar embedding where the vertices of Γ(X) lie
on the boundary of the same face, and finally, we need the
size of the graph Z′X to be relatively small, since this is a
graph contraction step. The simplest graph satisfying these
properties is a grid of size |Γ(X)| × |Γ(X)|.

Specifically, we first define a graph ZX as follows: if |ΓX | =
1, then ZX consists of a single vertex, and if |ΓX | = 2, then
ZX consists of a single edge. Otherwise, ZX is a grid of size
|Γ(X)| × |Γ(X)|. In order to obtain the graph Z′X , we add
the set Γ(X) of vertices to ZX , and add a matching between
the vertices of the first row of the grid and the vertices of
Γ(X). This is done so that the order of the vertices of Γ(X)
along the first row of the grid is the same as their order along
the curve γX in the drawing π′(X). We refer to these new
edges as the matching edges. For the cases where |ΓX | = 1
and |ΓX | = 2, we obtain Z′X by adding the vertices of Γ(X)
to ZX , and adding an arbitrary matching between ΓX and
the vertices of ZX . (See Figure 4.1).

The contracted graph G|S is obtained from G, by replac-
ing, for each X ∈ X , the subgraph G[X] of G, with the
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Figure 4.1: Graph Z′X .

graph Z′X . This is done as follows: first, delete all vertices
and edges of G[X], except for the vertices of Γ(X), from G,
and add the edges and the vertices of Z′X instead. Next,
identify the copies of the interface vertices Γ[X] in the two
graphs. Let H = G|S denote the resulting contracted graph.
Notice that

qX
i=1

X
X∈Xi

|V (Z′X)| ≤
qX
i=1

X
X∈Xi

2|Γ(X)|2

≤
qX
i=1

2|Γ′i|2d2
max

≤ 162d2
max|Γ|2

(4.1)

(we have used the fact that a vertex may belong to the
interface of at most dmax sets X ∈ Xi, and Property (C4)).

Therefore, if the initial vertex set S is nasty, then we have
indeed reduced the graph size, as |V (H)| < |V (G)|.

We now define a collection Z of subsets of vertices of H,
as follows: Z = {V (ZX) | X ∈ X}. Notice that these sets
are completely disjoint, as ZX does not contain the interface
vertices Γ(X). Moreover, for each Z ∈ Z, H[Z] is a grid,
ΓH(Z) consists of the vertices in the first row of the grid,
and outH(Z) consists of the set of the matching edges, each
of which connects a vertex in the first row of the grid Z to
a distinct vertex in TH(Z). Using Definitions 2.7 and 2.8,
we can now define canonical subsets of vertices, canonical
drawings and canonical solutions to the Minimum Planariza-
tion problem on H, with respect to Z. Our main result for
graph contraction is summarized in the next theorem, whose
proof is omitted due to lack of space.

Theorem 4.1 Let S ⊆ V (G) be any subset of vertices with
properties (P1) and (P2), and let {G1, . . . , Gq} be the set
of all connected components of graph G[S]. Then for each
1 ≤ i ≤ q, we can efficiently find a partition Xi of V (Gi),
such that the resulting partition X =

Sq
i=1 Xi of S has prop-

erties (C1)–(C5). Moreover, there is a canonical drawing of
the resulting contracted graph H = G|S with O(d9

max ·log10 n·
(log logn)4 · OPTcr(G)) crossings.

The next claim shows, that in order to find a good solution
to the Minimum Planarization problem on G, it is enough to
solve it on G|S .

Claim 4.2 Let S be any subset of vertices of G, X any par-
tition of S with properties (C1)–(C5), H = G|S the corre-
sponding contracted graph and Z the collection of grids ZX
for X ∈ X . Then given any canonical solution E∗ to the
Minimum Planarization problem on H, we can efficiently find
a solution of cost O(dmax)|E∗| to Minimum Planarization on
G.

Proof. Partition set E∗ of edges into two subsets: E∗1
contains all edges that belong to sub-graphs Z′X for X ∈ X ,
and E∗2 contains all remaining edges. Notice that since E∗ is
a canonical solution, each edge e ∈ E∗1 must be a matching
edge for some graph Z′X . Also from the construction of the
contracted graph H, all edges in E∗2 belong to E(G).

Consider some set X ∈ X , and let Γ′(X) ⊆ Γ(X) denote
the subset of the interface vertices of Z′X , whose matching
edges belong to E∗1 . Let Γ′ =

S
X∈X Γ′(X). We now define a

subset E∗∗1 of edges of G as follows: for each vertex v ∈ Γ′,
add all edges incident to v in G to E∗∗1 . Finally, we set
E∗∗ = E∗∗1 ∪E∗2 . Notice that E∗∗ is a subset of edges of G,
and |E∗∗| = |E∗∗1 |+ |E∗2 | ≤ dmax|E∗1 |+ |E∗2 | ≤ dmax|E∗|. In
order to complete the proof of the claim, it is enough to show
that E∗∗ is a feasible solution to the Minimum Planarization
problem on G.

Let G′ = G \ E∗∗, let H ′ = H \ E∗, and let ψ be a
planar drawing of H ′. It is now enough to construct a planar
drawing ψ′ of G′. In order to do so, we start from the planar
drawing ψ of H ′. We then consider the sets X ∈ X one-by-
one. For each such set, we replace the drawing of Z′X \Γ′(X)
with a drawing of G[X]\Γ′(X). The drawings of the vertices
in Γ(X) are not changed by this procedure. After all sets
X ∈ X are processed, we will obtain a planar drawing of
graph G′ (that may also contain drawings of some edges in
E∗∗, that we can simply erase).



Consider some such set X ∈ X . Let G be the current
graph (obtained from H ′ after a number of such replace-
ment steps), and let ψ be the current planar drawing of G.
Observe that the grid ZX has a unique planar drawing. We
say that a planar drawing of graph Z′X \ Γ′(X) is standard
in ψ, iff we can draw a simple closed curve γ′X , such that
ZX is embedded completely inside γ′X ; no other vertices or
edges of G are embedded inside γ′X ; the only edges that γ′X
intersects are the matching edges of Z′X \ Γ′(X), and each
such matching edge is intersected exactly once by γ′X .

It is possible that the drawing of Z′X \ Γ′(X) in ψ is not
standard. However, since ψ is planar, this can only happen
for the following three reasons: (1) some connected compo-
nent C of the current graph G is embedded inside some face
of the grid ZX : in this case we can simply move the drawing
of C elsewhere; (2) there is some subset C of V (G), and a
vertex v ∈ Γ(X) \ Γ′(X), such that ΓG(C) = v, and G[C]
is embedded inside one of the faces of the grid ZX incident
to the other endpoint of the matching edge of v; and (3)
there is some subset C of V (G), and two consecutive ver-
tices u, v ∈ Γ(X) \ Γ′(X), such that ΓG(C) = {u, v}, and
G[C] is embedded inside the unique face of the grid ZX inci-
dent to the other endpoints of the matching edges of u and
v. In the latter two cases, we simply move the drawing of C
right outside the grid, so that the corresponding matching
edges now cross the curve γ′(X).

To summarize, we can transform the current planar draw-
ing ψ of the graph G into another planar drawing ψ̃, such
that the induced drawing of Z′X \Γ′(X) is standard. We can
now draw a simple closed curve γ′′(X), such that Z′X \Γ′(X)
is embedded inside γ′′(X), no other vertices or edges are em-
bedded inside γ′′(X), and the set of vertices whose drawings
lie on γ′′(X) is precisely Γ(X) \ Γ′(X). Notice that the or-
dering of the vertices of Γ(X) \ Γ′(X) along this curve is
exactly the same as their ordering along the curve γ(X) in
the planar embedding π′(X) of G[X], guaranteed by Prop-
erty (C1). Let π′′(X) be the drawing of G[X] \ Γ′(X) in-
duced by π′(X). We can now simply replace the drawing
of Z′X \ Γ′(X) with the drawing π′′(X) of G[X] \ Γ′(X),
identifying the curves γX and γ′′X , and the drawings of the
vertices in Γ(X) \ Γ′(X) on them. The resulting drawing
remains planar, and the drawings of the vertices in Γ(X) do
not change.

Finally, we show that if we find a nasty canonical set in
G|S , then we can contract G even further. The proof of the
following theorem is omitted due to lack of space.

Theorem 4.3 Let S be any subset of vertices of G, X any
partition of S with properties (C1)–(C5), H = G|S the cor-
responding contracted graph, and Z the corresponding collec-
tion of grids ZX for X ∈ X . Then given any nasty canonical
vertex set R ⊆ V (H), we can efficiently find a subset S′ ⊆
V (G) of vertices, and a partition X ′ of S′, such that prop-
erties (C1)–(C5) hold for X ′, and if H ′ = G|S′ is the cor-
responding contracted graph, then |V (H ′)| < |V (H)|. More-
over, there is a canonical drawing ϕ′ of H ′ with crϕ′(H

′) =
O(d9

max · log10 n · (log logn)4 · OPTcr(G)).

Notice that Claim 4.2 applies to the new contracted graph
as well.

5. THE ALGORITHM
The algorithm consists of a number of stages. In each

stage j, we are given as input a subset S of vertices of G,
the contracted graph H = G|S , and the collection Z of
disjoint sub-sets of vertices of H, corresponding to the grids
ZX obtained during the contraction step. The goal of stage j
is to either produce a nasty canonical set R in H, or to find
a weak feasible solution to problem π(H, ∅,Z). We prove
the following theorem.

Theorem 5.1 There is an efficient randomized algorithm,
that, given a contracted graph H, a corresponding collection
Z of disjoint subsets of vertices of H, and a bound OPT′ on
the cost of the strong optimal solution to problem π(H, ∅,Z),
with probability at least 1/poly(n), produces either a nasty
canonical subset R of vertices of H, or a weak feasible solu-
tion E∗, |E∗| ≤ O((OPT′)5 poly(dmax · logn)) for problem
π(H, ∅,Z). (Here, n = |V (G)|).

We provide a high-level sketch of the proof of this theo-
rem in the rest of this section, but we first show that The-
orems 1.3, 1.1 and Corollary 1.1 follow from it. We start
with proving Theorem 1.3, by showing an efficient random-
ized algorithm to find a subset E∗ ⊆ E(G) of edges, such
that G\E∗ is planar, and |E∗| ≤ O((OPTcr(G))5·poly(dmax·
logn)). We assume that we know the value OPTcr(G), by
using the standard practice of guessing this value, running
the algorithm, and then adjusting the guessed value accord-
ingly. It is enough to ensure that whenever the guessed value
OPT ≥ OPTcr(G), the algorithm indeed returns a subset E∗

of edges, |E∗| ≤ O(OPT5 poly(dmax·logn)), such that G\E∗
is a planar graph w.h.p. Therefore, from now on we assume
that we are given a value OPT ≥ OPTcr(G). The algorithm
consists of a number of stages. The input to stage j is a con-
tracted graph H, with the corresponding family Z of vertex
sets. In the input to the first stage, H = G, and Z = ∅. In
each stage j, we run the algorithm from Theorem 5.1 on the
current contracted graph H, and the family Z of vertex sub-
sets. From Theorem 4.1, there is a strong feasible solution
to problem π(H, ∅,Z) of cost O(OPT · poly(logn · dmax)),
and so we can set the parameter OPT′ to this value. When-
ever the algorithm returns a nasty canonical set R in graph
H, we terminate the current stage, and compute a new con-
tracted graph H′, guaranteed by Theorem 4.3. Graph H′,
together with the corresponding family Z ′ of vertex subsets,
becomes the input to the next stage. Alternatively, if, after
poly(n) executions of the algorithm from Theorem 5.1, no
nasty canonical set is returned, then with high probability,
one of the algorithm executions has returned a weak feasible
solution E∗, |E∗| ≤ O(OPT5 poly(dmax · logn)) for problem
π(H, ∅,Z). From Claim 4.2, we can recover from this solu-
tion a planarizing set E∗∗ of edges for graph G, with |E∗∗| =
O(OPT5 poly(dmax · logn)). Since the size of the contracted
graph H goes down after each contraction step, the number
of stages is bounded by n, thus implying Theorem 1.3. Com-
bining Theorem 1.3 with Theorem 1.2 immediately gives
Theorem 1.1. Finally, we obtain Corollary 1.1 as follows.
Recall that the algorithm of Even et al. [10] computes
a drawing of any n-vertex bounded degree graph G with
O(log2 n)·(n+OPTcr(G)) crossings. It was shown in [9], that
this algorithm can be extended to arbitrary graphs, where
the number of crossings becomes O(poly(dmax)·log2 n)·(n+
OPTcr(G)). We run their algorithm, and the algorithm pre-



sented in this section, on graph G, and output the better
of the two solutions. If OPTcr(G) < n1/10, then our al-

gorithm gives an O(n9/10 poly(dmax · logn))-approximation;

otherwise, the algorithm of [10] gives an O(n9/10 poly(dmax ·
logn))-approximation.

The remainder of this section is devoted to proving The-
orem 5.1. Recall that we are given the contracted graph H,
and a collection Z of vertex-disjoint subsets of V (H). For
each Z ∈ Z, H[Z] is a grid, and E(Z, V (H) \ Z) consists
of a set MZ of matching edges. Each such edge connects a
vertex in the first row of Z to a distinct vertex in TH(Z),
and these edges form a matching between the first row of
Z and TH(Z). Abusing the notation, we denote the bound
on the cost of the strong optimal solution to π(H, ∅,Z) by
OPT from now on, and the number of vertices in H by
n. For each Z ∈ Z, we use Z to denote both the set of
vertices itself, and the grid H[Z]. We assume throughout
the rest of the section that OPT · d6

max <
√
n: otherwise,

if OPT · d6
max ≥

√
n, then the set E′ of all edges of H

that do not participate in grids Z ∈ Z, is a feasible weak
canonical solution for problem π(H, ∅,Z). It is easy to see
that |E′| ≤ O(OPT2 poly(dmax)): this is clearly the case if
|E′| ≤ 4n; otherwise, if |E′| > 4n, then by Theorem 2.3,
OPT = Ω(n), and so |E′| = O(n2) = O(OPT2).

We use two parameters: ρ = O(OPT poly(dmax · logn))
and m∗ = O(OPT3 · poly(dmax · logn)). The algorithm con-
sists of 2ρ logn iterations. The input to iteration h is a
collection G1, . . . , Gkh of kh ≤ OPT sub-graphs of H, to-
gether with bounding boxes Xi ⊆ Gi for all 1 ≤ i ≤ kh.
We denote Hi = Gi \ V (Xi) and n(Hi) = |V (Hi)|. Addi-

tionally, we have collections E(1), . . . , E(h−1) of edges of H,

where for each 1 ≤ h′ ≤ h − 1, set E(h′) has been com-
puted in iteration h′. We say that (G1, X1), . . . , (Gkh , Xkh),

and E(1), . . . , E(h−1) is a valid input to iteration h, iff the
following invariants hold:

V1. For all 1 ≤ i, j ≤ kh, graphs Hi and Hj are completely
disjoint.

V2. For all 1 ≤ i ≤ kh, Gi ⊆ H\(E(1), . . . , E(h−1)), and Hi
is the sub-graph of H induced by V (Hi). In particular,

no edges e ⊆ V (Hi) belong to E(1), . . . , E(h−1). More-

over, every edge e ∈ E(H) belongs to either
Sh
h′=1E

(h′)

or to
Skh
i=1Gi.

V3. For all Z ∈ Z, for all 1 ≤ i ≤ kh, either Z∩V (Hi) = ∅,
or Z ⊆ V (Hi). Let Zi = {Z ∈ Z | Z ⊆ V (Hi)}.

V4. For each 1 ≤ i ≤ kh, there is a strong solution ϕi to
π(Gi, Xi,Zi), with

Pkh
i=1 crϕi(Gi) ≤ OPT.

V5. If we are given, for each 1 ≤ i ≤ kh, any weak solu-
tion E′i to problem π(Gi, Xi,Zi), and denote Ẽ(h) =Skh
i=1Ei, then E(1)∪· · ·E(h−1)∪Ẽ(h) is a feasible weak

solution to problem π(H, ∅,Z).

V6. For each 1 ≤ h′ < h, and 1 ≤ i ≤ kh, the number of

edges in E(h′) incident on vertices of Hi is at most m∗,

and |E(h′)| ≤ OPT ·m∗. Moreover, no edges in grids

Z ∈ Z belong to
Sh−1
h′=1E

(h′).

V7. Let nh = (1 − 1/ρ)(h−1)/2 · n. For each 1 ≤ i ≤ kh,
either n(Hi) ≤ nh, or Xi = ∅ and n(Hi) ≤ nh−1.

The input to the first iteration consists of a single graph,
G1 = H, with the bounding box X1 = ∅. It is easy to see
that all invariants hold for this input. We end the algo-
rithm at iteration h∗, where nh∗ ≤ (m∗ · ρ · logn)2. Clearly,
h∗ ≤ 2ρ logn, from Invariant (V7). Let G be the set of all
instances that serve as input to iteration h∗. We need the
following theorem, whose proof is omitted due to lack of
space.

Theorem 5.2 There is an efficient algorithm, that, given
any problem instance π(G,X,Z ′), where V (G\X) is canon-
ical for Z ′, and π(G,X,Z ′) has a strong solution of cost
OPT, finds a weak feasible solution to π(G,X,Z ′) of cost

O(OPT ·
√
n′ ·poly(dmax · logn′)+OPT

3
), where n′ = |V (G\

X)|, and dmax is the maximum degree in G.

For each 1 ≤ i ≤ kh∗ , let E
(h∗)
i be the weak solution from

Theorem 5.2, and let E(h∗) =
Skh∗
i=1 E

(h∗)
i . Let OPTi de-

note the cost of the strong optimal solution to π(Gi, Xi,Zi).
Then |E(h∗)| =

Pkh∗
i=1 O(OPTi ·

p
n(Hi) ·poly(dmax · logn)+

OPT3
i ). Since n(Hi) ≤ nh∗−1 ≤ 2nh∗ for all i, this is

bounded by
Pkh∗
i=1 O(OPTi·m∗·ρ·poly(dmax logn)+OPT3

i ) ≤
O(OPT ·m∗ · ρ · poly(dmax logn) + OPT3), as

Pkh∗
i=1 OPTi ≤

OPT from Invariant (V4). The final solution is E∗ =
Sh∗
h=1E

(h),
and

|E∗| ≤
h∗−1X
h=1

|E(h)|+ |E(h∗)|

≤ (2ρ logn)(OPT ·m∗)
+O(OPT ·m∗ · ρ · poly(dmax · logn))

+O(OPT3)

= O(OPT5 poly(dmax · logn)).

We say that the execution of iteration h is successful, iff it
either produces a valid input to the next iteration, together
with the set E(h) of edges, or finds a nasty canonical set in
H. We can execute each iteration, so that it is successful
with probability at least (1− 1/ρ), if all previous iterations
were successful. If any iteration returns a nasty canonical
set, then we stop the algorithm and return this vertex set
as an output. Since there are at most 2ρ logn iterations,
the probability that all iterations are successful is at least
(1−1/ρ)2ρ logn ≥ 1/poly(n). In order to complete the proof
of Theorem 5.1, it is now enough to show an algorithm for
executing each iteration, such that, given a valid input to the
current iteration, the algorithm either finds a nasty canoni-
cal set in H, or returns a valid input to the next iteration,
with probability at least 1

ρ
. Due to lack of space, this part

is omitted, and can be found in the full version of the paper,
available as an arXiv report, arXiv:1012.0255v1.

6. CONCLUSIONS
We have shown an efficient randomized algorithm to find

a drawing of any graph G in the plane, with the number of
crossings bounded by O

`
(OPTcr(G))10 poly(dmax · logn)

´
.

We did not make an effort to optimize the powers of OPT,
dmax and logn in this guarantee, or the constant hidden
in the O(·) notation, and we believe that they can be im-
proved. We hope that the technical tools developed in this



paper will help obtain better algorithms for the Minimum
Crossing Number problem. A specific possible direction is
obtaining efficient algorithms for ρ-balanced α-well-linked
bi-partitions. In particular, an interesting open question
is whether there is an efficient algorithm, that, given an
n-vertex graph G with maximum degree dmax, finds a ρ-
balanced α-well-linked bi-partition of G, for values ρ, 1/α =
poly(dmax · logn). In fact it is not even clear whether such
a bi-partition exists in every graph. We note that the de-
pendence of ρ on dmax is necessary, for example, in the star
graph. This question appears to be interesting in its own
right, and its positive resolution (even if the parameters ρ
and α depend on OPTcr(G)) would greatly simplify our al-
gorithm and improve its performance guarantee.
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