
An Algorithm for the Graph Crossing Number Problem

Julia Chuzhoy∗

December 1, 2010

Abstract

We study the Minimum Crossing Number problem: given an n-vertex graph G, the goal is to
find a drawing of G in the plane with minimum number of edge crossings. This is one of the
central problems in topological graph theory, that has been studied extensively over the past
three decades. The first non-trivial efficient algorithm for the problem, due to Leighton and
Rao, achieved an O

(
n log4 n

)
-approximation for bounded degree graphs. This algorithm has since

been improved by poly-logarithmic factors, with the best current approximation ratio standing on
O
(
n · poly(d) · log3/2 n

)
for graphs with maximum degree d. In contrast, only APX-hardness is

known on the negative side.
In this paper we present an efficient randomized algorithm to find a drawing of any n-vertex

graph G in the plane with O
(
OPT10 · poly(d · log n)

)
crossings, where OPT is the number of cross-

ings in the optimal solution, and d is the maximum vertex degree in G. This result implies an
Õ
(
n9/10 · poly(d)

)
-approximation for Minimum Crossing Number, thus breaking the long-standing

Õ(n)-approximation barrier for bounded-degree graphs.

∗Toyota Technological Institute, Chicago, IL 60637. Email: cjulia@ttic.edu. Supported in part by NSF CAREER
award CCF-0844872.



1 Introduction

A drawing of a graph G in the plane is a mapping, in which every vertex of G is mapped into a point in
the plane, and every edge into a continuous curve connecting the images of its endpoints. We assume
that no three curves meet at the same point, and no curve contains an image of any vertex other than
its endpoints. A crossing in such a drawing is a point where the images of two edges intersect, and the
crossing number of a graph G, denoted by OPTcr(G), is the smallest number of crossings achievable
by any drawing of G in the plane. The goal in the Minimum Crossing Number problem is to find a
drawing of the input graph G with minimum number of crossings. We denote by n the number of
vertices in G, and by dmax its maximum vertex degree.

The concept of the graph crossing number dates back to 1944, when Pál Turán has posed the question
of determining the crossing number of the complete bipartite graph Km,n. This question was motivated
by improving the performance of workers at a brick factory, where Turán has been working at the
time (see Turán’s account in [Tur77]). Later, Anthony Hill (see [Guy60]) has posed the question of
computing the crossing number of the complete graph Kn, and Erdös and Guy [EG73] noted that
“Almost all questions one can ask about crossing numbers remain unsolved.” Since then, the problem
has become a subject of intense study, with hundreds of papers written on the subject (see, e.g.
the extensive bibliography maintained by Vrt’o [Vrt].) Despite this enormous stream of results and
ideas, some of the most basic questions about the crossing number problem remain unanswered. For
example, the crossing number of K11 was established just a few years ago ([PR07]), while the answer
for Kt, t ≥ 13, remains elusive. We note that in general OPTcr(G) can be as large as Ω(n4), for
example for the complete graph. In particular, one of the famous results in this area, due to Ajtai et
al. [ACNS82] and Leighton [Lei83] states that if |E(G)| ≥ 4n, then OPTcr(G) = Ω(|E(G)|3/n2).

In this paper we focus on the algorithmic aspect of the problem. The first non-trivial algorithm for
Minimum Crossing Number was obtained by Leighton and Rao [LR99], who combined their break-
through result on balanced separators with the techniques of Bhatt and Leighton [BL84] for VLSI
design, to obtain an algorithm that finds a drawing of any bounded-degree n-vertex graph with at
most O(log4 n) ·(n+OPTcr(G)) crossings. This bound was later improved to O(log3 n) ·(n+OPTcr(G))
by Even, Guha and Schieber [EGS02], and the new approximation algorithm of Arora, Rao and Vazi-
rani [ARV09] for Balanced Cut gives a further improvement to O(log2 n)·(n+OPTcr(G)), thus implying
an O(n · log2 n)-approximation for Minimum Crossing Number on bounded-degree graphs. This result
can also be extended to general graphs with maximum vertex degree dmax, where the approximation
factor becomes O(n ·poly(dmax) · log2 n). Chuzhoy, Makarychev and Sidiropoulos [CMS] have recently
improved this result to an O(n · poly(dmax) · log3/2 n)-approximation. On the negative side, the prob-
lem was shown to be NP-complete by Garey and Johnson [GJ83], and remains NP-complete even
on cubic graphs [Hli06]. More surprisingly, even in the very restricted case, where the input graph
G is obtained by adding a single edge to a planar graph, the problem is still NP-complete [CM10].
The NP-hardness proof of [GJ83], combined with the inapproximability result for Minimum Linear-
Arrangement [AMS07], implies that there is no PTAS for Minimum Crossing Number unless NP has
randomized subexponential time algorithms.

To summarise, although current lower bounds do not rule out the possibility of a constant-factor
approximation for the problem, the state of the art, prior to this work, only gives an Õ(n ·poly(dmax))-
approximation. In view of this glaring gap in our understanding of the problem, a natural question is
whether we can obtain good algorithms for the case where the optimal solution cost is low — arguably,
the most interesting setting for this problem. A partial answer was given by Grohe [Gro04], who
showed that the problem is fixed-parameter tractable. Specifically, Grohe designed an exactO(n2)-time
algorithm, for the case where the optimal solution cost is bounded by a constant. Later, Kawarabayashi
and Reed [KR07] have shown a linear-time algorithm for the same setting. Unfortunately, the running

1



time of both algorithms depends super-exponentially on the optimal solution cost.

Our main result is an efficient randomized algorithm, that, given any n-vertex graph with maximum
degree dmax, produces a drawing of G with O

(
(OPTcr(G))10 · poly(dmax · log n)

)
crossings with high

probability. In particular, we obtain anO
(
n9/10 · poly(dmax · log n)

)
-approximation for general graphs,

and an Õ(n9/10)-approximation for bounded-degree graphs, thus breaking the long standing barrier of
Õ(n)-approximation for this setting.

We note that many special cases of the Minimum Crossing Number problem have been extensively stud-
ied, with better approximation algorithms known for some. Examples include k-apex graphs [CHM08,
CMS], bounded genus graphs [BPT06, HC10, GHLS07, HS07, CMS] and minor-free graphs [WT07].
Further overview of work on Minimum Crossing Number can be found in the expositions of Richter and
Salazar [RS09], Pach and Tóth [PT00], Matoušek [Mat02], and Székely [Sze05].

Our results and techniques. Our main result is summarized in the following theorem.

Theorem 1.1 There is an efficient randomized algorithm, that, given any n-vertex graph G with
maximum degree dmax, finds a drawing of G in the plane with O

(
(OPTcr(G))10 · poly(dmax · log n)

)
crossings with high probability.

Combining this theorem with the algorithm of Even et al. [EGS02], we obtain the following corollary.

Corollary 1.1 There is an efficient randomized O
(
n9/10 · poly(dmax · log n)

)
-approximation algorithm

for Minimum Crossing Number.

We now give an overview of our techniques. Instead of directly solving the Minimum Crossing Number
problem, it is more convenient to work with a closely related problem – Minimum Planarization. In
this problem, given a graph G, the goal is to find a minimum-cardinality subset E∗ of edges, such that
the graph G \ E∗ is planar. The two problem are closely related, and this connection was recently
formalized by [CMS], in the following theorem:

Theorem 1.2 ([CMS]) Let G = (V,E) be any n-vertex graph of maximum degree dmax, and suppose
we are given a subset E∗ ⊂ E of edges, |E∗| = k, such that G\E∗ is planar. Then there is an efficient
algorithm to find a drawing of G in the plane with at most O

(
d3

max · k · (OPTcr(G) + k)
)

crossings.

Therefore, in order to solve the Minimum Crossing Number problem, it is sufficient to find a good
solution to the Minimum Planarization problem on the same graph. We note that an O(

√
n log n ·

dmax)-approximation algorithm for the Minimum Planarization problem follows easily from the Planar
Separator theorem of Lipton and Tarjan [LT79] (see e.g. [CMS]), and we are not aware of any other
algorithmic results for the problem. Our main technical result is the proof of the following theorem,
which, combined with Theorem 1.2, implies Theorem 1.1.

Theorem 1.3 There is an efficient randomized algorithm, that, given an n-vertex graph G = (V,E)
with maximum degree dmax, finds a subset E∗ ⊆ E of edges, such that G \E∗ is planar, and with high
probability |E∗| = O

(
(OPTcr(G))5 poly(dmax · log n)

)
.

We now describe our main ideas and techniques. Given an optimal solution ϕ to the Minimum Crossing
Number problem on graph G, we say that an edge e ∈ E(G) is good iff it does not participate in any
crossings in ϕ. For convenience, we consider a slightly more general version of the problem, where, in
addition to the graph G, we are given a simple cycle X ⊆ G, that we call the bounding box, and our
goal is to find a drawing of G, such that the edges of X do not participate in any crossings, and all
vertices and edges of G \ X appear on the same side of the closed curve to which X is mapped. In

2



other words, if γX is the simple closed curve to which X is mapped, and F1, F2 are the two faces into
which γX partitions the plane, then one of the faces F ∈ {F1, F2} must contain the drawings of all the
edges and vertices of G \X. We call such a drawing a drawing of G inside the bounding box X. Since
we allow X to be empty, this is indeed a generalization of the Minimum Crossing Number problem. In
fact, from Theorem 1.2, it is enough to find what we call a weak solution to the problem, namely, a
small-cardinality subset E∗ of edges with E∗ ∩ E(X) = ∅, such that there is a planar drawing of the
remaining graph G \ E∗ inside the bounding box X. Our proof consists of three major ingredients
that we describe below.

The algorithm is iterative. Throughout the algorithm, we gradually remove some edges from the
graph, and gradually build a planar drawing of the remaining graph. One of the central notions we
use is that of graph skeletons. A skeleton K of graph G is simply a sub-graph of G, that contains the
bounding box X, and has a unique planar drawing (for example, it may be convenient to think of K
as being 3-vertex connected). Given a skeleton K, and a small subset E′ of edges (that we eventually
remove from the graph), we say that K is an admissible skeleton iff all the edges of K are good, and
every connected component of G \ (K ∪ E′) only contains a small number of vertices (say, at most
(1 − 1/ρ)n, for some balance parameter ρ). Since K has a unique planar drawing, and all its edges
are good, we can find its unique planar drawing efficiently, and it must be identical to the drawing
ϕK of K induced by the optimal solution ϕ. Let F be the set of faces in this drawing. Since K
only contains good edges, for each connected component C of G \ (K ∪ E′), all edges and vertices
of C must be drawn completely inside one of the faces FC ∈ F in ϕ. Therefore, if, for each such
connected component C, we can identify the face FC inside which it needs to be embedded, then we
can recursively solve the problems induced by each such component C, together with the bounding
box formed by the boundary of FC . In fact, given an admissible skeleton K, we show that we can
find a good assignment of the connected components of G \ (K ∪ E′) to the faces of F , so that, on
the one hand, all resulting sub-problems have solutions of total cost at most OPTcr(G), while, on the
other hand, if we combine weak solutions to these sub-problems with the set E′ of edges, we obtain a
feasible weak solution to the original problem. The assignment of the components to the faces of F is
done by reducing the problem to an instance of the Min-Uncut problem. We defer the details of this
part to later sections, and focus here on finding an admissible skeleton K.

Our second main ingredient is the use of well-linked sets of vertices, and well-linked balanced bi-
partitions. Given a set S of vertices, let G[S] be the sub-graph of G induced by S, and let Γ(S) be the
subset of vertices of S adjacent to the edges in E(S, S). Informally, we say that S is α-well-linked, iff
every pair of vertices in Γ(S) can send one flow unit to each other, with overall congestion bounded
by α|Γ(S)|. We say that a bi-partition (S, S) of the vertices of G is ρ-balanced and α-well-linked,
iff |S|, |S| ≥ n/ρ, and both S and S are α-well-linked. Suppose we can find a ρ-balanced, α-well
linked bi-partition of G (it is convenient to think of ρ, α = poly(dmax · log n)). In this case, we show a
randomized algorithm, that w.h.p. constructs an admissible skeleton K, as follows. Let P,P ′ be the
collections of the flow-paths in G[S] and G[S] respectively, guaranteed by the well-linkedness of S and
S. Since the congestion on all edges is relatively low, only a small number of paths in P ∪ P ′ contain
bad edges. Therefore, if we choose a random collection of paths from P and P ′ with appropriate
probability, the resulting skeleton K, obtained from the union of these paths, is unlikely to contain
bad edges. Moreover, we can show that w.h.p., every connected component of G \ K only contains
a small number of edges in E(S, S). It is still possible that some connected component C of G \K
contains many vertices of G. However, only one such component C may contain more than n/2
vertices. Let E′ be the subset of edges in E(S, S), that belong to C. Then, since the original cut
(S, S) is ρ-balanced, once we remove the edges of E′ from C, it will decompose into small enough
components. This will ensure that all connected components of G \ (K ∪ E′) are small enough, and
K is admissible.

3



Using these ideas, given an efficient algorithm for computing ρ-balanced α-well-linked cuts, we can
obtain an algorithm for the Minimum Crossing Number problem. Unfortunately, we do not have an
efficient algorithm for computing such cuts. We can only compute such cuts in graphs that do not
contain a certain structure, that we call nasty vertex sets. Informally, a subset S of vertices is a nasty
set, iff |S| >> |E(S, S)|2, and the sub-graph G[S] induced by S is planar. We show an algorithm,
that, given any graph G, either produces a ρ-balanced α-well linked cut, or finds a nasty set S in
G. Therefore, if G does not contain any nasty sets, we can compute the ρ-balanced α-well-linked
bi-paritition of G, and hence obtain an algorithm for Minimum Crossing Number. Moreover, given any
graph G, if our algorithm fails to produce a good solution to Minimum Crossing Number on G, then
w.h.p. it returns a nasty set of vertices in G.

The third major component of our algorithm is handling the nasty sets. Suppose we are given a
nasty set S, and assume for now that it is also α-well-linked for some parameter α = poly(log n). Let
Γ(S) denote the endpoints of the edges in E(S, S) that belong to S, and let |Γ(S)| = z. Recall that
|S| >> z2, and G[S] is planar. Intuitively, in this case we can use the z × z grid to “simulate” the
sub-graph G[S]. More precisely, we replace the sub-graph G[S] with the z × z grid ZS , and identify
the vertices of the first row of the grid with the vertices in Γ(S). We call the resulting graph the
contracted graph, and denote it by G|S . Notice that the number of vertices in G|S is smaller than that
in G. When S is not well-linked, we perform a simple well-linked decomposition procedure to partition
S into a collection of well-linked subsets, and replace each one of them with a grid separately. Given a
drawing of the resulting contracted graph G|S , we say that it is a canonical drawing if the edges of the
newly added grids do not participate in any crossings. Similarly, we say that a planarizing subset E∗

of edges is a weak canonical solution for G|S , iff the edges of the grids do not belong to E∗. We show
that the crossing number of G|S is bounded by poly(dmax · log n)OPTcr(G), and this bound remains
true even for canonical drawings. On the other hand, we show that given any weak canonical solution
E∗ for G|S , we can efficiently find a weak solution of comparable cost for G. Therefore, it is enough
to find a weak feasible canonical solution for graph G|S . However, even the contracted graph G|S may
still contain nasty sets. We then show that, given any nasty set S′ in G|S , we can find another subset
S′′ of vertices in the original graph G, such that the contracted graph G|S′′ contains fewer vertices than
G|S . The crossing number of G|S′′ is again bounded by poly(dmax · log n)OPTcr(G) even for canonical
drawings, and a weak canonical solution to G|S′′ gives a weak solution to G as before.

Our algorithm then consists of a number of stages. In each stage, it starts with the current contracted
graph G|S (where in the first stage, S = ∅, and G|S = G). It then either finds a good weak canonical
solution for problem G|S , thus giving a feasible solution to the original problem, or returns a nasty set
S′ in graph G|S . We then construct a new contracted graph G|S′′ , that contains fewer vertices than
G|S , and becomes the input to the next stage.

Organization. We start with some basic definitions, notation, and general results on cuts and flows
in Section 2. We then present a more detailed algorithm overview in Section 3. Section 4 is devoted to
the graph contraction step, and the rest of the algorithm appears in Sections 5 and 6. For convenience,
the list of all main parameters appears in Section A of Appendix. Our conclusions appear in Section 7.

2 Preliminaries and Notation

In order to avoid confusion, throughout the paper, we denote the input graph by G, with |V (G)| = n,
and maximum vertex degree dmax. In statements regarding general arbitrary graphs, we will denote
them by G, to distinguish them from the specific graph G.

General Notation. We use the words “drawing” and “embedding” interchangeably. Given any

4



graph G, a drawing ϕ of G, and any sub-graph H of G, we denote by ϕH the drawing of H induced by
ϕ, and by crϕ(G) the number of crossings in the drawing ϕ of G. Notice that we can assume w.l.o.g.
that no edge crosses itself in any drawing. For any pair E1, E2 ⊆ E(G) of subsets of edges, we denote
by crϕ(E1, E2) the number of crossings in ϕ in which the images of edges of E1 intersect the images of
edges of E2, and by crϕ(E1) the number of crossings in ϕ in which the images of edges of E1 intersect
with each other. Given two disjoint sub-graphs H1, H2 of G, we will sometimes write crϕ(H1, H2)
instead of crϕ(E(H1), E(H2)), and crϕ(H1) instead of crϕ(E(H1)). If G is a planar graph, and ϕ is a
drawing of G with no crossings, then we say that ϕ is a planar drawing of G. For a graph G = (V,E),
and subsets V ′ ⊆ V , E′ ⊆ E of its vertices and edges respectively, we denote by G[V ′], G \ V ′, and
G \ E′ the sub-graphs of G induced by V ′, V \ V ′, and E \ E′, respectively.

Definition 2.1 Let γ be any closed simple curve, and let F1, F2 be the two faces into which γ partitions
the plane. Given any drawing ϕ of a graph G, we say that G is embedded inside γ, iff one of the
faces F ∈ {F1, F2} contains the images of all edges and vertices of G (the images of the vertices of G
may lie on γ). Similarly, if C ⊆ G is a simple cycle, then we say that G is embedded inside C, iff
the edges of C do not participate in any crossings, and G \ E(C) is embedded inside γC – the simple
closed curve to which C is mapped.

Given a graph G and a bounding box X, we define the problem π(G,X), that we use extensively.

Definition 2.2 Given a graph G and a simple (possibly empty) cycle X ⊆ G, called the bounding
box, a strong solution for problem π(G,X), is a drawing ψ of G, in which G is embedded inside the
bounding box X, and its cost is the number of crossings in ψ. A weak solution to problem π(G,X) is
a subset E′ ⊆ E(G) \ E(X) of edges, such that G \ E′ has a planar drawing, in which it is embedded
inside the bounding box X.

Notice that in order to prove Theorem 1.3, it is enough to find a weak solution for problem π(G, X0),
where X0 = ∅, of cost O

(
(OPTcr(G))5 poly(dmax · log n)

)
.

Definition 2.3 For any graph G = (V,E), a subset V ′ ⊆ V of vertices is called a c-separator, iff
|V ′| = c, and the graph G \ V ′ is not connected. We say that G is c-connected iff it does not contain
c′-separators, for any 0 < c′ < c.

We will use the following four well-known results:

Theorem 2.1 (Whitney [Whi32]) Every 3-connected planar graph has a unique planar drawing.

Theorem 2.2 (Hopcroft-Tarjan [HT74]) For any graph G, there is an efficient algorithm to determine
whether G is planar, and if so, to find a planar drawing of G.

Theorem 2.3 (Ajtai et al. [ACNS82], Leighton [Lei83]) Let G be any graph with n vertices and
m ≥ 4n edges. Then OPTcr(G) = Ω(m3/n2) = Ω(n).

Theorem 2.4 (Lipton-Tarjan [LT79]) Let G be any n-vertex planar graph. Then there is a constant q,
and an efficient algorithm to partition the vertices of G into three sets A,B,C, such that |A|, |C| ≥ n/3,
|B| ≤ q√n, and there are no edges in G connecting the vertices of A to the vertices of C.

5



2.1 Well-linkedness

Definition 2.4 Let G = (V,E) be any graph, and J ⊆ V any subset of its vertices. We denote by
outG(J) = EG(J, V \J), and we call the edges in outG(J) the terminal edges for J . For each terminal
edge e = (u, v), with u ∈ J , v 6∈ J , we call u the interface vertex and v the terminal vertex for J . We
denote by ΓG(J) and TG(J) the sets of all interface and terminal vertices for J , respectively, and we
omit the subscript G when clear from context (see Figure 2.1).

Γ(J)
J

T (J)

out(J)

Figure 2.1: Terminal vertices and edges for set J are red; interface vertices are blue.

Definition 2.5 Given a graph G, a subset J of its vertices, and a parameter α > 0, we say that J
is α-well-linked, iff for any partition (J1, J2) of J , if we denote by T1 = out(J1) ∩ out(J), and by
T2 = out(J2) ∩ out(J), then |E(J1, J2)| ≥ α ·min {|T1|, |T2|}

Notice that if G is a connected graph and J ⊂ V (G) is α-well-linked for any α > 0, then G[J ] must
be connected. Finally, we define ρ-balanced α-well-linked bi-partitions.

Definition 2.6 Let G be any graph, and let ρ > 1, 0 < α ≤ 1 be any parameters. We say that a
bi-partition (S, S) of V (G) is ρ-balanced and α-well-linked, iff |S|, |S| ≥ |V (G)|/ρ and both S and S
are α-well-linked.

2.2 Sparsest Cut and Concurrent Flow

In this section we summarize some well-known results on graph cuts and flows that we use throughout
the paper. We start by defining the non-uniform sparsest cut problem. Suppose we are given a graph
G = (V,E), with weights wv on vertices v ∈ V . Given any partition (A,B) of V , the sparsity of the
cut (A,B) is |E(A,B)|

min{W (A),W (B)} , where W (A) =
∑

v∈Awv and W (B) =
∑

v∈B wv. In the non-uniform
sparsest cut problem, the input is a graph G with weights on vertices, and the goal is to find a cut of
minimum sparsity. Arora, Lee and Naor [ALN05] have shown an O(

√
log n · log log n)-approximation

algorithm for the non-uniform sparsest cut problem. We denote by AALN this algorithm and by
αALN = O(

√
log n · log log n) its approximation factor. We will usually work with a special case of the

sparsest cut problem, where we are given a subset T ⊆ V of vertices, called terminals, and the vertex
weights are wv = 1 for v ∈ T , and wv = 0 otherwise.

A problem dual to sparsest cut is the maximum concurrent multicommodity flow problem. Here, we
need to compute the maximum value λ, such that λ/|T | flow units can be simultaneously sent in G
between every pair of terminals with no congestion. The flow-cut gap is the maximum possible ratio,
in any graph, between the value of the minimum sparsest cut and the maximum concurrent flow.
The value of the flow-cut gap in undirected graphs, that we denote by βFCG throughout the paper, is
Θ(log n) [LR99, GVY95, LLR94, AR98]. In particular, if the value of the sparsest cut is α, then every
pair of terminals can send α

|T |·βFCG
flow units to each other with no congestion.

Let G be any graph, let S be a subset of vertices of G, and let 0 < α < 1, such that S is α-well-linked.
We now define the sparsest cut and the concurrent flow instances corresponding to S, as follows.

6



For each edge e ∈ out(S), we sub-divide the edge by adding a new vertex te to it. Let G′ denote
the resulting graph, and let T denote the set of all vertices te for e ∈ outG(S). Consider the graph
H = G′[S] ∪ outG′(S). We can naturally define an instance of the non-uniform sparsest cut problem
on H, where the set of terminals is T . The fact that S is α-well-linked is equivalent to the value of
the sparsest cut in the resulting instance being at least α. We obtain the following simple well-known
consequence:

Observation 2.1 Let G, S, H, and T be defined as above, and let 0 < α < 1, such that S is α-
well-linked. Then every pair of vertices in T can send one flow unit to each other in H, such that
the maximum congestion on any edge is at most βFCG|T |/α. Moreover, if M is any partial matching
on the vertices of T , then we can send one flow unit between every pair (u, v) ∈ M in graph H, with
maximum congestion at most 2βFCG/α.

Proof: The first part is immediate from the definition of the flow-cut gap. Let F denote the resulting
flow. In order to obtain the second part, for every pair (u, v) ∈ M , u will send 1/|T | flow units to
every vertex in T , and v will collect 1/|T | flow units from every vertex in T , via the flow F . It is easy
to see that every flow-path is used at most twice.

For convenience, when given an α-well-linked subset S of vertices in a graph G, we will omit the
subdivision of the edges in out(S), and we will say that the edges e ∈ out(S) send flow to each other,
instead of the corresponding vertices te.

We will also use the algorithm of Arora, Rao and Vazirani [ARV09] for balanced cut, summarized
below.

Theorem 2.5 (Balanced Cut [ARV09]) Let G be any n-vertex graph, and suppose there is a par-
tition of the vertices of G into two sets, A and B, with |A|, |B| ≥ εn for some constant ε > 0, and
|E(A,B)| = c. Then there is an efficient algorithm to find a partition (A′, B′) of the vertices of G,
such that |A′|, |B′| ≥ ε′n for some constant 0 < ε′ < ε, and |E(A′, B′)| ≤ O(c

√
log n).

2.3 Canonical Vertex Sets and Solutions

As already mentioned in the Introduction, we will perform a number of graph contraction steps on
the input graph G, where in each such graph contraction step, a sub-graph of G will be replaced
with a grid. So in general, if H is the current graph, we will also be given a collection Z of disjoint
subsets of vertices of H, such that for each Z ∈ Z, H[Z] is the kZ × kZ grid, for some kZ ≥ 2. We
will also ensure that ΓH(Z) is precisely the set of the vertices in the first row of the grid H[Z], and
the edges in outH(Z) form a matching between ΓH(Z) and TH(Z). Given such a graph H, and a
collection Z of vertex subsets, we will be looking for solutions in which the edges of the grids H[Z] do
not participate in any crossings. This motivates the following definitions of canonical vertex sets and
canonical solutions.

Assume that we are given a graph G and a collection Z of disjoint subsets of vertices of G, such that
each subset Z ∈ Z is 1-well-linked (but some vertices of G may not belong to any subset Z ∈ Z).

Definition 2.7 We say that a subset J ⊆ V of vertices is canonical for Z iff for each Z ∈ Z, either
Z ⊆ J , or Z ∩ J = ∅.

We next define canonical drawings and canonical solutions w.r.t. the collection Z of subsets of vertices:

7



Definition 2.8 Let G = (V,E) be any graph, and Z any collection of disjoint subsets of vertices of G.
We say that a drawing ϕ of G is canonical for Z iff for each Z ∈ Z, no edge of G[Z] participates in
crossings. Similarly, we say that a solution E∗ to the Minimum Planarization problem on G is canonical
for Z, iff for each Z ∈ Z, no edge of G[Z] belongs to E∗.

Definition 2.9 Given a graph G, a simple cycle X ⊆ G (that may be empty), and a collection Z of
disjoint subsets of vertices of G, a strong solution to problem π(G,X,Z) is a drawing ψ of G, in which
the edges of E(X) ∪

(⋃
Z∈Z E(G[Z])

)
do not participate in any crossings, and G is embedded inside

the bounding box X. The cost of the solution is the number of edge crossings in ψ. A weak solution
to problem π(G,X,Z) is a subset E′ ⊆ E(G) \ E(X) of edges, such that graph G \ E′ has a planar
drawing inside the bounding box X, and for all Z ∈ Z, E′ ∩ E(G[Z]) = ∅.

We will sometimes use the above definition for problem π(G′, X,Z), where G′ is a sub-graph of G.
That is, some sets Z ∈ Z may not be contained in G′, or only partially contained in it. We can then
define Z ′ to contain, for each Z ∈ Z, the set Z ∩ V (G′). We will sometimes use the notion of weak or
strong solution to problem π(G′, X,Z) to mean weak or strong solutions to π(G′, X,Z ′), to simplify
notation.

2.4 Cuts in Grids

The following simple claim about grids and its corollary are used throughout the paper.

Claim 2.6 Let Z be the k × k grid, for any integer k ≥ 2, and let Γ denote the set of vertices in the
first row of Z. Let (A,B) be any partition of the vertices of Z, with A,B 6= ∅. Then |E(A,B)| ≥
min {|A ∩ Γ|, |B ∩ Γ|}+ 1.

Proof: Let ΓA = Γ∩A, ΓB = Γ∩B, and assume w.l.o.g. that |ΓA| ≤ |ΓB|. If ΓA = ∅, then the claim
is clearly true. Otherwise, there is some vertex t ∈ ΓA, such that a vertex t′ immediately to the right
or to the left of t in the first row of the grid belongs to ΓB. Let e = (t, t′) be the corresponding edge
in the first row of Z. We can find a collection of |ΓA| edge-disjoint paths, connecting vertices in ΓA
to vertices in ΓB, that do not include the edge e, as follows: assign a distinct row of Z (different from
the first row) to each vertex in ΓA. Route each such vertex inside its column to its designated row,
and inside this row to the column corresponding to some vertex in ΓB. If we add the path consisting
of the single edge e, we will obtain a collection of |ΓA|+ 1 edge-disjoint paths, connecting vertices in
ΓA to vertices in ΓB. All these paths have to be disconnected by the above cut.

Corollary 2.1 Let G be any graph, Z any collection of disjoint subsets of vertices of G, such that
for each Z ∈ Z, G[Z] is the kZ × kZ grid, for kZ ≥ 2. Moreover, assume that each vertex in the first
row of Z is adjacent to exactly one edge in outG(Z), and no other vertex of Z is adjacent to edges in
outG(Z). Let s, t be any pair of vertices of G, that do not belong to any set Z ∈ Z, and let (A,B) be
the minimum s–t cut in G. Then both sets A and B are canonical w.r.t. Z.

Proof: Assume for contradiction that some set Z ∈ Z is split between the two sides, A and B. Let
Γ = Γ(Z) denote the set of vertices in the first row of Z, and let ΓA = Γ ∩ A, ΓB = Γ ∩ B. Assume
w.l.o.g. that |ΓA| ≤ |ΓB|. Then by Claim 2.6 |E(A ∩ Z,B ∩ Z)| > |ΓA|, and so the value of the cut
(A \ Z,B ∪ Z) is smaller than the value of the cut (A,B), a contradiction.

Claim 2.7 Let Z be the k × k grid, for any integer k ≥ 2, and let Γ be the set of vertices in the first
row of Z. Suppose we are given any partition (A,B) of V (Z), denote ΓA = Γ ∩ A, ΓB = Γ ∩ B, and
assume that |ΓB| ≤ |ΓA|. Then |B| ≤ 4|E(A,B)|2.

8



Proof: Denote M = |E(A,B)|. Let CA denote the set of columns associated with the vertices in ΓA,
and similarly, CB is the set of columns associated with the vertices in ΓB. Notice that (CA, CB) define
a partition of the columns of Z. We consider three cases.

The first case is when no column is completely contained in A. In this case, for every column in CA,
at least one edge must belong to E(A,B), and so M ≥ |ΓA| ≥ k/2. Since |B| ≤ |Z| ≤ k2, the claim
follows. From now on we assume that there is some grid column, denoted by c, that is completely
contained in A.

The second case is when some grid column c′ is completely contained in B. In this case, it is easy to
see that M ≥ k must hold, as there are k edge-disjont paths connecting vertices of c to vertices of c′

in Z. So |B| ≤ |Z| ≤ k2 ≤M2, as required.

Finally, assume that no column is contained in B. Let C ′B be the set of columns that have at least one
vertex in B. Clearly, M ≥ |C ′B|. Let M ′ be the maximum number of vertices in any column c′ ∈ C ′B,
which are contained in B. Then M ≥ M ′ must hold, since there are M ′ edge-disjoint paths between
the vertices of column c, and the vertices of c′ ∩B. On the other hand, |B| ≤ |C ′B| ·M ′ ≤M2.

2.5 Well-linked Decompositions

The next theorem summarizes well-linked decomposition of graphs, which has been used extensively in
graph decomposition (e.g., see [CKS05, Räc02]). For completeness we provide its proof in Appendix.

Theorem 2.8 (Well-linked decomposition) Given any graph G = (V,E), and any subset J ⊆ V
of vertices, we can efficiently find a partition J of J , such that each set J ′ ∈ J is α∗-well-linked for
α∗ = Ω(1/(log3/2 n log logn)), and

∑
J ′∈J | out(J ′)| ≤ 2 out(J).

We now define some additional properties that set J may possess, that we use throughout the paper.
We will then show that if a set J has any collection of these properties, then we can find a well-linked
decomposition J of J , such that every set J ′ ∈ J has these properties as well.

Definition 2.10 Given a graph G and any subset J ⊆ V (G) of its vertices, we say that J has property
(P1) iff the vertices of T (J) are connected in G \ J . We say that it has property (P2) iff there is a
planar drawing of J in which all interface vertices Γ(J) lie on the boundary of the same face, that
we refer to as the outer face. We denote such a planar drawing by π(J). If there are several such
drawing, we select any of them arbitrarily.

The next theorem is an extension of Theorem 2.8, and its proof appears in Appendix.

Theorem 2.9 Suppose we are given any graph G = (V,E), a subset J ⊆ V of vertices, and a collection
Z of disjoint subsets of vertices of V , such that each set Z ∈ Z is 1-well-linked. Then we can efficiently
find a partition J of J , such that each set J ′ ∈ J is α∗-well linked for α∗ = Ω(1/(log3/2 n log logn)),
and

∑
J ′∈J | out(J ′)| ≤ 2 out(J). Moreover, if J has any combination of the following three properties:

(1) property (P1); (2) property (P2); (3) it is a canonical set for Z, then each set J ′ ∈ J will also
have the same combination of these properties.

Throughout the paper, we use α∗ to denote the parameter from Theorem 2.9.

9



3 High Level Algorithm Overview

In this section we provide a high-level overview of the algorithm. We start by defining the notion of
nasty vertex sets.

Definition 3.1 Given a graph G, we say that a subset S ⊆ V (G) of vertices is nasty iff it has
properties (P1) and (P2), and |S| ≥ 216·d6max

(α∗)2 · |Γ(S)|2, where α∗ is the parameter from Theorem 2.8.

Note that we do not require that G[S] is connected.

For the sake of clarity, let us first assume that the input graph G contains no nasty sets. Our algorithm
then proceeds as follows. We use a balancing parameter ρ = O(OPTcr(G) · poly(dmax · log n)) whose
exact value is set later. The algorithm has O(ρ · log n) iterations. At the beginning of each iteration
h, we are given a collection G1, . . . , Gkh of kh ≤ OPTcr(G) disjoint sub-graphs of G, together with
bounding boxes Xi ⊆ Gi for all i. We are guaranteed that w.h.p., there is a strong solution to each
problem π(Gi, Xi), of total cost at most OPTcr(G). In the first iteration, k1 = 1, and the only graph
is G1 = G, whose bounding box is X0 = ∅.
We now proceed to describe each iteration. The idea is to find a skeleton Ki for each graph Gi, with
Xi ⊆ Ki, such that Ki only contains good edges — that is, edges that do not participate in any
crossings in the optimal solution ϕ, and Ki has a unique planar drawing, in which Xi serves as the
bounding box. Therefore, we can efficiently find the drawing ϕKi of the skeleton Ki, induced by the
optimal drawing ϕ. We then decompose the remaining graph Gi \ E(Ki) into clusters, by removing
a small subset of edges from it, so that, on the one hand, for each such cluster C, we know the face
FC of ϕKi where we should embed it, while on the other hand, different clusters C,C ′ do not interfere
with each other, in the sense that we can find an embedding of each one of these clusters separately,
and their embeddings do not affect each other. For each such cluster C, we then define a new problem
π(C, γ(FC)), where γ(FC) is the boundary of the face FC . We will ensure that all resulting sub-
problems have strong solutions whose total cost is at most OPTcr(G). In particular, there are at most
OPTcr(G) resulting sub-problems, for which ∅ is not a feasible weak solution. Therefore, in the next
iteration we will need to solve at most OPTcr(G) new sub-problems. The main challenge is to find
Ki, such that the number of vertices in each such cluster C is bounded by roughly (1− 1/ρ)|V (Gi)|,
so that the number of iterations is indeed bounded by O(ρ log n). We need this bound on the number
of iterations, since the probability of successfully constructing the skeletons in each iteration is only
(1− 1/ρ). Roughly speaking, we are able to build the skeleton as required, if we can find a ρ-balanced
α-well-linked bipartition of the vertices of Gi, where α = 1/ poly(dmax · log n). We are only able to
find such a partition if no nasty sets exist in G. More precisely, we show an efficient algorithm, that
either finds the desired bi-partition, or returns a nasty vertex set.

In order to obtain the whole algorithm, we therefore need to deal with nasty sets. We do so by
performing a graph contraction step, which is formally defined in the next section. Informally, given
a nasty set S, we find a partition X of S, such that for every pair X,X ′ ∈ X , the graphs G[X],G[X ′]
share at most one interface vertex and no edges. Each such graph G[X] is also α∗-well-linked, has
properties (P1) and (P2), and

∑
X∈X |Γ(X)| ≤ O(|Γ(S)|). We then replace each sub-graph G[X] of G

by a grid ZX , whose interface is Γ(X). After we do so for each X ∈ X , we denote by G|S the resulting
contracted graph. Notice that we have replaced G[S] by a much smaller graph, whose size is bounded
by O(|Γ(S)|2). Let Z denote the collection of sets V (ZX) of vertices, for X ∈ X . We then show
that the cost of the optimal solution to problem π(G|S , ∅,Z) is at most poly(dmax · log n)OPTcr(G).
Therefore, we can restrict our attention to canonical solutions only. We also show that it is enough to
find a weak solution to problem π(G|S , ∅,Z), in order to obtain a weak solution for the whole graph
G. Unfortunately, we do not know how to find a nasty set S, such that the corresponding contracted

10



graph G|S contains no nasty sets. Instead, we do the following. Let H = G|S be the current graph,
which is a result of the graph contraction step on some set S of vertices, and let Z be the corresponding
collection of sub-sets of vertices representing the grids. Suppose we can find a nasty canonical set R
in the graph H. We show that this allows us to find a new set S′ of vertices in G, such that the
contracted graph G|S′ contains fewer vertices than G|S .

Returning to our algorithm, let G|S be the current contracted graph. We show that with high proba-
bility, the algorithm either returns a weak solution for G|S of cost O

(
(OPTcr(G))5 poly(dmax · log n)

)
,

or it returns a nasty canonical subset S′ of G|S . In the former case, we can recover a good weak
solution for the original graph G. In the latter case, we find a subset S′′ of vertices in the original
graph G, and perform another contraction step on G, obtaining a new graph G|S′′ , whose size is
strictly smaller than that of G|S . We then apply the algorithm to graph G|S′′ . Since the total number
of graph contraction steps is bounded by n, after n such iterations, we are guaranteed w.h.p. to
obtain a weak feasible solution of cost O

(
(OPTcr(G))5 poly(dmax · log n)

)
to π(G, ∅), thus satisfying

the requirements of Theorem 1.3. We now turn to formal description of the algorithm. One of the
main ingredients is the graph contraction step, summarized in the next section.

4 Graph Contraction Step

The input to the graph contraction step consists of the input graph G, and a subset S ⊆ V (G) of
vertices, for which properties (P1) and (P2) hold. It will be convenient to think of S as a nasty set,
but we do not require it.

Let C = {G1, . . . , Gq} be the set of all connected components of G[S]. For each 1 ≤ i ≤ q, let
Γi = V (Gi) ∩ Γ(S) = Γ(V (Gi)) be the set of the interface vertices of Gi. The goal of the graph
contraction step is to find, for each 1 ≤ i ≤ q, a partition Xi of the set V (Gi), that has the following
properties. Let X =

⋃q
i=1Xi.

C1. Each set X ∈ X is α∗-well-linked, and has properties (P1) and (P2). Moreover, there is a planar
drawing π′(X) of G[X], and a simple closed curve γX , such that G[X] is embedded inside γX
in π′(X), and the vertices of Γ(X) lie on γX .

C2. For each X ∈ X , either |Γ(X)| = 2, or there is a partition (C∗X , R1, . . . , Rt) of X, such that
G[C∗X ] is 2-connected and Γ(X) ⊆ C∗X . Moreover, for each 1 ≤ t′ ≤ t, there is a vertex ut′ ∈ C∗X ,
whose removal from G[X] separates the vertices of Rt′ from the remaining vertices of X.

C3. For each pair X,X ′ ∈ X , the two sets of vertices are completely disjoint, except for possibly
sharing one interface vertex, v ∈ Γ(X) ∩ Γ(X ′).

C4. For each 1 ≤ i ≤ q, if Γ′i =
⋃
X∈Xi Γ(X), then |Γ′i| ≤ 9|Γi|.

C5. For each X ∈ X , |X| ≥ (α∗|Γ(X)|)2/64d2
max.

For each set X ∈ X , we now define a new graph Z ′X , that will eventually replace the sub-graph
G[X] in G. Intuitively, we need Z ′X to contain the vertices of Γ(X) and to be 1-well-linked w.r.t.
these vertices. We also need it to have a unique planar embedding where the vertices of Γ(X) lie on
the boundary of the same face, and finally, we need the size of the graph Z ′X to be relatively small,
since this is a graph contraction step. The simplest graph satisfying these properties is a grid of size
|Γ(X)| × |Γ(X)|.

11



Specifically, we first define a graph ZX as follows: if |ΓX | = 1, then ZX consists of a single vertex,
and if |ΓX | = 2, then ZX consists of a single edge. Otherwise, ZX is a grid of size |Γ(X)| × |Γ(X)|. In
order to obtain the graph Z ′X , we add the set Γ(X) of vertices to ZX , and add a matching between
the vertices of the first row of the grid and the vertices of Γ(X). This is done so that the order of
the vertices of Γ(X) along the first row of the grid is the same as their order along the curve γX in
the drawing π′(X). We refer to these new edges as the matching edges. For the cases where |ΓX | = 1
and |ΓX | = 2, we obtain Z ′X by adding the vertices of Γ(X) to ZX , and adding an arbitrary matching
between ΓX and the vertices of ZX . (See Figure 4.1).

πX

v1

v2
. . .

vp . . .

v3

v1 v2 v3 vp. . .

Z ′
X

(a) General case

πX

v1

Z ′
X

v1

u1

πX

v1 v2

Z ′
X

v1 v2

u1 u2

(b) |Γ(X)| = 1

πX

v1

Z ′
X

v1

u1

πX

v1 v2

Z ′
X

v1 v2

u1 u2

(c) |Γ(X)| = 2

Figure 4.1: Graph Z ′X . The matching edges and the interface vertices are blue; the grid ZX is black.

The contracted graph G|S is obtained from G, by replacing, for each X ∈ X , the subgraph G[X] of
G, with the graph Z ′X . This is done as follows: first, delete all vertices and edges of G[X], except for
the vertices of Γ(X), from G, and add the edges and the vertices of Z ′X instead. Next, identify the
copies of the interface vertices Γ[X] in the two graphs. Let H = G|S denote the resulting contracted
graph. Notice that

q∑
i=1

∑
X∈Xi

|V (Z ′X)| ≤
q∑
i=1

∑
X∈Xi

2|Γ(X)|2 ≤
q∑
i=1

2|Γ′i|2d2
max ≤ 162d2

max|Γ|2 (4.1)

(we have used the fact that a vertex may belong to the interface of at most dmax sets X ∈ Xi, and
Property (C4)). Therefore, if the initial vertex set S is nasty, then we have indeed reduced the graph
size, as |V (H)| < |V (G)|.
We now define a collection Z of subsets of vertices of H, as follows: Z = {V (ZX) | X ∈ X}. Notice
that these sets are completely disjoint, as ZX does not contain the interface vertices Γ(X). Moreover,
for each Z ∈ Z, H[Z] is a grid, ΓH(Z) consists of the vertices in the first row of the grid, and outH(Z)
consists of the set of the matching edges, each of which connects a vertex in the first row of the grid
Z to a distinct vertex in TH(Z). Using Definitions 2.7 and 2.8, we can now define canonical subsets
of vertices, canonical drawings and canonical solutions to the Minimum Planarization problem on H,
with respect to Z. Our main result for graph contraction is summarized in the next theorem, whose
proof appears in Appendix.

12



Theorem 4.1 Let S ⊆ V (G) be any subset of vertices with properties (P1) and (P2), and let
{G1, . . . , Gq} be the set of all connected components of graph G[S]. Then for each 1 ≤ i ≤ q, we can
efficiently find a partition Xi of V (Gi), such that the resulting partition X =

⋃q
i=1Xi of S has prop-

erties (C1)–(C5). Moreover, there is a canonical drawing of the resulting contracted graph H = G|S
with O(d9

max · log10 n · (log log n)4 · OPTcr(G)) crossings.

The next claim shows, that in order to find a good solution to the Minimum Planarization problem on
G, it is enough to solve it on G|S .

Claim 4.2 Let S be any subset of vertices of G, X any partition of S with properties (C1)–(C5),
H = G|S the corresponding contracted graph and Z the collection of grids ZX for X ∈ X . Then
given any canonical solution E∗ to the Minimum Planarization problem on H, we can efficiently find a
solution of cost O(dmax)|E∗| to Minimum Planarization on G.

Proof: Partition set E∗ of edges into two subsets: E∗1 contains all edges that belong to sub-graphs
Z ′X for X ∈ X , and E∗2 contains all remaining edges. Notice that since E∗ is a canonical solution,
each edge e ∈ E∗1 must be a matching edge for some graph Z ′X . Also from the construction of the
contracted graph H, all edges in E∗2 belong to E(G).

Consider some set X ∈ X , and let Γ′(X) ⊆ Γ(X) denote the subset of the interface vertices of
Z ′X , whose matching edges belong to E∗1 . Let Γ′ =

⋃
X∈X Γ′(X). We now define a subset E∗∗1 of

edges of G as follows: for each vertex v ∈ Γ′, add all edges incident to v in G to E∗∗1 . Finally,
we set E∗∗ = E∗∗1 ∪ E∗2 . Notice that E∗∗ is a subset of edges of G, and |E∗∗| = |E∗∗1 | + |E∗2 | ≤
dmax|E∗1 | + |E∗2 | ≤ dmax|E∗|. In order to complete the proof of the claim, it is enough to show that
E∗∗ is a feasible solution to the Minimum Planarization problem on G.

Let G′ = G\E∗∗, let H ′ = H \E∗, and let ψ be a planar drawing of H ′. It is now enough to construct
a planar drawing ψ′ of G′. In order to do so, we start from the planar drawing ψ of H ′. We then
consider the sets X ∈ X one-by-one. For each such set, we replace the drawing of Z ′X \ Γ′(X) with a
drawing of G[X] \ Γ′(X). The drawings of the vertices in Γ(X) are not changed by this procedure.
After all sets X ∈ X are processed, we will obtain a planar drawing of graph G′ (that may also contain
drawings of some edges in E∗∗, that we can simply erase).

Consider some such set X ∈ X . Let G be the current graph (obtained from H ′ after a number of such
replacement steps), and let ψ be the current planar drawing of G. Observe that the grid ZX has a
unique planar drawing. We say that a planar drawing of graph Z ′X \ Γ′(X) is standard in ψ, iff we
can draw a simple closed curve γ′X , such that ZX is embedded completely inside γ′X ; no other vertices
or edges of G are embedded inside γ′X ; the only edges that γ′X intersects are the matching edges of
Z ′X \ Γ′(X), and each such matching edge is intersected exactly once by γ′X (see Figure 4.2).

It is possible that the drawing of Z ′X \Γ′(X) in ψ is not standard. However, since ψ is planar, this can
only happen for the following three reasons: (1) some connected component C of the current graph G is
embedded inside some face of the grid ZX : in this case we can simply move the drawing of C elsewhere;
(2) there is some subset C of V (G), and a vertex v ∈ Γ(X) \ Γ′(X), such that ΓG(C) = v, and G[C]
is embedded inside one of the faces of the grid ZX incident to the other endpoint of the matching
edge of v; and (3) there is some subset C of V (G), and two consecutive vertices u, v ∈ Γ(X) \ Γ′(X),
such that ΓG(C) = {u, v}, and G[C] is embedded inside the unique face of the grid ZX incident to the
other endpoints of the matching edges of u and v (See Figure 4.3). In the latter two cases, we simply
move the drawing of C right outside the grid, so that the corresponding matching edges now cross the
curve γ′(X).

To conclude, we can transform the current planar drawing ψ of the graph G into another planar

13



γ′
X

Γ(X) \ Γ′(X)

Figure 4.2: A standard drawing of Z ′X \ Γ′(X)

C1

C2C3

C2C3 C1

Figure 4.3: Transforming drawing ψ to obtain a standard drawing of Z ′X \ Γ′(X). Cases 1, 2 and 3
are illustrated by clusters C1, C2 and C3, respectively.

drawing ψ̃, such that the induced drawing of Z ′X \ Γ′(X) is standard. We can now draw a simple
closed curve γ′′(X), such that Z ′X \ Γ′(X) is embedded inside γ′′(X), no other vertices or edges are
embedded inside γ′′(X), and the set of vertices whose drawings lie on γ′′(X) is precisely Γ(X)\Γ′(X).
Notice that the ordering of the vertices of Γ(X) \ Γ′(X) along this curve is exactly the same as their
ordering along the curve γ(X) in the planar embedding π′(X) of G[X], guaranteed by Property (C1).
Let π′′(X) be the drawing of G[X]\Γ′(X) induced by π′(X). We can now simply replace the drawing
of Z ′X \ Γ′(X) with the drawing π′′(X) of G[X] \ Γ′(X), identifying the curves γX and γ′′X , and the
drawings of the vertices in Γ(X) \ Γ′(X) on them. The resulting drawing remains planar, and the
drawings of the vertices in Γ(X) do not change.

Finally, we show that if we find a nasty canonical set in G|S , then we can contract G even further.
The proof of the following theorem appears in Appendix.

Theorem 4.3 Let S be any subset of vertices of G, X any partition of S with properties (C1)–(C5),
H = G|S the corresponding contracted graph, and Z the corresponding collection of grids ZX for
X ∈ X . Then given any nasty canonical vertex set R ⊆ V (H), we can efficiently find a subset
S′ ⊆ V (G) of vertices, and a partition X ′ of S′, such that properties (C1)–(C5) hold for X ′, and
if H ′ = G|S′ is the corresponding contracted graph, then |V (H ′)| < |V (H)|. Moreover, there is a
canonical drawing ϕ′ of H ′ with crϕ′(H ′) = O(d9

max · log10 n · (log log n)4 · OPTcr(G)).

14



Notice that Claim 4.2 applies to the new contracted graph as well.

5 The Algorithm

The algorithm consists of a number of stages. In each stage j, we are given as input a subset S of
vertices of G, the contracted graph H = G|S , and the collection Z of disjoint sub-sets of vertices of H,
corresponding to the grids ZX obtained during the contraction step. The goal of stage j is to either
produce a nasty canonical set R in H, or to find a weak feasible solution to problem π(H, ∅,Z). We
prove the following theorem.

Theorem 5.1 There is an efficient randomized algorithm, that, given a contracted graph H, a corre-
sponding collection Z of disjoint subsets of vertices of H, and a bound OPT′ on the cost of the strong
optimal solution to problem π(H, ∅,Z), with probability at least 1/poly(n), produces either a nasty
canonical subset R of vertices of H, or a weak feasible solution E∗, |E∗| ≤ O((OPT′)5 poly(dmax·log n))
for problem π(H, ∅,Z). (Here, n = |V (G)|).

We prove this theorem in the rest of this section, but we first show how Theorems 1.3, 1.1 and
Corollary 1.1 follow from it. We start with proving Theorem 1.3, by showing an efficient randomized
algorithm to find a subset E∗ ⊆ E(G) of edges, such that G\E∗ is planar, and |E∗| ≤ O((OPTcr(G))5 ·
poly(dmax · log n)). We assume that we know the value OPTcr(G), by using the standard practice of
guessing this value, running the algorithm, and then adjusting the guessed value accordingly. It is
enough to ensure that whenever the guessed value OPT ≥ OPTcr(G), the algorithm indeed returns
a subset E∗ of edges, |E∗| ≤ O(OPT5 poly(dmax · log n)), such that G \ E∗ is a planar graph w.h.p.
Therefore, from now on we assume that we are given a value OPT ≥ OPTcr(G). The algorithm
consists of a number of stages. The input to stage j is a contracted graph H, with the corresponding
family Z of vertex sets. In the input to the first stage, H = G, and Z = ∅. In each stage j,
we run the algorithm from Theorem 5.1 on the current contracted graph H, and the family Z of
vertex subsets. From Theorem 4.1, there is a strong feasible solution to problem π(H, ∅,Z) of cost
O(OPT·poly(log n·dmax)), and so we can set the parameter OPT′ to this value. Whenever the algorithm
returns a nasty canonical set R in graph H, we terminate the current stage, and compute a new
contracted graph H′, guaranteed by Theorem 4.3. Graph H′, together with the corresponding family
Z ′ of vertex subsets, becomes the input to the next stage. Alternatively, if, after poly(n) executions of
the algorithm from Theorem 5.1, no nasty canonical set is returned, then with high probability, one of
the algorithm executions has returned a weak feasible solution E∗, |E∗| ≤ O(OPT5 poly(dmax · log n))
for problem π(H, ∅,Z). From Claim 4.2, we can recover from this solution a planarizing set E∗∗

of edges for graph G, with |E∗∗| = O(OPT5 poly(dmax · log n)). Since the size of the contracted
graph H goes down after each contraction step, the number of stages is bounded by n, thus implying
Theorem 1.3. Combining Theorem 1.3 with Theorem 1.2 immediately gives Theorem 1.1. Finally, we
obtain Corollary 1.1 as follows. Recall that the algorithm of Even et al. [EGS02] computes a drawing
of any n-vertex bounded degree graph G with O(log2 n) · (n + OPTcr(G)) crossings. It was shown
in [CMS], that this algorithm can be extended to arbitrary graphs, where the number of crossings
becomes O(poly(dmax) · log2 n) · (n+OPTcr(G)). We run their algorithm, and the algorithm presented
in this section, on graph G, and output the better of the two solutions. If OPTcr(G) < n1/10, then our
algorithm is an O(n9/10 poly(dmax · log n))-approximation; otherwise, the algorithm of [EGS02] gives
an O(n9/10 poly(dmax · log n))-approximation.

The remainder of this section is devoted to proving Theorem 5.1. Recall that we are given the
contracted graph H, and a collection Z of vertex-disjoint subsets of V (H). For each Z ∈ Z, H[Z] is a
grid, and E(Z, V (H) \ Z) consists of a set MZ of matching edges. Each such edge connects a vertex

15



in the first row of Z to a distinct vertex in TH(Z), and these edges form a matching between the first
row of Z and TH(Z). Abusing the notation, we denote the bound on the cost of the strong optimal
solution to π(H, ∅,Z) by OPT from now on, and the number of vertices in H by n. For each Z ∈ Z,
we use Z to denote both the set of vertices itself, and the grid H[Z]. We assume throughout the rest
of the section that OPT · d6

max <
√
n: otherwise, if OPT · d6

max ≥
√
n, then the set E′ of all edges of H

that do not participate in grids Z ∈ Z, is a feasible weak canonical solution for problem π(H, ∅,Z).
It is easy to see that |E′| ≤ O(OPT2 poly(dmax)): this is clearly the case if |E′| ≤ 4n; otherwise, if
|E′| > 4n, then by Theorem 2.3, OPT = Ω(n), and so |E′| = O(n2) = O(OPT2).

We use two parameters: ρ = O(OPT poly(dmax · log n)) and m∗ = O(OPT3 · poly(dmax · log n)), whose
exact values we set later. The algorithm consists of 2ρ log n iterations. The input to iteration h is
a collection G1, . . . , Gkh of kh ≤ OPT sub-graphs of H, together with bounding boxes Xi ⊆ Gi for
all 1 ≤ i ≤ kh. We denote Hi = Gi \ V (Xi) and n(Hi) = |V (Hi)|. Additionally, we have collections
E(1), . . . , E(h−1) of edges of H, where for each 1 ≤ h′ ≤ h−1, set E(h′) has been computed in iteration
h′. We say that (G1, X1), . . . , (Gkh , Xkh), and E(1), . . . , E(h−1) is a valid input to iteration h, iff the
following invariants hold:

V1. For all 1 ≤ i, j ≤ kh, graphs Hi and Hj are completely disjoint.

V2. For all 1 ≤ i ≤ kh, Gi ⊆ H \ (E(1), . . . , E(h−1)), and Hi is the sub-graph of H induced by V (Hi).
In particular, no edges e ⊆ V (Hi) belong to E(1), . . . , E(h−1). Moreover, every edge e ∈ E(H)
belongs to either

⋃h
h′=1E

(h′) or to
⋃kh
i=1Gi.

V3. For all Z ∈ Z, for all 1 ≤ i ≤ kh, either Z ∩ V (Hi) = ∅, or Z ⊆ V (Hi). Let Zi =
{Z ∈ Z | Z ⊆ V (Hi)}.

V4. For all 1 ≤ i ≤ kh, there is a strong solution ϕi to π(Gi, Xi,Zi), with
∑kh

i=1 crϕi(Gi) ≤ OPT.

V5. If we are given any weak solution E′i to problem π(Gi, Xi,Zi), for all 1 ≤ i ≤ kh, and denote
Ẽ(h) =

⋃kh
i=1Ei, then E(1) ∪ · · ·E(h−1) ∪ Ẽ(h) is a feasible weak solution to problem π(H, ∅,Z).

V6. For each 1 ≤ h′ < h, and 1 ≤ i ≤ kh, the number of edges in E(h′) incident on vertices of Hi is
at most m∗, and |E(h′)| ≤ OPT ·m∗. Moreover, no edges in grids Z ∈ Z belong to

⋃h−1
h′=1E

(h′).

V7. Let nh = (1−1/ρ)(h−1)/2·n. For each 1 ≤ i ≤ kh, either n(Hi) ≤ nh, or Xi = ∅ and n(Hi) ≤ nh−1.

The input to the first iteration consists of a single graph, G1 = H, with the bounding box X1 = ∅.
It is easy to see that all invariants hold for this input. We end the algorithm at iteration h∗, where
nh∗ ≤ (m∗ · ρ · log n)2. Clearly, h∗ ≤ 2ρ log n, from Invariant (V7). Let G be the set of all instances
that serve as input to iteration h∗. We need the following theorem, whose proof appears in Appendix.

Theorem 5.2 There is an efficient algorithm, that, given any problem π(G,X,Z ′), where V (G \X)
is canonical for Z ′, and π(G,X,Z ′) has a strong solution of cost OPT, finds a weak feasible solution
to π(G,X,Z ′) of cost O(OPT ·

√
n′ · poly(dmax · log n′) + OPT

3), where n′ = |V (G \X)|, and dmax is
the maximum degree in G.

For each 1 ≤ i ≤ kh∗ , let E(h∗)
i be the weak solution from Theorem 5.2, and let E(h∗) =

⋃kh∗
i=1E

(h∗)
i . Let

OPTi denote the cost of the strong optimal solution to π(Gi, Xi,Zi). Then |E(h∗)| = ∑kh∗
i=1O(OPTi ·√

n(Hi) · poly(dmax · log n) + OPT3
i ). Since n(Hi) ≤ nh∗−1 ≤ 2nh∗ for all i, this is bounded by

16



∑kh∗
i=1O(OPTi · m∗ · ρ · poly(dmax log n) + OPT3

i ) ≤ O(OPT · m∗ · ρ · poly(dmax log n) + OPT3), as∑kh∗
i=1 OPTi ≤ OPT from Invariant (V4). The final solution is E∗ =

⋃h∗

h=1E
(h), and

|E∗| ≤
h∗−1∑
h=1

|E(h)|+ |E(h∗)|

≤ (2ρ log n)(OPT ·m∗) +O(OPT ·m∗ · ρ · poly(dmax · log n) + OPT3)

= O(OPT5 poly(dmax · log n)).

We say that the execution of iteration h is successful, iff it either produces a valid input to the next
iteration, together with the set E(h) of edges, or finds a nasty canonical set in H. We show how
to execute each iteration, so that it is successful with probability at least (1 − 1/ρ), if all previous
iterations were successful. If any iteration returns a nasty canonical set, then we stop the algorithm
and return this vertex set as an output. Since there are at most 2ρ log n iterations, the probability
that all iterations are successful is at least (1 − 1/ρ)2ρ logn ≥ 1/ poly(n). In order to complete the
proof of Theorem 5.1, it is now enough to show an algorithm for executing each iteration, such that,
given a valid input to the current iteration, the algorithm either finds a nasty canonical set in H, or
returns a valid input to the next iteration, with probability at least 1

ρ . We do so in the next section.

6 Iteration Execution

Throughout this section, we denote n = |V (H)|, ϕ is the optimal canonical solution for the Minimum
Crossing Number problem on H, and OPT is its cost. We start by setting the values of the parameters
ρ and m∗. The value of the parameter ρ depends on two other parameters, that we define later.
Specifically, we will define two functions λ : N→ R, N : N→ R:

λ(n′) = Ω
(

1
log n′ · d2

max

)
and

N(n′) = O(dmax

√
n′ log n′)

for all n′ > 0. Also, recall that α∗ = Ω
(

1
log3/2 n·log logn

)
is the well-linkedness parameter from Theo-

rem 2.9. We need the value of ρ to satisfy the following two inequalities:

∀0 < n′ ≤ n ρ >
25 · 224d6

max ·N2(n′)
n′ · λ2(n′) · (α∗)2

(6.1)

∀0 < n′ ≤ n ρ >
9OPT

λ(n′)
(6.2)

Substituting the values of N(n′), λ(n′) and α∗ in the above inequalities, we get that it is sufficient to
set:

ρ = Θ(log n · d2
max) max

{
d10

max log5 n(log log n)2,OPT
}

= O (OPT · poly(dmax log n)) .

17



The value of parameter m∗ is:

m∗ = O

(
OPT2 · ρ · log2 n · d2

max · βFCG

α∗

)
= O

(
OPT3 · poly(dmax · log n

)
)

We now turn to describe each iteration h. Our goal is to either find a nasty canonical subset of vertices
in H, or produce a feasible input to the next iteration, h + 1. Throughout the execution of iteration
h, we construct a set Gh+1 of new problem instances, for which Invariants (V1)–(V7) hold. We do
not need to worry about the number of the instances in Gh+1 being bounded by OPT, since, from
Invariant (V4), the number of instances in Gh+1, which do not have a solution of cost 0, is bounded
by OPT. Since we can efficiently identify such instances, they will then become the input to the next
iteration. We will also gradually construct the set E(h) of edges, that we remove from the problem
instance in this iteration. The iteration is executed on each one of the graphs Gi separately. We fix
one such graph Gi, for 1 ≤ i ≤ kh, and focus on executing iteration h on Gi. We need a few definitions.

Definition 6.1 Given any graph H, we say that a simple path P ⊆ H is a 2-path, iff the degrees of
all inner vertices of P are 2. We say that it is a maximal 2-path iff it is not contained in any other
2-path.

Definition 6.2 We say that a connected graph H is rigid iff either H is a simple cycle, or, after
we replace every maximal 2-path in H with an edge, we obtain a 3-vertex connected graph, with no
self-loops or parallel edges.

Observe that if H is rigid, then it has a unique planar drawing. We now define the notion of a valid
skeleton.

Definition 6.3 Assume that we are given an instance π = π(G,X,Z ′) of the problem, and let ϕ′ be
the optimal strong solution for this instance. Given a subset Ẽ of edges of G, and a sub-graph K ⊆ G,
we say that K is a valid skeleton for π, Ẽ, ϕ′, iff the following conditions hold:

• Graph K is rigid, and the edges of K do not participate in crossings in ϕ′. Moreover, the set
V (K) of vertices is canonical for Z ′.

• X ⊆ K, and no edges of Ẽ belong to K.

• Every connected component of G \ (K ∪ Ẽ) contains at most nh+1 vertices.

Notice that if K is a valid skeleton, then we can efficiently find the drawing ϕ′K induced by ϕ′ – this is
the unique planar drawing of K. Each connected component C of G\ (K∪ Ẽ) must then be embedded
entirely inside some face FC of ϕ′. Once we determine the face FC for each such component C, we can
solve the problem recursively on these components, where for each component C, the bounding box
becomes the boundary of FC . This is the main idea of our algorithm. In fact, we will be able to find a
valid skeleton Ki for each instance π(Gi, Xi,Zi) and drawing ϕi, for 1 ≤ i ≤ kh, w.h.p., but we cannot
ensure that this skeleton will contain the bounding box Xi. If there is a large collection of edge-disjoint
paths, connecting Ki to Xi in Gi, we can still connect Xi to Ki, by choosing a small subset of these
paths at random. This will give the desired final valid skeleton that contains Xi. However, if there is
only a small number of such paths, then we cannot find a single valid skeleton that contains Xi (in
particular, it is possible that all edges incident on Xi participate in crossings in ϕi, so such a skeleton
does not exist). However, in the second case, we can find a small subset E′i of edges, whose removal
disconnects Xi from many vertices of Gi. In particular, after we remove E′i from Gi, graph Gi will

18



decompose into two connected components: one containing Xi, and at most nh+1 other vertices, and
another that does not contain Xi. The first component is denoted by GXi , and the second by G′i. The
sub-instance defined by G′i is now completely disconnected from the rest of the graph, and it has no
bounding box, so we can add it directly to Gh+1. For the sub-instance GXi , we show that Xi is a valid
skeleton. The edges in E′i are then added to E(h). We now define these notions more formally.

Recall that for each i : 1 ≤ i ≤ kh, problem π(Gi, Xi,Zi) is guaranteed to have a strong feasible
solution ϕi of cost at most OPTi. For each such instance, we will find two subsets of edges E′i, and E′′i ,

where |E′i| = O(OPT2 · ρ · dmax), and |E′′i | = O
(

OPT2·ρ·log2 n·d2max·βFCG

α∗

)
, that will be added to E(h).

Assume first that Xi 6= ∅. So by Invariant (V7), |V (Gi \ Xi)| ≤ nh. The graph Gi \ E′i consists of
two connected sub-graphs: GXi , that contains the bounding box Xi, and the remaining graph G′i.
We will find a subset E′′i of edges and a skeleton Ki for graph GXi , such that w.h.p., Ki is a valid
skeleton for the instance π(GXi , Xi,Zi), the set E′′i of edges, and the solution ϕi. Therefore, each one
of the connected components of GXi \ (Ki ∪E′′i ) contains at most nh+1 vertices. We will process these
components, to ensure that we can solve them independently, and then add them to set Gh+1, where
they will serve as input to the next iteration. The remaining graph, G′i, contains at most nh vertices
from Invariant (V7), and has no bounding box. So we can add π(Gi, ∅,Zi) to Gh+1 directly.

If Xi = ∅, then we will ensure that E′i = ∅, G′i = ∅ and GXi = Gi. Recall that in this case, from
Invariant (V7), |V (Gi)| ≤ nh−1. We will find a valid skeleton Ki for π(Gi, Xi,Zi), E′′i , ϕi, and then
process the connected components of Gi \ (Ki ∪ E′′i ) as in the previous case, before adding them to
set Gh+1.

The algorithm consists of three steps. Given a graph Gi ∈ {G1, . . . , Gkh} with the bounding box Xi,
the goal of the first step is to either produce a nasty canonical vertex set in the whole contracted graph
H, or to find a ρ-balanced α∗-well-linked partition (A,B) of V (Gi), where A and B are canonical, and
|E(A,B)| is small. The goal of the second step is to find the sets E′i, E

′′
i of edges and a valid skeleton

Ki for instance π(GXi , Xi,Zi). In the third step, we produce a new collection of instances, from the
connected components of graphs Gi \ (E′′i ∪Ki), which, together with the graphs G′i, for 1 ≤ i ≤ kh,
are then added to Gh+1, to become the input to the next iteration.

6.1 Step 1: Partition

Throughout this step, we fix some graph G ∈ {G1, . . . , Gkh}. We denote by X its bounding box, and
let H0 = G \ V (X). Notice that graph H0 is not necessarily connected. We denote by H the largest
connected component of H0, and by H the set of the remaining connected components. We focus on
H only in the current step. Let n′ = |V (H)|. If n′ ≤ (m∗ · ρ · log n)2, then we can simply proceed to
the third step, as the size of every connected component of H0 is bounded by n′ ≤ nh∗ ≤ nh+1. We
then define E′ = E′′ = ∅, GX = G, G′ = ∅, and we use X as the skeleton K for G. It is easy to see
that it is a valid skeleton. Therefore, we assume from now on that:

n′ ≥ (m∗ · ρ · log n)2 (6.3)

Recall that from Invariant (V3), H is canonical w.r.t. Z, so we define Z ′ = {Z ∈ Z : Z ⊆ H}.
Throughout this step, whenever we say that a set is canonical, we mean that it is canonical w.r.t. Z ′.
Recall that the goal of the current step is to produce a partition (A,B) of the vertices of H, such that
A and B are both canonical, the partition is ρ-balanced and α∗-well-linked, and |E(A,B)| is small,
or to find a nasty canonical vertex set in H. In fact we will define 4 different cases. The first two
cases are the easy cases, for which it is easy to find a suitable skeleton, even though we do not obtain

19



a ρ-balanced α∗-well-linked bi-partition. The third case will give the desired bi-partition (A,B), and
the fourth case will produce a partition with slightly different, but still sufficient properties. We then
show that if none of these four cases happen, then we can find a nasty canonical set in H.

The first case is when there is some grid Z ∈ Z ′ with |Z| ≥ n′/2. If this case happens, we continue
directly to the second step (this is the simple case where eventually the skeleton will be simply Z
itself, after we connect it to the bounding box). In the rest of this step we assume that for each
Z ∈ Z ′, |Z| < n′/2. The initial partition is summarized in the next theorem, whose proof appears in
Appendix.

Theorem 6.1 Assume that for each Z ∈ Z ′, |Z| < n′/2. Then we can efficiently find a partition
(A,B) of V (H), such that:

• Both A and B are canonical.

• |A|, |B| ≥ λn′, for λ = Ω
(

1
logn′·d2max

)
and |E(A,B)| ≤ O(dmax

√
n′ log n′).

• Set A is α∗-well-linked.

We say that Case 2 happens iff |E(A,B)| ≤ 107OPT2·ρ·log2 n·d2max·βFCG

α∗ . If Case 2 happens, we continue
directly to Step 2 (this is also a simple case, in which the eventual skeleton is the bounding box X
itself, and E′′ = E(A,B)).

Let N = Θ(dmax
√
n′ log n′), so that |E(A,B)| ≤ N . Notice that set B has property (P1) in H, since set

A is connected. Our next step is to use Theorem 2.9 to produce an α∗-well-linked decomposition C of
B, where each set of C ∈ C has property (P1) and is canonical w.r.t. Z ′, with

∑
C∈C | outH(C)| ≤ 2N .

It is easy to see that the decomposition will give a slightly stronger property than (P1): namely, for
each C ∈ C, for every edge e ∈ outH(C), there is a path P ⊆ H \C, connecting e to some vertex of A.
We will use this property later.

We are now ready to define the third case. This case happens if there is some set C ∈ C, with
|C| ≥ n′/ρ. So if Case 3 happens, we have found two disjoint sets A,C of vertices of H, with
|A|, |C| ≥ n′/ρ, both sets being canonical w.r.t. Z ′ and α∗-well-linked. In the next lemma, whose
proof appears in Appendix, we show that we can expand this partition to the whole graph H.

Lemma 6.2 If Case 3 happens, then we can efficiently find a partition (A′, B′) of V (H), such that
|A′|, |B′| ≥ n′/ρ, both sets are canonical w.r.t. Z ′, and α∗-well-linked w.r.t. outH(A′), outH(B′),
respectively.

If Case 3 happens, we continue directly to the second step. We assume that Case 3 does not happen
from now on.

Notice that the above decomposition is done in the graph H, that is, the sets C ∈ C are well-linked
w.r.t. outH(C), and

∑
C∈C | outH(C)| ≤ 2N . Property (P1) is also only ensured for TH(C), and not

necessarily for TG(C). For each C ∈ C, let outX(C) = outG(C) \ outH(C), that is, outX(C) contains
all edges connecting C to the bounding box X. We do not have any bound on the size of outX(C),
and C is not guaranteed to be well-linked w.r.t. these edges. The purpose of the final partitioning
step is to take care of this. This step is only performed if X 6= ∅.
We perform the final partitioning step on each cluster C ∈ C separately. We start by setting up an
s-t min-cut/max-flow instance, as follows. We construct a graph C̃, by starting with H[C]∪ outG(C),
and identifying all vertices in TH(C) into a source s, and all vertices in TG(C) \ TH(C) into a sink
t. Let F be the maximum s-t flow in C̃, and let (C̃1, C̃2) be the corresponding minimum s-t cut,

20



with s ∈ C̃1, t ∈ C̃2. From Corollary 2.1, both C̃1 and C̃2 are canonical. We let C1 be the set of
vertices of C̃1, excluding s, and C2 is the set of vertices of C̃2, excluding t. Notice that both C1 and
C2 are also canonical. We say that C1 is a cluster of type 1, and C2 is cluster of type 2. Recall that
we have computed a max-flow F connecting s to t in C̃. Since all capacities are integral, and all
capacities of edges in H[C] are unit, F consists of a collection P of edge-disjoint paths in the graph
H[C] ∪ outG(C). Each such path P connects an edge in outH(C) to an edge in outX(C). Path P
consists of two consecutive segments: one is completely contained in C1, and the other is completely
contained in C2. If the first segment is non-empty, then it defines a path P1 ⊆ H[C1] ∪ outG(C1),
connecting an edge in outH(C), to an edge in E(C̃1, C̃2). Similarly, if the second segment is non-empty,
then it defines a path P2 ⊆ H[C2]∪outG(C2), connecting an edge in E(C̃1, C̃2) to an edge in outX(C).
Every edge in E(C1, C2) participates in one such path P1 ⊆ H[C1] ∪ outG(C1), and one such path
P2 ⊆ H[C2] ∪ outG(C2). Similarly, if e ∈ outX(C) ∩ outG(C1), then it is also an endpoint of exactly
one path P1 ⊆ H[C1]∪ outG(C1), and if e ∈ outG(C2) \ outX(C), then it is an endpoint of exactly one
such path P2 ⊆ H[C2] ∪ outG(C2).

C2

∗
E1(C2)

E2(C2)

C

outH(C) outX(C)

C1

∗
E2(C1)E1(C1)

∗

Figure 6.1: Partition of cluster C. Edges of outH(C) are blue, edges of outX(C) are red; edges
participating in the min-cut are marked by ∗. The black edges belong to both E2(C1) and E1(C2).

For the cluster C1, let E1(C1) = outH(C1)∩outH(C), and E2(C1) = outG(C1)\outH(C). All edges in
E2(C1) belong to either E(C1, C2) or outX(C). By the above discussion, we have a collection P(C1) of
edge disjoint paths in H[C1]∪outG(C1), each path connecting an edge in E1(C1) to an edge in E2(C1),
and every edge in E2(C1) is an endpoint of a path in P(C1). An important property of cluster C1

that we will use later is that if C1 6= ∅, then E1(C1) 6= ∅. All edges in E1(C1) can reach set A in graph
H \ C1, and all edges in E2(C1) can reach the set V (X) of vertices in the graph G \ C1. Moreover, if
E2(C1) 6= ∅, then there is a path P (C1), connecting a vertex of C1 to a vertex of X, such that P (C1)
only contains vertices of C2. In particular, it does not contain vertices of any other type-1 clusters.

Similarly, for the cluster C2, let E2(C2) = outG(C2) ∩ outX(C), and E1(C2) = outG(C2) \ outX(C2).
All edges in E1(C2) belong to either E(C1, C2), or to outH(C). From the above discussion, we have a
set P(C2) of edge-disjoint paths in H[C2] ∪ outG(C2), each such path connecting an edge in E1(C2)
to an edge in E2(C2), and every edge in E1(C2) is an endpoint of one such path.

Let T1 be the set of all non-empty clusters of type 1, and T2 the set of clusters of type 2. For the
case where X = ∅, all clusters C ∈ C are type-1 clusters, and T2 = ∅. We are now ready to define the
fourth case. We say that Case 4 happens, iff clusters in T2 contain at least λn′/2 vertices altogether.
Notice that Case 4 can only happen if X 6= ∅. The proof of the next lemma appears in Appendix.

Lemma 6.3 If Case 4 happens, then we can find a partition (A′, B′) of V (H), such that |A′|, |B′| ≥
n′/ρ, both A′ and B′ are canonical, and A′ is α∗-well-linked w.r.t. E(A′, B′). Moreover, if we denote
by outX(B′) = outG(B′) \ E(A′, B′), then there is a collection P of edge-disjoint paths in graph
H[B′] ∪ outG(B′), connecting the edges in E(A′, B′) to edges in outX(B′), such that each edge e ∈
E(A′, B′) is an endpoint of exactly one such path.

21



We will show below that for cases 1—4, we can successfully construct a skeleton and produce an input
to the next iteration, with high probability. In the next theorem, whose proof appears in Appendix,
we show that if none of these cases happen, then we can efficiently find a nasty canonical set.

Theorem 6.4 If none of the cases 1–4 happen, then we can efficiently find a nasty canonical set in
the original contracted graph H.

6.2 Step 2: Skeleton Construction

Let (G,X) ∈ {(G1, X1), . . . , (Gkh , Xkh)}, let ϕ′ be the strong solution to problem π(G,X,Z ′), guaran-
teed by Invariant (V4), and let OPT′ denote its cost. Recall that H is the largest connected component
in G \X, and Z ′ = {Z ∈ Z : Z ⊆ V (H)}. We say that an edge e ∈ E(G) is good iff it does not par-
ticipate in any crossings in ϕ′. Recall that for each Z ∈ Z ′, all edges of G[Z] are good. In the second
step we define the subsets E′, E′′ of edges, the two sub-graphs GX and G′ of G, and construct a valid
skeleton K for π(GX , X,Z ′), E′′ and ϕ′, for Cases 1—4. We define a set T ⊆ E(G) of edges, that
we refer to as “terminals” for the rest of this section, as follows. For Case 1, T = ∅. For Case 2,
T = E(A,B), where (A,B) is the partition of H from Theorem 6.1. For Cases 3 and 4, T = E(A′, B′),
where (A′, B′) are the partitions of H given by Lemmas 6.2 and 6.3, respectively. For convenience, we
rename (A′, B′) as (A,B) for these two cases. Since the partition (A,B) of H is canonical for cases
2–4, we are guaranteed that T does not contain any edges of grids Z ∈ Z ′.
The easiest case is Case 2. The skeleton K for this case is simply the bounding box X, and we set
E′′ = T . Recall that |T | ≤ 107OPT2·ρ·log2 n·d2max·βFCG

α∗ for this case. Since |A|, |B| ≥ n′/ρ, it is easy to
verify that X is a valid skeleton for G, ϕ′ and E′′. In particular, |A|, |B| ≤ n′(1− ρ) ≤ nh−1(1− ρ) ≤
nh+1. We set E′ = ∅, GX = G, and G′ = ∅. From now on we focus on Cases 1, 3 and 4.

We first build an initial skeleton K ′ of G, and a subset E′′ of edges, such that K ′ has all the required
properties, except that it is possible that X 6⊆ K ′. Specifically, we will ensure that K ′ only contains
good edges, is rigid, and every connected component of H \ (K ′ ∪E′′) contains at most nh+1 vertices.
In the end, we will either connect K ′ to X, or find a small subset E′ of edges, separating the two sets.

The initial skeleton K ′ for Case 1 is simply the grid Z ∈ Z ′ with |Z| ≥ n′/2, and we set E′′ = ∅.
Observe that K ′ is good, rigid, canonical, and every connected component of H \ K ′ contains at
most n′/2 ≤ nh−1/2 ≤ nh+1 vertices. The construction of the initial skeleton for Cases 3 and 4 is
summarized in the next theorem, whose proof is deferred to the Appendix.

Theorem 6.5 Assume that Cases 3 or 4 happen. Then we can efficiently construct a skeleton K ′ ⊆ G,
such that with probability at least

(
1− 1

2ρ·OPT

)
, K ′ is good, rigid, and every connected component of

H \K ′ contains at most O
(

OPT2·ρ·log2 n·d2max·βFCG

α∗

)
terminals.

Let C be the set of all connected components of H \K ′. Observe that at most one of the components
may contain more than n′/2 vertices. Let C denote this component, and let E′′ be the set of terminals
contained in C, E′′ = T ∩ E(C). Let C′ be the set of all connected components of C \ E′′. Then for
each C ′ ∈ C′, |V (C ′)| ≤ n′(1 − ρ) must hold: otherwise, V (C ′) must contain vertices that belong to
both A and B, and so E(C ′) must contain at least one terminal. Therefore, the size of every connected
component of H \ (K ′∪E′′) is bounded by n′(1−ρ) ≤ nh−1(1−ρ) ≤ nh+1 from Invariant (V7). Recall
that the terminals do not belong to the grids Z ∈ Z ′.
Observe that it is possible that V (K ′) is not canonical. Consider some grid Z ∈ Z, such that
V (Z) ∩ V (K ′) 6= ∅. If Z ∩ K ′ is a simple path, then we will deal with such grids at the end of the

22



third step. Let Z ′′(G) denote the set of all such grids. Assume now that Z ∩K ′ is not a simple path.
Since graph K ′ is rigid, it must be the case that there are at least three matching edges from outG(Z)
that belong to K ′. In this case, we can simply add the whole grid Z to the skeleton K ′, and still the
new skeleton K ′ remains good and rigid, and every connected component of H \ (K ′ ∪ E′′) contains
at most nh+1 vertices. So from now on we assume that if V (Z) ∩ V (K ′) 6= ∅ for some Z ∈ Z, then
Z ∩K ′ is a simple path, and so Z ∈ Z ′′(G). We denote by K+ the union of K ′ with all the grids in
Z ′′(G). Clearly, K+ is connected, canonical, but it is not necessarily rigid.

Consider Cases 1, 3 and 4. If X = ∅, then we define E′ = ∅, GX = G, G′ = ∅ and the final skeleton
K = K ′. It is easy to see that K is a valid skeleton for π(GX , X,Z ′ \ Z ′′(G)), E′′ and ϕ′.

Otherwise, if X 6= ∅, we now try to connect the skeleton K ′ to the bounding box X (observe that
some of the vertices of X may already belong to K ′). In order to do so, we will try to find a set P ′ of
24OPT2ρ vertex-disjoint paths in G \ E′′, connecting the vertices of X to the vertices of K+ (where
some of these paths can be simply vertices in X ∩K+). We distinguish between three cases.

The first case is when such a collection of paths does not exist in G \ E′′. Then there must be a
set V ′ ⊆ V (G) of at most 24OPT2ρ vertices, whose removal from G \ E′′ separates X from K+.
Therefore, the size of the edge min-cut separating X from K+ \X in G\E′′ is at most 24OPT2ρdmax.
Observe that both K+ and X are canonical w.r.t. Z ′, and the vertices in V (X) ∩ V (K+) cannot
belong to sets Z ∈ Z ′, by the definition of Z ′. Therefore, from Corollary 2.1, there is a subset E′ of
at most 24OPT2ρdmax edges (canonical edge min-cut), whose removal partitions graph G \ E′′ into
two connected sub-graphs, GX containing X, and G′ = G \ V (GX), and moreover, V (GX) and V (G′)
are both canonical, and the edges of E′ do not belong to any grids Z ∈ Z ′. We add the instance
π(G′, ∅,Z ′) directly to Gh+1. From Invariant (V7), since X 6= ∅, |V (G′)| ≤ nh, and since the bounding
box of the new instance is ∅, it is a valid input to the next iteration. For graph GX , we use X as
its skeleton. Observe that every connected component of GX \ (X ∪ E′′) must be either a sub-graph
of some connected component of H \ (K ′ ∪ E′′) (and then its size is bounded by nh+1), or it must
belong to H0 (and then its size is bounded by nh−1/2 ≤ nh+1). Therefore, X is a valid skeleton for
π(GX , X,Z ′ \ Z ′′(G)), E′′, and ϕ′.

The second case is when there is some grid Z ∈ Z ′′(G), such that for any collection P ′ of 24OPT2ρ
vertex-disjoint paths, connecting the vertices of X to the vertices of K+ in G, at least half the paths
contain vertices of Γ(Z) as their endpoints. Recall that only 2 edges of outH(Z) belong to K ′. Then
there is a collection E′ of at most 12dmaxOPT2ρ+2 edges in G\E′′, whose removal separates V (X)∪Z
from V (K+) \ (Z ∪X). Again, we can ensure that the edges of E′ do not belong to the grids Z ∈ Z ′.
Let GX denote the resulting subgraph that contains X, and G′ = G \ GX . Then both GX and G′

are canonical as before, and we can add the instance π(G′, ∅,Z ′) to Gh+1, as before. In order to build
a valid skeleton for graph GX , we consider the subset P ′′ ⊆ P ′ of 12OPT2ρ vertex-disjoint paths,
connecting the vertices of X to the vertices of Γ(Z), and we randomly choose three such paths. We
then let the skeleton K of GX consist of the union of X, Z, and the three selected paths. It is easy to
see that the resulting graph K is rigid, and with probability at least (1− 1

2ρ·OPT), it only contains good
edges. Moreover, every connected component of GX \ (K ∪ E′′) is either a sub-graph of a connected
component of H \ (K ′ ∪ E′′) (and may contain at most nh+1 vertices), or it belongs to H0 (and then
its size is bounded by nh+1). Therefore, K is a valid skeleton for π(GX , X,Z ′ \ Z ′′(G)), E′′, and ϕ′.

The third case is when we can find the desired collection P ′ of paths, and moreover, for each grid
Z ∈ Z ′′(G), at most half the paths in P ′ contain vertices of Γ(Z). We then randomly select three
paths from P ′, making sure that at most two paths containing vertices of Γ(Z) are selected for any grid
Z ∈ Z ′′(G). Since at most 2OPT of the paths in P ′ are bad, with probability at least 1− 1/(2OPTρ),
none of the selected paths is bad. We then define K to be the union of K ′, X, and the three selected
paths. Additionally, if, for some grid Z ∈ Z ′′(G), one or two of the selected paths contain vertices in

23



Γ(Z), then remove Z from Z ′′(G), and add it to K. It is easy to verify that the resulting skeleton
is rigid, and it only contains good edges. Moreover, every connected component of G \ (K ∪ E′′), is
either a sub-graph of a connected component of H \ (K ′∪E′′), or it is a sub-graph of one of the graphs
in H0. In the former case, its size is bounded by nh+1 as above, while in the latter case, its size is
bounded by |V (G \X)|/2 ≤ nh−1/2 < nh−1(1− ρ) ≤ nh+1. We set E′ = ∅, GX = G, and G′ = ∅.
To summarize this step, we have started with the instance π(G,X,Z ′), and defined two subsets
E′, E′′ of edges, with |E′| ≤ O(OPT2dmaxρ) and |E′′| ≤ O

(
OPT2·ρ·log2 n·d2max·βFCG

α∗

)
, whose removal

disconnects G into two connected sub-graphs: GX containing X, and G′. Moreover, both sets V (GX),
V (G′) are canonical, and E′, E′′ do not contain edges belonging to grids Z ∈ Z ′. We have added
instance π(G′, ∅,Z ′) to Gh+1, and we have defined a skeleton K for GX . We have shown that K is a
valid skeleton for π(GX , X,Z ′ \ Z ′′(G)), E′′, and ϕ′. The probability that this step is successful for a
fixed graph G ∈ {G1, . . . , Gkh} is at least (1− 1/(ρ ·OPT)), and so the probability that it is successful
across all graphs is at least (1− 1/ρ).

We can assume w.l.o.g. that every edge in set E′ has one endpoint in GX and one endpoint in G′:
otherwise, this edge does not separate GX from G′, and can be removed from E′. Similarly, we can
assume w.l.o.g. that for every edge e ∈ E′′, the two endpoints of e either belong to distinct connected
components of GX \ (K ∪E′′), or one endpoint belongs to GX , and the other to G′. We will use these
facts later, to claim that Invariant (V2) holds for the resulting instances.

6.3 Step 3: Producing Input to the Next Iteration

Recall that so far, for each 1 ≤ i ≤ kh, we have found two collections E′i, E
′′
i of edges, two sub-graphs

GXi and G′i with Xi ⊆ GXi , and a valid skeleton Ki for π(GXi , Xi,Z\Z ′′(Gi)), ϕi, E′′i . The sets E′i∪E′′i
do not contain any edges of the grids Z ∈ Z, and each edge in E′i ∪E′′i either connects a vertex of GXi
to a vertex of G′i, or vertices of two distinct connected components of GXi \ (Ki ∪E′′i ). Recall that G′i
contains at most nh vertices, and there are no edges in Gi \ (E′i ∪ E′′i ) connecting the vertices of G′i
to those of GXi . Let C′ denote the set of all connected components of GXi \ (Ki ∪ E′′i ). Then for each
C ∈ C′, |V (C)| ≤ nh+1.

Since graph Ki is rigid, we can find the planar drawing ϕi(Ki) of Ki induced by ϕi efficiently. Since
all edges of Ki are good for ϕi, each connected component C ∈ C′ is embedded inside a single face
F ∗C of ϕi. Intuitively, we would like to find this face F ∗C for each such connected component C, and
then solve the problem recursively on C, together with the bounding box γ(F ∗C) — the boundary of
the face F ∗C . Apart from the difficulty in identifying the face F ∗C , a problem with this approach is that
it is not clear that we can solve the problems induced by different connected components separately.
For example, if both C and C ′ need to be embedded inside the same face F , then even if we find
weak solutions for problems π(C, γ(F ),Z) and π(C ′, γ(F ),Z ′), it is not clear that these two solutions
can be combined together to give a feasible weak solution for the whole problem, since the drawings
of C ∪ γ(F ) and C ′ ∪ γ(F ) may interfere with each other. We will define below the condition under
which the two clusters are considered independent and can be solved separately. We will then find
an assignment of each cluster C to one of the faces of ϕi(Ki), and find a further partition of each
cluster C ∈ C′, such that all resulting clusters assigned to the same face are independent, and their
corresponding problems can therefore be solved separately.

We now focus on some graph G = GXi ∈
{
GX1 , . . . , G

X
kh

}
, and we denote its bounding box by X, its

skeleton Ki by K, and the two sets E′i, E
′′
i of edges by E′ and E′′ respectively. We let ϕ′ denote the

drawing of GXi induced by the drawing ϕi, guaranteed by Invariant (V4). As before, C′ is the set of
all connected components of G \ (K ∪ E′′).

24



While further partitioning the clusters C ∈ C′ to ensure independence, we may have to remove edges
that connect the vertices of C to the skeleton K. However, such edges do not strictly belong to the
cluster C. We next perform a simple transformation of the graph G \ (E′ ∪ E′′) in order to take care
of this technicality.

Consider the graph G\ (E′∪E′′). We perform the following transformation: let e = (v, x) be any edge
in E(G) \ (E′ ∪ E′′), such that x ∈ K, v 6∈ K. We add an artificial vertex ze, that subdivides e into
two edges: an artificial edge (x, ze), and a non-artificial edge (v, ze). We denote xze = x. Similarly,
if e = (x, x′) is any edge in E(G) \ (E′ ∪ E′′), with x, x′ ∈ K, then we add two artificial vertices
ze, z

′
e, that subdivide e into three edges, artificial edges (x, ze), and (z′e, x

′), and a non-artificial edge
(ze, z′e). We denote xze = x, and xz′e = x′. If edge e belonged to any grids Z ∈ Z (which can happen if
Z ∈ Z ′′(G)), then we consider all edges obtained from sub-divviding e also a part of Z. Let G̃ denote
the resulting graph, Γ the set of all these artificial vertices, and let EG̃(Γ,K) be the set of all artificial
edges in G̃. Let ϕ̃ be the drawing of G̃ induced by ϕ′. Notice that we can assume w.l.o.g. that the
edges of EG̃(Γ,K) do not participate in any crossings in ϕ̃. We use this assumption throughout the
current section.

For any sub-graph C of G̃ \ K, we denote by Γ(C) = Γ ∩ V (C), and outK(C) is the subset of
artificial edges adjacent to the vertices of C, that is, outK(C) = EG̃(ΓC ,K). We also denote by
C+ = C ∪ outK(C), and by δ(C) the set of endpoints of the edges in outK(C) that belong to K. Let
C the set of all connected components of G̃ \K. We next formally define the notion of independence
of clusters. Eventually, we will find a further partition of each one of the clusters C ∈ C, so that the
resulting clusters are independent, and can be solved separately in the next iteration.

Let ϕ′K be the drawing of K induced by ϕ′. Recall that this is the unique planar drawing of K, that
can be found efficiently. Let F be the set of faces of ϕ′K . For each face F ∈ F , let γ(F ) denote the
set of edges and vertices lying on its boundary. Since K is rigid, γ(F ) is a simple cycle. Since all
edges of K are good for ϕ′, for every component C ∈ C, C+ is embedded completely inside some face
F ∗C of F in the drawing ϕ̃, and so δ(C) ⊆ γ(F ) must hold. Therefore, there are three possibilities:
either there is a unique face FC ∈ F , such that δ(C) ⊆ γ(FC). In this case we say that C is of
type 1, and FC = F ∗C must hold; or there are two faces F1(C), F2(C), whose both boundaries contain
δ(C), so F ∗C ∈ {F1(C), F2(C)}. In this case we say that C is of type 2. The third possibility is that
|δ(C)| ≤ 1. In this case we say that C is of type 3, and we can embed C inside any face whose
boundary contains the vertex δ(C). The embedding of such clusters does not affect other clusters.
For convenience, when C is of type 1, we denote F1(C) = F2(C) = FC , and if it is of type 3, then we
denote F1(C) = F2(C) = F , where F is any face of F whose boundary contains δ(C).

We now formally define when two clusters C,C ′ ∈ C are independent. Let C,C ′ ∈ C be any two
clusters, such that there is a face F ∈ F , with δ(C), δ(C ′) ⊆ γ(F ). The set δ(C) of vertices defines
a partition Σ of γ(F ) into segments, where every segment σ ∈ Σ contains two vertices of δ(C) as its
endpoints, and does not contain any other vertices of δ(C). Similarly, the set δ(C ′) of vertices defines
a partition Σ′ of γ(F ).

Definition 6.4 We say that the two clusters C,C ′ are independent, iff δ(C) is completely contained
in some segment σ′ ∈ Σ′. Notice that in this case, δ(C ′) must also be completely contained in some
segment σ ∈ Σ.

Our goal in this step is to assign to each cluster C ∈ C, a face F (C) ∈ {F1(C), F2(C)}, and to
find a partition Q(C) of the vertices of the cluster C. Intuitively, each such cluster Q ∈ Q(C) will
become an instance in the input to the next iteration, with γ(F (C)) as its bounding box. Suppose
we are given such an assignment F (C) of faces, and the partition Q(C) for each C ∈ C. We will
use the following notation. For each C ∈ C, let E∗(C) denote the set of edges cut by Q(C), that

25



is, E∗(C) =
⋃
Q 6=Q′∈Q(C)EG̃(Q,Q′), and let E∗ =

⋃
C∈C E

∗(C). For each Q ∈ Q(C), we denote by
XQ = γ(F (C)), the boundary of the face inside which C is to be embedded. For each face F ∈ F , we
denote by Q(F ) =

⋃
C:F (C)=F Q(C) the set of all clusters to be embedded inside F , and we denote

by Q =
⋃
C∈C Q(C). Abusing the notation, for each cluster Q ∈ Q, we will refer to Q both as the

set of vertices, and as the sub-graph G̃[Q] induced by it. As before, we denote Q ∪ outK(Q) by Q+.
The next theorem shows that it is enough to find an assignment of every cluster C ∈ C to a face
F (C) ∈ {F1(C), F2(C)}, and a partition Q(C) of the vertices of C, such that all the resulting clusters
assigned to every face of F are independent.

Theorem 6.6 Suppose we are given, for each cluster C ∈ C, a face F (C) ∈ {F1(C), F2(C)}, and
a partition Q(C) of the vertices of C. Moreover, assume that for every face F ∈ F , every pair
Q,Q′ ∈ Q(F ) of clusters is independent, and for each Z ∈ Z, E∗ ∩ E(Z) = ∅. Then:

• For each Q ∈ Q, there is a strong solution to the problem π(Q+∪XQ, XQ,Z), such that the total
cost of these solutions, over all Q ∈ Q, is bounded by crϕ̃(G̃) ≤ crϕ′(G).

• For each Q ∈ Q, let E∗∗Q be any feasible weak solution to the problem π(Q+ ∪XQ, XQ,Z), and
let E∗∗ =

⋃
Q∈QE

∗∗
Q . Then E′∪E′′∪E∗∪E∗∗ is a feasible weak solution to problem π(G,X,Z).

We remark that this theorem does not require that the sets C ∈ C are canonical vertex sets.

Proof: Fix some Q ∈ Q, and let ϕ̃Q+ be the drawing of Q+ ∪ XQ induced by ϕ̃. Recall that the
edges of the skeleton K do not participate in any crossings in ϕ̃, and every pair Q,Q′ ∈ Q of graphs
is completely disjoint. Therefore,

∑
Q∈Q crϕ̃Q+ (Q+) ≤ crϕ̃(G̃). Observe that every edge of G̃ belongs

either to K, or to E∗, or to Q+ for some Q ∈ Q. Therefore, it is now enough to show that for each
Q ∈ Q, ϕ̃Q+ is a feasible strong solution to problem π(Q+ ∪ XQ, XQ,Z). Since ϕ′ is canonical, so
is ϕ̃Q+ . It now only remains to show that Q+ is completely embedded on one side (that is, inside
or outside) of the cycle XQ in ϕ̃Q+ . Let C ∈ C, such that Q ∈ Q(C). Recall that C is a connected
component of G̃ \K. Since K is good, C is embedded completely inside one face in F . In particular,
since XQ is the boundary of one of the faces in F , all vertices and edges of C (and therefore of Q) are
completely embedded on one side of XQ. Therefore, XQ can be viewed as the bounding box in the
embedding ϕ̃Q+ .

We now prove the second part of the theorem. For each Q ∈ Q, let E∗∗Q be any feasible weak solution
to the problem π(Q+ ∪XQ, XQ,Z), and let E∗∗ =

⋃
Q∈QE

∗∗
Q . We first show that E′ ∪E′′ ∪E∗ ∪E∗∗

is a feasible weak solution to the problem π(G̃,X,Z).

Let F ∈ F be any face of ϕ′K . For each Q ∈ Q(F ), let Q̃ = Q \ E∗∗Q , and let Q̃+ = Q+ \ E∗∗Q . Since
E∗∗Q is a weak solution for instance π(Q+ ∪ XQ, XQ,Z), there is a planar drawing ψQ of Q̃+ ∪ XQ,
inside the bounding box XQ = γ(F ). It is enough to show that for each face F ∈ F , we can find a
planar embedding of graphs Q̃+, for all Q ∈ Q(F ) inside γ(F ).

Fix an arbitrary ordering Q(F ) = {Q1, . . . , Qr}. We now gradually construct a planar drawing of the
graphs Q̃+

j inside γ(F ). For convenience, we will also be adding new artificial edges to this drawing.
We perform r iterations, and the goal in iteration j : 1 ≤ j ≤ r is to add the graph Q̃+

j to the drawing.
We will maintain the following invariant: at the beginning of every iteration j, for each j′ ≥ j, there
is a face F ′ in the current drawing, such that δ(Qj) ⊆ γ(F ′).

In the first iteration, we simply use the drawing ψQ1 of Q̃+
1 ∪ γ(F ). The vertices of δ(Q1) define a

partition Σ1 of γ(F ) into segments, such that every segment contains two vertices of δ(Q1) as its
endpoints, and no other vertices of δ(Q1). For each such segment σ, we add a new artificial edge eσ

26



connecting its endpoints to the drawing. All such edges can be added without creating any crossings.
Since every pair of clusters in Q(F ) is independent, for each graph Qj , j > 1, the vertices of δ(Qj)
are completely contained in one of the resulting segments σ ∈ Σ1. The face F ′ of the current drawing,
whose boundary consists of σ and eσ then has the property that δ(Qj) ⊆ γ(F ′).

Consider now some iteration j+ 1, and let F ′ be the face of the current drawing, such that δ(Qj+1) ⊆
γ(F ′). We add the drawing ψQj+1 of Q̃+

j+1 ∪ γ(F ), with γ(F ′) replacing γ(F ) as the bounding box.
We can do so since δ(Qj) ⊆ γ(F ′). We can therefore add this drawing, so that no crossings with
edges that already belong to the drawing are introduced. The bounding box γ(F ′) is then sub-divided
into the set Σ′ of sub-segments, by the vertices of δ(Qj). Again, for each such segment σ′, we add an
artificial edge eσ′ , connecting its endpoints, to the drawing, inside the face F ′, such that no crossings
are introduced. Since there are no conflicts between clusters in Q(F ), for each Qj′ , with j′ > j+1, such
that δ(Qj′) ⊆ γ(F ′), there is a segment σ′ ∈ Σ′, containing all vertices of δ(Qj′). The corresponding
new face F ′′, formed by σ′ and the edge eσ′ will then have the property that δ(Qj′) ⊆ γ(F ′′).

We have thus shown that G̃ \ (E∗ ∪ E∗∗) has a planar drawing. The same drawing induces a planar
drawing for G \ (E′ ∪ E′′ ∪ E∗ ∪ E∗∗).
In the rest of this section, we will show an efficient algorithm to find the assignment of the faces of
F to the clusters C ∈ C, and the partition Q(C) of each such cluster, satisfying the requirements of
Theorem 6.6. Our goal is also to ensure that |E∗| is small, as these edges are eventually removed from
the graph. If two clusters C,C ′ ∈ C, with δ(C), δ(C ′) ⊆ γ(F ) for some F ∈ F are not independent,
then we say that they have a conflict. The process of partitioning both clusters into sub-clusters to
ensure that the sub-clusters are independent is called conflict resolution. The next theorem shows
how to perform conflict resolution for a pair of clusters. The proof of this theorem is due to Yury
Makarychev [Mak10]. We provide it here for completeness.

Theorem 6.7 Let C,C ′ ∈ C, such that both C and C ′ are embedded inside the same face F ∈ F in ϕ̃.
Then we can efficiently find a subset EC,C′ ⊆ E(C) of edges, |EC,C′ | ≤ 30 crϕ̃(E(C), E(C ′)), such that
if C′ denotes the collection of all connected components of C \EC,C′, then for every cluster Q ∈ C′, Q
and C ′ are independent. Moreover, EC,C′ does not contain any edges of the grids Z ∈ Z.

Proof:

We say that a set Ẽ of edges is valid iff it satisfies the condition of the theorem. For simplicity, we will
assign weights we to edges as follows: edges that belong to grids Z ∈ Z have infinite weight, and all
other edges have weight 1. We first claim that there is a valid set of weight at most crϕ̃(C,C ′). Indeed,
let Ẽ be the set of edges of C, that are crossed by the edges of C ′ in ϕ̃. Clearly, |Ẽ| ≤ crϕ̃(C,C ′),
and this set does not contain any edges in grids Z ∈ Z, or edges adjacent to the vertices of K (this
was our assumption when we defined ϕ̃). Let C′ be the set of all connected components of C \ Ẽ,
and consider some cluster Q ∈ C′. Assume for contradiction, that Q and C ′ are not independent.
Then there are four vertices a, b, c, d ∈ γ(F ), whose ordering along γ(F ) is (a, b, c, d), and a, c ∈ δ(Q),
while (b, d) ∈ δ(C ′). But then there must be a path P ⊆ Q ∪ outK(Q) connecting a to c, and a path
P ′ ⊆ C ′ ∪ outK(C ′), connecting b to d, as both Q and C ′ are connected graphs. Moreover, since Q
and C ′ are completely disjoint, the two paths must cross in ϕ̃. Recall that we have assumed that
the artificial edges adjacent to K do not participate in any crossings in ϕ̃. Therefore, the crossing is
between an edge of Q and an edge of C ′. This is impossible, since we have removed all edges that
participate in such crossings from C.

We now show how to efficiently find a valid set Ẽ of edges, of weight at most 30 crϕ̃(E(C), E(C ′)).
Let Σ′ = {σ′1, σ′2, . . . , σ′k} be the set of segments of γ(F ), defined by δ(C ′), in the circular order.
Throughout the rest of the proof we identify k + 1 and 1.

27



Consider the set Γ(C) of vertices. We partition this set into a number of subsets, as follows. For
1 ≤ i ≤ k, let Γi ⊆ Γ(C) denote the subset of vertices z ∈ Γ(C), for which xz lies strictly inside the
segment σ′i. Let Γi,i+1 ⊆ Γ(C) denote the subset of vertices z ∈ Γ(C), for which xz is the vertex
separating segments σ′i and σ′i+1.

We now restate the problem of finding a valid cut EC,C′ as an assignment problem. We need to assign
each vertex of C to one of the segments σ′1, . . . , σ

′
k so that

• every vertex in Γi is assigned to the segment σ′i;

• every vertex in Γi,i+1 is assigned to either σ′i or σ′i+1.

We say that an edge of C is cut by such an assignment, iff its endpoints are assigned to different
segments. Given any such assignment, whose weight is finite, let Ẽ be the set of cut edges. We prove
that set Ẽ is valid. Since the weight of Ẽ is finite, it cannot contain edges of grids Z ∈ Z. Let C′ be
the collection of all connected components of C \ Ẽ. It is easy to see that for each Q ∈ C′, Q and C ′

is independent. This is since for all edges in outK(Q), their endpoints that belong to K must all be
contained inside a single segment σ′ of Σ′.

On the other hand, every finite-weight valid set Ẽ of edges corresponds to a valid assignment. Let C′
be the set of all connected components of C \ Ẽ, and let Q ∈ C′. Since there are no conflicts between
Q and C ′, all vertices of δ(Q) that serve as endpoints of the set outK(Q) of edges, must be contained
inside a single segment σ′ ∈ Σ′. If the subset of δ(Q) contains a single vertex, there can be two such
segments of Σ′, and we choose any one of them arbitrarily; if this subset of δ(Q) is empty, then we
choose an arbitrary segment of Σ′. We then assign all vertices of Q to σ′. Since Ẽ does not contain any
edges that are adjacent to the vertices of K (as such edges are not part of E(C)), we are guaranteed
that every vertex in Γi is assigned to the segment σ′i, and every vertex in Γi,i+1 is assigned to either
σ′i or σ′i+1, for all 1 ≤ i ≤ k.

We now show how to approximately solve the assignment problem, and therefore the original problem,
using linear programming. We will ensure that the weight of the solution EC,C′ is at most 30 times
the optimum, and so |EC,C′ | ≤ 30 crϕ̃(E(C), E(C ′)).

For each vertex u of C and segment σ′i we introduce an indicator variable yu,i, for assigning u to
segment σ′i. All variables for vertex u form a vector yu = (yu,1, . . . , yu,k) ∈ Rk. We denote the
standard basis of Rk by e1, . . . , ek. In the intended integral solution, yu = ei if u is assigned to σ′i;
that is, yu,i = 1 and yu,j = 0 for j 6= i. Equip the space Rk with the `1 norm ‖yu‖1 =

∑k
i=1 |yu,i|. We

solve the following linear program.

minimize
1
2

∑
e=(u,v)∈E(C)

we · ‖yu − yv‖1

subsject to
‖yu‖1 = 1 ∀u ∈ V (C);
yu,i = 1 ∀1 ≤ i ≤ k,∀u ∈ Γi;

yu,i + yu,i+1 = 1 ∀1 ≤ i ≤ k,∀u ∈ Γi,i+1;
yu,i ≥ 0 ∀u ∈ V (C),∀1 ≤ i ≤ k.

Let OPTLP be the value of the optimal solution of the LP. For all 1 ≤ i ≤ k, r ∈ (1/2, 3/5), define balls
Br
i = {u : yu,i ≥ r} and Br

i,i+1 = {u : u 6∈ Br
i ∪ Br

i+1; yu,i + yu,i+1 ≥ 5r/3}. Note that since, for each
u ∈ V (C), at most one coordinate yu,i can be greater than 1

2 , whenever r ≥ 1
2 , the balls Br

i and Br
j are

disjoint for all i 6= j. Similarly, balls Br
i,i+1 and Br

j,j+1 are disjoint for i 6= j when r ≥ 1/2: this is since,

28



if u ∈ Br
i,i+1, then yu,i + yu,i+1 ≥ 5/6 must hold, while yu,i, yu,i+1 <

1
2 . Therefore, yu,i, yu,i+1 > 1/3

must hold, and there could be at most two coordinates 1 ≤ j ≤ k, for which yu,j > 1/3.

For each value of r : 1/2 ≤ r/ ≤ 3/5, we let Er denote all edges that have exactly one endpoint in the
balls Br

i , and Br
i,i+1, for all 1 ≤ i ≤ k. We choose r ∈ (1/2, 3/5) that minimizes |Er|, and we let EC,C′

denote the set Er for this value of r. We assign all vertices in balls Br
i and Br

i,i+1 to the segment σ′i.
We assign all unassigned vertices to an arbitrary segment. We need to verify that this assignment is
valid; that is, vertices from Γi are assigned to σ′i and vertices from Γi,i+1 are assigned to either σ′i or
σ′i+1, for all 1 ≤ i ≤ k. Indeed, if u ∈ Γi, then yu,i = 1, and so u ∈ Br

i ; similarly, if u ∈ Γi,i+1 then
yu,i + yu,i+1 = 1, and so u ∈ Br

i ∪Br
i+1 ∪Br

i,i+1.

Finally, we need to show that the cost of the assignment is at most 30OPTLP . In fact, we show
that if we choose r ∈ (1/2, 3/5) uniformly at random, then the expected cost is at most 30OPTLP .
Consider an edge e = (u, v). We compute the probability that e ∈ Br

i , for each 1 ≤ i ≤ k. This is
the probability that yu,i ≥ r, but yv,i < r (or vice versa if yv,i < yu,i). This probability is bounded
by 10|yu,i − yv,i|. Similarly, the probability that u ∈ Br(i, i + 1) but v 6∈ Br(i, i + 1) is bounded by
the probability that yu,i + yu,i+1 ≥ 5r/3, but yv,i + yv,i+1 < 5r/3, or vice versa. This probability is at
most 6 · 5

3((yu,i + yu,i+1)− (yv,i + yv,i+1)) ≤ 10(|yu,i − yv,i|+ |yu,i+1 − yv,i+1|). Therefore, overall, the
probability that e = (u, v) belongs to the cut is at most:

k∑
i=1

10|yu,i− yv,i|+
k∑
i=1

10(|yu,i− yv,i|+ |yu,i+1− yv,i+1|) ≤ 10‖yu− yv‖1 + 20‖yu− yv‖1 = 30‖yu− yv‖1

We now show how to find the assignment F (C) of faces of F to all clusters C ∈ C, together with
the partition Q(C) of the vertices of C. We will reduce this problem to an instance of the min-uncut
problem. Recall that the input to the min-uncut problem is a collection X of Boolean variables,
together with a collection Ψ of constraints. Each constraint ψ ∈ Ψ has non-negative weight wψ, and
involves exactly two variables of X. All constraints ψ ∈ Ψ are required to be of the form x 6= y, for
x, y ∈ X. The goal is to find an assignment to all variables of X, to minimize the total weight of
unsatisfied constraints. Agarwal et. al. [ACMM05] have shown an O(

√
log n)-approximation algorithm

for Min Uncut.

Fix any pair C,C ′ ∈ C of clusters, and a face F ∈ F , such that δ(C), δ(C ′) ⊆ γ(F ). Let E′C,C′
denote the union of the sets EC,C′ and EC′,C of edges from Theorem 6.7, and let wC,C′ = |E′(C,C ′)|,
wC,C′ ≤ 60 crϕ̃(E(C), E(C ′)).

For each face F ∈ F , we denote by C(F ) ⊆ C the set of all clusters C ∈ C, of the first type, for which
δ(C) ⊆ δ(F ). Recall that for each such cluster, F ∗C = F must hold. Let E′(F ) =

⋃
C,C′∈C(F )E

′
C,C′ ,

and let wF = |E′(F )|.
Let P be the set of all maximal 2-paths in K. For every path P ∈ P, we denote by C(P ) ⊆ C the set of
all type-2 clusters C, for which δ(C) ⊆ P . Let F1(P ), F2(P ) be the two faces of K, whose boundaries
contain P . Recall that for each C ∈ C(P ), F ∗C ∈ {F1(P ), F2(P )}.
For every C ∈ C(P ), F ∈ {F1(C), F2(C)}, let wC,F =

∑
C′∈C(F )wC,C′ . If we decide to assign C to face

F1(P ), then we will pay wC,F1(P ) for this assignment, and similarly, if C is assigned to face F2(P ), we
will pay wC,F2(P ).

We now set up an instance of the min-uncut problem, as follows. The set of variables X contains, for
each path P ∈ P, for each F ∈ {F1(P ), F2(P )}, a Boolean variable yP,F , and for each path P ∈ P and
cluster C ∈ C(P ) a Boolean variable yC . Intuitively, if yC = yP,F1(P ), then C is assigned to F1(P ),

29



and if yC = yP,F2(P ), then C is assigned to F2(P ). The set Ψ of constraints contains constraints of
three types: first, for each path P ∈ P, we have the constraint yP,F1(P ) 6= yP,F2(P ) of infinite weight.
For each P ∈ P, for each pair C,C ′ ∈ C(P ) of clusters, there is a constraint yC 6= yC′ , of weight wC,C′ .
Finally, for each P ∈ P, F ∈ {F1(P ), F2(P )}, and for each C ∈ C(P ), we have a constraint yC 6= yP,F
of weight wC,F .

Claim 6.8 There is a solution to the min-uncut problem, whose cost, together with
∑

F∈F wF , is
bounded by 60 crϕ̃(G).

Proof: We simply consider the optimal solution ϕ̃. For each path P ∈ P, we assign yP,F1(P ) = 0
and yP,F2(P ) = 1. For each cluster C ∈ C(P ), if F ∗(C) = F1(P ), then we set yC = yP,F1(P ), and
otherwise we set yC = yP,F2(P ). From Theorem 6.7, for every pair C,C ′ of clusters with F ∗C = F ∗C′ ,
wC,C′ ≤ 60 crϕ̃(C,C ′).

We can therefore find an O(
√

log n)-approximate solution to the resulting instance of the min-uncut
problem, using the algorithm of [ACMM05]. This solution naturally defines an assignment of faces to
clusters. Namely, if C is a type-1 cluster, then we let F (C) = F , where F is the unique face with
δ(C) ⊆ γ(F ). If C is a type-2 cluster, and C ∈ C(P ), for some path P ∈ P, then we assign C to F1(P )
if yC = yP,F1(P ), and we assign it to F2(C) otherwise. If C is a type-3 cluster, then we assign it to any
face that contains the unique vertex in δ(C).

For each face F , let C′(F ) denote all clusters C that are assigned to C. Let Ẽ(F ) denote the union of
the sets E′C,C′ of edges for all C,C ′ ∈ C′(F ), and let Ẽ =

⋃
F∈F Ẽ(F ).

For each cluster C ∈ C, we now obtain a partition Q′(C) of its vertices that corresponds to the
connected components of graph C \ Ẽ. For each Q ∈ Q′(C), we let Q denote both the set of vertices
in the connected component of C \ Ẽ, and the sub-graph of G̃ induced by Q. From Theorem 6.7, we
are guaranteed that for every face F ∈ F , for all C,C ′ ∈ C′F , if Q ∈ Q′(C) and Q′ ∈ Q′(C ′), then Q
and Q′ are independent.

It is however possible that for some C ∈ C, there is a pair Q,Q′ ∈ Q′(C) of clusters, such that there is
a conflict between Q and Q′. In order to avoid this, we perform the following grouping procedure: For
each F ∈ F , for each C ∈ C′F , while there is a pair Q,Q′ ∈ Q(C) of clusters that are not independent,
remove Q,Q′ from Q′(C), and replace them with Q ∪Q′. For each C ∈ C, let Q(C) be the resulting
partition of the vertices of C. Clearly, each pair Q,Q′ ∈ Q(C) is independent.

Claim 6.9 For each F ∈ F , for each pair C,C ′ ∈ C′(F ) of clusters, and for each Q ∈ Q(C), Q′ ∈
Q(C ′), clusters Q and Q′ are independent.

Proof: Consider the partitions Q′(C), Q′(C ′), as they change throughout the grouping procedure.
Before we have started the grouping procedure, every pair Q ∈ Q′(C), Q′ ∈ Q′(C ′) was independent.
Consider the first step in the grouping procedure, such that this property held for Q′(C),Q′(C ′)
before this step, but does not hold anymore after this step. Assume w.l.o.g. that the grouping step
was performed on a pair Q1, Q2 ∈ Q′(C). Since no other clusters in Q′(C) or Q′(C ′) were changed,
there must be a cluster Q′ ∈ Q′(C ′), such that both pairs Q1, Q

′ and Q2, Q
′ are independent, but

Q1 ∪Q2 and Q′ are not independent. We now show that this is impossible.

Let Σ be the partitioning of γ(F ) defined by the vertices of δ(Q′). Since Q1 and Q′ are independent,
there is a segment σ ∈ Σ, such that δ(Q1) ⊆ σ. Similarly, since Q2 and Q′ are independent, there is a
segment σ′ ∈ Σ, such that δ(Q2) ⊆ σ′. However, since Q1 and Q2 are not independent, σ = σ′ must
hold. But then all vertices of δ(Q1 ∪Q2) are contained in the segment σ ∈ Σ, contradicting the fact
that (Q1 ∪Q2) and Q′ are not independent.

30



To summarize, we have shown how to find an assignment F (C) ∈ {F1(C), F2(C)} for every cluster
C ∈ C, and a partition Q(C) of the vertices of every cluster C, such that for every face F ∈ F , every
pair Q,Q′ ∈ Q(F ) of clusters is independent. Moreover, if E∗ denotes the subset of edges EG̃(Q,Q′)
for all Q,Q′ ∈ Q, then we have ensured that |E∗| ≤ O(

√
log n) crϕ̃(G̃) = O(

√
log n) crϕ′(G), and set

E∗ does not contain edges of grids Z ∈ Z, or artificial edges. Therefore, the conditions of Theorem 6.6
hold.

We now define the set E(h)(G), as follows: E(h)(G) = E′∪E′′∪E∗. Recall that |E′| ≤ O(OPT2ρdmax),
|E′′| ≤ O

(
OPT2·ρ·log2 n·d2max·βFCG

α∗

)
, and |E∗| ≤ O(

√
log n) crϕ′(G). Therefore,

|E(h)(G)| ≤ O
(

OPT2 · ρ · log2 n · d2
max · βFCG

α∗

)
+O(

√
log n) crϕ′(G) ≤ m∗.

We also set E(h) =
⋃
G∈

n
GX1 ,...,G

X
kh

o E(h)(G), so |E(h)| ≤ m∗ · OPT as required.

We now define a collection Gh+1 of instances. Recall that for all 1 ≤ i ≤ kh, this collection already
contains the instance π(G′i, ∅,Z). Let G = GXi , and Q ∈ Q. Let Q′ denote the subset of vertices of Q
without the artificial vertices, and let HQ be the sub-graph of H induced by Q∪XQ. We then add the
instance πG(HQ, XQ,Z) to Gh+1(G). This finishes the definition of the set G′h+1. From Theorem 6.6,
for each 1 ≤ i ≤ kh, there is a strong solution to each resulting sub-instance of GXi , such that the
total cost of these solutions is at most crϕi(G

X
i ). Clearly, ϕi also induces a strong solution to instance

π(G′i, ∅,Z) of cost crϕi(G
′
i). Therefore, there is a strong solution for each instance in Gh+1 of total cost

at most
∑kh

i=1 crϕi(Gi) ≤ OPT, and so the number of instances in Gh+1, for which ∅ is not a feasible
weak solution is bounded by OPT. We let G′h+1 ⊆ Gh+1 denote the set of all instances for which ∅
is not a feasible solution. Observe that we can efficiently verify whether ∅ is a feasible solution for a
given instance, so we can compute G′h+1 efficiently. We now claim that G′h+1 is a valid input to the
next iteration, except that it may not satisfy Invariant (V3) due to the grid sets Z ′′(G) – we deal with
this issue at the end of this section.

We have already established Invariant (V4) in the above discussion. Also, from Theorem 6.6, if we find
a weak feasible solution ẼH for each instance H ∈ Gh+1, then the union of these solutions, together
with E(h), gives a weak feasible solution to all instances π(Gi, Xi,Zi) for 1 ≤ i ≤ kh, thus giving
Invariant (V5). In order to establish Invariant (V6), observe that the number of edges in E(h), incident
on any new instance is bounded by the maximum number of edges in E(h) that belong to any original
instance G1, . . . , Gkh , which is bounded by m∗, and the total number of edges in E(h) is bounded by
m∗ · OPT. Invariant (V7) follows from the fact that for each 1 ≤ i ≤ kh, |V (G′i)| ≤ nh, and these
graphs have empty bounding boxes. All sub-instances of GXi were constructed by further partitioning
the clusters in GXi \ (Ki ∪ E′′), and each such cluster contains at most nh+1 vertices. Invariant (V1)
is immediate, as is Invariant (V2) (recall that we have ensured that all edges in E′, E′′, E∗ connect
vertices in distinct sub-instances). Finally, if we assume that Z ′′(G) = ∅ for all G ∈ {G1, . . . , Gkh},
then the resulting sub-instances are canonical, as we have ensured that the edges in sets E′, E′′, E∗ do
not belong to the grids Z ∈ Z, thus giving Invariant (V3). Therefore, we have shown how to produce
a valid input to the next iteration, for the case where Z ′′(G) = ∅ for all G ∈ {G1, . . . , Gkh}. It now
only remains to show how to deal with the grids in sets Z ′′(G).

Dealing with grids in sets Z ′′(G) Let G ∈
{
GX1 , . . . , G

X
kh

}
, and let Z ∈ Z ′′(G). Recall that this

means that Z ∩K is a simple path, that we denote by PZ , and in particular, K contains exactly two
edges of out(Z), that we denote by eZ and e′Z .

The difficulty in dealing with such grids is that, on the one hand, we need to ensure that all new

31



sub-instances are canonical, so we would like to add such grids to the skeleton K. On the other hand,
since Z∩K is a simple path, graph K∪Z is not rigid, and has 2 different planar drawings (obtained by
“flipping” Z around the axis PZ), so we cannot claim that we can efficiently find the optimal drawing
ϕ′K∪Z of K ∪Z. Our idea in dealing with this problem is that we use the conflict resolution procedure
to establish which face of the skeleton K each such grid Z ∈ Z ′′(G) must be embedded in. Once this
face is established, we can simply add Z to K. Even though the resulting skeleton is not rigid, its
drawing is now fixed.

More specifically, let Z ∈ Z ′′(G) be any such grid, and let v, v′ be the two vertices in the first row of
Z adjacent to the edges ez and e′z, respectively. We start by replacing the path PZ in the skeleton K,
with the unique path connecting v and v′ that only uses the edges of the first row of Z. Let P ′Z denote
this path. We perform this transformation for each Z ∈ Z ′′(G). The resulting skeleton K is still rigid
and good. It is now possible that the size of some connected component of G \ (K ∪ E′′) becomes
larger. However, since we eventually add all vertices of all such grids Z ∈ Z ′′(G) to the skeleton, this
will not affect the final outcome of the current iteration.

We then run the conflict resolution procedure exactly as before, and obtain the collection Gh+1 of new
instances as before. Consider some such instance π(HQ, XQ,Z), and assume that HQ is a sub-graph of

G ∈
{
GX1 , . . . , G

X
kh

}
. Let Q = HQ \XQ. From the above discussion, Q is canonical w.r.t. Z \ Z ′′(G).

The only problem is that for some grids Z ∈ Z ′′(G), Q may contain the vertices of Z \ P ′Z . This can
only happen if P ′Z belongs to the bounding box XQ. Recall that we are guaranteed that there is a
strong solution to instance π(HQ, XQ,Z), and the total cost of all such solutions over all instances in
Gh+1 is at most OPT. In particular, the edges of Z do not participate in crossings in this solution.
Therefore, we can simply consider the grid Z to be part of the skeleton, remove its vertices from Q, and
update the bounding box of the resulting instance if needed. In other words, the conflict resolution
procedure, by assigning every cluster C ∈ C to a face of F , has implicitly defined a drawing of the
graph K ∪ (

⋃
Z∈Z′′(G) Z). Even though this drawing may be different from the drawing induced by ϕ′,

we are still guaranteed that the resulting sub-problems all have strong feasible solutions of total cost
bounded by OPT. The final instances in G′h+1 are now guaranteed to satisfy all Invariants (V1)–(V7).

7 Conclusions

We have shown an efficient randomized algorithm to find a drawing of any graph G in the plane with
at most O

(
(OPTcr(G))10 poly(dmax · log n)

)
crossings. We did not make an effort to optimize the

powers of OPT, dmax and log n in this guarantee, or the constant hidden in the O(·) notation, and we
believe that they can be improved. We hope that the technical tools developed in this paper will help
obtain better algorithms for the Minimum Crossing Number problem. A specific possible direction is
obtaining efficient algorithms for ρ-balanced α-well-linked bi-partitions. In particular, an interesting
open question is whether there is an efficient algorithm, that, given an n-vertex graph G with maximum
degree dmax, finds a ρ-balanced α-well-linked bi-partition of G, for ρ, α = poly(dmax · log n). In fact it
is not even clear whether such a bi-partition exists in every graph. We note that the dependence of ρ
on dmax is necessary, for example, in the star graph. This question appears to be interesting in its own
right, and its positive resolution would greatly simplify our algorithm and improve its performance
guarantee. We also note that if we only require that one of the two sets in the bi-partition is well-linked,
then there is an efficient algorithm for finding such bi-partitions, similarly to the proof of Theorem 6.1.

Acknowledgements. The author thanks Yury Makarychev and Anastasios Sidiropoulos for many
fruitful discussions, and for reading earlier drafts of the paper.

32



References

[ACMM05] Amit Agarwal, Moses Charikar, Konstantin Makarychev, and Yury Makarychev.
O(
√

log n) approximation algorithms for min UnCut, min 2CNF deletion, and directed
cut problems. In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, pages 573–581, New York, NY, USA, 2005. ACM.

[ACNS82] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Theory
and Practice of Combinatorics, pages 9–12, 1982.

[ALN05] Sanjeev Arora, James R. Lee, and Assaf Naor. Euclidean distortion and the sparsest cut.
In STOC ’05: Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing, pages 553–562, New York, NY, USA, 2005. ACM.

[AMS07] C. Ambuhl, M. Mastrolilli, and O. Svensson. Inapproximability results for sparsest cut,
optimal linear arrangement, and precedence constrained scheduling. In Proceedings of the
48th Annual IEEE Symposium on Foundations of Computer Science, pages 329–337, 2007.

[AR98] Yonatan Aumann and Yuval Rabani. An O(log k) approximate min-cut max-flow theorem
and approximation algorithm. SIAM J. Comput., 27(1):291–301, 1998.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings
and graph partitioning. J. ACM, 56(2), 2009.

[BL84] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout problems.
J. Comput. Syst. Sci., 28(2):300–343, 1984.

[BPT06] K. J. Börözky, J. Pach, and G. Tóth. Planar crossing numbers of graphs embeddable in
another surface. Int. J. Found. Comput. Sci., 17(5):1005–1016, 2006.

[CHM08] M. Chimani, P. Hliněný, and P. Mutzel. Approximating the crossing number of apex
graphs. In Graph Drawing, pages 432–434, 2008.

[CKS05] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. Multicommodity flow, well-
linked terminals, and routing problems. In STOC ’05: Proceedings of the thirty-seventh
annual ACM symposium on Theory of computing, pages 183–192, New York, NY, USA,
2005. ACM.

[CM10] S. Cabello and B. Mohar. Adding one edge to planar graphs makes crossing number hard.
In Proc. ACM Symp. on Computational Geometry, 2010.

[CMS] J. Chuzhoy, Y. Makarychev, and A. Sidiropoulos. On graph crossing number and edge
planarization. SODA 2010, to appear. Full version on arXiv:1010.3976v1, Oct. 2010.

[EG73] P. Erdös and R. Guy. Crossing number problems. Amer. Math. Monthly, 80:52–58, 1973.

[EGS02] G. Even, S. Guha, and B. Schieber. Improved approximations of crossings in graph
drawings and VLSI layout areas. SIAM J. Comput., 32(1):231–252, 2002.

[GHLS07] I. Gitler, P. Hliněný, J. Leaños, and G. Salazar. The crossing number of a projective
graph is quadratic in the face-width. Electronic Notes in Discrete Mathematics, 29:219–
223, 2007.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods, 4(3):312–316, 1983.

33



[Gro04] M. Grohe. Computing crossing numbers in quadratic time. J. Comput. Syst. Sci.,
68(2):285–302, 2004.

[Guy60] R.K. Guy. A combinatorial problem. Nabla (Bulletin of the Malayan Mathematical Soci-
ety), 7:68–72, 1960.

[GVY95] N. Garg, V.V. Vazirani, and M. Yannakakis. Approximate max-flow min-(multi)-cut
theorems and their applications. SIAM Journal on Computing, 25:235–251, 1995.

[HC10] P. Hliněný and M. Chimani. Approximating the crossing number of graphs embeddable
in any orientable surface. In Proc. 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, 2010.

[Hli06] P. Hlinený. Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B, 96(4):455–
471, 2006.

[HS07] P. Hliněný and G. Salazar. Approximating the crossing number of toroidal graphs. Lecture
Notes in Computer Science, 4835/2007:148–159, 2007.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568,
1974.

[KM04] P. Kolman and J. Matoušek. Crossing number, pair-crossing number, and expansion.
J. Comb. Theory, Ser. B, 92(1):99–113, 2004.

[KR07] K. Kawarabayashi and B. A. Reed. Computing crossing number in linear time. In STOC,
pages 382–390, 2007.

[Lei83] F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange graph
and other networks. MIT Press, 1983.

[LLR94] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its al-
gorithmic applications. Proceedings of 35th Annual IEEE Symposium on Foundations of
Computer Science, pages 577–591, 1994.

[LR99] F. T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of the ACM, 46:787–832, 1999.

[LT79] Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs.
SIAM Journal on Applied Mathematics, 36(2):177–189, 1979.

[Mak10] Yury Makarychev. Personal communication, 2010.

[Mat02] J. Matoušek. Lectures on discrete geometry. Springer-Verlag, 2002.

[PR07] S. Pan and R. B. Richter. The crossing number of K11 is 100. J. Graph Theory, 56(2):128–
134, 2007.

[PT00] J. Pach and G. Tóth. Thirteen problems on crossing numbers. Geombinatorics, 9(4):194–
207, 2000.

[Räc02] Harald Räcke. Minimizing congestion in general networks. In In Proceedings of the 43rd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 43–52, 2002.

34



[RS09] R. B. Richter and G. Salazar. Crossing numbers. In L. W. Beineke and R. J. Wilson, edi-
tors, Topics in Topological Graph Theory, chapter 7, pages 133–150. Cambridge University
Press, 2009.

[Sid10] Anastasios Sidiropoulos. Personal communication, 2010.

[Sze05] L. A. Szekely. Progress on crossing number problems. In SOFSEM, pages 53–61, 2005.

[Tur77] P. Turán. A note of welcome. J. Graph Theory, 1:1–5, 1977.

[Vrt] Imrich Vrto. Crossing numbers of graphs: A bibliography. http://www.ifi.savba.sk/

~imrich.

[Whi32] Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal of
Mathematics, 54(1):150–168, 1932.

[WT07] D. R. Wood and J. A. Telle. Planar decompositions and the crossing number of graphs
with an excluded minor. New York J. Mathematics, 13:117–146, 2007.

35



A Parameter List

α∗ Ω(1/(log3/2 n · log logn)) Well-linkedness parameter in the
well-linked decomposition, Theorems 2.8,2.9

|S| ≥ 216·d6max
(α∗)2 · |Γ(S)|2 Requirement for nasty set S

βFCG O(log n) Flow-cut gap for undirected graphs

αALN O(
√

log n log log n) approximation factor of algorithm AALN
for non-uniform sparsest cut.

β∗ βFCG · dmax/α
∗ = O(log5/2 n · log logn · dmax) Parameter for Property (P3) for graphs

H(3)(X) in Step 3 of Graph Contraction.

N O(dmax
√
n′ log n′) number of cut edges in the initial partition in

Step 1 of the algorithm

ε constant balance parameter guaranteed by ARV for
balanced cut

λ ε2n′

25N2 = Ω
(

1
logn′·d2max

)
balance parameter in the initial partition
in Step 1 of the algorithm

ρ Θ(log n · d2
max) max

{
d10

max log5 n(log log n)2,OPT
}

Balance parameter in final partition
in Step 1 of the algorithm

E(h) |E(h)| ≤ OPT ·m∗ edges removed from the graph
in iteration h

m∗ O
(

OPT2·ρ·log2 n·d2max·βFCG

α∗

)
maximum number of edges in E(h′)

= O
(
OPT3 · poly(dmax · log n

)
) incident on any graph Hi in the input

to iteration h, for all h′ < h.

n′ ≥ (m∗ · ρ · log n)2 number of vertices in a sub-instance H
considered in current iteration

E′i |E′i| = O(OPT2 · ρ · dmax) Set of edges separating GXi from G′i
in each iteration of the algorithm

E′′i |E′′i | = O
(

OPT2·ρ·log2 n·d2max·βFCG

α∗

)
Edges of Gi for which we find
a valid skeleton

36



B Auxiliary Claim

The next simple claim is used extensively throughout the paper.

Claim B.1 Suppose we are given any collection R of non-negative numbers, and each number x ∈ R
is associated with another number, yx > 0. Moreover, assume that the following three conditions hold:

1. For each x ∈ R, x ≤ βy2
x.

2. For each x ∈ R, x ≤M .

3.
∑

x∈R yx ≤ S

for some parameters β,M, S > 0. Then
∑

x∈R x ≤ 2S
√
βM +M/4.

Before providing the proof of this claim, we give some intuition as to why we need it. The general
setting in which we will use this claim, is when we are given some collection X of subsets of vertices
of some graph G. For each set X ∈ X , we will have the number x = |X|, and yx = |Γ(X)|. What the
above claim essentially says is that if none of the sets X ∈ X is nasty or too large, and if the total
number of the interface vertices in all such sets X is small, then the total number of vertices contained
in sets X ∈ X cannot be too large.

Proof: We will perform a number of transformations on the set R, until we obtain a set for which we
can bound

∑
x∈R x easily. After each such transformation, the above three conditions will continue to

hold, and
∑

x∈R x will not decrease. It will then be enough to bound
∑

x∈R x in the final set R. We
perform one of the following three steps, while possible:

• If there is a number x ∈ R with yx >
√

M
β : remove x from R, and add two new numbers, x′ = x,

x′′ = 0, with yx′ =
√

M
β , and yx′′ = yx− yx′ . Since x ≤M and x ≤ βy2

x, it is easy to see that all
three conditions continue to hold, and

∑
x∈R x does not decrease.

• If the first step is not applicable, but there is a number x ∈ R with x < βy2
x, replace it with

x′ = βy2
x, and yx′ = yx. Since yx ≤

√
M
β , it is easy to see that all three conditions continue to

hold, and
∑

x∈R x does not decrease.

• If the above two steps are not applicable, but there are two numbers x, x′ ∈ R, with yx, yx′ ≤
1
2

√
M
β , replace the two numbers x, x′ with a single number x′′ = β(yx + yx′)2, and set yx′′ =

yx + yx′ . Notice that all three conditions continue to hold, and moreover, x′′ = β(yx + yx′)2 ≥
β(y2

x + y2
x′) = x+ x′.

When none of the above steps is applicable, there is at most one number x ∈ R with yx < 1
2

√
M
β (and

in this case x ≤ βy2
x ≤M/4), and since

∑
x∈R yx ≤ S, we have that |R| ≤ 2S

√
β√

M
+ 1. As each number

x ≤M , we have that
∑

x∈R x ≤ 2S
√
βM +M/4.

37



C Well-Linked Decomposition

C.1 Proof of Theorem 2.8

We use the αALN-approximation algorithm AALN for the non-uniform sparsest cut problem (see
Section 2.2 for definitions). We set α∗ = 1/(8αALN log n) = Ω(1/(log3/2 n log logn)),

Throughout the algorithm, we maintain a partition J of the input set J of vertices. At the beginning,
J consists of the subsets of J defined by the connected components of G[J ].

Let J ′ ∈ J be any set in the current partition, and let G′ = G[J ′] ∪ out(J ′) be the corresponding
sub-graph of G. We set up a non-uniform sparsest cut problem on G′, where the weight of every vertex
in T (J ′) equals the number of edges in out(J ′) incident on it, and the weights of all other vertices are
0. If J ′ is not α∗-well-linked, then there is a cut of sparsity at most α∗ in G′. In this case, we can apply
algorithm AALN, to obtain a partition (J ′1, J

′
2) of V (G′) of sparsity at most α∗ · αALN ≤ 1/(8 log n).

Let A = J ′1 \ T (J) and B = J ′2 \ T (J). Notice that (A,B) is a partition of J ′. Moreover, if we denote
T1 = out(J ′)∩out(A) and T2 = out(J ′)∩out(B), then |E(A,B)| ≤ min {|T1|, |T2|} /(8 log n). We then
replace J ′ with A and B in J . For accounting purposes, we charge the edges in E(A,B) to the edges
in out(J ′), as follows. If |A| < |B|, then we evenly charge the edges in out(J ′)∩out(A) for the edges in
E(A,B). Since |E(A,B)| ≤ |T1|/(8 log n), the charge to every edge is at most 1/(8 log n). Otherwise,
if |B| ≤ |A|, we charge the edges of out(J ′) ∩ out(B) for the edges in E(A,B). Again, the charge to
every edge is at most 1/(8 log n).

We continue this procedure, until for every subset J ′ ∈ J , algorithm AALN returns a cut of sparsity
greater than 1/(8 log n). We are then guaranteed that every set J ′ ∈ J is α∗-well-linked.

In order to bound
∑

J ′∈J | out(J ′)|, we use the above charging scheme. Notice that every edge can be
charged at most 2 log n times (since each time an edge e = (u, v) is charged for a cluster to which u
belongs, the size of this cluster decreases by at least factor 2, and the same holds for v). Therefore,
the total amount charged to any edge e ∈ out(J) is at most 1

4 . However, this only refers to the direct
charge. For example, some edge e′ 6∈ out(J), that has first been charged to the edges in out(J), can
in turn be charged for other edges. We call such charging indirect. If we sum up the indirect charge
for every edge e ∈ out(J), we obtain a geometric series, and so the total direct and indirect amount
charged to every edge e ∈ out(J) is at most 1. Therefore,

∑
J ′∈J | out(J ′)| ≤ 2| out(J)|.

C.2 Proof of Theorem 2.9

We first show how to handle property (P1) and the property that J is canonical. We deal with property
(P2) later.

The decomposition procedure is similar to the one in the proof of Theorem 2.8, and the proof is by
induction. Initially, J is the partition of J induced by the connected components of the graph G[J ].
Clearly, if (P1) holds for J , it has to hold for every set in J , and if J is canonical, every set in J is
also canonical (since for each Z ∈ Z, G[Z] is connected).

Assume that we have some set J ′ ∈ J , for which algorithm AALN has returned a cut of sparsity at
most 1/(8 log n), and let (A,B) denote the resulting partition of J ′. We first show that if A or B
are not canonical, but J ′ is canonical, then we can efficiently find a cut of even smaller sparsity in
graph G[J ′]∪out(J ′). We can then replace (A,B) with the corresponding new partition and continue,
until we obtain a partition (A′, B′) of J ′, where both A′ and B′ are canonical, and the sparsity of the
corresponding cut is at most 1/(8 log n).

Denote T = out(J ′), T1 = T ∩ out(A) and T2 = T ∩ out(B), and we assume w.l.o.g. that |T1| ≤ |T2|.

38



We refer to the edges in T as terminals. Let E′ = E(A,B). Then |E′|/|T1| ≤ 1/(8 log n).

If J ′ is canonical, but one of the sets A,B is not, then there must be some set Z ∈ Z, that is being
split between the two sides. Let Υ = out(Z), Υ′1 = out(Z) ∩ T1, Υ′2 = out(Z) ∩ T2. Let Υ1 denote
all edges in out(Z) whose endpoint inside Z belongs to A, but the edge itself is not in T1 (notice that
the other endpoint may be inside either A or B). Similarly, let Υ2 denote all edges in out(Z) whose
endpoint inside Z belongs to B, but the edge is not in T2 (see Figure C.1).

A BE′T1

E′′

Υ′
1

Υ1 Υ2

Υ′
2

T2

Figure C.1: Canonical well-linked decomposition

Let E′′ = E(Z ∩ A,Z ∩ B). We consider two cases. In the first case, |Υ′1| + |Υ1| ≤ |Υ′2| + |Υ2|,
and therefore |E′′| ≥ |Υ′1| + |Υ1| (since Z is 1-well-linked). In this case we move Z completely to B.
Observe that the cut size goes down by at least |E′′| − |Υ1|, and the size of the new cut is at most
|E′| − |E′′| + |Υ1| ≤ |E′| − |Υ′1|. The number of terminals on the smaller side becomes |T1| − |Υ′1|.
Therefore, the new sparsity is at most |E

′|−|Υ′1|
|T1|−|Υ′1|

< |E′|
|T1| , since for all c < a < b, a−c

b−c <
a
b .

In the second case, |Υ′1| + |Υ1| > |Υ′2| + |Υ2|, and therefore |E′′| ≥ |Υ′2| + |Υ2|. We then move all
vertices in Z to A. Observe that the cut size goes down by at least |E′′| − |Υ2|, and the size of the
new cut is at most |E′| − |E′′| + |Υ2| ≤ |E′| − |Υ′2|. The number of terminals on one side becomes
|T1|+ |Υ2|, and on the other side |T2| − |Υ2|. If the second quantity is smaller than the first, then the
new sparsity is at most |E

′|−|Υ′2|
|T2|−|Υ′2|

< |E′|
|T2| ≤

|E′|
|T1| . Otherwise, the new sparsity is at most |E

′|−|Υ′2|
|T1|+|Υ′2|

< |E′|
|T1| .

In any case, the sparsity goes down.

We continue this process, until we obtain a partition (A,B) of J ′, where A, B are canonical and the
cut sparsity remains at most 1/(8 log n).

We next show that if J ′ had property (P1), then we can find a cut (A′, B′) of J ′, such that both A′, B′

will still have property (P1), and the sparsity of the cut is at most 1/(8 log n). Moreover, if the cut
(A,B) we are starting from is canonical, then in the new cut, both sets A′ and B′ are canonical. Since
J ′ had property (P1), the vertices of T (J ′) are connected in the graph G \J ′. Assume that set A does
not have property (P1). Then there are two edges e = (x, y), e′ = (x′, y′), e, e′ ∈ out(A), x, x′ ∈ A,
such that there is no path connecting y to y′ in graph G \ A. Since J ′ had property (P1), this can
only happen if graph G[B] has a connected component C, such that out(C) ⊆ E(A,B), and exactly
one of the vertices y, y′ belongs to C. In this case, we can move all vertices of C to A, and this will
only decrease the cut sparsity, since out(C)∩ out(J ′) = ∅. Moreover, if A and B were both canonical,
then both B \ C,A ∪ C will remain canonical, as for each Z ∈ Z, G[Z] is a connected graph. We can
continue this process until both sets A and B have property (P1). Eventually, if the set J ′ we start
from is not α∗-well-linked, we obtain a partition (A,B) of J ′ that induces a cut of sparsity at most
1/(8 log n). Moreover, if J ′ was canonical, or had property (P1), or both, then both sets A and B will
have the same properties.

Let J be the final partition of J . We have shown that if J was canonical, or had property (P1), or

39



both, then every set J ′ ∈ J will have exactly the same properties. It now only remains to show how
to handle property (P2).

Assume that the original set J had property (P2). Construct a new graph H as follows: H consists
of the sub-graph G[J ] of G, and an additional vertex s, that connects with an edge to every vertex in
ΓG(J). Notice that set J has properties (P1) and (P2) in graph H. We can then find the decomposition
J of J as above, such that every set J ′ ∈ J has property (P1) in graph H, and if J is canonical,
then each set J ′ ∈ J is also canonical. We now show that every set J ′ ∈ J has property (P2) as well.
Since J had property (P2), there is a planar drawing ψ of the graph H. This drawing induces a planar
drawing ψ′ of J ′, for each J ′ ∈ J . All vertices in Γ(J ′) are connected in graph (H \ J ′) ∪ out(J ′).
Therefore, in ψ′, all vertices of Γ(J ′) lie on the boundary of the same face, and so J ′ has property
(P2). Finally, notice that if, additionally, J had property (P1) in G, then each set J ′ ∈ J also has
this property.

The number of edges
∑

J ′∈J | out(J ′)| is bounded by 2 out(J) as in the proof of Theorem 2.8.

D Graph Contraction: Proofs of Theorems

D.1 Proof of Theorem 4.1

Fix some i : 1 ≤ i ≤ q. We start by showing how to find the partition Xi of V (Gi), for which
properties (C1)–(C5) hold. The difficult part will then be to show that there exists a required drawing
of the resulting contracted graph.

We start with some fixed index 1 ≤ i ≤ q and the graph Gi. Our first step is to use Theorem 2.9, to
find a partition Wi of V (Gi), into disjoint subsets, such that each set Y ∈ Wi is α∗-well-linked and
has properties (P1) and (P2). We are also guaranteed that

∑
Y ∈Wi

| out(Y )| ≤ 2|Γ(Gi)|. We denote
Wi =

{
Y i

1 , . . . , Y
i
pi

}
.

For each 1 ≤ j ≤ pi, we now define a further decomposition Y ij of the set Y i
j of vertices, and in the

end, we will set Xi =
⋃pi
j=1 Y ij . We now fix some set Y i

j ∈ Wi, and focus on defining the decomposition
Y ij of Y i

j . We will omit the subscript and the superscript i from now on when clear from context.

First, we decompose Yj into a collection Cj of maximal 2-connected components (some components
may consist of a single edge). Let S(1)

j be the set of all vertices u ∈ V (Yj), such that u is a 1-separator

for Yj . Let T be the tree whose vertex set is: S(1)
j ∪ {vC | C ∈ Cj}, and there is an edge between vC

and u ∈ S(1)
j iff u ∈ C. If there is a vertex u ∈ S(1)

j ∩ Γ(Yj), then we root T at u, and denote t0 = u.
Otherwise, there must be a cluster C ∈ Cj with C ∩ Γ(Yj) 6= ∅. We then root T at vC , and we set
t0 to be any vertex in C ∩ Γ(Yj). For each node x of the tree, we denote by T (x) the sub-tree of T
rooted at x. We also denote by Υ(x) the union of all clusters C ∈ Cj , such that vC ∈ T (x). Also, for
any sub-tree T ′ of T , we denote by Υ(T ′) the union of all clusters C ∈ Cj , such that vC ∈ T ′.
We now mark some vertices of the tree T , as follows. For each cluster C ∈ Cj that contains at least one
vertex in Γ(Yj), we mark the vertex vC . We then go over the tree in the bottom-up fashion. Consider
the current vertex x of T . If x has at least two children, say y and y′, whose sub-trees contain marked
vertices, then we mark x as well. Otherwise we do not mark x. For each marked vertex x, remove
the edge connecting it to its father from the tree T . Also, if y is a child of a marked vertex x, and
the sub-tree T (y) contains a marked vertex, we remove the edge (x, y) from the tree. Consider the
resulting forest. We say that a tree T ′ of this forest is a trivial tree iff it consists of a single marked
vertex u ∈ S(1)

j . For each non-trivial tree T ′ in this forest, add the set Υ(T ′) of vertices to Yj .

40



This finishes the definition of the partition Y ij of Y i
j . Notice that every vertex v ∈ Y i

j belongs to some
set X ∈ Y ij . Observe also that every pair X,X ′ ∈ Y ij of vertex subsets is completely disjoint, except
that it may share one interface vertex, and so the graphs G[X] and G[X ′] are edge disjoint. We now
set Xi =

⋃pi
j=1 Y ij . Since all subsets of vertices in the partition Wi of V (Gi) were completely vertex

disjoint, this establishes Property (C3). We prove that this partition has properties (C1), (C2), (C4)
and (C5) below. But first, we need to establish some properties of the sets X ∈ Y ij , that will be useful
later.

Structure of sets X ∈ Yi
j. Fix some 1 ≤ i ≤ q, 1 ≤ j ≤ pi (we will omit the index i now). Consider

some set X ∈ Yj , and the corresponding sub-tree T ′ of T , such that X = Υ(T ′). Let r be the root
of the tree T ′, and let y1, . . . , yt be the children of r that belong to T ′. If r is a vertex of the form
vC , then we let C∗X denote the cluster of Cj , such that vC∗X = r. Otherwise, C∗X = {r}. For each
1 ≤ t′ ≤ t, let R′t′ denote the sub-set of vertices of Υ(yt′) that belong to X. Then (C∗X , R

′
1, . . . , R

′
t)

define a partition of X (except that each set Rt′ shares a single vertex with C∗X). Observe that Γ(X)
consists of three types of vertices: Γ1(X) = Γ(X) ∩ Γ(Yj) are the original interface vertices of Yj ;
Γ2(X) contains a single vertex that is common to r and its parent (if r ∈ S(1)

j , then Γ2(X) = {r});
Γ3(X) contains all remaining interface vertices. Note that Γ1(X),Γ2(X),Γ3(X) is not necessarily a
strict partition of Γ(X), in the sense that some vertices of Γ(X) may belong to several subsets.

If r is a marked vertex, then we say that X is of type 1; otherwise it is of type 2. Assume first that r
is a marked vertex. Since for each 1 ≤ t′ ≤ t, we did not remove the edge (r, yt′) from the tree, T (yt′)
does not contain any marked vertices, and so T (yt′) ⊆ T ′, as no edges have been removed from it.
Therefore, all interface vertices Γ(X) must belong to C∗X in this case.

Assume now that r is not a marked vertex. Then C∗X does not contain any vertices of Γ(Yj), and T ′
does not contain any marked vertices. We claim that in this case |Γ3(X)| ≤ 1, and so |Γ(X)| ≤ 2.
Assume for contradiction that |Γ3(X)| ≥ 2. Two cases are possible. The first case is when there is
some node vC ∈ T ′, such that C contains two vertices, a, b ∈ Γ3(X). But that means that vC had two
children that were marked vertices, and so it should have been marked itself, a contradiction. The
second case is when there are two distinct nodes x, y ∈ T ′, which either belong to Γ3(X), or their
cluster contains a vertex in Γ3(X). Then x and y each have a child, that is a marked vertex of T .
We denote these vertices by x′ and y′. Let z be the lowest common ancestor of x′ and y′ in T . Then
z ∈ T ′, and yet z is a marked vertex, a contradiction. It follows that if X is a type-2 cluster, then
|Γ(X)| ≤ 2. It is now immediate to see that each set X ∈ X has Property (C2). The only change is
that, in order to obtain the partition (C∗X , R1, . . . , Rt), we start with the sets (C∗X , R

′
1, . . . , R

′
t), and

for each 1 ≤ t′ ≤ t, we remove the unique vertex that R′t′ shares with C∗X , to obtain Rt. This vertex
then serves as the separator ut′ .

C∗
X

R1

R2

R3

u1 u2

u3

C∗
X

R1

R2

R3

u1 u2

u3

(a) (b)

Figure D.1: Structure of X. (a) type-1 clusters; (b) type-2 clusters. Vertices of Γ(X) are in blue.

We are now ready to establish Properties (C1), (C4) and (C5) for the resulting partition. First, it is

41



easy to see that each set X ∈ Y ij still has properties (P1) and (P2): Recall that Y i
j had both properties.

Consider any planar drawing of Y i
j , where all the interface vertices Γ(Y i

j ) lie on the outer face. This
induces the required planar drawing for each one of the clusters X ∈ Yj , giving property (P2). It is
also easy to see that we can draw a closed simple curve γX , such that the images of all vertices in Γ(X)
lie on γX , and all other vertices and edges of G[X] are drawn inside γX . This follows from the fact
that X has property (P2), and whenever |Γ(X)| > 2, all vertices of Γ(X) belong to the 2-connected
sub-graph of G[X] induced by C∗X .

We now turn to establish property (P1). Consider some cluster X ∈ Y ij . Recall the decomposition of
Γ(X) into three sets: Γ1(X) = Γ(X) ∩ Γ(Yj), Γ2(X) contains a single vertex common to the root of
the tree T ′ and its parent in T , and Γ3(X) contains all other vertices in Γ(X). In order to establish
property (P1), it is enough to show that for each vertex v ∈ Γ2(X) ∪ Γ3(X), for each edge (v, u) ∈ E
with u 6∈ X, there is a path P connecting u to some vertex t ∈ Γ(Yj) in the graph G[Yj ]\X. Consider
first the vertex v ∈ Γ2(X). For each u 6∈ X, with (v, u) ∈ E, there is a path connecting u to the
vertex t0 ∈ Γ(Yj) (recall that this is the vertex of Γ(Yj) corresponding to the root node of the tree T ).
Consider now some vertex v ∈ Γ3(X), and let x be the node of T ′, such that either x = v, or v ∈ C
and vC = x. Let u 6∈ X, such that (u, v) ∈ E, and let y be the child node of x in T , such that either
u = y, or u ∈ C ′, while y = vC′ . Then y 6∈ T ′, and T (y) contains a marked vertex. Therefore, Υ(y)
contains a vertex t ∈ Γ(Yj), and there is a path P connecting u to t in the sub-graph of G induced by
Υ(y). This establishes property (P1). Next, we prove that each set X ∈ Yj is α∗-well-linked.

Claim D.1 Each cluster X ∈ Yj is α∗-well-linked.

Proof: Consider some cluster X ∈ Yj , and let T ′ be the corresponding sub-tree of T , such that
X = Υ(T ′). First, if X is a type-2 cluster, then |Γ(X)| ≤ 2, and since G[X] is connected, X is
α∗-well-linked.

Assume now that X is a type-1 cluster, that is, its root vertex r is marked. Then Γ(X) ⊆ C∗X . If
r ∈ S

(1)
j , then Γ(X) consists of a single vertex, r, and is therefore well-linked. Assume now that

r 6∈ S(1)
j , and let u ∈ S(1)

j be the parent of r in T . Let u1, . . . , uk be the children of r in T that do

not belong to T ′. Notice that u1, . . . , uk ∈ S(1)
j . Then, for each 1 ≤ k′ ≤ k, there is a marked vertex

in T (uk′), and a vertex tk′ ∈ Γ(Yj) ∩Υ(uk′). Moreover, for k′ 6= k′′, tk′ 6= tk′′ . Let tu = t0, the vertex
in Γ(Yj) associated with the root of the tree T .

Then Γ(X) = Γ1(X) ∪ {u, u1, . . . , uk}, where Γ1(X) ⊆ Γ(Yj). Assume for contradiction that X is
not α∗-well-linked. We will show that this implies that Yj is not α∗-well-linked. Let (A,B) be any
partition of X, such that, if we denote TA = Γ(X) ∩ A and TB = Γ(X) ∩ B, then |TA| ≤ |TB|, and
|E(A,B)| < α∗|TA|.
We extend (A,B) to a partition (A′, B′) of the whole set Yj of vertices, as follows: if u ∈ A, then we
add all vertices in Yj \ Υ(r) to A, and otherwise we add them to B. Also, for each 1 ≤ k′ ≤ k, if
uk′ ∈ A, then we add all vertices in Υ(uk′) to A, and otherwise, we add them to B. Let (A′, B′) be
the resulting partition of Yj . Then E(A′, B′) = E(A,B).

Let T ′A′ = Γ(Yj)∩A′, and T ′B′ = Γ(Yj)∩B′. Then |T ′A′ | ≥ |TA| must hold, as for each vertex uk′ ∈ A, we
have added the vertex tk′ to TA′ , and if u ∈ TA, then vertex tu has been added to T ′A′ . It then follows
that |E(A′, B′)| = |E(A,B)| < α∗|TA| ≤ α∗|T ′A′ |, and so Yj is not α∗-well-linked, a contradiction.

We have thus established Property (C1). In order to establish Property (C4), we need to bound∑
X∈Yj | out(X)|. Notice that the number of marked vertices in T is at most 2|Γ(Yj)|. Therefore, the

number of edges removed from T is at most 4|Γ(Yj)|. Since
∑

X∈Yj |Γ(X)| is bounded by twice the
number of the edges removed from the tree T plus |Γ(Yj)|, we get that

∑
X∈Yj |Γ(X)| ≤ 9|Γ(Yj)|. We

42



establish Property (C5) in the next claim.

Claim D.2 Let X be any subset of vertices of G that has properties (P1), (P2), and is α-well-linked
for any α. Then |X| ≥ α2|Γ(X)|2/64d2

max.

Proof: Let πX be the drawing of X in which the interface vertices lie on the boundary of the outer
face. Let S1, S2, S3, S4 ⊆ Γ(X) be collections of z = b|Γ(X)|/4c interface vertices each, such that for
each 1 ≤ h ≤ 4, the interface vertices of Sh lie contiguously along the boundary of the outer face of
πX , and the ordering among these sets is (S1, S2, S3, S4). Since X is α-well-linked, there is a collection
P of αz/dmax vertex-disjoint paths in G[X], connecting vertices in S1 to vertices in S3. Similarly,
there is a collection P ′ of αz/dmax vertex-disjoint paths connecting vertices in S2 to vertices in S4

in G[X]. Since the drawing πX has no crossings, every pair P ∈ P, P ′ ∈ P ′ of paths has to share a
vertex. Therefore, X must contain at least α2z2/d2

max vertices. Since z ≥ |Γ(X)|/8, the claim follows.

Combining Claims D.1 and D.2 establishes Property (C5). Therefore, so far we have proved prop-
erties (C1)–(C5) for partition Xi, for each 1 ≤ i ≤ q. It now only remains to show that there is a
canonical drawing ϕ′ of the resulting contracted graph H = G|S .

D.2 Existence of the Canonical Drawing

The goal of this section is to prove the following theorem.

Theorem D.3 Suppose we are given a collection X of subsets of vertices of G, for which Proper-
ties (C1), (C2) and (C3) hold. Let H be the contracted graph, in which each sub-graph G[X] is
replaced by Z ′X . Then there is a canonical drawing ϕ′ of H, such that crϕ′(H) = O(d9

max · log10 n ·
(log log n)4 · OPTcr(G)).

The rest of this section is devoted to proving Theorem D.3. We start with a high-level overview of
the proof. For each set X ∈ X , let G(0)(X) denote the graph G[X]. Recall that G(0)(X) has a planar
drawing π(X), in which all interface vertices Γ(X) lie on the boundary of the outer face. On the other
hand, the optimal drawing ϕ of G also induces a drawing ϕX of G(0)(X). Following [CMS], we will
define the sets of irregular vertices and edges of the graph G(0)(X) to be the vertices and edges whose
“local” drawing is different in π(X) and ϕX .

Next, we show that there is a “nice” drawing ϕ′′ of G, in which, roughly speaking, for each sub-graph
G(0)(X), only the edges incident on the vertices in Γ(X) participate in crossings. We show that such
a nice drawing for G immediately gives a canonical drawing for the contracted graph H. We then
bound crϕ′′(G) by roughly crϕ(G) plus the number of irregular edges and vertices in each set X ∈ X .
Using the result of [CMS], this number is in turn roughly bounded by O(crϕ(G)), but only if the
graphs G(0)(X) are 3-vertex connected. Therefore, in order to apply this argument, we need to first
perform some surgery on the graphs G(0)(X), to get rid of all 1-vertex cuts, and most 2-vertex cuts.
The rest of the proof consists of three parts. The first part is the surgery that we perform on graphs
G(0)(X). In the second part we define irregular vertices and edges for each set X ∈ X and bound
their number. This is similar to what is done in [CMS], except that we will need to deal with the few
2-vertex separators that still remain in the graphs. In the third step we show a nice drawing of the
resulting graph, that will give a canonical drawing of the contracted graph.

43



D.2.1 Part 1: Surgery

The goal of this part is to get rid of all 1-vertex cuts, and most 2-vertex cuts in sets X ∈ X . We do so
in four simple steps. At the end of each step h : 1 ≤ h ≤ 4, we will obtain a graph G(h)(X), for each
X ∈ X , that will replace the graph G(0)(X) in G. Graph G(h)(X) will contain the set Γ(X) of vertices,
and in order to obtain the graph G(h) from G, we simply replace each subgraph G(0)(X) with G(h)(X)
for each X ∈ X , using the vertices Γ(X) as the interface in this replacement procedure. Therefore,
once we define the graphs G(h)(X) for all X ∈ X , the graph G(h) is fixed. We will ensure that the
final graph G(4), that we obtain after the fourth step, is precisely the contracted graph H = G|S . We
will also ensure that the maximum vertex degree dmax does not increase throughout these steps.

From now on, for each set X ∈ X , Γ(X) will denote the set of interface vertices of X in the graph
G. This set will not change as we obtain new graphs by transforming G. For any graph H ′, given a
subset S ⊆ V (H ′) of vertices, we will use ΓH′(S) to denote the set of interface vertices of S in H ′. For
convenience, when H ′′ is a sub-graph of H ′, we will sometimes write ΓH′(H ′′) instead of ΓH′(V (H ′′)),
and TH′(H ′′) instead of TH′(V (H ′′)).

Step 1: getting rid of things we do not need Let X ∈ X . Assume first that |Γ(X)| ≤ 2. Then
we set G(1)(X) = G(2)(X) = · · · = G(4)(X) = Z ′(X) (see Figure 4.1). It is easy to see that replacing
G(0)(X) with Z ′(X) does not increase the number of edges participating in crossings in the resulting
graph. Moreover, for any drawing of the final graph G(4), it is easy to obtain a drawing in which
only the matching edges of Z ′X will participate in crossings (and not the unique non-matching edge).
Therefore, from now on we can simply ignore sets X for which |Γ(X)| ≤ 2. Let X ′ ⊆ X denote the
collection of sets X for which |Γ(X)| > 2. We will restrict our attention to sets X ∈ X ′ from now on.

Consider some set X ∈ X ′. Using Property (C2), we can decompose X into C∗X , R1, . . . , Rt, such
that Γ(X) ⊆ C∗(X), and for each set Rt′ , for 1 ≤ t′ ≤ t, there is a 1-separator ut′ in G(0)(X), whose
removal separates Rt′ from the remaining vertices of X. We simply erase the sets R1, . . . , Rt from X.
In other words, we replace X with C∗X . Let G(1)(X) denote this resulting graph, and let G(1) denote
the whole resulting graph obtained from G, by replacing G[X] with G(1)(X) for all X ∈ X .

Notice that the set of the interface vertices ΓG(1)(G(1)(X)) = Γ(X), even though C∗(X) had additional
interface vertices in the old graph G(0)(X). Therefore, G(1)(X) retains properties1 (P1) and (P2), it
contains all vertices in Γ(X), and it is α∗-well-linked w.r.t. them, sinceG(0)(X) had all these properties.
Also, G(1)(X) does not contain any 1-vertex cuts. Clearly, OPTcr(G(1)) ≤ OPTcr(G), since, in a sense,
G(1) is a sub-graph of G. Obviously, the maximum vertex degree did not increase in this step.

Step 2: introducing new interface vertices Let X be any set in X ′. For each interface vertex
v ∈ Γ(X), we create a new copy vX of v, that will replace v in G(1)(X). We call vX a new interface
vertex for X, and v an old interface vertex. In order to obtain the new graph G(2)(X) from G(1)(X),
we replace each old interface vertex v with a new interface vertex vX , and add a matching edge (v, vX)
to the graph (see Figure D.2). Therefore, if v is an interface vertex that has been shared by k clusters
X1, . . . , Xk ∈ X ′, then each graph G(2)(Xk′), for 1 ≤ k′ ≤ k will now contain a new copy vXk′ of
v, and all these copies are connected to v via matching edges. We denote by Γ′(X) the set of new
interface vertices, and by M(X) the set of matching edges of G(2)(X). We also denote by H(2)(X) the
graph G(2)(X) without the old interface vertices and the matching edges. Notice that the sets of the
interface vertices are now defined as follows: ΓG(2)(G(2)(X)) = Γ(X), and ΓG(2)(H(2)(X)) = Γ′(X).

Let G(2) be the resulting graph. Notice that for each X ∈ X , H(2)(X) still has properties (P1) and

1Notice that property (P1) is now defined w.r.t. G(1) and the set TG(1)(G(1)(X)) of terminal vertices.

44



(P2), it is α∗-well linked w.r.t. the new interface vertices, and does not contain any 1-vertex cuts. The
maximum vertex degree did not increase.

v1

v2
. . .

vp
. . .

v3
v1

v2

. . .

vp . . .

v3

G(1)(X) G(2)(X)

H(2)(X)

Figure D.2: Step 2: (a) before, (b) after. Old interface vertices and matching edges are blue, new
interface vertices are green.

Notice that graph G(2)(X) looks very similar to Z ′X : namely, H(2)(X) is α∗-well-linked w.r.t. the
new interface vertices, and it has properties (P1) and (P2). Moreover, if we replace H(2)(X) with the
grid ZX , we will obtain precisely Z ′X . In particular, if we prove that there is a good drawing of the
graph G(2), such that for each X ∈ X , only the matching edges of G(2)(X) participate in crossings,
this would imply the existence of the required canonical drawing for the contracted graph H. This is
indeed what we do in the rest of the proof. For now, we need to prove the following lemma.

Lemma D.4 OPTcr(G(2)) ≤ 20d3max
α∗ · OPTcr(G(1)) ≤ 20d3max

α∗ · OPTcr(G).

Proof: Let ϕ1 be the optimal drawing of G(1), and let π′X , for X ∈ X ′, be the planar embedding of
G(1)(X), with all interface vertices lying on the boundary of the outer face Fout. (Recall that π′X may
be different from the drawing of X induced by ϕ1). Notice that G(1)(X) is 2-vertex connected, and
so the boundary of every face in π′X is a simple cycle.

Claim D.5 Let F be any face, other than the outer face Fout, in the drawing π′X of G(1)(X). Then
there are at most 5dmax/α

∗ interface vertices of Γ(X) on the boundary of F in π′X .

Proof: Assume otherwise, and let Γ∗ ⊆ Γ(X) be the set of interface vertices lying on the boundary
of some face F 6= Fout of π′X . Denote Γ∗ = {v1, . . . , vp}, where p > 5dmax/α

∗. Let γ be the boundary
of the outer face of π′X , and let γ′ be the boundary of F . Then all vertices of Γ∗ lie on γ ∩ γ′. Assume
that they appear in the order (v1, . . . , vp) on γ. Then the two vertices v1, vdp/2e are a 2-vertex cut
in G(1)(X), that separate two sets of more than 2dmax/α

∗ of interface vertices from each other (see
Figure D.3). This is impossible since the degree of each vertex is at most dmax, and the interface
vertices are α∗ well-linked in G(1)(X).

F

γ

v1 v2

v3

. . .

vp

Figure D.3: Illustration for Claim D.5.

45



Consider now the optimal drawing ϕ1 of G(1), fix some X ∈ X ′, and let u ∈ Γ(X). We partition the
edges incident on u in G(1) into two subsets: E′u are the edges that belong to G(1)(X), and E′′u are the
remaining edges. If the images of edges E′u, as they enter vertex u, appear consecutively in ϕ1, then
splitting u into two vertices u, uX and adding the edge (u, uX) does not create any new crossings. If
the edges in E′u do not appear consecutively in ϕ1, then we add u to a set V ∗(X). In this case we
may have to pay up to d2

max for splitting u into two vertices. It is therefore enough to show that for
all X ∈ X ′:

|V ∗(X)| ≤ 10dmax

α∗
crϕ1(E(G(1)(X)), E(G(1)))

Consider again some vertex u ∈ V ∗(X). Since the edges of E′u do not appear consecutively in ϕ1, there
must be two edges e1, e

′
1 ∈ E′u, and two edges e2, e

′
2 ∈ E′′u, such that their ordering is (e1, e2, e

′
1, e
′
2) in

ϕ1, and moreover, there is a face F 6= Fout in π′X , such that e1, e
′
1 lie on the boundary of this face. Let

e2 = (u, v), e′2 = (u, v′). Since graph G(1)(X) has property (P1), there must be a path P connecting
v to v′ in G(1) \G(1)(X), and since the boundary of F is a simple cycle, denoted by C, the image of
path P in ϕ1 must cross the image of at least one edge of C. We charge this crossing for u. Since the
face F may only contain at most 5dmax/α

∗ interface vertices, and every edge of G(1)(X) participates
in at most two faces of π′X , each such crossing will be charged at most 10dmax/α

∗ times for X.

Step 3: getting rid of 2-cuts Fix some X ∈ X ′, and consider the graph H(2)(X). We will construct
a graph H(3)(X), by deleting some edges and vertices from H(2)(X), and contracting some 2-paths.
Graph G(3)(X) is then obtained by adding the matching edges back to H(3)(X) (or, equivalently,
replacing H(2)(X) with H(3)(X) in G(2)(X)). This will give the graph G(3).

Definition D.1 Let H ′ be any graph and T any subset of vertices of H ′. We say that H ′ has property
(P3) w.r.t. T and parameter β, iff there is a flow F in H ′, in which every pair v, v′ ∈ T sends one
flow unit to each other, and the congestion on every vertex is at most |T | · β.

The two notions, of well-linkedness and property (P3), are closely related to each other. Specifically,
from Observation 2.1, if H ′ is any graph, and S is an α-well-linked set in H ′, then H ′[S] has property
(P3) w.r.t. Γ(S), with parameter βFCG · dmax/α. On the other hand, if H ′[S] has property (P3) w.r.t.
Γ(S) and some parameter β, then S is 1/(2βdmax) well-linked. Indeed, consider any partition (S1, S2)
of S, and let T1 = out(S)∩ out(S1), and T2 = out(S)∩ out(S2). Similarly, let Γ1 = Γ(S)∩ Γ(S1), and
Γ2 = Γ(S)∩Γ(S2). Assume w.l.o.g. that |Γ1| ≤ |Γ2|. Then |Γ1| ≥ |T1|/dmax, and from Property (P3),
we can send at least |Γ1| · |Γ2| flow units between the two sets, with congestion at most |Γ(S)|β on
vertices and edges. Therefore, |E(S1, S2)| ≥ |Γ1|·|Γ2|

|Γ(S)|β ≥
|T1|

2βdmax
. Using the same reasoning, it is easy to

show that for the special case where every vertex in Γ(S) is incident on exactly one edge in out(S),
and H ′[S] has property (P3) w.r.t. Γ(S) and parameter β, set S is 1/(2β)-well linked.

So far we have only worked with well-linkedness, but for the analysis of Step 3, property (P3) is more
convenient.

As H(2)(X) is α∗-well-linked, it also has property (P3) w.r.t. Γ′(X) with parameter β∗ = βFCG ·
dmax/α

∗ = O(log5/2 n · log log n ·dmax). We will ensure that throughout this step, the graph will retain
this property, and so will the final graph H(3)(X). This in turn will imply that H(3)(X) is well-linked.

Definition D.2 Given any graph H ′, let (u, v) be any 2-vertex cut in H ′, and let C1, . . . , Cq′ be the
connected components of H ′ \{u, v}. For each Cr, 1 ≤ r ≤ q′, let C ′r be the sub-graph of H ′ induced by

46



V (Cr)∪{u, v}. We then define Cu,v =
{
C ′1, . . . , C

′
q′

}
. For each 1 ≤ r ≤ q′, the vertices of V (C ′r)\{u, v}

are called the inner vertices of C ′r.

Notice that if H ′ has property (P3) w.r.t. some set S and parameter β∗, and |S| ≥ 12β∗, then there
can be at most one cluster C ∈ Cu,v that contains more than 4β∗ vertices of S: assume otherwise,
and let C,C ′ ∈ Cu,v be two clusters, containing more than 4β∗ vertices of S each (notice that it is
possible that u, v ∈ S). Assume w.l.o.g. that |C ′ ∩ S| ≤ |C ∩ S|, so that |S \ C| ≥ (|S| − 2)/2. Then
because of Property (P3), the total amount of flow leaving the cluster C ′ is at least |C ′ ∩ S| · |S|−2

2 ≥
(4β∗ + 1) |S|−2

2 = 2β∗|S|+ |S|
2 − 4β − 1 > 2β∗|S|, and all these flow-paths have to contain either u or

v. This is impossible, since the load on each one of these vertices is at most β∗|S|. We call the unique
cluster C ∈ Cu,v with |C ∩ S| > 4β∗ the main cluster of Cu,v (if such cluster exists).

We start with the following simple operation on the graph H(2)(X): while there is a 2-cut (u, v), with
some cluster C ∈ Cu,v, such that C does not contain vertices of Γ′(X) as inner vertices, we replace
C with an edge (u, v). Notice that this procedure has no influence on properties (P1),(P2) and (P3).
Let H ′ be the resulting graph. Then H ′ has properties (P1), (P2) and property (P3), w.r.t. Γ′(X)
and parameter β∗. Let πH′ denote the planar drawing of H ′, in which all vertices of Γ′(X) lie on the
boundary γ of the outer face. Then for any 2-separator (u, v) in H ′, each cluster C ∈ Cu,v must contain
at least one vertex x ∈ Γ′(X) as its inner vertex (that is, x 6= u, v). Since all vertices in Γ′(X) lie on
the boundary γ of the outer face of πH′ , it follows that Cu,v may only contain two clusters, Cu,v, C ′u,v,
and both vertices u and v have to lie on γ. Assume that |Γ′(X)| ≥ 12β∗, and assume w.l.o.g. that
Cu,v is the main cluster of Cu,v. Let Γ′u,v = Γ′(X)∩C ′u,v. Recall that |Γ′u,v| ≤ 4β∗. We say that a 2-cut
(u, v) is maximal, iff Γ′u,v is not contained in any other set Γ′u′,v′ for any other 2-separator (u′, v′) of
H ′. Let R denote the set of all maximal clusters C ′u,v. We now replace each cluster C ′u,v ∈ R with
a path Qu,v, whose only vertices are Γ′u,v, and they appear on Qu,v in exactly the same order as on
the boundary γ of the outer face of πH′ (see Figure D.4). Observe that each such path Qu,v must
contain at least one vertex of Γ′(X) as its inner vertex, and so all vertices of Qu,v lie on γ. We denote
by M ′ =

{
(u, v) | C ′u,v ∈ R

}
, and S(2) = {v | ∃u : (u, v) ∈M ′}. Let H ′′ be the resulting graph. We

do not allow H ′′ to contain parallel edges, and if such edges have been introduced, we simply remove
them. This procedure will not affect property (P3), since the congestion is measured on vertices.

For the case where |Γ′(X)| < 12β∗, we let H ′′ be simply a cycle, whose only vertices are the vertices
of Γ′(X), that appear on the cycle in the same order as on the boundary of the outer face of πH′ .

(a) (b)

Qu,v

u
v

u
v

Figure D.4: Step 3: (a) before, (b) after. New interface vertices are blue, 2-separators are red.

Claim D.6 Graph H ′′ has property (P3) w.r.t. Γ′(X), and parameter 12β∗. Therefore, it is 1/(24β∗)-
well-linked.

Proof: If |Γ′(X)| ≤ 12β∗, the claim is clearly true as H ′′ is connected. We therefore assume that
|Γ′(X)| > 12β∗. Consider any cluster C ′u,v ∈ R. Since H ′ had property (P3) with parameter β∗, the
total amount of flow in F , routed on flow-paths that contain either u or v, and visit inner vertices
of C ′u,v is at most 2β∗|Γ′(X)|. All such flow-paths can be re-routed via the path Qu,v, causing total

47



load of at most 2β∗|Γ′(X)| on the vertices of Qu,v. Additionally, for every pair (t, t′) ∈ Γ′u,v sends one
flow unit to each other. We again re-route all such flow-paths along Qu,v. As |Γ′u,v| ≤ 4β∗, the total
number of such pairs is at most 16(β∗)2 ≤ 4β∗ · |Γ′(X)|, and so the total load on any vertex becomes
at most 6β∗|Γ′(X)|.
We now denote H(3)(X) = H ′′, and G(3)(X) is the graph obtained from H(3)(X) after we add all
matching edges back to it. Let G(3) be the resulting whole graph. Notice that H(3)(X) is obtained
from H(2)(X) by performing a series of steps, where each step either deletes vertices or edges from
the graph, or contracts a 2-path. Such operations do not increase the crossing number of the graph,
and so OPTcr(G(3)) ≤ OPTcr(G(2)) ≤ 20d3max

α∗ ·OPTcr(G). It is also easy to see that both G(3)(X) and
H(3)(X) retain properties (P1) and (P2), have no 1-vertex separators, and we have established above
that H(3)(X) is 1/(12β∗)-well-linked.

In general, this concludes the third step. Notice however that H(3)(X) still contains 2-separators,
and we will need to deal with them when bounding the number of irregular vertices and edges. We
establish a few more structural properties of the graph H ′′ = H(3)(X), in the next three observations.
These properties will be used when bounding the number of irregular 2-separator vertices in H(3)(X).

Observation D.1 Assume that |Γ′(X)| > 12β∗. Let (x, y) be any 2-vertex cut in H ′′. Then x, y ∈
Qu,v, for some (u, v) ∈M ′.

Proof: Assume otherwise. We consider three cases. The first case is when none of the vertices x, y
is an inner vertex on any path Qu,v for any (u, v) ∈ M ′. Then (x, y) was a 2-separator in H ′. Since
(x, y) 6∈M ′, it was not a maximal cut. This means that either x or y must be an inner vertex in some
C ′u,v ∈ R, and this is a contradiction to (x, y) surviving in H ′′.

The second case is when exactly one of the vertices x, y is an inner vertex on some path Qu,v, for some
(u, v) ∈ M ′. Assume w.l.o.g. that it is x. Then y 6= u, v, and moreover, either (y, v) is a 2-cut in
H ′′, or there is an edge (y, v) in H ′′, that lies on the boundary γ′ of the outer face of the drawing of
H ′′. Similarly, either (y, u) is a 2-cut in H ′, or there is an edge (y, u) in H ′′ that lies on γ′. If (y, v)
is a 2-cut in H ′′, but (y, v) 6∈ M ′, then we obtain Case 1. Similarly, if (y, u) is a 2-cut in H ′′, but
(y, u) 6∈ M ′, then we obtain Case 1. Therefore, we can assume that for each z ∈ {u, v}, either there
is an edge (y, z) in H ′′ that belongs to γ′, or (y, z) ∈M ′. In either case, the segment of γ′ between y
and z, which does not contain x, can contain at most 4β∗ vertices of |Γ′(X)|. Since C ′u,v also contains
at most 4β∗ vertices of Γ′(X), this means that |Γ′(X)| ≤ 12β∗, a contradiction.

The third case is when x is an inner vertex on some path Qu,v and y is an inner vertex on some path
Qu′,v′ , where (u, v), (u′, v′) ∈ M ′. If (u, v) = (u′, v′), then we again get two clusters that contain all
vertices in Γ′(X), but have at most 4β∗ vertices of Γ′(X) each, contradicting that |Γ′(X)| > 12β∗. So
assume w.l.o.g. that u′ 6∈ {u, v}. Then (u′, x) is a 2-cut in H ′′, and we obtain the second case.

Let ψ be the unique planar drawing of H ′′, in which the vertices of Γ′(X) lie on the boundary γ of
the outer face Fout. Since H ′′ is 2-vertex connected, the boundary of every face of ψ is a simple cycle.
Observe that each path Qu,v, for (u, v) ∈M ′ appears consecutively on γ. We therefore have two types
of internal faces in the drawing ψ: a face of the first type contains some path Qu,v for (u, v) ∈M ′ on
its boundary, and a face of the second type does not contain any such path.

Observation D.2 Assume that |Γ′(X)| > 12β∗, let F 6= Fout be any face of ψ, and let γF be its
boundary. If F is of the first type, then the number of vertices on γ(F ) ∩ γ is at most 8β∗, and if F
is of the second type, then the number of vertices on γ ∩ γF is at most 3.

48



Proof: It is easy to see that if x, y ∈ γ ∩ γF , then (x, y) is a 2-separator in H ′′, unless there is an
edge (x, y) in H ′′ that belongs to γ (see Figure D.3). Assume first that F is of the first type. Let Qu,v
be the path it contains, for (u, v) ∈M ′, let y ∈ Γ′(X) be any inner vertex of Qu,v (which must exist
for all Qu,v), and let x 6∈ Qu,v be any additional vertex on γ(F ) ∩ γ. Then (x, y) is a 2-separator in
H ′′, and yet they do not belong to the same path Qu′,v′ for (u′, v′) ∈ M ′, which is impossible from
Observation D.1.

Assume now that F is of the second type. Suppose there are four vertices v1, . . . , v4 in γ ∩ γF , and
assume that these vertices appear on γF in this order. Every pair of vertices (vi, vj) that do not appear
consecutively in this order is a 2-separator for H ′, and hence must belong to M ′, which is impossible,
because then we would get two paths Qv1,v3 and Qv2,v4 , that must both be contained in γ.

Observation D.3 Assume that |Γ′(X)| > 12β∗, let t, t′ ∈ Γ′(X) be a pair of interface vertices, such
that one of the two segments σ of γ, connecting t and t′, does not contain any other vertices of Γ′(X).
Then |σ ∩ (S(2) \ {t, t′})| ≤ 2.

Proof: Assume otherwise, and let v1, v2, v3 be three vertices of S(2) \ {t, t′} lying on σ in this order.
We claim that either (v1, v2) ∈M ′, or (v2, v3) ∈M ′: otherwise, from the definition of S(2), there must
be some other vertex v′ ∈ S(2), such that (v2, v

′) ∈ M ′, v′ 6= v1, v2. This is impossible, because then
we would have a path Qv2,v′ ⊆ γ. Assume w.l.o.g. that (v1, v2) ∈M ′. But then σ must contain Qv1,v2 ,
which in turn must contain vertices of Γ′(X), a contradiction.

D.2.2 Part 2: Irregular Vertices and Edges

We start by defining irregular vertices and edges, and bounding their number as in [CMS]. We deal
with 2-separators later. Suppose we are given any graph G, and a pair ϕ,ψ of drawings of G.

Definition D.3 We say that a vertex x of G is irregular iff its degree is more than 2, and the circular
ordering of the edges incident on it, as their images enter x, is different in ϕ and ψ (ignoring the
orientation). We denote the set of irregular vertices by IRGV (ϕ,ψ), and we call all other vertices
regular.

Definition D.4 For any pair (x, y) of vertices in G, we say that a path P , connecting x to y in G is
irregular iff x and y have degree at least 3, all other vertices on P have degree 2 in G, vertices x and
y are regular, but their orientations differ in ϕ and ψ. That is, the orderings of the edges adjacent
to x and to y, as their images enter these vertices, are identical in both drawings, but the pairwise
orientations are different: for one of the two vertices, the orientations are identical in both drawings
(say clock-wise), while for the other vertex, the orientations are opposite (one is clock-wise, and the
other is counter-clock-wise). An edge e is an irregular edge iff it is the first or the last edge on an
irregular path. In particular, if the irregular path only consists of edge e, then e is an irregular edge.
We denote the set of irregular edges by IRGE(ϕ,ψ), and all other edges are called regular.

Lemma D.7 ([CMS]) Let G be any planar 2-vertex connected graph, let S2 be the set of vertices
participating in 2-vertex separators in G, and E2 the set of edges adjacent to the vertices of S2. Let ϕ
be an arbitrary drawing of G and ψ be a planar drawing of G. Then

|IRGV (ψ,ϕ) \ S2|+ |IRGE(ψ,ϕ) \ E2| = O(crϕ(G)).

We now fix some set X ∈ X ′, and we define the set of irregular vertices and edges for X. Recall that
both H(3)(X) and G(3)(X) have properties (P1) and (P2) w.r.t. Γ′(X) and Γ(X) respectively, and

49



there is a set of matching edges in G(3)(X) connecting Γ′(X) to Γ(X). Let ψX denote the unique
planar drawing of H(3)(X), in which the vertices of Γ′(X) lie on the boundary of the outer face Fout,
and let ψ+

X denote the extension of ψX to include the drawing of the matching edges inside Fout. That
is, ψ+

X is a planar drawing of G(3)(X), with all vertices of Γ(X) lying on the boundary of the outer
face. Let ϕ be the optimal drawing of G(3), and let ϕX , ϕ+

X be the drawings of the graphs H(3)(X)
and G(3)(X), respectively, induced by ϕ. From now on, we denote by Fout the outer face of ψX , and
by γ its boundary.

We are now ready to define the set of irregular vertices and edges for X. We say that a vertex v ∈
V (H(3)(X)) is an irregular vertex, iff v ∈ IRGV (ϕ+

X , ψ
+
X). Notice that we require that v ∈ V (H(3)(X)),

that is, v 6∈ Γ(X), but if v ∈ Γ′(X), then we need to take its matching edge into consideration, so the
set of irregular vertices is defined w.r.t. the extended drawings ϕ+

X and ψ+
X . Let IRGV (X) denote the

set of all irregular vertices for X. Similarly, we say that an edge e ∈ E(H(3)(X)) is an irregular edge,
iff e ∈ IRGE(ϕ+

X , ψ
+
X). Again, we do not include the matching edges in the set of irregular edges, but

we define the irregular edges w.r.t. the extended drawings ϕ+
X , ψ+

X . Let IRGE(X) denote the set of
all irregular edges for X. We bound the number of irregular vertices and edges for X in the next two
lemmas.

Lemma D.8 For each X ∈ X ′, |IRGV (X)| ≤ O(β∗) crϕ(G(3)(X), G(3)).

Proof: We fix some X ∈ X ′. The vertices of H(3)(X) can be partitioned into three types.

The first type is the vertices that do not participate in any 2-separators in H(3)(X), and do not belong
to Γ′(X). If v is such a vertex, and v ∈ IRGV (X), then v ∈ IRGV (ϕX , ψX) must hold. Since H(3)(X)
does not contain any 1-vertex cuts, by Lemma D.7, the number of such irregular vertices is bounded
by O(crϕX (G(3)(X), G(3)(X))) ≤ O(crϕ(G(3)(X), G(3))).

The second type is vertices that serve as 2-separators in H(3)(X), but do not belong to Γ′(X). Recall
that all such vertices belong to S(2), and for each such vertex v, there is a vertex u ∈ S(2), such that
(u, v) ∈M ′.
Consider the boundary γ of the outer face Fout of the planar drawing ψX , and recall that Qu,v ⊆ γ.
Let x, y ∈ Γ′(X) be the two new interface vertices lying closest to v, on both sides of v on γ, with
y ∈ Qu,v. Then no other new terminal vertices appear between x and y on γ. Since H(3)(X) has
property (P1), there is a path P connecting x to y in G(3) \ H(3)(X). Let ψ̃ be the drawing ψX of
H(3)(X), together with the path P , which is drawn inside the outer face Fout of ψX . Then ψ̃ is a
planar drawing of H(3)(X) ∪ P . Path P has split Fout into two subfaces, and we denote by Fv the
sub-face containing v (see Figure D.5).

x

yP
Qu,v

uv

H(3)(X)

Fv

Figure D.5: Illustration for Lemma D.8.

Let W denote the set of vertices and edges lying on the boundary of all faces F of ψ̃, such that
v ∈ γ(F ). Notice that except for Fv, all other such faces are proper faces of ψX , that are distinct from
Fout. Graph W is homeomorphic to a wheel, with path P being one of the edges of the wheel, that

50



are not adjacent to v. Therefore, W has a unique planar drawing, which is identical to the drawing
induced by ψ̃. It is easy to see that if v is an irregular vertex, then the edges of W must cross.
Moreover, at least one crossing has to involve some edge e of H(3)(X)∩W (that is, e 6∈ P ). We charge
this crossing of e for v.

We now claim that for each edge e ∈ E(H(3)(X)), each crossing in which e participates is charged at
most O(β∗) times. First, if |Γ′(X)| ≤ 12β∗, then |S(2)| ≤ 2|Γ′(X)| ≤ 24β∗ must hold (because of the
paths Qu,v connecting every pair (u, v) ∈ M ′ and containing vertices of Γ′(X)), and then e may only
be charged at most 24β∗ times. We now assume that |Γ′| > 12β∗.

Let F be a face of ψX on whose boundary γ(F ) edge e lies, and assume first that F 6= Fout. Edge e
can only be charged for those vertices of γ(F ), that belong to S(2). Since all such vertices must lie on
γ∩γF , by Observation D.2, there can be at most 8β∗ such vertices. Assume now that F = Fout. Then
e can only be charged for vertices v ∈ S(2) if e ∈ γ(Fv). If x and y denote the vertices of Γ′(X) lying
immediately to the left and to the right of e on γ, then v must lie between x and y for this to happen.
From Observation D.3, there are at most 2 such vertices v ∈ S(2). In total, taking into account both
faces on whose boundary e lies, we get that e can be charged at most O(β∗) times. Therefore, the
number of irregular vertices of this type is bounded by O(β∗) crϕ(G(3)(X), G(3)).

Finally, the third type is the new interface vertices of Γ′(X). Fix one such vertex t, and let t′ ∈ Γ(X) be
its corresponding old interface vertex. Let tl and tr be the two new interface vertices lying immediately
to the left and to the right of t on γ, and let t′l and t′r be their old interface vertices, respectively. Since
all vertices of Γ(X) are connected in G(3) \ G(3)(X), there are two paths: P connecting t′l to t′, and
P ′ connecting t′r to t′ in G(3) \G(3)(X). We can choose P and P ′, so that the vertices that they share
form one consecutive segment on both paths (See Figure D.6). We extend the two paths by using the
matching edges, so that P connects tl to t, and P ′ connects tr to t. Let ψ̃ be the planar drawing of
ψX ∪ P ∪ P ′, obtained by adding the drawings of P and P ′ inside the outer face of ψX , so that they
do not cross. Observe that the drawings of P and P ′ partition Fout into three sub-faces. We denote
by Ft and F ′t the two sub-faces whose boundaries contain t.

t

P

P ′

Ft F ′
t

t′
t′l

t′r

tr

tl
H(3)(X)

Figure D.6: Illustration for D.8.

Let W be the set of vertices and edges lying on the boundaries of the faces F of ψ̃, such that t ∈ γ(F ).
Notice that except for Ft, F ′t , all such faces are proper faces of ψX , distinct from Fout. Again, W is
homeomorphic to the wheel graph, and in any embedding where t is irregular, a pair of edges (e, e′)
must cross, where e belongs to H(3)(X)∩W . We charge this crossing of e for t. We now need to show
that every crossing of every edge is charged O(β∗) times. Again, if |Γ′(X)| ≤ 12β∗, edge e may only
be charged 12β∗ times. So we assume that |Γ′(X)| > 12β∗. Consider some edge e of H(3)(X), and let
F be a face of ψX to which it belongs. Assume first that F 6= Fout. Then we can only charge e for
vertices t of Γ′(X) that appear on the boundary of F , that is, t ∈ γ(F )∩ γ. From Observation D.2, F
may contain at most 8β∗ such vertices. So edge e may be charged at most 8β∗ times for F . Finally,
if F = Fout, then e may only be charged for such vertices t ∈ Γ′(X), for which e lies on the boundary

51



of Ft or F ′t . Therefore, if t, t′ denote the vertices of Γ′(X) lying immediately to the left and to the
right of e on γ, then e may only be charged for these vertices as part of Fout. Therefore, the number
of irregular vertices of the third type is bounded by O(β∗) crϕ(G(3)(X), G(3)).

Lemma D.9 For each X ∈ X ′, |IRGE(X)| ≤ O(β∗) crϕ(G(3)(X), G(3)).

Proof: Fix some X ∈ X ′. We partition the edges of H(3)(X) into two types. The first type is the
edges that are not adjacent to any vertices in S(2) or Γ′(X). Since these sets of vertices include all
2-vertex separators of H(3)(X), if e is an irregular edge of the first type, then e ∈ IRGE(ϕX , ψX) \E2,
and by Lemma D.7, their number is bounded by O(crϕX (H(3)(X))) ≤ O(crϕ(H(3)(X), H(3))).

The second type is the edges that are adjacent to vertices of S(2)∪Γ′(X). Fix some such edge e = (x, v),
and assume that x ∈ S(2) ∪ Γ′(X). Then x lies on the boundary γ of the outer face Fout of ψX , and
we find two vertices t, t′ ∈ Γ′(X), as follows. If x 6∈ Γ′(X), then t and t′ are two vertices of Γ′(X),
lying immediately to the left and to the right of x on γ (it is possible that one of these vertices is v
itself if v ∈ Γ′(X)). Otherwise, if x ∈ Γ′(X), then we let t = x. If e 6∈ γ, then t′ is the vertex of Γ′(X)
lying immediately to the left of x on γ. Finally, if e ∈ γ, then t′ is the vertex of Γ′(X) closest to v,
such that v lies between x and t′ on γ. Let P be the path connecting t to t′ in G(3) \H(3)(X), and
let ψ̃ be the planar drawing of H(3)(X)∪P , obtained by adding the drawing of the path P inside the
outer face Fout of ψX . This partitions the outer face Fout into two sub-faces. If e ∈ γ, then we denote
by Fe the sub-face whose boundary contains e. Otherwise, we let Fe be any one of the two sub-faces.

Let W be the union of the boundaries of the two faces containing the edge e in ψ̃. Notice that while
the first face may be Fe, the second face, F ′e is a proper face of ψ, distinct from Fout. If e is an
irregular edge, then there must be two edges e′, e′′ of W , whose images cross in ϕ, such that e′ 6∈ P .
We charge this crossing of e′ for e. We now need to argue that each crossing of each edge of H(3)(X)
is charged O(β∗) times. Let e′ be any edge of H(3)(X), and let F be one of the two faces on whose
boundary e′ lies in ψX . Assume first that F 6= Fout. Then we can only charge e′ for edges e adjacent
to vertices of S(2) ∪ Γ′(X) lying on γ(F ). As all such vertices belong to γ, by Observation D.2, their
number is bounded by O(β∗) (again, if |Γ′(X)| < 12β∗, then |S(2)| ≤ 2|Γ′(X)| ≤ 24β∗). If F = Fout,
then we can only charge e′ for edges e ∈ γ(F ), such that e′ ∈ γ(Fe). Let t, t′ ∈ Γ′(X) be the new
interface vertices lying immediately on the left and on the right of e′ (it is possible that t or t′ are
endpoints of e′). If some edge e is charged to e′, then e must also lie on the same segment of γ between
t and t′, to which e′ belongs, and recall that one of the endpoints of e must belong to S2. From
Observation D.3, the number of such edges is bounded by a constant. Therefore, the number of times
an edge may be charged is bounded by O(β∗), and the total number of irregular edges of this type is
O(β∗) crϕ(H(3)(X), H(3)).

For each set X ∈ X ′, we denote by N(X) the set of all edges that either participate in crossings in the
optimal drawing ϕ of G(3), or they belong to IRGE(X), or they are adjacent to vertices in IRGV (X).
From Lemmas D.8 and D.9, |N(X)| ≤ O(β∗ · dmax) crϕ(H(3)(X), H(3)).

D.2.3 Part 3: finding the drawing

Let ϕ be the optimal drawing of G(3). Recall that crϕ(G(3)) ≤ 20d3max
α∗ · OPTcr(G). We find a new

drawing ϕ′ of G(3), such that, for each X ∈ X ′, no edges of H(3)(X) participate in crossings (and the
matching edges will participate in crossings instead). We will show that crϕ′(G(3)) ≤ O(poly(dmax ·
log n · α∗)) crϕ(G(3)). After that, it is easy to show that there is a canonical drawing ϕ′′ of the
contracted graph H = G|S , with crϕ′′(H) ≤ crϕ′(G(3)). The idea is that we simply replace H(3)(X)
with the grid ZX , for each X ∈ X , and since no edges of H(3)(X) participate in crossings in ϕ′, and

52



the ordering of the matching edges is identical in the planar drawings of Z ′X and G(3)(X), we can do
this transformation without increasing the number of crossings.

So from now on we can focus on finding such a drawing ϕ′ of G(3). The following lemma is due to
Anastasios Sidiropoulos [Sid10]. For completeness, we provide a slightly modified proof in Section
D.2.4.

Lemma D.10 Let G = (V,E) be any n-vertex graph, and S any subset of vertices of G, such that G
has property (P3) for S with some parameter β > 0. Moreover, assume that G is 2-connected, and it
has a planar drawing ψ, in which the vertices of S lie on the boundary of the outer face. Let E′ be
any subset of edges of G. Then there is a vertex v∗ ∈ V , and a collection P of paths in G, such that
for each u ∈ S, there is a path Pu ∈ P connecting u to v∗, and

∑
e∈E′ c

2(e) ≤ O(β2 · log n · |E′|), where
c(e) is the number of paths in P containing e.

Recall that from Claim D.6, for each X ∈ X ′, the graph H(3)(X) has property (P3) for Γ′(X), with
parameter O(β∗). Fix some X ∈ X ′, and consider the subset N(X) of edges of H(3)(X). Using
Lemma D.10, we can find a vertex v∗X , and a collection PX of paths in H(3)(X), such that for each
vertex t ∈ Γ′(X), there is a path Pt ∈ PX connecting t to v∗X in H(3)(X), and

∑
e∈N(X) c

2(e) ≤
O((β∗)2 · log n · |N(X)|), where c(e) is the number of paths in PX containing e.

Consider the planar drawing ψX of H(3)(X), with all vertices of Γ′(X) on the boundary γ of the outer
face. Recall that H(3)(X) is 2-connected, so γ is a simple cycle. Denote by σX the ordering of the
vertices of Γ′(X) along γ. Observe that ψX induces a drawing of the paths in PX , and we assume
w.l.o.g. that the paths in PX are uncrossed w.r.t. this drawing, so that the paths {Pt}t∈Γ′(X) arrive at
vertex v∗ in the same order as in σX (this can be assumed w.l.o.g. since otherwise we can uncross the
paths in PX to ensure this, without increasing the congestion on edges). Therefore, we obtain a planar
drawing ψ′X of the paths in PX . For each edge e in H(3)(X), this drawing induces an ordering πe on
all the paths in PX containing e. For each vertex v of H(3)(X), this drawing induces a “local planar
drawing” πv of all paths in PX going through vertex v. Consider the graph H∗X = H(3)(X) \N(X),
and let CX be the connected component of this graph, containing v∗. Then the drawing of CX induced
by ϕ is exactly the same as the drawing of CX induced by ψX , because CX does not contain irregular
vertices or edges, or edges participating in crossings in ϕ. Let E′ be the set of edges incident on CX .
For each edge e ∈ E′, let T (e) ⊆ Γ′(X) be the set of vertices t ∈ Γ′(X), such that P ′t′ contains e.
If the edges in E′ appear in the order e1, e2, . . . , ek along the boundary of the drawing of CX ∪ E′,
induced by ψX , then each set T (ei) of vertices appears consecutively in σX , and the vertices in sets
T (e1), T (e2), . . . , T (ek) are ordered correctly between the sets (w.r.t. σX). For each path Pt ∈ PX ,
let P ′t be the portion of the path between t and CX . The ordering in which paths P ′t hit CX in the
drawing ψ′X is exactly the same as σX .

We are now ready to transform the drawing ϕ. Start with the drawing ϕ of G(3). For each X ∈ X ′,
draw a closed curve γ(X) around the drawing of CX in ϕ. Since CX is a connected graph, whose edges
do not participate in crossings in ϕ, this can be done so that no other vertices or edges of G(3) appear
inside γ(X). Erase all edges and vertices of H(3)(X) from ϕ, and instead place the embedding ψX of
H(3)(X) inside the curve γX , with the images of the vertices Γ′(X) lying on γX . Let e = (t, t′) be any
matching edge of G(3)(X), where t ∈ Γ(X), t′ ∈ Γ′(X). Recall that t does not belong to any other
graph H(3)(X ′), for X ′ ∈ X ′ (because of Step 2, where we have introduced new interface vertices).
Therefore, the image of the vertex t remains the same as in ϕ, while the image of t′ now lies on γX .
Let v 6= t′ be the other endpoint of P ′t′ , and let P be the concatenation of P ′t′ with the matching edge
e = (t, t′). In the original drawing, ϕ, the path P connected the images of t and v, where the image of
v lies just inside the curve γX . We use the image ϕ(P ) to draw the edge e in the new embedding. We
perform this operation for each one of the matching edges of G(3)(X). We need to specify how these

53



drawings interact with each other, in order to avoid large number of crossings. In particular, when
a number of such paths P share the same vertex v or the same edge e′, we need to specify how the
corresponding matching edges are drawn along the original image of e′, or around the original image
of v. If v 6∈ CX is a regular vertex, then the local drawing of the paths P ′t that contain v is the same
as in πv. Similarly, if e 6∈ CX is a regular edge, then the local drawing of the paths containing e is
the same as in πe. If e is an irregular edge, then we allow all paths that use e to cross at most once
with each other, so the number of crossings due to e is bounded by c2(e). Similarly, if v is an irregular
vertex, then we allow all paths that use v to cross at most once with each other, so the number of
crossings due to v is bounded by

(∑
e:v∈e c(e)

)2 ≤ d2
max

∑
e:v∈e c

2(e). Finally, whenever a pair of edges
e, e′ in the drawing ϕ of graph G(3) cross, the images of the paths that contain e will cross the images
of the paths containing e′. The number of all such new crossings is bounded by

∑
X∈X

∑
e∈N(X) c

2(e).
These are the only possible new crossings in the new drawing.

It now only remains to re-order the images of the matching edges, so they enter the circle γ(X) in the
same order as they appear in the drawing ψX . Recall that all vertices and edges of CX are regular,
and E′ = {e1, . . . , ek} is the set of edges incident on CX , that appear in this order along the boundary
of the drawing of CX ∪ E′ in ψX . The vertices in sets T (e1), T (e2), . . . , T (ek) are ordered correctly
between the sets (w.r.t. σX), but may not be ordered correctly within each set. However, re-ordering
the paths within each set only introduces at most

∑
e∈N(X) c

2(e) crossings.

To summarize, the total number of new crossings due to the above transformation of ϕ is bounded by:

∑
X∈X ′

∑
e∈N(X)

O(d2
maxc

2(e)) ≤
∑
X∈X ′

O(d2
max(β∗)2 · log n · |N(X)|)

≤
∑
X∈X ′

O(d2
max(β∗)2 · log n · β∗ · dmax crϕ(H(3)(X), H(3)))

≤ O(d3
max(β∗)3 · log n · crϕ(H(3)))

≤ O(d6
max log17/2 n · (log log n)3 crϕ(H(3)))

≤ O(d6
max log17/2 n · (log log n)3 · 20d3

max

α∗
· OPTcr(G))

≤ O(d9
max log10 n · (log log n)4 · OPTcr(G))

It now only remains to prove Lemma D.10.

D.2.4 Proof of Lemma D.10

Let v∗ be a vertex in G, and P a collection of paths connecting every vertex u ∈ S to v∗. Given any
edge e ∈ E, the congestion of e w.r.t. P, denoted by cP(e), is the number of paths in P containing
e. In order to prove the lemma, it is enough to show a distribution D on pairs (v∗,P), such that for
each edge e ∈ E, E(v∗,P)∈D

[
c2
P(e)

]
≤ O(β2 · log n). In the rest of the proof, we focus on finding such

a distribution.

The proof consists of two parts. In the first part, we prove a slightly stronger version of the lemma
for the special case where G is the grid, and S is the set of vertices in the last row of G. In the second
part, we extend this proof to general graphs. Throughout the proof, given a k × k grid Z, we denote
by (i, j) the vertex that lies in the ith row, jth column of Z.

Claim D.11 Let H be a k×k grid, where k is a power of 2, and let S be the set of vertices in the last
row of G. Then there is a distribution D on pairs (u∗,Q), where u∗ ∈ V (H), and Q is a collection

54



of paths connecting every vertex in S to u∗, such that for each edge e ∈ E(H), E(u∗,Q)∈D
[
c2
Q(e)

]
=

O(log k).

Proof: Let Z be the k′ × k′ grid, where k′ = k/2. We draw a number of rectangles in Z, that will
define a partition of the edges of Z. For 1 ≤ i ≤ log k′, rectangle Ri contains, as its top boundary,
row k′/2i of Z, bottom boundary row k′/2i−1, left boundary column 1, and right boundary column
k′/2i−1. (See Figure D.7). We say that edge e belongs to set Ei, iff it either lies inside the rectangle
Ri, or on its bottom, left, or right boundaries. We need the following claim.

R1

R2

R3

. . .

Figure D.7: Rectangles for grid Z.

Claim D.12 There is a collection P ′ of paths in Z, that connect every vertex in the last row of Z to
the vertex (1, 1), such that for each 1 ≤ i ≤ log k′, the congestion on any edge e ∈ Ei, is at most O(2i).

Proof: It is enough to show that there is a flow F in Z, where every vertex in the last row of Z sends
one flow unit to vertex (1, 1), and for each 1 ≤ i ≤ log k′, the congestion on any edge e ∈ Ei is O(2i).
Since this is a single-sink flow, the claim will then follow from the integrality of flow.

Fix 1 ≤ i ≤ log k′, and consider the rectangle Ri. Let A be the set of the vertices lying on its bottom
boundary, |A| = k′/2i−1, and let B be the set of the first k′/2i vertices lying on its top boundary.
We show that there is a collection Pi of paths, contained in Ri, connecting the vertices of A to the
vertices of B, such that every vertex in A is an endpoint of exactly one such path, every vertex in B
an endpoint of exactly two paths, and the congestion on any edge in Ei is bounded by 2. Once we
obtain such routing inside every rectangle Ri, in order to obtain the final flow F , we concatenate the
paths in sets Pi, for 1 ≤ i ≤ log ki, sending 2i−1 flow units along each path in Pi.
We now show how to find the desired routing inside Ri. Let v1, . . . , vk′/2i−1 be the vertices of A,
appearing in this order on the bottom boundary of Ri, and let u1, . . . , uk′/2i be the first k′/2i vertices
of B. First, for each 1 ≤ j ≤ k′/2i, we define the path P2j , connecting v2j to uj , as follows. The
path will follow column 2j of Ri up to the jth row of Ri. Then it will follow row j to column j, and
finally column j to uj . In order to define the paths P2j−1, connecting v2j−1 to uj , for 1 ≤ j ≤ 2i, we
simply concatenate the edge (v2j−1, v2j) with the path P2j . This gives the desired routing in Ri, with
congestion 2.

We are now ready to define the distribution D for the grid H. Let Z ′ be the k′ × k′ sub-grid of H,
where vertex (1, 1) of grid Z ′ coincides with the vertex (1, 1) of H. We choose u∗ uniformly at random
from the vertices of Z ′. Once vertex u∗ is chosen, let Z ′′ be the k′×k′ sub-grid of H, where the vertex
(1, 1) of Z ′′ coincides with u∗ (see Figure D.8).

Let A denote the set of vertices in the last row of Z ′′, and let Q′ be the collection of paths connecting
vertices of A to u∗ in Z ′′, as in Claim D.12. We now define the collection Q of paths, connecting the
vertices of S to u∗. For each vertex v ∈ S, we define a path P1(v), connecting v to some vertex v′ ∈ A,

55



HZ ′

Z ′′
u∗

A

S

Figure D.8: Sub-grids Z ′, Z ′′ of H.

and we let P2(v) ∈ P ′ be the path connecting v′ to u∗ inside Z ′′. We choose the collection {P1(v)}v∈S
of paths, so that every vertex in A is an endpoint of exactly two such paths, and the total congestion
on the edges of H due to paths {P1(v)}v∈S is bounded by a constant. For each vertex v ∈ S, we then
let Pv be the concatenation of P1(v) and P2(v), and we set Q = {Pv}v∈S .

Fix any edge e ∈ E(H). We now bound the expected value of c2
Q(e). If edge e does not fall inside Z ′′,

then the congestion on e is bounded by a constant. Otherwise, if e falls inside the rectangle Ri of Z ′′,
the congestion on e is O(2i). The probability that e belongs to Ri is O(1/22i): indeed, the probability
that both endpoints of e belong to rows k′/2i, . . . , k′/2i−1 is at most 1/2i, and the probability that
they belong to columns 1, . . . , k′/2i−1 is at most 1/2i−1. Therefore, E

[
c2
Q(e)

]
≤∑log k′

i=1 O(22i/22i) =
O(log k).

In order to prove the lemma for a general graph G, and a subset S of vertices of G, we first embed a
k × k grid into G, where k = O(|S|/β). We then route the vertices of S to the last row of this grid,
and use Claim D.11 for routing inside the grid.

Definition D.5 An embedding of a grid H into a graph G is a mapping π, where the vertices of H
are mapped to vertices of G, and edges e = (u, v) ∈ E(H) are mapped to paths π(e) connecting π(u) to
π(v) in G. The congestion of the embedding is the maximum, over all edges e′ ∈ E(G), of the number
of paths π(e) containing e′, for all e ∈ E(H).

Claim D.13 Let G be any graph, S a subset of vertices of G, such that G has property (P3) for S
with parameter β, and there is a planar drawing ψ of G, in which all vertices of S lie on the boundary
γ of the outer face Fout of the drawing. Then there is an embedding of the k × k grid H into G with
congestion 2, where k is a power of 2, k = O(|S|/β). Moreover, the vertices of the last row of H are
mapped to a subset A of k distinct vertices of G, and there is a collection P ′ of completely disjoint
paths, connecting k distinct vertices of S to distinct vertices of A.

Proof: Let k be the largest power of 2, smaller than b|S|/(16β)c.
Consider the planar drawing ψ of G, and let σ be the circular ordering of the vertices of S on the
boundary γ of Fout. Let S1, S2, S3 and S4 be four disjoint subsets of S, such that for each 1 ≤ i ≤ 4,
|Si| = b|S|/4c, the vertices of Si appear consecutively in σ, and the ordering between the sets in σ is
(S1, S2, S3, S4).

We claim that there is a collection of k vertex-disjoint paths in G, connecting the vertices of S1 to the
vertices of S3. Assume otherwise. Then there is a k-vertex separator C in G, separating the vertices
of S1 from the vertices of S3. However, due to property (P3), it must be possible to send at least
min {|S1|, |S3|} · |S|/2 > |S|2/16 flow units across the cut C, with congestion at most |S| ·β on vertices.
Therefore, the minimum cut separating S1 from S3 must contain more than |S|/(16β) ≥ k vertices.

56



Let P1 denote this collection of k disjoint paths. Let S′1 = {a1, . . . , ak} be the subset of vertices of S1

participating in these paths, and assume that they appear on σ in this order. Let S′3 = {a′1, . . . , a′k}
be the subset of vertices of S3 participating in these paths, and assume that they appear on σ in
the reverse order, a′k, . . . , a

′
1. Since ψ is a planar drawing, set P1 contains a collection (P1, . . . , Pk) of

paths, where path i, for 1 ≤ i ≤ k, connects ai to a′i.

Similarly, we can find a collection P2 of vertex-disjoint paths (Q1, . . . , Qk), connecting a subset S′2 =
(b1, . . . , bk) of vertices of S2, to a subset S′4 = (b′1, . . . , b

′
k), where path Qi connects bi to b′i, and the

vertices b1, . . . , bk appear on σ in this order. We are now ready to define the embedding π of H into
G. For each 1 ≤ i ≤ k, 1 ≤ j ≤ k, let vi,j be the first vertex of Qi that belongs to Pj (it is easy
to verify that such a vertex exists, because of the planar drawing of G, in which the vertices of S lie
on γ). Since the paths {Qi}ki=1 are vertex-disjoint, it is easy to verify, that for every path Pj , the
vertices v1,j , v2,j , . . . , vk,j are distinct vertices of Pj , that appear on Pj in this order. For 1 ≤ i ≤ k,
1 ≤ j ≤ k, we map the vertex (i, j) of H to vi,j . This concludes the definition of the mapping π for
the vertices of H. We now define the mappings of edges of H. Let ((i, j), (i, j + 1)) be any horizontal
edge of H. We map this edge to the segment of Qi lying between π((i, j)) and π((i, j + 1)). Similarly,
if ((i, j), (i+ 1, j)) is any vertical edge of H, we map it to the segment of Pj connecting the images of
vertices (i, j) and (i+ 1, j). Since the sets P1, P2 of paths are each vertex disjoint, the congestion on
edges is at most 2. Finally, we let A = {vk,i}ki=1, S′ = {a′1, . . . , a′k}, and we let P ′ contain, for each
path Pi, for 1 ≤ i ≤ k, the segment of Pi between a′i and vk,i.

We are now ready to define the distribution D over pairs (v∗,P) in graph G. Let H be the k× k grid,
where k = O(|S|/β), with the embedding π of H into G, and the collection P ′ of paths, connecting
vertices in the subset S′ ⊆ S, |S′| = k, to the vertices of A, as in Claim D.13.

We will use the distribution D′ over pairs (u∗,Q), from Claim D.11. Given a pair (u∗,Q), we let
v∗ = π(u∗), and we define a collection P of paths, connecting the vertices in S to v∗, as follows.
We start by defining three collections of paths. The first collection, P1, connects all vertices of S to
vertices of S′. The second collection, P2, is precisely the set P ′ of paths, connecting each vertex of S′

to a vertex of A. The third collection, P3, connects vertices of A to v∗. The final set P of paths is
obtained by concatenating the paths in P1,P2, and P3.

We now formally define each path set. Set P1 contains |S| paths. For each vertex v ∈ S, there is a
path Pv ∈ P1, connecting v to some vertex of S′. We ensure that the total edge and vertex congestion
due to these paths is at most 2β, and each vertex in S′ serves as endpoint of at most 2β such paths.
The problem of finding such paths can be cast as the problem of finding s-t flow in the graph, where
the vertices in S \ S′ serve as sources, and vertices in S′ serve as sinks. In order to show that such
a flow exists, it is enough to show that for any collection C of vertices, separating S \ S′ from S′,
|C| ≥ |S′|/(2β) must hold. Let C be any such separator. Notice that due to property (P3), the
amount of flow sent across this cut is at least |S′| · |S|/2, and the maximum vertex congestion is |S| ·β.
Therefore, C must contain at least |S′|/(2β) vertices.

We obtain the second collection, P2 of paths, from the set P ′ of vertex-disjoint paths, connecting the
vertices of S′ to the vertices of A. The only change is that if some vertex v ∈ S′ serves as an endpoint
of nv paths in P1, then we add nv copies of the corresponding path in P ′ to set P2. It is easy to see
that the edge congestion due to paths in P2 is bounded by 2β.

Finally, we obtain the set P3 of paths, connecting the vertices of A to v∗, as follows. Recall that Q is a
collection of paths in the grid H, connecting every vertex of the last row of H to u∗, and the expected
value of c2

Q(e) on any edge e of H is bounded by O(log k). We use the mapping π of the edges of H to
paths of G, to define, for every path Q ∈ Q, a corresponding path P ∈ P ′′. If path Qa ∈ Q connects
a vertex a ∈ A to u∗, then the corresponding path Pa ∈ P ′′ will connect the vertex π(a) to the vertex
v∗ in graph G. If vertex a serves as an endpoint of na paths in P2, then we add na copies of the path

57



Pa to P3.

The final set, P of paths, is obtained by concatenating the paths in P1,P2 and P3. It is easy to
see that P contains a path connecting every vertex v ∈ S to v∗. It now only remains to bound the
expected value of c2

P(e) on edges e ∈ E(G).

Let e ∈ E(G) be any edge of G. Recall that the congestion of the embedding π of H into G is at
most 2. Let e1, e2 be the two edges of H whose images contain e (one or both of these edges may be
undefined). We then have:

c2
P(e) = (cP1(e) + cP2(e) + cP3(e))2

≤ (cP1(e) + cP2(e) + 2β · cQ(e1) + 2β · cQ(e2))2

≤ 16
(
c2
P1

(e) + c2
P2

(e) + 4β2c2
Q(e1) + 4β2c2

Q(e2)
)

≤ O(β)2 + 64β2c2
Q(e1) + 64β2c2

Q(e2)

Therefore, E(v∗,P)

[
c2
P(e)

]
= O(β)2 +O(β2)E(u∗,Q)

[
c2
Q(e1)

]
+O(β2)E(u∗,Q)

[
c2
Q(e2)

]
= O(β2 log |S|).

D.3 Proof of Theorem 4.3

Let R be a nasty canonical set in the graph H = G|S , so it has properties (P1), (P2) in H, and

|R| ≥ 216·d6max
(α∗)2 · |ΓH(R)|2. Throughout this proof, for each X ∈ X , Γ(X) refers to the set ΓG(X) of

the interface vertices in the original graph, G.

We first perform the following clean-up step. For every set ZX ∈ Z, with ZX ⊆ R, denote TR(ZX) =
T (ZX) ∩R, and TR(ZX) = T (ZX) \R (see Figure D.9). If |TR(ZX)| ≤ |T (ZX)|/4, we remove the set
ZX of vertices from R.

TR(Z)

R

TR(Z)

TR(Z)

R

TR(Z)

(a) (b)

Figure D.9: One round of the cleanup step.

Claim D.14 Let R be any canonical nasty set in H, and let R′ = R \ ZX be the set obtained after
one round of the cleanup step. Then R′ is a nasty canonical set.

Proof: It is obvious that R′ is a canonical set, and it is straightforward to verify that Properties (P1)
and (P2) continue to hold for it. We only need to check that |R′| ≥ 216·d6max

(α∗)2 · |Γ(R′)|2. For simplicity,

denote M = 216·d6max
(α∗)2 , A = |Γ(R)|, B = Γ(ZX). Then |R′| ≥ |R| − B2. Moreover, observe that Γ(R′)

is obtained from Γ(R) by removing the vertices of Γ(ZX) that are adjacent to the vertices of TR(ZX)
from it, and possibly adding the vertices in TR(ZX) (if they do not already belong to Γ(R)). Since

58



|TR(ZX)| ≤ |T (ZX)|/4, we get that |Γ(R′)| ≤ |Γ(R)| − |TR(ZX)| + |TR(ZX)| ≤ |Γ(R)| − |B|/2. We
then have that:

|R′| ≥ |R| −B2

≥MA2 −B2

≥M(A−B/2)2

≥ 216 · d6
max

(α∗)2
· |Γ(R′)|2

(We have used the fact that A ≥ |TR(ZX)| ≥ 3B/4.)

We perform the above cleanup step while possible, and we let R denote the final nasty canonical set.
Notice that for all Z ∈ Z with Z ⊆ R, |TR(Z)| > |T (Z)|/4.

We partition Z into two sets: Z1 contains all sets ZX with ZX ∩ R = ∅, and Z2 contains all sets
ZX ⊆ R. We also denote X1 = {X ⊆ V (G) | ZX ∈ Z1}, and X2 = {X ⊆ V (G) | ZX ∈ Z2}.
We now define a set S′ of vertices in the original graph G. It consists of two subsets, S′1 and S′2.
Subset S′1 contains all vertices in sets X ∈ X1, so X1 is a partition of S′1. Recall that the partition X1

has Properties (C1)–(C5). We will use these properties later.

We now turn to define the subset S′2, by first defining a set S∗2 ⊆ V (G). We start with the set
R ⊆ V (H) of vertices. If a vertex v ∈ R is also a vertex of G, then we add v to S∗2 . Otherwise, v ∈ ZX
for some ZX ∈ Z2 must hold. Fix some such set X. Recall that the vertices of Γ(X) = T (ZX) belong
to Z ′X , and therefore to V (H)∩V (G). Some of these vertices may lie in R, and some of them outside
of R. The vertices of Γ(X) ∩ R have been added to S∗2 , and the vertices of Γ(X) \ R are not added
to S∗2 . Finally, we add the vertices of X \ Γ(X) to S∗2 . We have thus obtained a set S∗2 ⊆ V (G). We
then set S′2 = S∗2 \ ΓG(S∗2), that is, S′2 is obtained from S∗2 , after we remove all interface vertices from
it. Finally, we set S′ = S′1 ∪ S′2.

Observe that G[S′1] and G[S′2] are completely disjoint, with no direct edges connecting between them
(that was the purpose of removing the vertices of Γ(S∗2) from S∗2). Therefore, we can perform the
decomposition for the graph contraction step separately for both sets. We will argue below that set
S′2 has properties (P1) and (P2). Assuming this is true, let X ′2 be the partition of the vertices of S′2
guaranteed by Theorem 4.1. We then let X ′ = X1∪X ′2 be the final partition of the set S′. Notice that
partition X ′ has Properties (C1)–(C5). Let H ′ be the contracted graph obtained from G, after we
replace each sub-graph G[X] with the grid Z ′X , for all X ∈ X ′. Then from Theorem D.3, there is a
canonical drawing ϕ′ of the resulting graph H ′, with crϕ′(H ′) = O(d9

max·log10 n·(log log n)4·OPTcr(G)).

It now only remains to prove two things. First, we need to show that |V (H ′)| < |V (H)|, and second,
we need to show that S′2 has properties (P1) and (P2), so that Theorem 4.1 can be applied to it.
These will complete the proof of the theorem.

Bounding the Size of V(H′). Recall that since R is a nasty set, |R| ≥ 216·d6max
(α∗)2 · |Γ(R)|2. We can

transform the graph H into the graph H ′ in the following two simple step. First, for each ZX ∈ Z2,
we replace Z ′X with the graph G[X], using the vertices of Γ(X) as the interface. Let H∗ denote this
resulting graph. Notice that S∗2 , S

′
2 are subsets of vertices of H∗. Next, for each set X ∈ X ′2, we replace

H∗[X] by Z ′X . This gives the final graph H ′. We now analyze the number of vertices in these graphs.

The set V (H) of vertices can be partitioned into two sets (R,R), where R = V (H) \R. Consider now
the set V (H∗) of vertices. By the definition of S∗2 , the two sets (R,S∗2) define a partition of V (H∗).

59



Recall that we have obtained S∗2 from R, by replacing each set ZX ∈ Z2 with X \ Γ(X). Since each
set X ∈ X2 has Property (C5), |X| ≥ (α∗|Γ(X)|)2

64d2max
≥ (α∗)2

64d2max
|ZX |. Since at least 1/4 of the vertices

of Γ(X) = TH(ZX) belong to S∗2 , |X ∩ S∗2 | ≥ (α∗)2

28d2max
|ZX |. Finally, we observe that some vertices of

Γ(X) ∩ S∗2 may be shared by up to dmax sets X ′ ∈ X2. Therefore, in total,

|S∗2 | ≥ |R| ·
(α∗)2

28d3
max

≥ 28d3
max|ΓH(R)|2 (D.1)

It is easy to see that |ΓH∗(S∗2)| ≤ dmax|ΓH(R)|. The only difference between the two sets, is that for
each X ∈ X2, ΓH(R) contains |TR(ZX)| vertices of Γ(ZX), that are adjacent to the vertices of TR(ZX).
These vertices are replaced by at most dmax|TR(ZX)| vertices in ΓH∗(S∗2), because the maximum vertex
degree is bounded by dmax. Therefore,

|ΓH∗(S∗2)| ≤ dmax|ΓH(R)|. (D.2)

Recall that the set S′2 is obtained by removing all vertices of Γ(S∗2) from S∗2 . From Equations (D.2)
and (D.1), |ΓG(S∗2)| = |ΓH∗(S∗2)| < |S∗2 |/2, and so |S′2| ≥ |S∗2 |/2 ≥ 25d3

max|ΓH(R)|2, and |ΓG(S′2)| ≤
dmax|ΓH∗(S∗2)| ≤ d2

max|ΓH(R)|.
In the final step, we replace each set X ∈ X ′2 by set ZX . The set of vertices V (H ′) can then be
partitioned into (R,ΓH∗(S∗2), Y ), where Y is obtained from S′2, after we replace each set X ∈ X ′2
with ZX . From Equation (4.1) in Section 4, |Y | ≤ 162d2

max|ΓG(S′2)|2 ≤ 162d4
max|ΓH(R)|2 < |R|/2.

Therefore, |V (H ′)| = |R|+ |ΓG(S∗2)|+ |Y | < |R|+ d2
max|ΓH(R)|+ |R|/2 < |R|+ |R| = |V (H)|.

Property (P1) Recall that the original set R we have started from had property (P1). It is
immediate to see that the clean-up step has no affect on this property. Also, after we replace each
graph Z ′X , for ZX ∈ Z2, with graph G[X], the resulting set S∗2 , and consequently S′2 have this property.

Property (P2) Recall that set R we have started from had property (P2). That is, there is a planar
drawing ψR of the graph H[R], in which the vertices of Γ(R) lie on the boundary of the outer face. It
is easy to see that the clean-up step does not affect property (P2).

Let R be the graph obtained after the clean-up step, and let ψ be a planar drawing of H[R], in which
the vertices of Γ(R) lie on the boundary Γ of the outer face of ψ.

We now consider the sets X ∈ X2 one-by-one. For each such set X, we replace the graph Z ′X with the
graph G[X]. Let H̃ denote this new graph. We obtain the set R̃ of vertices in this new graph from
the set R, by removing the vertices of ZX , and adding the vertices of X \ Γ(X) instead to R.

We need to prove the following.

Claim D.15 Let H̃ be the current graph, R̃ the current set of vertices, that has property (P2) in the
graph H̃. Let X ∈ X2 be any set with ZX ⊆ R̃. Let H̃ ′ be the graph obtained from H̃ after we replace
Z ′X with G[X], and let R̃′ be the set of vertices obtained from R̃ by replacing the vertices in ZX with
the vertices in X \ ΓX . Then R̃′ has property (P2) in H̃ ′.

Proof: The difficulty comes from the fact that not all vertices of Γ(X) = TH̃(ZX) belong to R̃. Let
Γ1(X) = Γ(X) \ R̃, and let Γ2(X) = Γ(X) \ Γ1(X). Let ψ be a planar drawing of H̃[R̃], in which
the vertices of Γ(R̃) lie on the boundary γ of the outer face Fout. Draw a closed curve c around

60



the boundary γ, inside Fout. We can now augment this drawing, by adding the matching edges,
corresponding to vertices in Γ1(X), so that they cross c, and the resulting drawing of Z ′X is planar
(see Figure D.10). In this drawing, the vertices of Γ1(X) lie outside the circle c, and all other vertices
lie inside it.

R̃ψ

c

Γ1(X)

Figure D.10: Augmenting the drawing ψ.

This drawing gives a planar drawing of Z ′X , and the ordering of the vertices of Γ(X) in this drawing
is identical to their ordering along the curve γX in the planar drawing πX of GX . Therefore, we can
replace the drawing of Z ′X with the drawing πX of GX . We do so without changing the drawing of the
vertices in Γ(X), so the vertices in Γ1(X) remain outside c, while all other vertices are drawn inside
c. This can be done so that the only edges that cross the circle c are the edges adjacent to vertices
in Γ1(X). We then erase all vertices in Γ1(X), and all their adjacent edges from this drawing. This
gives the desired planar drawing of H̃ ′[R̃′], in which all interface vertices lie on the boundary of the
outer face.

After we have processed all sets X ∈ X2, the resulting graph that we obtain is exactly H∗, and the
resulting set of vertices is S∗2 , which, from the above claim, has property (P2). In the final step, we
remove the vertices of Γ(S∗2) from S∗2 to obtain the set S′2. It is easy to see that this step preserves
property (P2). Since H∗[S′2] = G[S′2], set S′2 has property (P2) in G.

E Proof of Theorem 5.2

We start with the following theorem, whose proof uses the Planar Separator Theorem (Theorem 2.4),
the approximation algorithm for the Balanced Cut problem (Theorem 2.5), and Claim B.1.

Theorem E.1 Let G be any n′-vertex graph with maximum degree at most dmax, and a collection
Z of disjoint subsets of vertices of G, such that for each Z ∈ Z, G[Z] is a grid, Γ(Z) is the set of
vertices in the first row of Z, and out(Z) contains exactly one edge incident on each vertex in the first
row of Z. Let OPT denote the cost of the optimal canonical solution to the Minimum Planarization
problem on G, with respect to Z, and assume that OPT <

√
n′. Then there is an efficient algorithm

to partition the vertices of G into two canonical sets Ã, C̃, with |Ã|, |C̃| ≥ Ω(n′/d2
max), such that

|E(Ã, C̃)| ≤ O(dmax
√
n′ log n′).

Proof: If there is any grid Z ∈ Z, with |Z| ≥ n′/(48qdmax)2, where q is the constant from Theorem 2.4,
then we return the partition (Ã, C̃), where Ã = Z and C̃ = V (G) \ Z. Since |Γ(Z)| ≤

√
n′, this is a

valid partition. We assume from now on that for each Z ∈ Z, |Z| < n′/(48qdmax)2.

It is enough to show that there is a partition (A′, C ′) of V (G), such that both A′ and C ′ are canonical,
|A′|, |C ′| ≥ n′/20, and |E(A′, C ′)| ≤ O(dmax

√
n′). We can then apply Theorem 2.5 to obtain the

desired partition (Ã, C̃); in order to ensure that the final partition is canonical, we can simply assign
the edges of the grids Z ∈ Z infinite costs.

61



We now show that there is a partition (A′, C ′) of V (G) with the above properties. Let E′ be the optimal
canonical solution to the Minimum Planarization problem on G, |E′| = OPT. Then graph G \ E′ is
planar, and therefore, from Theorem 2.4, there is a subset B of vertices, |B| ≤ q

√
n′, whose removal

separates the two subsets (A,C) of vertices, with |A|, |C| ≥ n′/3. Assume w.l.o.g. that |A| ≤ |C|,
and consider the partition (A′′, C ′′), where A′′ = A ∪ B, and C ′′ = C. Then |A′′|, |C ′′| ≥ n′/3, and
|E(A′′, C ′′)| ≤ OPT + qdmax

√
n′ ≤ 2qdmax

√
n′, since all edges in E(A′′, C ′′) either belong to E′, or are

incident on the vertices of B, and since we have assumed that OPT <
√
n′. However, it is possible

that the sets A′′, C ′′ are not canonical.

Consider some grid Z ∈ Z, and let Γ1(Z) = Γ(Z) ∩ A′′, Z1 = Z ∩ A′′, Γ2(Z) = Γ(Z) ∩ C ′′, and Z2 =
Z ∩C ′′. We now define a partition (Z1,Z2) of Z, as follows: for each grid Z ∈ Z, if |Γ1(Z)| > |Γ2(Z)|,
then Z belongs to Z1, and otherwise it belongs to Z2. For each grid Z ∈ Z1, we move all vertices of
Z2 to A′′, and for each grid Z ∈ Z2, we move all vertices of Z1 to C ′′, to obtain the final partition
(A′, C ′).

Notice first that from Claim 2.6, for each Z ∈ Z1, |E(Z1, Z2)| ≥ |Γ2|, and for each Z ∈ Z2,
|E(Z1, Z2)| ≥ |Γ1|. Therefore, the cut size does not increase, and |E(A′, C ′)| ≤ |E(A′′, C ′′)| ≤
2qdmax

√
n′.

It is now enough to show that |A′|, |C ′| ≥ n′/20. We show this for A′, and the proof for C ′ is symmetric.
Recall that |A′′| ≥ n′/3. Therefore, it is enough to show that

∑
Z∈Z2

|Z1| ≤ n′/4. We prove this using
Claim B.1, as follows. For each grid Z ∈ Z2, we define a number xZ = |Z1|, and yxZ = |E(Z1, Z2)|.
From Claim 2.7, |Z1| ≤ 4|E(Z1, Z2)|2. Therefore, xZ ≤ 4yxZ for all Z ∈ Z2, and we can set the
parameter β = 4. Since we have assumed that for all Z ∈ Z, |Z| < n′/(48qdmax)2, we can set M =
n′/(48qdmax)2. Finally, we can set S =

∑
Z∈Z2

yxZ =
∑

Z∈Z2
|E(Z1, Z2)| ≤ |E(A′′, C ′′)| ≤ 2qdmax

√
n′.

From Claim B.1,

∑
Z∈Z2

|Z1| ≤ 2S
√
βM +

M

4

≤ 4qdmax

√
n′ ·
√

4n′

(48qdmax)2
+

n′

4 · (48qdmax)2

≤ n′

6
+

n′

4 · (48qdmax)2
≤ n′

4

We now turn to prove Theorem 5.2. In order to simplify notation, we denote OPT by OPT in this
proof. Notice that in general, it is possible that G contains much more vertices than n′, because the
bounding box X may contain many vertices. In order to avoid this, we perform the following simple
transformation. If P ⊆ X is a path, all of whose vertices, except for endpoints, have degree 2 in G,
then we replace P by an edge e. We perform this procedure while possible, and we let G′ denote the
resulting graph, and X ′ the resulting bounding box. Notice that |V (G′)| ≤ dmax · n′, and any weak
feasible solution for π(G,X,Z ′) gives a weak feasible solution for π(G′, X ′,Z ′), and vice versa. The
same holds for strong solutions for π(G,X,Z ′) and π(G′, X ′,Z ′). From now on we focus on finding a
weak feasible solution for π(G′, X ′,Z ′), and we denote |V (G′)| = n′′.

Let ϕ be the optimal strong solution for problem π(G′, X ′,Z ′). Recall that ϕ contains at most OPT
crossings. The algorithm consists of O(d2

max · log n) iterations, and in each iteration i, we are given a
collection Gi1, . . . , G

i
ki

of disjoint sub-graphs of G′, such that for each 1 ≤ j ≤ ki, V (Gij) is canonical for
Z ′, and ki ≤ 2OPT. The number of vertices in each such sub-graph Gij is bounded by ni = (1−α)i−1n′′,
where α = Ω(1/d2

max). In the input to the first iteration, k1 = 1, and G1
1 = G′.

62



Iteration i, for i ≥ 1 is performed as follows. We construct a new family Gi+1 of sub-graphs of G′,
some of which will serve as the input to the next iteration, and a set Ei of edges. At the beginning,
Gi+1 = ∅ and Ei = ∅. Consider some graph Gij , for 1 ≤ j ≤ ki. Let OPTij be the cost of the strong
optimal canonical solution to problem π(Gij , ∅,Z ′). Notice that

∑ki
j=1 OPTij is bounded by the cost of

the strong optimal solution to problem π(G′, ∅,Z ′) (since this solution implies solutions for each one
of the sub-problems), which is in turn bounded by OPT.

We apply Theorem E.1 to each such graph Gij . Recall that if OPTij <
√
|V (Gij)|, then we obtain a par-

tition (Ã, C̃) of the vertices of Gij , where both subsets Ã and C̃ are canonical, |Ã|, |C̃| ≥ Ω
(
|V (Gij)|
d2max

)
≥

αni, and so |Ã|, |C̃| ≤ (1− α)ni = ni+1. Moreover, |EGij (Ã, C̃)| ≤ O(dmax
√
ni log ni). We distinguish

between three cases. The first case happens when the algorithm successfully finds such a partition.
The second case happens when the algorithm does not return a valid partition, but |V (Gij)| ≤ ni+1.
The third case is when the algorithm does not return a valid partition, and |V (Gij)| > ni+1 > ni/2.

Assume first that for each 1 ≤ j ≤ ki, either Case 1 or Case 2 happens. Fix any such graph Gij . If
Case 1 happens for Gij , denote by Hj , H

′
j the two sub-graphs of Gij induced by Ã and C̃, respectively,

and denote by Eij the corresponding set of edges EGij (Ãj , C̃j). We add Hj , H
′
j to Gi+1, and the edges

of Eij to Ei. If Case 2 happens for Gij , then we add Gij to Gi+1, and we let Eij = ∅.

Let Ei =
⋃ki
j=1E

i
j . Since for all j, |Eij | ≤ O(dmax

√
ni log ni), we get that

|Ei| ≤ O(kidmax

√
ni log ni) ≤ O(OPT · dmax

√
ni log n′′),

as ki ≤ 2OPT. Finally, consider the collection Gi+1 of sub-graphs of G′. Each sub-graph in Gi+1 is
canonical and contains at most ni+1 vertices.

Let H ∈ Gi+1 be any graph in this collection, and let X ′′ = V (X) ∩ H. Notice that the set X ′′ of
vertices defines a partition ΣH of the cycle X ′ into consecutive segments, where each segment contains
two vertices of X ′′ as its endpoints, and no vertices of X ′′ as its inner vertices. We say that graph
H is good iff there is a planar canonical drawing ψH of H and a closed simple curve γH , such that
the vertices of X ′′ appear on γH , in the same order in which they appear in X ′, and the whole graph
H is embedded inside γH in ψH . Moreover, no other graph H ′ ∈ Gi+1 contains a path connecting a
pair of vertices v, v′ ∈ X ′, such that v and v′ are inner vertices that belong to two distinct segments
σ, σ′ ∈ ΣH . Notice that if H is not a good graph, then at least one of its edges participates in a
crossing in ϕ. We can efficiently check whether graph H is good.

Let G′i+1 ⊆ Gi+1 contain all good graphs in Gi+1, and let G′′i+1 contain all bad graphs. Notice that
|G′′i+1| ≤ 2OPT. The graphs in G′′i+1 become the input to the next iteration, (i+ 1).

Assume now that for some graph Gij , for 1 ≤ j ≤ ki, Case 3 happens. Then OPT ≥ OPTij ≥√
|V (Gij)| ≥

√
ni/2. In this case, i becomes the last iteration, and we denote its index by i∗ = i.

Notice that i∗ = O(d2
max log n′′) We then add the edges of all sub-graphs Gi

∗
j for all 1 ≤ j ≤ ki∗ to set

Ei
∗
, except for the edges that participate in the grids Z ∈ Z ′. We claim that |Ei∗ | ≤ (OPT)3 must

hold: indeed, for all 1 ≤ j ≤ ki∗ , if |E(Gi
∗
j )| > 4|V (Gi

∗
j )|, then by Theorem 2.3, OPTij ≥ Ω(|V (Gi

∗
j )|),

and |E(Gi
∗
j )| ≤ |V (Gi

∗
j )|2 = O((OPTij)

2) must hold. The total number of edges in such graphs is then
bounded by O(OPT2). On the other hand, for indices j for which |E(Gi

∗
j )| ≤ 4|V (Gi

∗
j )| ≤ 4ni∗ ≤

O(OPT2), we get that |E(Gi
∗
j )| ≤ O(OPT2), and all such graphs can contribute at most O(OPT3)

edges to Ei
∗
.

63



Our final solution is E′ =
(⋃i∗

i=1E
i
)
\ E(X ′), and its cost is bounded by

|E′| ≤
i∗∑
i=1

|Ei| ≤
i∗−1∑
i=1

O(dmaxOPT
√
ni log n′′) +O(OPT3) ≤ O(dmaxOPT

√
n′′ log n′′ + OPT3),

since the values
√
ni form a decreasing geometric series for i ≥ 1. Since n′′ ≤ O(n′dmax), |E′| ≤

O(OPT ·
√
n′ · poly(dmax · log n′) + OPT3) as required.

It now remains to show that E′ is a weak feasible solution to problem π(G′, X ′,Z ′). Let C be the set
of all connected components in graph G′ \

(⋃i∗

i=1E
i
)

. Each graph H ∈ C is either an isolated vertex,
or a grid Z ∈ Z ′, or it belongs to some set G′i, for some 1 ≤ i < i∗. Therefore, each such graph H ∈ C
has a planar drawing ψH , inside a simple closed curve γH , such that the vertices of X ′ ∩ V (H) all
appear on γH , in the same order as in X ′. It is also easy to verify that no graph in C contains a path
connecting a pair of inner vertices of two distinct segments σ, σ′ ∈ ΣH . We can then draw a closed
curve γ in the plane, and compose the planar drawings ψH of all graphs H ∈ C together, so that all
vertices of X ′ all appear on γ, in exactly the same order as in X, and all other vertices and edges are
drawn inside γ, with no crossings. We can then add the edges of X ′ to this drawing, thus obtaining a
planar drawing of G′ \ E′.

F Proofs Omitted from Section 6

We start with the following simple claim, that we use repeatedly in this section.

Claim F.1 Let G = (V,E) be any graph, A ⊆ A′ ⊆ V any subsets of vertices, such that A is α-well-
linked, for any parameter 0 < α < 1. Moreover, assume that the graph H = G[A′]∪ outG(A′) contains
a collection P of edge-disjoint paths, connecting the edges in outG(A′) \ outG(A) to the vertices of
A, such that each edge in outG(A′) \ outG(A) participates in exactly one such path. Then set A′ is
α-well-linked.

Proof: We will omit the sub-script G in outG(A), outG(A′) for convenience from now on. We can
assume w.l.o.g. that each path P ∈ P contains exactly one vertex of A, so the last edge on path P
belongs to out(A).

Assume for contradiction that A′ is not α-well-linked, and let (X ′, Y ′) be the violating partition. This
gives a partition (X,Y ) of A, with X = X ′ ∩ A, Y = Y ′ ∩ A. Let TX = out(A) ∩ out(X), and TY =
out(A) ∩ out(Y ), and assume w.l.o.g. that |TX | ≤ |TY |. Since A is α-well-linked, |E(X,Y )| ≥ α|TX |.
Let TX′ = out(A′) ∩ out(X ′) (see Figure F.1). Recall that each edge e ∈ TX′ \ out(A) is associated
with a path Pe ∈ P, connecting e to a vertex of A, and these paths are edge-disjoint. Therefore,
for each edge e ∈ TX′ \ out(A), either the endpoint of the path Pe belongs to X, and so the last
edge on the path belongs to TX \ TX′ , or an edge of Pe belongs to E(X ′, Y ′) \ E(X,Y ). Therefore:
TX′ \ out(A) ≤ |E(X ′, Y ′) \ E(X,Y )|+ |TX \ T ′X |. Altogether, since TX′ ∩ out(A) = TX′ ∩ TX :

|TX′ | ≤ |E(X ′, Y ′) \ E(X,Y )|+ |TX | ≤ |E(X ′, Y ′) \ E(X,Y )|+ |E(X,Y )|/α ≤ |E(X ′, Y ′)|/α,

contradicting the fact that (X ′, Y ′) is a violating cut.

64



X ′ Y ′

YX

TX′ \ out(A)

TX′ ∩ out(A) TX

Figure F.1: Illustration for Claim F.1.

F.1 Proof of Theorem 6.1

We first show that there is a partition (X,Y ) of V (H), with |X|, |Y | ≥ n′/3, and |E(X,Y )| =
O(dmax

√
n′). Indeed, let E∗ be the optimal planarizing set for the graph H. Observe that |E∗| ≤

OPT ≤ O(
√
n
′), since we have assumed that n′ ≥ m∗ρ2 > OPT2 in Equations (6.3) and (6.2). Then

graph H \ E∗ is planar, and so from Theorem 2.4, there is a partition (A′, B′, C ′) of V (H), where
|A′|, |C ′| ≤ n′/3, |B′| ≤ O(

√
n′), and no edges connect vertices of A′ to vertices of C ′ in H\E∗. Assume

w.l.o.g. that |A′| ≤ |C ′|, and consider the partition (A′ ∪B′, C ′) of V (H). Then |A′ ∪B′|, |C ′| ≥ n′/3,
and |EH(A′ ∪ B′, C ′)| ≤ |E∗| + dmax|B′| ≤ OPT + O(dmax

√
n′) ≤ O(dmax

√
n′). We can then use

Theorem 2.5 to find a partition (X0, Y0) of V (H), with |X0|, |Y0| ≥ εn′ for some constant ε, and
|E(X0, Y0)| ≤ O(dmax

√
n′ log n′). We set the parameters N = |E(X0, Y0)| ≤ O(dmax

√
n′ log n′), and

λ = ε2n′

25N2 = Ω
(

1
d2max logn′

)
.

If there is any set Z ∈ Z ′, with |Z| ≥ λn′, then we can simply set let Z = A, B = V (H) \A, to obtain
the final partition (A,B). It is easy to see that this partition satisfies the conditions of the theorem,
since |E(Z, V (H) \ Z)| = |Γ(Z)| ≤

√
n′, and we have assumed that |Z| ≤ n′/2, so |B| ≥ λn′ will also

hold.

From now on we assume that there are no sets Z ∈ Z ′, with |Z| ≥ λn′. We perform a number
of iterations. At the beginning of each iteration, we are given a partition (X,Y ) of V (H), with
|X|, |Y | ≥ εn′, and |E(X,Y )| ≤ N . The input to the first iteration is the partition (X0, Y0). We then
try to perform one of the next two steps, while possible.

Let A ∈ {X,Y } be the set containing more vertices, and let B be the other set. We set up a non-
uniform sparsest cut problem on graph H ′ = H[A], as follows. For each vertex v ∈ Γ(A), we set its
weight to be the number of edges in out(A) incident on v. For all other vertices, the weight is 0.
We then run the algorithm AALN on the resulting non-uniform sparsest cut instance. Assume first
that we obtain a cut (A1, A2) of sparsity less than 1, and assume w.l.o.g. that |A1| ≤ |A2|. Then
|E(A1, A2)| < | out(A1) ∩ E(A,B)|. We then define the new partition (X,Y ) to be (A \ A1, B ∪ A1).
It is easy to see that the size of each resulting set is at least εn′, and the number of the edges in the
cut decreases. Otherwise, if the sparsity of the cut that we obtain is at least 1, then, since AALN gives
a factor αALN-approximation for the non-uniform sparsest cut problem, set A is 1/αALN well-linked.
We then perform the following step.

Let Z ∈ Z ′, such that Z ∩A 6= ∅, and Z 6⊆ A. Denote by ΓA(Z) = Γ(Z) ∩A, and ΓB(Z) = Γ(Z) ∩B.
If |ΓA(Z)| < |ΓB(Z)|, then we define a new partition (A \ Z,B ∪ Z). It is easy to see that the new
partition remains balanced, that is, |A|, |B| ≥ εn′, since we have assumed that |Z| < λn′ < n′/4. From
Claim 2.6, |E(A ∩ Z,B ∩ Z)| > |ΓA(Z)|. Since each vertex in Γ(Z) has exactly one outgoing edge

65



connecting it to vertices in T (Z), it follows that the cut size strictly decreases.

We will perform one of the above two steps, while applicable. As observed above, the cut size can
only go down, and eventually we will obtain a partition (A,B), with |A| ≥ |B| ≥ εn′, |E(A,B)| ≤ N ,
such that A is 1/αALN-well-linked. Let Z ′′ ⊆ Z ′ denote the set of grids Z ∈ Z ′ with A ∩ Z 6= ∅ and
Z 6⊆ A. Then |ΓA(Z)| ≥ |ΓB(Z)| must hold for each Z ∈ Z ′′, and moreover, there is a collection
P(Z) of |ΓB(Z)| edge-disjoint paths in H[Z], connecting the vertices in ΓB(Z) to the vertices in
ΓA(Z), where each vertex in ΓB(Z) participates in exactly one such path. In our final step, we add
all such sets Z ∈ Z ′′ to the set A, to obtain the set A′. Let B′ = V (H) \ A′. Our final partition
is (A′, B′). We now argue that it has all required properties. First, from Claim 2.6, for all Z ∈ Z ′′,
|E(A∩Z,B∩Z)| > |ΓB(Z)|, and so the size of the cut does not increase, and remains bounded by N , as
required. Next, from Claim F.1, setA′ is 1/αALN-well-linked. Since 1/αALN = Ω(1/(

√
log n·log log n)),

and α∗ = Ω(1/(log3/2 n log logn)), this implies that A′ is also α∗-well-linked, as required. Finally, it is
clear that |A′| ≥ εn′, and it is enough to show that |B′| ≥ εn′/10 ≥ λn′. Since |B| ≥ εn′, it is enough
to show that

∑
Z∈Z′′ |Z ∩B| ≤ 0.9εn′.

We will use Claim B.1, and define the set R to contain, for each Z ∈ Z ′′, the number x(Z) = |Z ∩B|,
with the associated number yx(Z) = |E(Z ∩B,Z ∩A)|. From Claim 2.7, x(Z) ≤ 4y2

x(Z), so we can set
β = 4. Since |Z| < λn′ for all Z ∈ Z ′, we can set M = λn′. Moreover,

∑
Z∈Z′′ |E(A ∩ Z,B ∩ Z)| ≤

|E(A,B)| ≤ N , so we can set S = N . By Claim B.1,
∑

Z∈Z′′ |Z ∩B| ≤ 2S
√
βM +M/4 ≤ 2N

√
4λn′+

λn′/4 = 4N
√
λn′ + λn′/4. We now show that this number is bounded by 0.9εn′.

Recall that λ = ε2n′

25N2 ≥ Ω( 1
d2max logn′

). Therefore, λn′/4 < εn′/10, and 4N
√
λn′ ≤ 0.8εn′, giving the

desired bound.

F.2 Proof of Lemma 6.2

Recall that our starting point is two disjoint subsets A,C of vertices of H, both of which are canonical
w.r.t. Z ′, α∗-well-linked in graph H, and contain at least n′/ρ vertices.

Construct a new graph from H, where all vertices in A are contracted into a single source vertex s,
and all vertices in C are contracted into a single sink vertex t. Consider the minimum s-t cut Ã, B̃ in
this graph, where s ∈ Ã, and let (A′, B′) be the corresponding partition of the vertices of H, obtained
from (Ã, B̃) after we un-contract s and t. From Corollary 2.1, both sets A′ and B′ are canonical w.r.t.
Z ′, and clearly both sets contain at least n′/ρ vertices. From the min-cut max-flow theorem, there is
a collection P of |E(A′, B′)| disjoint paths in H, where each such path connects an edge in outH(A)
to an edge in outH(C), and contains exactly one edge in E(A′, B′). Moreover, each edge in E(A′, B′)
is contained in exactly one path in P. We now apply Claim F.1 to both sets A′ and B′ to conclude
that they are both α∗-well-linked.

F.3 Proof of Lemma 6.3

The proof is very similar to the proof of Lemma 6.2. Let C be the union of all type-2 clusters. Recall
that |A|, |C| ≥ λn′/2 ≥ n′/ρ (by Equation (6.2)), both sets A and C are canonical w.r.t. Z ′, A is
α∗-well-linked w.r.t. outH(A), and H[C] ∪ outG(C) contains a collection P of edge disjoint paths,
connecting the edges in outH(C) to the edges in outX(C) = outG(C) \ outH(C), such that every edge
in outH(C) is an endpoint of exactly one path.

As before, we construct a new graph from H, where all vertices in A are contracted into a single
source vertex s and all vertices in C are contracted into a single sink vertex t. Let (Ã, B̃) denote
the minimum s-t cut in this network, as before, and let (A′, B′) denote the corresponding partition of

66



H. As before, both A′ and B′ are canonical w.r.t. Z ′, and they both contain at least n′/ρ vertices.
Similarly to the proof of Lemma 6.2, set A′ is α∗-well-linked w.r.t. EH(A′, B′). It now only remains to
show the existence of the required paths in graph H[B′]∪ outG(B′). Because of the min-cut max-flow
theorem, there is a collection P ′ of |EH(A′, B′)| edge-disjoint paths in the graph H, connecting edges in
outH(A) = EH(A′, B′) to the edges of outH(C), such that each edge of EH(A′, B′) appears on exactly
one such path. This gives a collection P ′′ of paths in graph (H[B′] \ C) ∪ outG(B′ \ C), connecting
the edges of EH(A′, B′) to the edges of outH(C), where every edge of EH(A′, B′) participates in one
such path. The edges in outH(C) are in turn connected by the paths in P to the edges of outX(C) in
H[B]. The concatenation of paths in P ′′ and P gives the desired collection of paths.

F.4 Proof of Theorem 6.4

We start with the set T1 of all non-empty type-1 clusters. Consider the original contracted graph
H (which is different from the graph H we have been working with so far). For each C ∈ T1, the set
outH(C) of edges consists of the following three subsets:

• edges in E1(C): recall that C has property (P1) w.r.t. these edges, and in particular, for each
such edge e, there is a path P ⊆ H \ C, connecting e to some vertex of set A. Moreover, for
each C ∈ T1, E1(C) 6= ∅ (see Figure 6.1).

• edges in E2(C): this set includes all edges in outG(C) that do not belong to E1(C). Since the
graph H[C]∪ outG(C) contains a collection P(C) of edge disjoint paths, connecting the edges of
E1(C) to the edges of E2(C), and each edge in E2(C) participates in at least one path in P(C),
|E2(C)| ≤ |E1(C)|. As observed before, each edge e ∈ E2(C) can reach the set V (X) of vertices
(the vertices of the bounding box) in the graph G \ C. Also, if E2(C) 6= ∅, then there is a path
P (C), connecting a vertex of C to a vertex of X in graph H, such that P (C) does not contain
vertices of any other clusters C ′ ∈ T1.

• edges in E(1), . . . , E(h−1). From Invariant (V2), each such edge connects a vertex of C to a vertex
in H \V (H), and from Invariant (V6), their number is bounded by 2m∗ · ρ · log n, since the total
number of iterations is at most 2ρ · log n.

Since
∑

C∈T1 |E1(C)| ≤ 2N , and the total number of edges in sets E(1), . . . , E(h−1) incident on vertices
of G is bounded by 2m∗ · ρ · log n ≤ 2

√
n′ ≤ N (by Equation (6.3)), we have that

∑
C∈T1 | outH(C)| ≤

5N . At the same time, since |B| ≥ λ/n′, and Case 4 did not happen,
∑

C∈T1 |C| ≥ λn′/2, and for all
C ∈ T1, |C| < n′/ρ (since Case 3 did not happen). In general, under these conditions, we could apply
Claim B.1 to prove that there must be some set C ∈ T1, with |C| ≥ 216·d6max

(α∗)2 · |Γ(C)|2 — the condition
necessary for C being a nasty set. However, we also need to ensure that C has properties (P1) and
(P2) in graph H, which may not be true for all C ∈ T1. Therefore, we first perform a transformation
of sets C ∈ T1 to ensure these properties. In this transformation, we will replace each cluster C ∈ T1

with an augmented cluster UC . We will then show that all but at most 2OPT + 1 augmented clusters
have properties (P1) and (P2), and so these clusters still contain a large enough number of vertices,
so that we can apply Claim B.1 to prove that one of them must be nasty.

Consider the graph H, and remove the vertices in sets A, X, and all sets C ∈ T1 from it. Let L be the
set of all connected components in the resulting graph. For each S ∈ L, if there is a cluster C ∈ T1,
such that outH(S) only contains edges connecting the vertices of S to the vertices of C, we add S to
C. Let UC be the resulting extended cluster, for each C ∈ T1.

67



Claim F.2 There is at most one set C ∈ T1, such that UC does not have the property (P1) in graph
H.

Proof: Fix some C ∈ T1. Observe that outH(UC) ⊆ outH(C). We first show that each edge
e ∈ outH(UC) can reach either A or X in the graph H \ UC .

Let e ∈ outH(UC), and let t ∈ TH(UC) be its corresponding terminal. If e ∈ E1(C), then we have
already established that there is a path connecting e to A in H \ C and hence in H \ UC . Similarly,
if e ∈ E2(C), then we have already established that there is a path connecting e to X in H \ C and
hence in H\UC . Assume now that e 6∈ E1(C)∪E2(C), so e 6∈ EH(C). From Invariant (V2), t 6∈ V (H)
must hold. Clearly, if t ∈ X, then there is nothing to prove.

Let S ∈ L be the connected component to which t belongs. Since S was not added to UC , there is
another cluster, C ′ ∈ T1, such that an edge e′ ∈ E(S,C ′) belongs to graph H. Let e′′ be any edge in
EH(C ′). Then we can build a path P , connecting t to e′′, that does not contain any vertices of UC .
Since e′′ ∈ EH(C ′), there is a path P ′ ⊆ H, connecting e′′ to some vertex of A ∪ X. If P ′ does not
contain any vertices of C, then the concatenation of P and P ′ gives a path connecting t to a vertex of
A ∪X. Otherwise, we get a path connecting t to some edge e∗ ∈ outH(C). Since all such edges can
reach A ∪X in the graph H \ C, this will also give the desired path. We therefore conclude that for
each C ∈ T1, for each e ∈ outH(UC), edge e can reach A ∪X in the graph H \ UC .

Let T ′ ⊆ T1 be the subset of clusters C, such that UC does not have property (P1). It is now enough
to prove that |T ′| ≤ 1.

Assume otherwise, and let C,C ′ ∈ T ′ be any two clusters. The high-level idea is that we show that
each one of these clusters must contain some interface vertices that can reach A, and some interface
vertices that can reach X. Therefore, one of these clusters can use the other cluster in order to connect
all its interface terminals to each A.

We first claim that either E2(C) 6= ∅, or EH(C,X) 6= ∅. Assume otherwise. Then every edge
e ∈ outH(C) can reach A in the graph H \ UC . If an edge e ∈ outH(UC) cannot reach A in the graph
H \ UC , then the terminal t ∈ TH(C), that serves as the endpoint of e, cannot belong to V (H), and
must belong to some set S ∈ L (we have assumed that it cannot belong to X). Since S has not been
added to UC , there is an edge e′ connecting S to some other cluster C ′′. Cluster C ′′, in turn, has
an edge e′′ ∈ E1(C ′′). Therefore, we have a path P connecting e to e′′ in H \ UC . Edge e′′ is in
turn connected by a path P ′ ⊆ H to a vertex of A. If P ′ does not contain vertices of C, then the
concatenation of P and P ′ will give a path connecting t to A in H \ UC . Otherwise, path P ′ must
contain an edge in EH(C) = E1(C), so we can obtain a path connecting t to some edge in E1(C), and
then to A in graph H \ UC . Therefore, UC must have property (P1).

We can therefore assume that either E2(C) 6= ∅, or EH(C,X) 6= ∅. In either case, there is a path
P̃ (C) ⊆ H, connecting a vertex of C to a vertex of X, such that P̃ (C) ∩ V (C ′) = ∅. Similarly, we
can conclude that there is a path P̃ (C ′) ⊆ H, connecting a vertex of C ′ to a vertex of X, such that
P̃ (C ′) ∩ V (C) = ∅.
Assume now that there is a path P ∗(C), connecting a vertex of C to a vertex of A in H, such that
P ∗(C) does not contain any vertices of C ′. We claim that in this case, UC′ must have property (P1).
Indeed, if e ∈ outH(UC′), such that there is a path P connecting e to X in H \UC′ , then we can take
the union U of graphs P,X, P̃ (C),H[UC ], P ∗(C). No vertex of UC′ belongs to U , and it is a connected
sub-graph of H, containing both X and A. Therefore, edge e can reach A in graph H \UC′ , implying
that UC′ has property (P1).

Similarly, if there is a path P ∗(C ′), connecting a vertex of C ′ to a vertex of A in H, such that P ∗(C ′)
contains no vertices of C, then UC has property (P1).

68



The only remaining case is when every path connecting C to A in H contains a vertex of C ′, and
every path connecting C ′ to A in H contains a vertex of C. It is easy to see that this is impossible:
recall that E1(C) 6= ∅, and so there is an edge e ∈ E1(C), with a path P connecting e to A in graph
H \C. Let v be the last vertex on P that belongs to C ′, and let P ′ be the portion of P starting from
v. Then P ′ connects C ′ to A and contains no vertices of C.

Let T ′′ ⊆ T1 be the collection of all clusters C, such that UC has properties (P1) and (P2). Since all
clusters UC , for C ∈ T1 \ T ′ have property (P1), if any such cluster does not have property (P2), its
edges must participate in crossings in any drawing. Therefore, the total number of clusters in T1 \ T ′′
is at most 2OPT + 1, and they contain at most n′

ρ · (2OPT + 1) < λn′

4 vertices in total (we have used
Equation (6.2)). Therefore,

∑
C∈T ′′ |C| ≥ λn′/4.

This leaves us with the set T ′′ of clusters. For each cluster C ∈ T ′′, set UC is canonical, and
has properties (P1) and (P2) in H. It now only remains to show that, for at least one such set,
|UC | ≥ 216·d6max

(α∗)2 · |Γ(UC)|2. Since Γ(UC) ⊆ Γ(C), and |Γ(C)| ≤ | outH(C)|, it is enough to prove that

for some C ∈ T ′′, |C| ≥ 216·d6max
(α∗)2 · | outH(C)|2. This would imply that the corresponding set UC is a

nasty canonical set. Assume for contradiction that for all C ∈ T ′′, |C| < 216·d6max
(α∗)2 · | outH(C)|2. We

will show that
∑

C∈T ′′ |C| < λn′/4 in this case, leading to a contradiction.

We use Claim B.1 by defining, for each cluster C ∈ T ′′, value x(C) = |C|, and yx(C) = | outH(C)|.
We can then use β = 216·d6max

(α∗)2 , M = n′/ρ, and S = 5N . From Claim B.1, we get that
∑

C∈T ′ |C| ≤
2S
√
βM +M/4 = 10N

√
n′

ρ ·
216·d6max

(α∗)2 + n′

4ρ . Since, by Equation (6.2), ρ > 8/λ, the second term is less
than λn′/8, at it is enough to show that the first term is bounded by λn′/8 as well. This is equivalent
to:

ρ >
25 · 224 · d6

maxN
2

n′ · λ2 · (α∗)2

which is guaranteed by Equation (6.1).

F.5 Proof of Theorem 6.5

Since Case 2 does not happen, we assume throughout the proof that:

|T | > 107OPT2 · ρ · log2 n · d2
max · βFCG

α∗
(F.1)

The plan of the proof is as follows. We start by analyzing some structural properties of the graph
H and of the drawing ϕ′ of G for Cases 3 and 4. Next, we use a simple randomized algorithm to
construct a skeleton K0, which may not be connected. We will then show that at least one connected
component K ′ of K0 has all the desired properties, except that it may contain 2-vertex cuts, and
therefore may not be rigid. Finally, we show how to turn K ′ into a rigid graph, while preserving all
other properties.

Structural Properties of H and ϕ′

Recall that we are given a partition (A,B) of H. For convenience, we will denote H[A] = Hr, and
call its vertices and edges “red”, and H[B] = Hb, and call its vertices and edges “blue”. We will also

69



denote Hr = (Vr, Er) and Hb = (Vb, Eb). Then T = E(Vr, Vb).

Let ϕr, ϕb be the drawings of Hr and Hb, respectively, induced by ϕ′. Since the graphs Hr, Hb are not
necessarily 2-vertex connected, the face boundaries in ϕr, ϕb are not necessarily simple. For a face F
in any embedding, we denote by γ(F ) the boundary of the face.

Definition F.1 Let H ′ ⊆ G be any sub-graph of G, and let F be any face of the drawing ϕH′ of H ′

induced by ϕ′. Let e 6∈ E(H ′) be any edge. We say that e is embedded inside F , iff the image of the
edge e in ϕ′ is completely contained inside the face F (we allow one or both endpoints of e to lie on
γ(F ).)

Claim F.3 Assume that Case 3 or Case 4 happen. Then there is a subset T 0 ⊆ T of terminals,
|T 0| ≥ |T | − 7OPT · βFCG/α

∗, a face Fb of ϕb and a face Fr of ϕr, such that all terminals in T 0

are embedded inside the face Fr of ϕr, and inside the face Fb of ϕb. Moreover, the drawings of these
terminals in ϕ′ do not cross each other (or any other edge).

(See figure F.2 for an illustration)

Proof: Remove from T all terminals whose embeddings participate in crossings in ϕ′, and let T ∗ be
the set of remaining terminals, |T ∗| ≥ |T | − 2OPT. From Equation F.1, |T | ≥ 14βFCG · OPT/α∗.

Assume for contradiction that there is no face Fb in the embedding ϕb of Hb, such that at least
|T ∗|−3OPTβFCG/α

∗ terminals of T ∗ are embedded inside Fb. We will find a set M of 3βFCG ·OPT/α∗

disjoint pairs of terminals of T ∗, such that each pair contains two terminals whose red endpoints lie
inside distinct faces of ϕb. Since graph Hr is α∗-well-linked w.r.t. T , from Observation 2.1, we can
find a flow F in Hr, that routes these pairs of terminals with congestion at most 2βFCG/α

∗ in Hr.
Each flow-path in F must contain a red edge whose drawing crosses a blue edge. With the maximum
congestion being bounded by 2βFCG/α

∗, and the total amount of flow in F being 3βFCG · OPT/α∗,
we get that there are more than OPT red edges, whose drawings cross those of blue edges in ϕ′, a
contradiction.

To find the desired set M of terminal pairs, consider two cases. First, if any face F ′b of ϕb contains at
least 3βFCG · OPT/α∗ terminals, then we can simply match 3βFCG · OPT/α∗ terminals lying outside
F ′b to 3βFCG · OPT/α∗ terminals lying inside F ′b. Otherwise, we can find a set F of faces, containing
between 3βFCG ·OPT/α∗ and 6βFCG ·OPT/α∗ terminals in total. We can then match terminals lying
outside these faces to terminals lying inside these faces.

We conclude that in both Case 3 and Case 4, there is a subset T ′ ⊆ T ∗ of terminals, |T ′| ≥ |T ∗| −
3OPTβFCG/α

∗, such that all terminals in T ′ are embedded inside the same face Fb of ϕb.

We now show that there is a subset T ′′ ⊆ T ∗ of terminals, |T ′′| ≥ |T ∗| − 3OPTβFCG/α
∗, such that all

terminals of T ′′ are embedded inside the same face Fr of ϕr. In the end, we will set T 0 = T ′ ∩ T ′′.
If Case 3 happens, then Hb is α∗-well-linked w.r.t. T , so the same argument as for Hr works. Assume
now that Case 4 happens. Since the edges of X do not participate in any crossings in ϕ′, all vertices
of X are embedded inside the same face Fr of ϕr. Recall that we have a collection P of edge-disjoint
paths, connecting the terminals in T to the vertices of X. If a terminal e ∈ T is not embedded inside
Fr, then the corresponding path has to cross the boundary of Fr. Therefore, all but OPT terminals
of T ∗ must be embedded inside Fr.

We obtain the final set of terminals, by setting T 0 = T ′ ∩ T ′′.
Let N ′ = |T 0|. From the above claim, N ′ ≥ |T | − 7OPT · βFCG/α

∗ ≥ |T |/2. Since Hr is a connected
graph, we can draw a simple closed curve τ along the boundary γ(Fr) of Fr, inside Fr. This can
be done so that τ does not cross any red edges or the edges of X, and it crosses every terminal in

70



ϕr

ϕb

Fr ∩ Fb

Figure F.2: Drawing of Hr, Hb and T 0 in ϕ. Terminals in T 0 are shown in black.

T 0 exactly once. Moreover, τ does not cross any blue edges, except for those blue edges e whose
drawing crosses the drawing of γ(Fr) (See Figure F.3). For each terminal t ∈ T 0, we let pt denote the
point where the drawing of t crosses the curve τ . The order of the points {pt}t∈T 0 along the curve τ
defines a circular ordering π of the terminals in T 0. We will use the ordering π of the terminals in T 0

throughout the proof. We will sometimes say that some subset of terminals appears on τ in a certain
order, to mean that their corresponding points pt lie on τ in this order.

ϕr

ϕb

Fr ∩ Fb

τ

Figure F.3: Curve τ is show in green.

Let P = 1
2ρ·OPT be the allowed failure probability. Since we have assumed that OPT · d6

max ≤
√
n, and

ρ = Θ(log n · d2
max) ·max

{
d10

max log5 n(log log n)2,OPT
}

, we can assume that P ≥ 10/n2.

Assume that Case 3 or Case 4 happen. In either case, the set Vr of vertices is α∗-well-linked w.r.t. the
set T of terminals. Therefore, from Observation 2.1, there is a flow Fr in Hr ∪ T , where every pair
t, t′ ∈ T of terminals sends one flow unit to each other, and the edge congestion is at most |T |βFCG/α

∗.
For each pair t, t′ ∈ T of terminals, we randomly choose a path Pr(t, t′) ⊆ Hr∪{t, t′} connecting them,
from the distribution induced by the flow Fr, and we let Pr denote the set of all these selected paths.

Consider now Case 3. Set Vb is also α∗-well-linked, and so there is a flow Fb in Hb∪T , where each pair
t, t′ ∈ T of terminals sends one flow unit to each other, and the total congestion is at most |T |βFCG/α

∗.
As before, each pair t, t′ ∈ T of terminals chooses a random path Pb(t, t′) according to the distribution
induced by flow Fb, and we let Pb be the set of all these chosen paths.

For Case 4, we construct the collection Pb of paths as follows. Recall that we have a collection P of
edge-disjoint paths in graph Hb∪outG(Vb), connecting every terminal in T to a vertex of X. For every
pair t, t′ ∈ T of terminals, we construct a path Pb(t, t′), by concatenating Pt, Pt′ and one of the two
segments of X connecting t to t′. Consider the resulting collection Pb of paths. The congestion on the
edges of Hb is at most |T | (but the congestion on the edges of X may be higher).

Let R be the set of all pairs of distinct terminals in T . For each pair (t, t′) ∈ R, the concatenation
of the paths Pr(t, t′) and Pb(t, t′) gives a simple cycle L(t, t′) that contains both terminals. Let

71



L = {L(t, t′) | (t, t′) ∈ R}.

Constructing and analyzing K0

We select a random collection R∗ ⊆ R of pairs of terminals, where every pair is added to R∗ with
probability P ′ = P ·α∗

30·OPT·βFCG·|T | . Let L∗ = {L(t, t′) | (t, t′) ∈ R∗}. The initial skeleton K0 consists of
the union of all cycles in L∗. Note that K0 is not necessarily connected.

Let E1 be the bad event that either a bad edge, or a terminal in T \ T 0 belong to K0, or some edge of
H belongs to more than 4 log n cycles in L∗.

Claim F.4 Pr [E1] ≤ P/2.

Proof: Recall that the number of bad edges is at most 2OPT. Let e be any such bad edge. Recall that
e cannot belong to X, so assume first that it belongs to Hr. For each pair (t, t′) of terminals, let fe(t, t′)
be the total amount of flow in Fr, that is routed between t and t′ via flow-paths that contain e. Clearly,
fe(t, t′) ≤ 1, and since the edge congestion is bounded by |T |βFCG/α

∗,
∑

t,t′∈T fe(t, t
′) ≤ |T |βFCG/α

∗.
For each pair t, t′ ∈ T of terminals, the probability that the path Pr(t, t′) contains e is precisely fe(t, t′),
and the probability that pair (t, t′) belongs to R∗ is P ′. Therefore, the probability that edge e belongs
to K0 is at most:

∑
t,t′∈T

P ′ · fe(t, t′) = P ′ · |T |βFCG/α
∗

This analysis works for any bad edge e ∈ Er, and for bad edges in Eb in Case 3. If Case 4 happens,
then for each bad edge e ∈ Eb, there are at most |T | paths in Pb containing e, and so the probability
that e belongs to K0 is bounded by |T | · P ′ < P ′ · |T |βFCG/α

∗.

Using the union bound, the probability that any bad edge belongs to K0 is then at most:

2OPT · P ′ · |T |βFCG/α
∗ ≤ 2OPT · P · α∗

30 · OPT · βFCG · |T |
· |T |βFCG/α

∗ ≤ P/15

The number of terminals in T \ T 0 is at most 7OPT · βFCG/α
∗. Each terminal belongs to K0 with

probability at most P ′ · |T | = P ·α∗
30·OPT·βFCG

. Using the union bound, the probability that a terminal in
T \ T 0 belongs to K0 is at most 7P/30.

Finally, fix some edge e ∈ E(H). For every pair t, t′ ∈ T of terminal, we define fe(t, t′) as before.
Using the same reasoning as above, the expected number of cycles in L∗ containing e is at most:

P ′ · |T |βFCG/α
∗ < 1

Using the standard Chernoff bound, together with the union bound, the probability that the congestion
on any edge of H is more than 4 log n is bounded by 1/n3 < P/10.

(Notice that the congestion on edges of X can be large for Case 4.) If event E1 does not happen, then
the only edges of K0 whose images cross the curve τ are the terminals in T 0. This is since the red
edges do not cross τ , and the only blue edges that may cross τ are bad edges.

Consider the fixed ordering π of the terminals in T 0, given by the order in which the terminals in
T 0 cross the curve τ . Recall that N ′ = |T 0| ≥ |T |/2. For every pair (t, t′) ∈ T 0 of terminals, let

72



∆(t, t′) be the length of the shorter distance between the two terminals in the circular ordering π.
Let R′ =

{
(t, t′) | t, t′ ∈ T 0,∆(t, t′) ≥ N ′/4

}
. Notice that each terminal t ∈ T 0 participates in at

least N ′/2 pairs in R′. Let R∗∗ = R′ ∩ R∗ be the set of pairs that have been selected to R∗, and
let L∗∗ = {L(t, t′) | (t, t′) ∈ R∗∗}. Let K∗∗ be the graph consisting of the union of the cycles in L∗∗.
Notice that K∗∗ ⊆ K0.

We now define two additional bad events and prove that with high probability they do not happen.
We then show that this implies that with high probability, graph K∗∗ is connected, and each connected
component of H\K∗∗ contains a small number of terminals. Therefore, there is a connected component
K ′ of K0 that contains K∗∗. We will then use K ′ as our skeleton, after removing all 2-vertex cuts
from it.

Definition F.2 Let T ′ ⊆ T 0 be any subset of terminals in T 0. We say that T ′ is a consecutive set,
iff the terminals in T ′ appear consecutively in the circular ordering π.

Let E2 be the bad event that there are two disjoint consecutive sets T1, T2 ⊆ T 0 of terminals (but
T1 ∪ T2 is not necessarily a consecutive set), with |T1|, |T2| ≥ N ′/4, such that the number of pairs
(t, t′) ∈ T1 × T2 of terminals belonging to R∗ is at most 4 log n · dmax. Let E3 be the bad event that
there is a consecutive set T ′ ⊆ T 0 of 720·OPT2·ρ·logn·βFCG

α∗ terminals, such that T ′ ∩ E(K∗∗) = ∅.

Claim F.5 Pr [E2] ≤ P/10 and Pr [E3] ≤ P/10.

Proof: Let T1, T2 be any pair of disjoint consecutive subsets of terminals in T 0, with |T1|, |T2| =
dN ′/4e. Recall that every pair of terminals is selected to R∗ with probability P ′ = P ·α∗

30·OPT·βFCG·|T | .

There are at least
(
N ′

4

)2
≥
(
|T |
8

)2
= |T |2

64 pairs of terminals in T1 × T2. Therefore, the expected
number of pairs (t, t′) ∈ T1 × T2 of terminals in R∗ is at least:

|T |2
64
· P · α∗

30 · OPT · βFCG · |T |
=

|T | · α∗
3840 · ρ · OPT2 · βFCG

≥ 48 log n

since |T | ≥ 107OPT2·ρ·log2 n·d2max·βFCG

α∗ from Equation F.1. Using Chernoff bound, the probability that at
most 4 log n such pairs are selected is bounded by e−48 logn/8 = 1/n6. The number of possible choices
for sets T1, T2 is bounded by |T |2 ≤ n2. Using the union bound, we get that Pr [E2] ≤ 1/n4 < P/10.

In order to bound the probability of E3, recall that the probability that a terminal t belongs to E(K∗∗)
is the probability that a pair (t, t′) ∈ R′ is selected. There are at least N ′/2 ≥ |T |/4 such pairs for each
terminal t ∈ T 0, and each pair is selected with probability P ·α∗

30·OPT·βFCG·|T | . Therefore, the probability

that terminal t does not belong to E(K∗∗) is at most
(

1− P ·α∗
30·OPT·βFCG·|T |

)|T |/4
≤ e−

P ·α∗
120·OPT·βFCG .

Let T ′ be any consecutive set of 720·OPT2·ρ·logn·βFCG
α∗ terminals. Since 720·OPT2·ρ·logn·βFCG

α∗ < |T |
2 ≤

N ′

4 (from Equation F.1), the events that different terminals t ∈ T belong to E(K∗∗) are mutually
independent. Therefore, the probability that no terminal of T ′ belongs to E(K∗∗) is at most:

e
− P ·α∗

120·OPT·βFCG
· 720·OPT2·ρ·logn·βFCG

α∗ ≤ e−3 logn ≤ 1/n3

Since there are at most |T 0| ≤ |T | ≤ n possible choices for set T ′, using the union bound finishes the
proof.

73



We denote K∗∗ = (V ∗∗, E∗∗), and we denote by K∗∗r and K∗∗b the sub-graphs of K∗∗ induced by
Vr ∩ V ∗∗ and (Vb ∪X) ∩ V ∗∗, respectively.

Claim F.6 If none of the events E1, E2, E3 happens, then both graphs K∗∗r and K∗∗b are connected.

Proof: Assume for contradiction that K∗∗r is not connected, and let C be the set of all connected
components of K∗∗r . For each connected component C ∈ C, let π(C) be the smallest segment of π
containing the terminals whose red endpoints belong to C. Let C ∈ C be the connected component for
which π(C) contains the smallest number of terminals, and let T ′(C) be the set of terminals contained
in π(C).

We first show that no other connected component C ′ ∈ C contains red endpoints of terminals in π(C).
Assume for contradiction that this is not true, and let C 6= C ′ be some connected component in C,
that contains some terminal t∗ ∈ π(C). Let t, t′ be the first and the last terminals of π(C). Then C
contains a simple path Q connecting t to t′. The union of the image of path Q in ϕ′ with the segment
of τ spanning π(C), and the portions of the images of t and t′ between their red endpoints and pt, p′t,
respectively, forms a simple closed curve, that we denote by τ ′. This curve partitions the plane into
two faces F, F ′. The red endpoints of all terminals in π(C) lie inside one of the faces (say F ), or on τ ′,
while the red endpoints of all terminals in T 0 \ π(C) must lie strictly inside the other face, F ′. Since
component C ′ does not share any vertices with C, and the drawings of the two components do not
cross, the red endpoint of t∗ must lie strictly inside F , and so the image of C ′ must also lie strictly
inside F . It follows that all terminals whose red endpoints belong to C ′ are contained in π(C), and so
|π(C ′)| < |π(C)| must hold, contradicting the minimality of π(C).

We conclude that for each connected component C ′ ∈ C, if C ′ 6= C, then C ′ does not contain red
endpoints of terminals in π(C). In particular, |π(C)| ≤ N ′/2 must hold: since C contains at least
two connected components, let C ′ ∈ C be any component, C ′ 6= C. Then all terminals of C ′ are
contained in T 0 \π(C). So if |π(C)| > N ′/2, then π(C ′) ⊆ T 0 \π(C), and so |π(C ′)| < N ′/2 < |π(C)|,
contradicting the minimality of π(C).

Since C is a connected component of K∗∗r , there is a pair t, t′ ∈ T ′(C) of terminals, such that L(t, t′) ∈
L∗∗. Therefore, ∆(t, t′) ≥ N ′/4, and |T ′(C)| ≥ N ′/4.

Let T1 be any consecutive subset of terminals that belong to π(C), such that |T1| = dN ′/4e. Since
|T ′(C)| ≤ N ′/2, we can find another consecutive set T2 of dN ′/4e terminals, such that T2 ⊆ T 0,
T2 ∩ T ′(C) = ∅, and for each pair (t, t′) ∈ T1 × T2 of terminals, ∆(t, t′) ≥ N ′/4. Since all edges of K∗∗

are good, and C is a connected component of K∗∗r , no cycle L(t, t′) for (t, t′) ∈ T1 × T2 belongs to L∗
(since any such cycle would have belonged to L∗∗), and therefore no pair (t, t′) ∈ T1 × T2 of terminals
belongs to R∗, contradicting the assumption that Event E2 did not happen.

The proof that K∗∗b is connected is similar. We only need to note that since all edges of K∗∗b are good,
no edges of K∗∗b cross the curve τ , so the same reasoning as for K∗∗r works.

We conclude that if events E1, E2, E3 do not happen, there is a connected component K ′ of K0 that
contains K∗∗. The next lemma will imply that every connected component of G \ K∗∗ contains at
most O

(
OPT2·ρ·logn·βFCG

α∗

)
terminals. Since we also use this lemma later, we state it in a more general

form here.

Let K̃ = (Ṽ , Ẽ) be any sub-graph of G. Let K̃r be the sub-graph of K̃ induced by Vr ∩ Ṽ and let K̃b

be the sub-graph induced by (Vb ∪ V (X))∩ Ṽ . Let T̃ = T ∩ Ẽ be the set of terminals contained in K̃,
and let ϕ′

K̃
be the drawing of K̃ induced by the drawing ϕ′ of G. For each face F of ϕ′

K̃
, we denote

by TF ⊆ T 0 \ T̃ the subset of terminals t ∈ T 0 \ T̃ , which are embedded inside F in ϕ′.

74



Lemma F.7 Let K̃ be as above, such that all edges of K̃ are good, both K̃r and K̃b are connected
graphs, and T̃ ⊆ T 0. Then for each face F of ϕK̃ , the set TF is a consecutive set.

Proof: Assume otherwise, and let F be the violating face of ϕ′
K̃

. Let T1, T2 ⊆ TF be two subsets of
terminals, such that each subset is consecutive, but T1 ∪T2 is not consecutive. Moreover, assume that
both T1, T2 are maximal w.r.t. inclusion. Let t, t′ be the two terminals appearing immediately before
and immediately after T1 in π, t, t′ 6∈ TF . We claim that t and t′ must belong to T̃ . Otherwise, since
they do not lie in F , some edge of K̃ must cross the closed curve τ between T1 and t, or between T1

and t′, which is impossible, since all edges of K̃ are good. Therefore, t, t′ ∈ T̃ . But then there is a
path Pr ⊆ K̃r connecting t to t′, and a path Pb ⊆ K̃b connecting them. Both paths are disjoint and
only contain good edges. Therefore, the union of their drawings with t and t′ in ϕ′

K̃
forms a simple

closed curve, that crosses τ exactly twice: at pt and at pt′ . Therefore, T1, T2 lie on different sides of
this curve, contradicting the fact that both sets belong to the same face F of ϕ′

K̃
.

Corollary F.1 Let K̃ be as in Lemma F.7. Assume that the maximum size of any consecutive set
T ′ ⊆ T 0 of terminals with T ′ ∩ T̃ = ∅ is β. Then every connected component of G \ K̃ contains at
most β + |T \ T 0| terminals.

The corollary simply follows from the fact that, since all edges of K̃ are good, each connected com-
ponent C of G \ K̃ must be completely contained in some face F of ϕK̃ in the drawing ϕ′. Since |TF |
is bounded by β, and there are at most |T \ T 0| additional terminals that do not belong to T 0, the
corollary follows.

From the above corollary, if events E1, E2 and E3 do not happen, the skeleton K∗∗ we have constructed
has the property that every connected component of G \K∗∗ contains at most 720·OPT2·ρ·logn·βFCG

α∗ +
|T \ T 0| terminals. Therefore, skeleton K ′ has the same property, as each connected component of
G \K ′ is a subgraph of some connected component of G \K∗∗. It is aso easy to see that graph K ′

does not have any 1-vertex cuts, because K ′ is a union of simple cycles. However, it may still have
2-vertex cuts, and therefore, it may be non-rigid. We take care of this problem next, by getting rid
of all 2-vertex cuts in K ′. We will argue that the resulting graph still has the properties necessary to
bound the number of terminals in each connected component of G \K ′, and it will serve as the final
skeleton.

Handling 2-vertex Cuts

Let K ′r be the sub-graph of K ′ induced by V (K ′) ∩ Vr, and K ′b the sub-graph of K ′ induced by
V (K ′) ∩ (Vb ∪ V (X)). We denote by T̃ the subset of terminals contained in E(K ′). If Event E1 did
not happen, then T̃ ⊆ T 0. We denote by π̃ the circular ordering of the terminals in T̃ induced by π.
Let t0 be any terminal in T̃ .

Let (u, v) be any 2-vertex cut in K ′. Denote by C′u,v be the set of all connected components in graph
K ′ \ (u, v), and for each S ∈ C′u,v, we let S′ denote the sub-graph of K ′ induced by V (S)∪ {u, v}. Let
Cu,v denote the set of components S′, for S ∈ C′u,v.
Let Cu,v ∈ Cu,v be the component containing the largest number of terminals. If Cu,v contains exactly
two components, and both of them contain the same number of terminals, then we let Cu,v be the
component containing t0. Otherwise, we let Cu,v be any component containing the largest number of
terminals. Let C ′u,v be the union of all other components. If the edge (u, v) belongs to K ′, we add it
to C ′u,v. If C ′u,v does not contain any terminals, then we simply replace C ′u,v with any path Pu,v ⊆ C ′u,v
connecting u to v in K ′.

75



Therefore, we can assume from now on that for every 2-vertex cut (u, v) in K ′, C ′u,v contains terminals.
Then one of the two vertices (say u) must be a 1-vertex cut in K ′r, and the other (v) is a 1-vertex cut
in K ′b. The two clusters, Cu,v and C ′u,v define a partition (T̃u,v, T̃ ′u,v) of T̃ , where T̃u,v ⊆ E(Cu,v), and
T̃ ′u,v ⊆ E(C ′u,v). We first show that sets T̃u,v and T̃ ′u,v are consecutive sets w.r.t. π̃.

Claim F.8 Let (u, v) be any 2-vertex cut in K ′. Then both T̃u,v and T̃ ′u,v are consecutive sets w.r.t.
π̃.

Proof: Assume otherwise. Let π′ be the smallest segment of π spanning the terminals in T̃u,v, and let
π′′ be the complement of π′. Then both π′ and π′′ contain terminals in T̃ ′u,v. Let t1, t′1 ∈ T̃ ′u,v, t1 ∈ π′,
t′1 ∈ π′′. Notice that C ′u,v contains a simple cycle C1, containing both t1 and t′1.

Let t2, t′2 be the first and the last terminals in π′. Then both these terminals belong to Cu,v, and
moreover Cu,v must contain a simple cycle C2 containing both t2 and t′2. The drawing of this cycle
crosses the curve γ exactly twice: once at t2, and once at t′2. Therefore, t1 and t′1 lie on different sides
of the drawing of C2. Similarly, t2 and t′2 lie on different sides of the drawing of C1.

The two cycles, C1 and C2, may only share two vertices: u and v, and their drawings do not cross.
Therefore, (u, v) must be a 2-separator for Cu,v, which is impossible by the definition of Cu,v.

We show in the next claim that the sets T̃ ′u,v of terminals, for all 2-cuts (u, v) in K ′, form a laminar
family.

Claim F.9 For every pair (u, v) and (u′, v′) of 2-vertex cuts in K ′, either T̃ ′u,v ⊆ T̃ ′u′,v′, or T̃ ′u′,v′ ⊆ T̃ ′u,v,
or T̃ ′u,v ∩ T̃ ′u′,v′ = ∅. Therefore, the sets T̃ ′u,v for all 2-cuts (u, v) in K ′ form a laminar family.

Proof: Recall that for any 2-cut (u, v) in K ′, one of the two vertices must be a 1-cut in K ′r, and the
other a 1-cut in K ′b. We assume w.l.o.g. that u, u′ ∈ V (K ′r), and v, v′ ∈ V (K ′b). Assume first that
v 6= v′. If v′ belongs to C ′u,v, then it must belong to some component C ∈ Cu,v, C 6= Cu,v, and the
number of terminals contained in C is at most |T̃u,v|. Since both v and v′ must be 1-cuts in K ′b, it
follows that some component C ′ ∈ Cu′,v′ contains all terminals in T̃u,v, while the terminals of all other
components are contained in T̃ ′u,v. So C ′ = Cu′,v′ must hold, and T̃ ′u′,v′ ⊆ T̃ ′u,v. Otherwise, if v′ belongs
to Cu,v, then either T̃ ′u′,v′ ⊆ T̃u,v, and so T̃ ′u′,v′ ∩ T̃ ′u,v = ∅; or T̃ ′u,v ⊆ T̃ ′u′,v′ . Similar reasoning works for
the case where u 6= u′. Since (u, v) 6= (u′, v′), the claim follows.

We say that C ′u,v is maximal iff the set T̃ ′u,v is maximal inclusion-wise. Let M ′ denote the set of
pairs (u, v), such that (u, v) is a 2-cut in K ′, and T̃ ′u,v is maximal (if there are several pairs (u, v)
with identical sets T̃ ′u,v of terminals, only one of them is added to M ′ - the pair (u, v) for which C ′u,v
contains most vertices). We call vertices in V (C ′u,v) \ {u, v} the inner vertices of C ′u,v and (u, v) the
endpoints of C ′u,v We need the following claim:

Claim F.10 Let (u, v), (u′, v′) ∈ M ′, (u, v) 6= (u′, v′). Then C ′u,v and C ′u′,v′ are completely vertex
disjoint, except for possibly sharing one inner vertex (that is, u ∈ {u′, v′} or v ∈ {u′, v′}).

Proof: From the proof of Claim F.9, since T̃ ′u,v ∩ T̃ ′u′,v′ = ∅, it is impossible that u or v are inner
vertices of C ′u′,v′ , and similarly, u′ and v′ are not inner vertices of C ′u,v. So the only possibility that
the claim is wrong is that some vertex x is an inner vertex for both C ′u,v and C ′u′,v′ . Let t ∈ T̃ ′u,v be
some terminal, lying in the same connected component of Cu,v as x (such a terminal must exist since
all components that contain no terminals have been replaced by edges). Recall that t 6∈ C ′u′,v′ . Then
there is a path Q, connecting t to r in C ′u,v \ {u, v}. Since path Q connects a vertex that does not

76



belong to C ′u′,v′ to a vertex that belongs to C ′u′,v′ , it follows that it contains either u′ or v′ as an inner
vertex. Hence, either u′ or v′ must be inner vertices of C ′u,v, which we have already ruled out.

For each (u, v) ∈ M ′, we select an arbitrary terminal t′ ∈ T̃ ′u,v, and replace C ′u,v with any path
Pu,v ⊆ C ′u,v that connects u to v and contains t′. Let K̃ ′ denote the resulting graph. This is our final
skeleton. It is easy to see that K̃ ′ is rigid: consider the graph obtained from K̃ ′, after we replace, for
each pair (u, v) ∈ M ′, the 2-path Pu,v with the edge (u, v). We claim that the resulting graph K̃ ′′

is 3-vertex connected, with no parallel edges or self-loops. Indeed, it is easy to verify that K̃ ′′ does
not contain parallel edges, from the definition of sets C ′u,v for (u, v) ∈M ′. It is also immediate to see
that it does not contain self-loops. Assume now for contradiction that (x, y) is a 2-vertex cut in K̃ ′′.
Then (x, y) is also a 2-vertex cut in K ′, (x, y) 6∈ M ′, and moreover, every connected component of
Cx,y must contain terminals. Then there must be some 2-cut (u, v) ∈M ′, such that either T̃ ′x,y ( T̃ ′u,v,
or T̃ ′x,y = T̃ ′u,v, but C ′u,v contains more vertices than C ′x,y. However, since x and y belong to K̃ ′′,
none of these vertices can be an inner vertex of C ′u,v. It is then impossible that either T̃ ′x,y ( T̃ ′u,v, or
T̃ ′x,y = T̃ ′u,v, but C ′u,v contains more vertices than C ′x,y. We conclude that K̃ ′ is rigid.

We need to argue that every connected component of G\K̃ ′ only contains a small number of terminals.
We define the last bad event, E4. We first show that w.h.p. this event does not happen, and then
prove that if Events E1, . . . , E4 do not happen, then every connected component of G \ K̃ ′ contains a
small number of terminals.

Let T ′ ⊆ T 0 be any consecutive set of terminals in π. Let T ′1 ⊆ T ′ be the subset of terminals
that participate in pairs in R∗, and let λ(T ′) be the number of pairs of terminals (t, t′) ∈ R∗∗ with
t ∈ T ′, t′ 6∈ T ′. We say that the bad event E4 happens, iff for some consecutive set T ′ ⊆ T 0 with
|T ′| ≤ N ′/4, |T ′1| > 256 log n · dmax, but λ(T ′) ≤ 4 log n · dmax.

Claim F.11 Pr [E4] ≤ P/10.

Proof: Fix some consecutive set T ′ with |T ′| ≤ N ′/4. The expected size of T ′1 is bounded by
µ = |T ′| · |T | · P ′.
If µ ≤ 128 log n · dmax, then Pr [|T ′1| > 256 log n · dmax] ≤ e−128 logn·dmax/8 ≤ e−8 logn ≤ 1/n8, by the
Chernoff bound.

Assume now that µ > 128 log n · dmax. The expected number of pairs of terminals (t, t′) ∈ R∗∗ with
t ∈ T ′, t′ 6∈ T ′ is at least P ′ · |T ′| ·N ′/2 ≥ P ′ · |T ′| · |T |/4 ≥ µ/4 > 32 log n · dmax. The probability that
at most 4 log n · dmax such pairs are selected is again bounded by 1/n4, by the Chernoff bound.

We have therefore shown, that for any consecutive set T ′, with |T ′| < N ′/4, the probability that
|T ′1| > 256 log n·dmax, but λ(T ′) ≤ 4 log n·dmax, is at most 1/n4. Since the number of such consecutive
sets is at most n2, the claim follows from the union bound.

Let C ′u,v be some cluster with (u, v) ∈ M ′. Recall that T̃ ′u,v is the set of terminals in C ′u,v. Let
π(u, v) be the smallest segment of π that contains all terminals in T̃ ′u,v, and let T ′u,v be the set of all
terminals that appear on π(u, v). Clearly, set T ′u,v is a consecutive set for π. Moreover, for any pair
(u, v), (u′, v′) ∈M ′, the sets T̃ ′u,v and T̃ ′u′,v′ are completely disjoint, and so πu,v and πu′,v′ are disjoint,
and T ′u,v ∩ T ′u′,v′ = ∅.

In the next claim, we show that for each 2-vertex cut (u, v) of K ′, |T ′u,v| ≤ 3600·OPT2·ρ·log2 n·dmax·βFCG
α∗ .

We defer the proof of the claim to the next subsection, and show first that the proof of Theorem 6.5
follows from it.

Claim F.12 If events E1, . . . , E4 do not happen, then for every 2-vertex cut (u, v) ∈M ′:

77



|T ′u,v| ≤
3600 · OPT2 · ρ · log2 n · dmax · βFCG

α∗
.

We perform some transformations to the skeleton K∗∗, to obtain a new graph K̃∗∗. These trans-
formations will reflect the changes that have been done to graph K ′, so in the end K̃∗∗ ⊆ K̃ ′ will
hold.

Consider again some 2-vertex separator (u, v) of K ′. Since graph K∗∗ is also a union of simple cycles,
either both u, v 6∈ K∗∗, or both u, v ∈ K∗∗ must hold. In the former case, we do not perform any
changes to K∗∗. For the latter case, if (u, v) ∈M ′, we simply replace C ′u,v ∩K∗∗ with the path Pu,v –
the same path that replaced C ′u,v in K ′.

Consider the final graph K̃∗∗. It is easy to see that both the subgraphs of K̃∗∗ induced by Vr∩V (K̃∗∗),
and by (Vb ∪ V (X)) ∩ V (K̃∗∗) remain connected. Therefore, we can apply Corollary F.1, once we
suitably bound the size of maximum consecutive set of terminals that do not belong to K̃∗∗.

Consider the ordering π of the terminals in T 0. Any consecutive set T ′ ⊆ T 0, such that T ′∩E(K∗∗) = ∅
is called clean. Our goal is to bound the size of maximal consecutive clean set. At the beginning, if event
E3 does not happen, the size of the maximal consecutive clean set is bounded by 720·OPT2·ρ·logn·βFCG

α∗ .
Consider now the family T of subsets T ′u,v of terminals, corresponding to the clusters C ′u,v with (u, v) ∈
M ′. Each subset T ′u,v is a consecutive set, and we have replaced C ′u,v with some path Pu,v, containing
some terminal in T ′u,v. Moreover, all sets T ′u,v ∈ T are disjoint, and from Claim F.12, the size of each

such set is bounded by 3600·OPT2·ρ·log2 n·dmax·βFCG
α∗ . Therefore, the maximum size of any consecutive

set of terminals, that does not contain any edges of K̃∗∗ is bounded by 2 · 3600·OPT2·ρ·log2 n·dmax·βFCG
α∗ +

720·OPT2·ρ·logn·βFCG
α∗ = O

(
OPT2·ρ·log2 n·dmax·βFCG

α∗

)
. From Corollary F.1, every connected component of

G\ K̃∗∗ contains at most O
(

OPT2·ρ·log2 n·dmax·βFCG
α∗

)
+ |T \T 0| = O

(
OPT2·ρ·log2 n·dmax·βFCG

α∗

)
terminals.

We conclude that if Events E1, . . . , E4 do not happen, then the final skeleton K̃ ′ is good and rigid. More-
over, since K̃∗∗ ⊆ K̃ ′, and every connected component ofG\K̃∗∗ contains at mostO

(
OPT2·ρ·log2 n·dmax·βFCG

α∗

)
terminals, every connected component of G\K̃ ′ contains at most O

(
OPT2·ρ·log2 n·dmax·βFCG

α∗

)
terminals.

We now summarize the algorithm for finding the skeleton. First, we build the graph K0, using the
randomized procedure as above. Since we do not know which connected component of K0 contains K∗,
we go over every connected component K ′′ of K0. For each such connected component, we try to take
care of all 2-vertex cuts, as in the above procedure, and then check whether the resulting graph K̃ ′′ is
rigid, and whether every connected component of G \ K̃ ′′ contains at most O

(
OPT2·ρ·log2 n·dmax·βFCG

α∗

)
terminals. By the above argument, if Events E1, . . . , E4 do not happen, one of the connected compo-
nents of K0 will have these properties. We output this component as K ′.

In order to finish the proof of Theorem 6.5, it is now enough to prove Claim F.12.

F.5.1 Proof of Claim F.12

Let (u, v) ∈ M ′, and assume for contradiction that |T ′u,v| > 3600·OPT2·ρ·log2 n·dmax·βFCG
α∗ . To simplify

notation, we denote T ′u,v by T ′ for the rest of the proof. Recall that one of the two vertices u, v must
be a 1-vertex cut in K ′[Vr]. We assume w.l.o.g that it is u. Since we assume that event E1 does not
happen, vertex u may belong to at most 4 log n · dmax cycles in L∗. In particular, there are at most
4 log n · dmax pairs (t, t′) ∈ R∗ of terminals, with t ∈ T ′, t′ 6∈ T ′. Recall also that T ′ is a consecutive

78



set for π.

We consider three cases. The first case is when |T ′| ≤ N ′/4. In this case, for every terminal t ∈ T ′
that belongs to K∗∗, there must be another terminal t′ 6∈ T ′, such that (t, t′) ∈ R∗∗. Since each such
cycle Lt,t′ must contain u, |T ′ ∩K∗∗| ≤ 4 log n · dmax. On the other hand, since we assume that event
E3 does not happen, the maximum size of any consecutive subset of T ′ with no terminals in E(K∗∗)
is 720·OPT2·ρ·logn·βFCG

α∗ . Therefore:

|T ′| ≤ (4 log n·dmax+2)·720 · OPT2 · ρ · log n · βFCG

α∗
+4 log n·dmax ≤

3600 · OPT2 · ρ · log2 n · dmax · βFCG

α∗

The second case is that N ′/4 < |T ′| < 3N ′/4. In this case, we have two consecutive subsets T ′, T 0 \T ′,
of at least N ′/4 terminals each, such that the number of pairs (t, t′) ∈ T ′ × (T 0 \ T ′) that belong to
R∗ is at most 4 log n ·dmax. Since we have assumed that Event E2 does not happen, this is impossible.

Finally, the third case is that |T ′| ≥ 3N ′/4. Then |T 0 \T ′| < N ′/4, and all terminals of T̃u,v belong to
T 0 \T ′. Every pair of terminals (t, t′) ∈ T ′× (T 0 \T ′), with (t, t′) ∈ R∗∗ contributes a cycle containing
u to L∗∗, so the number of such pairs is at most 4 log n ·dmax. Since we assume that Event E4 does not
happen, this means that |T̃u,v| ≤ 256 log n ·dmax. Observe that there are at most dmax clusters in Cu,v,
and by the definition of Cu,v, each such cluster contains at most |T̃u,v| ≤ 256 log n · dmax terminals.
Therefore, the total number of terminals in K ′ is bounded by 256 log n · d2

max, and in particular, the
number of terminals in E(K∗∗) is also at most 256 log n · d2

max. Since we assume that Event E3 does
not happen, the total number of terminals in T 0 must be at most:

256 log n · d2
max ·

720 · OPT2 · ρ · log n · βFCG

α∗
+ 256 log n · d2

max <
107 · OPT2 · ρ · log2 n · βFCG · d2

max

2α∗

and the total number of terminals in T is less than 107·OPT2·ρ·log2 n·βFCG·d2max
α∗ , contradicting our as-

sumption in Equation (F.1).

79


