
A Subpolynomial Approximation Algorithm for Graph Crossing

Number in Low-Degree Graphs∗

Julia Chuzhoy† Zihan Tan‡

June 29, 2022

Abstract

We consider the classical Minimum Crossing Number problem: given an n-vertex graph G,
compute a drawing of G in the plane, while minimizing the number of crossings between the images
of its edges. This is a fundamental and extensively studied problem, whose approximability status
is widely open. In all currently known approximation algorithms, the approximation factor depends
polynomially on ∆ – the maximum vertex degree in G. The best current approximation algorithm
achieves an O(n1/2−ε · poly(∆ · log n))-approximation, for a small fixed constant ε, while the best
negative result is APX-hardness, leaving a large gap in our understanding of this basic problem.

In this paper we design a randomized O
(

2O((logn)7/8 log logn) · poly(∆)
)

-approximation algorithm

for Minimum Crossing Number. This is the first approximation algorithm for the problem that
achieves a subpolynomial in n approximation factor (albeit only in graphs whose maximum vertex
degree is subpolynomial in n).

In order to achieve this approximation factor, we design a new algorithm for a closely related
problem called Crossing Number with Rotation System, in which, for every vertex v ∈ V (G), the
circular ordering, in which the images of the edges incident to v must enter the image of v in the
drawing is fixed as part of input. Combining this result with the recent reduction of [Chuzhoy, Ma-
habadi, Tan ’20] immediately yields the improved approximation algorithm for Minimum Crossing
Number. We introduce several new technical tools, that we hope will be helpful in obtaining better
algorithms for the problem in the future.

∗Extended Abstract to appear in STOC 2022.
†Toyota Technological Institute at Chicago. Email: cjulia@ttic.edu. Supported in part by NSF grant CCF-2006464.
‡Computer Science Department, University of Chicago. Email: zihantan@uchicago.edu. Supported in part by NSF

grant CCF-2006464.

Contents

1 Introduction 1

1.1 Our Results . 2

1.2 Our Techniques . 3

1.3 Organization . 12

2 Preliminaries 12

2.1 Graph-Theoretic Notation . 13

2.2 Curves in General Position, Graph Drawings, Faces, and Crossings 13

2.3 Grids and Their Standard Drawings . 15

2.4 Circular Orderings, Orientations, and Rotation Systems 15

2.5 Tiny v-Discs and Drawings that Obey Rotations . 16

2.6 Problem Definitions and Trivial Algorithms . 16

2.7 A ν-Decomposition of an Instance . 17

2.8 Subinstances . 18

3 An Algorithm for MCNwRS– Proof of Theorem 1.1 18

3.1 Proof of Theorem 1.1 . 19

3.2 Proof of Theorem 3.1 – Main Definitions and Theorems 22

4 Definitions, Notation, Known Results, and their Easy Extensions 28

4.1 Clusters, Paths, Flows, and Routers . 28

4.1.1 Clusters and Augmentations of Clusters . 28

4.1.2 Paths and Flows . 29

4.1.3 Routing Paths, Internal Routers and External Routers 30

4.1.4 Non-Transversal Paths and Path Splicing . 30

4.2 Cuts, Well-Linkedness, and Related Notions . 32

4.2.1 Minimum Cuts . 32

4.2.2 Gomory-Hu Trees . 33

4.2.3 Balanced Cut and Sparsest Cut . 33

4.2.4 Well-Linkedness, Bandwidth Property, and Routing Well-Linked Vertex Sets . 34

4.2.5 Basic Well-Linked Decomposition . 35

4.2.6 Layered Well-Linked Decomposition . 35

4.3 Expanders, Graph Embeddings, and Routing Well-Linked Sets 37

4.3.1 Constructing Internal Routers . 37

4.4 Curves in the Plane or on a Sphere . 38

4.4.1 Reordering Curves . 38

4.4.2 Type-1 Uncrossing of Curves . 39

4.4.3 Curves in a Disc and Nudging of Curves . 40

4.4.4 Type-2 Uncrossing of Curves . 41

4.5 Contracted Graphs . 43

5 First Set of Tools: Light Clusters, Bad Clusters, Path-Guided Orderings, and Basic
Cluster Disengagement 44

5.1 Laminar Family-Based Disengagment . 44

5.1.1 Laminar Family of Clusters and Partitioning Tree 44

5.1.2 Definition of Laminar Family-Based Disengagement 45

5.1.3 Analysis . 46

5.2 Light Clusters, Bad Clusters, and Path-Guided Orderings 46

5.3 Basic Cluster Disengagement . 47

6 Second Main Tool: Cluster Classification 48

6.1 Main Parameters . 51

6.2 Algorithm Execution . 52

6.3 Step 1: Partition . 52

6.4 Step 2: Concise Clusters . 55

7 Third Main Tool - Advanced Disengagement 59

7.1 Nice Witness Structure, Nice Subinstances, and Statements of Main Theorems 60

7.2 Decomposition into Nice Instances – Proof of Theorem 7.3 64

7.2.1 Proof of Theorem 7.8 . 70

7.2.2 Proof of Lemma 7.14 . 73

7.2.3 Proof of Lemma 7.16 . 74

7.2.4 Proof of Lemma 7.28 . 86

7.3 Disengagement of Nice Instances – Proof of Theorem 7.4 92

7.3.1 Step 1. Constructing the Paths of Pout . 93

7.3.2 Step 2: Constructing the Paths of P in and the Auxiliary Cycles 95

7.3.3 Step 3: Laminar Family L of Clusters, and Internal and External Routers for
Clusters of L . 98

7.3.4 Step 4: Constructing the Collection of Subinstances 102

7.4 Proof of Claim 7.54 . 103

7.4.1 Step 1: Computing Auxiliary Graph Hz and Its Drawing 104

7.4.2 Step 2: Initial Drawing of Gz . 108

7.4.3 Step 3: Modified Drawing of Gz . 111

7.4.4 Step 4: the Final Drawing of Graph Gz . 116

7.5 Proof of Claim 7.56 . 117

7.6 Proof of Claim 7.60 . 123

8 Proof of Theorem 3.12 130

9 An Algorithm for Wide and Well-Connected Instances – Proof of Theorem 3.13 134

9.1 Main Definitions . 136

9.1.1 Cores and Core Structures . 136

9.1.2 Drawings of Graphs . 138

9.1.3 A J -Contracted Instance . 140

9.1.4 Core Enhancement and Promising Sets of Paths 140

9.1.5 Splitting a Core Structure and an Instance via an Enhancement Structure . . . 142

9.1.6 Auxiliary Claim . 143

9.2 Splitting a Subinstance: Procedure ProcSplit . 144

9.2.1 Step 1: Computing an Enhancement . 145

9.2.2 Step 2: Computing the Enhancement Structure and the Split 149

9.3 Phase 1 of the Algorithm . 152

9.4 Phase 2 of the Algorithm . 159

9.4.1 Completing the Proof of Theorem 3.13 . 159

9.4.2 Proof of Theorem 9.33 – Intuition . 163

9.4.3 Proof of Theorem 9.33 – Main Definitions and Notation 166

9.4.4 Proof of Lemma 9.42 . 170

9.4.5 Proof of Lemma 9.43 . 174

9.4.6 Proof of Claim 9.53 . 186

10 An Algorithm for Narrow Instances – Proof of Theorem 3.14 188

10.1 Phase 1: Flower Clusters, Small Clusters, and Initial Disengagement 191

10.1.1 Step 1: Carving out Flower Clusters . 191

10.1.2 Step 2: Small Clusters . 193

10.1.3 Step 3: Initial Disengagement . 194

10.2 Phase 2: Layered Well-Linked Decomposition, Further Disengagement, and Fixing the
Flower Cluster . 195

10.2.1 Step 1: Layered Well-Linked Decomposition and Second Disengagement 196

10.2.2 Step 2: Fixing Petals for Routability . 198

10.3 Phase 3: Petal-Based Disengagement and the Final Family of Instances 201

10.3.1 Step 1: the Split Instance . 202

10.3.2 Step 2: Disengagement of the Petals . 204

10.3.3 Step 3: Final Decomposition . 206

11 Constructing Internal Routers - Proof of Theorem 6.4 207

11.1 Step 1: Splitting the Contracted Graph . 210

11.2 Step 2: Routing the Terminals to a Single Vertex, and an Expanded Graph 214

11.2.1 Routing the Terminals to a Single Vertex in Ĥ1 214

11.2.2 The Expanded Graph . 215

11.2.3 Summary of Step 2 . 216

11.3 Step 3: Constructing a Grid Skeleton . 218

11.4 Step 4: Constructing a Grid-Like Structure . 221

11.4.1 In-Order Intersection . 222

11.4.2 Definining Paths Associated with Grid Cells . 223

11.4.3 Completing the Construction of the Grid-Like Structure 224

11.5 Step 5: the Routing . 225

11.5.1 Good Cells . 226

11.5.2 Square Subgrids and Corresponding Sets of Paths 228

11.5.3 Routing the Terminals to Good Cells . 229

A Proof of Corollary 1.3 232

B Proofs Omitted from Section 2 232

B.1 Proof of Theorem 2.7 . 232

B.2 Proof of Theorem 2.8 . 235

B.3 Proof of Claim 2.11 . 235

C Proofs Omitted from Section 3 237

C.1 Proof of Claim 3.7 . 237

C.2 Proof of Claim 3.17 . 238

C.3 Proof of Observation 3.18 . 239

D Proofs Omitted from Section 4 240

D.1 Proof of Claim 4.2 . 240

D.2 Proof of Observation 4.6 . 240

D.3 Proof of Lemma 4.7 . 242

D.4 Proof of Lemma 4.8 . 242

D.5 Proof of Theorem 4.11 . 243

D.6 Proof of Theorem 4.12 . 245

D.7 Proof of Observation 4.14 . 249

D.8 Proof of Theorem 4.17 . 249

D.9 Proof of Theorem 4.19 . 250

D.10 Proof of Theorem 4.20 . 254

D.11 Proof of Claim 4.23 . 256

D.12 Proof of Observation 4.24 . 257

D.13 Proof of Corollary 4.25 . 258

D.14 Proof of Corollary 4.26 . 258

D.15 Proof of Lemma 4.31 . 258

D.16 Proof of Corollary 4.32 . 259

D.17 Proof of Theorem 4.33 . 260

D.18 Proof of Claim 4.34 . 261

D.19 Proof of Theorem 4.37 . 261

D.20 Proof of Corollary 4.38 . 263

D.21 Proof of Claim 4.39 . 263

D.22 Proof of Corollary 4.40 . 264

D.23 Proof of Claim 4.41 . 264

D.24 Proof of Claim 4.42 . 265

E Proofs Omitted from Section 5 266

E.1 Proof of Lemma 5.3 . 266

E.2 Proof of Lemma 5.6 . 267

E.2.1 Step 1: Graph H . 269

E.2.2 Step 2: Initial Drawing of Graph GC . 271

E.2.3 Step 3: the Final Drawing . 272

E.3 Proof of Claim E.3 . 273

F Proofs Omitted from Section 6 277

F.1 Proof of Theorem 6.3 . 277

F.2 Proof of Observation 6.5 . 281

G Proofs Omitted from Section 7 283

G.1 Proof of Claim 7.9 . 283

G.2 Proof of Claim 7.10 . 284

G.3 Proof of Claim 7.11 . 286

G.4 Proof of Observation 7.12 . 287

G.5 Proof of Observation 7.17 . 287

G.6 Proof of Claim 7.21 . 289

G.7 Proof of Observation 7.24 . 294

G.8 Proof of Observation 7.25 . 295

G.9 Constructing the Monotone Paths – proof of Lemma 7.27 296

G.10 Proof of Observation 7.29 . 297

G.11 Proof of Claim 7.30 . 299

G.12 Proof of Claim 7.31 . 300

G.13 Proof of Claim 7.32 . 300

G.14 Proof of Claim 7.33 . 303

G.15 Proof of Claim 7.34 . 306

G.16 Proof of Claim 7.36 . 306

G.17 Proof of Claim 7.38 . 308

G.18 Proof of Claim 7.39 . 310

G.19 Proof of Claim 7.41 . 311

G.20 Proof of Claim 7.42 . 313

G.21 Proof of Claim 7.44 . 315

G.22 Proof of Claim 7.46 . 316

G.23 Proof of Observation 7.57 . 317

G.24 Proof of Observation 7.58 . 317

G.25 Proof of Observation 7.68 . 318

H Proofs Omitted from Section 9 320

H.1 Proof of Claim 9.11 . 320

H.2 Proof of Observation 9.13 . 321

H.3 Proof of Claim 9.14 . 321

H.4 Proof of Claim 9.21 . 322

H.5 Proof of Claim 9.23 . 325

H.6 Proof of Claim 9.27 . 326

H.7 Proof of Observation 9.28 . 327

H.8 Proof of Theorem 9.48 . 327

H.9 Proof of Claim 9.54 . 330

H.10 Proof of Claim H.4 . 335

H.11 Proof of Observation 9.55 . 338

I Proofs Omitted from Section 10 339

I.1 Proof of Lemma 10.6 . 339

I.2 Proof of Lemma 10.14 . 342

I.2.1 Stage 1: First Set of Guiding Curves, and Partial Drawing of Edges of Êi . . . 346

I.2.2 Stage 2: Second Set of Guiding Curves and Drawing of Xi 347

I.2.3 Stage 3: Computing the Drawing ϕi of Gi . 351

I.2.4 Analysis . 353

J Proofs Omitted from Section 11 354

J.1 Proof of Lemma 11.1 . 354

J.2 Proof of Lemma 11.5 . 354

J.3 Proof of Lemma 11.9 . 360

J.4 Proof of Lemma 11.10 . 364

J.5 Proof of Observation 11.11 . 368

J.6 Proof of Observation 11.12 . 369

1 Introduction

We study the classical Minimum Crossing Number (MCN) problem: given an n-vertex graph G,
compute a drawing of G in the plane while minimizing the number of its crossings. Here, a drawing
ϕ of a graph G is a mapping, that maps every vertex v ∈ V (G) to some point ϕ(v) in the plane, and
every edge e = (u, v) ∈ E(G) to a continuous simple curve ϕ(e), whose endpoints are ϕ(u) and ϕ(v).
For a vertex v ∈ V (G) and an edge e ∈ E(G), we refer to ϕ(v) and to ϕ(e) as the images of v and of
e, respectively. We require that, for every vertex v and edge e, ϕ(v) ∈ ϕ(e) only if v is an endpoint of
e. We also require that, if some point p belongs to the images of three or more edges, then it must be
the image of a shared endpoint of these edges. A crossing in a drawing ϕ of G is a point that belongs
to the images of two edges of G, and is not their common endpoint. The crossing number of a graph
G, denoted by OPTcr(G), is the minimum number of crossings in any drawing of G in the plane.

The MCN problem was initially introduced by Turán [Tur77] in 1944, and has been extensively studied
since then (see, e.g., [Chu11, CMS11, CH11, CS13, KS17, KS19, CMT20], and also [RS09, PT00,
Mat02, Vrt, Sch12] for excellent surveys). The problem is of interest to several communities, including,
for example, graph theory and algorithms, and graph drawing. As such, much effort was invested into
studying it from different angles. But despite all this work, most aspects of the problem are still poorly
understood.

In this paper we focus on the algorithmic aspect of MCN. Since the problem is NP-hard [GJ83],
and it remains NP-hard even in cubic graphs [Hli06, Cab13], it is natural to consider approximation
algorithms for it. Unfortunately, the approximation ratios of all currently known algorithms depend
polynomially on ∆, the maximum vertex degree of the input graph. To the best of our knowledge, no
non-trivial approximation algorithms are known for the general setting, where ∆ may be arbitrarily
large. One of the most famous results in this area, the Crossing Number Inequality, by Ajtai, Chvátal,
Newborn and Szemerédi [ACNS82] and by Leighton [Lei83], shows that, for every graph G with
|E(G)| ≥ 4|V (G)|, the crossing number of G is Ω(|E(G)|3/|V (G)|2). Since the problem is most
interesting when the crossing number of the input graph is low, it is reasonable to focus on low-degree
graphs, where the maximum vertex degree ∆ is bounded by either a constant, or a slowly-growing
(e.g. subpolynomial) function of n. While we do not make such an assumption explicitly, like in all
previous work, the approximation factor that we achieve also depends polynomially on ∆.

Even in this setting, there is still a large gap in our understanding of the problem’s approximabil-
ity, and the progress in closing this gap has been slow. On the negative side, only APX-hardness is
known [Cab13, AMS07], that holds even in cubic graphs. On the positive side, the first non-trivial
approximation algorithm for MCN was obtained by Leighton and Rao in their seminal paper [LR99].
Given as input an n-vertex graph G, the algorithm computes a drawing of G with at most O((n +
OPTcr(G)) ·∆O(1) log4 n) crossings. This bound was later improved to O((n+OPTcr(G)) ·∆O(1) log3 n)
by [EGS02], and then to O((n+OPTcr(G)) ·∆O(1) log2 n) following the improved approximation algo-
rithm of [ARV09] for Sparsest Cut. Note that all these algorithms only achieve an O(n poly(∆ log n)))-
approximation factor. However, their performance improves significantly when the crossing number of
the input graph is large. A sequence of papers [CMS11, Chu11] provided an improved Õ(n0.9 ·∆O(1))-
approximation algorithm for MCN, followed by a more recent sequence of papers by Kawarabayashi
and Sidiropoulos [KS17, KS19], who obtained an Õ

(√
n ·∆O(1)

)
-approximation algorithm. All of the

above results follow the same high-level algorithmic framework, and it was shown by Chuzhoy, Madan
and Mahabadi [CMM16] (see [Chu16] for an exposition) that this framework is unlikely to yield a bet-
ter than O(

√
n)-approximation. The most recent result, by Chuzhoy, Mahabadi and Tan [CMT20],

obtained an Õ(n1/2−ε · poly(∆))-approximation algorithm for some small fixed constant ε > 0. This
result was achieved by proposing a new algorithmic framework for the problem, that departs from
the previous approach. Specifically, [CMT20] reduced the MCN problem to another problem, called

1

Minimum Crossing Number with Rotation System (MCNwRS) that we discuss below, which appears
somewhat easier than the MCN problem, and then provided an algorithm for approximately solving
the MCNwRS problem.

Our main result is a randomized O
(

2O((logn)7/8 log logn) ·∆O(1)
)

-approximation algorithm for MCN.

In order to achieve this result, we design a new algorithm for the MCNwRS problem that achieves
significantly stronger guarantees than those of [CMT20]. This algorithm, combined with the reduction
of [CMT20], immediately implies the improved approximation for the MCN problem. We also design
several new technical tools that we hope will eventually lead to further improvements. We now turn
to discuss the MCNwRS problem.

In the Minimun Crossing Number with Rotation System (MCNwRS) problem, the input consists of
a multigraph G, and, for every vertex v ∈ V (G), a circular ordering Ov of edges that are incident
to v, that we call a rotation for vertex v. The set Σ = {Ov}v∈V (G) of all such rotations is called a
rotation system for graph G. We say that a drawing ϕ of G obeys the rotation system Σ, if, for every
vertex v ∈ V (G), the images of the edges in δG(v) enter the image of v in the order Ov (but the
orientation of the ordering can be either clock-wise or counter-clock-wise). In the MCNwRS problem,
given a graph G and a rotation system Σ for G, the goal is to compute a drawing ϕ of G that obeys
the rotation system Σ and minimizes the number of edge crossings. For an instance I = (G,Σ) of
the MCNwRS problem, we denote by OPTcnwrs(I) the value of the optimal solution for I, that is,
the smallest number of crossings in any drawing of G that obeys Σ. The results of [CMT20] show
the following reduction from MCN to MCNwRS: suppose there is an efficient (possibly randomized)
algorithm for the MCNwRS problem, that, for every instance I = (G,Σ), produces a solution whose
expected cost is at most α(m) · (OPTcnwrs(I) + m), where m = |E(G)|. Then there is a randomized
O(α(n) · poly(∆ · log n))-approximation algorithm for the MCN problem. Our main technical result
is a randomized algorithm, that, given an instance I = (G,Σ) of MCNwRS, with high probability

produces a solution to instance I with at most 2O((logm)7/8 log logm) · (OPTcnwrs(G,Σ) +m) crossings,
where m = |E(G)|. Combining this with the result of [CMT20], we immediately obtain a randomized

O
(

2O((logn)7/8 log logn) · poly(∆)
)

-approximation algorithm for the MCN problem.

The best previous algorithm for the MCNwRS problem, due to [CMT20], is a randomized algorithm,
that, given an instance I = (G,Σ) of the problem, with high probability produces a solution with at
most Õ

(
(OPTcnwrs(G,Σ) +m)2−ε) crossings, where ε = 1/20. A variant of MCNwRS was previously

studied by Pelsmajer et al. [PSŠ11], where for each vertex v of the input graph G, both the rotation
Ov of its incident edges, and the orientation of this rotation (say clock-wise) are fixed. They showed
that this variant of the problem is also NP-hard, and provided an O(n4)-approximation algorithm with
running time O(mn logm), where n = |V (G)| and m = |E(G)|. They also obtained approximation
algorithms with improved guarantees for some special families of graphs.

We introduce a number of new technical tools, that we discuss in more detail in Section 1.2. Some
of these tools require long and technically involved proofs, which resulted in the large length of the
paper. We view these tools as laying a pathway towards obtaining better algorithms for the Minimum
Crossing Number problem, and it is our hope that these tools will eventually be streamlined and
that their proofs will be simplified, leading to a better understanding of the problem and cleaner and
simpler algorithms. We believe that some of these tools are interesting in their own right.

1.1 Our Results

Throughout this paper, we allow graphs to have parallel edges (but not self-loops); graphs with no
parallel edges are explicitly called simple graphs. For convenience, we will assume that the input to
the MCN problem is a simple graph, while graphs serving as inputs to the MCNwRS problem may

2

have parallel edges. The latter is necessary in order to use the reduction of [CMT20] between the two
problems. Note that the number of edges in a graph with parallel edges may be much higher than the
number of vertices. Our main technical contribution is an algorithm for the MCNwRS problem, that
is summarized in the following theorem.

Theorem 1.1 There is an efficient randomized algorithm, that, given an instance I = (G,Σ) of
MCNwRS with |E(G)| = m, computes a drawing of G that obeys the rotation system Σ. The number

of crossings in the drawing is w.h.p. bounded by 2O((logm)7/8 log logm) · (OPTcnwrs(I) +m).

We rely on the following theorem from [CMT20] in order to obtain an approximation algorithm for
the MCN problem.

Theorem 1.2 (Theorem 1.3 in [CMT20]) There is an efficient algorithm, that, given an n-vertex
graph G with maximum vertex degree ∆, computes an instance I = (G′,Σ) of the MCNwRS prob-
lem, with |E(G′)| ≤ O (OPTcr(G) · poly(∆ · log n)), and OPTcnwrs(I) ≤ O (OPTcr(G) · poly(∆ · log n)).
Moreover, there is an efficient algorithm that, given any solution of value X to instance I of MCNwRS,
computes a drawing of G with the number of crossings bounded by O ((X + OPTcr(G)) · poly(∆ · log n)).

Combining Theorem 1.1 and Theorem 1.2, we immediately obtain the following corollary, whose proof
appears in Section A of Appendix.

Corollary 1.3 There is an efficient randomized algorithm, that, given a simple n-vertex graph G with
maximum vertex degree ∆, computes a drawing of G, such that, w.h.p., the number of crossings in the

drawing is at most O
(

2O((logn)7/8 log logn) · poly(∆) · OPTcr(G)
)

.

1.2 Our Techniques

In this subsection we provide an overview of the techniques used in the proof of our main technical
result, Theorem 1.1. For the sake of clarity of exposition, some of the discussion here is somewhat
imprecise. Our algorithm relies on the divide-and-conquer technique. Given an instance I = (G,Σ) of
the MCNwRS problem, we compute a collection I of new instances, whose corresponding graphs are
significantly smaller than G, and then solve each of the resulting new instances separately. Collection
I of instances is called a decomposition of I. We require that the decomposition has several useful
properties that will allow us to use it in order to obtain the guarantees from Theorem 1.1, by solving
the instances in I recursively. Before we define the notion of decomposition of an instance, we need
the notion of a contracted graph, that we use throughout the paper. Suppose G is a graph, and let
R = {R1, . . . , Rq} be a collection of disjoint subsets of vertices of G. The contracted graph of G
with respect to R, that we denote by G|R, is a graph that is obtained from G, by contracting, for
all 1 ≤ i ≤ q, the vertices of Ri into a supernode ui. Note that every edge of the resulting graph
G|R corresponds to some edge of G, and we do not distinguish between them. The vertices in set
V (G|R) \ {u1, . . . , uq} are called regular vertices. Each such vertex v also lies in G, and moreover,
δG|R(v) = δG(v). Abusing the notation, given a collection C = {C1, . . . , Cr} of disjoint subgraphs of
G, we denote by G|C the contracted graph of G with respect to the collection {V (C1), . . . , V (Cr)}
of subsets of vertices of G. Given a graph G and its drawing ϕ, we denote by cr(ϕ) the number of
crossings in ϕ.

Decomposition of an Instance. Given an instance I = (G,Σ) of the MCNwRS problem, we will
informally refer to |E(G)| as the size of the instance. Assume that we are given an instance I = (G,Σ)

of MCNwRS with |E(G)| = m, and some parameter η (we will generally use η = 2O((logm)3/4 log logm)).
Assume further that we are given another collection I of instances of MCNwRS. We say that
I is an η-decomposition of I, if

∑
I′=(G′,Σ′)∈I |E(G′)| ≤ m poly logm, and

∑
I′∈I OPTcnwrs(I

′) ≤

3

(OPTcnwrs(I) + |E(G)|) · η. Additionally, we require that there is an efficient algorithm Alg(I), that,
given a feasible solution ϕ(I ′) to every instance I ′ ∈ I, computes a feasible solution ϕ for instance I,
with at most O

(∑
I′∈I cr(ϕ(I ′))

)
crossings.

At a high level, our algorithm starts with the input instance I∗ = (G∗,Σ∗) of the MCNwRS problem.

Throughout the algorithm, we denotem∗ = |E(G∗)|, and we use a parameter µ = 2O((logm∗)7/8 log logm∗).
Over the course of the algorithm, we consider various other instances I of MCNwRS, but parameters
m∗ and µ remain unchanged, and they are defined with respect to the original input instance I∗.
The main subroutine of the algorithm, that we call AlgDecompose, receives as input an instance
I = (G,Σ) of MCNwRS, and computes an η-decomposition I of I, for η = 2O((logm)3/4 log logm), where
m = |E(G)|. The subroutine additionally ensures that every instance in the decomposition is suffi-
ciently small compared to I, that is, for each instance I ′ = (G′,Σ′) ∈ I, |E(G′)| ≤ |E(G)|/µ. We
note that this subroutine is in fact randomized, and, instead of ensuring that

∑
I′∈I OPTcnwrs(I

′) ≤
(OPTcnwrs(I) + |E(G)|) · η, it only ensures this in expectation. We will ignore this minor technicality
in this high-level exposition.

It is now easy to complete the proof of Theorem 1.1 using Algorithm AlgDecompose: we simply apply
Algorithm AlgDecompose to the input instance I∗, obtaining a collection I of new instances. We
recursively solve each instance in I, and then combine the resulting solutions using Algorithm Alg(I∗),
in order to obtain the final solution to instance I∗. Since the sizes of the instances decrease by the
factor of at least µ with each application of the algorithm, the depth of the recursion is bounded by
O
(
(logm∗)1/8

)
. At each recursive level, the sum of the optimal solution costs and of the number of

edges in all instances at that recursive level increases by at most factor 2O((logm∗)3/4 log logm∗), leading
to the final bound of 2O((logm∗)7/8 log logm∗) · (OPTcnwrs(I

∗) +m∗) on the solution cost.

From now on we focus on the description of Algorithm AlgDecompose. We start by describing several
technical tools that this algorithm builds on. Throughout, given a graph G, we refer to connected
vertex-induced subgraphs of G as clusters. Given a collection C of disjoint clusters of G, we denote by
Eout
G (C) the set of all edges e ∈ E(G), such that the endpoints of e do not lie in the same cluster of C.

We will also use the notion of subinstances that we define next.

Subinstances. Suppose we are given two instances I = (G,Σ) and I ′ = (G′,Σ′) of MCNwRS. We
say that I ′ is a subinstance of instance I, if the following hold. First, graph G′ must be a graph that is
obtained from a subgraph of G by contracting some subsets of its vertices into supernodes. Formally1,
there must be a graph G′′ ⊆ G, and a collection R = {R1, . . . , Rq} of disjoint subsets of vertices of G′′,
such that G′ = G′′|R. For every regular vertex v of G′, the rotation Ov ∈ Σ′ must be consistent with

the rotation Ov ∈ Σ (recall that δG′(v) ⊆ δG(v)). For every supernode ui of G′, its rotation Oui ∈ Σ′

can be chosen arbitrarily. Note that the notion of subinstances is transitive: if I ′ is a subinstance of
I and I ′′ is a subinstance of I ′, then I ′′ is a subinstance of I.

The main tool that we use is disengagement of clusters. Intuitively, given an instance I = (G,Σ)
of MCNwRS, and a collection C of disjoint clusters of G, the goal is to compute an η-decomposition
I of I, such that every instance I ′ = (G′,Σ′) ∈ I is a subinstance of I, and moreover, there is
at most one cluster C ∈ C that is contained in G′, and all edges of G′ that do not lie in C must
belong to Eout

G (C). Assume for now that we can design an efficient algorithm for computing such
a decomposition. In this case, the high-level plan for implementing Algorithm AlgDecompose would
be as follows. First, we compute a collection C of disjoint clusters of graph G, such that, for each
cluster C ∈ C, |E(C)| ≤ |E(G)|/(2µ), and |Eout

G (C)| ≤ |E(G)|/(2µ). Then we perform disengagement
of clusters in C, obtaining an η-decomposition of the input instance I. We are then guaranteed that

1We note that this definition closely resembles the notion of graph minors, but, in contrast to the definition of minors,
we do not require that the induced subgraphs {G[Ri]}1≤i≤q are connected.

4

each resulting instance in I is sufficiently small. We note that it is not immediately clear how to
compute the desired collection C of disjoint clusters of G; we discuss this later. For now we focus
on algorithms for computing disengagement of clusters. We do not currently have an algorithm to
compute the disengagement of clusters in the most general setting described above. In this paper, we
design a number of algorithms for computing disengagement of clusters, under some conditions. We
start with the simplest algorithm that only works in some restricted settings, and then generalize it
to more advanced algorithms that work in more and more general settings. In order to describe the
disengagement algorithm for the most basic setting, we need the notion of congestion, and of internal
and external routers, that we use throughout the paper, and describe next.

Congestion, Internal Routers, and External Routers. Given a graph G and a set P of paths in
G, the congestion that the set P of paths causes on an edge e ∈ E(G), that we denote by congG(P, e),
is the number of paths in P containing e. The total congestion caused by the set P of paths in G is
congG(P) = maxe∈E(G) {congG(P, e)}.
Consider now a graph G and a cluster C ⊆ G. We denote by δG(C) the set of all edges e ∈ E(G), such
that exactly one endpoint of e lies in C. An internal C-router is a collectionQ(C) = {Q(e) | e ∈ δG(C)}
of paths, such that, for each edge e ∈ δG(C), pathQ(e) has e as its first edge, and all its inner vertices lie
in C. We additionally require that all paths in Q(C) terminate at a single vertex of C, that we call the
center vertex of the router. Similarly, an external C-router is a collection Q′(C) = {Q′(e) | e ∈ δG(C)}
of paths, such that, for each edge e ∈ δG(C), path Q′(e) has e as its first edge, and all its inner vertices
lie in V (G) \ V (C). We additionally require that all paths in Q′(C) terminate at a single vertex of
V (G) \ V (C), that we call the center vertex of the router. For a cluster C ⊆ G, we denote by ΛG(C)
and Λ′G(C) the sets of all internal and all external C-routers, respectively.

Basic Cluster Disengagement. In the most basic setting for cluster disengagement, we are given an
instance I = (G,Σ) of the MCNwRS problem, and a collection C of disjoint clusters of G. Additionally,
for each cluster C ∈ C, we are given an internal C-router Q(C), whose center vertex we denote by
u(C), and an external C-router Q′(C), whose center vertex we denote by u′(C). The output of the
disengagement procedure is a collection I of subinstances of I, that consists of a single global instance
Î = (Ĝ, Σ̂), and, for every cluster C ∈ C, an instance IC = (GC ,ΣC) associated with it. Graph Ĝ is
the contracted graph of G with respect to C; that is, it is obtained from G by contracting every cluster
C ∈ C into a supernode vC . For each cluster C ∈ C, graph GC is obtained from G by contracting
the vertices of V (G) \ V (C) into a supernode v∗C . For every cluster C ∈ C, the rotation OvC ∈ Σ̂ of

the supernode vC in instance Î and the rotation Ov∗C ∈ ΣC of the supernode v∗C in instance IC need
to be defined carefully, in order to ensure that the sum of the optimal solution costs of all resulting
instances is low, and that we can combine the solutions to these instances to obtain a solution to I.
Observe that the set of edges incident to vertex vC in Ĝ and the set of edges incident to vertex v∗C in
GC are both equal to δG(C). We define a single ordering OC of the edge set δG(C), that will serve
both as the rotation OvC ∈ Σ̂, and as the rotation Ov∗C ∈ ΣC . The ordering OC is defined via the
internal C-router Q(C), and the order in which the images of the paths of Q(C) enter the image of
vertex u(C). On the one hand, letting OvC = Ov∗C for every cluster C ∈ C allows us to easily combine
solutions ϕ(I ′) to instances I ′ ∈ I, in order to obtain a solution to instance I, whose cost is at most
O
(∑

I′∈I′ cr(ϕ(I ′))
)
. On the other hand, defining OC via the set Q(C) of paths, for each cluster

C ∈ C, allows us to bound
∑

I′∈I OPTcnwrs(I
′).

We now briefly describe how this latter bound is established, since it will motivate the remainder of
the algorithm and clarify the bottlenecks of this approach. We consider an optimal solution ϕ∗ to
instance I, and we use it in order to construct, for each instance I ′ ∈ I, a solution ψ(I ′), such that∑

I′∈I cr(ψ(I ′)) is relatively small compared to cr(ϕ∗) + |E(G)|. In order to construct a solution ψ(Î)

to the global instance Î, we start with solution ϕ∗ to instance I. We erase from this solution all edges
and vertices that lie in the clusters of C. For each cluster C ∈ C, we let the image of the supernode

5

vC coincide with the original image of the vertex u(C) – the center of the internal C-router Q(C).
In order to draw the edges that are incident to the supernode vC in Ĝ (that is, the edges of δG(C)),
we utilize the images of the paths of the internal C-router Q(C) in ϕ∗, that connect, for each edge
e ∈ δG(C), the original image of edge e to the original image of vertex u(C).

Consider now some cluster C ∈ C. In order to construct a solution ψ(IC) to instance IC , we start
again with the solution ϕ∗ to instance I. We erase from it all edges and vertices except for those lying
in C. We let the image of the supernode v∗C be the original image of vertex u′(C) – the center of the
external C-router Q′(C). In order to draw the edges that are incident to the supernode v∗C in GC
(that is, the edges of δG(C)), we utilize the images of the paths of the external C-router Q′(C), that
connect, for each edge e ∈ δG(C), the original image of edge e to the original image of vertex u′(C).

Observe that the only increase in
∑

I′∈I cr(ψ(I ′)), relatively to cr(ϕ∗), is due to the crossings incurred

by drawing the edges incident to the supernodes in {vC}C∈C in instance Î, and for each subinstance
IC , drawing the edges incident to supernode v∗C . All such edges are drawn along the images of the
paths in

⋃
C∈C(Q(C) ∪Q′(C)) in ϕ∗. However, an edge may belong to a number of such paths. With

careful accounting we can bound this number of new crossings as follows. Assume that, for every
cluster C ∈ C, congG(Q′(C)) ≤ β. Assume further that, for each cluster C ∈ C, and for each edge
e ∈ E(C), (congG(Q(C), e))2 ≤ β. Then

∑
I′∈I cr(ψ(I ′)) ≤ O(β2 · (OPTcnwrs(I) + |E(G)|)). Therefore,

in order to ensure that the collection I of subinstances of I that we have obtained via the cluster
disengagement procedure is an η-decomposition of I, we need to ensure that, for every cluster C ∈ C,
congG(Q′(C)) ≤ β, and, for every edge e ∈ E(C), (congG(Q(C), e))2 ≤ β, for β = O(η1/2). This
requirement seems impossible to achieve. For example, if maximum vertex degree in graph G is small
(say a constant), then some edges incident to the center vertices {u(C), u′(C)}C∈C must incur very
high congestion. In order to overcome this obstacle, we slightly weaken our requirements. Instead of
providing, for every cluster C ∈ C, a single internal C-router Q(C), and a single external C-router
Q′(C), it is sufficient for us to obtain, for each cluster C ∈ C, a distribution D(C) over the collection
ΛG(C) of internal C-routers, such that, for every edge e ∈ E(C), EQ(C)∼D(C)

[
(congG(Q(C), e))2

]
≤ β,

and a distribution D′(C) over the collection Λ′G(C) of external C-routers, such that for every edge e,
EQ′(C)∼D′(C) [congG(Q′(C), e)] ≤ β.

To recap, in order to use the Basic Cluster Disengagement procedure described above to compute an
η-decomposition of the input instance I of MCNwRS into sufficiently small instances, it is now enough
to design a procedure that, given an instance I = (G,Σ) of MCNwRS, computes a collection C of
disjoint clusters of G, and, for every cluster C ∈ C, a distribution D(C) over the collection ΛG(C) of
internal C-routers, such that, for every edge e ∈ E(C), EQ(C)∼D(C)

[
(congG(Q(C), e))2

]
≤ β, together

with a distribution D′(C) over the collection Λ′G(C) of external C-routers, such that, for every edge
e, EQ′(C)∼D′(C) [congG(Q′(C), e)] ≤ β, for β = O(

√
η). Additionally, we need to ensure that, for every

cluster C ∈ C, |E(C)| ≤ |E(G)|/(2µ), and that |Eout
G (C)| ≤ |E(G)|/(2µ). While computing a collection

C of clusters with the latter two properties seems possible (at least when the maximum vertex degree
in G is small), computing the distributions over the internal and the external routers for each cluster
C with the required properties seems quite challenging. As a first step towards this goal, we employ
the standard notions of well-linkedness and bandwidth property of clusters as a proxy to constructing
internal C-routers with the required properties. Before we turn to discuss these notions, we note that
the Basic Cluster Disengagement procedure that we have just described can be easily generalized to
the more general setting, where the set C of clusters is laminar (instead of only containing disjoint
clusters). This generalization will be useful for us later.

Assume that we are given a laminar family C of clusters (that is, for every pair C,C ′ ∈ C of clusters,
either C ⊆ C ′, or C ′ ⊆ C, or C∩C ′ = ∅ holds), with G ∈ C. Assume further that we are given, for each
cluster C ∈ C, a distribution D(C) over the collection ΛG(C) of internal C-routers, in which, for every
edge e ∈ E(C), EQ(C)∼D(C)

[
(congG(Q(C), e))2

]
≤ β, together with a distribution D′(C) over the

6

collection Λ′G(C) of external C-routers, where for every edge e, EQ′(C)∼D′(C) [congG(Q′(C), e)] ≤ β,
for some parameter β. The Basic Cluster Disengagement procedure, when applied to C, produces a
collection I = {IC = (GC ,ΣC) | C ∈ C} of instances. For every cluster C ∈ C, graph GC associated
with instance IC is obtained from graph G, by first contracting all vertices of V (G) \ V (C) into a
supernode v∗C , and then contracting, for each child-cluster C ′ ∈ C of C, the vertices of V (C ′) into a
supernode vC′ . We define, for every cluster C, an ordering of the set δG(C) of edges via an internal C-
router that is selected from the distribution D(C), and we let the rotation Ov∗C in the rotation system
ΣC , and the rotation OvC in the rotation system ΣC′ , where C ′ is the parent-cluster of C, to be
identical to this ordering. Using the same reasoning as in the case where C is a set of disjoint clusters,
we show that E

[∑
I′∈I OPTcnwrs(I

′)
]
≤ O

(
β2 · dep(C) · (OPTcnwrs(I) + |E(G)|)

)
, where dep(C) is the

depth of the laminar family C of clusters. We then show that I ′ is an η′-decomposition of instance I,
where η′ = O(β2 · dep(C)).
As noted already, one of the difficulties in exploiting the Basic Cluster Disengagement procedure in
order to compute an η-decomposition of the input instance I is the need to compute distributions over
the sets of internal and the external C-routers for every cluster C ∈ C, with the required properties.
We turn instead to the notions of well-linkedness and bandwidth properties of clusters. These notions
are extensively studied, and there are many known algorithms for computing a collection C of clusters
that have bandwidth property in a graph. We will use this property as a proxy, that will eventually
allow us to construct a distribution over the sets of internal C-routers for each cluster C ∈ C, with the
required properties.

Well-Linkedness, Bandwidth Property, and Cluster Classification. We use the standard
graph-theoretic notion of well-linkedness. Let G be a graph, let T be a subset of the vertices of G,
and let 0 < α < 1 be a parameter. We say that the set T of vertices is α-well-linked in G if for every
partition (A,B) of vertices of G into two subsets, |EG(A,B)| ≥ α ·min {|A ∩ T |, |B ∩ T |}.
We also use a closely related notion of bandwidth property of clusters. Suppose we are given a graph G
and a cluster C ⊆ G. Intuitively, cluster C has the α-bandwidth property (for a parameter 0 < α < 1),
if the edges of δG(C) are α-well-linked in C. More formally, we consider the augmentation C+ of cluster
C, that is defined as follows. We start with the graph G, and subdivide every edge e ∈ δG(C) with a
vertex te, denoting by T = {te | e ∈ δG(C)} this new set of vertices. The augmentation C+ of C is the
subgraph of the resulting graph induced by V (C) ∪ T . We say that cluster C has the α-bandwidth
property if set T of vertices is α-well-linked in C+.

We note that, if a cluster C has the α-bandwidth property, then, using known techniques, we can
efficiently construct a distribution D over the set ΛG(C) of internal C-routers, such that, for every
edge e ∈ E(C), EQ(C)∼D(C) [cong(Q(C), e)] ≤ O(1/α). However, in order to use the Basic Cluster
Disengagement procedure, we need a stronger property: namely, for every edge e ∈ E(C), we require
that EQ(C)∼D(C)

[
(cong(Q(C), e))2

]
≤ β, for some parameter β. If we are given a distribution D(C)

over the set ΛG(C) of internal C-routers with this latter property, then we say that cluster C is η-light
with respect to D(C). Computing a distribution D(C) for which cluster C is η-light is a much more
challenging task. We come close to achieving it in our Cluster Classification Theorem. Before we
describe the theorem, we need one more definition. Let C be a cluster of a graph G, and let η′ be
some parameter. Assume that we are given some rotation system Σ for graph G, and let ΣC be the
rotation system for cluster C that is induced by Σ. Let IC = (C,ΣC) be the resulting instance of
MCNwRS. We say that cluster C is η′-bad if OPTcnwrs(I

C) ≥ |δG(C)|2/η′.
In the Cluster Classification Theorem, we provide an efficient algorithm, that, given an instance I =
(G,Σ) of MCNwRS with |E(G)| = m, and a cluster C ⊆ G that has the α-bandwidth property (where

α = Ω(1/poly logm)), either correctly establishes that cluster C is η′-bad, for η′ = 2O((logm)3/4 log logm),
or produces a distribution D(C) over the set ΛG(C) of internal C-routers, such that cluster C is β-light
with respect to D(C), for β = 2O(

√
logm·log logm). In fact, the algorithm is randomized, and, with a

7

small probability, it may erroneously classify cluster C as being η′-bad, when this is not the case. This
small technicality is immaterial to this high-level exposition, and we will ignore it here. The proof of
the Cluster Classification Theorem is long and technically involved, and is partially responsible for the
high approximation factor that we eventually obtain. It is our hope that a simpler and a cleaner proof
of the theorem with better parameters will be discovered in the future. We believe that the theorem
is a graph-theoretic result that is interesting in its own right. We now provide a high-level summary
of the main challenges in its proof.

At the heart of the proof is an algorithm that we called AlgFindGuiding. Suppose we are given an
instance I = (H,Σ) of MCNwRS, and a set T of k vertices of H called terminals, that are α-well-linked
in H, for some parameter 0 < α < 1. Denote C = H \T and |V (H)| = n. The goal of the algorithm is
to either establish that OPTcnwrs(H) + |E(H)| ≥ k2 poly(α/ log n); or to compute a distribution D(C)
over internal C-routers, such that cluster C is η′ = poly(log n/α)-light with respect to D(C).

Consider first a much simpler setting, where H is a grid graph, and T is the set of vertices on the first
row of the grid. For this special case, the algorithm of [Sid10] (see also Lemma D.10 in the full version
of [Chu11]) provides the construction of a distribution D(C) over internal C-routers with the required
properties. This result can be easily generalized to the case where H is a bounded-degree planar
graph, since such a graph must contain a large grid minor. If H is a planar graph, but its maximum
vertex degree is no longer bounded, we can still compute a grid-like structure in it, and apply the same
arguments as in [Sid10] in order to compute the desired distribution D(C). The difficulty in our case
is that the graph H may be far from being planar, and, even though, from the Excluded Grid theorem
of Robertson and Seymour [RS86, RST94], it must contain a large grid-like structure, without having
a drawing of H in the plane with a small number of crossings, we do not know how to compute such
a structure2. We provide an algorithm that either establishes that OPTcnwrs(H) is large compared to
k2, or computes a grid-like structure in graph H, even if it is not a planar graph. Unfortunately, this
algorithm only works in the setting where |E(H)| is not too large comparable to k. Specifically, if we
ensure that |E(H)| ≤ k · η̂ for some parameter η̂, then the algorithm either computes a distribution
D(C) over internal C-routers that is η′-light (with η′ = poly(log n/α) as before), or it establishes that
OPTcnwrs(H) + |E(H)| ≥ k2 poly(α/(η̂ log n)).

Typically, this algorithm would be used in the following setting: we are given a cluster C of a graph
G, that has the α-bandwidth property. We then let H = C+ be the augmentation of C, and we let
T be the set of vertices of C+ corresponding to the edges of δH(C). In order for this result to be
meaningful, we need to ensure that |E(C)| is not too large compared to |δH(C)|. Unfortunately, we
may need to apply the classification theorem to clusters C for which |E(C)| � |δH(C)| holds. In order
to overcome this difficulty, given such a cluster C, we construct a recursive decomposition of C into
smaller and smaller clusters. Let L denote the resulting family of clusters, which is a laminar family of
subgraphs of C. We ensure that every cluster C ′ ∈ L has α = Ω(1/ poly logm)-bandwidth property,
and, additionally, if we let Ĉ ′ be the graph obtained from C ′ by contracting every child-cluster of C ′

into a supernode, then the number of edges in Ĉ ′ is comparable to |δH(C ′)|. We consider the clusters
of L from smallest to largest. For each such cluster C ′, we carefully apply Algorithm AlgFindGuiding
to the corresponding contracted graph Ĉ ′, in order to either classify cluster Ĉ ′ as η(C ′)-bad, or to
compute a distribution D(C ′) over internal C ′-routers, such that C ′ is β(C ′)-light with respect to
D(C ′). Parameters η(C ′) and β(C ′) depend on the height of the cluster C ′ in the decomposition tree
that is associated with the laminar family L of clusters. This recursive algorithm is eventually used to
either establish that cluster C is η(C)-bad, or to compute a distribution D(C) over the set ΛG(C) of
internal C-routers, such that cluster C is β(C)-light with respect to D(C). The final parameters η(C)

2We note that we need the grid-like structure to have dimensions (k′ × k′), where k′ is almost linear in k. Therefore,
we cannot use the known bounds for the Excluded Minor Theorem (e.g. from [CT19]) for general graphs, and instead
we need to use an analogue of the stronger version of the theorem for planar graphs.

8

and β(C) depend exponentially on the height of the decomposition tree associated with the laminar
family L. This strong dependence on dep(L) is one of the reasons for the high approximation factor
that our algorithm eventually achieves.

Obstacles to Using Basic Cluster Disengagement. Let us now revisit the Basic Cluster Disengage-
ment routine. We start with an instance I = (G,Σ) of MCNwRS, and denote |E(G)| = m. Throughout,

we use a parameter η = 2O((logm)3/4 log logm), and β = η1/8. Recall that the input to the procedure is a
collection C of disjoint clusters of G. For every cluster C ∈ C, we are also given a distribution D′(C)
over the set of external C-routers, such that, for every edge e, EQ′(C)∼D′(C) [congG(Q′(C), e)] ≤ β, and
a distribution D(C) over the set of internal C-routers, such that cluster C is β-light with respect to
D(C). We are then guaranteed that the collection I of subinstances of I that is constructed via Basic
Cluster Disengagement is an η-decomposition of I. We can slightly generalize this procedure to handle
bad clusters as well. Specifically, suppose we are given a partition (Clight, Cbad) of the clusters in C, and,
for each cluster C ∈ Clight, a distribution D(C) over internal C-routers, such that cluster C is β-light
with respect to D(C). Assume further that each cluster C ∈ Cbad is β-bad. Additionally, assume that
we are given, for every cluster C ∈ C, a distribution D′(C) over external C-routers, such that, for
every edge e, EQ′(C)∼D′(C) [congG(Q′(C), e)] ≤ β, and that every cluster C ∈ C has the α-bandwidth
property, for some α = Ω(1/ poly logm). We can then generalize the Basic Cluster Disengagement
procedure to provide the same guarantees as before in this setting, to obtain an η-decomposition of
instance I.

Assume now that we are given an instance I = (G,Σ) of MCNwRS, with |E(G)| = m. For simplicity,
assume for now that the maximum vertex degree in G is quite small (it is sufficient, for example, that it
is significantly smaller thanm.) Using known techniques, we can compute a collection C of disjoint clus-
ters of G, such that, for every cluster C ∈ C, |E(C)| ≤ m/(2µ); |Eout

G (C)| ≤ m/(2µ); and every cluster
C ∈ C has α-bandwidth property. If we could, additionally, compute, for each cluster C ∈ C, a distri-
bution D′(C) over external C-routers, such that, for every edge e, EQ′(C)∼D′(C) [congG(Q′(C), e)] ≤ β,
then we could use the Cluster Classification Theorem to partition the set C of clusters into subsets
Clight and Cbad, and to compute, for every cluster C ∈ Clight, a distribution D(C) over the set of
its internal routers, such that every cluster in Cbad is η′-bad, and every cluster C ∈ Clight is η′-light
with respect to D(C), for some parameter η′. We could then apply the Basic Cluster Disengagement
procedure in order to compute the desired η-decomposition of the input instance I. Unfortunately, we
currently do not have an algorithm that computes both the collection C of clusters of G with the above
properties, and the required distributions over the external C-routers for each such cluster C. In order
to overcome this difficulty, we design Advanced Cluster Disengagement procedure, that generalizes Basic
Cluster Disengagement, and no longer requires the distribution over external C-routers for each cluster
C ∈ C.
Advanced Cluster Disengagement. The input to the Advanced Cluster Disengagement procedure is
an instance I = (G,Σ) of MCNwRS, and a set C of disjoint clusters of G, that we refer to as basic

clusters. Let m = |E(G)|, and η = 2O((logm)3/4 log logm) as before. The output is an η-decomposition I
of I, such that every instance I ′ = (G′,Σ′) ∈ I is a subinstance of I, and moreover, there is at most
one basic cluster C ∈ C with E(C) ⊆ E(G′), with all other edges of G′ lying in Eout

G (C). The algorithm
for the Advanced Cluster Disengagement and its analysis are significantly more involved than those of
Basic Cluster Disengagement. We start with some intuition.

Consider the contracted graph H = G|C , and its Gomory-Hu tree T . This tree naturally defines a
laminar family L of clusters of H: for every vertex v ∈ V (H), we add to L the cluster Uv, that is
the subgraph of H induced by vertex set V (Tv), where Tv is the subtree of T rooted at v. From
the properties of Gomory-Hu trees, if v′ is the parent-vertex of vertex v in T , there is an external
Uv-router Q′(Uv) in graph H with congH(Q′(Uv)) = 1. Laminar family L of clusters of H naturally
defines a laminar family L′ of clusters of the original graph G, where for each cluster Uv ∈ L, set L′

9

contains a corresponding cluster U ′v, that is obtained from Uv, by un-contracting all supernodes that
correspond to clusters of C. For each such cluster U ′v ∈ L′, we can use the external Uv-router Q′(Uv)
in graph H in order to construct a distribution D′(U ′v) over external U ′v-routers in graph G, where
for every edge e, EQ′(U ′v)∼D′(U ′v) [congG(Q′(U ′v), e)] ≤ O(1/α). We can then apply the Basic Cluster
Disengagement procedure to the laminar family L′ and the distributions {D′(U ′v)}U ′v∈L′ in order to
compute an η∗-decomposition I of instance I, where every instance in I is a subinstance of I. Recall
that the parameter η∗ depends on the depth of the laminar family L′, which is equal to the depth of the
laminar family L. Therefore, if dep(L) is not too large (for example, it is at most 2O((logm)3/4 log logm)),
then we will obtain the desired η-decomposition of I. But unfortunately we have no control over the
depth of the laminar family L, and in particular the tools described so far do not work when the
Gomory-Hu tree T is a path.

Roughly speaking, we would like to design a different disengagement procedure for the case where the
tree T is a path, and then reduce the general problem (by exploiting Basic Cluster Disengagement) to
this special case. In fact we follow a similar plan. We define a special type of instances (that we call
nice instances), that resemble the case where the Gomory-Hu tree of the contracted graph H = G|C
is a path. While the motivation behind the definition of nice instances is indeed this special case, the
specifics of the definition are somewhat different, in that it is more general in some of its aspects, and
more restrictive and well-structured in others. We provide an algorithm for Cluster Disengagment of
nice instances, that ensures that, for each resulting subinstance I ′ = (G′,Σ′), there is at most one
cluster C ∈ C with C ⊆ G′, and all other edges of G′ lie in Eout

G (C). We also provide another algorithm,
that, given an instance I = (G,Σ) of MCNwRS and a collection C of disjoint basic clusters of graph
G, computes a decomposition I ′ of instance I, such that each resulting instance I ′ = (G′,Σ′) ∈ I ′ is
a subinstance of I and a nice instance, with respect to the subset C(I ′) ⊆ C of clusters, that contains
every cluster C ∈ C with C ⊆ G′. Combining these two algorithms allows us to compute Advanced
Cluster Disengagement.

Algorithm AlgDecompose. Recall that Algorithm AlgDecompose, given an instance I = (G,Σ) of

MCNwRS, needs to compute an η-decomposition I of I, where η = 2O((logm)3/4 log logm) and m =
|E(G)|, such that, for each instance I ′ = (G′,Σ′) ∈ I, |E(G′)| ≤ |E(G)|/µ. We say that a vertex v

of G is a high-degree vertex if |δG(v)| ≥ m/poly(µ) (here, µ = 2O((logm∗)7/8 log logm∗), and m∗ is the
number of edges in the original input instance I∗ of MCNwRS).

Consider first the special case where no vertex of G is a high-degree vertex. For this case, it is not
hard to generalize known well-linked decomposition techniques to obtain a collection C of disjoint
clusters of G, such that each cluster C ∈ C has α = Ω(1/ poly logm)-bandwidth property, with
|E(C)| < O(m/µ), and, additionally, |Eout

G (C)| ≤ O(m/µ). We can now apply the Advanced Cluster
Disengagement procedure to the set C of clusters, in order to obtain the desired η-decomposition of
I. Recall that we are guaranteed that each resulting instance I ′ = (G′,Σ′) ∈ I is a subinstance of I,
and there is at most one cluster C ∈ C with C ⊆ G′, with all other edges of G′ lying in Eout

G (C). This
ensures that |E(G′)| ≤ m/µ, as required.

In general, however, it is possible that the input instance I = (G,Σ) contains high-degree vertices.
We then consider two cases. We say that instance I is wide if there is a vertex v ∈ V (G), a partition
(E1, E2) of the edges of δG(v), such that the edges of E1 appear consecutively in the rotation Ov ∈ Σ,
and so do the edges of E2, and a collection P of at least m/poly(µ) simple edge-disjoint cycles in G,
such that every cycle P ∈ P contains one edge of E1 and one edge of E2. An instance that is not wide
is called narrow. We provide separate algorithms for dealing with narrow and wide instances.

Narrow Instances. The algorithm for decomposing narrow instances relies on and generalizes the
algorithm for the special case where G has no high-degree vertices. As a first step, we compute a
collection C of disjoint clusters of G, such that each cluster C ∈ C has α = Ω(1/ poly logm)-bandwidth
property, and |Eout

G (C)| < O(E(G)/µ). The set C of clusters is partitioned into two subsets: set Cs of

10

small clusters, and set Cf of flower clusters. For each cluster C ∈ Cs, |E(C)| < O(|E(G)|/µ) holds.
If C is a cluster of Cf , then we no longer guarantee that |E(C)| is small. Instead, we guarantee
that cluster C has a special structure. Specifically, C must contain a single high-degree vertex u(C),
that we call the flower center, and all other vertices of C must be low-degree vertices. Additionally,
there must be a set X (C) = {X1, . . . , Xk} of subgraphs of C, that we call petals, such that, for all
1 ≤ i < j ≤ k, V (Xi) ∩ V (Xj) = {u(C)}. We also require that, for all 1 ≤ i ≤ k, there is a set Ei
of Θ(m/poly(µ)) edges of δG(u(C)) that are contiguous in the rotation Ou(C) ∈ Σ, and lie in Xi (see
Figure 1). Lastly, we require that, for all 1 ≤ i ≤ k, there is a set Qi of edge-disjoint paths, connecting
every edge of δG(Xi) \ δG(u(C)) to vertex u(C), with all inner vertices on the paths lying in Xi.

Figure 1: An illustration of a 4-petal flower cluster.

We apply Advanced Cluster Disengagement to the set C of clusters, in order to compute an initial
decomposition I1 of the input instance I, such that every instance in I1 is a subinstance of I. Un-
fortunately, it is possible that, for some instances I ′ = (G′,Σ′) ∈ I1, |E(G′)| > m/µ. For each such
instance I ′, there must be some flower cluster C ∈ Cf that is contained in G′, and all other edges of
G′ must lie in Eout

G (C).
We now consider each instance I ′ = (G′,Σ′) ∈ I1 with |E(G′)| > m/µ one by one. Assume that
C ∈ Cf is the flower cluster that is contained in G′, and X (C) = {X1, . . . , Xk} is the set of its petals.
We further decompose instance I ′ into a collection I(C) of subinstances, that consists of a single
global instance Î(C), and k additional instances I1(C), . . . , Ik(C). We ensure that the graph Ĝ(C)
associated with the global instance Î(C) only contains edges of Eout

G (C), so |E(Ĝ(C))| < m/µ holds.
For all 1 ≤ j ≤ k, graph Gj(C) associated with instance Ij(C) ∈ I(C) contains the petal Xj , and
all other edges of Gj(C) lie in Eout

G (C). We note that unfortunately it is still possible that, for some
1 ≤ j ≤ k, graph Gj(C) contains too many edges (this can only happen if |E(Xj)| is large). However,
our construction ensures that, for each such instance Ij(C), no high-degree vertices lie in graph Gj(C).
We can then further decompose instance Ij(C) into subinstances using the algorithm that we designed
for the case where no vertex of the input graph is a high-degree vertex. After this final decomposition,
we are guaranteed that each of the final subinstances of instance I that we obtain contains fewer than
m/µ edges, as required.

Wide Instances. Suppose we are given a wide instance I = (G,Σ) of MCNwRS. In this case, we
compute an η-decomposition I of instance I, such that, for each resulting instance I ′ = (G′,Σ′) ∈ I,
either |E(G′)| < m/µ (in which case we say that I ′ is a small instance), or I ′ is a narrow instance.
We will then further decompose each resulting narrow instance using the algorithm described above.

In order to obtain the decomposition I of I, we start with I = {I}. As long as set I contains at least
one wide instance I ′ = (G′,Σ′) with |E(G′)| ≥ m/µ, we perform a procedure that “splits” instance I ′

into two smaller subinstances. We now turn to describe this procedure at a high level.

Let I ′ = (G′,Σ′) ∈ I be a wide instance with |E(G′)| ≥ m/µ. Recall that from the definition of a wide

11

instance, there is a vertex v ∈ V (G′), a partition (E1, E2) of the edges of δG′(v), such that the edges
of E1 appear consecutively in the rotation Ov ∈ Σ′, and a collection P of at least m/poly(µ) simple
edge-disjoint cycles in G′, such that every cycle in P contains one edge of E1 and one edge of E2.
Consider the experiment, in which we choose a cycle W ∈ P uniformly at random. Since |P| is very
large, with reasonably high probability, the edges of the cycle W participate in relatively few crossings
in the optimal solution to instance I ′ of MCNwRS. We show that with high enough probability, there
is a near-optimal solution to I ′, in which cycle W is drawn in the natural way. We use the cycle W
in order to partition instance I ′ into two subinstances I1, I2 (intuitively, one subinstance corresponds
to edges and vertices of G′ that are drawn “inside” the cycle W in the near-optimal solution to I ′,
and the other subinstance contains all edges and vertices that are drawn “outside” W). Each of the
resulting two instances contains the cycle W , and, in order to be able to combine the solutions to the
two subinstances to obtain a solution to I ′, we contract all vertices and edges of W , in each of the
two instances, into a supernode. Let I ′1, I

′
2 denote these two resulting instances. The main difficulty

in the analysis is to show that there is a solution to each resulting instance of MCNwRS, such that the
sum of the costs of two solutions is close to OPTcnwrs(I

′). The difficulty arises from the fact that we
do not know what the optimal solution to instance I ′ looks like, and so our partition of G′ into two
subgraphs that are drawn on different sides of the cycle W in that solution may be imprecise. Instead,
we need to “fix” the solutions to instances I1, I2 (that are induced by the optimal solution to I ′) in
order to move all edges and vertices of each subinstance to lie on one side of the cycle W . In fact we
are unable to do so directly. Instead, we show that we can compute a relatively small collection E′

of edges, such that, if we remove the edges of E′ from the graphs corresponding to instances I1, I2,
then each of the resulting subinstances has the desired structure: namely, it can be drawn completely
inside or completely outside the cycle W with relatively few crossings compared to OPTcnwrs(I

′). After
we solve the two resulting subinstances recursively, we combine the resulting solutions, and add the
images of the edges of E′ back, in order to obtain a solution to instance I ′.

1.3 Organization

We start with preliminaries in Section 2. We then provide, in Section 3, the definitions of several main
concepts that we use (such as wide and narrow instances), and state three main technical theorems that
allow us to decompose wide and narrow instances. We then provide the proof of Theorem 1.1 using
these three theorems. In Section 4 we provide additional definitions, notation and summary of known
results that we use, together with some easy extensions. This section can be thought of as an expanded
version of preliminaries. We then develop our main technical tools: Basic Cluster Disengagement in
Section 5, Cluster Classification Theorem in Section 6 (with parts of the proof delayed to Section 11),
and Advanced Cluster Disengagement in Section 7. In Sections 8, 9 and 10 we provide the proofs of the
three main theorems. Sections 8 and 9 deal with decomposing wide instances, and Section 9 provides
an algorithm for decomposing a narrow instance.

2 Preliminaries

By default, all logarithms in this paper are to the base of 2. All graphs are undirected and finite.
Graphs may contain parallel edges but they may not contain self loops. Graphs without parallel edges
are explicitly referred to as simple graphs.

12

2.1 Graph-Theoretic Notation

We follow standard graph-theoretic notation. Let G = (V,E) be a graph. For a vertex v ∈ V , we
denote by δG(v) the set of all edges of G that are incident to v, and we denote degG(v) = |δG(v)|.
For two disjoint subsets A,B of vertices of G, we denote by EG(A,B) the set of all edges with one
endpoint in A and the other in B. For a subset S ⊆ V of vertices, we denote by G[S] the subgraph of
G induced by S, by EG(S) the set of all edges with both endpoints in S, and by δG(S) the set of all
edges with exactly one endpoint in S. Abusing the notation, for a subgraph C of G, we use δG(C) to
denote δG(V (C)).

Definition 2.1 (Congestion) Let G be a graph, let e be an edge of G, and let Q be a set of paths in
G. The congestion that the set Q of paths causes on edge e, denoted by congG(Q, e), is the number of
paths in Q that contain e. The total congestion of Q in G is congG(Q) = maxe∈E(G) {congG(Q, e)}.

2.2 Curves in General Position, Graph Drawings, Faces, and Crossings

Let γ be an open curve in the plane, and let P be a set of points in the plane. We say that γ is
internally disjoint from P if no inner point of γ lies in P . In other words, P ∩ γ may only contain the
endpoints of γ. Given a set Γ of open curves in the plane, we say that the curves in Γ are internally
disjoint if, for every pair γ, γ′ ∈ Γ of distinct curves, every point p ∈ γ ∩ γ′ is an endpoint of both
curves. We use the following definition of curves in general position.

Definition 2.2 (Curves in general position) Let Γ be a finite set of open curves in the plane. We
say that the curves of Γ are in general position, if the following conditions hold:

• for every pair γ, γ′ ∈ Γ of distinct curves, there is a finite number of points p with p ∈ γ ∩ γ′;

• for every pair γ, γ′ ∈ Γ of distinct curves, an endpoint of γ may not serve as an inner point of
γ′ or of γ; and

• for every triple γ, γ′, γ′′ ∈ Γ of distinct curves, if some point p lies on all three curves, then it
must be an endpoint of each of these three curves.

Let Γ be a set of curves in general position, and let γ, γ′ ∈ Γ be a pair of curves. Let p be any point
that lies on both γ and γ′, but is not an endpoint of either curve. We then say that point p is a
crossing between γ and γ′, or that curves γ and γ′ cross at point p. We are now ready to formally
define graph drawings.

Definition 2.3 (Graph Drawings) A drawing ϕ of a graph G in the plane is a map ϕ, that maps
every vertex v of G to a point ϕ(v) in the plane (called the image of v), and every edge e = (u, v)
of G to a simple curve ϕ(e) in the plane whose endpoints are ϕ(u) and ϕ(v) (called the image of e),
such that all points in set {ϕ(v) | v ∈ V (G)} are distinct, and the set {ϕ(e) | e ∈ E(G)} of curves is
in general position. Additionally, for every vertex v ∈ V (G) and edge e ∈ E(G), ϕ(v) ∈ ϕ(e) only if v
is an endpoint of e.

Assume now that we are given some drawing ϕ of graph G in the plane, and assume that for some
pair e, e′ of edges, their images ϕ(e), ϕ(e′) cross at point p. Then we say that (e, e′)p is a crossing in
the drawing ϕ (we may sometimes omit the subscript p if the images of the two edges only cross at
one point). We also say that p is a crossing point of drawing ϕ. We denote by cr(ϕ) the total number
of crossings in the drawing ϕ.

Note that a drawing of a graph G in the plane naturally defines a drawing of G on the sphere and
vice versa; we use both types of drawings.

13

For convenience, given a drawing ϕ of a graph G, we sometimes will not distinguish between the
edges of G and their images. For example, we may say that edges e, e′ cross in drawing ϕ to indicate
that their images cross. Similarly, we may not distinguish between vertices and their images. For
example, we may talk about the order in which edges of δG(v) enter vertex v in drawing ϕ, to
mean the order in which the images of the edges of δG(v) enter the image of v. We denote by

ϕ(G) =
(⋃

e∈E(G) ϕ(e)
)
∪ {ϕ(v) | v ∈ V (G)}.

Images of Paths. Assume that we are given a graph G, its drawing ϕ, and a path P in G. The
image of path P in ϕ, denoted by ϕ(P), is the curve that is obtained by concatenating the images of all
edges e ∈ E(P). Equivalently, ϕ(P) =

⋃
e∈E(P) ϕ(e). If P = {v} for some vertex v, then ϕ(P) = ϕ(v).

Planar Graphs and Planar Drawings. A graph G is planar if there is a drawing of G in the
plane with no crossings. A drawing ϕ of a graph G in the plane with cr(ϕ) = 0 is called a planar
drawing of G. We use the following result by Hopcroft and Tarjan.

Theorem 2.4 ([HT74]) There is an algorithm, that, given a graph G, correctly establishes whether G
is planar, and if so, computes a planar drawing of G. The running time of the algorithm in O(|V (G)|).

Faces of a Drawing. Suppose we are given a graph G and a drawing ϕ of G in the plane or on
the sphere. The set of faces of ϕ is the set of all connected regions of R2 \ ϕ(G). If G is drawn in the
plane, then we designate a single face of ϕ as the “outer”, or the “infinite” face.

Identical Drawings and Orientations. Assume that we are given some planar drawing ϕ of a
graph G. We can associate, with every face F of this drawing, a subgraph ∂(F) of G, containing all
vertices and edges of G whose images are contained in the boundary of F . Drawing ϕ of G can be
uniquely defined by the list F of all its faces, and, for every face F ∈ F , the corresponding subgraph
∂(F) of G. In particular, if ϕ,ϕ′ are two planar drawings of the graph G, and there is an one-to-one
mapping between the set F of the faces of ϕ and the set F ′ of the faces of ϕ′, and, for every face F ,
the graph ∂(F) is identical in both drawings, then we say that drawings ϕ and ϕ′ are identical.

Assume now that we are given a (possibly non-planar) drawing ϕ of a graph G. Let G′ be the graph
obtained from G by placing a vertex on every crossing of ϕ. We then obtain a planar drawing ψ of
the resulting graph G′, where every vertex v ∈ V (G′) \ V (G) corresponds to a unique crossing point
of ϕ. For every edge e ∈ E(G), let L(e) be the list of all vertices of G′ that correspond to crossings
in which edge e participates in ϕ, ordered in the order in which these crossings appear on the image
of edge e in ϕ, as we traverse it from one endpoint to another. Graph G′, its planar drawing ψ, and
the lists {L(e)}e∈E(G) uniquely define the drawing ϕ of G. In other words, if ϕ,ϕ′ are two drawings

of the graph G, for which (i) the corresponding graphs G′ are the same (up to renaming the vertices
of V (G′) \ V (G)); (ii) the induced planar drawings ψ of G′ are identical; and (iii) the vertex lists
{L(e)}e∈E(G) are identical, then ϕ and ϕ′ are identical drawings of G.

Assume now that ϕ is a drawing of a graph G in the plane, and let ϕ′ be the drawing of G that is the
mirror image of ϕ. We say that ϕ and ϕ′ are identical drawings of G, and that their orientations are
different, or opposite. We sometime say that ϕ′ is obtained by flipping the drawing ϕ.

We say that a graph G is 3-connected, if for every pair u, v ∈ V (G) of its vertices, G \ {u, v} is a
connected graph. We use the following well known result.

Theorem 2.5 ([Whi92]) Every 3-connected planar graph has a unique planar drawing.

14

2.3 Grids and Their Standard Drawings

The (r× r)-grid is a graph whose vertex set is {vi,j | 1 ≤ i, j ≤ r}, and edge set is the union of the set
{(vi,j , vi,j+1) | 1 ≤ i ≤ r, 1 ≤ j < r} of horizontal edges, and the set {(vi,j , vi+1,j) | 1 ≤ i < r, 1 ≤ j ≤ r}
of vertical edges. For 1 ≤ i ≤ r, the ith row of the grid is the subgraph of the grid graph induced
by vertex set {vi,j | 1 ≤ j ≤ r}. Similarly, for 1 ≤ j ≤ r, the jth column of the grid is the subgraph
of the grid graph induced by vertex set {vi,j | 1 ≤ i ≤ r}. Given an (r × r)-grid, we refer to vertices
v1,1, v1,r, vr,1, and vr,r as the corners of the grid. We also refer to the graph that is obtained from the
union of row 1, row r, column 1, and column r, as the boundary of the grid.

It is not hard to see that the (r× r)-grid has a unique planar drawing (this is since the (1×1)-grid and
the (2×2)-grid have unique planar drawings, and for all r ≥ 3, if we suppress the corner vertices of the
grid, we obtain a planar 3-connected graph, that has a unique planar drawing). We refer to this unique
planar drawing of the grid as its standard drawing (see Figure 2). For all 1 ≤ i, j ≤ r− 1, we let Celli,j
be the face of the standard drawing, that contains the images of the vertices vi,j , vi,j+1, vi+1,j , vi+1,j+1

on its boundary.

Figure 2: The standard drawing of the (r × r)-grid with Cell2,2 shown in green.

2.4 Circular Orderings, Orientations, and Rotation Systems

Suppose we are given a collection U = {u1, . . . , ur} of elements. Let D be any disc in the plane.
Assume further that we are given, for every element ui ∈ U , a point pi on the boundary of D, so
that all resulting points in {p1, . . . , pr} are distinct. As we traverse the boundary of the disc D in the
clock-wise direction, the order in which we encounter the points p1, . . . , pr defines a circular ordering
O of the elements of U . If we traverse the boundary of the disc D in the counter-clock-wise direction,
we obtain a circular ordering O′ of the elements of U , which is the mirror image of the ordering O.
We say that the orderings O and O′ are identical but their orientations are different, or opposite: O
has a negative and O′ has a positive orientation. Whenever we refer to an ordering O of elements, we
view it as unoriented (that is, the orientation can be chosen arbitrarily). When the orientation of the
ordering is fixed, we call it an oriented ordering, and denote it by (O, b), where O is the associated
(unoriented) ordering of elements of U , and b ∈ {−1, 1} is the orientation, with b = −1 indicating a
negative (that is, clock-wise), orientation.

We will also consider graph drawings on the sphere. In this case, when we say we traverse the boundary
of a disc D in the clock-wise direction, we mean that we traverse the boundary of D so that the interior
of D lies to our right. Similarly, we traverse the boundary of D in the counter-clock-wise direction, if
the interior of D lies to our left. Circular orderings and orientations are then defined similarly.

15

Given a graph G and a vertex v ∈ V (G), a circular ordering Ov of the edges of δG(v) is called a
rotation. A collection of circular orderings Ov for all vertices v ∈ V (G) is called a rotation system for
graph G.

2.5 Tiny v-Discs and Drawings that Obey Rotations

Given a graph G, its drawing ϕ, and a vertex v ∈ V (G), we will sometimes utilize the notion of a tiny
v-disc, that we define next.

Definition 2.6 (Tiny v-Disc) Let G be a graph and let ϕ be a drawing of G on the sphere or in the
plane. For each vertex v ∈ V (G), we denote by Dϕ(v) a very small disc containing the image of v in
its interior, and we refer to Dϕ(v) as tiny v-disc. Disc Dϕ(v) must be small enough to ensure that,
for every edge e ∈ δG(v), the image ϕ(e) of e intersects the boundary of Dϕ(v) at a single point, and
ϕ(e) ∩ Dϕ(v) is a contiguous curve. Additionally, we require that for every vertex u ∈ V (G) \ {v},
ϕ(u) 6∈ Dϕ(v); for every edge e′ ∈ E(G) \ δG(v), ϕ(e′) ∩ Dϕ(v) = ∅; and that no crossing point of
drawing ϕ is contained in Dϕ(v). Lastly, we require that all discs in {Dϕ(v) | v ∈ V (G)} are mutually
disjoint.

Consider now a graph G, a vertex v ∈ V (G), and a drawing ϕ of G. Consider the tiny v-disc
D = Dϕ(v). For every edge e ∈ δG(v), let pe be the (unique) intersection of the image ϕ(e) of e
and the boundary of the disc D. Let O be the (unoriented) circular ordering in which the points of
{pe}e∈δG(v) appear on the boundary of D. Then O naturally defines a circular ordering O∗v of the
edges of δG(v): ordering O∗v is obtained from O by replacing, for each edge e ∈ δG(v), point pe with
the edge e. We say that the images of the edges of δG(v) enter the image of v in the order O∗v in the
drawing ϕ. For brevity, we may sometimes say that the edges of δG(v) enter v in the order O∗v in ϕ.
While we view the ordering O∗v as unoriented, drawing ϕ also defines an orientation for this ordering.
If the points in set {pe | e ∈ δG(v)} are encountered in the order O∗v when traversing the boundary of
D in the counter-clock-wise direction, then the orientation is 1, and otherwise it is −1.

Assume now that we are given a graph G and a rotation system Σ for G. Let ϕ be a drawing of G.
Consider any vertex v ∈ V (G), and its rotation Ov ∈ Σ. We say that the drawing ϕ obeys the rotation
Ov ∈ Σ, if the order in which the edges of δG(v) enter v in ϕ is precisely Ov (note that both orderings
are unoriented). We say that the orientation of v is −1, or negative, in the drawing ϕ if the orientation
of the ordering Ov of the edges of δG(v) as they enter v is −1, and otherwise, the orientation of v in
ϕ is 1, or positive. We say that drawing ϕ of G obeys the rotation system Σ, if it obeys the rotation
Ov ∈ Σ for every vertex v ∈ V (G).

Assume now that we are given a set Γ of curves in general position, where each curve γ ∈ Γ is an open
curve. Let p be any point that serves as an endpoint of at least one curve in Γ, and let Γ′ ⊆ Γ be the
set of curves for which p serves as an endpoint. We then define a tiny p-disc D(p) to be a small disc
that contains the point p in its interior; does not contain any other point that serves as an endpoint of
a curve in Γ; and does not contain any crossing point of curves in Γ. Additionally, we ensure that, for
every curve γ ∈ Γ, if γ ∈ Γ′, then γ ∩D(p) is a simple curve, and otherwise γ ∩D(p) = ∅. For every
curve γ ∈ Γ′, let q(γ) be the unique point of γ lying on the boundary of the disc D(p). Note that all
points in {q(γ) | γ ∈ Γ′} are distinct. Let O be the circular order in which these points are encountered
when we traverse the boundary of D(p). As before, this ordering naturally defines a circular ordering
O′ of the curves in Γ′. We then say that the curves of Γ′ enter the point p in the order O′.

2.6 Problem Definitions and Trivial Algorithms

In the Minimum Crossing Number problem, the input is an n-vertex graph G, and the goal is to compute
a drawing of G in the plane with minimum number of crossings. The value of the optimal solution,

16

also called the crossing number of G, is denoted by OPTcr(G).

We also consider a closely related problem called Minimum Crossing Number with Rotation System
(MCNwRS). In this problem, the input is a graph G, and a rotation system Σ for G. Given an instance
I = (G,Σ) of the MCNwRS problem, we say that a drawing ϕ of G is a feasible solution for I if ϕ
obeys the rotation system Σ. The cost of the solution is the number of crossings in ϕ. The goal in the
MCNwRS problem is to compute a feasible solution to the given input instance I of smallest possible
cost. We denote the cost of the optimal solution of the MCNwRS instance I by OPTcnwrs(I).

We use the following two simple theorems about the MCNwRS problem, whose proofs are deferred to
Appendix B.1 and Appendix B.2, respectively.

Theorem 2.7 There is an efficient algorithm, that, given an instance I = (G,Σ) of MCNwRS, cor-
rectly determines whether OPTcnwrs(I) = 0, and, if so, computes a feasible solution to instance I of
cost 0.

Theorem 2.8 There is an efficient algorithm, that given an instance I = (G,Σ) of MCNwRS, com-
putes a feasible solution to I, of cost at most |E(G)|2.

We refer to the solution computed by the algorithm from Theorem 2.8 as a trivial solution. We will
also use the following lemma from [CMT20], that allows us to insert edges into a partial solution to
MCNwRS problem instance.

Lemma 2.9 (Lemma 9.2 of [CMT20]) There is an efficient algorithm, that, given an instance
I = (G,Σ) of the MCNwRS problem, a subset E′ ⊆ E(G) of edges of G, and a drawing ϕ of graph
G \ E′ that obeys Σ, computes a solution ϕ′ to instance I, with cr(ϕ′) ≤ cr(ϕ) + |E′| · |E(G)|.

2.7 A ν-Decomposition of an Instance

A central tool that we use in our divide-and-conquer algorithm is a ν-decomposition of instances.

Definition 2.10 (ν-Decomposition of Instances) Let I = (G,Σ) be an instance of MCNwRS with
|E(G)| = m, and let ν ≥ 1 be a parameter. We say that a collection I of instances of MCNwRS is a
ν-decomposition of I, if the following hold:

D1.
∑

I′=(G′,Σ′)∈I |E(G′)| ≤ m · (logm)O(1);

D2.
∑

I′∈I OPTcnwrs(I
′) ≤ (OPTcnwrs(I) +m) · ν; and

D3. there is an efficient algorithm Alg(I), that, given, a feasible solution ϕ(I ′) to every instance
I ′ ∈ I, computes a feasible solution ϕ to instance I, of cost cr(ϕ) ≤ O

(∑
I′∈I cr(ϕ(I ′))

)
.

We say that a randomized algorithm Alg is a ν-decomposition algorithm for a family I∗ of instances
of MCNwRS if Alg is an efficient algorithm, that, given an instance I = (G,Σ) ∈ I∗, produces a
collection I of instances that has properties D1 and D3, and ensures the following additional property
(that replaces Property D2):

D’2. E
[∑

I′∈I OPTcnwrs(I
′)
]
≤ (OPTcnwrs(I) + |E(G)|) · ν.

In the following claim, whose proof appears in Appendix B.3, we show that algorithms for computing
ν-decompositions can be naturally composed together.

17

Claim 2.11 Let Alg1 be a randomized ν ′-decomposition algorithm for some family I∗ of instances
of MCNwRS. Assume that, given an instance I ∈ I∗, algorithm Alg1 produces a collection I ′ of
instances, all of which belong to some family I∗∗ of instances of MCNwRS. Let Alg2 be a randomized
ν ′′-decomposition algorithm for family I∗∗ of instances of MCNwRS. Lastly, let Alg be a randomized
algorithm, that, given an instance I ∈ I∗ of MCNwRS, applies Algorithm Alg1 to I, to obtain a
collection I ′ of instances, and then, for every instance I ′ ∈ I ′, applies Algorithm Alg2 to I ′, obtaining
a collection I ′′(I ′) of instances. The output of algorithm Alg is the collection I =

⋃
I′∈I′ I ′′(I ′) of

instances of MCNwRS. Then Alg is a randomized ν-decomposition algorithm for family I∗ of instances
of MCNwRS, for ν = ν ′′ ·max

{
2ν ′, (logm)O(1)

}
, where m is the number of edges in instance I.

2.8 Subinstances

We use the following definition of subinstances.

Definition 2.12 (Subinstances) Let I = (G,Σ) and I ′ = (G′,Σ′) be two instances of MCNwRS.
We say that instance I ′ is a subinstance of instance I, if there is a subgraph G̃ ⊆ G, and a collection
S1, . . . , Sr of mutually disjoint subsets of vertices of G̃, such that graph G′ can be obtained from G̃
by contracting, for all 1 ≤ i ≤ r, every vertex set Si into a supernode ui; we keep parallel edges but
remove self-loops3. We do not distinguish between the edges incident to the supernodes in graph G′

and their counterparts in graph G. For every vertex v ∈ V (G′) ∩ V (G), its rotation O′v in Σ′ must be
consistent with the rotation Ov ∈ Σ, while for every supernode ui, its rotation O′ui in Σ′ can be defined
arbitrarily.

Observe that, if instance I ′ = (G′,Σ′) is a subinstance of I = (G,Σ), then |E(G′)| ≤ |E(G)|. Also
notice that the subinstance relation is transitive: if instance I1 is a subinstance of instance I0, and
instance I2 is a subinstance of I1, then I2 is a subinstance of I0.

3 An Algorithm for MCNwRS– Proof of Theorem 1.1

In this section we provide the proof of Theorem 1.1, with some of the details deferred to subsequent
sections. Throughout the paper, we denote by I∗ = (G∗,Σ∗) the input instance of the MCNwRS
problem, and we denote m∗ = |E(G∗)|. We also use the following parameter that is central to our

algorithm: µ = 2c
∗(logm∗)7/8 log logm∗ , where c∗ is a large enough constant.

As mentioned already, our algorithm for solving the MCNwRS problem is recursive, and, over the course
of the recursion, we will consider various other instances I of MCNwRS. Throughout the algorithm,
parameters m∗ and µ remain unchanged, and are defined with respect to the original input instance
I∗. The main technical ingredient of the proof is the following theorem.

Theorem 3.1 There is a constant c′′, and an efficient randomized algorithm, that, given an instance
I = (G,Σ) of MCNwRS with m = |E(G)|, such that µc

′′ ≤ m ≤ m∗, either returns FAIL, or computes
a collection I of instances of MCNwRS with the following properties:

• for every instance I ′ = (G′,Σ′) ∈ I, |E(G′)| ≤ m/µ;

•
∑

I′=(G′,Σ′)∈I |E(G′)| ≤ m · (logm)O(1);

• there is an efficient algorithm called AlgCombineDrawings, that, given a solution ϕ(I ′) to every
instance I ′ ∈ I, computes a solution ϕ to instance I; and

3Note that this definition is similar to the definition of a minor, except that we do not require that the induced
subgraphs G[Si] of G are connected.

18

• if OPTcnwrs(I) ≤ |E(G)|2/µc′′, then with probability at least 15/16, all of the following hold:

– the algorithm does not return FAIL;

– I 6= ∅;
–
∑

I′∈I OPTcnwrs(I
′) ≤ (OPTcnwrs(I) +m) · 2O((logm)3/4 log logm); and

– if algorithm AlgCombineDrawings is given as input a solution ϕ(I ′) to every instance I ′ ∈ I,
then the resulting solution ϕ to instance I that it computes has cost at most:

O

(∑
I′∈I

cr(ϕ(I ′))

)
+ (OPTcnwrs(I) +m) · µO(1).

The remainder of this paper is dedicated to the proof of Theorem 3.1. In the following subsection, we
complete the proof of Theorem 1.1 using Theorem 3.1.

3.1 Proof of Theorem 1.1

Throughout the proof, we assume that m∗ is larger than a sufficiently large constant, since otherwise
we can return a trivial solution to instance I∗, from Theorem 2.8.

We let cg > 100 be a large enough constant, so that, for example, when the algorithm from Theorem 3.1
is applied to an instance I = (G,Σ) with m = |E(G)|, such that µc

′′ ≤ m ≤ m∗ holds, it is guaranteed
to return a family I of instances of MCNwRS, with

∑
I′=(G′,Σ′)∈I |E(G′)| ≤ m · (logm)cg . We say that

the algorithm from Theorem 3.1 is successful if all of the following hold:

• the algorithm does not return FAIL;

• if I is the collection of instances returned by the algorithm, then I 6= ∅;

•
∑

I′∈I OPTcnwrs(I
′) ≤ (OPTcnwrs(I) +m) · 2cg((logm)3/4 log logm); and

• if algorithm AlgCombineDrawings is given a solution ϕ(I ′) to every instance I ′ ∈ I, then it
computes a solution ϕ to instance I, of cost at most cg ·(

∑
I′∈I cr(ϕ(I ′))+(OPTcnwrs(I)+m) ·µcg .

By letting cg be a large enough constant, Theorem 3.1 guarantees that, if OPTcnwrs(I) ≤ |E(G)|2/µc′′ ,
then with probability at least 15/16 the algorithm is successful. We assume that the parameter c∗ in
the definition of µ is sufficiently large, so that, e.g., c∗ > 2cg.

We use a simple recursive algorithm called AlgRecursiveCNwRS, that appears in Figure 3.

In order to analyze the algorithm, it is convenient to associate a partitioning tree T with it, whose
vertices correspond to all instances of MCNwRS considered over the course of the algorithm. Let
L = dlogm∗e. We start with the tree T containing a single root vertex v(I∗), representing the input
instance I∗. Consider now some vertex v(I) of the tree, representing some instance I = (G,Σ). When
Algorithm AlgRecursiveCNwRS was applied to instance I, if it did not terminate after the first three
steps, it constructed L collections I1(I), . . . , IL(I) of instances (some of which may be empty, in case
the algorithm from Theorem 3.1 returned FAIL in the corresponding iteration). For each such instance
I ′ ∈

⋃L
j=1 Ij(I), we add a vertex v(I ′) representing instance I ′ to T , that becomes a child vertex of

v(I). This concludes the description of the partitioning tree T .

We denote by I∗ = {I | v(I) ∈ V (T)} the set of all instances of MCNwRS, whose corresponding vertex
appears in the tree T . For each such instance I ∈ I∗, its recursive level is the distance from vertex
v(I) to the root vertex v(I∗) in the tree T (so the recursive level of v(I∗) is 0). For j ≥ 0, we denote
by Îj ⊆ I∗ the set of all instances I ∈ I∗, whose recursive level is j. Lastly, the depth of the tree

19

AlgRecursiveCNwRS

Input: an instance I = (G,Σ) of the MCNwRS problem, with |E(G)| ≤ m∗.
Output: a feasible solution to instance I.

1. Use the algorithm from Theorem 2.7 to determine whether OPTcnwrs(I) = 0. If so, use the
algorithm from Theorem 2.7 to compute a solution to I of cost 0. Return this solution, and
terminate the algorithm.

2. Use the algorithm from Theorem 2.8 to compute a trivial solution ϕ′ to instance I.

3. If |E(G)| ≤ µc′′ , return the trivial solution ϕ′ and terminate the algorithm.

4. For 1 ≤ j ≤ dlogm∗e:

(a) Apply the algorithm from Theorem 3.1 to instance I.

(b) If the algorithm returns FAIL, let ϕj = ϕ′ be the trivial solution to instance I, and set
Ij(I) = ∅.

(c) Otherwise:

i. Let Ij(I) be the collection of instances computed by the algorithm.

ii. For every instance I ′ ∈ Ij(I), apply Algorithm AlgRecursiveCNwRS to instance I ′,
to obtain a solution ϕ(I ′) to this instance.

iii. Apply Algorithm AlgCombineDrawings from Theorem 3.1 to solutions {ϕ(I ′)}I′∈Ij(I),
to obtain a solution ϕj to instance I.

Return a solution to instance I from among
{
ϕ′, ϕ1, . . . , ϕdlogm∗e

}
that has fewest crossings.

Figure 3: AlgRecursiveCNwRS

20

T , denoted by dep(T), is the largest recursive level of any instance in I∗. In order to analyze the
algorithm, we start with the following two simple observations.

Observation 3.2 dep(T) ≤ (logm∗)1/8

c∗ log logm∗ .

Proof: Consider any non-root vertex v(I) in the tree T , and let v(I ′) be the parent-vertex of v(I).
Denote I = (G,Σ) and I ′ = (G′,Σ′). From the construction of tree T , instance I belongs to some
collection of instances obtained by applying the algorithm from Theorem 3.1 to instance I ′. Therefore,
from Theorem 3.1, |E(G)| ≤ |E(G′)|/µ must hold. Therefore, for all j ≥ 0, for every instance

I = (G,Σ) ∈ Îj , |E(G)| ≤ m∗/µj . Since µ = 2c
∗(logm∗)7/8 log logm∗ , we get that dep(T) ≤ (logm∗)1/8

c∗ log logm∗ .

Observation 3.3
∑

I=(G,Σ)∈I∗ |E(G)| ≤ m∗ · 2(logm∗)1/8.

Proof: Consider any non-leaf vertex v(I) of the tree T , and denote I = (G,Σ). Recall that, when
Algorithm AlgRecursiveCNwRS is applied to instance I, it uses the algorithm from Theorem 3.1 to
compute L collections I1(I), . . . , IL(I) of instances, such that, if we denote |E(G)| = m, then, for all
1 ≤ j ≤ L: ∑

I′=(G′,Σ′)∈Ij(I)

|E(G′)| ≤ m · (logm)cg ≤ m · (logm∗)cg

(since m ≤ m∗ must hold). Since L ≤ 2 logm∗, and m∗ is sufficiently large, we get that:

L∑
j=1

∑
I′=(G′,Σ′)∈Ij(I)

|E(G′)| ≤ m · (logm∗)cg+2.

For all j ≥ 0, we denote byNj the total number of edges in all instances in set Îj , Nj =
∑

I=(G,Σ)∈Îj |E(G)|.
Clearly, N0 = m∗, and, from the above discussion, for all j > 0, Nj ≤ Nj−1 · (logm∗)cg+2.

Since dep(T) ≤ (logm∗)1/8

c∗ log logm∗ , we conclude that:∑
I=(G,Σ)∈I∗

|E(G)| ≤ m∗ · (logm∗)2cg ·(logm∗)1/8/(c∗ log logm∗) ≤ m∗ · 2(logm∗)1/8 ,

since cg ≤ c∗/2.

We use the following corollary, that follows immediately from Observation 3.3.

Corollary 3.4 The number of instances I = (G,Σ) ∈ I∗ with |E(G)| ≥ µc′′ is at most m∗.

We say that an instance I ∈ I∗ is a leaf instance, if vertex v(I) is a leaf vertex of the tree T , and
we say that it is a non-leaf instance otherwise. Consider now a non-leaf instance I = (G,Σ) ∈ I∗.
We say that a bad event E(I) happens, if 0 < OPTcnwrs(I) ≤ |E(G)|2/µc′′ , and, for all 1 ≤ j ≤ L,
the jth application of the algorithm from Theorem 3.1 to instance I was unsuccessful. Clearly, from
Theorem 3.1, Pr [E(I)] ≤ (1/16)L ≤ 1/(m∗)4. Let E be the bad event that event E(I) happened for
any instance I ∈ I∗. From the Union Bound and Corollary 3.4, we get that Pr [E] ≤ 1/(m∗)2. We
use the following immediate observation.

Observation 3.5 If Event E does not happen, then for every leaf vertex v(I) of T with I = (G,Σ),
either |E(G)| ≤ µc′′; or OPTcnwrs(I) = 0; or OPTcnwrs(I) > |E(G)|2/µc′′.

We use the following lemma to complete the proof of Theorem 1.1.

21

Lemma 3.6 If Event E does not happen, then Algorithm AlgRecursiveCNwRS computes a solution for
instance I∗ = (G∗,Σ∗) of cost at most 2O((logm∗)7/8 log logm∗) · (OPTcnwrs(I

∗) + |E(G∗)|).

Proof: Consider a non-leaf instance I = (G,Σ), and let I1(I), . . . , IL(I) be families of instances of
MCNwRS that Algorithm AlgRecursiveCNwRS computed, when applied to instance I. Recall that, for
each 1 ≤ j ≤ L with Ij(I) 6= ∅, the algorithm computes a solution ϕj to instance I, by first solving
each of the instances in Ij(I) recursively, and then combining the resulting solutions using Algorithm
AlgCombineDrawings. Eventually, the algorithm returns the best solution of {ϕ′, ϕ1, . . . , ϕL}, where
ϕ′ is the trivial solution, whose cost is at most |E(G)|2. We fix an arbitrary index 1 ≤ j ≤ L, such
that the jth application of the algorithm from Theorem 3.1 to instance I was successful. Note that
the cost of the solution to instance I that the algorithm returns is at most cr(ϕj). We then mark the
vertices of {v(I ′) | I ′ ∈ Ij(I)} in the tree T . We also mark the root vertex of the tree.

Let T ∗ be the subgraph of T induced by all marked vertices. It is easy to verify that T ∗ is a tree,
and moreover, if E did not happen, every leaf vertex of T ∗ is also a leaf vertex of T . For a vertex
v(I) ∈ V (T ∗), we denote by h(I) the length of the longest path in tree T ∗, connecting vertex v(I)
to any of its descendants in the tree. We use the following claim, whose proof is straightforward
conceptually but somewhat technical; we defer the proof to Appendix C.1.

Claim 3.7 Assume that Event E did not happen. Then there is a fixed constant c̃ ≥ max {c′′, cg, c∗},
such that, for every vertex v(I) ∈ V (T ∗), whose corresponding instance is denoted by I = (G,Σ), the
cost of the solution that the algorithm computes for I is at most:

2c̃·h(I)·(logm∗)3/4 log logm∗ · µc′′·cg · OPTcnwrs(I) + (logm∗)4cgh(I)µ2c′′·c̃ · |E(G)|.

We are now ready to complete the proof of Lemma 3.6. Recall that h(I∗) = dep(T ∗) ≤ dep(T) ≤
(logm∗)1/8

c∗ log logm∗ from Observation 3.2. Therefore, from Claim 3.7, the cost of the solution that the algorithm
computes for instance I∗ is bounded by:

2O(dep(T))·(logm∗)3/4 log logm∗ · µO(1) · OPTcnwrs(I
∗) + (logm∗)O(dep(T)) · µO(1) ·m∗

≤ 2O((logm∗)7/8) · µO(1) · OPTcnwrs(I
∗) + (logm∗)O((logm∗)1/8/ log logm∗) · µO(1) ·m∗

≤ 2O((logm∗)7/8 log logm∗) · (OPTcnwrs(I
∗) + |E(G∗)|) ,

since µ = 2O((logm∗)7/8 log logm∗).

In order to complete the proof of Theorem 1.1, it is now enough to prove Theorem 3.1. The remainder
of the paper is dedicated to the proof of Theorem 3.1.

3.2 Proof of Theorem 3.1 – Main Definitions and Theorems

We classify instances of MCNwRS into wide and narrow. Wide instances are, in turn, classified into
well-connected and not well-connected instances. We then provide different algorithms for decomposing
instances of each of the resulting three kinds. We use the following notion of a high-degree vertex.

Definition 3.8 (High-degree vertex) Let G be any graph. A vertex v ∈ V (G) is a high-degree
vertex, if degG(v) ≥ |E(G)|/µ4.

We are now ready to define wide and narrow instances.

Definition 3.9 (Wide and Narrow Instances) Let I = (G,Σ) be an instance of MCNwRS with
|E(G)| = m. We say that I is a wide instance, if there is a high-degree vertex v ∈ V (G), a partition

22

(E1, E2) of the edges of δG(v), such that the edges of E1 appear consecutively in the rotation Ov ∈ Σ,
and so do the edges of E2, and there is a collection P of at least

⌊
m/µ50

⌋
simple edge-disjoint cycles

in G, such that every cycle P ∈ P contains one edge of E1 and one edge of E2. An instance that is
not wide is called narrow.

Note that there is an efficient algorithm to check whether a given instance I of MCNwRS is wide, and,
if so, to compute the corresponding set P of cycles, via standard algorithms for maximum flow. (For
every vertex v ∈ V (G), we try all possible partitions (E1, E2) of δG(v) with the required properties, as
the number of such partitions is bounded by |δG(v)|2.) We will use the following simple observation
regarding narrow instances.

Observation 3.10 If an instance I = (G,Σ) of MCNwRS is narrow, then for every pair u, v of
distinct high-degree vertices of G, and any set P of edge-disjoint paths connecting u to v in G, |P| ≤
2
⌈
|E(G)|/µ50

⌉
must hold.

Proof: Assume for contradiction that I = (G,Σ) is a narrow instance of MCNwRS, with |E(G)| = m,
and that there are two high-degree vertices u, v of G, and a set P of more than 2

⌈
m/µ50

⌉
edge-disjoint

paths in G connecting u to v. We denote |P| = k. Let E′ ⊆ δG(v) be the set of all edges e ∈ δG(v),
such that e is the first edge on some path in P. We denote E′ = {e1, . . . , ek}, where the edges are
indexed according to their ordering in the rotation Ov ∈ Σ. We also denote P = {P (ei) | 1 ≤ i ≤ k},
where path P (ei) contains the edge ei as its first edge. We can then compute a partition (E1, E2) of
δG(v), such that the edges of E1 appear consecutively in the rotation Ov ∈ Σ, and so do the edges of
E2. Additionally, we can ensure that e1, . . . , edk/2e ∈ E1, while the remaining edges of E′ lie in E2.
For each 1 ≤ i ≤

⌈
m/µ50

⌉
, we let Qi be the cycle obtained by concatenating the paths P (ei) and

P (ek−i+1). We turn Qi into a simple cycle, by removing from it all cycles that are disjoint from vertex
v. It is then immediate to verify that the set

{
Qi | 1 ≤ i ≤

⌈
m/µ50

⌉}
of cycles has all the required

properties to establish that instance I is wide, a contradiction.

Next, we define well-connected wide instances.

Definition 3.11 (Well-Connected Wide Instances) Let I = (G,Σ) be a wide instance of MCNwRS
with |E(G)| = m. We say that it is a well-connected instance iff for every pair u, v of distinct vertices
of G with degG(v), degG(u) ≥ m/µ5, there is a collection of at least 8m

µ50
edge-disjoint paths connecting

u to v in G.

The proof of Theorem 3.1 relies on the following three theorems. The first theorem deals with wide
instances that are not necessarily well-connected. Its proof is deferred to Section 8.

Theorem 3.12 There is an efficient randomized algorithm, whose input is a wide instance I = (G,Σ)
of MCNwRS, with m = |E(G)|, such that µ20 ≤ m ≤ m∗ holds. The algorithm computes a ν-

decomposition I of I, for ν = 2O((logm)3/4 log logm), such that every instance I ′ = (G′,Σ′) ∈ I is a
subinstance of I, and one of the following holds for it:

• either |E(G′)| ≤ m/µ;

• or I ′ is a narrow instance;

• or I ′ is a wide and well-connected instance.

The second theorem deals with wide well-connected instances. Its proof appears in Section 9.

23

Theorem 3.13 There is an efficient randomized algorithm, whose input is a wide and well-connected
instance I = (G,Σ) of MCNwRS, with m = |E(G)|, such that µc

′ ≤ m ≤ m∗ holds, for some large
enough constant c′. The algorithm either returns FAIL, or computes a non-empty collection I of
instances of MCNwRS, such that the following hold:

•
∑

I′=(G′,Σ′)∈I |E(G′)| ≤ 2|E(G)|;

• for every instance I ′ = (G′,Σ′) ∈ I, either |E(G′)| ≤ m/µ, or instance I ′ narrow;

• there is an efficient algorithm called AlgCombineDrawings′, that, given a solution ϕ(I ′) to every
instance I ′ ∈ I, computes a solution ϕ to instance I; and

• if OPTcnwrs(I) ≤ m2/µc
′

then, with probability at least 1− 1/µ2, all of the following hold:

– the algorithm does not return FAIL;

–
∑

I′∈I OPTcnwrs(I
′) ≤ OPTcnwrs(I) · (logm)O(1); and

– if algorithm AlgCombineDrawings′ is given as input a solution ϕ(I ′) to every instance I ′ ∈ I,
then the resulting solution ϕ to instance I that it computes has cost at most: cr(ϕ) ≤∑

I′∈I cr(ϕ(I ′)) + OPTcnwrs(I) · µO(1).

The third theorem deals with narrow instances, and its proof appears in Section 10.

Theorem 3.14 There is an efficient randomized algorithm, whose input is a narrow instance I =
(G,Σ) of MCNwRS, with m = |E(G)|, such that µ50 ≤ |E(G)| ≤ 2m∗. The algorithm either returns

FAIL, or computes a ν-decomposition I of I, for ν = 2O((logm)3/4 log logm), such that, for every instance
I ′ = (G′,Σ′) ∈ I, |E(G′)| ≤ m/(2µ). Moreover, if OPTcnwrs(I) < m2/µ21, then the probability that
the algorithm returns FAIL is at most O(1/µ2).

The majority of the remainder of this paper is dedicated to the proofs of the above three theorems.
Before we provide these proofs, we develop central technical tools that they use, in Sections 5 – 7. In
the remainder of this section, we complete the proof of Theorem 3.1 using Theorems 3.12, 3.13, and
3.14.

Recall that we are given an instance I = (G,Σ) of MCNwRS, with µc
′′ ≤ |E(G)| ≤ m∗, for some large

enough constant c′′. We assume that c′′ > 100c′, where c′ is the constant in Theorem 3.13. We use
another large constant c′g, and we assume that c∗ > c′g > c′′, where c∗ is the constant in the definition
of the parameter µ. Throughout, we denote m = |E(G)|. We compute the desired collection I∗ of
instances in three steps.

Step 1

Assume first that the input instance I is a wide instance. We apply the algorithm from Theorem 3.12
to I. Let Î be the resulting collection of instances. We partition the set Î of instances into three
subsets. The first set, denoted by Îsmall, contains all instances I ′ = (G′,Σ′) ∈ Î with |E(G′)| ≤ m/µ.

The second set, denoted by Î(n)
large, contains all narrow instances in Î \ Îsmall. The third set, denoted by

Î(w)
large, contains all remaining instances of Î. From Theorem 3.12, every instance in Î(w)

large is wide and

well-connected. Since every instance I ′ = (G′,Σ′) ∈ Î is a subinstance of I, |E(G′)| ≤ |E(G)| ≤ m∗

must hold. Recall that, from Theorem 3.12, Î is a ν1-decomposition for I, for ν1 = 2O((logm)3/4 log logm).
Therefore:

24

∑
I′=(G′,Σ′)∈Î

|E(G′)| ≤ m · (logm)c
′
g , (1)

and

E

∑
I′∈Î

OPTcnwrs(I
′)

 ≤ (OPTcnwrs(I) +m) · ν1.

Bad Event E1. We say that a bad event E1 happens if
∑

I′∈Î OPTcnwrs(I
′) > 100·(OPTcnwrs(I) +m)·

ν1. From the Markov Bound, Pr [E1] ≤ 1/100. Note that, if event E1 did not happen, then for each
instance I ′ ∈ Î, OPTcnwrs(I

′) ≤ 100 ·(OPTcnwrs(I) +m) ·ν1. We need the following simple observation.

Observation 3.15 Assume that OPTcnwrs(I) ≤ m2/µc
′′
, and that Event E1 did not happen. Then for

every instance I ′ = (G′,Σ′) ∈ Î(n)
large ∪ Î

(w)
large, OPTcnwrs(I

′) ≤ |E(G′)|2/µc′.

Proof: If OPTcnwrs(I) ≤ m2/µc
′′
, and Event E1 did not happen, then for every instance I ′ ∈ Î(n)

large ∪
Î(w)
large:

OPTcnwrs(I
′) ≤ 100 · (OPTcnwrs(I) +m) · ν1 ≤ µ · (OPTcnwrs(I) +m) ≤ µ ·

(
m2

µc′′
+m

)
≤ m2

µc′

(since c′′ > 100c′ is a large enough constant and m ≥ µc′′).
Assume now that instance I is a narrow instance. Then we simply set Î = Î(n)

large = {I} and Îsmall =

Î(w)
large = ∅. This completes the description of the first step.

Step 2

In the second step, we apply the algorithm from Theorem 3.13 to every instance I ′ ∈ Î(w)
large. If the

algorithm returns FAIL, then we terminate our algorithm and return FAIL as well. Assume now that
the algorithm from Theorem 3.13, when applied to instance I ′, did not return FAIL. We let Ĩ(I ′) be
the collection of instances that the algorithm computes. Recall that we are guaranteed that, for each

instance Ĩ = (G̃, Σ̃) ∈ Ĩ(I ′), either Ĩ is a narrow instance, or |E(G̃)| ≤ |E(G′)|
µ ≤ m

µ (we have used the

fact that |E(G′)| ≤ m, since I ′ = (G′,Σ′) is a subinstance of I). Additionally, we are guaranteed that:∑
Ĩ=(G̃,Σ̃)∈Ĩ(I′)

|E(G̃)| ≤ 2|E(G′)|. (2)

In particular, for every instance Ĩ = (G̃, Σ̃) ∈ Ĩ(I ′), |E(G̃)| ≤ 2|E(G′)| ≤ 2m ≤ 2m∗.

We say that the application of the algorithm from Theorem 3.13 to an instance I ′ = (G′,Σ′) ∈ Î(w)
large

is successful, if (i) the algorithm does not return FAIL; (ii)
∑

Ĩ∈Ĩ(I′) OPTcnwrs(Ĩ) ≤ OPTcnwrs(I
′) ·

(logm)c
′
g ; and (iii) there is an efficient algorithm AlgCombineDrawings′, that, given a solution ϕ(Ĩ) to

every instance Ĩ ∈ Ĩ(I ′), computes a solution ϕ(I ′) to instance I ′ with cr(ϕ(I ′)) ≤
∑

Ĩ∈Ĩ(I′) cr(ϕ(Ĩ)) +

OPTcnwrs(I
′) · µc′g .

25

Bad Event E2. For an instance I ′ = (G′,Σ′) ∈ Î(w)
large, we say that a bad event E2(I ′) happens if the

algorithm from Theorem 3.13, when applied to instance I ′, was not successful. From Theorem 3.13
and Observation 3.15, if OPTcnwrs(I) ≤ m2/µc

′′
, then Pr [E2(I ′) | ¬E1] ≤ 1/µ2 (since we can assume

that c′g is a large enough constant).

We let E2 be the bad event that at least of the events in
{
E2(I ′) | I ′ ∈ Î(w)

large

}
happened.

Recall that, from the definition of the set I(w)
large of instances, for every instance I ′ = (G′,Σ′) ∈ Î(w)

large,
|E(G′)| ≥ m

µ holds. On the other hand, from Equation 1,∑
I′=(G′,Σ′)∈Î(w)

large

|E(G′)| ≤
∑

I′=(G′,Σ′)∈Î

|E(G′)| ≤ m · (logm)c
′
g .

Therefore, |Î(w)
large| ≤ µ · (logm)c

′
g . From the Union Bound, if OPTcnwrs(I) ≤ m2

µc′′
, then Pr [E2 | ¬E1] ≤

µ·(logm)
c′g

µ2
≤ 1

100 .

Let Ĩ =
⋃
I′∈Î(w)

large

Ĩ(I ′). Note that, from Inequalities 1 and 2, we get that:∑
Ĩ=(G̃,Σ̃)∈Ĩ

|E(G̃)| ≤ 2m · (logm)c
′
g . (3)

We partition the instances in set Ĩ into two subsets: set Ĩsmall, containing all instances Ĩ = (G̃, Σ̃) in

Ĩ with |E(G̃)| ≤ m/µ, and set Ĩ(n)
large, containing all remaining instances. From Theorem 3.13, every

instance Ĩ ∈ Ĩ(n)
large is narrow. This completes the description of the second step.

Step 3

We focus on four sets of instances that we have constructed so far: Îsmall, Î
(n)
large, Ĩsmall, Ĩ

(n)
large. Recall

that, if instance I ′ = (G′,Σ′) belongs to set Îsmall∪Ĩsmall, then |E(G′)| ≤ m/µ. If instance I ′ = (G′,Σ′)

belongs to set Î(n)
large,∪Ĩ

(n)
large, then m/µ < |E(G′)| ≤ 2m, and instance I ′ is narrow. We use the following

simple observation.

Observation 3.16 If OPTcnwrs(I) ≤ m2/µc
′′
, and neither of the events E1, E2 happened, then for

every instance I ′ = (G′,Σ′) ∈ Î(n)
large ∪ Ĩ

(n)
large, OPTcnwrs(I

′) < |E(G′)|2/µ21.

Proof: From Observation 3.15, if OPTcnwrs(I) ≤ m2/µc
′′
, and the bad event E1 did not happen, then

for every instance I ′ = (G′,Σ′) ∈ Î(n)
large ∪ Î

(w)
large, OPTcnwrs(I

′) ≤ |E(G′)|2/µc′ .

Consider now some instance I ′ = (G′,Σ′) ∈ Î(w)
large. If, additionally, event E2 did not happen, then:∑

Ĩ∈Ĩ(I′)

OPTcnwrs(Ĩ) ≤ OPTcnwrs(I
′) · (logm)c

′
g .

Therefore, for every instance Ĩ ∈ Ĩ(I ′):

OPTcnwrs(Ĩ) ≤ OPTcnwrs(I
′) · (logm)c

′
g ≤ |E(G′)|2

µc′
· (logm)c

′
g ≤ m2

µc′−1
.

26

We conclude that for every instance Ĩ = (G̃, Σ̃) ∈ Ĩ(n)
large, OPTcnwrs(Ĩ) ≤ m2

µc′−1 . Since, from the definition

of the set Ĩ(n)
large of instances, |E(G̃)| ≥ m

µ , we get that:

OPTcnwrs(Ĩ) ≤ m2

µc′−1
<
|E(G̃)|2

µ21
,

assuming that c′ is a large enough constant.

Next, we process every instance I ′ ∈ Î(n)
large ∪ Ĩ

(n)
large one by one. Notice that for each such instance

I ′ = (G′,Σ′), |E(G′)| ≥ m/µ ≥ µ50 must hold, since m ≥ µc
′′
. Additionally, as observed already,

|E(G′)| ≤ 2m ≤ 2m∗. When instance I ′ = (G′,Σ′) is processed, we apply the algorithm from
Theorem 3.14 to it. If the algorithm returns FAIL, then we terminate the algorithm and return FAIL
as well. Otherwise, we obtain a collection I(I ′) of instances of MCNwRS. From Theorem 3.14, for

every instance I ′′ = (G′′,Σ′′) ∈ I(I ′), |E(G′′)| ≤ |E(G′)|
2µ ≤ m

µ . Moreover, from the definition of a

ν-decomposition of an instance, and from the fact that |E(G′)| ≤ 2m, we get that:∑
I′′=(G′′,Σ′′)∈I(I′)

|E(G′′)| ≤ |E(G′)| · (logm)c
′
g . (4)

Bad Events E3 and E. For an instance I ′ = (G′,Σ′) ∈ Î(n)
large ∪ Ĩ

(n)
large, we say that the bad

event E3(I ′) happens if the algorithm from Theorem 3.14, when applied to instance I ′, returns
FAIL. From Theorem 3.14, if OPTcnwrs(I

′) < |E(G′)|2/µ21, then the probability that the algorithm
returns FAIL is at most O(1/µ2). Therefore, from Observation 3.16, if OPTcnwrs(I) ≤ m2/µc

′′
,

then Pr [E3(I ′) | ¬E1 ∧ ¬E2] ≤ O(1/µ2). We let E3 to be the bad event that E3(I ′) happened for

any instance I ′ ∈ Î(n)
large ∪ Ĩ

(n)
large. Recall that, for every instance I ′ = (G′,Σ′) ∈ Î(n)

large ∪ Ĩ
(n)
large,

|E(G′)| ≥ m
µ . On the other hand, from Inequality 1,

∑
I′=(G′,Σ′)∈Î(n)large

|E(G′)| ≤ m · (logm)c
′
g , and

from Inequality 3,
∑

I′=(G′,Σ′)∈Ĩ(n)large

|E(G′)| ≤ 2m · (logm)c
′
g . Therefore, |Î(n)

large ∪ Ĩ
(n)
large| ≤ 3µ · (logm)c

′
g .

From the Union Bound, assuming that the constant c∗ in the definition of the parameter µ is large

enough, if OPTcnwrs(I) ≤ m2/µc
′′
, then Pr [E3 | ¬E1 ∧ ¬E2] ≤ O

(
µ·(logm)

c′g

µ2

)
≤ 1

100 . Lastly, we de-

fine bad event E to be the event that at least one of the events E1, E2, E3 happened. Note that
Pr [E] ≤ Pr [E1] + Pr [E2 | ¬E1] + Pr [E3 | ¬E1 ∧ ¬E2]. Therefore, altogether, if OPTcnwrs(I) ≤ m2/µc

′′
,

then Pr [E] ≤ 3
100 ≤

1
30 . Note that, if bad event E does not happen, then the algorithm does not

return FAIL.

If the third step of the algorithm did not terminate with a FAIL, we let Ismall =
⋃
I′∈Î(n)large∪Ĩ

(n)
large

I(I ′).

By combining Equations 1, 3 and 4, we get that:∑
I′′=(G′′,Σ′′)∈Ismall

|E(G′′)| ≤ 3m · (logm)2c′g . (5)

The output of the algorithm is the collection I∗ = Îsmall∪Ĩsmall∪Ismall of instances of MCNwRS. From
the above discussion, for every instance I ′′ = (G′′,Σ′′) ∈ I∗, |E(G′′)| ≤ m/µ. As discussed already, if
bad event E does not happen, then the algorithm does not return FAIL.

From now on we assume that the algorithm did not return FAIL. From Inequalities 1, 3 and 5, we get
that:

27

∑
I′′=(G′′,Σ′′)∈I∗

|E(G′′)| ≤ 6m · (logm)2c′g .

Next, we provide Algorithm AlgCombineDrawings in the following claim, whose proof is conceptually
straightforward but somewhat technical, and is deferred to Section C.2 of Appendix.

Claim 3.17 There is an efficient algorithm, called AlgCombineDrawings, that, given a solution ϕ(I ′′)
to every instance I ′′ ∈ I∗, computes a solution ϕ(I) to instance I. Moreover, if OPTcnwrs(I) ≤ m2/µc

′′
,

and event E did not happen, then cr(ϕ(I)) ≤ O(
∑

I′′∈I∗ cr(ϕ(I ′′))) + (OPTcnwrs(I) +m) · µO(1).

The following observation, whose proof is deferred to Section C.3 of Appendix, will complete the proof
of Theorem 3.1.

Observation 3.18 If OPTcnwrs(I) ≤ |E(G)|2/µc′ and bad event E did not happen, then for some
constant c, with probability at least 99/100:∑

I′′∈I∗
OPTcnwrs(I

′′) ≤ (OPTcnwrs(I) +m) · 2c(logm)3/4 log logm.

Let E ′ be the bad event that
∑

I′′∈I∗ OPTcnwrs(I
′′) > (OPTcnwrs(I) + m) · 2c(logm)3/4 log logm. Clearly,

if OPTcnwrs(I) ≤ m2/µc
′′
, then the probability that either of the events E or E ′ happens is at most

Pr [E] + Pr [E ′ | ¬E] ≤ 1/16. Therefore, we conclude that, if OPTcnwrs(I) ≤ m2/µc
′′
, then with

probability at least 15/16, all of the following hold: (i) the algorithm does not return FAIL; (ii)

I∗ 6= ∅; (iii)
∑

I′′∈I∗ OPTcnwrs(I
′′) ≤ (OPTcnwrs(I) + m) · 2O((logm)3/4 log logm); and (iv) if algorithm

AlgCombineDrawings is given as input a solution ϕ(I ′′) to every instance I ′′ ∈ I∗, then the resulting

solution ϕ to instance I that it computes has cost at most: O

(∑
I′′∈I∗ cr(ϕ(I ′′))

)
+ (OPTcnwrs(I) +

m) · µO(1). This concludes the proof of Theorem 3.1 from Theorems 3.12, 3.13, and 3.14.

4 Definitions, Notation, Known Results, and their Easy Extensions

In this section we provide additional definitions and notation, together with known results and their
easy extensions that we use throughout the paper.

4.1 Clusters, Paths, Flows, and Routers

4.1.1 Clusters and Augmentations of Clusters

Let G be a graph. A cluster of G is a vertex-induced connected subgraph of G. For a set C of mutually
disjoint clusters of G, we denote by Eout

G (C) the set of all edges e = (u, v) of G, with endpoints u and
v lying in distinct clusters of C. We sometimes omit the subscript G when clear from the context.

Next, we define the notion of augmentation of a cluster.

Definition 4.1 (Augmentation of Clusters) Let C be a cluster of a graph G. The augmentation
of cluster C, denoted by C+, is a graph that is obtained from G as follows. First, we subdivide every
edge e ∈ δG(C) with a vertex te, and let T (C) = {te | e ∈ δG(C)} be the resulting set of newly added
vertices. We then let C+ be the subgraph of the resulting graph induced by the set V (C) ∪ T (C) of
vertices.

28

4.1.2 Paths and Flows

As mentioned already, all graphs that we consider in this paper are undirected. However, sometimes
it will be convenient for us to assign direction to paths in such graphs. We do so by designating one
endpoint of the path as its first endpoint, and another endpoint as its last endpoint. We will then
view the path as being directed from its first endpoint towards its last endpoint. We will sometimes
refer to a path with an assigned direction as a directed path, even though the underlying graph is an
undirected graph.

Let G be a graph, and let P be a collection of paths in G. We say that the paths of P are edge-disjoint
if every edge of G belongs to at most one path of P. We say that the paths in P are vertex-disjoint if
every vertex of G belongs to at most one path of P. We say that the paths in P are internally disjoint
if every vertex v ∈ V (G) that serves as an inner vertex of some path in P only belongs to one path of
P. Given a subset S of vertices of G, we say that the paths in P are internally disjoint from S if no
vertex of S serves as an inner vertex of any path in P. Abusing the notation, for a subgraph C of G,
we sometimes say that a set P of paths is internally disjoint from C to indicate that it is internally
disjoint from V (C).

Flows. Let G be a graph, and let P be a collection of directed paths in graph G. A flow over the set
P of paths is an assignment of non-negative values f(P) ≥ 0, called flow-values, to every path P ∈ P.
We sometimes refer to paths in P as flow-paths for flow f . For each edge e ∈ E(G), let P(e) ⊆ P be
the set of all paths whose first edge is e, and let P ′(e) ⊆ P be the set of all paths whose last edge is e.
We say that edge e sends z flow units in f if

∑
P∈P(e) f(e) = z, and we say that edge e receives z flow

units in f if
∑

P∈P ′(e) f(P) = z. Similarly, for a vertex v ∈ V (G), we say that v sends z flow units in f
if the sum of flow-values of all paths P ∈ P that originate at v is z. We say that v receives z flow units
in f if the sum of the flow-values of all paths P ∈ P that terminate at v is z. The congestion that
flow f causes on an edge e is

∑
P∈P:

e∈E(P)
f(P), and the total congestion of the flow f is the maximum

congestion that it causes on any edge e ∈ E(G).

An s-t flow network consists of a graph G, non-negative capacities c(e) ≥ 0 for each edge e ∈ E(G),
and two special vertices: source s and destination t. Let P be the set of all paths in graph G originating
at s and terminating at t. An s-t flow in G is a flow f that is defined over the set P of paths, such
that for every edge e ∈ E(G), the congestion that f causes on edge e is at most c(e). The value of the
flow is

∑
P∈P f(P). Maximum s-t flow is an s-t flow of largest possible value. We say that a flow f

is integral if, for every path P , value f(P) is an integer. It is a well known fact (called integrality of
flow) that, if all edge capacities in a flow network are integral, then there is a maximum s-t flow that
is integral, and such a flow can be found efficiently. In case where the capacity of every edge is unit,
such a flow defines a maximum-cardinality collection of edge-disjoint s-t paths.

Congestion Reduction. We repeatedly use the following simple claim, whose proof follows from
integrality of flow, and appears in Appendix D.1.

Claim 4.2 Let G be a graph and let P be a set of directed paths in G. For each vertex v ∈ V (G),
let nS(v) and nT (v) denote the numbers of paths in P originating and terminating at v, respectively.
Then there is a set P ′ of at least |P|/ congG(P) edge-disjoint directed paths in G, such that, for every
vertex v, at most nS(v) paths of P ′ originate at v, and at most nT (v) paths of P ′ terminate at v.
Moreover, there is an efficient algorithm, that, given G and P, computes a set P ′ of paths with these
properties.

29

4.1.3 Routing Paths, Internal Routers and External Routers

Routing Paths. Suppose we are given a graph G, two sets S, T ⊆ V (G) of its vertices, and a set Q
of paths. We say that Q is a routing of vertices of S to vertices of T , or that Q routes vertices of S to
vertices of T if Q = {Qv | v ∈ S}, and, for every vertex v ∈ S, path Qv originates at v and terminates
at a vertex of T . If, additionally, for every vertex t ∈ T , exactly one path in Q terminates at t, then
we say that Q is a one-to-one routing of vertices of S to vertices of T .

Similarly, given two sets E1, E2 of edges of G, we say that a set Q = {Qe | e ∈ E1} of paths is a routing
of edges of E1 to edges of E2, or that Q routes edges of E1 to edges of E2, if, for every edge e ∈ E1,
path Qe has e as its first edge, and some edge of E2 as its last edge. If, additionally, every edge of E2

serves as the last edge of exactly one path in Q, then we say that Q is a one-to-one routing of edges
of E1 to edges of E2.

Next, we define the notions of internal and external routers for clusters, which are central notions that
are used throughout our algorithms.

Definition 4.3 (Internal and External Routers for Clusters) Let G be a graph, let C be a clus-
ter of G, and let Q(C) be a set of paths in G. We say that Q(C) is an internal router for C, or an
internal C-router, if there is some vertex u ∈ V (C), such that Q(C) = {Qe | e ∈ δG(C)}, and, for each
edge e ∈ δG(C), path Qe has e as its first edge, u as its last vertex, and all edges of E(Qe) \ {e} lie
in C. We refer to vertex u as the center of the router. Similarly, we say that a set Q′(C) of paths
in G is an external router for C, or an external C-router, if there is some vertex u′ ∈ V (G) \ V (C),
such that Q′(C) = {Q′e | e ∈ δG(C)}, and, for each edge e ∈ δG(C), path Qe has e as its first edge, u′

as its last vertex, is internally disjoint from C. We refer to u′ as the center of the router. We denote
by ΛG(C) the set of all internal C-routers, and by Λ′G(C) the set of all external C-routers in G. We
may omit the subscript G when clear from the context.

Throughout the paper, we will be working with distributions over the set ΛG(C) of internal C-routers
and distributions over the set Λ′G(C) of external C-routers for various clusters C of a given graph G.
We say that a distribution D over a set U of elements is given explicitly, if we are given a list U ′ ⊆ U
of elements, whose probability in D is non-zero, together with their associated probability values. We
say that distribution D is given implicitly if we are given an efficient randomized algorithm that draws
an element from U according to the distribution. When the distribution D is over a set of routers in
a graph G, the running time of the algorithm should be bounded by poly(|E(G)|).

4.1.4 Non-Transversal Paths and Path Splicing

We start by defining the notions of transversal and non-transversal intersections of paths and cycles,
which we then use to define non-transversal paths.

Definition 4.4 (Non-transversal Intersection of Paths and Cycles) Let I = (G,Σ) be an in-
tance of MCNwRS, let P1, P2 be two simple paths in G, and let u be a vertex in V (P1)∩V (P2). Denote
by E1 the set of (one or two) edges of P1 that are incident to u, and similarly denote by E2 the set
of (one or two) edges of P2 that are incident to u. We say that the intersection of the paths P1, P2 at
vertex u is non-transversal with respect to Σ if one of the following holds:

• either the set E1 ∪ E2 contains fewer than 4 distinct edges; or

• E1 = {e1, e
′
1} and E2 = {e2, e

′
2}, all edges in set {e1, e

′
1, e2, e

′
2} are distinct, and they appear

in the ordering Ou ∈ Σ in one of the following circular orders: (e1, e
′
1, e2, e

′
2), or (e1, e

′
1, e
′
2, e2)

(recall that the orderings are unoriented, so the reversals of the above two orderings are also
included in this definition).

30

Otherwise, we say that the intersection of the paths P1, P2 at vertex u is transversal (see Figure 4). If
R1, R2 are simple cycles in G, and u is a vertex in V (R1) ∩ V (R2), then we classify the intersection
of R1 and R2 and u as transversal or non-transversal with respect to Σ similarly.

(a) The intersection of paths P1 (red)
and P2 (purple) is transversal at v.

(b) The intersection of path P1 (red) and path P2 (purple) is non-transversal
at v.

Figure 4: Transversal and non-transversal intersections of paths.

Definition 4.5 (Non-transversal Set of Paths) Let I = (G,Σ) be an intance of MCNwRS, and
let P be a collection of simple paths in G. We say that the set P of paths is non-transversal with
respect to Σ if, for every pair P1, P2 ∈ P of paths, for every vertex u ∈ V (P1)∩V (P2), the intersection
of P1 and P2 at u is non-transversal with respect to Σ.

Assume now that we are given some instance I = (G,Σ) of MCNwRS, and a collection Q of simple
paths in G. We let ΠT (Q) denote the set of all triples (Q,Q′, v), such that Q,Q′ ∈ Q, v is an inner
vertex of both Q and Q′, and the intersection of Q and Q′ at v is transversal with respect to Σ.

We need to design a subroutine, that, given a set Q of simple directed paths in a graph G, transforms
it into a set Q′ of paths that is non-transversal with respect to the given rotation system Σ for G. We
need to ensure that the multisets containing the first vertex of every path in Q and in Q′, respectively,
remain unchanged, and the same holds for multisets containing the last vertex of every path in both
path sets. We also need to ensure that for each edge e ∈ E(G), congG(Q′) ≤ congG(Q). Below we
provide a procedure for performing such a transformation. The procedure uses a simple subroutine
that we call path splicing and describe next.

Path Splicing. Suppose we are given an instance I = (G,Σ) of MCNwRS, two simple paths P, P ′ in
G, and a vertex v, that serves as an inner vertex of both P and P ′, such that the intersection of P and
P ′ at vertex v is transversal with respect to Σ. We assume that each of the paths P, P ′ is assigned a
direction, and we denote by s and t the first and the last endpoints of P , respectively, and by s′ and t′

the first and the last endpoints of P ′, respectively. The splicing of P and P ′ at vertex v produces two
new paths: path P̃ , that is a concatenation of the subpath of P from s to v, and the subpath of P ′

from v to t′; and path P̃ ′, that is a concatenation of the subpath of P ′ from s′ to v, and the subpath
of P from v to t. See Figure 5 for an illustration.

For a set P of directed paths in a graph G, we denote by S(P) and T (P) the multisets containing
the first vertex on every path in P, and the last vertex on every path in P, respectively. We use the
following simple observation regarding the splicing procedure, whose proof is deferred to Section D.2
of Appendix.

31

(a) Before: Path P is shown in red and path
P ′ is shown in purple.

(b) After: Path P̃ is shown in red and path P̃ ′

is shown in purple.

Figure 5: An illustration of path splicing at vertex v.

Observation 4.6 Let I = (G,Σ) be an instance of MCNwRS, let P be a set of simple directed paths
in G, and let (P, P ′, v) be a triple in ΠT (P). Let P̃ , P̃ ′ be the pair of paths obtained by splicing P and

P ′ at v, and let P ′ =
(
P \ {P, P ′}

)
∪
{
P̃ , P̃ ′

}
. Then S(P ′) = S(P) and T (P ′) = T (P). Additionally,

either (i) at least one of the paths P̃ , P̃ ′ is a non-simple path; or (ii) |ΠT (P ′)| < |ΠT (P)|.

Using Observation 4.6, we can prove the following lemma that allows us to transform an arbitrary
set R of paths into a set R′ of non-transversal paths, while preserving the multisets containing the
first endpoint and the last endpoint of every path, and without increasing the congestion on any edge.
The proof of the lemma below is similar to the proof of Lemma 9.5 in [CMT20], and is provided in
Appendix D.3 for completeness.

Lemma 4.7 There is an efficient algorithm, that, given an instance (G,Σ) of MCNwRS and a set R
of directed paths in G, computes another set R′ of simple directed paths in G, such that S(R′) = S(R),
T (R′) = T (R), and the paths in R′ are non-transversal with respect to Σ. Moreover, for every edge
e ∈ E(G), congG(R′, e) ≤ congG(R, e).

4.2 Cuts, Well-Linkedness, and Related Notions

4.2.1 Minimum Cuts

A cut in a graph G is a bipartition (A,B) of its vertices into non-empty subsets. The value of the cut
is |E(A,B)|. We sometimes consider cuts in edge-capacitated graphs. Given a graph G with capacities
c(e) ≥ 0 on edges e ∈ E(G) and a cut (A,B) in G, the value of the cut is

∑
e∈EG(A,B) c(e). When edge

capacities are not specified, we assume that they are unit.

Given two disjoint subsets S, T of vertices of G, an S-T cut, or a cut separating S from T is a cut
(A,B) with S ⊆ A, T ⊆ B. A minimum S-T cut is an S-T cut (A,B) of minimum value. When
S = {s} and T = {t}, we refer to S-T cuts as s-t cuts. We will use the following lemma, whose proof
is provided in Section D.4 of Appendix.

Lemma 4.8 There is an efficient algorithm, that, given a graph G and a collection S = {s1, . . . , sk}
of its vertices, computes, for all 1 ≤ i ≤ k, a set Ai of vertices of G, and a collection Qi of paths in
G, such that the following hold:

32

• for all 1 ≤ i ≤ k, S ∩Ai = {si}, and moreover, (Ai, V (G) \Ai) is a minimum cut separating si
from the vertices of S \ {si} in G;

• for all 1 ≤ i < i′ ≤ k, Ai ∩Ai′ = ∅; and

• for all 1 ≤ i ≤ k, Qi = {Qi(e) | e ∈ δG(Ai)}, where for each e ∈ δG(Ai), path Qi(e) has e as its
first edge, si as its last vertex, and all internal vertices of Qi(e) lie in Ai. Moreover, the paths
in set Qi are edge-disjoint.

4.2.2 Gomory-Hu Trees

Gomory-Hu tree is a convenient structure that represents all minimum s-t cuts in a given graph G.
We summarize its properties in the following theorem.

Theorem 4.9 ([GH61]) There is an efficient algorithm, that, given a graph G = (V,E) with capac-
ities c(e) ≥ 0 on its edges e ∈ E, computes a tree τ = (V,E′) with capacities c′(e) ≥ 0 on its edges
e ∈ E′, such that the following hold:

• for every pair s, t of distinct vertices of V , the value of the minimum s-t cut in G is equal to
mine∈E(Ps,t) {c′(e)}, where Ps,t is the unique path connecting s to t in τ ; and

• for every pair s, t of distinct vertices of V , if (A,B) is a minimum s-t cut in graph G, then
(A,B) is a minimum s-t cut in graph τ , and vice versa.

We obtain the following immediate corollary of Theorem 4.9.

Corollary 4.10 Let G be an edge-capacitated graph, and let τ be a Gomory-Hu tree of graph G. Then
for every edge e = (u, u′) ∈ E(τ), if we denote by U,U ′ the vertex sets of the two connected components
of τ \ {e}, with u ∈ U , then (U,U ′) is a minimum u-u′ cut in graph G.

4.2.3 Balanced Cut and Sparsest Cut

Suppose we are given a graph G = (V,E), and a subset T ⊆ V of its vertices. We say that a cut
(X,Y) in G is a valid T -cut iff X ∩ T, Y ∩ T 6= ∅. The sparsity of a valid T -cut (X,Y) with respect

to T is |E(X,Y)|
min{|X∩T |,|Y ∩T |} . In the Sparsest Cut problem, given a graph G and a subset T of its vertices,

the goal is to compute a valid T -cut of minimum sparsity. Arora, Rao and Vazirani [ARV09] designed
an O(

√
log n)-approximation algorithm for the sparsest cut problem4, where n = |V (G)|. We denote

this algorithm by AARV, and its approximation factor by βARV(n) = O(
√

log n).

We say that a cut (A,B) in a graph G is η-edge-balanced, or just η-balanced, for a parameter 0 < η < 1,
if |E(A)|, |E(B)| ≤ η · |E(G)|. We say that a cut (A,B) is a minimum η-balanced cut in G if (A,B) is
an η-balanced cut of minimum value |E(A,B)|. We will use the following theorem that follows from
the work of [ARV09]. The proof is provided in Section D.5 of Appendix.

Theorem 4.11 For every constant 1/2 < η̂ < 1, there is another constant η̂ < η̂′ < 1 and an
efficient algorithm, that, given a connected (not necessarily simple) graph G with m edges, computes
a η̂′-balanced cut (A,B) in G, whose value is at most O(βARV(m)) times the value of the minimum
η̂-balanced cut in G.

4The algorithm was originally designed for simple graphs, but it can be easily generalized to graphs with parallel
edges by exploiting edge capacities.

33

The following lemma is a simple consequence of the Planar Separator Theorem of Lipton and Tarjan
[LT79]. A version of the lemma for vertex-balanced cuts was proved in [PSS96]. For completeness, we
provide the proof of the lemma in Section D.6 of Appendix.

Lemma 4.12 Let G be a connected (not necessarily simple) graph with m edges and maximum vertex
degree ∆ ≤ m/240. If OPTcr(G) ≤ m2/240, then the value of a minimum (3/4)-edge-balanced cut in
G is at most O(

√
OPTcr(G) + ∆ ·m).

4.2.4 Well-Linkedness, Bandwidth Property, and Routing Well-Linked Vertex Sets

The notion of well-linkedness plays a central role in graph theory and graph algorithms (see e.g. [Rac02,
CKS04, And10, CL12, Chu12, CC16, Chu16, CT19]). We use the following standard definitions, which
are equivalent to those used in much of previous work.

Definition 4.13 (Well-Linkedness) We say that a set T of vertices in a graph G is α-well-linked,
for a parameter 0 < α < 1, if the sparsity of every valid T -cut in graph G is at least α. Equivalently,
for every partition (A,B) of V (G) with A∩T,B∩T 6= ∅, |EG(A,B)| ≥ α ·min {|A ∩ T |, |B ∩ T |} must
hold.

The next simple observation, that has been used extensively in previous work, shows that the set of
vertices lying on the first row of the (r × r)-grid is 1-well-linked. For completeness, we provide its
proof in Section D.7 of Appendix.

Observation 4.14 Let r ≥ 1 be an integer, and let H be the (r × r)-grid graph. Let S be the set of
vertices lying on the first row of the grid. Then vertex set S is 1-well-linked in H.

Next, we define the notion of bandwidth property, that was also used extensively in graph algorithms.

Definition 4.15 (α-Bandwidth Property) We say that a cluster C of a graph G has the α-
bandwidth property in G, for some parameter 0 < α < 1, if, for every partition (A,B) of vertices of
C, |EG(A,B)| ≥ α ·min {|δG(A) ∩ δG(C)|, |δG(B) ∩ δG(C)|}.

The following immediate observation provides an equivalent definition of the bandwidth property that
is helpful to keep in mind. Recall that, for a cluster C of a graph G, its augmentation C+ is a graph
that is obtained from graph G as follows. We subdivide every edge e ∈ δG(C) with a vertex te, and let
T (C) = {te | e ∈ δG(C)} be the resulting set of newly added vertices. We then let C+ be the subgraph
of the resulting graph induced by vertex set V (C) ∪ T (C).

Observation 4.16 Let G be a graph, let C ⊆ G a cluster of G, and let 0 < α < 1 be a parameter.
Cluster C has the α-bandwidth property iff the set T (C) = {te | e ∈ δG(C)} of vertices is α-well-linked
in graph C+, which is the augmentation of cluster C in G.

One useful property of well-linked sets of vertices is that routing is easy between vertices of such sets.
We summarize this property, that has been used extensively in past work, in the following theorem,
and we provide its proof in Appendix D.8 for completeness. The theorem uses the notion of one-to-one
routing that was defined in Section 4.1.3.

Theorem 4.17 There is an efficient algorithm, that, given a graph G, a set T of vertices of G that
is α-well-linked, and a pair T1, T2 of disjoint equal-cardinality subsets of T , computes a one-to-one
routing Q of vertices of T1 to vertices of T2, with congG(Q) ≤ d1/αe.

The next corollary follows immediately from Observation 4.16 and Theorem 4.17.

34

Corollary 4.18 There is an efficient algorithm, that, given a graph G, a cluster S of G that has the
α-bandwidth property for some 0 < α < 1, and a pair E1, E2 of disjoint equal-cardinality subsets of the
edge set δG(S), computes a one-to-one routing Q of edges of E1 to edges of E2, with congG(Q) ≤ d1/αe,
such that, for every path Q ∈ Q, all inner vertices of Q lie in S.

4.2.5 Basic Well-Linked Decomposition

Typically, in a well-linked decomposition, we are given a graph G together with a cluster S of G, and
our goal is to compute a partition of S into clusters, each of which has the α-bandwidth property in
graph G, for some given parameter 0 < α < 1. Algorithms for computing well-linked decompositions
were used extensively in prior work on graph-based problems (see e.g. [Rac02, CKS04, And10, CL12,
Chu12, CC16, Chu16, CT19]). We use a variation of this technique, that, in addition to ensuring
that each cluster R in the decomposition has the α-bandwidth property, provides a collection P(R) of
paths routing the edges of δG(R) to edges of δG(S), such that the paths in P(R) are internally disjoint
from R and cause low congestion. The proof uses standard techniques and is deferred to Section D.9
of Appendix.

Theorem 4.19 There is an efficient algorithm, whose input is a graph G, a connected cluster S of

G, and parameters m and α, for which |E(G)| ≤ m and 0 < α < min
{

1
64βARV(m)·logm ,

1
48 log2m

}
hold.

The algorithm computes a collection R of vertex-disjoint clusters of S, such that:

•
⋃
R∈R V (R) = V (S);

• for every cluster R ∈ R, |δG(R)| ≤ |δG(S)|;

• every cluster R ∈ R has the α-bandwidth property in graph G; and

•
∑

R∈R |δG(R)| ≤ |δG(S)| ·
(
1 +O(α · log1.5m)

)
.

Additionally, the algorithm computes, for every cluster R ∈ R, a set P(R) = {P (e) | e ∈ δG(R)} of
paths in graph G with congG(P(R)) ≤ 100, such that, for every edge e ∈ δG(R), path P (e) has e as its
first edge and some edge of δG(S) as its last edge, and all inner vertices of P (e) lie in V (S) \ V (R).

We note that, while the above theorem requires that cluster S is connected, it can also be used when
this is not the case, by simply applying the algorithm to every connected component of S and then
taking the union of all resulting sets of clusters; all properties that the theorem guarantees will continue
to hold.

4.2.6 Layered Well-Linked Decomposition

To the best of our knowledge, layered well-linked decomposition was first introduced by Andrews
[And10]. It is similar to the basic well-linked decomposition, except that it has some additional useful
properties. We start by defining a layered well-linked decomposition formally. Our definition is very
similar to that of [And10], except that we require some additional properties.

Let H be a graph with |E(H)| = m and C ⊆ H a cluster of H. Let W be a collection of disjoint
clusters of H \ C with

⋃
W∈W V (W) = V (H \ C), and let (L1,L2, . . . ,Lr) be a partition of W into

subsets that we call layers. We denote L0 = {C}, and, for all 1 ≤ i ≤ r, for every cluster W ∈ Li,
we partition the set δH(W) of edges into two subsets: set δdown(W) containing all edges (u, v) with
u ∈ V (W) and v lying in a cluster of L0∪ · · · ∪Li−1, and set δup(W) containing all remaining edges of
δ(W), namely: all edges (u, v) with u ∈ V (W) and v lying in a cluster of Li ∪ · · · ∪ Lr (see Figure 6).

35

We say that the collection W of clusters, together with its partition (L1,L2, . . . ,Lr) into layers is a
valid layered α-well-linked decomposition of H with respect to C, for some parameter 0 < α < 1, iff
the following conditions hold:

L1. For every pair W,W ′ of distinct clusters in W, V (W) ∩ V (W ′) = ∅, and
⋃
W∈W V (W) =

V (H) \ V (C);

L2. each cluster W ∈ W has the α-bandwidth property in H;

L3. for every cluster W ∈ W, |δH(W)| ≤ |δH(C)|, and |EH(W)| ≥ |δH(W)|/(64 logm);

L4. for every cluster W ∈ W, |δup(W)| < |δdown(W)|/ logm;

L5.
∑

W∈W |δH(W)| ≤ 4|δH(C)|; and

L6. for every cluster W ∈ W, there is a collection P(W) = {P (e) | e ∈ δH(W)} of paths in H, that
cause congestion at most 200/α, and for all e ∈ δH(W), path P (e) contains e as its first edge,
some edge e′ ∈ δH(C) as its last edge, and all inner vertices of P (e) are disjoint from W .

Figure 6: An illustration of a layered well-linked decomposition of H with respect to C. For cluster
W ∈ L2, the edges of δup(W) are shown in red, and the edges of δdown(W) are shown in blue.

Recall that, given a graph H and two sets E′, E′′ of its edges, we say that a set P of paths in H routes
edges of E′ to edges of E′′ if P = {P (e) | e ∈ E′}, and, for each edge e ∈ E′, path P (e) has e as its
first edge and some edge of E′′ as its last edge. Given a cluster W of H, we say that the set P of
paths avoids W if, for every path P ∈ P, no inner vertex of P lies in W . Therefore, Condition L6
equivalently requires that for every cluster W ∈ W, there is a collection P(W) of paths in H routing
the edges of δH(W) to the edges of δH(C), such that the paths in P(W) avoid W . This property is
the main difference between our definition of a layered well-linked decomposition and that of [And10],
which did not require this property.

The following theorem allows us to compute a layered well-linked decomposition in any graph. Its
proof is practically identical to the algorithm of [And10]. The main difference is that we need to prove
that the resulting decomposition has property L6. The proof of the theorem is deferred to Section
D.10 of Appendix.

Theorem 4.20 There is a large enough constant c, and an efficient algorithm, that given a connected
graph H with |E(H)| = m ≥ c and a cluster C of H, computes a valid layered α-well-linked decom-
position (W, (L1, . . . ,Lr)) of H with respect to C, for α = 1

c log2.5m
. The number of layers in the

decomposition is r ≤ logm.

36

4.3 Expanders, Graph Embeddings, and Routing Well-Linked Sets

We will use the notion of expanders, that we define next.

Definition 4.21 (Expanders) We say that a graph W is an α-expander, for some 0 < α < 1, if, for
every partition (A,B) of V (W) into non-empty subsets, |EW (A,B)| ≥ α ·min {|A|, |B|}; equivalently,
the set V (W) of vertices is α-well-linked in W .

We will also use a standard notion of graph embeddings.

Definition 4.22 (Embedding of Graphs) Let H, G be a pair of graphs with V (H) ⊆ V (G). An
embedding of H into G is a collection P = {P (e) | e ∈ E(H)} of paths in graph G, where for each edge
e = (u, v) ∈ E(H), path P (e) has endpoints u and v. The congestion of the embedding is congG(P).

The following well known claim shows a connection between well-linked sets of vertices and embeddings
of expanders. The proof is standard and deferred to Section D.11 of Appendix.

Claim 4.23 There is a universal constant cCMG, and an efficient randomized algorithm that, given a
graph G together with a subset T of its vertices of cardinality k, such that T is α-well-linked in G, for
some 0 < α < 1, constructs another graph W with V (W) = T and maximum vertex degree at most

cCMG log2 k, together with an embedding P of W into G with congestion at most cCMG log2 k
α , such that

with high probability graph W is an (1/4)-expander.

We show in the following observation that, if W is the outcome expander of the algorithm from
Claim 4.23, then it has a high crossing number. The proof is provided in Section D.12 of Appendix.

Observation 4.24 There is some constant c, such that, if W is an (1/4)-expander, with |V (W)| =
k > c and maximum vertex degree O(log2 k), then OPTcr(W) ≥ k2/(c log8 k).

We obtain the following useful corollary of Claim 4.23, that allows us to route specific pairs of vertices
of a well-linked vertex set T . We provide its proof in Appendix D.13.

Corollary 4.25 There is an efficient randomized algorithm that, given a graph G, a subset T of its
vertices of cardinality k, that is α-well-linked in G, for some 0 < α < 1, together with a partial
matching M over the vertices of T , computes a set R(M) = {R(u, v) | (u, v) ∈M} of paths in graph
G, such that for every pair (u, v) ∈ M of vertices, path R(u, v) connects u to v. Moreover, with high
probability, the congestion caused by the paths in R(M) in G is O((log4 k)/α).

Let Kz be a complete graph, whose vertex set has cardinality z. We obtain the following immediate
corollary of Corollary 4.25, whose proof appears in Section D.14 of Appendix.

Corollary 4.26 There is an efficient randomized algorithm that, given a graph G and a subset T of
its vertices of cardinality z, such that T is α-well-linked in G, for some 0 < α < 1, computes an
embedding P̃ of the complete graph Kz with V (Kz) = T into G, such that, with high probability, the
congestion of the embedding is O((z log4 z)/α).

4.3.1 Constructing Internal Routers

We now provide an efficient algorithm, that, given a graph G and a cluster C of G that has the α-
bandwidth property, constructs a distribution D(C) over the internal C-routers, such that the expected
congestion on every edge of C is small. We start with the following lemma, that provides a similar
result for a graph G and a set T of vertices of G that is well-linked.

37

Lemma 4.27 There is an efficient randomized algorithm, whose input is a graph G and set T of its
vertices called terminals, such that |T | = z, and T is α-well-linked in G, for some 0 < α < 1. The
algorithm computes, for every terminal t ∈ T , a set Qt = {Qt(t′) | t′ ∈ T \ {t}} of paths, where, for all
t′ ∈ T \ {t}, path Qt(t

′) connects t′ to t. Moreover, if we select a vertex t ∈ T uniformly at random,
then, for every edge e ∈ E(G), E [cong(Qt, e)] ≤ O(log4 z/α).

Proof: We use the algorithm from Corollary 4.26, in order to compute an embedding P̃ the complete
graph Kz with V (Kz) = T into G. Recall that the algorithm ensures that, with high probability, the
congestion of the embedding is at most (cz log4 z)/α, for some constant c. If the congestion caused by
the paths in P̃ is greater than this bound, then we say that the algorithm from Corollary 4.26 failed. We
repeat the algorithm from Corollary 4.26 O(log |E(G)|) times. Let E1 be the event that the algorithm
failed in each of these applications. Then Pr [E1] ≤ 1/ poly(z). In this case, for every terminal t ∈ T ,
we return a set Qt = {Qt(t′) | t′ ∈ T \ {t}} of paths, where for every terminal t′ ∈ T \ {t}, Qt(t′) is an
arbitrary path connecting t to t′ in G. Clearly, for all t ∈ T , for every edge e ∈ E(G), congG(Qt, e) ≤ z.
We assume from now on that, in some application of the algorithm from Corollary 4.26, it returned a
set P̃ of paths with congG(P̃) ≤ O((z log4 z)/α).

We now fix a terminal t ∈ T , and define the corresponding set Qt = {Qt(t′) | t′ ∈ T \ {t}} of paths.
For every terminal t′ ∈ T \ {t}, we let Qt(t

′) be the unique path in set P̃ that serves as the embedding
of the edge (t, t′) ∈ E(Kz). Clearly, path Qt(t

′) connects t′ to t as required.

Consider now an edge e, and let ηe = congG(P̃, e) ≤ O((z log4 z)/α). Since every path of P̃ may
lie in at most two path sets of {Qt}t∈T , we get that

∑
t∈T congG(Qt, e) ≤ 2ηe. Therefore, if Event

E1 did not happen, and a terminal t ∈ T is selected uniformly at random, then E [cong(Qt, e)] ≤
2ηe/z ≤ O(log4 z/α). Overall, for every edge e ∈ E(G), E [cong(Qt, e)] ≤ E [cong(Qt, e) | ¬E1] +
E [cong(Qt, e) | E1] ·Pr [E1] ≤ O(log4 z/α) +O(1/z) ≤ O(log4 z/α).

The following corollary allows us to compute a distribution over internal C-routers for a cluster C
of a graph G, such that the expected congestion on every edge of C is small. The corollary follows
immediately by applying the algorithm from Lemma 4.27 to the augmentation C+ of the cluster C in
graph G. The proof of the corollary is omitted.

Corollary 4.28 There is an efficient randomized algorithm, whose input is a graph G and a cluster
C of G that has the α-bandwidth property for some 0 < α < 1. The algorithm returns (explic-
itly) a distribution D over the set Λ(C) of internal C-routers, such that, for every edge e ∈ E(C),
EQ∼D [cong(Q, e)] ≤ O((log |δG(C)|)4/α).

4.4 Curves in the Plane or on a Sphere

4.4.1 Reordering Curves

Assume that we are given two oriented orderings (O, b), (O′, b′) on a set U = {u1, . . . , ur} of elements.
Assume for simplicity that b = b′ = 1 (otherwise the corresponding ordering can be flipped). Consider
a disc D, with a collection {p1, . . . , pr} of distinct points appearing on the boundary of D (we will
view each point pi as representing element ui of U), such that the order in which these points are
encountered, as we traverse the boundary of D in the counter-clock-wise direction, is precisely O. Let
D′ ⊆ D be another disc that is contained in D, whose boundary is disjont from the boundary of D.
Assume that a collection {p′1, . . . , p′r} of points appear on the boundary of D′, and that the order
in which these points are encountered as we traverse the boundary of D′ in the counter-clock-wise
direction is precisely O′. As before, for each 1 ≤ i ≤ r, we view point p′i as representing element
ui ∈ U . We now define reordering curves between the oriented orderings (O, b) and (O′, b′), which are
then used in order to define the distance between the two orderings.

38

Definition 4.29 (Reordering curves) We say that a collection Γ = {γ1, . . . , γr} of curves is a set
of reordering curves for oriented orderings (O, b) and (O′, b′) iff (i) the curves in Γ are in general
position; (ii) each curve γi ∈ Γ is simple and its interior is contained in D \ D′; and (iii) for all
1 ≤ i ≤ r, curve γi has pi, p

′
i as its endpoints. The cost of the collection Γ is the total number of

crossings between its curves.

Definition 4.30 (Distance between orderings) Let (O, b) and (O′, b′) be two oriented orderings
on a set U of elements. The distance between the two oriented orderings, denoted by dist((O, b), (O′, b′)),
is the smallest cost of any collection Γ of reordering curves for (O, b) and (O, b′). For two unoriented
orderings O,O′ on U , we define dist(O,O′) = minb,b′∈{−1,1} {dist((O, b), (O′, b′))}.

The following lemma, that follows from Section 4 of [PSŠ09] and Section 5.2 of [PSŠ11], provides an
efficient algorithm to compute a collection of reordering curves of near-optimal cost for a given pair of
oriented orderings. The proof is deferred to Section D.15 of Appendix.

Lemma 4.31 There is an efficient algorithm, that, given a pair (O, b), (O′, b′) of oriented orderings
on a set U of elements, computes a collection Γ of reordering curves for (O, b) and (O′, b′), of cost at
most 2 · dist((O, b), (O′, b′)).

We will use the following simple corollary of the lemma, whose proof is provided Appendix D.16.

Corollary 4.32 There is an efficient algorithm, whose input is a graph G, a drawing ϕ of G in the
plane, a vertex v ∈ V (G), and a circular ordering Ov of the edges of δG(v). Let O′v be the circular
order in which the edges of δG(v) enter the image of v in ϕ, and let D = Dϕ(v) be a tiny v-disc.
The algorithm produces a new drawing ϕ′ of G, with cr(ϕ′) ≤ cr(ϕ) + 2 · dist(Ov,O′v), such that the
following hold:

• the images of the edges of δG(v) enter the image of v in the order Ov in ϕ′; and

• the drawings ϕ and ϕ′ are identical, except that, for each edge e ∈ δG(v), the segment of the
image of e lying inside the disc D may be different in the two drawings.

4.4.2 Type-1 Uncrossing of Curves

In this subsection we consider a set Γ of curves in the plane (or on a sphere) that are in general
position, and provide a simple operation, called type-1 uncrossing, whose goal is to “simplify” this
collection of curves by eliminating some of the crossings between them. Specifically, we modify the
curves in Γ, without changing their endpoints, to ensure that every pair of curves cross at most once.
We now describe the type-1 uncrossing operation formally.

Let Γ be a set of simple curves in the plane that are in general position. For a pair Γ1,Γ2 of disjoint
subsets of Γ, we denote by χ(Γ1,Γ2) the total number of crossings between the curves in Γ1 and the
curves in Γ2. In other words, χ(Γ1,Γ2) is the number of points p, such that p lies on a curve in Γ1 and
on a curve in Γ2, and p is not an endpoint of these curves. If Γ1 = {γ}, then we use the shorthand
χ(γ,Γ2) instead of χ({γ} ,Γ2).

The type-1 uncrossing operation iteratively considers pairs γ, γ′ ∈ Γ of distinct curves that cross more
than once, and then locally modifies them, as shown in Figure 7, to eliminate two crossings. This
operation ensures that no new crossings are created, and preserves the endpoints of both curves. The
following theorem summarizes this operation. The proof of the theorem is standard and is deferred to
Section D.17 of Appendix for completeness.

39

(a) Before: Curves γ and γ′ cross twice, at
points p and q. The crossing points of both
curves with the third curve are circled as well.

(b) After: Each of the new curves γ and γ′ has
same endpoints as before. The two curves no
longer cross each other, and the pink curve still
participates in two crossings with γ and γ′.

Figure 7: Type-1 uncrossing operation.

Theorem 4.33 (Type-1 Uncrossing) There is an algorithm, that, given a set Γ of simple curves in
general position, that are partitioned into two disjoint subsets Γ1,Γ2, computes, for each curve γ ∈ Γ1,
a simple curve γ′ that has same endpoints as γ, such that, if we denote by Γ′1 = {γ′ | γ ∈ Γ1}, then
the following hold:

• the curves in set Γ′1 ∪ Γ2 are in general position;

• every pair of distinct curves in Γ′1 cross at most once;

• for every curve γ ∈ Γ2, χ(γ,Γ′1) ≤ χ(γ,Γ1); and

• the total number of crossings between the curves of Γ′1 ∪ Γ2 is bounded by the total number of
crossings between the curves of Γ.

The running time of the algorithm is bounded by poly(n · N), where n is the number of bits in the
representation of the set Γ of curves, and N is the number of crossing points between the curves of Γ.

4.4.3 Curves in a Disc and Nudging of Curves

Suppose we are given a disc D, and a collection {s1, t1, . . . , sk, tk} of distinct points on its boundary.
For all 1 ≤ i < j ≤ k, we say that the two pairs (si, ti), (sj , tj) of points cross iff the unoriented
circular ordering of the points si, sj , ti, tj on the boundary of D is (si, sj , ti, tj). We use the following
simple claim, whose proof is deferred to Appendix D.18.

Claim 4.34 There is an efficient algorithm that, given a disc D, and a collection {s1, t1, . . . , sk, tk}
of distinct points on the boundary of D, computes a collection Γ = {γ1, . . . , γk} of curves, such that,
for all 1 ≤ i ≤ k, curve γi has si and ti as its endpoints, and its interior is contained in the interior
of D. Moreover, for every pair 1 ≤ i < j ≤ k of indices, if the two pairs (si, ti), (sj , tj) of points cross
then curves γi, γj intersect at exactly one point; otherwise, curves γi, γj do not intersect. Lastly, every
point in the interior of D may be contained in at most two curves of Γ.

40

Nudging Procedure. In a nudging procedure, we are given an instance I = (G,Σ) of MCNwRS, a
subset U of vertices of G, and a collection P of edge-disjoint paths, such that, for every path P ∈ P,
all inner vertices of P lie in U , and the endpoints of P do not lie in U . Additionally, we are given
some solution ϕ to instance I. For every path P ∈ P, we denote by γ(P) the image of path P in ϕ,
that is, γ(P) is the concatenation of the images of all edges of P . Notice that the resulting collection
Γ = {γ(P) | P ∈ P} may not be in general position. This is since some vertices u ∈ U may lie on more
than 2 paths in P, and in such a case more than 2 curves in Γ contain the point ϕ(u). The purpose
of the nudging procedure is to slightly modify the curves in Γ in the viccinity of the images of such
vertices to ensure that the resulting collection of curves Γ′ = {γ′(P) | P ∈ P} is in general position,
while introducing relatively few crossings. Additionally, the procedure ensures that, for every path
P ∈ P, the endpoints of the new curve γ′(P) are identical to those of the original curve γ(P).

We start by letting, for every path P , curve γ′(P) be the original curve γ(P), and we set Γ′ =
{γ′(P) | P ∈ P}. We then process every vertex u ∈ U one by one. Consider an iteration when any
such vertex u is processed. Let P(u) ⊆ P be a set of all paths P ∈ P with u ∈ V (P). We denote
P(u) = {P1, . . . , Pk}. Consider the tiny u-disc D(u) = Dϕ(u) in the drawing ϕ of graph G. For all
1 ≤ i ≤ k, we let si, ti be the two points at which curve γ′(Pi) intersects the boundary of the disc D(u).
Note that all points s1, t1, . . . , sk, tk must be distinct, as the paths in P are edge-disjoint. We use the
algorithm from Claim 4.34 in order to construct a collection {σ1, . . . , σk} of curves, such that, for all
1 ≤ i ≤ k, curve σi has si and ti as its endpoints, and is completely contained in D(u). Recall that
the claim ensures that, for every pair 1 ≤ i < j ≤ k of indices, if the two pairs (si, ti), (sj , tj) of points
cross, then curves σi, σj intersect at exactly one point; otherwise, curves σi, σj do not intersect. The
former may only happen if paths Pi, Pj have a transversal intersection at vertex u. For all 1 ≤ i ≤ k,
we modify the curve γ′(Pi) as follows: we replace the segment of the curve between points si, ti with
the curve σi. Once every vertex of U is processed, we obtain the final collection Γ′ = {γ′(P) | P ∈ P}
of curves. From the above discussion, we get the following observation.

Observation 4.35 The set Γ′ = {γ′(P) | P ∈ P} of curves is in general position, and, for every path
P ∈ P, the endpoints of curve γ′(P) are identical to the endpoints of curve γ(P). Moreover, if χ
denotes the set of all crossings (e, e′)p in ϕ, where e and e′ are edges of

⋃
P∈P E(P), then the number

of crossings between the curves of Γ′ is bounded by |χ| + |ΠT (P)|. Lastly, if the paths in P are non-
transversal with respect to Σ, then for every path P ∈ P, the number of crossings between γ′(P) and
Γ′ \ {γ′(P)} is bounded by the number of crossings (e, e′)p in ϕ where exactly one of the edges e, e′

belongs to P .

4.4.4 Type-2 Uncrossing of Curves

In this subsection we provide another subroutine, called type-2 uncrossing of curves, that allows us to
simplify a given set Γ of curves by removing some of the crossings between them. Unlike the type-1
uncrossing operation, we no longer preserve the endpoints of every curve, but we ensure that the
multisets containing the endpoints of the curves are preserved under this operation.

It will sometimes be useful for us to assign a direction to a curve γ, by designating one of its endpoints,
that we denote by s(γ), as its first endpoint, and the other endpoint, denoted by t(γ), as its last
endpoint. If Γ is a collection of curves, and each curve in Γ is assigned a direction, then we say that
Γ is a collection of directed curves. In such a case, we let S(Γ) be the multiset of points containing
the first endpoint of every curve in Γ, and we let T (Γ) be the multiset of points containing the last
endpoint of every curve in Γ.

For the type-2 uncrossing operation, we will consider curves that arise from some drawing ϕ of a graph
G. We first need to define curves that are aligned with a graph drawing. For intuition, consider first
some planar graph G, and its planar drawing ϕ. In this case, curve γ is aligned with the drawing ϕ

41

of G, if there is some path P in G, such that γ can be obtained by first concatenating the images of
all edges if P , and then possibly modifying the resulting curve within tiny discs Dϕ(v) for vertices
v ∈ V (P) (typically via a nudging operation). If ϕ is a non-planar drawing of some graph G, then
the definition of a curve γ being aligned with the drawing is similar, but now we allow the curve γ to
“switch” from the image of one edge to another, at a crossing point between the two edges. Therefore,
we can define a sequence e1, e2, . . . , er−1 of edges of G, such that the curve “follows” segments of these
edges. The curve γ itself can then be partitioned into segments σ1, σ

′
1, σ2, σ

′
2, . . . , σ

′
r−1, σr, where for

all 1 ≤ i ≤ r − 1, σ′i is a contiguous segment of the image of edge ei. For a pair σ′i, σ
′
i+1 of such

segments, either the last endpoint of σ′i and the first endpoint of σ′i+1 are identical (and it is a crossing
point between the images of ei and ei+1); or segment σi+1 is contained in disc Dϕ(vi+1), where vi+1 is
a common endpoint of ei and ei+1. With this intuition in mind, we now define the notion of alignment
of a curve with a drawing of a graph.

Definition 4.36 (Curve aligned with a drawing of a graph) Let G be a graph and ϕ a drawing
of G in the plane. We say that a curve γ is aligned with the drawing ϕ of G if there is a sequence
(e1, e2, . . . , er−1) of edges of G, and a partition (σ1, σ

′
1, σ2, σ

′
2, . . . , σ

′
r−1, σr) of γ into consecutive seg-

ments, such that, if we denote, for all 1 ≤ i < r, ei = (vi, vi+1), then the following hold:

• for all 1 ≤ i ≤ r − 1, σ′i is a contiguous segment of non-zero length of ϕ(ei), and it is disjoint
from all discs in {Dϕ(u)}u∈V (G), except that its first endpoint may lie on the boundary of Dϕ(vi),

and its last endpoint may lie on the boundary of Dϕ(vi+1);

• for all 1 ≤ i ≤ r, segment σi is either contained in disc Dϕ(vi), or it is contained in a tiny p-disc
D(p), where p is a crossing point of ϕ(ei−1) and ϕ(ei);

• σ1 = ϕ(e1) ∩Dϕ(v1); and

• σr = ϕ(er−1) ∩Dϕ(vr).

In order to perform a type-2 uncrossing operation, we consider a graph G, a drawing ϕ of G, and a
set Q of simple directed paths in G. We assume that no vertex of G may serve simultaneously as
an endpoint of a path of Q and an inner vertex of some other path of Q. We can then define a set
Γ = {γ(Q) | Q ∈ Q} of curves, where, for every path Q ∈ Q, curve γ(Q) is obtained by concatenating
the images of the edges of Q. Note however that the curves in the resulting set Γ are not necessarily
in general position. Type-2 uncrossing allows us to fix this, and moreover to eliminate all crossings
between the resulting set Γ′ of curves. Unlike type-1 uncrossing, we only guarantee that the multisets
containing the first and last endpoints of the curves in Γ′ remain identical to those corresponding to
Γ, but we no longer guarantee that they are matched in the same way to each other. For technical
reasons, we need to consider two different settings for the type-2 uncrossing: one where the paths in set
Q are edge-disjoint, in which case we can provide somewhat stronger guarantees, and another where
this is not the case. These two settings for type-2 uncrossing are provided in the following theorem
and its corollary, whose proofs are simple and are deferred to Sections D.19 and D.20 of Appendix,
respectively. We start with the setting where the paths in set Q are edge-disjoint.

Theorem 4.37 There is an efficient algorithm, whose input consists of a graph G, a drawing ϕ of G on
the sphere, and a collection Q of edge-disjoint paths in G, such that no vertex of G may simultaneously
serve as an endpoint of some path in Q and an inner vertex of some path in Q. Additionally, for each
path Q ∈ Q, one of its endpoints is designated as its first endpoint and is denoted by s(Q), and the
other endpoint is designated as its last endpoint and denoted by t(Q). The algorithm computes a set
Γ = {γ(Q) | Q ∈ Q} of directed simple curves on the sphere with the following properties:

• every curve γ(Q) ∈ Γ is aligned with the drawing of the graph
⋃
Q′∈QQ

′ induced by ϕ;

42

• for each path Q ∈ Q, s(γ(Q)) = ϕ(s(Q)); moreover, if e1(Q) is the first edge of Q, then curve
γ(Q) contains the segment ϕ(e1(Q)) ∩Dϕ(s(Q));

• the multiset T (Γ), containing the last endpoint of every curve in Γ, is precisely the multiset
{ϕ(t(Q)) | Q ∈ Q}, containing the image of the last vertex on every path of Q in ϕ; and

• the curves in Γ do not cross each other.

We emphasize that the curves in Γ may match the mutisets {ϕ(s(Q)) | Q ∈ Q} and {ϕ(t(Q)) | Q ∈ Q}
differently from the paths in Q.

We will sometimes use Theorem 4.37 in a setting where we are additionally given a subgraph C ⊆ G,
and the paths of Q are internally disjoint from C. In such a case, from the definition of aligned curves,
and from the fact that the curves of Γ do not cross each other, for every edge e ∈ E(C), the number
of crossings between ϕ(e) and the curves in Γ is bounded by the number of crossings between ϕ(e)

and the curves of
{
ϕ(e′) | e′ ∈

⋃
Q∈QE(Q)

}
.

We use the following corollary of Theorem 4.37, that deals with the setting where paths in set Q may
share edges. The proof is deferred to Section D.20 of Appendix.

Corollary 4.38 There is an efficient algorithm, whose input consists of a graph G, a drawing ϕ of G
on the sphere, a subgraph C of G, and a collection Q of paths in G, that are internally disjoint from
C, such that no vertex of G may simultaneously serve as an endpoint of some path in Q and an inner
vertex of some path in Q. Additionally, for each path Q ∈ Q, one of its endpoints is designated as its
first endpoint and is denoted by s(Q), and the other endpoint is designated as its last endpoint and is
denoted by t(Q). The algorithm computes a set Γ = {γ(Q) | Q ∈ Q} of directed simple curves on the
sphere with the following properties:

• for every path Q ∈ Q, s(γ(Q)) = ϕ(s(Q));

• the multiset T (Γ), containing the last endpoint of every curve in Γ, is precisely the multiset
{ϕ(t(Q)) | Q ∈ Q}, containing the image of the last vertex on every path of Q;

• the curves in Γ do not cross each other; and

• for each edge e ∈ E(C), the number of crossings between ϕ(e) and the curves in Γ is bounded by∑
e′∈E(G)\E(C) χ(e, e′) · congG(Q, e′), where χ(e, e′) is the number of crossings between ϕ(e) and

ϕ(e′).

4.5 Contracted Graphs

Let G be a graph and let C be a collection of disjoint clusters of G. We define the contracted graph
G|C to be the graph obtained from G by contracting each cluster C ∈ C into a supernode vC ; we
remove self-loops but keep parallel edges. Note that every edge of graph G|C corresponds to some
edge of graph G. We do not distinguish between such edges, so E(G|C) ⊆ E(G). We refer to vertices
of G|C that are not supernodes as regular vertices. In the following claim, we derive well-linkedness
properties of a set T of vertices in a graph G from well-linkedness of T in a contracted graph G|C and
bandwidth properties of the clusters of C in G. The proof is deferred to Section D.21 of Appendix.

Claim 4.39 Let G = (V,E) be a graph, T ⊆ V a subset of its vertices, and C a collection of disjoint
clusters of G, such that T ∩ (

⋃
C∈C V (C)) = ∅. Assume that each cluster C ∈ C has the α1-bandwidth

property in G, and that the set T of vertices is α2-well-linked in the contracted graph G|C, for some
parameters 0 < α1, α2 < 1. Then T is (α1 · α2)-well-linked in G.

43

The following corollary of Claim 4.39 essentially replaces the well-linkedness property of the set T of
vertices with the equivalent bandwidth property of a cluster of a given graph G. The proof is deferred
to Section D.22 of Appendix.

Corollary 4.40 Let G be a graph, and let R be a cluster of G. Let C be a collection of disjoint clusters
of R, such that every cluster C ∈ C has the α1-bandwidth property in graph G, for some parameter
0 < α1 < 1. Denote R̂ = R|C and Ĝ = G|C, and assume further that R̂ has the α2-bandwidth property

in graph Ĝ, for some 0 < α2 < 1. Then cluster R has the (α1 · α2)-bandwidth property in graph G.

The following simple claim allows us to transform a routing in a contracted graph G|C into a routing
in the original graph G. The proof appears in Section D.23 of Appendix.

Claim 4.41 There is an efficient algorithm, that takes as input a graph G, a set C of disjoint clusters of
G, such that each cluster C ∈ C has the α-bandwidth property in G for some 0 < α < 1, and a collection
P of edge-disjoint paths in the contracted graph G|C, routing some set T ⊆ V (G) ∩ V (G|C) of vertices
to some vertex x ∈ V (G)∩V (G|C). The algorithm produces a collection P ′ of paths in graph G, routing
the vertices of T to vertex x, such that, for each edge e ∈ E(G) \

(⋃
C∈C E(C)

)
, congG(P ′, e) ≤ 1, and

for each edge e ∈
⋃
C∈C E(C), congG(P ′, e) ≤ d1/αe. Additionally, the algorithm produces another

set P ′′ of edge-disjoint paths in graph G, of cardinality at least α · |T |/2, routing a subset T ′ ⊆ T of
vertices to x.

The following claim allows us to bound the crossing number of a contracted graph. The proof is
provided in Section D.24 of the Appendix.

Claim 4.42 Let I = (G,Σ) be an instance of the MCNwRS problem, and let C be a collection of
disjoint clusters of G, such that each cluster in C has the α-bandwidth property, for some 0 < α < 1.
Then there is a drawing ϕ of the contracted graph G|C, with cr(ϕ) ≤ O(OPTcnwrs(I) · log8m/α2), where
m = |E(G)|. Moreover, for every regular vertex x ∈ V (G|C)∩V (G), the ordering of the edges of δG(x)
as they enter x in ϕ is consistent with the rotation Ox ∈ Σ.

5 First Set of Tools: Light Clusters, Bad Clusters, Path-Guided
Orderings, and Basic Cluster Disengagement

The main goal of this section is to define and analyze the Basic Cluster Disengagement procedure.
Along the way we will define several other central tools that we use throughout the paper, such as
light clusters, bad clusters, and path-guided orderings.

We start by defining and analyzing laminar family-based disengagement procedure, which will serve
as the basis of the basic disengagement procedure.

5.1 Laminar Family-Based Disengagment

We start by defining a laminar family of clusters and its associated partitioning tree.

5.1.1 Laminar Family of Clusters and Partitioning Tree

Definition 5.1 (Laminar family of clusters) Let G be a graph, and let L be a family of clusters of
G. We say that L is a laminar family, if G ∈ L, and additionally, for all S, S′ ∈ L, either S ∩S′ = ∅,
or S ⊆ S′, or S′ ⊆ S holds.

44

Given a laminar family L of clusters of G, we associate a paritioning tree τ(L) with it, that is defined
as follows. The vertex set of the tree is {v(S) | S ∈ L}; for every cluster S ∈ L, we view vertex v(S) as
representing the cluster S. The root of the tree is v(G) – the vertex associated with the graph G itself.
In order to define the edge set, consider a pair S, S′ ∈ L of clusters. If S (S′, and there is no other
cluster S′′ ∈ L with S (S′′ (S′, then we add an edge (v(S), v(S′)) to the tree τ(L); vertex v(S)
becomes a child vertex of v(S′) in the tree. We also say that cluster S is a child cluster of cluster S′,
and cluster S′ is the parent cluster of S. Similarly, we define an ancestor-descendant relation between
clusters in a natural way: cluster S ∈ L is a descendant-cluster of a cluster S′ ∈ L if vertex v(S′) lies
on the unique path connecting v(S) to v(G) in the tree τ(L). If S is a descendant-cluster of S′, then
S′ is an ancestor-cluster of S. Notice that every cluster is its own ancestor and its own descendant.

The depth of the laminar family L of clusters, denoted by dep(L), is the length of the longest root-to-
leaf path in tree τ(L). We also say that cluster S lies at level i of the laminar family L iff the distance
from v(S) to the root of the tree τ(L) is exactly i.

5.1.2 Definition of Laminar Family-Based Disengagement

The input to the Laminar Family-Based Disengegement is an instance I = (G,Σ) of MCNwRS, a
laminar family L of clusters of G, and, for every cluster C ∈ L, a circular ordering O(C) of the edges
of δG(C) (for C = G, δG(C) = ∅ and the ordering O(C) is trivial). The output of the procedure is a
collection I = {IC = (GC ,ΣC) | C ∈ L} of subinstances of I, that are defined as follows.

Consider a cluster C ∈ L, and denote by W(C) ⊆ L the set of all child-clusters of C. In order to
construct the graph GC , we start with GC = G. For every cluster C ′ ∈ W(C), we contract the vertices
of C ′ into a supernode vC′ . Additionally, if C 6= G, then we contract all vertices of V (G) \ V (C) into
a supernode v∗. This completes the definition of the graph GC (see Figure 8). We now define the
rotation system ΣC for GC . If C 6= G, then the set of edges incident to v∗ in GC is exactly δG(C). We
set the rotation Ov∗ ∈ ΣC to be O(C). For every cluster C ′ ∈ W(C), the set of edges incident to vC′ in
GC is δG(C ′). We set the rotation OvC′ ∈ ΣC to be O(C ′). For every regular vertex x ∈ V (GC)∩V (G),
δGC (v) = δG(v) holds, and its rotation Ov ∈ ΣC remains the same as in Σ.

(a) Layout of graph G with respect to C. (b) Graph GC .

Figure 8: Construction of graph GC , where C ∈ L is a cluster with two child-clusters S1, S2.

We refer to the resulting collection I of clusters as disengagement of instance I via the laminar family
L and the collection {O(C)}C∈L of orderings.

45

5.1.3 Analysis

We start by showing that the total number of edges in all instances that we obtain via the laminar
family-based disengagement procedure is small compared to |E(G)|.

Lemma 5.2 Let I = (G,Σ) be an instance of MCNwRS, let L be a laminar family of clusters of G, and
let {O(C)}C∈L be a collection of orderings of the edges of δG(C), for every cluster C ∈ L. Consider
the collection I = {IC = (GC ,ΣC) | C ∈ L} of subinstances of I obtained by applying the laminar
family-based decomposition to instance I via the laminar family L and the orderings in {O(C)}C∈L.
Then

∑
C∈L |E(GC)| ≤ O(dep(L) · |E(G)|).

Proof: Fix an integer 1 ≤ i ≤ dep(L) and denote by Li ⊆ L the set of all clusters of L that lie at
level i of the partitioning tree. From the definition of the laminar family L and the partitioning tree,
all clusters in set Li are mutually disjoint. Consider now some cluster C ∈ Li, and its corresponding
graph GC . Note that every edge of GC corresponds to some distinct edge of cluster C, except for the
edges incident to the supernode v∗. However, the number of edges incident to v∗ is at most |δG(C)|.
Therefore, overall, |E(GC)| ≤ |EG(C)|+ |δG(C)|. Since all clusters in Li are mutually disjoint, we get
that: ∑

C∈Li

|E(GC)| ≤
∑
C∈Li

(|EG(C)|+ |δG(C)|) ≤ O(|E(G)|).

Summing over all indices 1 ≤ i ≤ dep(L), we get that
∑

C∈L |E(GC)| = O(dep(L) · |E(G)|).
Next, we show that solutions to the instances in I can be efficiently combined in order to obtain a
solution to instance I of relatively low cost. The proof is conceptually simple but somewhat technical,
and is deferred to Section E.1 of Appendix.

Lemma 5.3 There is an efficient algorithm, that takes as input an instance I = (G,Σ) of MCNwRS,
a laminar family L of clusters of G, a collection {O(C)}C∈L containing an ordering of the edges of
δG(C) for every cluster C ∈ L, and, for every cluster C ∈ L, a solution ϕ(IC) to the instance IC ∈ I of
MCNwRS, where I = {IC | C ∈ L} is the collection of subinstances of I obtained via laminar family-
based disengagement of I via (L, {O(C)}C∈L). The output of the algorithm is a solution to instance I
with cost at most

∑
IC∈I cr(ϕ(IC)).

So far we have shown that, if I is the collection of instances that is constructed via a laminar family-
based disengagement of instance I, then the total number of edges in all resulting instances is at
most O(|E(G)| · dep(L)), and that there is an efficient algorithm for combining the solutions to the
resulting instances, in order to obtain a low-cost solution to the original instance I. Another highly
desirable property of the family L of clusters would be for

∑
I′∈I OPTcnwrs(I

′) to be small compared
to OPTcnwrs(I) + |E(G)|. Unfortunately, we cannot show that this property holds, except for some
special cases. The Basic Cluster Disengagement procedure essentially considers one such special case,
in which

∑
I′∈I OPTcnwrs(I

′) can be appropriately bounded. In order to define this procedure formally,
we first need to define several central notions that are used throughout our algorithm, namely: light
clusters, bad clusters, and path-guided orderings.

5.2 Light Clusters, Bad Clusters, and Path-Guided Orderings

Definition 5.4 (Light Cluster) Let I = (G,Σ) be an instance of MCNwRS, and let C be a cluster
of G. Assume further that we are given a distribution D(C) over the set Λ(C) of internal C-routers.
We say that cluster C is β-light with respect to D(C) if, for every edge e ∈ E(C):

EQ∼D(C)

[
(congG(Q, e))2

]
≤ β.

46

Definition 5.5 (Bad Cluster) Let I = (G,Σ) be an instance of MCNwRS, let C be a cluster of G,
and let Σ(C) be the rotation system for C induced by Σ. We say that C is a β-bad cluster, if:

OPTcnwrs(C,Σ(C)) + |E(C)| ≥ |δG(C)|2

β
.

Path-Guided Orderings. Let I = (G,Σ) be an instance of MCNwRS, and let C be a cluster of
G. Consider an internal C-router Q = {Q(e) | e ∈ δG(C)}. Recall that there is some vertex u ∈ V (C)
(the center of the router), such that, for all e ∈ δG(C), path Q(e) has edge e as its first edge, vertex
u as its last vertex, and all inner vertices of Q(e) lie in C.

We will use the internal C-router Q, and the rotation system Σ for G, in order to define a circular
ordering O of the edges of δG(C). We refer to the ordering O as an ordering guided by Q and Σ.
Ordering O of the edges of δG(C) is constructed as follows. Denote δG(u) = {a1, . . . , ar}, where the
edges are indexed according to their circular ordering Ou ∈ Σ. For all 1 ≤ i ≤ r, let Qi ⊆ Q be the
set of paths whose last edge is ai. We first define an ordering Ô of the paths in Q, where the paths in
sets Q1, . . . ,Qr appear in the natural order of their indices, and for all 1 ≤ i ≤ r, the ordering of the
paths in Qi is arbitrary. Ordering Ô of the paths in Q naturally defines the ordering O of the edges
of δG(C): we obtain the ordering O from Ô by replacing, for every path Q(e) ∈ Q, the path Q(e) in
Ô with the edge e (the first edge of Q(e)). We refer to O as the ordering of the edges of δG(C) that
is guided by Q and Σ, and we denote it by Oguided(Q,Σ). A convenient way to think of the ordering
Oguided(Q,Σ) of the edges of δG(C) is that this order is determined by the order in which the paths
of Q enter the vertex u, which in turn is determined by the rotation Ou ∈ Σ (as the last edge on each
path in Q lies in δG(u)).

5.3 Basic Cluster Disengagement

The input to the Basic Cluster Disengagement procedure consists of an instance I = (G,Σ) of MCNwRS
and a laminar family L of clusters of G. Recall that, by the definition, G ∈ L must hold. We further
assume that we are given a partition (Llight,Lbad) of the clusters of L \ {G}, and, for every cluster
C ∈ Llight, a distribution D(C) over its internal C-routers (that may be given implicitly). The output
of the procedure is a collection I = {IC | C ∈ L} of subinstances of I. In order to define the instances
of I, we will define, for every cluster C ∈ L, an ordering O(C) of the edges of δG(C). Family I
of subinstances of I is then constructed by disengaging instance I via the laminar family L and the
collection {O(C)}C∈L of orderings.

In order to describe the algorithm for computing the collection I of subinstances of I, it is now enough
to describe an algorithm that computes, for every cluster C ∈ L, an ordering O(C) of the edges of
δG(C). Consider any such cluster C ∈ L. If C = G, then δG(C) = ∅, and the ordering O(C) is trivial.
If C ∈ Lbad, then we let O(C) be an arbitrary ordering of the edges of δG(C). Lastly, consider a
cluster C ∈ Llight. We select an internal router Q(C) ∈ ΛG(C) from the given distribution D(C) at
random. We view the paths in Q(C) as being directed towards the center vertex u(C) of the router.
We use the algorithm from Lemma 4.7 to compute a non-transversal path set Q̃(C), routing all edges
of δG(C) to vertex u(C), so Q̃(C) is also an internal C-router. The algorithm ensures that, for every
edge e ∈ E(G), congG(Q̃(C), e) ≤ congG(Q(C), e). We then let the ordering O(C) of the edges of
δG(C) be an ordering guided by the set Q̃(C) of paths in graph G, and the rotation system Σ, so
O(C) = Oguided(Q̃(C),Σ).

This completes the description of the algorithm for selecting an ordering O(C) of the edges in δG(C)
for each cluster C ∈ L; note that this algorithm is randomized. This also completes the description of
the algorithm for performing Basic Cluster Disengagement, that we refer to as AlgBasicDisengagement
in the remainder of the paper. Since this algorithm essentially performs disengagement via a laminar

47

family of clusters of G, Lemma 5.2 and Lemma 5.3 continue to hold for the resulting collection I of
instances. But we can now show that, under some conditions, we can bound the expected value of∑

I′∈I OPTcnwrs(I
′).

When using the algorithm AlgBasicDisengagement for performing Basic Cluster Disengagement of an
instance I of MCNwRS via a laminar family L, we will typically require that the following properties
hold, for some parameter β:

P1. every cluster C ∈ Lbad is β-bad, and has the α0-bandwidth property in G, for some α0 ≥
Ω(1/ log12m);

P2. every cluster C ∈ Llight is β-light with respect to the given distribution D(C) over the set Λ(C)
of its internal routers; and

P3. for every cluster C ∈ L, there is a distribution D′(C) over the set Λ′(C) of external C-routers,
such that for every edge e ∈ E(G \ C), EQ′(C)∼D′(C) [congG(Q′(C), e)] ≤ β.

Observe that the algorithm for computing the family I of clusters is randomized. We show in the
following lemma that, if all the above conditions hold, then the expected value of

∑
I′∈I OPTcnwrs(I

′)
is suitably bounded. The proof is somewhat technical, and is deferred to Section E.2 of Appendix.

Lemma 5.6 Let I = (G,Σ) be an instance of the MCNwRS problem, L a laminar family of clusters of
G, (Llight,Lbad) a partition of cluster set L\{G}, and, for every cluster C ∈ Llight, D(C) a distribution
over internal C-routers. Let I be the collection of subinstances of I obtained by applying Algorithm
AlgBasicDisengagement to instance I, with laminar family L, cluster sets Llight,Lbad, and distributions
{D(C)}C∈Llight. Assume further that Properties P1 – P3 hold for some parameter β ≥ c(log |E(G)|)18,
where c is a large enough constant. Then:

E

[∑
I′∈I

OPTcnwrs(I
′)

]
≤ O(dep(L) · β2 · (OPTcnwrs(I) + |E(G)|)).

We note that the distributions {D′(C)}C∈L over external routers of the clusters play no role in con-
structing the collection I of subinstances of I, but they are essential in order to ensure that the expecta-
tion of

∑
I′∈I OPT(I ′) is suitably bounded. Since this property is essential to us, we will only use Basic

Cluster Disengagement when such distributions are given. Therefore, abusing the notation, we refer to
the family I of subinstances of I computed via Basic Cluster Disengagement of instance I as described
above, as a Basic Cluster Disengagement of I via the tuple (L,Lbad,Llight, {D′(C)}C∈L , {D(C)}C∈Llight).

6 Second Main Tool: Cluster Classification

In this section we introduce our second main tool, the algorithm AlgClassifyCluster, that is summarized
in the following theorem.

Theorem 6.1 There is a randomized algorithm, that, given an instance I = (G,Σ) of MCNwRS prob-
lem with |E(G)| = m, a cluster J ⊆ G that has the α0-bandwidth property in G, for α0 = 1/ log50m,
and a parameter 0 < p < 1, either returns FAIL, or computes a distribution D(J) over the set Λ(J) of
internal J-routers, such that cluster J is β∗-light with respect to D(J), where β∗ = 2O(

√
logm·log logm).

Moreover, if cluster J is not η∗-bad, for η∗ = 2O((logm)3/4 log logm), then the probability that the algo-
rithm returns FAIL is at most p. The running time of the algorithm is poly(m · log(1/p)).

48

We will sometimes say that the algorithm AlgClassifyCluster errs if it returns FAIL and yet cluster J is
not η∗-bad. Clearly, the probability that the algorithm errs is at most p. We note that the distribution
D(J) over the set Λ(J) of internal J-routers that the algorithm computes may be returned by the
algorithm implicitly, by providing another efficient algorithm to draw a router from the distribution.

In order to prove Theorem 6.1, it is sufficient to prove the following theorem.

Theorem 6.2 There is an efficient randomized algorithm, that, given an instance I = (G,Σ) of
MCNwRS with |E(G)| = m, a cluster J ⊆ G that has the α0-bandwidth property in G, for α0 =
Ω(1/ log50m), either returns FAIL, or computes a distribution D(J) over the set of internal J-routers,
such that cluster J is β∗-light with respect to D(J), where β∗ = 2O(

√
logm·log logm). Moreover, if cluster

J is not η∗-bad, for η∗ = 2O((logm)3/4 log logm), then the probability that the algorithm returns FAIL is
at most 1/2.

Indeed, given a graph G, a cluster J of G and a parameter 0 < p < 1, as in the statement of
Theorem 6.1, we simply run the algorithm from Theorem 6.2 dlog(1/p)e times on the input instance
(G,Σ) and cluster J of G. If the algorithm returns FAIL in every of these iterations, then we also
return FAIL. Otherwise, in at least one of the iterations, the algorithm from Theorem 6.2 returns a
distribution D(J) over the set Λ(J) of internal J-routers, such that cluster J is β∗-light with respect to
D(J). We then return the distribution D(J) as the algorithm’s outcome. It is immediate to verify that
the probability that the algorithm errs is at most p, and that its running time is poly(m · log(1/p)),
as required.

In the remainder of this section, we focus on the proof of Theorem 6.2. It will be convenient for us
to consider the augmentation J+ of cluster J . Recall that this is the graph that is obtained from G
by subdiving every edge e ∈ δG(J) with a vertex te, letting T = {te | e ∈ δG(J)} be the set of the new
vertices, and then letting J+ be the subgraph of the resulting graph induced by T ∪ V (J). We refer
to vertices of T as terminals, and we denote |T | = k. Recall that, from the α0-bandwidth property
of cluster J , the set T of terminals is α0-well-linked in J+. Since the degree of every terminal in J+

is 1, the rotation system Σ for graph G naturally defines a unique rotation system Σ(J+) for J+.
Moreover, cluster J is η∗-bad iff OPTcnwrs(J

+,Σ(J+)) + |E(J+ \ T)| ≥ k2/η∗.

Let Λ(J+, T) denote the collection of all sets Q of paths, such that paths in Q route all vertices of T
to some vertex x ∈ V (J+) \ T , in graph J+. We sometimes also call Q a router, and refer to x as the
center vertex of the router. Notice that, if we are given a distribution D over sets of paths in Λ(J+, T),
such that, for every edge e ∈ E(J+), EQ∼D

[
(congJ+(Q, e))2

]
≤ β∗, then we can immediately obtain a

distribution D(J) over the set Λ(J) of internal J-routers, such that cluster J is β∗-light with respect
to D(J).

From now on we will only focus on graph J+ and the corresponding rotation system Σ(J+), so it
will be convenient for us to denote graph J+ by G and Σ(J+) by Σ. We denote by I = (G,Σ) the
resulting instance of MCNwRS. From now on our goal is to design a randomized algorithm, that either
computes a distribution D over the set Λ(G,T) of internal routers, such that, for every edge e ∈ E(G),
EQ∼D

[
(congG(Q, e))2

]
≤ β∗, or returns FAIL. We need to ensure that, if OPTcnwrs(I) + |E(G \ T)| <

k2/η∗, then the probability that the algorithm returns FAIL is at most 1/2.

We now provide some intuition. We first show below an algorithm called AlgFindGuiding that “almost”
provides the required guarantees. Specifically, if we are guaranteed that |E(G)| ≤ k · η for some small
parameter η, then the algorithm either computes a distribution D over sets of paths in Λ(G,T), such
that, for every edge e ∈ E(G), EQ∼D

[
(congG(Q, e))2

]
≤ poly(logm)/ poly(α0), or it returns FAIL,

with the guarantee that, if OPTcnwrs(G,Σ) + |E(G \ T)| < k2 poly(α0)
poly(η logm) , then the probability that the

algorithm returns FAIL is at most 1/2. We could use this theorem directly if |E(G)| ≤ k · η holds for
some η ≤ (η∗)ε where ε is a constant, but unfortunately this is not guaranteed in the statement of

49

Theorem 6.1, and |E(G)| may be arbitrarily large compared to k. In order to overcome this difficulty,
we use another algorithm, that, given a graph G and a set T of its terminals as above, computes
a collection C of disjoint clusters of G \ T , such that, for each cluster C ∈ C, either (i) there is an
internal C-router Q(C) ∈ Λ(C) such that the paths in Q(C) are edge-disjoint; or (ii) C is η-bad for
some parameter η � η∗; or (iii) |E(C)| ≤ |δG(C)| · O(poly(η logm)). In the latter case, we say that
C is a concise cluster. We then apply the algorithm AlgFindGuiding to each concise cluster. As a
result, for each such concise cluster C ∈ C, we will either establish, with high probability, that it is
a η′-bad cluster, for some parameter η′, or we will compute a distribution D(C) over the set Λ(C) of
internal C-routers, such that cluster C is β′-light with respect to D(C), for some parameter β′. The
algorithm for computing the collection C of clusters of G also guarantees that each cluster C ∈ C has
the α′-bandwidth property, for α′ = Ω(1/ log1.5m), and that the corresponding contracted graph G|C
contains significantly fewer edges: |E(G|C)| ≤ |E(G)|/η. Intuitively, we would then like to continue
with the contracted graph G|C , applying exactly the same algorithm to this graph. We could continue
this process, obtaining a clustering C′ of this new contracted graph, and so on, until we reach a final
contracted graph Ĝ, with |E(Ĝ)| ≤ O(kη). At this point we can apply the algorithm AlgFindGuiding to
graph Ĝ directly, and as a result, we either obtain the desired distribution D over path sets in Λ(G,T),
or establish, with high probability, that OPTcnwrs(G,Σ) + |E(G \ T)| is sufficiently high. A problem
with this approach is that the algorithm AlgFindGuiding requires a rotation system Σ′ for its input
graph H. Recall that the algorithm guarantees that, if OPTcnwrs(H,Σ

′) + |E(H)| is sufficiently low,
then it only returns FAIL with probability at most 1/2. The difficulty is that, if H is the contracted
graph G|C , then it is not immediately clear how to define the rotation system Σ′ for H, such that
OPTcnwrs(H,Σ

′) is not much higher than OPTcnwrs(G,Σ).

In order to overcome this difficulty, we design the algorithm AlgFindGuiding for a more general setting.
In this setting, the input is a graph H, a rotation system Σ′ for H, and a set T ′ of terminals of H,
such that the terminals of T ′ are α-well-linked in H. Additionally, we are given some collection C′
of disjoint η′-bad clusters in H. We also require that |E(H|C′)| ≤ |T ′|η′, for some parameter η′. The
algorithm either returns FAIL, or computes a distribution D′ over the set Λ(H,T ′) of routers, such
that, for every edge e ∈ E(H), EQ∼D′

[
(cong(Q, e))2

]
is sufficiently low. We are also guaranteed that,

if |OPTcnwrs(H,T
′)|+ |E(H \ T ′)| is sufficiently small compared to |T ′|2, then the probability that the

algorithm returns FAIL is at most 1/2. This stronger version of algorithm AlgFindGuiding will allow
us to carry out the algorithm outlined above.

We now provide formal descriptions of the two main tools that our algorithm uses. The first tool allows
us to compute a decomposition of an input graph G into a collection of clusters, each of which is either
light, bad, or concise. The proof of the theorem uses rather standard techniques and is deferred to
Section F.1 of Appendix.

Theorem 6.3 There is an efficient algorithm, that we refer to as AlgInitPartition, whose input consists
of a connected m-edge graph G, a set T ⊆ V (G) of k vertices called terminals, such that each vertex
of T has degree 1 in G, and a parameter η > logm, such that k ≤ m

16η logm . The algorithm computes a
collection C of vertex-disjoint clusters of G \T , a partition (C1, C2, C3) of C into three subsets, and, for
every cluster C ∈ C3, an internal C-router Q(C) ∈ Λ(C), where the paths of Q(C) are edge-disjoint,
such that the following additional properties hold:

• every cluster C ∈ C has the α′-bandwidth property, where α′ = 1
16βARV(m)·logm = Ω

(
1

log1.5m

)
;

• for every cluster C ∈ C1, |E(C)| ≤ O(η4 log8m) · |δG(C)|;

• for every cluster C ∈ C2, OPTcr(C) ≥ Ω(|E(C)|2/(η2 poly logm)), and |E(C)| ≥ Ω(η4|δG(C)| log8m);

•
⋃
C∈C V (C) = V (G) \ T ; and

50

• |E(G|C)| ≤ |E(G)|/η.

Note that, from the theorem statement, for every cluster C ∈ C2, OPTcr(C) ≥ Ω(|δG(C)|2η6/ poly logm).
We will informally refer to clusters in C1 as concise clusters.

Let H be a graph and let T be a set of vertices of H called terminals. We say that a set Q =
{Q(t) | t ∈ T} of paths in graph H is a router for H and T if there is a vertex x ∈ V (H), such that,
for every terminal t ∈ T , path Q(t) originates at t and temrinates at x. We denote by Λ(H,T) the set
of all routers for H and T . Our second tool is algorithm AlgFindGuiding, summarized in the following
theorem.

Theorem 6.4 There are universal constants c0 and c∗, and an efficient randomized algorithm, called
AlgFindGuiding, that receives as input an instance I = (H,Σ) of MCNwRS, where |E(H)| = m, a
set T ⊆ V (H) of k vertices of H called terminals, and a collection C of disjoint clusters of H \ T .
Additionally, the algorithm receives as input parameters 0 ≤ α, α′ ≤ 1 and η, η′ ≥ 1, such that the
following conditions hold:

• η ≥ c∗ log46m
α10(α′)2 and η′ ≥ η13;

• k ≥ |E(H|C)|/η;

• every terminal t ∈ T has degree 1 in H;

• the set T of terminals is α-well-linked in the contracted graph H|C; and

• every cluster C ∈ C is η′-bad and has the α′-bandwidth property in H.

The algorithm either returns FAIL or (explicitly) returns a distribution D over the routers in Λ(H,T),

such that, for every edge e ∈ E(H), EQ∼D
[
(cong(Q, e))2

]
≤ O

(
log32m
α12(α′)8

)
. Moreover, if OPTcnwrs(I)+

|E(H \ T)| ≤ (kα4α′)2

c0η′ log50m
, then the probability that the algorithm returns FAIL is at most 1/2.

The proof of Theorem 6.4 is quite technical, and is deferred to Section 11. We note that the algorithm
returns the distribution D explicitly, that is, it lists all routers Q ∈ Λ(H,T) that have a non-zero
probability, together with their probability values in D. In the remainder of this section, we complete
the proof of Theorem 6.1, using the algorithms AlgInitPartition and AlgFindGuiding.

Note that we can assume, throughout the proof, that m is sufficiently large (larger than some large
enough constant). Otherwise, since the vertices of T are α-well-linked in G, we get that k ≤ m ≤ O(1).
We can then let D be a distribution that gives a probability 1 to an internal router Q with target
vertex u, where u is an arbitrary vertex of V (G) \ T , and Q is an arbitrary collection of simple paths
routing the vertices of T to u. Clearly, for every edge e ∈ E(G), (congG(Q, e))2 ≤ k2 ≤ O(1).

6.1 Main Parameters

We now introduce some parameters that our algorithm uses. The main parameter is η = 2(logm)3/4 .

Our algorithm will consist of (` − 1) phases, for ` ≤ O
(

logm
log η

)
= O((logm)1/4). At the beginning of

the i-th phase, we will be given a collection Ci of disjoint clusters of G \ T .

Parameters for bandwidth property. We will use the following parameters for bandwidth prop-
erty of the clusters. Recall that α0 = 1

(logm)50
is the parameter from the statement of Theorem 6.1.

For 1 ≤ i ≤ `, αi = (α0)i = 1
(logm)50·i

. We will ensure that for all 1 ≤ i ≤ `, every cluster in Ci has the

αi-bandwidth property. Note that α` = 1/(logm)50·` = 1/2O((logm)1/4 log logm).

51

Parameters for light clusters. We set β0 = 1, and for 1 ≤ i ≤ `, βi = (logm)56

(α0)12·(αi)8 · βi−1. It is easy

to verify that β` ≤ (logm)O(`2) ≤ 2O((logm)1/2 log logm) ≤ β∗.

Parameters for bad clusters. We define the following parameters: η0 = η4 · log9m = 2O((logm)3/4);
η1 = max

{
(2η0)13, η0 · (logm)80

}
= 2O((logm)3/4), and for each 1 ≤ i ≤ `, ηi = ηi−1·max

{
(logm)80+50·i, β3

i−1

}
.

Clearly, ηi ≤ (β`)
3 · ηi−1, and η` ≤ η1 · (β`)3` ≤ 2O((logm)3/4 log logm) ≤ η∗.

6.2 Algorithm Execution

As already mentioned, the algorithm consists of (` − 1) phases, where ` = O((logm)1/4). At the
beginning of the ith phase, we will be given a collection Ci of disjoint clusters of G \ T , which is

partitioned into two subsets: Clight
i and Cbad

i . For each cluster C ∈ Clight
i , we will also be given a

distribution D(C) over the set Λ(C) of internal C-routers. For all 1 ≤ i ≤ `, we will also define a bad
event Ei, and we will ensure that it happens with probability at most i/m10. We will ensure that the
following properties hold for all 1 ≤ i ≤ `:

R1. each cluster C ∈ Ci has the αi-bandwidth property;

R2. the number of edges in the contracted graph G|Ci is at most m/ηi−1;

R3. each cluster C ∈ Clight
i is βi-light with respect to the distribution D(C); and

R4. if the bad event Ei does not happen, then each cluster C ∈ Cbad
i is ηi-bad.

The input to the first phase, C1 = ∅. Clearly, all properties R1–R4 hold for this set of clusters. We
now describe the execution of the ith phase. We assume that we are given as input a collection Ci of
disjoint clusters of G \ T , which is partitioned into two subsets, Clight

i and Cbad
i . We are also given,

for each cluster C ∈ Clight
i , a distribution D(C) over the set Λ(C) of internal C-routers, and we are

guaranteed that Properties R1–R4 hold.

We consider the contracted graph G′ = G|Ci . The execution of the ith phase consists of two steps: in
the first step, we apply the algorithm AlgInitPartition to the contracted graph G′, obtaining a collection
C of clusters of G′, which we then convert into clusters of G. The set C of clusters is partitioned into
three subsets. Informally, the clusters in the first subset are concise, the clusters in the second subset
are ηi+1-bad if event Ei did not happen, and the clusters in the third set are βi+1-light with respect to
a distribution over the internal routers that we construct. In the second step we further process each
concise cluster, using the algorithm AlgFindGuiding, in order to determine whether it is a βi+1-light or
an ηi+1-bad cluster, and in the former case, to compute the corresponding distribution D(C) over the
set Λ(C) of internal C-routers.

6.3 Step 1: Partition

We assume first that |E(G′)| > 16ηk logm, where η = 2(logm)3/4 is the parameter that we have defined
above. If the inequality does not hold, then the current phase is the last phase of the algorithm, and
we show how to execute this phase at the end of this subsection.

We apply the algorithm AlgInitPartition from Theorem 6.3 to graph G′, the set T of terminals, and
the parameter η that we have defined. Notice that, since η = 2(logm)3/4 , and since we have assumed
that m is greater than some large enough constant, η > logm ≥ log(|E(G′)|) must hold. We now
consider the output of the algorithm, that consists of a collection C of disjoint clusters of G′ \ T , a

52

partition (C′1, C′2, C′3) of C into three subsets, and, for every cluster C ∈ C′3, a vertex u(C) ∈ V (C),
and an internal C-router Q(C), consisting of edge-disjoint paths routing the edges of δG(C) to u(C).
Recall that we are also guaranteed that every cluster C ∈ C has the α′-bandwidth property, where
α′ = 1

16βARV(m)·logm ≥ α0.

Consider any cluster C ∈ C. Recall that C is a cluster of the contracted graph G′, and it has the
α0-bandwidth property. Let W(C) be the set of all clusters W ∈ Ci, whose corresponding supernode
vW ∈ V (C). Recall that every cluster of Ci has the αi-bandwidth property from Property R1. Let
UC be the set of vertices of G, that contains every regular (non-supernode) vertex of C, and every

vertex lying in clusters of W(C). In other words, UC = (V (G) ∩ V (C)) ∪
(⋃

W∈W(C) V (W)
)

. We

then let C̃ = G[UC]. Since cluster C has the α0-bandwidth property, and every cluster in W(C) has
the αi-bandwidth property, from Claim 4.39 and Observation 4.16, cluster C̃ has the αi · α0 = αi+1-

bandwidth property. We let Ci+1 =
{
C̃ | C ∈ C

}
. Notice that we have just established Property

R1 for clusters in Ci+1. It is immediate to verify that G|Ci+1
= G′|C . Since Theorem 6.3 guarantees

that |E(G′|C)| ≤ |E(G′)|/η, and, from Property R2, |E(G′)| = |E(G|Ci)| ≤ m/ηi−1, we get that

|E(G|Ci+1
)| ≤ |E(G′)|/η ≤ m/ηi, establishing Property R2 for the set Ci+1 of clusters.

We now construct the partition (Cbad
i+1 , C

light
i+1) of the set Ci+1 of clusters. We start by letting Cbad

i+1 ={
C̃ | C ∈ C′2

}
and Clight

i+1 = ∅. We then consider every cluster C ∈ C′3 one by one. Recall that for each

such cluster C, the algorithm from Theorem 6.3 provides an internal router Q(C), routing the edges
of δG′(C) to u(C), such that the paths in Q(C) are edge-disjoint. If vertex u(C) is a supernode, whose

corresponding cluster W ∈ Ci lies in set Cbad
i , then we add C̃ to Cbad

i+1 ; otherwise, we add C̃ to Clight
i+1 .

Lastly, we set Cconcise
i+1 =

{
C̃ | C ∈ C′1

}
, and we refer to clusters in Cconcise

i+1 as concise clusters. In Step

2, we will further process clusters in Cconcise
i+1 , and we will eventually add each such cluster to either

Cbad
i+1 or to Clight

i+1 . Before we do so, we establish Property R4 for clusters that are currently in Cbad
i+1 ,

and we define a distribution D(C̃) over the set ΛG(C̃) of internal C̃-routers for every cluster C̃ that is

currently in Clight
i+1 , such that C̃ is βi+1-light with respect to D(C̃) (that is, we establish Property R3

for clusters that are currently in Clight
i+1).

Bad Clusters. Recall that Theorem 6.3 guaranteed that, for every cluster C ∈ C′2, OPTcr(C) ≥
Ω(|E(C)|2/(η2 poly logm)), and |E(C)| > Ω(η4|δG(C)| log8m). Therefore:

OPTcr(C) ≥ Ω

(
|E(C)|2

η2 poly logm

)
≥ Ω

(
|δG(C)|2η6

poly logm

)
≥ |δG(C)|2.

From the definition of cluster C̃, graph C is a contracted graph of C̃ with respect to clusters inW(C),
that is, C = C̃|W(C). As each cluster in W(C) ⊆ Ci has the αi-bandwidth property (from Property

R1), from Claim 4.42, there is a drawing of C containing at most O(OPTcnwrs(C̃,ΣC̃) · log8m/(αi)
2)

crossings, where ΣC̃ is the rotation system for C̃ induced by Σ. Since we have established that
OPTcr(C) ≥ |δG(C)|2, we get that:

OPTcnwrs(C̃,ΣC̃) ≥ Ω

(
|δG(C)|2 · (αi)2

log8m

)
≥ |δG(C)|2

ηi+1
,

since, by the definition, ηi+1 > η ≥ 2(logm)3/4 , while αi ≥ α` ≥ 1/2O((logm)1/4 log logm), and since we

have assume that m is large enough. We conclude that every cluster in
{
C̃ | C ∈ C′2

}
is ηi+1-bad.

Consider now some cluster C ∈ C′3, such that vertex u(C) that serves as the center of the router
Q(C) provided by the algorithm from Theorem 6.3 is a supernode, whose corresponding cluster

53

W ∈ Cbad
i . From Property R4, if Event Ei did not happen, cluster W is an ηi-bad cluster, that is,

OPTcnwrs(W,ΣW) + |E(W)| ≥ |δG(W)|2
ηi

, where ΣW is the rotation system for W induced by Σ. Since

W ⊆ C̃, we get that OPTcnwrs(C̃,ΣC̃) + |E(C̃)| ≥ |δG(W)|2
ηi

. Lastly, since there is a set Q(C) of edge-

disjoint paths routing the edges of δG′(C) to vertex u(C) inside C, we conclude that |δG(C̃)| ≤ |δG(W)|.
Altogether, from the fact that ηi+1 > ηi, we get that OPTcnwrs(C̃,ΣC̃) + |E(C̃)| ≥ |δG(C̃)|2

ηi+1
.

We conclude that, if event Ei did not happen, then every cluster that we have added to set Cbad
i+1 so far

is an ηi+1-bad cluster.

Light Clusters. Consider now some cluster C̃ ∈ Clight
i+1 , and let C ∈ C be its corresponding cluster

in graph G′. Recall that the algorithm from Theorem 6.3 provides a collection Q(C) of edge-disjoint
paths routing the edges of δG′(C) to u(C), such that, for every path in Q(C), all inner vertices of the
path lie in C. We will now define a distribution D(C̃) over the set ΛG(C̃) of internal C̃-routers, so
that C̃ is βi+1-light with respect to D(C̃).

Assume first that vertex u(C) is a regular vertex in cluster C, that is, it is not a supernode. Since
every cluster W ∈ W(C) has the αi-bandwidth property, we can use the algorithm from Claim 4.41 to
compute a collection Q(C̃) of paths, routing the edges of δG(C̃) to u(C), such that, for every path of
Q(C̃), all its inner vertices lie in C̃, and the largest congestion on an edge of C̃ is bounded by d1/αie.
The resulting distribution D(C̃) then consists of a single internal C̃-router Q(C̃), that is chosen with
probability 1. Clearly, for every edge e ∈ E(C̃):

EQ(C̃)∼D(C̃)

[
(congG(Q(C̃), e))2

]
≤ d1/αie2 ≤ βi+1,

since by definition βi+1 = (logm)56

(α0)12·(αi+1)8
· βi.

Assume now that u(C) is a supernode, corresponding to some cluster W ∗ ∈ W(C), such that W ∗ ∈
Clight
i . Let C̃ ′ be the cluster obtained from C̃, after we contract cluster W ∗ into a supernode vW ∗ =
u(C). Using the same reasoning as in the previous case, we can compute a set Q(C̃ ′) of paths in
graph C̃ ′, routing the edges of δG(C̃) to u(C), such that, for every path in Q(C̃ ′), every inner vertex
on the path lies in C̃ ′, and the largest congestion on an edge of C̃ ′ is bounded by d1/αie. Moreover,
the algorithm from Claim 4.41 guarantees that every edge in δC̃′(u(C)) belongs to at most one path

in Q(C̃ ′) (and it is the last edge on that path).

Recall that cluster W ∗ is βi-light with respect to the distribution D(W ∗) over the set ΛG(W ∗) of
internal W ∗-routers. We choose an internal W ∗-router Q(W ∗) ∈ Λ(W ∗) from the distribution D(W ∗),
routing the edges of δG(W ∗) to a vertex u(W ∗) of W ∗. We now consider every path Q ∈ Q(C̃ ′) one
by one. Let e ∈ δG(C̃) be the first edge on Q, and let e′ ∈ δG(W ∗) be the last edge on Q. Let Q∗ be
the unique path in Q(W ∗) whose first edge is e′, and let Q′ be obtained by first deleting the edge e′

from Q, and then concatenating the resulting path with path Q∗. Notice that path Q′ connects the

edge e to the vertex u(W ∗), in graph C̃ ∪ δG(C̃). We then set Q(C̃) =
{
Q′ | Q ∈ Q(C̃ ′)

}
, so that

Q(C̃) is an internal C̃-router in ΛG(C̃). This finishes the definition of the distribution D(C̃) over the
set Λ(C̃) of internal C̃-routers. Note that the distribution is given implicitly, that is, we provide an
efficient algorithm to draw a router from the distribution.

Consider now some edge e ∈ E(C̃). If e 6∈ E(W ∗), then with probability 1 (over the choices of internal
C̃-routers Q(C̃) from D(C̃)), congG(Q(C̃), e) ≤ d1/αie2, and so (congG(Q(C̃), e))2 ≤ βi+1 as argued
before. If e ∈ E(W ∗), then congG(Q(C̃), e) = congG(Q(W ∗), e), and so:

EQ(C̃)∼D(C̃)

[
(congG(Q(C̃), e)2

]
= EQ(W ∗)∼D(W ∗)

[
(congG(Q(W ∗), e)2

]
≤ βi ≤ βi+1.

54

We conclude that cluster C̃ is βi+1-light with respect to the distribution D(C̃) over the set ΛG(C̃) of
intenral C̃-routers that we have computed.

Recall that so far we assumed that |E(G′)| > 16ηk logm held, where G′ = G|Ci . Assume now that

|E(G′)| ≤ 16ηk logm. In this case, we let Cbad
i+1 = Clight

i+1 = ∅ and we let Cconcise
i+1 contain a single cluster,

C̃ = G \ T . We also let C′1 contain a single cluster, C = G′ \ T , and we set C′2 = C′3 = ∅. We denote
W(C) = Ci. The current phase will become the final phase of the algorithm.

6.4 Step 2: Concise Clusters

Observe that every cluster C ∈ C′1 has the α0-bandwidth property in G′, and |E(C)| ≤ η0 · |δG′(C)|
holds. Indeed, if |E(G′)| ≤ 16ηk logm holds, then set C′1 contains a single cluster C = G′ \ T , and
|E(C)| ≤ 16ηk logm ≤ η0|δG′(C)| holds. Since the set T of terminals is α0-well-linked in G (from the
statement of Theorem 6.1), cluster C̃ = G \T has the α0-bandwidth property in G, and cluster C has
the α0-bandwidth property in G′.

Otherwise, Theorem 6.3 guarantees that every cluster C ∈ C′1 has the α0-bandwidth property, and
moreover, |E(C)| ≤ O(η4 log8m) · |δG′(C)| ≤ η0 · |δG(C)| (since η0 = η4 · log9m, and we have assumed
that m is large enough). Recall that for every cluster C ∈ C′1, we have defined a collection W(C) ⊆ Ci
of clusters, such that for each cluster W ∈ W(C), its corresponding supernode vW lies in C. We have
also defined a cluster C̃ ∈ Cconcise

i+1 , that is a subgraph of G correpsonding to C. In other words, we

can think of C̃ as being obtained from C by un-contracting every cluster W ∈ W(C).

We would now like to apply the algorithm AlgFindGuiding to each such cluster C ∈ C′1, in order to
classify the corresponding cluster C̃ of G as either an ηi+1-bad or a βi+1-light cluster. Notice however
that the algorithm requires that we define a rotation system for C, and, if the algorithm classifies C as
an ηi+1-bad cluster (by returning “FAIL”), then we are only guaranteed that it is likely that the value
of the optimal solution of the resulting instance is high. Therefore, ideally we would like to define
a rotation system Σ̂(C) for cluster C of G′, such that OPTcnwrs(C, Σ̂(C)) is not much higher than
OPTcnwrs(C̃,ΣC̃). Unfortunately, it is not immediately clear how to define such a rotation system,
mainly because it is unclear how to define the orderings on edges incident to supernodes. In order
to overcome this difficulty, we consider a different graph, that can be thought of as an intermediate
graph between C and C̃. This new graph, that we denote by H(C̃), is obtained as follows. We
start from graph C̃+. Recall that C̃+ is obtained from graph G by first subdividing every edge
e ∈ δG(C̃) with a vertex te, and then letting C̃+ be the subgraph of the resulting graph induced by

V (C̃)∪
{
te | e ∈ δG(C̃)

}
. We denote T ′ =

{
te | e ∈ δG(C̃)

}
. We partition the setW(C) of clusters into

two subsets: setW light(C) =W(C)∩Clight
i andWbad(C) =W(C)∩Cbad

i . Graph H(C̃) is then obtained
from graph C̃+, by contracting every cluster W ∈ W light(C) into a supernode vW . Additionally, we
denote by H ′(C̃) the graph obtained from C̃+ by contracting every cluster W ∈ W(C) into a supernode
vW . Notice that graph H ′(C̃) is precisely the augmentation C+ of the cluster C in G′.

In the remainder of this step, we focus on one specific cluster C ∈ C′1, so for convenience, we will denote
H(C̃) by H, H ′(C̃) by H ′, W(C) by W, and W light(C),Wbad(C) by W light and Wbad, respectively.
From our construction, H ′ = H|Wbad .

Recall that we have already established that cluster C has the α0-bandwidth property in G′. Therefore,
the set T ′ of vertices is α0-well-linked in graph H ′. Additionally, from Property R1, every cluster
W ∈ Wbad has the αi-bandwidth property, and, if event Ei did not happen, each such cluster is ηi-
bad. Recall also that we are guaranteed that |E(C)| ≤ η0 · |δG′(C)| = η0 · |T ′|. Therefore, |E(H ′)| =
|E(C)|+ |T ′| ≤ 2η0|T ′|.
Intuitively, we would now like to apply the algorithm AlgFindGuiding from Theorem 6.4 to graph
H, the set T ′ of terminals, and the correpsonding collection Wbad of clusters. In order to do so,

55

we need to define a rotation system Σ̂ for graph H. We do so using a randomized algorithm that
exploits the distributions D(W) over the set ΛG(W) of internal W -routers for clusters W ∈ W light.
We would like to use the algorithm AlgFindGuiding in order to decide whether to add cluster C̃
to the set Clight

i+1 of light clusters or to the set Cbad
i+1 of bad clusters. Specifically, if the algorithm

returns FAIL, we would like to add it to Cbad
i+1 , and otherwise we would like to add it to set Clight

i+1 ,

together with the distribution D(C̃) over the set ΛG(C̃) of internal C̃-routers that we can compute
using the distribution over internal routers in Λ(H,T ′) that the algorithm AlgFindGuiding computes.
Notice however, that, even if OPTcnwrs(H, Σ̂) is small, the algorithm may return FAIL with a constant
probability. Additionally, the random choices that we make in defining the rotation system Σ̂ for
graph H may also result in an instance whose solution value is too high (though this can only happen
with relatively small probability). In order to ensure that our algorithm classifies cluster C̃ as a light
or a bad cluster correctly with high probability, we will perform m identical iterations (but in each
iteration we construct the rotation system Σ̂ for H from scratch). We now describe a single iteration.

Execution of a single iteration. In order to perform a single iteration of the algorithm, we
construct a rotation system Σ̂ for graph H, as follows. Consider any vertex v ∈ V (H). If v ∈ T ′, then
the degree of v in H is 1, and the corresponding ordering of its incident edges is trivial. Assume now
that v ∈ V (H) \ T ′, and that v is not a supernode. In this case, there is a one-to-one correpsondence
between the edges in set δH(v) and the edges in set δG(v). We use the ordering Ov ∈ Σ of the edges
in δG(v) in order to define an ordering of the edges in δH(v), for the rotation system Σ̂. Lastly, we
assume that vertex v ∈ V (H) \ T ′ is a supernode. In other words, v = vW , where W ∈ W light is a
light cluster. Recall that we are given a distribution D(W) over the set ΛG(W) of internal W -routers,
such that W is βi-light with respect to this distribution. We randomly select an internal W -router
Q(W) ∈ ΛG(W) from the distribution D(W). Let u(W) be the center vertex of Q(W), so that Q(W)
is a set of paths routing the edges of δG(W) to vertex u(W). Also recall that, from the definition of
light clusters, for every edge e ∈ E(W), EQ(W)∼D(W)

[
(congG(Q(W), e))2

]
≤ βi.

Observe that the edges of δH(vW) are precisely the edges of δG(W). Next, we transform the set Q(W)
of paths into a set of non-transversal paths, by applying the algorithm from Lemma 4.7 to the set
Q(W) of paths. We denote the resulting set of paths by Q̂(W); note that Q̂(W) is an internal W -
router. Recall that we have defined an ordering of edges of δG(W) guided by the internal W -router
Q̂(W) (see Section 5.2). We let the ordering ÔvW ∈ Σ̂ be the ordering of the edges of δG(W) guided
by the paths in Q̂(W). We need the following observation, whose proof follows arguments that are
similar to those used in the proof of Lemma 5.6, and is deferred to Section F.2 of Appendix.

Observation 6.5 E
[
OPTcnwrs(H, Σ̂)

]
≤ O

(
βi ·

(
OPTcnwrs(C̃,ΣC̃) + |E(C̃)|

))
.

A single iteration of our algorithm consists of computing a rotation system Σ̂ for graph H from
scratch, and then applying the algorithm AlgFindGuiding from Theorem 6.4 to instance I = (H, Σ̂)
of MCNwRS, with the set T ′ of terminals, and the collection C = Wbad of clusters. We set the
parameters for the algorithm from Theorem 6.4 as follows: α = α0, α′ = αi, η = 2η0, and η′ = ηi.
Recall that the set T ′ of terminals is α0-well-linked in the contracted graph H ′ = H|Wbad , and |T ′| ≥
|E(H ′(C̃))|/(2η0). Moreover, each cluster in Wbad(C) has the αi-bandwidth property, and, if event
Ei did not happen, then each such cluster is ηi-bad (note that, if i = 1 then Wbad(C) = ∅). Notice
that η′ ≥ η1 ≥ (2η0)13 ≥ η13, from the definition of the parameter ηi. It remains to verify that

η ≥ c∗ log46m
α10(α′)2 , or, equivalently, that η0 ≥ c∗ log46m

2α10
0 (αi)2

. Recall that we set η0 = η4 · log9m = 2O((logm)3/4),

and we ensure that αi, α0 ≥ α` = 1/(logm)50·` = 1/2O((logm)1/4 log logm). Since we assume that m is
large enough, the inequality clearly holds. Therefore, all conditions of Theorem 6.4 hold, and we can

56

apply the algorithm AlgFindGuiding to instance I = (H, Σ̂) of MCNwRS, with the set T ′ of terminals,
the collection C =Wbad of clusters, and the parameters defined above.

Recall that we perform m such iterations. If, in every iteration, algorithm AlgFindGuiding returns
FAIL, then we add cluster C̃ to set Cbad

i+1 . We next show that, if Event Ei did not happen, and C̃ is

not an ηi+1-bad cluster in G, then the probability that C̃ is added to Cbad
i+1 is small.

Claim 6.6 Let Ei+1(C̃) denote the bad event that C̃ is not an ηi+1-bad cluster, but our algorithm adds

C̃ to Cbad
i+1 . Then Pr

[
Ei+1(C̃) | ¬Ei

]
≤ (3/4)m.

Proof: Consider a single iteration of the algorithm. Recall that, from Observation 6.5,

E
[
OPTcnwrs(H, Σ̂)

]
≤ O

(
β2
i ·
(
OPTcnwrs(C̃,ΣC̃) + |E(C̃)|

))
.

If cluster C̃ is not ηi+1-bad, then |E(C̃)|+ OPTcnwrs(C̃,ΣC̃) < |T ′|2/ηi+1. So for some constant c′:

E
[
|E(H \ T ′)|+ OPTcnwrs(H(C̃), Σ̂)

]
≤ c′β2

i · |T ′|2/ηi+1.

Let E ′ denote the event that |E(H \T ′)|+OPTcnwrs(H, Σ̂) > 4c′β2
i · |T ′|2/ηi+1. From Markov’s bound,

Pr [E ′] ≤ 1/4. Denote k = |T ′|, and recall that we have set η′ = ηi, α = α0, and α′ = αi. Since

ηi+1 ≥ ηi · β3
i , and βi = (logm)56

(α0)12·(αi)8 · βi−1, we get that:

4c′β2
i

ηi+1
≤ 4c′

βiηi
≤ (α0)12 · (αi)8

c0ηi log50m
.

We conclude that, if event E ′ did not happen, and C̃ is not an ηi+1-bad cluster, then |E(H \ T ′)| +
OPTcnwrs(H, Σ̂) ≤ (kα4α′)2

c0η′ log50m
. Let E ′′ be the bad event that the algorithm AlgFindGuiding returned

FAIL. From Theorem 6.4, if cluster C̃ is not ηi+1-bad, then Pr [E ′′ | ¬E ′ ∧ ¬Ei] ≤ 1/2.

Overall, assuming that the event Ei did not happen and cluster C̃ is not ηi-bad, then the algorithm
AlgFindGuiding may only return FAIL if either E ′ or E ′′ happen, which, from the above discussion,
happens with probability at most (3/4). Overall, since we repeat the above algorithm m times, the
probability that in every iteration the algorithm AlgFindGuiding returns FAIL is at most (3/4)m.

Assume now that, in any one of the iterations, the algorithm AlgFindGuiding did not return FAIL, and
instead returned a distribution D over the routers of Λ(H,T ′), such that for every edge e ∈ E(H),

EQ∼D
[
(cong(Q, e))2

]
≤ O

(
log32m
α12
0 α8

i

)
. We now provide a distribution D(C̃) over the set ΛG(C̃) of inter-

nal C̃-routers, such that C̃ is βi+1-light with respect to D(C̃). The distribution is provided implicitly:
that is, we provide an efficient algorithm for drawing an internal C̃-router from the distribution.

In order to draw an internal C̃-router from distribution D(C̃), we start by choosing a router Q ∈
Λ(H,T ′) from the distribution D. Let x be the center vertex of Q, so x is a vertex of V (H \T ′), and Q
is a collection of paths in H, routing all terminals in T ′ to x. Equivalently, we can viewQ as a collection
of paths that route the edges of δG(C̃) to the vertex x, in the contracted graph C̃|W light(C) ∪ δG(C̃).

Additionally, for every cluster W ∈ W light(C), we select an internal W -router Q(W) ∈ ΛG(W) from
the distribution D(W), and we denote by u(W) ∈ V (W) its center vertex.

Assume first that x is a regular vertex in graph H, that is, it is not a supernode representing a cluster
of W light(C). In this case, we set u(C̃) = x, and we will use u(C̃) as the center vertex for internal
router Q(C̃) ∈ ΛG(C̃) that we construct. Otherwise, if x = vW for some cluster W ∈ W light(C), then
we set u(C̃) = u(W), where u(W) is the center vertex of the internal router Q(W) ∈ ΛG(W) that we
have selected for cluster W .

57

Next, we consider every path Q ∈ Q one by one. Let Q be any such path, and assume that the first
edge on Q is e ∈ δG(C̃). We transform Q into a path Q′ connecting e to u(C̃) in G, as follows. We
consider supernodes vW ′ that lie on Q one by one. For any such supernode vW ′ that is an inner vertex
of Q, we let e′, e′′ be the two edges that appear immediately before and immediately after vW ′ on Q.
Observe that e′, e′′ ∈ δG(W ′). Therefore, there is a path P (e′) ∈ Q(W ′) connecting e′ to u(W ′), whose
inner vertices lie in W ′, and a path P (e′′) ∈ Q(W ′) connecting e′′ to u(W ′), whose inner vertices lie
in W ′. By concatenating these two paths, we obtain a path P ∗(Q,W ′), whose first edge is e′, last
edge is e′′, and all remaining edges lie in W ′. We then replace the segment of path Q consisting of
the edges e′, e′′ with the path P ∗(Q,W ′). Lastly, if vW is the last vertex on path Q (in which case
x = vW), then we let e′ be the last edge on Q. Notice that e′ ∈ δG(W) must hold. Then there must
be a path P (e′) ∈ Q(W), whose first edge is e′ and last vertex is u(W) = u(C̃). We then replace the
edge e′ on path Q with the path P (e′). Let Q′ be the final path that is otbained from Q after this
transformation. Then Q′ is a path in graph G, whose first edge is e, last vertex is u(C̃), and all inner
edges and vertices are contained in C̃.

Lastly, we let Q(C̃) = {Q′ | Q ∈ Q} be the resulting router in ΛG(C̃). This finishes the definition
of the distribution D(C̃) over the set Λ(C̃) of internal C̃-routers. Notice that we do not provide the
distribution explicitly, and instead we have described an algorithm that, given access to distribution
D computed by the algorithm AlgFindGuiding, and distributions {D(W)} for clusters W ∈ W light(C)
(that may also be given implicitly), samples an internal C̃-router from the distribution D(C̃). We add

cluster C̃ to set Clight
i+1 , together with the distribution D(C̃). It now remains to show that cluster C̃ is

βi+1-light with respect to the distribution D(C̃), which we do in the following claim.

Claim 6.7 Cluster C̃ is βi+1-light with respect to the distribution D(C̃).

Proof: Consider some edge e ∈ E(C̃). Assume first that edge e does not lie in any cluster W ∈
W light(C). In this case:

EQ(C̃)∼D(C̃)

[
(congG(Q(C̃), e))2

]
= EQ∼D

[
(congH(Q, e))2

]
≤ O

(
log32m

α12
0 (αi)8

)
,

from Theorem 6.4. Since βi+1 = (logm)56

(α0)12·(αi+1)8
· βi, and αi+1 ≤ αi, we get that:

EQ(C̃)∼D(C̃)

[
(congG(Q(C̃), e))2

]
≤ βi+1.

Next, we assume that e lies in some cluster W ∈ W light(C). In order to analyze E
[
(congG(Q(C̃), e))2

]
,

we consider the following two-step process. In the first step, we select an internal W -router Q(W) ∈
Λ(W) from the distribution D(W), and denote its center vertex by u(W). Then, in the second step,
we select a router Q ∈ Λ(H,T ′) from distribution D. Lastly, composing the paths in Q with the paths
in Q(W), similarly to our construction of the final set Q(C̃) of paths, will establish the final congestion
on edge e.

Let Q(W) ∈ Λ(W) be the internal W -router that was chosen from distribution D(W), and assume
that the paths in Q(W) cause congestion z on edge e. We denote Q(W) = {Q(e′) | e′ ∈ δG(W)},
where for every edge e′ ∈ δG(W), path Q(e′) originates at edge e′ and terminates at vertex u(W). Let
E′ ⊆ δG(W) be the set of edges e′ whose corresponding path Q(e′) contains the edge e, so |E′| = z.

58

Denoting E′ = {e1, . . . , ez}, and assuming that the set Q(W) of paths is fixed, we can now write:

EQ∼D

[
(congG(Q(C̃), e))2

]
= EQ∼D

(z∑
i=1

congH(Q, ei)

)2


≤ EQ∼D

[
z∑
i=1

2z · (congH(Q, ei))2

]

≤ z2 ·O
(

log32m

α12
0 α

8
i

)
.

Recall that z is the congestion caused by the set Q(W) of paths on edge e. Therefore, overall:

EQ(C̃)∼D(C̃)

[
(congG(Q(C̃), e))2

]
≤ EQ(W)∼D(W)

[
(congG(Q(W), e))2

]
·O
(

log32m

α12
0 α

8
i

)
≤ βi ·O

(
log32m

α12
0 α

8
i

)
≤ βi+1.

(here we have used the fact that cluster W is βi-light with respect to distribution D(W), that βi+1 =
(logm)56

(α0)12·(αi+1)8
· βi), and that αi+1 ≤ αi.

We now summarize the second step of the algorithm. First, from Claim 6.7, every cluster C̃ that we
have added to set Clight

i+1 over the course of Step 2 is a βi+1-light cluster with respect to the distribution

D(C̃) over the set ΛG(C̃) of internal C̃-routers that we have defined. Let Ei+1 be the bad event that
any cluster C̃ that was added to set Cbad

i+1 over the course of the current phase is not ηi+1-bad. From
the discussion above, event Ei+1 may only happen if either event Ei happened, or there is some cluster
C ∈ C′1, for which event Ei+1(C̃) happened. From Claim 6.6, and Property R4, the probability of Ei+1

is bounded by Pr [Ei] +m · (3/4)m ≤ i/m10 +m · (3/4)m ≤ (i+ 1)/m10, since we have assumed that
m is large enough.

Lastly, if the current phase is the last phase, that is, |E(G′)| ≤ 16ηk logm holds, then set C′1 contains
a single cluster C = G′ \ T . If our algorithm added the corresponding cluster C̃ = G \ T to set Cbad

i+1 ,
then we return FAIL. Notice that, if OPTcnwrs(G,Σ) + |E(G) \ T | < k2/η∗ ≤ k2/η` ≤ k2/ηi+1, then
the algorithm may only return FAIL if event Ei+1 happened, with may only happen with probability
at most i+1

m10 <
1
2 . Otherwise, our algorithm added cluster C̃ to set Clight

i+1 , and constructed a distribu-

tion D(C̃) over the set Λ(C̃) of internal C̃-routers, such that cluster C̃ is βi+1-light with respect to
D(C̃). Notice that D(C̃) can also be viewed as a distribution over the routers of Λ(G,T), and we are
guaranteed that, for every edge e ∈ E(G), EQ∼D(C̃)

[
(congG(Q, e))2

]
≤ β` ≤ β∗. From Property R2,

after (`− 1) phases the algorithm terminates, for ` = O
(

logm
log η

)
.

7 Third Main Tool - Advanced Disengagement

The goal of this section is to prove the following theorem that allows us to perform disengagement in
a more general setting than that from basic disengagement.

Theorem 7.1 There is an efficient randomized algorithm, called AlgAdvancedDisengagement, whose
input consists of an instance I = (G,Σ) of MCNwRS, parameters m and µ ≥ 2c

∗(logm)7/8 log logm for
some large enough constant c∗, and a collection C of disjoint clusters of G, for which the following
hold:

• |V (G)|, |E(G)| ≤ m, and m is greater than a sufficiently large constant;

59

• every cluster C ∈ C has the α0-bandwidth property, for α0 = 1/ log3m;

•
⋃
C∈C V (C) = V (G); and

•
∑

C∈C |δG(C)| ≤ |E(G)|/µ0.1.

The algorithm computes a 2O((logm)3/4 log logm)-decomposition I of instance I, such that every instance
I ′ ∈ I is a subinstance of I. Moreover, for each resulting instance I ′ = (G′,Σ′) ∈ I, there is at most
one cluster C ∈ C with E(C) ⊆ E(G′). If such a cluster exists, then E(G′) ⊆ E(C) ∪ Eout(C), and
otherwise E(G′) ⊆ Eout(C).

The remainder of this section is dedicated to the proof of Theorem 7.1.

Over the course of the proof, we will consider subinstances of the input instance I. Recall that an
instance I ′ = (G′,Σ′) of MCNwRS is a subinstance of instance I = (G,Σ) (see Definition 2.12), if
there is a subgraph G̃ ⊆ G, and a collection R of mutually disjoint subsets of vertices of G̃, such that
graph G′ can be obtained from G̃ by contracting, for all R ∈ R, vertex set R into a supernode vR;
we keep parallel edges but remove self-loops. We do not distiguish between edges of G′ incident to
supernodes and their corresponding edges in the original graph G. We call the non-supernode vertices
of G′ regular vertices. We also require that, for every regular vertex v ∈ V (G′) ∩ V (G), its rotation
O′v in Σ′ is the same as the rotation Ov ∈ Σ. For each supernode vR, its rotation O′vR can be defined
arbitrarily. We will consider special types of subinstances of a given instance, that we call canonical
subinstances.

Definition 7.2 (Canonical Subinstances) Let I ′ = (G′,Σ′) be an instance of MCNwRS, and let C′
be a collection of disjoint clusters G′. We say that instance I ′′ = (G′′,Σ′′) is a canonical subinstance
of I ′ with respect to C′ if I ′′ is a subinstance of I ′, and moreover, if G̃ ⊆ G′, and R is a collection
of disjoint subsets of vertices of G̃, such that G′′ is obtained from G̃ by contracting every vertex set
R ∈ R into a supernode vR, then the following holds: For every cluster C ∈ C′, either (i) there is some
vertex set R ∈ R with V (C) ⊆ R (in which case we say that C is contracted in graph G′′); or (ii)
C ⊆ G̃, and for every vertex set R ∈ R, R∩V (C) = ∅ (in which case we say that C is not contracted
in G′′); or (iii) V (C) ∩ V (G̃) = ∅.

We will consider canonical subinstances of instance I with additional useful properties. We call such
subinstances nice subinstances. For each such subinstance, we will use a specific witness structure to
certify that it is indeed a nice subinstance. We will provide two theorems: the first theorem will be
used to decompose the input instance I into a collection of nice subinstances, and the second theorem
will further decompose each resulting nice subinstance into a collection of subinstances that have the
properties required by Theorem 7.1. In the next subsection, we define the witness structure and the
nice subinstances, and then provide the statements of the two theorems that will allow us to complete
the proof of Theorem 7.1.

7.1 Nice Witness Structure, Nice Subinstances, and Statements of Main Theo-
rems

Let G′ be a graph, let m > 0 be an integer with |E(G′)| ≤ m, and let C′ be a collection of disjoint
clusters of G′. A nice witness structure for G′ with respect to C′ consists of the following three main
ingredients (see Figure 9):

1. The first ingredient is a sequence S̃ =
{
S̃1, . . . , S̃r

}
of disjoint vertex-induced subgraphs of

G′, such that
⋃r
i=1 V (S̃i) = V (G′), and, for all 1 ≤ i ≤ r, a cluster S̃′i ⊆ S̃i that has the

60

α∗ = Ω(1/ log12m)-bandwidth property in G′. We require that, for all 1 ≤ i ≤ r, there is at most
one cluster C ∈ C′ with C ⊆ S̃′i. Moreover, if such cluster C exists then E(S̃i) ⊆ E(C)∪E(G′|C′)

must hold, and otherwise E(S̃i) ⊆ E(G′|C′). We also require that for each cluster C ∈ C′, there

is an index 1 ≤ i ≤ r, such that C ⊆ S̃′i. We refer to the sequence S̃ =
{
S̃1, . . . , S̃r

}
as the

backbone of the nice witness structure, and to the clusters in S̃ ′ =
{
S̃′1, . . . , S̃

′
r

}
as its verterbrae.

2. The second ingredient is a partition of the edges of E(G′) into two disjoint subsets, Ẽ′ and Ẽ′′.
Set Ẽ′ contains all edges of

⋃r
i=1E(S̃′i), and, additionally, for all 1 ≤ i < r, it contains every edge

e = (u, v) with u ∈ S̃′i, v ∈ S̃′i+1. Set Ẽ′′ contains all remaining edges of E(G′). Additionally,

we let Ê ⊆ Ẽ′′ be the set of all edges (u, v) ∈ Ẽ′′, where u and v lie in different clusters of{
S̃1, . . . , S̃r

}
.

3. The third ingerdient is a set P̂ =
{
P (e) | e ∈ Ê

}
of paths, that cause congestion at most

O(log18m) in G′ that we call nice guiding paths. For each edge e = (v, u) ∈ Ê, if we assume that
v ∈ S̃i, u ∈ S̃j , and i < j, then path P (e) connects vertex v to vertex u, does not contain the edge
e, and consists of three subpaths P 1(e), P 2(e) and P 3(e), that have the following properties:

• There is an index i′ ≤ i, such that path P 1(e) originates at vertex v and terminates at
some vertex v′ ∈ S̃′i′ . Path P 1(e) must be simple, and no vertex of P 1(e) \ {v′} may lie
in
⋃r
z=1 V (S̃′z). Moreover, if we denote the sequence of vertices on path P 1(e) by v =

v0, v1, . . . , vq = v′, and, for all 0 ≤ z ≤ q, we assume that vz ∈ S̃iz , then i = i0 ≥ i1 ≥ · · · ≥
iq = i′. In other words, the path visits the sets S̃a in the non-increasing order of index a,
possibly skipping over some of the indices.

• Similarly, there is an index j′ ≥ j, such that path P 3(e) originates at vertex u and terminates
at some vertex u′ ∈ S̃′j′ . Path P 3(e) must be simple, and no vertex of P 3(e) \ {u′} may

lie in
⋃r
z=1 V (S̃′z). Moreover, if we denote the sequence of vertices on path P 3(e) by u =

u0, u1, . . . , uq′ = u′, and, for all 0 ≤ z′ ≤ q′, we assume that uz′ ∈ S̃jz′ , then j = j0 ≤ j1 ≤
· · · ≤ jq′ = j′. In other words, the path visits the sets S̃a in the non-decreasing order of
index a, possibly skipping over some of the indices.

• Lastly, path P 2(e) connects v′ to u′. It may only use edges of Ẽ′, and it can be partitioned
into disjoint subpaths Qi′(e), Qi′+1(e), . . . , Qj′(e), where for all i′ ≤ x ≤ j′, Qx(e) ⊆ S̃′x,
and

⋃
i′≤x≤j′ V (Qx(e)) = V (P 2(e)).

Note that, by definition, for every edge e ∈ Ê, the paths P 1(e) and P 3(e) only use edges of Ẽ′′, while
path P 2(e) only uses edges of Ẽ′. If e = (v, u) ∈ Ê is an edge for which v ∈ S̃′i holds, then i′ = i and
P 1(e) = {v} must hold. Similarly, if u ∈ S̃′j , then j′ = j and P 2(e) = {u}.

Clearly, the edge sets Ẽ′, Ẽ′′, Ê in the nice witness structure are completely determined by the se-

quences S̃ =
{
S̃1, . . . , S̃r

}
and S̃ ′ =

{
S̃′1, . . . , S̃

′
r

}
of clusters. Therefore, the nice witness structure

is completely determined by S̃, S̃ ′, and the set P̂ =
{
P (e) | e ∈ Ê

}
of nice guiding paths. We will

use the shorthand (S̃, S̃ ′, P̂) for a nice witness structure. For a path P (e) ∈ P̂, we sometimes refer
to P 1(e), P 3(e) and P 2(e) as the prefix, the suffix, and the mid-part of path P (e), respectively. This
completes the definition of a nice witness structure. Next, we define nice subinstances of instance I.

Consider a subinsance I ′ = (G′,Σ′) of the input instance I, and assume that I ′ is a canonical subin-
stance of I with respect to the set C of clusters. Recall that, from the definition of canonical subin-
stances, we are guaranteed that for every cluster C ∈ C, either C ⊆ G′, or V (C) ∩ V (G′) = ∅.

61

Figure 9: An illustration of a nice witness structure and a nice guiding path. An edge e ∈ Ê is shown
in red. The prefix P 1(e) and the suffix P 3(e) of the nice guiding path P (e) are shown in green, and
the mid-part P 2(e) is shown in blue.

We denote by C(G′) the set of all clusters C ∈ C with C ⊆ G′. Lastly, we say that a subinstance
I ′ = (G′,Σ′) of I is a nice subinstance of I with respect to C, if it is a canonical subinstance with
respect to C, and there is a nice witness structure for graph G′ with respect to the set C′ = C(G′) of
its clusters. The remainder of the proof of Theorem 7.1 uses the following two theorems. The first
theorem allows us to decompose a given instance I into a collection of nice subinstances.

Theorem 7.3 There is an efficient randomized algorithm, whose input consists of an instance I =
(G,Σ) of MCNwRS, parameters m and µ ≥ 2c

∗(logm)7/8 log logm for some large enough constant c∗, and
a collection C of disjoint clusters of G, for which the following hold:

• |V (G)|, |E(G)| ≤ m, and m is greater than a sufficiently large constant;

• every cluster C ∈ C has the α0-bandwidth property, for α0 = 1/ log3m;

•
⋃
C∈C V (C) = V (G); and

•
∑

C∈C |δG(C)| ≤ |E(G)|/µ0.1.

The algorithm either returns FAIL, or it computes a 2O((logm)3/4 log logm)-decomposition I1 of instance
I, such that each resulting instance I ′ = (G′,Σ′) ∈ I1 is a nice subinstance of I with respect to C. In
the latter case, the algorithm also computes, for each instance (G′,Σ′) ∈ I1, a nice witness structure
for graph G′ with respect to the set C(G′) of clusters. The probability that the algorithm returns FAIL
is at most 1/m6.

The second theorem allows us to further decompose nice subinstances of instance I into subinstances
that have the desired properties.

Theorem 7.4 There is an efficient randomized algorithm, whose input consists of:

• an instance I ′ = (G′,Σ′) of MCNwRS;

• a parameter m, such that |E(G′)| ≤ m;

62

• a collection C′ of disjont clusters of G′; and

• a nice witness structure (S̃, S̃ ′, P̂) for graph G′ with respect to the set C′ of clusters.

The algorithm either returns FAIL, or computes a 2O((logm)3/4 log logm)-decomposition I2(I ′) of instance
I ′, such that each resulting instance I ′′ = (G′′,Σ′′) ∈ I2(I ′) is a subinstance of I ′, and moreover, there
is at most one cluster C ∈ C′ with E(C) ⊆ E(G′′); if such a cluster exists then E(G′′) ⊆ E(C)∪E(G′|C′)

holds, and otherwise E(G′′) ⊆ E(G′|C′). The probability that the algorithm returns FAIL is 1/m6.

Note that Theorem 7.1 immediately follows from Theorem 7.3 and Theorem 7.4. Indeed, we start by
applying the algorithm from Theorem 7.3 to the input instance I and the collection C of its clusters.
Assume for now that the algorithm did not return FAIL. Then we obtain a collection I1 of nice
subinstances of I, and, for each instance I ′ = (G′,Σ′) ∈ I1, a nice witness structure for G′ with
respect to cluster set C(G′). From the definition of a nice subinstance, for every cluster C ∈ C(G′),
C ⊆ G′, and for every cluster C ∈ C\C(G′), V (C)∩V (G′) = ∅, so E(G′) ⊆

(⋃
C∈C(G′)E(C)

)
∪Eout(C).

We then apply the algorithm from Theorem 7.4 to each such instance I ′ = (G′,Σ′) ∈ I1 and the
corresponding nice witness structure. Assume for now that this algorithm did not return FAIL.
Then we obtain a collection I2(I ′) of subinstances of I ′. We are guaranteed that, for each resulting
instance I ′′ = (G′′,Σ′′) ∈ I2(I ′), there is at most one cluster C ∈ C(G′) with E(C) ⊆ E(G′′).
If such a cluster exists, then E(G′′) ⊆ E(C) ∪ E(G′|C(G′)) ⊆ E(C) ∪ Eout(C) holds, and otherwise

E(G′′) ⊆ E(G′|C(G′)) ⊆ Eout(C′), since E(G′) ⊆
(⋃

C′∈C(G′)E(C ′)
)
∪ Eout(C). If the algorithm from

Theorem 7.3 did not return FAIL, and neither application of the algorithm from Theorem 7.4 returned
FAIL, then we return the collection of instances I =

⋃
I′∈I1 I2(I ′). From Claim 2.11, we obtain a

randomized algorithm that computes a 2O((logm)3/4 log logm)-decomposition I of the input instance I.

It now remains to consider a case where the algorithm from Theorem 7.3 or any of the applications
of the algorithm from Theorem 7.4 returned FAIL (which may only happen with probability at most
1/m4). In this case, we construct the collection I of subinstances of I directly, as follows. For every
cluster C ∈ C, we let O(C) be an arbitrary circular ordering of the edges of δG(C). Set I will contain
one global instance Î = (Ĝ, Σ̂), and, for each cluster C ∈ C, a cluster-based instance IC = (GC ,ΣC).
Consider first a cluster C ∈ C. We let GC be the graph obtained from G by contracting all vertices of
V (G)\V (C) into a supernode uC . We define the rotation system ΣC for graph GC as follows: for every
vertex v ∈ V (C), its rotation Ov in ΣC remains the same as that in Σ. Observe that δGC (uC) = δG(C).
The rotationOuC of vertex uC in ΣC is defined to beO(C). This completes the definition of the cluster-
based instance IC = (GC ,ΣC). We now define the global instance Î = (Ĝ, Σ̂). Graph Ĝ is obtained
from graph G by contracting, for every cluster C ∈ C, the set V (C) of vertices into a supernode u′C .

Notice that the set of edges incident to u′C in Ĝ is precisely δG(C). We then define a rotation of u′C
in Σ̂ to be O(C). This completes the definition of the global instance Î. Consider now the resulting
collection I of subinstances of I. It is immediate to verify that

∑
(G′,Σ′)∈I |E(G′)| ≤ O(|E(G)|).

Assume now that we are given, for each instance I ′ ∈ I, a feasible solution ϕ(I ′). We can combine
these solutions together to obtain a solution ϕ to instance I, of cost at most O

(∑
I′∈I cr(ϕ(I ′))

)
,

by employing an algorithm similar to that from Lemma 5.3 (the algorithm that was used for basic
disengagement). Lastly, from Theorem 2.8, it is easy to verify that

∑
I′∈I OPTcnwrs(I

′) ≤ O(m2).
Since the probability that the algorithm from Theorem 7.3, or any of the applications of the algorithm
from Theorem 7.4 return FAIL is at most 1/m4, overall we have obtained a randomized algorithm

that computes a 2O((logm)3/4 log logm)-decomposition I of the input instance I with required properties.

In order to complete the proof of Theorem 7.1, it is now enough to prove Theorem 7.3 and Theorem 7.4,
which we do in Sections 7.2 and 7.3, respectively.

63

7.2 Decomposition into Nice Instances – Proof of Theorem 7.3

This subsection is dedicated to the proof of Theorem 7.3. The main idea of the proof is to carefully
construct a laminar family L of clusters of G, whose depth is 2O((logm)3/4 log logm), and then apply
Algorithm AlgBasicDisengagement from Section 5.3, to compute a 2O((logm)3/4 log logm)-decomposition
I1 of instance I via basic disengagement, using the laminar family L. The main challenge is to
construct the laminar family L in such a way that each resulting instance I ′ = (G′,Σ′) ∈ I1 is a nice
subinstance of I with respect to C, and to compute a nice witness structure for each such graph G′.
We will construct the laminar family gradually, in the top-bottom fashion, using the notion of legal
clustering.

In order to define the legal clustering, we consider a graph G′, together with a special vertex v∗ ∈ V (G).
Intuitively, graph G′ represents some cluster S ∈ L that we have constructed already, and it is a graph
that is obtained from G by contracting all vertices of G \ S into the special vertex v∗. We will also
consider the subset C′ ⊆ C of all clusters C ∈ C with C ⊆ S. Intuitively, our goal is to construct a
collection R of disjoint clusters of G′, each of which must be a subgraph of S, that will then be added
to L. Recall that, if L is a laminar family of clusters of graph G, and I1 is a collection of subinstances
of I obtained by decomposing I via basic disengagement, then every cluster S ∈ L has a subinstance
I(S) = (G(S),Σ(S)) ∈ I1 associated with it. Graph G(S) is obtained from graph G as follows. First,
we contract the vertices of V (G) \ V (S) into a supernode v∗, obtaining graph G′. Next, for every
child-cluster R ∈ L of S, we contract R into a supernode vR. Therefore, if R is the set of child-clusters
of S, then G(S) = G′|R. Recall that we need to ensure that instance I(S) is a nice instance. Given a

graph G′, a special vertex v∗ in G′, and a collection C′ of disjoint basic clusters of G′, the notion of
legal clustering of G′ with respect to v∗ and C′ is designed to ensure that every instance in our final
decomposition I1 of I, created via the process described above, is a nice instance.

Consider a graph G′ with a special vertex v∗ ∈ G′. We will consider clusters R ⊆ G′ \ {u∗}. Recall
we have defined a collection Λ′G′(R) of external routers for R, where each router Q′(R) ∈ Λ′G′(R) is a
collection of paths routing all edges of δG′(R) to a single vertex of G′ \R, such that all paths in Q′(R)
are internally disjoint from R. We start by defining the notion of helpful clustering, which will be used
in the definition of legal clustering. We fix two parameters that will be used throughout this section:
α1 = (α0)2 = 1/ log6m and β = log18m.

Definition 7.5 (Helpful Clustering) Let G′ be a graph with a special vertex v∗ ∈ V (G′), and let
C′ be a collection of disjoint vertex-induced subgraphs of G′ \ {v∗}, that we call basic clusters. Let R
be another collection of disjoint clusters of G′, and assume that for every cluster R ∈ R, we are given
a distribution D′(R) over the external routers in Λ′G′(R). We say that (R, {D′(R)}R∈R) is a helpful
clustering of G′ with respect to v∗ and C′, iff the following conditions hold:

• vertex v∗ does not belong to any of the clusters in R;

• for every basic cluster C ′ ∈ C, and for every cluster R ∈ R, either C ′ ⊆ R, or V (C ′)∩V (R) = ∅;

• every cluster R ∈ R has the α1-bandwidth property in G′; and

• for every cluster R ∈ R, for every edge e ∈ E(G′) \ E(R), EQ′(R)∼D′(R) [congG′(Q′(R), e)] ≤ β.

Consider again a graph G′ with a special vertex v∗ ∈ V (G′), and some cluster R ⊆ G′. We say that
an external R-router Q′(R) ∈ Λ′G′(R) is careful with respect to the special vertex v∗, if each edge
of δG′(v

∗) belongs to at most one path in Q′(R) (note that in general paths in Q′(R) may cause an
arbitrarily large congestion in G′). We denote by Λ′′G′(R) ⊆ Λ′G′(R) the collection of all external R-
routers Q′(R) that are careful with respect to v∗. We say that a distribution D′(R) over the collection

64

Λ′G′(R) of external R-routers is careful with respect to v∗, if every router Q′(R) ∈ Λ′G′(R) to which
D′(R) assigns a non-zero probability lies in Λ′′G′(R).

We will consider two different types of legal clustering. We start by defining the first, and the simpler
type of legal clusterings.

Definition 7.6 (Type-1 Legal Clustering) Let G′ be a graph with a special vertex v∗ ∈ V (G′),
and let C′ be a collection of disjoint vertex-induced subgraphs of G′ \ {v∗}, that we call basic clusters.
Let R be another collection of disjoint clusters of G′, and assume that for every cluster R ∈ R, we
are given a distribution D′(R) over the external routers in Λ′G′(R). We say that (R, {D′(R)}R∈R) is
a type-1 legal clustering of G′ with respect to v∗ and C′, if the following conditions hold:

• (R, {D′(R)}R∈R) is a helpful clustering of G′ with respect to v∗ and C′;

• there is at most one cluster C ∈ C′, that is contained in G′ \
(⋃

R∈RR
)
; and

• for every cluster R ∈ R, distribution D′(R) over external routers is careful with respect to v∗.

While type-1 legal clustering would be ideal in order to construct the laminar family L and to perform
a basic disengagement of instance I via L, we may not always succeed in computing a type-1 legal
clustering of a given graph G′, and we may need to employ type-2 legal clustering, that is defined
below, instead. Before we define the type-2 legal clustering formally, we provide some intuition. Type-
2 legal clustering is defined somewhat similarly to type-1 legal clustering, except that we no longer
require that, for every cluster R ∈ R, the distribution D′(R) is careful with respect to v∗. We also
no longer require that at most one cluster of C′ is contained in G′ \

⋃
R∈RR. However, we require

that, additionally, the decomposition provides a nice witness structure for the graph G′|R with respect

to the set C′(G′|R) of clusters (all clusers of C′ that are contained in graph G′|R). Unfortunately, the

relaxation of the requirement that the distributions D′(R) for clusters R ∈ R is careful with respect
to v∗ creates some major difficulties. For intuition, recall that we will construct the laminar family L
of clusters of G gradually, in the top-bottom fashion. Assume that S is some cluster of the current
laminar family L, such that no cluster of L is strictly contained in S. Let G′ be the graph obtained
from G by contracting all vertices of V (G)\V (S) into the special vertex v∗, and let C′ be the set of all
clusters of C that are contained in S. The idea of our algorithm is to compute a type-1 or a type-2 legal
clustering R in graph G′; assume that we compute a type-2 legal clustering. We then add the clusters
of R to the laminar family L, and continue to the next iteration. From the discussion so far, for each
such cluster R ∈ R, the type-2 legal clustering provides a distribution D′(R) over the collection Λ′G′(R)
of external routers in graph G′. However, in order to execute the basic disengagement via the laminar
family L (see Section 5.3), we need the distribution D′(R) to be supported over the collection Λ′G(R)
of external routers in graph G. In other words, the problem is that paths in sets Q′(R) ∈ Λ′G′(R) that
are assigned non-zero probability by D′(R) may contain the special vertex v∗, which is not a vertex
of G. Recall however that special vertex v∗ represents the cluster G \ S, and so edges incident to v∗

in G′ are precisely the edges of δG(S). Therefore, we could exploit the distribution D′(S) over the
external routers for cluster S in G, in order to get rid of the special vertex v∗ on the paths of Q′(R),
where Q′(R) ∈ Λ′G′(R). In other words, by composing the distributions D′(R) and D′(S), we could
obtain the desired distribution over the set Λ′G(R) of external routers for cluster R in the original
graph G. Unfortunately, this kind of recursive composition of distributions may lead to an explosion
in the congestion of the resulting sets of paths. Even if the depth of the laminar family L is quite
modest (say O(logm)), we may obtain distributions D′′(R) over the routers in Λ′G(R), for which the
maximum expected congestion on an edge of G may be as large as |δG(R)|, which is unacceptable.
If we could ensure that the distributions D′(R) obtained in type-2 legal clustering are careful with
respect to v∗, then this accumulation of congestion could be avoided, but unfortunately we do not

65

know how to ensure that. In order to overcome this difficulty, we will carefully alternate between
type-1 and type-2 legal clusterings. Specifically, we will require that a type-2 legal clustering contains
a single distinguished cluster R∗, whose corresponding distribution D′(R∗) is careful with respect to
v∗, and that R∗ contains a very large fraction of clusters of C′. We will also require that a type-1 legal
clustering R′ of the graph associated with cluster R∗ is provided, and that for each cluster R′ ∈ R′, the
number of clusters of C′ contained in R′ is relatively small. This carefull alternation between type-1
and type-2 legal clusterings will allow us to compute distributions D′(S) over the routers of Λ′G(S)
for each cluster S ∈ L of the laminar family that we construct, such that the expected congestion
on every edge of G due to the router drawn from the distribution is not too large. We now formally
define a type-2 legal clustering.

Definition 7.7 (Type-2 Legal Clustering) Let G′ be a graph with a special vertex v∗ ∈ V (G′),
and let C′ be a collection of disjoint vertex-induced subgraphs of G′ \ {v∗}, that we call basic clusters.
A type-2 legal clustering of G′ with respect to v∗ and C′ consists of the following four ingredients:

1. a helpful clustering (R, {D′(R)}R∈R) of G′ with respect to v∗ and C′;

2. a nice witness structure for the graph G′|R with respect to the set C′′ of clusters, where C′′ contains

every cluster C ∈ C′ with C ⊆ G′ \
(⋃

R∈R V (R)
)
;

3. a distinguished cluster R∗ ∈ R, that contains at least
⌊(

1− 1/2(logm)3/4
)
|C′|
⌋

clusters of C′,
such that the distribution D′(R∗) is careful with respect to v∗; and

4. a type-1 legal clustering (R′, {D′(R)}R∈R′) of graph G∗, with respect to special vertex v∗∗, and
cluster set C∗, where G∗ is the graph that is obtained from graph G′ by contracting all vertices
of G′ \R∗ into the special vertex v∗∗, and C∗ contains all clusters C ∈ C′ with C ⊆ R∗. We also

require that every cluster R′ ∈ R′ contain at most
⌊(

1− 1/2(logm)3/4
)
|C′|
⌋

clusters of C′.

The key ingerdient of the proof of Theorem 7.3 is the following theorem, that will allow us to gradually
construct the desired laminar family L of clusters.

Theorem 7.8 There is an efficient randomized algorithm, whose input consists of:

• a graph G′, and a parameter m that is greater than a sufficiently large constant, such that
|V (G′)|, |E(G′)| ≤ m;

• a special vertex v∗ ∈ V (G′), such that the cluster G′ \ {v∗} has the α1-bandwidth property in G′;
and

• a collection C′ of disjoint vertex-induced subgraphs of G′ \ {v∗} called basic clusters, such that
every cluster C ∈ C′ has the α0-bandwidth property, and |C′| ≥ 2.

The algorithm either returns FAIL, or computes a type-1 or a type-2 legal clustering of G′ with re-
spect to v∗ and C′. The probability that the algorithm returns FAIL is 1/m8. Moreover, if the algo-
rithm computes a type-1 legal clustering (R, {D′(R)}R∈R), then every cluster R ∈ R contains at most⌊(

1− 1/2(logm)3/4
)
|C′|
⌋

clusters of C′.

We prove Theorem 7.8 in the remainder of this subsection, after we complete the proof of Theorem 7.3
using it. We will construct a laminar family L of clusters of graph G, in a top-down manner. For
every cluster R ∈ L, we will define a distribution D′′(R) over external routers in Λ′G, such that, for

66

every edge e ∈ E(G) \ E(R), EQ′(R)∼D′′(R) [congG(Q′(R), e)] ≤ βO((logm)3/4). We will also define a

partition (Llight,Llight) of the clusters of L, and we will define, for each cluster R ∈ Llight a distribution
D(R) over the internal routers in ΛG(R), such that cluster R is β̂-light with respect to D(R), for

β̂ = 2O((logm)3/4 log logm). We will ensure that, with high probability, every cluser in Lbad is β̂-bad.
Once we complete consructing the laminar family L, we will apply algorithm AlgBasicDisengagement
from Section 5.3 to the resulting tuple (L,Lbad,Llight, {D′′(R)}R∈L , {D(R)}R∈Llight) to obtain the final
collection I1 of instances. We will also provide a nice witness structure for each such resulting instance.
We now proceed to describe tha algorithm for constructing the laminar family L of clusters.

Initially, we start with the laminar family L containing a single cluster – graph G. Since Λ′G(G) = ∅
(as δG(G) = ∅), the distribution D′(G) is defined in a trivial way (e.g. it selects ∅ with probability
1). We also let Llight contain a single cluster – the cluster G, whose distribution D(G) over internal
routers is defined in a similar trivial way. Lastly, we set Lbad = ∅.
We simultaneously consider the partitioning tree τ(L) associated with the laminar family L (see
Section 5.1.1 for a definition). Initially, tree τ(L) consists of a single vertex v(G), associated with
the cluster G. The algorithm then performs iterations, as long as there is some cluster R ∈ L, whose
corresponding vertex v(R) is a leaf vertex in the tree τ(L), and there are at least two clusters of C
that are contained in R. We will ensure that every cluster R′ ∈ L has the α1-bandwidth property in
G. Notice that this trivially holds for the initial cluster G.

We now describe an interation for processing a cluster R ∈ L. We assume that v(R) is a leaf vertex
in the current partitioning tree τ(L), and that there are at least two clusters of C that are contained
in R.

In order to process cluster R, we construct a graph G′, with a special vertex v∗, as follows. If R = G,
then we let G′ be a graph that is obtained from G, by adding a new special vertex v∗ to it, that
connects with an edge to an arbitrary fixed vertex v0 ∈ V (G). Otherwise, if R (G, then we let G′ be
the graph that is obtained from G by contracting all vertices of V (G) \ V (R) into the special vertex
v∗. Note that, since we are guaranteed that cluster R has the α1-bandwidth property in G, cluster
G′ \ {v∗} of G′ must have the α1-bandwidth property in G′ (in case where R = G this property holds
trivially, as δ′G(G) contains a single edge). We let C′ ⊆ C be the set of all basic clusters C ∈ C with
C ⊆ R. We then apply the algorithm from Theorem 7.8 to graph G′, special vertex v∗, and set C′
of clusters; parameter m remains the same as in the input to Theorem 7.3. If the algorithm returns
FAIL, then we terminate our algorithm with a FAIL. Otherwise, consider the legal clustering that the
algorithm produces (which may be a type-1 or a type-2 legal clustering), and let R be the resulting
set of clusters.

We add every cluster R′ ∈ R to the laminar family L, where it becomes a child cluster of cluster R.
Recall that, from the properties of a helpful clustering, vertex v∗ may not lie in R′, so R′ ⊆ R must hold.
Moreover, R′ must have the α1-bandwidth property in G′, and hence in G. Recall that we also obtain
a distribution D′(R′) over external routers in Λ′G′(R

′), such that, for every edge e ∈ E(G′) \ E(R′),
EQ′(R′)∼D′(R′) [congG′(Q′(R′), e)] ≤ β. Unfortunately, this distribution is not sufficiently good for us,
since we need the distribution D′(R′) to be over the collection Λ′G(R′) of external routers in graph G,
and not in graph G′. We show how to modify this distribution later.

Next, we process each cluster R′ ∈ R one by one. Consider any such cluster R′. We apply Algorithm
AlgClassifyCluster from Theorem 6.1 to instance I = (G,Σ) of MCNwRS, and cluster R′, that has the
α1-bandwidth property in G, together with parameter p = 1/m10. Recall that the running time of
the algorithm is O(poly(m logm)). If the algorithm returns FAIL, then we add R′ to the set Lbad

of clusters. Otherwise, the algorithm computes a distribution D(R′) over internal routers in ΛG(R′),
such that cluster R′ is β∗-light with respect to D(R′), where β∗ = 2O(

√
logm·log logm). We then add

cluster R′ to set Llight. Recall that, if cluster R′ is not η∗-bad, for η∗ = 2O((logm)3/4 log logm), then the

67

probability that the algorithm returns FAIL (that is, the algorithm errs), is at most 1/m10. If the
clustering R is a type-1 legal clustering, then we also mark the vertex v(R′) in the decomposition tree
τ(L), to indicate that the distribution D′(R′) is careful with respect to v∗. Otherwise, R′ is a type-2
legal clustering, and we only mark vertex v(R′) if R′ = R∗, where R∗ is the distinguished cluster.
Recall that in this case, the distribution D′(R∗) over external routers of R∗ is also careful with respect
to v∗.

If the algorithm from Theorem 7.8 returned a type-2 legal clustering, then we also consider the type-1
legal clustering R′ of R∗, that is given as part of the type-2 legal clustering of R. We process every
cluster R′′ ∈ R′ one by one. When cluster R′′ is processed, we add it to the laminar family L and we
add vertex v(R′′) to the partitioning tree τ(L) as a child of vertex v(R∗); we also mark vertex v(R′′) in
the tree, to indicate that the distribution D′(R′′) over the external routers of R′′ is careful with respect
to v∗∗. As before, we apply the Algorithm AlgClassifyCluster from Theorem 6.1 to instance I = (G,Σ)
of MCNwRS, and cluster R′′, that has the α1-bandwidth property in G, together with parameter
p = 1/m10, As before, if the algorithm returns FAIL, then we add R′′ to Lbad, and otherwise we add
it to Llight, together with the distribution D(R′′) over internal routers in ΛG(R′′), such that cluster
R′′ is β∗-light with respect to D(R′′). This completes the description of the algorithm for constructing
the laminar family L of clusters. We now establish some of its useful properties. The following claim,
whose proof appears in Appendix G.1 will be used to bound the height of the tree τ , and the number
of marked vertices on any root-to-leaf path.

Claim 7.9 Consider any root-to-leaf path P in the decomposition tree τ(L). Then P contains at most

2O((logm)3/4) marked vertices, and at most O(log3/4m) unmarked vertices. In particular, the depth of

the tree τ(L) is at most 2O((logm)3/4).

Next, we provide an algorithm for computing, for each cluster R ∈ L, the desired distribution D′′(R)
over the external routers in Λ′G(R). The proof of the following claim is somewhat technical, and is
deferred to Appendix G.2.

Claim 7.10 There is an efficient algorithm that, given a cluster R ∈ L, computes a distribution
D′′(R) over the external R-routers in Λ′G(R), such that, for every edge e ∈ E(G) \ E(R)

EQ′(R)∼D′′(R)

[
congG(Q′(R), e)

]
≤ βi+1,

where i is the total number of unmarked vertices on the unique path in tree τ(L), connecting v(R) to
the root of the tree.

To summarize, if our algorithm did not return FAIL, we have now obtained a laminar family L of
clusters of graph G, with G ∈ L, so that the depth of the family L is at most 2O((logm)3/4). We
have also computed a partition (Llight,Lbad) of clusters in L, and, for each cluster R ∈ Llight, a
distribution D(R) over internal routers in ΛG(R), such that cluster R is β∗-light with respect to
D(R), for β∗ = 2O(

√
logm·log logm). We are also guaranteed that, with probability at least 1 − 1/m9,

every cluster R ∈ Lbad is η∗-bad, for η∗ = 2O((logm)3/4 log logm). Lastly, we have computed, for every
cluster R ∈ L, a distribution D′′(R) over external routers in Λ′G(R), such that, for every edge e ∈
E(G)\E(R), EQ′(R)∼D′′(R) [congG(Q′(R), e)] ≤ βi+1, where i is the total number of unmarked vertices
on the unique path in tree τ(L), connecting v(R) to the root of the tree. Since, from Claim 7.9, the
number of such vertices is bounded by O(log3/4m), we get that, for every edge e ∈ E(G) \ E(R),

EQ′(R)∼D′′(R) [congG(Q′(R), e)] ≤ βO((logm)3/4) ≤ 2O((logm)3/4 log logm), since β = log18m.

We apply algorithm AlgBasicDisengagement from Section 5.3 to the resulting tuple (L = Lbad ∪
Llight, {D′′(R)}R∈L , {D(R)}R∈Llight), to obtain the final collection I1 of subinstances of I. Let β̂ =

68

2c(logm)3/4 log logm for some large enough constant c. We are then guaranteed that every cluster R ∈
Llight is β̂-light with respect to the distribution D(R), and that, for every cluster R ∈ L and every
edge e ∈ E(G) \ E(R), EQ′(R)∼D′′(R) [congG(Q′(R), e)] ≤ β̂. We can set c to be large enough so

that η∗ ≤ β̂ holds. We say that a bad event E happens if some cluster R ∈ Lbad is not β̂-bad.
From the above discussion, the probability of E happening is at most 1/m9. If Event E does not
happen, then, from Lemma 5.6, E

[∑
I′∈I1 OPTcnwrs(I

′)
]
≤ O(dep(L) · β̂2 · (OPTcnwrs(I) + |E(G)|)) ≤

2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|)). If Event E happens (which happens with probability
at most 1/m9), then clearly E

[∑
I′∈I1 OPTcnwrs(I

′)
]
≤
∑

I′=(G′′,Σ′′)∈I1 |E(G′′)|2 ≤ m3. Therefore,

overall, E
[∑

I′∈I1 OPTcnwrs(I
′)
]
≤ 2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|))

Additionally, from Lemma 5.3, there is an efficient algorithm, that, given, for each instance I ′ ∈ I,
a solution ϕ(I ′), computes a solution for instance I of value at most

∑
I′∈I cr(ϕ(I ′)). In order to

prove that the algorithm computes a valid 2O((logm)3/4 log logm)-decomposition of instance I, it is now
sufficient to prove that

∑
I′=(G′′,Σ′′)∈I1 |E(G′′)| ≤ O(|E(G)|). We do so in the next claim, whose proof

is deferred to Appendix G.3.

Claim 7.11
∑

I′=(G′′,Σ′′)∈I1 |E(G′′)| ≤ O(|E(G)|).

From the above discussion, if our algorithm did not return FAIL, it computed a valid 2O((logm)3/4 log logm)-
decomposition of instance I. Consider now any resulting instance Ĩ = (G̃, Σ̃) ∈ I1. From the definition
of basic disengagment, this instance must correspond to some cluster R ∈ L. Assume first that R 6= G,
and let R be the set of all child clusters of R in L (if R corresponds to a leaf vertex of τ(L), then
R = ∅). Recall that graph G̃ is obtained from graph G by first contracting all vertices of G \ R into
a supernode v∗; denote the resulting graph by G′. We then contract every cluster R′ ∈ R into a
supernode, obtaining graph G̃. In other words, G̃ = G′|R.

We now consider three cases. The first case is when R is a type-1 legal clustering for cluster R. In
this case, there is at most one cluster C ∈ C that is contained in G′ \

⋃
R′∈RR

′, from the definition of

type-1 legal clustering. Therefore, at most one cluster C of C is contained in G̃. We define the nice
witness structure for graph G̃, with respect to the set C′ of basic clusters, where C′ = {C} if there

is a cluster C ∈ C that is contained in G̃, and C′ = ∅ otherwise. We let S̃ =
{
S̃1

}
, where S̃1 = Ĝ,

and we let S̃ ′ =
{
S̃′1

}
, where S̃′1 = C if C′ = {C}, and S̃′1 = {v}, where v is an arbitrary vertex of G̃

otherwise. Note that, under these definitions, Ê = ∅, and so we can set P̂ = ∅. It is easy to verify
that (S̃, S̃ ′, P̂) is a nice witness structure for G̃.

The second case is when cluster R corresponds to a leaf vertex of tree τ(L). From our algorithm, this
means that there is at most one cluster C ∈ C with C ⊆ R. In this case, we define the nice witness
structure for graph G̃ similarly to the first case.

Lastly, in the third case, when the algorithm from Theorem 7.8 was applied to cluster R, it returned
a type-2 legal clustering, with the corresponding cluster set R. In this case, the algorithm also must
produce a nice witness structure for the graph G′|R = G̃, with respect to the set C′′ of clusters, that

contains every cluster C ∈ C with C ⊆ G′ \
(⋃

R′∈R V (R′)
)
. In other words, C′′ = C(G̃).

It remains to consider the case where R = G. As before, we let R denote the set of all child-clusters
of cluster R. Recall that in this case, graph G̃ is obtained from graph G by contracting every cluster
R′ ∈ R into a supernode. Graph G′ was obtained from graph G by adding a special vertex v∗ that
connects to some vertex v0 ∈ V (G) with an edge. Therefore, graph G′|R is a graph that is obtained

from G̃ by adding a special vertex v∗ to it and connecting it to some vertex of G̃. Recall that vertex v∗

may not lie in any cluster of R. We start by defining a nice structure for graph G′|R, with respect to

the collection C′′ of clusters, that contains every cluster C ∈ C with C ⊆ G′|R exactly as before (when

69

we assumed that R 6= G). Since vertex v∗ has degree 1, we can assume that no path in P̂ contains
v∗. Moreover, if v∗ ∈ S̃′i, for some S̃′i ∈ S̃ ′i, then cluster S̃′i \ {v∗} still has the α∗-bandwidth property.
By deleting vertex v∗ from the cluster of S̃ to which it belongs, and also from a cluster of S̃ ′ to
which it belongs (if such a cluster exists), we obtain a nice witness structure for graph G̃, with respect
to cluster set C′′, as required. The algorithm may return FAIL if any application of the algorithm
from Theorem 7.8 returned FAIL. Since |L| ≤ m, and the probability that a singel application of the
algorithm from Theorem 7.8 returns FAIL is at most 1/m8, overall, the probability that the algorithm
returns FAIL is at most 1/m6.

In order to complete the proof of Theorem 7.3 it is now enough to prove Theorem 7.8, which we do
next.

7.2.1 Proof of Theorem 7.8

Throughout the proof, we will consider various graphs, sets of disjoint clusters in these graphs, and the
corresponding contracted graphs. Let H be any graph, and let R be any set of disjoint vertex-induced
subgraphs (clusters) of graph H. Let Ĥ = H|R be the contracted graph corresponding to H and
R, that is obtained from H by contracting every cluster R ∈ R into a supernode vR. Observe that
every subset Û ⊆ V (Ĥ) of vertices of Ĥ naturally defines a vertex-induced subgraph of H, which is a

subgraph of H induced by vertex set U =
(⋃

vR∈Û V (R)
)
∪ (V (H) ∩ Û); in other words, U contains

all regular vertices of Û , and the vertices of every cluster R ∈ R with vR ∈ Û . We will refer to H[U]
as the subgraph of H (or cluster of H) defined by the set Û of vertices of Ĥ. Similarly, if S is a cluster
of Ĥ induced by vertex set Û , we will refer to H[U] as the cluster of H defined by S.

Assume now that we are given any graph H, a special vertex v∗ in H, and a collection R of disjoint
clusters of H, such that vertex v∗ does not lie in any cluster of R, and every cluster R ∈ R has
α-bandwidth property, for some parameter 0 < α < 1. As before, we denote Ĥ = H|R. Next, we

consider a Gomory-Hu tree τ of the graph Ĥ (see Section 4.2.2 for a definition). We root the tree τ
at the special vertex v∗. For every vertex u ∈ V (τ), we let τu be the subtree of τ rooted at u.

We will use the following useful observation multiple times. The proof is deferred to Appendix G.4.

Observation 7.12 Let u ∈ V (τ)\{v∗} be any non-root vertex of the tree τ , and let S be the cluster of
H that is defined by the set V (τu) of vertices of Ĥ. Then cluster S has the α-bandwidth property in H.
Moreover, there is an efficient algorithm to compute a distribution D′(S) over the external routers in
Λ′H(S), such that distribution D′(S) is careful with respect to v∗, and, for every edge e ∈ E(H)\E(S),
EQ′(S)∼D′(S) [congH(Q′(S), e)] ≤ O(log4m/α).

For convenience, in the remainder of the proof, we denote graph G′ by G, and the set C′ of clusters by
C. We start with the graph G and the set C of basic clusters, and we let H = G|C be the corresponding
contracted graph. We consider the Gomory-Hu tree τ of the graph H. We root the tree τ at the
special vertex v∗. For every vertex u ∈ V (τ), we let τu be the subtree of τ rooted at u, and we let the
weight w(u) be the number of supernodes (vertices corresponding to clusters in C) in the tree τu. Let

u∗ be the vertex of τ that is furthest from the root v∗, such that w(u∗) ≥
⌊(

1− 1/2(logm)3/4
)
|C|
⌋
.

We now consider two cases.

The first case happens if u∗ = v∗. In this case, we will compute a type-1 legal clustering of G. Let
u1, . . . , uq denote all child vertices of v∗. For all 1 ≤ i ≤ q, let Ri be the cluster of the graph G defined
by the vertex set V (τui). Denote R = {R1, . . . , Rq}. Since every cluster C ∈ C has the α0-bandwidth
property, and H = G|C , from Observation 7.12, each cluster Ri ∈ R has the α0 ≥ α1-bandwidth
property. From the construction, vertex v∗ may not lie in any of the clusters of R, and, for each
cluster R ∈ R, and for every basic cluster C ∈ C, either C ⊆ R or V (C) ∩ V (R) = ∅. We use the

70

algorithm from Observation 7.12 to construct, for every cluster R ∈ R, a distribution D′(R) over the
external S-routers in Λ′G(S), such that the distribution is careful with respect to v∗, and, for every
edge e ∈ E(G) \ E(R), EQ′(R)∼D′(R) [congG(Q′(R), e)] ≤ O(log4m/α0) ≤ β.

Note that G\
⋃
R∈RR consists of only one vertex – vertex v∗. Therefore, R is a legal type-1 clustering

of graph G. We terminate the algorithm, and return this clustering.

We assume from now on that u∗ 6= v∗. We will provide an algorithm for computing a type-2 legal
clustering of G. Let R∗ be the subgraph of G defined by vertex set V (τu∗) of graph H. As before, from
Observation 7.12, cluster R∗ has the α0 ≥ α1-bandwidth property, it does not contain the verex v∗,
and, for every basic cluster C ∈ C, either C ⊆ R∗ or V (C)∩ V (R∗) = ∅. From the definition of vertex

u∗, the total number of basic clusters of C that are contained in R∗ is at least
⌊(

1− 1/2(logm)3/4
)
|C|
⌋
.

We also use the algorithm from Observation 7.12 to construct a distribution D′(R∗) over the external
R∗-routers in Λ′G(S), such that the distribution is careful with respect to v∗, and, for every edge
e ∈ E(G) \ E(R∗), EQ′(R∗)∼D′(R∗) [congG(Q′(R∗), e)] ≤ O(log4m/α0) ≤ β. In the final type-2 legal
clusteringR for graphG that our algorithm will return, cluster R∗ will play the role of the distinguished
cluster, and the distribution D′(R∗) over the set of its external routers will remain unchanged. Let G∗

be the graph associated with the cluster R∗: that is, graph G∗ is obtained from graph G by contracting
all vertices of G \R∗ into a special vertex, that we denote by v∗∗. We also denote by C∗ ⊆ C the set of
all basic clusters C ∈ C with C ⊆ R∗. We now construct a type-1 legal clustering R′ of G∗, which is
required as part of definition of type-2 legal clustering of G. Denote the child vertices of vertex u∗ in
the tree τ by u1, . . . , uq. For all 1 ≤ i ≤ q, let Ri be the cluster of the graph G defined by the vertex
set V (τui). Denote R′ = {R1, . . . , Rq}. Since every cluster C ∈ C has the α0-bandwidth property, and
H = G|C , from Observation 7.12, each cluster Ri ∈ R has the α0 ≥ α1-bandwidth property. From the
construction, vertex v∗∗ may not lie in any of the clusters of R′, and, for each cluster R ∈ R′, and
for every basic cluster C ∈ C∗, either C ⊆ R or V (C) ∩ V (R) = ∅ holds. Consider now some cluster
Ri ∈ R′, and denote δG(Ri) = Ei. From the properties of the Gomory-Hu tree (see Theorem 4.9),
there is a collection Q′i of edge-disjoint paths in graph H, routing the edges of Ei to vertex u∗, that
are internally disjoint from V (τui). Let H∗ be the graph obtained from H, by contracting all vertices
of V (H) \ V (τu∗) into a supernode v̂∗. A simple transformation of the paths in Q′i shows that there is
a collection Q′′i of edge-disjoint paths in graph H∗, routing the edges of Ei to u∗. Observe that graph
H∗ is precisely the contracted graph of G∗ with respect to the set C∗ of clusters, that is, H∗ = G∗|C∗ ,
and recall that each cluster C ∈ C∗ has the α0-bandwidth property.

If vertex u∗ is not a supernode, then we apply the algorithm from Claim 4.41 to graph H∗, the
set C∗ of clusters, and the set Q′′i of paths, to obtain a set Q∗i of paths in graph G∗, routing the
edges of Ei to vertex u∗, such that every path in Q∗i is internally disjoint from Ri. Moreover, for
every edge e ∈

⋃
C∈C∗ E(C), the paths of Q∗i cause congestion at most d1/α0e, while for every edge

e ∈ E(G∗) \
(⋃

C∈C∗ E(C)
)
, the paths of Q∗i cause congestion at most 1. In particular, the set Q∗i of

paths is careful with respect to vertex v∗∗. We then define a distribution D′(Ri) over the set Λ′G∗(Ri)
of external Ri-routers to choose the set Q∗i of paths with probability 1.

Assume now that vertex u∗ is a supernode, and that it represents some cluster C ∈ C∗. We apply the
algorithm from Claim 4.41 to graph H∗, the set C∗ \{C} of clusters, and the set Q′′i of paths, to obtain
a set Q∗i of paths in graph G∗, routing the edges of Ei to edges of δG∗(C), such that every path in
Q∗i is internally disjoint from Ri. As before, for every edge e ∈

⋃
C′∈C∗ E(C ′), the paths of Q∗i cause

congestion at most d1/α0e, while for every edge e ∈ E(G∗) \
(⋃

C′∈C∗ E(C ′)
)
, the paths of Q∗i cause

congestion at most 1. As before, the set Q∗i of paths is careful with respect to vertex v∗∗. We use the
algorithm from Lemma 4.27 to compute a distribution D(C) over internal C-routers in ΛG∗(C), such
that, for every edge e ∈ E(C), EQ(C)∼D(C) [cong(Q(C), e)] ≤ log4m/α0. We now define a distribution
D′(Ri) over the set Λ′G∗(Ri) of external Ri-routers. In order to draw a router from the distribution,
we first choose an internal C-router Q(C) from the distribution D(C). Let x be the vertex that serves

71

the center of the router. For every edge e ∈ Ei, we let Q̃(e) be the path obtained as follows. First, we
let Q∗(e) be the unique path of Q∗i that originates from edge e. We let e′ be the last edge on path Q∗i ,
that must belong to δG∗(C). We then let Q̃(e) be the path obtained by concatenating path Q∗(e) with

the unique path of Q(C) that originates at edge e. We let Q′(Ri) =
{
Q̃(e) | e ∈ Ei

}
be the resulting

external Ri-router, that routes the edges of Ei to x. Since every edge of δG∗(C) may lie on at most one
path of Q∗i , it is immediate to verify that, for every edge e ∈ E(C), cong(Q′(Ri), e) ≤ cong(Q(C), e),

and so overall, for every edge e′, EQ′(Ri)∼D′(Ri) [congG∗(Q′(Ri), e′)] ≤
log4m
α0
≤ β, since α0 = 1/ log3m

and β = log18m. As before, distribution D′(Ri) is careful with respect to v∗∗.

Lastly, observe that at most one cluster C ∈ C may be contained in graph R∗ \
⋃
R∈R′ R – the cluster

associated with vertex u∗, if u∗ is a supernode. Therefore, (R′, {D′(R)}R∈R′) is a type-1 legal clustering
of graph G∗, with cluster set C∗ and special vertex v∗∗. Moreover, from the choice of vertex u∗, we are

guaranteed that every cluster R′ ∈ R′ contain at most
⌊(

1− 1/2(logm)3/4
)
|C′|
⌋

clusters of C.

The remainder of the algorithm is iterative. We start with a helpful clustering (R = {R∗} , {D′(R∗)})
of G, and we view R∗ as the distinguished cluster of R. We then iterate. In every iteration, we
either establish that the current helpful clustering (R, {D′(R)}R∈R) is a type-2 legal clustering, by
computing a nice witness structure for graph G|R, with respect to the set C′′ of clusters, containing
every cluster C ∈ C with C ⊆ G \

(⋃
R∈R V (R)

)
; or we will compute another helpful clustering of G

that is “better” in some sense, and use it to replace the current helpful clustering (R, {D′(R)}R∈R).
We will ensure that the helpful clustering R that the algorithm maintains always contains the cluster
R∗ that we defined above, which will always remain the distinguished cluster of R. The distribution
D′(R∗) over the external R∗-routers in Λ′G(R∗), and the type-1 legal clustering (R′, {D′(R)}R∈R′) of
the graph G∗ associated with cluster R∗ will remain unchanged throughout the algorithm. We will
use the following definition in order to compare different helpful clusterings of G.

Definition 7.13 (Comparing clusterings) Let R1, R2 be two helpful clusterings of graph G, with
respect to special vertex v∗ and set C of basic clusters, such that R∗ ∈ R1 ∩R2. Denote by C1 ⊆ C the
set of all clusters C ∈ C with C ⊆ G \

(⋃
R∈R1

R
)
, and define a subset C2 ⊆ C of basic clusters for R2

similarly. We say that clustering R2 is better than clustering R1 if one of the following hold:

• either |C2| < |C1|; or

• |C1| = |C2|, and |E(G|R2
)| < |E(G|R1

)|.

The following lemma is key in the proof of Theorem 7.8.

Lemma 7.14 There is an efficient randomized algorithm, that, given a helpful clustering (R, {D′(R)}R∈R)
of graph G with respect to vertex v∗ and set C of basic clusters, such that R∗ ∈ R, either (i) establishes
that R is a type-2 legal clustering by providing a nice witness structure for graph G|R, with respect to
the set C′′ of clusters, containing every cluster C ∈ C with C ⊆ G \

(⋃
R∈R V (R)

)
, or (ii) computes

another helpful clustering (R̃, {D′(R)}R∈R̃) of graph G with respect to v∗ and C with R∗ ∈ R, such

that R̃ is a better clustering than R; or (iii) returns FAIL. The latter may only happen with probability
at most 1/m10.

It is immediate to complete the proof of Theorem 7.8. using Lemma 7.14. Our algorithm starts with
the helpful custering (R = {R∗} , {D′(R∗)}) of G, where D′(R∗) is the distribution over external R∗-
routers that we have computed above, and then iterates. In every iteration, we apply the algorithm
from Lemma 7.14 to the current helpful clustering (R, {D′(R)}R∈R). If the algorithm establishes that
R is a type-2 legal clustering by providing a nice witness structure for graph for graph G|R, with
respect to the set C′′ of clusters, containing every cluster C ∈ C with C ⊆ G \

(⋃
R∈R V (R)

)
, then

72

we terminate the algorithm with the resulting type-2 legal clustering (R, {D′(R)}R∈R); we view R∗

as the distinguished cluster of R, and the type-1 legal clustering (R′, {D′(R)}R∈R′) of the graph G∗

corresponding to R∗ remains unchanged. Otherwise, if the algorithm returns another helpful clustering
(R̃, {D′(R)}R∈R̃), then we replace (R, {D′(R)}R∈R) with (R̃, {D′(R)}R∈R̃) and continue to the next
iteration. Lastly, if the algorithm from Lemma 7.14 returns FAIL, then we terminate the algorithm
and return FAIL as well. Let C′ be the set of all clusters C ∈ C with C ⊆ G \

(⋃
R∈R V (R)

)
, where

R is the current helpful clustering. Since, in every iteration, either |C′| decreases, or |C′| remains the
same but the number of edges in graph G|R decreases, the algorithm is guaranteed to terminate after
at most m2 iterations. Since the probability of the algorithm to return FAIL in each iteration is at
most 1/m10, the total probability that the algorithm returns FAIL is at most 1/m8. If the algorithm
does not return FAIL, then it returns a type-2 clustering of G as required. In order to complete the
proof of Theorem 7.8, it is now enough to prove Lemma 7.14, which we do next.

7.2.2 Proof of Lemma 7.14

Recall that we are given a graph G and a special vertex v∗ of G. We are also given a collection C of
disjoint vertex-induced subgraphs of G\{v∗} called basic clusters, such that every basic cluster C ∈ C
has the α0-bandwidth property. Lastly, we are given a helpful clustering (R, {D′(R)}R∈R) of G with
respect to v∗ and C. Recall that vertex v∗ may not lie in any cluster of R, and every cluster R ∈ R
has the α1-bandwidth property. For every cluster R ∈ R, D′(R) is a distribution over the external
R-routers in Λ′G(R), and, for every edge e ∈ E(G) \ E(R), EQ′(R)∼D′(R) [congG′(Q′(R), e)] ≤ β.
Additionally, there is a distingiushed cluster R∗ ∈ R, whose corresponding distribution D′(R∗) is

careful with respect to v∗, and R∗ contains at least
⌊(

1− 1/2(logm)3/4
)
|C|
⌋

clusters of C.

We denote by C′ the set of all clusters C ∈ C, such that C ⊆ G \
(⋃

R∈R V (R)
)
. Observe that R∪C′ is

a set of mutually disjoint clusters of graph G (see Figure 10(a)). It will be convenient for us to work
with a slightly different contracted graph, that we denote by Ĥ = G|(R∪C′). Note that every vertex

u ∈ V (Ĥ) that is different from a special vertex v∗, is either a regular vertex (that is, it is a vertex
of G), or a supernode corresponding to a cluster of C′ ∪ R. If supernode u represents a cluster of C′,
then we call it a C-node, and otherwise we call it an R-node (see Figure 10(b)). In order to prove
Lemma 7.14, we will mostly work with graph Ĥ. Note that v∗ ∈ V (Ĥ). We denote by u∗ the R-node
representing the distinguished cluster R∗ ∈ R. We will maintain a collection W of clusters in graph
Ĥ, that we call W -clusters, and define next.

Definition 7.15 (Valid set of W -clusters) A set W of disjoint clusters of graph Ĥ is a valid set
of W -clusters if:

• for every cluster W ∈ W, every vertex of W is an R-node or a regular vertex, and W does not
contain the special vertex v∗ or the R-node u∗ representing cluster R∗;

• for every cluster W ∈ W, |EĤ(W)| ≥ |δĤ(W)|/(64 logm); and

• every cluster W ∈ W has the α′-bandwidth property in graph Ĥ, where α′ = 1/(c log2.5m), for
some large enough constant c.

We will use the following lemma in order to prove Lemma 7.14.

Lemma 7.16 There is an efficient randomized algorithm, that, given a valid W -clustering W of
graph Ĥ, either (i) establishes that (R, {D′(R)}R∈R) is a type-2 legal clustering of G, by providing a
nice witness structure for graph G|R, with respect to the set C′′ of clusters, containing every cluster

C ∈ C with C ⊆ G \
(⋃

R∈R V (R)
)
; or (ii) computes another helpful clustering (R̃, {D′(R)}R∈R̃) of

73

(a) A schematic view of graph G. Clusters of R are
shown in red, clusters of C are shown in blue, clusters
of C′ are the blue clusters that are disjoint from the
red clusters, and vertices of V (G) \

(⋃
C∈C V (C)

)
are

shown in black.

(b) A schematic view of graph Ĥ. Regular vertices are
shown in black, C-nodes are shown in blue and R-nodes
are shown in red.

Figure 10: Graphs G and Ĥ.

graph G with respect to vertex v∗ and set C of basic clusters, such that R∗ ∈ R and R̃ is a better
clustering than R; or (iii) computes a new valid set W ′ of W -clusters in the current graph Ĥ, such
that |E(Ĥ|W ′)| < |E(Ĥ|W)|; or (iv) returns FAIL. The latter may only happen with probability at most
1/m11.

Lemma 7.14 easily follows from Lemma 7.16. We start with W = ∅, which is a valid set of W -clusters
for Ĥ, and then iterate. In every iteration, we apply the algorithm from Lemma 7.16 to the current
valid setW of W -clusters. If the algorithm establishes that R is a type-2 legal clustering of G, then we
terminate the algorithm and return the correpsonding witness structure for graph G|R. If the algorithm

computes another helpful clustering (R̃, {D′(R)}R∈R̃) of graph G with respect to vertex v∗ and set C of

basic clusters with R∗ ∈ R, such that R̃ is a better clustering than R, then we terminate the algorithm
and return the clustering (R̃, {D′(R)}R∈R̃). If the algorithm from Lemma 7.16 returns FAIL, then
we terminate and algorithm and return FAIL as well. Otherwise, the algorithm from Lemma 7.16
computes a valid set W ′ of W -clusers in the current graph Ĥ, such that |E(Ĥ|W ′)| < |E(Ĥ|W)|. We

then replace W with W ′ and continue to the next iteration. Since the number of edges in graph Ĥ|W
decreases in every iteration, we are guaranteed that, after at most m iterations the above algorithm
terminates. Since the algorithm from Lemma 7.16 only returns FAIL with probability at most 1/m11,
the total probability that our algorithm returns FAIL is at most 1/m10. From now on we focus on the
proof of Lemma 7.16.

7.2.3 Proof of Lemma 7.16

Observe that so far, we have constructed a 3-level hierarchical clustering of the graph G. The first
level consists of the set C of basic clusters of graph G. At the second level, there is a set R of clusters
of graph G. Recall that, for every basic cluster C ∈ C, either C ⊆ G \

(⋃
R∈R V (R)

)
, or there is

some cluster R ∈ R, with C ⊆ R. As before, we denote by C′ ⊆ C the set of all basic clusters C
with C ⊆ G \

(⋃
R∈R V (R)

)
. We can use the valid set W of W -clusters in graph Ĥ, in order to

construct another set W ′ of clusters in the original graph G, as follows. Recall that every cluster
W ∈ W may only contain R-nodes or regular vertices of Ĥ. For each such cluster W , let R(W) ⊆ R
be the set of all clusters R ∈ R with vR ∈ V (W). We then let W ′ be a subgraph of G induced by

74

vertex set
(⋃

R∈R(W) V (R)
)
∪ (V (G) ∩ V (W)). In other words, V (W ′) contains all regular vertices

of W , and all vertices lying in clusters of R(W). We will refer to W ′ as the cluster of G defined by
W . Finally, let W ′ = {W ′ |W ∈ W}. Note that every basic cluster C ∈ C′ must be disjoint from
clusters of W ′. We denote by R′ = R\

(⋃
W∈W R(W)

)
. Note that each cluster R ∈ R′ is contained in

G \
(⋃

W ′∈W ′ V (W ′)
)
, while for each cluster R ∈ R \R′, there is some cluster W ′ ∈ W ′ with R ⊆W ′.

Therefore, C′ ∪ R′ ∪W ′ is a collection of disjoint clusters of graph G (see Figure 11(a)). Recall that
we are guaranteed that every cluster C ∈ C′ has the α0-bandwidth property, where α0 = 1/ log3m,
and every cluster R ∈ R′ has the α1-bandwidth property, where α1 = 1/ log6m. Lastly, every cluster
W ∈ W has the α′-bandwidth property (for α′ = 1/(c log2.5m), where c is a large enough constant)
in graph Ĥ. From Corollary 4.40, every cluster W ′ ∈ W ′ has the α1 · α′ = 1/(c log8.5m)-bandwidth
property in graph G.

(a) A schematic view of graph G. Clusters of W ′ are
shown in green. Clusters of R are shown in red (with
clusters of R′ shaded). Clusters of C are shown in blue
(with clusters of C′ shaded). Regular vertices lying out-
side of clusters of C are shown in black. Note that, if
there exist clusters C ∈ C and W ′ ∈ W ′ with C ⊆ W ′,
then there exists a cluster R ∈ R with C ⊆ R ⊆ W ′.
Also, for every cluster W ′ ∈ W ′, R∗ 6⊆W ′ and v∗ /∈W ′
hold.

(b) A schematic view of graph Ĥ ′. Regular vertices are
shown in black, C-nodes are shown in blue, R-nodes are
shown in red, and W -nodes are shown in green.

Figure 11: Graphs G and Ĥ ′.

In order to prove Lemma 7.14, it will be convenient for us to work with graph Ĥ ′, that is a contracted
graph of Ĥ, with respect to set W of clusters, that is, Ĥ ′ = Ĥ|W . Since graph Ĥ is itself a contracted

graph of G with respect to R ∪ C′, it is easy to verify that Ĥ ′ = G|C′∪R′∪W ′ (see Figure 11(b)). The

vertices of graph Ĥ ′ are partitioned into four types. The first type is regular vertices, which are also
the vertices of the original graph G; note that the special vertex v∗ belongs to graph Ĥ as a regular
vertex. The second type is supernodes corresponding to clusters of C′, that we refer to as C-nodes.
The third type is supernodes corresponding to clusters of R′, that we call R-nodes, and it includes the
vertex u∗, representing the cluster R∗. The fourth type is supernodes corresponding to clusters of W ′,
that we call W -nodes. We denote the set of all regular vertices of Ĥ ′, excluding the special vertex v∗,
by U∗. We denote the set of all R-nodes, excluding the vertex u∗, by UR.

The remainder of the proof of Lemma 7.14 consists of three steps. In the first step, we perform some
manipulations that will allow us to either compute a new valid set W̃ of W -clusters in the current
graph Ĥ, such that |E(Ĥ|W̃)| < |E(Ĥ|W)|, or to organize the vertices of U∗ ∪ UR into a nice layered

structure. We also define a collection J of clusters of the graph Ĥ ′ in this step. In the second step,

75

we will define another contracted graph Ȟ with respect to the clustering J , and explore some of its
properties. In particular, we define the notion of a “simplifying cluster” in Ȟ, and show an algorithm
that, given a simplifying cluster in Ȟ, produces a helpful clustering R̃ of G that is better than the
current clustering R. Lastly, in the third setp, we either compute a nice witness structure in graph
G|R as required, or compute a simplifying cluster in graph Ȟ, which in turn allows us to produce a

helpful clustering R̃ in graph G that is better than R. We now describe these steps one by one.

Step 1: Layering the Vertices of U∗ ∪ UR and Clustering J

Consider the graph Ĥ ′, and let C0 be the subgraph of Ĥ ′, induced by vertex set V (Ĥ ′) \ (U∗ ∪
UR). We use the algorithm from Theorem 4.20, to compute a layered α′-well-linked decomposition
(S, (L1, . . . ,Lh)) of Ĥ ′ with respect to C0, where α′ = Θ(1/ log2.5m) is the parameter that was used
in the definition of a valid set of W -clusters, such that h ≤ logm. We say that a cluster S ∈ S is
a singleton cluster, if it contains a single vertex of Ĥ ′. Assume first that S contains a non-singleton
cluster S. Recall that S has the α′-bandwidth property in Ĥ ′ (from Property L2 of layered well-linked
decomposition; see Section 4.2.6), and it only contains verices of U∗ ∪ UR. Therefore, S is also a
cluster of graph Ĥ, and it has the α′-bandwidth property in Ĥ. Moreover, from Property L3 of the
layered well-linked decomposition, |EĤ(S)| = |EĤ′(S)| ≥ |δĤ′(S)|/(64 logm) = |δĤ(S)|/(64 logm)

holds. Since S is disjoint from clusters in setW, we get that W̃ =W∪{S} is a valid set of W -clusters
in graph Ĥ, with |E(Ĥ|W̃)| < |E(Ĥ|W)|. We terminate the algorithm and return the new valid set

W̃ of W -clusters. Therfore, we will assume from now on that every cluster in set S is a singleton
cluster. The partition (L1, . . . ,Lh) of the clusters of S into layers then immediately defines a partition
L1, . . . , Lh of vertices of U∗ ∪ UR into layers, where vertex u lies in layer Ui iff cluster {u} ∈ S lies in
Li. For convenience, we denote by L0 = V (Ĥ ′) \ (U∗ ∪UR). For every vertex u ∈ U∗ ∪UR that lies in
some layer Li, for 1 ≤ i ≤ h, we partition the edges of δĤ′(u) into two subsets: set δdown(u) contains
all edges (u, u′) with u′ ∈ L0 ∪ L1 ∪ · · · ∪ Li−1, and set δup(u) contains all remaining edges of δĤ′(u).
Note that, from Property L4 of the layered well-linked decomposition, for every vertex u ∈ U∗ ∪ UR,
|δup(u)| < |δdown(u)|/ logm.

In the remainder of the proof of Lemma 7.14, we will attempt to construct a nice witness structure
for graph G|R, with respect to the set C′ of clusters, containing every cluster C ∈ C with C ⊆
G \

(⋃
R∈R V (R)

)
. If we fail to do so, then we will compute another helpful clustering R̃ of graph G

with respect to vertex v∗ and set C of basic clusters, such that R∗ ∈ R and R̃ is a better clustering
than R.

In order to do so, we construct a collection J of clusters in graph Ĥ ′. Every cluster J ∈ J will contain
exactly one vertex that is either a C-node or W -node, that we refer to as the center of the cluster,
and possibly a number of additional vertices from U∗ ∪ UR. Initially, for every vertex u of Ĥ ′ that
is either a C-node or a W -node, we construct a cluster J(u) ∈ J , that only contains the vertex u as
its center node. We then iterate. As long as there exists a vertex u′ ∈ U∗ ∪ UR, such that at least
|δĤ′(u

′)|/128 edges connect u′ to the vertices of some cluster J ∈ J , we add vertex u′, together with
all edges connecting u′ to V (J), to cluster J . We also delete u′ from vertex set U∗ or UR in which it
lies. If u′ ∈ Li, for some 1 ≤ i ≤ h, then we delete u′ from Li and add it to L0.

Consider the set J of clusters in graph Ĥ ′, that is obtained at the end of this procedure. It is
immediate to verify that all clusters in J are mutually disjoint; every cluster J ∈ J contains a single
center node that is a C-node or a W -node, and each remaining vertex of J lies in UR ∪ U∗. We need
the following observation, whose proof is deferred to Section G.5 of Appendix.

Observation 7.17 Every cluster J ∈ J , has the Ω(1/ logm)-bandwidth property in graph Ĥ ′.

76

Step 2: New Contracted Graph and Simplifying Clusters

We start by revisiting the current hierarchical (4-level) clustering of G and defining a new contracted
graph. Recall that our starting point is a graph G, with a special vertex v∗, and a collection C of
disjoint basic clusters in G, such that v∗ does not lie in any cluster of C. Recall that every cluster in
C has the α0-bandwidth property, where α0 = 1/ log3m. This is the first-level clustering.

The second level of clustering is the helpful clustering R, which is also a collection of disjoint clusters,
each of which has the α1-bandwidth property, where α1 = 1/ log6m. Recall that v∗ may not lie in
any cluster of R, and, for every cluster C ∈ C, either C ⊆ G \

(⋃
R∈RR

)
; or there is some cluster

R ∈ R with C ⊆ R. Recall that we have denoted by C′ ⊆ C the set of all clusters C ∈ C with
C ⊆ G \

(⋃
R∈RR

)
. Recall also that we have defined a distinguished cluster R∗ ∈ R.

The third level of clustering is a W -clustering W, that is defined with respect to the contracted graph
Ĥ = G|C′∪R. Recall that for every cluster W ∈ W, every vertex of W is either a regular vertex or an
R-node, and W may not contain the special vertex v∗ or the R-node u∗ representing the distinguished
cluster R∗. We have defined, for every cluster W ∈ W, the corresponding cluster W ′ ⊆ G, that is,
intuitively, obtained from W by un-contracting every cluster R ∈ R with vR ∈ V (W). We have then
set W ′ = {W ′ |W ∈ W}, and we have established that every cluster W ′ ∈ W ′ has the Ω(1/ log8.5m)-
bandwidth property in graph G. Observe that for every pair C ∈ C′, W ′ ∈ W ′ of clusters, C ∩W ′ = ∅
must hold. For every pair R ∈ R, W ′ ∈ W ′ of clusters, either R ⊆ W ′, or R ∩W ′ must hold. We
denote by R′ the set of all custers R ∈ R with R ⊆ G \

(⋃
W ′∈W ′W

′). Observe that R∗ ∈ R′ must

hold, and that C′ ∪ R′ ∪W ′ is a collection of disjoint clusters in graph G. Graph Ĥ ′ = Ĥ|W that we
used in Step 1 is precisely the graph G|C′∪R′∪W ′ .

The fourth and the last level of clustering is defined by the collection J of clusters in graph Ĥ ′ that
we have defined in Step 1. Recall that, for every cluster J ∈ J (that is a subgraph of Ĥ ′), there is a
unique center vertex, that is either a C-node or a W -node, and the remaining vertices of J are regular
vertices or R-nodes; however, J may not contain the special vertex v∗ or the R-node u∗ representing
the distinguished cluster R∗. Moreover, every C-node and every W -node is a center of some cluster
in J .

As before, we will define, for every cluster J ∈ J , a corresponding cluster J ′ in graph G, in a natural
way. We first define the vertex set V (J ′), and then let J ′ be the subgraph of G induced by V (J ′).
First, we add to V (J ′) every regular vertex that lies in J – each such vertex is a vertex of G. Next,
for every R-node vR ∈ J , we add all vertices of cluster R to V (J ′); observe that R ∈ R′ \ {R∗} must
hold. Lastly, we consider the unique center vertex of J . If that vertex is a C-node, corresponding to a
cluster C ∈ C′, then we add all vertices of C to V (J ′). Otherwise, the vertex is a W -node, representing
some cluster W ′ ∈ W ′. We then add to V (J ′) all vertices of V (W ′). Lastly, we set J ′ = G[V (J ′)].
We denote by J ′ = {J ′ | J ∈ J } the set of clusters in graph G corresponding to the cluster set J
in Ĥ ′. Observe that for every cluster C ∈ C′, there is a unique cluster J ′(C) ∈ J ′ containing C; we
call C the center-cluster of J ′(C). Similarly, for every cluster W ′ ∈ W ′, there is a unique cluster
J ′(W) ∈ J ′ containing W ′; we similarly call W ′ the center-cluster of J ′(W). Lastly, for every pair
of clusters R ∈ R′, J ′ ∈ J ′, either R ⊆ J ′ or R ∩ J ′ = ∅ holds. We denote by R′′ ⊆ R′ the set of
all custers R ∈ R′, with R ⊆ G \

(⋃
J ′∈J J

′) (see Figure 12). Note that R∗ ∈ R′′. Observe also that
R′′ ∪ J ′ defines a collection of disjoint clusters in graph G. Note that the special vertex v∗ does not
lie in any cluster of R′′∪J ′, and that every cluster of C, R, andW ′ is contained in exactly one cluster
of R′′ ∪ J ′.
Since every cluster in C has the α0 = 1/ log3m-bandwidth property; every cluster W ∈ W ′ has the
Ω(1/ log8.5m)-bandwidth property; and every cluster R ∈ R has the 1/ log6m-bandwidth property in
graph G, while, from Observation 7.17, every cluster J ∈ J , has the Ω(1/ logm)-bandwidth property in
graph Ĥ ′ = G|C′∪R′∪W ′ , from Corollary 4.40, we get that every cluster J ′ ∈ J ′ has the Ω(1/ log9.5m)-

77

Figure 12: An illustration of a J -clustering. Clusters of C are shown in blue (with clusters of C′
shaded). Clusters of R are shown in red (with clusters of R′ shaded). Clusters of W ′ are shown in
green. Each cluster of W ′ may contain clusters of R, but if a cluster C ∈ C is contained in W ′, then
there exists R ∈ R with C ⊆ R ⊆W ′. Vertices of G that do not lie in clusters of C are shown in black.
Clusters of J ′ are shown in brown. Each cluster of J ′ contains a cluster of W ′ or C′ as its center
cluster (indicated by ∗). Each cluster of W ′ ∪ C′ is a center-cluster of some cluster of J ′. In addition
to the center-cluster, a cluster of J ′ may contain clusters of R and regular vertices. Some clusters of
R′ and some regular vertices may not lie in any cluster of J ′.

bandwidth property. This property will be useful for us later, so we summarize it in the following
observation.

Observation 7.18 Every cluster J ′ ∈ J ′ has the Ω(1/ log9.5m)-bandwidth property in graph G.

In the remainder of the proof of Lemma 7.16 we consider the contracted graph Ȟ = G|J ′∪R′′ , which

is exactly the contracted graph of Ĥ ′ with respect to cluster set J , that is, Ȟ = Ĥ ′|J . The set of

vertices of Ȟ consists of three subsets: the set V (G)∩V (Ȟ) of regular vertices; the set {vR | R ∈ R′′}
of supernodes corresponding to clusters of R′′ that we call R-nodes; and the set {vJ ′ | J ′ ∈ J ′} of
supernodes corresponding to clusters of J ′ that we call J-nodes. For convenience, we denote by Û∗

the set of all regular vertices of Ȟ excluding the special vertex v∗, and we denote by ÛR the set of all
R-nodes of Ȟ excluding the node u∗ that represents the distinguished cluster R∗. The algorithm from
Step 1 ensures the following property of graph Ȟ:

H1. for every vertex u ∈ Û∗ ∪ ÛR and J-node vJ ′ , the number of edges connecting u to vJ ′ in Ȟ is
at most |δȞ(u)|/128.

Indeed, if the above property does not hold for a vertex u ∈ Û∗ ∪ ÛR and a J-node vJ ′ , then vertex
u should have been added to the cluster J ∈ J that corresponds to cluster J ′ ∈ J ′ by the algorithm
that constructed the clusters in J .

Additionally, the algorithm from Step 1 defines a partition (L1, L2, . . . , Lh) of the set Û∗ ∪ ÛR of
vertices, with h ≤ logm. Let L0 be the set of vertices of Ȟ containing all J-nodes and the special
vertices v∗, u∗; equivalently, L0 = V (Ȟ) \ (Û∗ ∪ ÛR). Recall that for all 1 ≤ i ≤ h, for every vertex
u ∈ Li, we have partitioned the edge set δȞ(u) into two subsets: set δdown(u) contains all edges

78

connecting u to vertices of L0 ∪ · · · ∪ Li−1, while set δup(u) contains all remaining edges of δȞ(u).
Recall that we have also ensured that the following property holds:

H2. for every vertex u ∈ Û∗ ∪ ÛR, |δup(u)| < |δdown(u)|/ logm.

Next, we define the notion of a simplifying cluster in graph Ȟ. We will then show that, given a
simplifying cluster in Ȟ, we can efficiently compute a helpful clustering R̃ of graph G with respect to
vertex v∗ and set C of basic clusters, such that R∗ ∈ R̃ and R̃ is a better clustering than R.

Definition 7.19 (Simplifying Cluster) Let S be a vertex-induced subgraph of Ȟ. We say that S
is a simplifying cluster if:

• vertices v∗, u∗ do not lie in S;

• there is a set P(S) of paths in graph Ȟ (external S-router), routing the edges of δȞ(S) to a
single vertex of Ȟ \S, such that all paths in P(S) are internally disjoint from S, and they cause
congestion at most β′ = O(logm); and

• either S contains at least one J-node, or |EȞ(S)| ≥ |δȞ(S)|/ logm.

We will use the following simple observation.

Observation 7.20 There is an efficient algorithm, that, given a cluster S ⊆ Ȟ, establishes whether
S is a simplifying cluster.

Proof: In order to establish whether S is a simplifying cluster, we need to check whether S contains
a J-node, or |EȞ(S)| ≥ |δȞ(S)|/ logm holds, which can be done efficiently. Additionally, we need to
check whether there is a set of paths in graph Ȟ, routing the edges of δȞ(S) to a single vertex of Ȟ \S,
such that the paths are internally disjoint from S and cause congestion at most β′. The latter can be
done efficiently by computing maximum flow between the vertices of S and each vertex of Ȟ \ S in
turn.

In the next claim we show that, if we are given a simplifying cluster S in Ȟ, then we can efficiently
compute a helpful clustering R̃ of graph G with respect to v∗ and C, such that R∗ ∈ R̃ and R̃ is a better
clustering than R. The proof of the claim is somewhat technical and is deferred to Appendix G.6

Claim 7.21 There is an efficient algorithm, that, given a simplifying cluster S of Ȟ, computes a
helpful clustering (R̃, {D′(R)}R∈R̃) of graph G with respect to the special vertex v∗ and the set C of

basic clusters, such that R∗ ∈ R̃, and R̃ is a better clustering than R.

Let τ be the Gomory-Hu tree of the graph Ȟ. We root the tree at the special vertex v∗, and, for every
vertex u ∈ V (τ), we denote by τu the subtree of τ rooted at vertex u.

Assume first that there is some vertex u ∈ V (τ), such that the special R-node u∗ corresponding to
the distinguished cluster R∗ does not lie in τu, but some J-node vJ ′ lies in τu. In this case, we let
S be a subgraph of Ȟ that is induced by V (τu). We claim that S is a simplifying cluster. Indeed,
from the construction, neither of v∗, u∗ may lie in S, and at least one J-node lies in S. Let u′ be the
parent-vertex of u in the tree τ . Then from the properties of Gomory-Hu tree (see Corollary 4.10),
(V (S), V (Ȟ) \ V (S) is a minimum cut separating u from u′ in Ȟ. From the max-flow / min-cut
theorem, there is a collection P of |δȞ(S)| edge-disjoint paths connecting u to u′ in Ȟ. Clearly, each
edge e ∈ δȞ(S) is contained in exactly one path of P, that we denote by P (e). Let P ′(e) be the
subpath of P (e) that starts at edge e and terminates at u′. Then P ′(e) must be internally disjoint

79

from S. Therefore, P(S) = {P ′(e) | e ∈ δȞ(S)} is a set of edge-disjoint paths in graph Ȟ, routing
the edges of δȞ(S) to vertex u′ ∈ Ȟ \ S, and the paths in P(S) are internally disjoint from S. We
conclude that S is a simplifying cluster. We can now use the algorithm from Claim 7.21 to compute
a helpful clustering (R̃, {D′R}R∈R̃) of graph G with respect to the special vertex v∗ and the set C of

basic clusters, such that R∗ ∈ R̃, and R̃ is a better clustering than R.

Therefore, we assume from now on that, for every vertex u ∈ V (τ), if u∗ does not lie in τu, then τu
does not contain any J-node, and so V (τu) ⊆ Û∗ ∪ ÛR. Let P ∗ denote the path connecting v∗ to u∗

in the tree τ . We denote the sequence of vertices on the path by v∗ = u1, u2, . . . , ur = u∗. For all
1 ≤ i ≤ r, we define a cluster Si of Ȟ, associated with vertex ui, as follows. We let Sr be the subgraph
of Ȟ induced by the vertices of τur . Consider now some index 1 ≤ i < r. Let

{
x0
i , x

1
i , x

2
i , . . . , x

qi
i

}
be the set of all child-vertices of ui in the tree τ , and assume that x0

i = ui+1. We then let Si be the
subgraph of Ȟ induced by the set {ui} ∪ V (τx1i

) ∪ V (τx2i
) ∪ · · · ∪ V (τxqii

) of vertices. In other words,

we include in vertex set V (Si) the vertices lying in all subtrees of the children of ui, except for the
vertices lying in the subtree of ui+1. From our assumption, for all 1 ≤ i ≤ r, the only vertex of Si
that may be a J-node is the vertex ui; all other vertices of Si are R-nodes or regular vertices (and it
is also possible that ui is an R-node or a regular vertex).

For all 1 ≤ i ≤ r, we also define a subgraph S′i ⊆ Si, that is constructed as follows. We start by
constructing the set V (S′i) of vertices. Initially, we let V (S′i) = {ui}. While there is any vertex
u ∈ Si \S′i, such that at the number of edges connecting u to vertices of V (S′i) is at least |δȞ(u)|/128,
then we add u to V (S′i). Once this algorithm terminates, we let S′i be the subgraph of Ȟ induced by
the set V (S′i) of vertices. Recall that we have established that, if v is a vertex of Si \ S′i, for some
1 ≤ i ≤ r, then v ∈ Û∗∪ ÛR must hold. The following observation easily follows from the construction
of J-clusters.

Observation 7.22 Consider any index 1 < i < r, for which ui is a J-node. Then S′i = {ui}.

Proof: Let J ∈ J be the cluster of Ĥ ′ that node ui represents (recall that we can think of graph Ȟ as
a contracted graph of Ĥ ′ with respect to cluster set J). Assume for contradiction that S′i contains at
least one vertex in addition to ui, and let v be the first vertex that was added to cluster S′i. Then the
number of edges connecting v to ui is at least |δȞ(v)|/128. But then v is also a vertex of graph Ĥ ′, in
which it serves as either an R-node distinct from u∗, or a regular vertex distinct from v∗. Moreover,
the number of edges connecting v to vertices of J is at least |δĤ′(v)|/128. Therefore, v should have
been added to cluster J when it was constructed, a contradiction.

Additionally, we get the following observation, whose proof is identical to the proof of Observation 7.17
and is omitted here.

Observation 7.23 For all 1 ≤ i ≤ r, cluster S′i has the Ω(1/ logm)-bandwidth property in graph Ȟ.

For all 1 ≤ i ≤ r, we employ the algorithm from Observation 7.20 in order to establish whether S′i is a
simplifying cluster. Additionally, for all 1 ≤ i < r, we use the algorithm from Observation 7.20 in order
to establish whether the subgraph of Ȟ induced by vertex set V (Si)∪V (Si+1) is a simplifying cluster. If
the algorithm from Observation 7.20 establishes that any of the above clusters is a simplifying cluster,
then we can use the algorithm from Claim 7.21 to compute a helpful clustering (R̃, {D′(R)}R∈R̃ of

graph G with respect to the special vertex v∗ and the set C of basic clusters, such that R∗ ∈ R̃, and
R̃ is a better clustering than R. Therefore, we assume from now on that, for all 1 ≤ i ≤ r, cluster S′i
is not a simplifying cluster, and for all 1 ≤ i < r, the subgraph of Ȟ induced by V (Si) ∪ V (Si+1) is
not a simplifying cluster.

We will show, in Step 3, an efficient algorithm that constructs a nice witness structure for graph G|R,
with respect to the set C′ of clusters, that contains every cluster C ∈ C with C ⊆ G \

(⋃
R∈R V (R)

)
.

80

Step 3: Constructing the Nice Witness Structure

The goal of this step is to construct a nice witness structure for graph G|R, with respect to the set C′′
of clusters, that contains every cluster C ∈ C with C ⊆ G \

(⋃
R∈R V (R)

)
.

Intuitively, we will use the clusters S1, . . . , Sr that we just defined in order to define the spine S̃ ={
S̃1, . . . , S̃r

}
of the nice witness structure in the natural way: cluster S̃i will be obtained from Si by

first replacing every R-node and every J-node of Si with the corresponding cluster R ∈ R′′ or J ′ ∈ J ′,
and then contracting the R-clusters back. Similarly, we will use the clusters S′1, . . . , S

′
r in order to

define the verterbrae S̃′1, . . . , S̃
′
r of the nice witness structure.

We partition the set E(Ȟ) of edges into two disjoint subsets, E′ and E′′, as follows. Set E′ contains
all edges of

⋃r
i=1E(S′i), and, additionally, for all 1 ≤ i < r, it contains every edge e = (u, v) with

u ∈ S′i, v ∈ S′i+1. Set E′′ contains all remaining edges of E(Ȟ). Additionally, we let Ê ⊆ E′′ be the
set of all edges (u, v) ∈ E′′, where u and v lie in different sets of {S1, . . . , Sr}.

Next, we develop some tools that will allow us to define the set P =
{
P (e) | e ∈ Ê

}
of nice guiding

paths for the nice witness structure that we construct. Recall that in Step 1 of the algorithm, we have
partitioned the set U∗ ∪ UR of vertices of graph Ĥ ′ into layers L1, . . . , Lh, where h ≤ logm. Recall
that U∗ is the set of all regular vertices (excluding v∗), and UR is the set of all R-nodes (excluding
u∗) of graph Ĥ ′. Recall that Ȟ = Ĥ ′|J , that is, graph Ȟ can be obtained from Ĥ ′ by contracting all

clusters of J . Therefore, if we denote by Û∗ the set of all regular vertices of Ȟ (excluding v∗), and
by ÛR the set of all R-nodes of Ȟ (excluding u∗), then Û∗ ⊆ U∗, and ÛR ⊆ UR. Therefore, partition
(L1, . . . , Lh) of U∗ ∪ UR naturally defines a partition (L′1, . . . , L

′
h) of ÛR ∪ Û∗. Recall that, for all

1 ≤ i ≤ r, all vertices of Si \ S′i lie in Û∗ ∪ ÛR. We denote by L′0 = V (Ȟ) \
(⋃h

j=1 L
′
j

)
. As before,

for all 1 ≤ j ≤ r, for every vertex v ∈ L′j , we partition the set δȞ(v) of edges into two subsets: set

δdown(v) containing all edges that connect v to vertices of L′0 ∪ · · · ∪ L′j−1, and set δup(v) containing

all remaining edges incident to v. From Property H2 of graph Ȟ, for every vertex v ∈ Û∗ ∪ ÛR,
|δup(v)| < |δdown(v)|/ logm.

For all 1 ≤ i ≤ r and 1 ≤ j ≤ h, we denote by Ui,j = L′j ∩ V (Si) – the set of all vertices of Si that lie
in layer L′j .

Consider some pair 1 ≤ i ≤ r, 1 ≤ j ≤ h of indices, and some vertex v ∈ Ui,j \ {ui}. We partition the
edges of δdown(v) into four subsets, δdown,left(v), δdown,right(v), δdown,straight′(v), and δdown,straight′′(v),
as follows. Let e = (u, v) be an edge of δdown(v), and assume that u ∈ Ui′,j′ . Since e ∈ δdown(v),
j′ < j must hold. If, additionally, i′ < i holds, then we add e to δdown,left(v), Similarly, if i′ > i, then
we add e to δdown,right(v). If i′ = i, and u ∈ S′i, then e is added to δdown,straight′′(v), and otherwise
it is added to δdown,straight′(v). We will use the following simple observation, whose proof appears in
Appendix G.7.

Observation 7.24 S′1 = S1, and S′r = Sr. Additionally, for every vertex v ∈ V (Ȟ) \ (
⋃r
i=1 S

′
i):

• |δdown,right(v)|+ |δdown,left(v)|+ |δdown,straight′(v)| ≥ 63|δ(v)|/64;

• |δdown,left(v)| ≤ 2(|δdown,right(v)|+ |δdown,straight′(v)|); and

• |δdown,right(v)| ≤ 2(|δdown,left(v)|+ |δdown,straight′(v)|).

We will also use the following simple observation, whose proof appears in Appendix G.8

Observation 7.25 There is an efficient algorithm that defines, for every vertex v ∈ V (Ȟ)\(
⋃r
i=1 S

′
i),

two mappings: mapping f right(v), that maps every edge of δdown,straight′′(v)∪δup(v) to a distinct edge of

81

δdown,right(v)∪δdown,straight′(v), and another mapping f left(v), that maps every edge of δdown,straight′′(v)∪
δup(v) to a distinct edge of δdown,left(v) ∪ δdown,straight′(v).

Next, we define the notion of a left-monotone and a right-monotone path.

Definition 7.26 (Left-Monotone and Right-Monotone Paths) Let P = (x1, x2, . . . , xq) be a
path in graph Ȟ. For all 1 ≤ a ≤ q, assume that xa ∈ Uia,ja. We say that path P is left-monotone if
either q = 1 (that is, P consists of a single vertex), or all of the following conditions holds:

M1. j1 > j2 > · · · > jq;

M2. for all 1 ≤ a < q, vertex xa ∈ Sia \ S′ia, and xq ∈ S′iq ; and

M3. i1 ≥ i2 ≥ · · · ≥ iq, and iq < i1.

Similarly, we say P is right-monotone if either q = 1, or properties M1 and M2 hold for it, together
with the following property:

M’3. i1 ≤ i2 ≤ · · · ≤ iq, and iq > i1

Observe that the vertices on a left-monotone path must appear in the decreasing order of their layers,
and in the non-increasing order of the sets Si to which they belong. Similarly, vertices on a right-
monotone path appear in the decreasing order of their layers, and in the non-decreasing order of the
sets Si to which they belong. The following lemma will allow us to construct prefix- and suffix-paths
for each edge e ∈ Ê, by constructing a left-monotone and a right-monotone path for each such edge
in graph Ȟ; the proof is deferred to Appendix G.9.

Lemma 7.27 There is an efficient algorithm that constructs, for every edge e = (u, v) ∈ Ê two paths
P (e, u) and P (e, v) in graph Ȟ, such that, if u ∈ Si, v ∈ Si′, and i < i′, then path P (e, u) is left-

monotone and path P (e, v) is right-monotone. Moreover, the set
{
P (e, v), P (e, u) | e = (u, v) ∈ Ê

}
of

paths causes congestion O(logm).

Consider now some index 1 ≤ i < r. We let Êi ⊆ Ê contain all edges e = (u, v) ∈ Ê, such that, if
u ∈ Si′ , v ∈ Si′′ , and i′ < i′′, then i′ ≤ i and i′′ ≥ i + 1 must hold. We also denote by Ei ⊆ E′ the
set of all edges e = (u, v) with u ∈ S′i and v ∈ S′i+1 (see Figure 13). Note that Ei ∩ Êi = ∅. The next
lemma is crucial to the algorithm for constructing a nice witness structure in graph G|R.

Lemma 7.28 For all 1 < i < r, vertex ui is a J-node, and for all 1 ≤ i < r, |Êi| ≤ 1000 · |Ei|.

The proof of Lemma 7.28 is deferred to Section 7.2.4.

From now on, we denote H = G|R, and we denote by C′ ⊆ C the set of all basic clusters C ∈ C with
C ⊆ G \

(⋃
R∈R V (R)

)
; equivalently, C′ contains every cluster C ∈ C that is contained in H. It now

remains to construct a nice witness structure in graph H with respect to the set C′ of clusters. We
start by constructing the backbone and the vertebrae of the witness structure, and by defining the
partition (Ẽ′, Ẽ′′) of the edges of H. We then construct the prefix and the suffix of path P (e) for each
edge e ∈ Ê. Lastly, we construct the mid-segment of each such path.

The Backbone and the Vertebrae of the Witness Structure. We use the clusters in set
S = {S1, . . . , Sr}, and in set S ′ = {S′1, . . . , S′r} in order to define the backbone and the vertebrae of
the nice witness structure, respectively. Recall that every vertex of graph Ȟ is either a regular vertex

82

Figure 13: An illustration of edge sets Ei and Êi.

(that is, it lies in both G and H); or it is an R-node vR representing some cluster R ∈ R (in which
case it lies in H = G|R); or it is a J-node vJ ′ for some cluster J ′ ∈ J ′. As we have established, for all

1 < i < r, vertex ui is a J-node, and all other vertices of Ȟ are either regular vertices of R-nodes.

Consider now any such J-node vJ ′ , and the corresponding cluster J ′ ∈ J ′. Recall that for every
cluster R ∈ R, either R ⊆ J ′, or R ∩ J ′ = ∅ holds. Denote by R(J ′) ⊆ R the set of all clusters R ∈ R
with R ⊆ J ′. Let J ′′ = J ′|R(J ′) be the graph obtained from J ′ by contracting every cluster R ∈ R(J ′)

into a supernode. Then J ′′ ⊆ H, and we will think of J ′′ as the cluster of H that vertex vJ ′ ∈ V (Ȟ)
represents. We denote by J ′′ = {J ′′ | J ′ ∈ J ′} the resulting set of clusters in graph H. Note that
equivalently we could define the graph Ȟ as a graph that is obtained from H by contracting every
cluster in J ′′, that is, Ȟ = H|J ′′ . Recall that we have established, in Observation 7.18, that every

cluster J ′ ∈ J ′ has the Ω(1/ log9.5m)-bandwidth property in graph G. It then immediately follows
that every cluster J ′′ ∈ J ′′ has the Ω(1/ log9.5m)-bandwidth property in graph H.

We start by defining the sequence S̃ ′ =
{
S̃′1, . . . , S̃

′
r

}
of the vertebrae of the nice witness structure.

Consider an index 1 ≤ i ≤ r. If i = 1, then u1 = v∗, and so every vertex of set S′1 is a vertex of H.
We then set S̃′1 = S′1. If i = r, then ur = u∗. As before, every vertex of S′r is then a vertex of H,
and we set S̃′r = S′r. Lastly, assume that 1 < i < r. From Lemma 7.28, ui is a J-node, and, from
Observation 7.22, S′i = {ui}. Assume that ui = vJ ′ , where J ′ ∈ J ′. We then let S̃′i be the cluster J ′′ of

H that corresponds to vertex vJ ′ . This completes the definition of the sequence S̃ ′ =
{
S̃′1, . . . , S̃

′
r

}
of

the vertebrae of the nice witness structure. Consider again some index 1 ≤ i ≤ r. If i ∈ {1, r}, then,
from the construction, for every cluster C ∈ C′, C ∩ S̃′i = ∅. This is because every cluster of C′ must be
contained in some cluster of J ′. Otherwise, assume that ui = vJ ′ , where J ′ ∈ J ′. If the center-cluster
of J ′ is a basic cluster C ∈ C′, then C ⊆ S̃′i, and for every other cluster C ′ ∈ C′, C ∩ S̃′i = ∅. Otherwise,
the center-cluster of J ′ is a cluster W ′ ∈ W ′. In this case, no cluster of C′ may be contained in S̃′i.

Consider again some index 1 ≤ i ≤ r. Recall that we have established, in Observation 7.23, that
cluster S′i has the Ω(1/ logm)-bandwidth property in graph Ȟ. We have also established above that
every cluster in J ′′ ∈ J ′′ has the Ω(1/ log9.5m)-bandwidth property. From Corollary 4.40, cluster S̃′i
of H has the Ω(1/ log10.5m) ≥ α∗-bandwidth property, since α∗ = Ω(1/ log12m). To conclude, we
have shown that, for all 1 ≤ i ≤ r, cluster S̃′i of H has the α∗-bandwidth property. We have also
shown that, for all 1 ≤ i ≤ r, there is at most one cluster C ∈ C′ with C ⊆ S̃′i. It is easy to verify

83

that, if such cluster C exists, then E(S̃′i) ⊆ E(C) ∪ E(G|C′), and otherwise E(S̃′i) ⊆ E(G|C′). This is

because for every cluster C ∈ C′, and for all 1 ≤ i ≤ r, either C ⊆ S̃′i, or C ∩ S̃′i = ∅ holds.

We now define the backbone S̃ =
{
S̃1, . . . , S̃r

}
of the nice witness structure. Fix an index 1 ≤ i ≤ r.

If i ∈ {1, r}, then, from Observation 7.24, S′i = Si. We then set S̃i = S̃′i. Assume now that 1 < i < r.
Recall that in this case, S′i = {ui} holds, and ui is a J-node, from Lemma 7.28. Note that every vertex
of Si \ {ui} is either a regular vertex or an R-node, and so it must lie in graph H. We define the set
V (S̃i) of vertices to contain all regular vertices and all R-nodes that lie in Si \ {ui}, and all vertices
of S̃′i. We then let S̃i be the subgraph of H induced by the set V (S̃i) of vertices. In other words, we
can think of cluster S̃i as being obtained from cluster Si of Ȟ, by un-contracting the J-node ui (into
the corresponding cluster of J ′′). This completes the definition of the backbone of the nice witness
structure. Since every vertex of Si \ S′i is either a regular vertex or an R-node, either there is a single
cluster C ∈ C′ with C ⊆ S̃′i, in which case then E(S̃i) ⊆ E(C) ∪ E(G|C′); or no such cluster exists, in

which case E(S̃i) ⊆ E(G|C′). Since vertex sets V (S1), . . . , V (Sr) partition V (Ȟ), it is easy to verify

that vertex sets V (S̃1), . . . , V (S̃r) partition V (H).

Recall that the second ingredient of the nice witness structure is a partition of the edges of E(H) into
two disjoint subsets, Ẽ′ and Ẽ′′, that are defined as follows. Set Ẽ′ contains all edges of

⋃r
i=1E(S̃′i),

and, additionally, for all 1 ≤ i < r, it contains every edge e = (u, v) with u ∈ S̃′i, v ∈ S̃′i+1. Since, as

observed already, Ȟ = H|J ′′ , it is easy to verify that E′ ⊆ Ẽ′. Recall that we have denoted, for all

1 ≤ i < r, by Ei ⊆ E′ the set of all edges e = (u, v) of Ȟ with u ∈ S′i and v ∈ S′i+1. It is easy to verify

that Ei ⊆ E(H), and moreover, it is precisely the set of all edges (u, v) in H with u ∈ S̃′i and v ∈ S̃′i+1.

In particular, Ei ⊆ Ẽ′. The second edge set in the partition of E(H) contains all remaining edges,
Ẽ′′ = E(H) \ Ẽ′. From the fact that Ȟ = H|J ′′ , and since, for all 1 ≤ i ≤ r, Si \ S′i may only contain

regular vertices or R-nodes, we get that E′′ = Ẽ′′ holds. Lastly, we defined the set Ê ⊆ E′′ of all edges
e = (u, v) ∈ E′′ of graph Ȟ, where u and v lie in different clusters of {S1, . . . , Sr}. It is immediate to
verify that this is exactly the set of edges in graph Ȟ, containing all edges e = (u, v) ∈ Ẽ′′ where u

and v lie in different clusters of
{
S̃1, . . . , S̃r

}
. Recall that we have defined, for all 1 ≤ i < r, the set

Êi ⊆ Ê of edges in graph Ȟ, that contains all edges e = (u, v) ∈ Ê, such that, if u ∈ Si′ and v ∈ Si′′
with i′ < i′′, then i′ ≤ i and i′′ ≥ i + 1 hold. It is easy to verify that Êi is also precisely the set of
all edges e = (u, v) ∈ Ê in graph H, such that, if u ∈ S̃i′ and v ∈ S̃i′′ with i′ < i′′, then i′ ≤ i and
i′′ ≥ i+ 1 hold. As before, Ei ∩ Êi = ∅.
In order to complete the construction of the nice witness structure, it now remains to define the paths

in set P̂ =
{
P (e) | e ∈ Ê

}
. Recall that each such path P (e) consists of three subpaths, prefix P 1(e),

suffix P 3(e), and mid-segment P 2(e). We first construct the prefixes and the suffixes of the paths in
P̂, and then construct the mid-segment of each such path.

Prefixes and Suffixes of Paths in P̂. Consider an edge e = (u, v) ∈ Ê in graph H. Assume that
u ∈ S̃i, v ∈ S̃i′ , and i < i′. We now define vertices u′, v′ of graph Ȟ that correspond to u and v. If u
is also a vertex of cluster Si in Ȟ, then we set u′ = u. Otherwise, ui must be a J-node corresponding
to some cluster J ′ ∈ J ′, with vertex u lying in the corresponding cluster J ′′ ∈ J ′′. In this case, we
set u′ = ui. We define vertex v′ in graph Ȟ, that corresponds to vertex v in graph H similarly, so
v′ ∈ Si′ . Observe that (u′, v′) is an edge of Ȟ, that lies in the edge set Ê, and it corresponds to edge e
in H; we do not distinguish between the two edges. Consider now the left-monotone path P (e, u′) in
graph Ȟ given by Lemma 7.27, and denote P (e, u′) = (u′ = x1, x2, . . . , xq). For all 1 ≤ a ≤ q, assume
that xa ∈ Uia,ja . Recall that, from the definition of the left-monotone path, i1 ≥ i2 ≥ · · · ≥ iq, and,
if P (e, u′) contains more than one vertex, then iq < i1 = i holds. Additionally, for all 1 ≤ a < q,
vertex xa 6∈ S′ia , while xq ∈ S′iq . In particular, every inner vertex on path P (e, u′) is an R-node or a

84

regular vertex of Ȟ, and hence it lies in graph H. Clearly, every edge of path P (e, u′) is an edge of
H that lies in edge set Ẽ′′. Therefore, path P (e, u′) is contained in graph H. We set the prefix P 1(e)
of the path P (e) to be P (e, u′). We also denote by ileft(e) = iq, and we denote by eleft the last edge
on path P 1(e). Observe that eleft ∈ δH(S̃′

ileft(e)
). We define the suffix P 3(e) using the right-monotone

path P (e, v) similarly. We denote by eright the last edge on that path, and by iright(e) the index i∗

such that the last vertex of path P 3(e) belongs to S̃′i∗ . From the definition of monotone paths, if
u 6∈ S̃′i, then ileft(e) < i, and, if v 6∈ S̃′i′ , then iright(e) > i′. Lastly, we define the span of edge e to
be span(e) =

{
ileft(e), (ileft(e) + 1), . . . , (iright(e)− 1)

}
. Recall that the congestion caused by the set{

P (e, v), P (e, u) | e = (u, v) ∈ Ê
}

of paths in graph Ȟ is O(logm), so the congestion caused by the

set
{
P 1(e), P 3(e) | e ∈ Ê

}
of paths in graph H is also O(logm).

Mid-Segments of Paths in P̂. We now focus on constructing the mid-segment P 2(e) of the nice
guiding path P (e) for every edge e ∈ Ê. In order to do so, fix some index 1 ≤ i < r, and let Ê′i be
the set of all edges e ∈ Ê, such that i ∈ span(e). Note that edge e may only lie in Ê′i if either (i)
e ∈ Êi; or (ii) some edge e′ ∈ Êi belongs to path P 1(e); or (iii) some edge e′′ ∈ Êi belongs to path

P 3(e). Since the paths in set
{
P 1(e), P 3(e) | e ∈ Ê

}
cause congestion at most O(logm) in graph H,

from Lemma 7.28, |Ê′i| ≤ O(logm) · |Ei|. Therefore, we can define an arbitrary mapping fi : Ê′i → Ei,
such that, for every edge e ∈ Ei, at most O(logm) edges of Ê′i are mapped to e.

In order to define the mid-segment of every path in
{
P (e) | e ∈ Ê

}
, we proceed as follows. For all

1 ≤ i < r, we will define a collection Mi of pairs of edges in δH(S̃′i), so that every edge of δH(S̃′i)
participates in at most O(logm) such pairs. We will later exploit the bandwidth property of cluster
S̃′i in order to connect every pair of edges in Mi with a path. We start with Mi = ∅ for all 1 ≤ i ≤ r,
and then gradually add edge pairs to the sets Mi.

Consider again some edge e ∈ Ê, and recall that span(e) =
{
ileft(e), (ileft(e) + 1), . . . , (iright(e)− 1)

}
.

For convenience, denote ileft(e) by i′ and iright(e) by i′′. Recall that the last edge on path P 1(e), that
we denoted by eleft, is an edge that is incident to cluster S̃i′ in H. Let ei

′
be the edge of Ei′ to which

edge e is mapped by fi′ . We then add the pair (eleft, ei
′
) to Mi′ .

Consider now any index i′ < i < i′′ − 1. Let ei−1 ∈ Ei−1 be the edge to which e is mapped by fi−1,
and let ei ∈ Ei be the edge to which e is mapped by fi. We then add the pair (ei−1, ei) to Mi. Lastly,
we add the edge pair (ei

′′−1, eright) to Mi′′ .

We will define a path Qi
′
(e) in graph H, whose first edge is eleft and last edge is ei

′
, such that all inner

vertices of Qi
′
(e) lie in S̃′i′ . Additionally, for all i′ < i < i′′ − 1, we will define a path Qi(e) in graph

H, whose first edge is ei−1 and last edge is ei, such that all inner vertices of Qi(e) lie in S̃′i. Laslty, we
will define a path Qi

′′
(e), whose first edge is ei

′′−1, last edge is eright, and all inner vertices lie in S̃′i′′ .
The final path P 2(e) is then obtained by concatenating the paths Qi

′
(e), . . . , Qi

′′
(e), and omitting the

first and the last edge from the resulting path.

In order to define the paths of
{
Qi(e) | e ∈ Ê; ileft(e) ≤ i < iright(e)

}
, we consider the clusters S̃′i ∈ S̃ ′

one by one. Consider any such cluster S̃′i. Recall that we have defined a collection Mi of pairs of edges
from δH(S̃′i), such that every edge of δH(S̃′i) appears in at most O(logm) pairs. Using a standard
greedy algorithm, we can compute z = O(logm) collections M1

i , . . . ,M
z
i of pairs of edges, such that⋃z

j=1M
j
i = Mi, and, for all 1 ≤ j ≤ z, every edge of δH(S̃′i) participates in at most one pair of

M j
i . By applying the algorithm from Corollary 4.25 to the augmented cluster (S̃′i)

+, we obtain, for

each 1 ≤ j ≤ z, a collection Qji =
{
Q̂(e, e′) | (e, e′) ∈M j

i

}
of paths, where each path Q(e, e′) has e

as its first edge, e′ as its last edge, and all internal vertices of the path lie in S̃′i. Moreover, since

85

cluster S̃′i has α∗-bandwidth property, with high probability, the paths in Qji cause edge-congestion

at most O(log4m/α∗) ≤ O(log16m), since α∗ = Ω(1/ log12m). By letting Qi =
⋃z
j=1Q

j
i , we obtain a

collection Qi =
{
Q̂(e, e′) | (e, e′) ∈Mi

}
of paths, where for every edge pair (e, e′) ∈Mi, path Q(e, e′)

has e as its first edge, e′ as its last edge, and every inner vertex on the path lies in S̃′i. The total
edge-congestion caused by paths in Qi is then bounded by O(log17m) with high probability. This

completes the definition of the nice routing paths P̂ =
{
P (e) | e ∈ Ê

}
in graph H. From the above

discussion, the paths in P̂ cause edge-congestion O(log18m) with high probability. If the congestion
caused by the paths in P̂ is greater than Θ(log18m), we return FAIL. Otherwise, we have established
that (R, {D′(R)}R∈R) is a type-2 legal clustering in G with respect to v∗ and C′, by providing a nice
witness structure in graph H = G|R with respect to set C′ of basic clusters. In order to complete the
proof of Lemma 7.16 and Theorem 7.3, it now remains to prove Lemma 7.28, which we do next.

7.2.4 Proof of Lemma 7.28

Throughout the proof, we will only consider the graph Ȟ, so we will omit subscript Ȟ from various
notations, such as, for example, δȞ(v) for vertices v ∈ Ȟ. We start by considering the edges connecting
different clusters in {S1, . . . , Sr}, and by establishing some useful relationships between them.

Edges Connecting Clusters in {S1, . . . , Sr}

Fix an index 1 ≤ i < r. We denote by E′i = E(Si, Si+1), and by Ẽover
i the set of all edges e = (u, v),

such that, if u ∈ Sj , v ∈ Sj′ , then j < i and j′ > i+ 1 holds. For all 1 < i ≤ r, we denote by Ẽleft
i the

set of all edges e = (u, v) with u ∈ Si, such that, if v ∈ Sj , then j < i− 1. Similarly, for all 1 ≤ i < r,

we denote by Ẽright
i the set of all edges e = (u, v) with u ∈ Si, such that, if v ∈ Sj , then j > i+1 holds

(see Figure 14). Notice that δ(Si) = E′i−1 ∪ E′i ∪ Ẽleft
i ∪ Ẽright

i . Notice also that, by the definition, if

i ∈ {1, 2}, then Eleft
i = ∅; if i ∈ {1, r − 1, r}, then Ẽover

i = ∅, and, if i ∈ {r − 1, r}, then Ẽright
i = ∅.

We prove the following observation that helps us relate the sizes of all these edge sets. The proof is
deferred to Appendix G.10.

Figure 14: Edge sets Ẽleft
i , Ẽleft

i and Ẽover
i .

Observation 7.29 For all 1 < i < r, the following hold:

• |Ẽover
i | ≤ |E′i|.

86

• |Ẽleft
i+1| ≤ |E′i|+ |Ẽ

right
i |

• |Ẽright
i | ≤ |E′i|+ |Ẽleft

i+1|.

For all 1 ≤ i ≤ r, we denote S′′i = Si\S′i. Observation 7.29 allows us to bound the cardinality of the set
Ẽover
i ⊆ Êi of edges in terms of the cardinality of the set E′i of edges. Note that the set E′i of edges can

be thought of as the union of four subsets: set Ei, and sets E(S′i, S
′′
i+1), E(S′′i , S

′
i+1), and E(S′′i , S

′′
i+1)

(see Figure 15). The latter three sets are all contained in Êi. We will bound the cardinalities of these
subsets in terms of |Ei| in turn. We start by considering edge sets incident to clusters of {S′′i }1<i<r.

Figure 15: Edges in set E′i are shown in black.

Edges Incident to Clusters of {S′′i }1<i<r.

Consider an index 1 < i < r (recall that S′′1 = S′′r = ∅ from Observation 7.24). We partition the edges
of δ(S′′i) into three subsets: set δdown(S′′i) = E(S′i, S

′′
i); set δleft(S′′i) containing all edges (u, v) with

u ∈ S′′i and v ∈ V (S1) ∪ · · · ∪ V (Si−1); and set δright(S′′i) containing the remaining edges (all edges
(u, v) with u ∈ S′′i and v ∈ V (Si+1) ∪ · · · ∪ V (Sr)) (see Figure 16).

Figure 16: Edge sets δleft(S′′i), δright(S′′i) and δdown(S′′i) (shown in black).

We next show that for all 1 < i < r, |δdown(S′′i)| ≤ 0.1 min
{
|δright(S′′i)|, |δleft(S′′i)|

}
, and that the sizes

of the edge sets δright(S′′i), δleft(S′′i) are close to each other, in the following two claims, whose proofs
are deferred to Appendix G.11 and Appendix G.12, respectively.

87

Claim 7.30 For all 1 < i < r, |δdown(S′′i)| ≤ 0.1 · min
{
|δright(S′′i)|, |δleft(S′′i)|

}
holds. Additionally,

there is a set P left =
{
P left(e) | e ∈ δdown(S′′i)

}
of edge-disjoint paths in Ȟ, where, for each edge

e ∈ δdown(S′′i), path P left(e) has e as its first edge, some edge of δleft(S′′i) as its last edge, and all inner
vertices of P left(e) are contained in S′′i . Similarly, there is a set Pright =

{
P right(e) | e ∈ δdown(S′′i)

}
of edge-disjoint paths in Ȟ, where, for each edge e ∈ δdown(S′′i), path P right(e) has e as its first edge,
some edge of δright(S′′i) as its last edge, and all inner vertices of P right(e) are contained in S′′i .

Claim 7.31 For all 1 < i < r, |δright(S′′i)| ≤ 1.1|δleft(S′′i)|, and similarly, |δleft(S′′i)| ≤ 1.1|δright(S′′i)|.

Next, we consider edges incident to the clusters of {S′1, . . . , S′r}.

Edges Incident to the Clusters of {S′1, . . . , S′r}

Consider some index 1 ≤ i ≤ r, and consider the edges incident to the cluster S′i in graph Ȟ (see
Figure 17). Recall that we have denoted by Ei−1 = E(S′i−1, S

′
i), and by Ei = E(Si, Si+1). We have

also denoted by δdown(S′′i) = E(S′i, S
′′
i). The remaining edges that are incident to S′i can be partitioned

into two subsets: set δleft(S′i), containing all edges (u, v), with u ∈ S′i and v ∈ (S1 ∪ · · · ∪ Si−2)∪ S′′i−1;
and set set δright(S′i), containing all edges (u, v), with u ∈ S′i and v ∈ S′′i+1 ∪ (Si+2 ∪ · · · ∪ Sr). Next,
for all 1 < i < r, we bound the cardinality of edge set δleft(S′′i) in terms of the cardinality of δleft(S′i),
and similarly we bound |δright(S′′i)| in terms of |δright(S′i)|, in the following claim whose proof appears
in Appendix G.13.

Figure 17: Edges in set δleft(S′i) are shown in green, edges of δright(S′i) are shown in brown, and edges
of δdown(S′′i) in black.

Claim 7.32 For all 1 < i < r:

• |δright(S′′i)| ≤ 1.3|Ei|+ 1.3|δright(S′i)|; and

• |δleft(S′′i+1)| ≤ 1.3|Ei|+ 1.3|δleft(S′i+1)|.

Accounting So Far

We now summarize what we have shown so far. Fix some index 1 ≤ i < r. Recall that set Êi of edges
contains every edge e = (u, v) ∈ E(Ȟ), such that, if u ∈ Sj and v ∈ Sj′ , then j ≤ i and j′ ≥ i + 1

holds, but it excludes the edges in the set Ei = E(S′i, S
′
i+1). Therefore, Êi is the union of the following

subsets (see Figure 18):

88

• edge set Ẽover
i , connecting vertices of V (S1), . . . , V (Si−1) to vertices of V (Si+2), . . . , V (Sr) (see

Figure 14);

• edges that lie in δright(S′′i) ∪ δleft(S′′i+1) (see Figure 16);

• edges that lie in δright(S′i) ∪ δleft(S′i+1) (see Figure 17).

Figure 18: The set Êi of edges, with the edges of Ẽover
i shown in red; the edges of δright(S′′i) and

δleft(S′′i+1) in pink and brown respectively; and the edges of δright(S′i) and δleft(S′i+1) in green and
blue, respectively. Note that the edges of E(S′′i , S

′′
i+1) belong to both δright(S′′i) and δleft(S′′i). Also,

the edges of E(S′i, S
′′
i+1) belong to both δleft(S′′i+1) and δright(S′i). Similarly, the edges of E(S′′i , S

′
i+1)

belong to both δright(S′′i) and δleft(S′i+1)).

In Observation 7.29, we have established that |Ẽover
i | ≤ |E′i|, where E′i = E(Si, Si+1). Notice that all

edges of E′i are contained in Ei ∪ δright(S′′i)∪ δleft(S′′i+1) (see Figure 15), so we get that |Ẽover
i | ≤ |Ei|+

|δright(S′′i)| + |δleft(S′′i+1)|. From Claim 7.32, |δright(S′′i)| ≤ 1.3|Ei| + 1.3|δright(S′i)|, and |δleft(S′′i+1)| ≤
1.3|Ei|+ 1.3|δleft(S′i+1)|. Therefore, altogether, we have shown so far that:

|Êi| ≤ |Ẽover
i |+ |δright(S′′i)|+ |δleft(S′′i+1)|+ |δright(S′i)|+ |δleft(S′i+1)|

≤ |Ei|+ 2|δright(S′′i)|+ 2|δleft(S′′i+1)|+ |δright(S′i)|+ |δleft(S′i+1)|
≤ 7|Ei|+ 7|δright(S′i)|+ 7|δleft(S′i+1)|.

(6)

Therefore, it now remains to bound |δright(S′i)| and |δleft(S′i+1)| in terms of |Ei|. We start with the
following claim that allows us to establish some useful connection between the cardinalities of the
three edge sets. The proof appears in Appendix G.14

Claim 7.33 For all 1 ≤ i < r: |δright(S′i)| ≤ 2.5|Ei| + 2.5|δleft(S′i+1)|, and |δleft(S′i+1)| ≤ 2.5|Ei| +
2.5|δright(S′i)|.

Next, we show that for all 1 < i < r, vertex ui must be a J-node.

Proving that u2, . . . , ur−1 are J-nodes.

We start with the following simple claim, whose proof appears in Appendix G.15.

89

Claim 7.34 Consider an index 1 < i < r, and assume that vertex ui is not a J-node. Then

|
⋃
v∈S′i

δ(v)| ≤
(

1 + 130
logm

)
|δ(ui)|. Moreover, if ui ∈ L′j, for some 1 ≤ j ≤ h, then every vertex

of S′i \ {ui} lies in L′j+1 ∪ · · · ∪ L′h.

We are now ready to prove that, for all 1 < i < r, vertex ui must be a J-node.

Lemma 7.35 For all 1 < j < r, vertex ui is a J-node.

Proof: Assume for contradiction that the lemma is false. We fix an index 1 < i∗ < r, such that ui∗
is not a J-node, and subject to this, |δ(ui∗)| is maximized, breaking ties arbitrarily.

We first assume that there is some index a, such that at least |δ(ui∗)|/16 edges connect ui∗ to edges of
S′′a . We show that in this case, |δleft(S′′a)|, |δright(S′′a)| are both large, and ua must be a J-node. (Note
that it is impossible that a ∈ {1, r}, since S′′1 = S′′r = ∅, as we have established in Observation 7.24.)
The proof of the following claim is deferred to Appendix G.16.

Claim 7.36 Suppose there is an index 1 ≤ a ≤ r (where possibly a = i∗), such that at least |δ(ui∗)|/16
edges connect ui∗ to vertices of S′′a . Then, |δleft(S′′a)|, |δright(S′′a)| ≥ |δ(ui∗)| · logm

256 , and moreover, ua is
a J-node.

Consider again the vertex ui∗ , and assume that ui∗ ∈ L′j , for some 1 ≤ j ≤ h. Recall that, from
Claim 7.34, every vertex of V (S′i∗)\{ui∗} lies in L′j+1∪· · ·∪L′h. Therefore, all edges connecting ui∗ to
vertices of V (S′i∗) \ {ui∗} lie in δup(ui∗), and their number is bounded by |δup(ui∗)| ≤ |δ(ui∗)|/ logm.
From Claim 7.36, the number of edges connecting ui∗ to vertices of S′′i∗ must be bounded by |δ(ui∗)|/16
(as ui∗ is not a J-node). The remaining edges of δ(ui∗) must connect ui∗ to vertices of

⋃
a6=i∗ V (Sa).

Denote by E∗ the set of all edges connecting ui∗ to vertices of
⋃
a>i∗ V (Sa), and denote by E∗∗ the set of

all edges connecting ui∗ to vertices of
⋃
a<i∗ V (Sa). From the above discusison, |E∗∪E∗∗| ≥ 7|δ(ui∗)|/8,

and so either |E∗| ≥ |δ(ui∗)|/4 or |E∗∗| ≥ |δ(ui∗)|/4 must hold. We assume w.l.o.g. that it is the former.
Next we consider three cases. The first case is when neither ui∗+1 or ui∗+2 are J-nodes; the second
case is when ui∗+1 is a J-node; and the third case is when ui∗+2 is a J-node. We show that neither
of these cases is possible, by showing a simplifying cluster that should have been considered by our
algorithm. For simplicity of notation, in the remainder of the proof, we denote i∗ by i.

Case 1: neither of ui+1, ui+2 is a J-node. Consider the set E∗ of edges; recall that these are all
edges connecting ui to vertices of

⋃
a>i Sa. We need the following observation:

Observation 7.37 At least |δ(ui)|/16 edges connect ui to vertices of
⋃
a>i+2 V (Sa).

(Note that in particular it follows from the observation that r ≥ i+ 3 must hold).

Proof: We partition the edges of E∗ into five subsets. The first subset, E∗1 , contains all edges of
E∗ connecting ui to vertices of S′′i+1, and the second subset, E∗2 , contains all edges of E∗ connecting
ui to vertices of S′′i+2. Notice that, from Claim 7.36, since we have assumed that neither of ui+1,
ui+2 is a J-node, |E∗1 |, |E∗2 | ≤ |δ(ui)|/16. We let E∗3 be the set of all edges of E∗ connecting ui to
vertices of

⋃
a>i+2 V (Sa). Lastly, we let E∗4 and E∗5 be the sets of all edges of E∗ connecting ui to

vertices of S′i+1 and of S′i+2, respectively. Assume for contradiction that |E∗3 | < |δ(ui)|/16. Then,
since |E∗| ≥ |δ(ui)|/4, either |E∗4 | ≥ |δ(ui)|/32 or |E∗5 | ≥ |δ(ui)|/32 must hold. We assume first
that |E∗4 | ≥ |δ(ui)|/32. Since |δup(ui) ≤ |δ(ui)|/ logm, |E∗4 ∩ δdown(ui)| ≥ |δ(ui)|/64. Notice that, if
e = (ui, v) is an edge of E∗4 ∩ δdown(ui), then v ∈ S′i+1, and e ∈ δup(v). Since, for every vertex v,
|δup(v)| ≤ |δ(v)|/ logm, we get that:

90

|
⋃

v∈S′i+1

δ(v)| ≥ |E∗4 ∩ δdown(ui)| · logm ≥ |δ(ui)| · logm

32
.

On the other hand, from Claim 7.34, |
⋃
v∈S′i+1

δ(v)| ≤
(

1 + 130
logm

)
|δ(ui+1)| < 2|δ(ui+1)|. Therefore,

we get that |δ(ui+1)| > |δ(ui)|·logm
64 > |δ(ui)|, contradicting the choice of index i.

In the case where |E∗5 | ≥ |δ(ui)|/32, the analysis is identical.

Consider a cluster S∗, which is a subgraph of Ȟ induced by V (Si+1) ∪ V (Si+2). In the following
claim, whose proof is deferred to Appendix G.17, we prove that S∗ is a simplifying cluster, reaching a
contradiction.

Claim 7.38 Cluster S∗ is a simplifying cluster.

Case 2: ui+1 is a J-node. Recall that in this case, from Observation 7.22, S′i+1 = {ui+1}. We
show that cluster S∗ = {ui+1} is a simplifying cluster in the following claim, whose proof is similar to
but slightly more involved than the proof of Claim 7.38, and is deferred to Appendix G.18.

Claim 7.39 Cluster S∗ is a simplifying cluster.

This is a constradiction, since our algorithm must have identified that S∗ = S′i+1 is a simplifying
cluster.

Case 3: Neither Case 1 nor Case 2 happened. Since Cases 1 and 2 did not happen, vertex
ui+1 is not a J-node. We start with the following simple observation.

Observation 7.40 The number of edges connecting ui to vertices of Si+1 is at most |δ(ui)|/8.

Proof: Assume otherwise. Since Case 3 happened, ui+1 is not a J-node, and so, from Claim 7.36, at
most |δ(ui)|/16 edges may connect ui to vertices of S′′i+1. Therefore, the number of edges connecting
ui to S′i+1 must be at least |δ(ui)|/16. But then at least |δ(ui)|/32 edges of δdown(ui) connect ui to
vertices of S′i+1. For each such vertex e′ = (u, v), e′ ∈ δup(v) must hold. Since, for every vertex v,

δup(v) ≤ |δ(v)|/ logm, we get that |
⋃
v∈S′i+1

δ(v)| ≥ |δ(ui)| logm
16 must hold. However, from Claim 7.34,

|δ(ui+1)| ≥
|
⋃
v∈S′

i+1
δ(v)|

2 ≥ |δ(ui)| logm
32 > |δ(ui)|, contradicting the choice of the index i∗ = i.

Recall that we have assumed that |E∗| ≥ |δ(ui)|/4, where E∗ is the set of all edges connecting ui to
vertices of

⋃
a>i V (Sa). Since, from Observation 7.40, at most |δ(ui)|/8 edges connect ui to vertices

of Si+1, it must be the case that i + 2 ≤ r, and at least |δ(ui)|/8 edges connect ui to vertices of⋃
a>i+1 V (Sa). Since we have assumed that Case 1 did not happen, vertex ui+2 must be a J-node,

and so, from Observation 7.22, S′i+2 = {ui+2}. We let S∗ = {ui+2}, and we show, in the next claim,
that cluster S∗ is a simplifying cluster. The proof of the claim is deferred to Appendix G.19.

Claim 7.41 Cluster S∗ is a simplifying cluster.

This is a constradiction, since our algorithm must have identified that S∗ = S′i+2 is a simplifying
cluster.

In order to complete the proof of Lemma 7.28, it is enough to prove that for all 1 ≤ i < r, |Êi| ≤
1000|Ei|. Assume for contradiction that there is some index 1 ≤ i < r, for which |Êi| > 1000|Ei|
holds. Recall that we have shown already, in Equation (6), that:

91

|Êi| ≤ 7|Ei|+ 7|δright(S′i)|+ 7|δleft(S′i+1)|.

If |Êi| > 1000|Ei|, then either |δright(S′i)| > 64|Ei|, or |δleft(S′i+1)| > 64|Ei|. We assume without loss
of generality that it is the former; the other case is symmetric. Recall that, since ui is a J-node,
S′i = {ui}. From the definition, set δright(S′i) contains all edges (ui, v) with v ∈ S′′i+1∪ (Si+2∪ · · ·∪Sr).
Note that, from Observation 7.24, S′r = Sr, and so δright(S′r−1) = ∅. Therefore, we can assume that
i < r − 1. We now prove that S∗ = S′i+1 = {ui+1} is a simplifying cluster, in the following claim,
whose proof is very similar to the analysis of Case 2 in the proof of Lemma 7.35, and is deferred to
Appendix G.20.

Claim 7.42 Cluster S∗ is a simplifying cluster.

We reach a contradiction, since our algorithm must have established that cluster S∗ = S′i+1 is a
simplifying cluster.

7.3 Disengagement of Nice Instances – Proof of Theorem 7.4

In this section we provide the proof of Theorem 7.4. Recall that we are given as input an instance
I ′ = (G′,Σ′) of the MCNwRS problem, that we will denote by I = (G,Σ), in order to simplify the
notation. Additionally, we are given a set C′ of disjoint clusters of G′; in order to simplify the notation,
we will denote C′ by C. Lastly, we are given a nice witness structure (S̃, S̃ ′, P̂) for graph G with respect

to the set C of clusters, where S̃ =
{
S̃1, . . . , S̃r

}
is the backbone of the witness structure, with vertex

sets in
{
V (S̃i)

}
1≤i≤r

partitioning V (G). For convenience, we will denote the set S̃ ′ =
{
S̃′1, . . . , S̃

′
r

}
of the vertebrae of the nice witness structure by S = {S1, . . . , Sr}. Recall that each cluster Si ∈ S has
the α∗-bandwidth property, for α∗ = Ω(1/ log12m).

Recall that we are given a partition of the edges of G into two subsets: set Ẽ′, containing all edges
of
⋃

1≤i≤r E(Si), and all edges of
⋃

1≤i<r E(Si, Si+1); and set Ẽ′′ = E(G) \ Ẽ′. Recall that set

Ê ⊆ Ẽ′′ contains all edges (v, u) ∈ Ẽ′′, where v and u lie in different clusters of S̃, and the set P̂
of paths contains, for each edge e ∈ Ê, a path P (e) that consists of three subpaths: P 1(e), P 2(e),
and P 3(e), that are called the prefix, the mid-part and the suffix of P (e), respectively. We denote by

P̂1 =
{
P 1(e) | e ∈ Ê

}
, P̂2 =

{
P 2(e) | e ∈ Ê

}
, and P̂3 =

{
P 3(e) | e ∈ Ê

}
, the sets of paths containing

all prefixes, all mid-parts, and all suffixes of the paths in P̂, respectively. Throughout, we will use a
parameter η̂ = 2O((logm)3/4 log logm).

In order to compute a decomposition of instance I into subinstances, we need to define, for every edge
e ∈ Ê, a cycle W (e), called an auxiliary cycle that has some useful properties. As an intuition, we
could obtain a cycle W (e) by taking the union of the nice guiding path P (e) ∈ P̂ with the edge e.
The structure of the nice guiding paths ensures that the cycle W (e) has a single contiguous segment
P 2(e) that visits a contiguous subset of the vertebrae in the order of their indices. The resulting set{
W (e) | e ∈ Ê

}
of cycles is close to having the properties that we need, except that we would like

to ensure that these cycles are non-transeversal (or close to being non-transversal) with respect to

Σ. We discuss the construction of the family
{
W (e) | e ∈ Ê

}
of cycles with these properties below.

Next, we define a laminar family L = {U1, . . . , Ur} of clusters of graph G, where for all 1 ≤ i ≤ r,
Ui is the subgraph of G induced by vertex set V (S1) ∪ · · · ∪ V (Si). We define, for every vertebra
Si ∈ S, an internal Si-router Q(Si), and use these routers, together with the auxiliary cycles in{
W (e) | e ∈ Ê

}
in order to define an internal Ui-router and an external Ui-router for every cluster

Ui ∈ L. The final decomposition I2 of instance I into subinstances is simply a decomposition via the

92

laminar family L defined in Section 5.1. Recall that for each cluster Uz ∈ I2, there is a unique instance
Iz = (Gz,Σz) ∈ I2, where graph Gz is obtained from G by contracting all vertices of S1 ∪ · · · ∪ Sz−1

into a special vertex v∗z , and all vertices of Sz+1 ∪ · · · ∪ Sr into a special vertex v∗∗z (for z = 1, G1 is
obtained from G by contracting all vertices of S2 ∪ · · · ∪ Sr into a special vertex v∗∗1 , and for z = r,
graph Gz is obtained from G by contracting all vertices of S1 ∪ · · · ∪ Sr−1 into a special vertex v∗r).
For each 1 ≤ z < r, we use the internal Uz-router that we computed, in order to define a circular
ordering of the edges of δG(Uz), that will in turn be used in order to define the rotation systems
{Σz}rz=1 associated with each subinstance. The techniques developed in Section 5.1 prove that there is
an efficient algorithm that combines solutions to the resulting subinstances into a solution to instance
I that has a relatively low cost. However, since the depth of the laminar family L may be quite
high, we cannot use the tools from Section 5 in order to bound

∑r
z=1 |E(Gz)| and

∑r
z=1 OPTcnwrs(Iz).

Instead, we show a simple direct bound on
∑r

z=1 |E(Gz)|, and a more involved proof for bounding∑r
z=1 OPTcnwrs(Iz). The latter proof exploits the internal and external Ui-routers that we construct,

for 1 ≤ i ≤ r, which in turn are based on the auxiliary cycles
{
W (e) | e ∈ Ê

}
, in order to show the

existence of a low-cost solution to each instance Iz ∈ I2. In order to ensure that the costs of these

solutions is sufficiently low, it is crucial that the cycles in
{
W (e) | e ∈ Ê

}
are almost non-transversal

with respect to Σ: that is, for every pair W (e),W (e′) of cycles, there is at most one vertex v, such

that W (e) and W (e′) intersect transversally at v. In order to define the set W =
{
W (e) | e ∈ Ê

}
of

cycles, we define two collections of paths: path set Pout =
{
P out(e) | e ∈ Ê

}
, which is obtained by

modifying the paths of P̂1 ∪ P̂3, and path set P in =
{
P in(e) | e ∈ Ê

}
. For every edge e ∈ Ê, the first

and the last edges on paths P out(e) and P in(e) are identical. Path P out(e) contains the edge e, and all
its edges lie in Ẽ′′. All inner edges of path P in(e) lie in Ẽ′, and the path visits a consequtive subset of
clusters of S in their natural order. The auxiliary cycle W (e) is obtained by taking the union of the
paths P out(e) and P in(e).

The remainder of the proof of Theorem 7.4 consists of four steps. In the first step, we construct the set

Pout =
{
P out(e) | e ∈ Ê

}
of paths. In the second step, we construct the set P in =

{
P in(e) | e ∈ Ê

}
of paths and the collection W =

{
W (e) | e ∈ Ê

}
of auxiliary cycles. In the third step, we construct

the laminar family L = {U1, . . . , Ur} of clusters, and, for all 1 ≤ z ≤ r, an internal Uz-router Q(Uz)
and an external Uz-router Q′(Uz). In the fourth and the final step, we compute the collection I2 of
subinstances of I and analyze its properties. We now describe each of the steps in turn.

7.3.1 Step 1. Constructing the Paths of Pout

In this step, we construct the set Pout =
{
P out(e) | e ∈ Ê

}
of paths, by slightly modifying the prefixes

and the suffixes of the paths in P̂ to make them non-transversal.

Throughout, we denote V ′ =
⋃
S∈S V (S) and V ′′ = V (G) \ V ′. Consider an edge e = (u, v) ∈ Ê, and

assume that u ∈ Si, v ∈ Sj , and i < j. For convenience, we will call u the left endpoint of edge e, and
v the right endpoint of edge e. We also define two sets of indices associated with edge e. The first set
of indices is span(e) = {i, i+ 1, . . . , j − 1}. In order to define the second set of indices, assume that
the last vertex on path P 1(e) (vertex that lies in V ′) belongs to cluster Si′ , while the last vertex on
path P 3(e) belongs to cluster Sj′ . From the definition of nice guiding paths, i′ ≤ i < j ≤ j′ must hold.
We then let span′(e) = {i′, i′ + 1, . . . , j′ − 1}.
It will be convenient for us to define the notion of left-monotone and right-monotone paths. The
definition is similar to the one used in Section 7.2.3, but not identical.

93

Definition 7.43 Let R be a (directed) path in graph G that contains at least one edge, let (v1, . . . , vz)
be the sequence of vertices appearing on R, and, for all 1 ≤ a ≤ z, assume that va ∈ S̃ia. We say that
R is a left-monotone path if:

• vz ∈ V ′;

• for 1 < a < z, va ∈ V ′′; and

• i1 ≥ i2 ≥ · · · ≥ iz.

Similarly, we say that R is a right-monotone path, if:

• vz ∈ V ′;

• for 1 < a < z, va ∈ V ′′; and

• i1 ≤ i2 ≤ · · · ≤ iz.

For each edge e ∈ Ê, we view the paths P 1(e) ∈ P1, P 3(e) ∈ P3 as directed paths that originate
at an endpoint of edge e and terminate at a vertex of V ′ (notice that it is possible that one or even
both endpoints of e lie in V ′). For every vertex v ∈ V ′, we denote by n1(v) the total number of paths
in P̂1 that terminate at v, and by n3(v) the total number of paths in P̂3 that terminate at v. Let
η = O(log18m) be such that the set P̂ of paths causes congestion at most η in G. We use the following
claim in order to construct the paths of Pout; the proof of the claim uses standard techniques and is
deferred to Appendix G.21.

Claim 7.44 There is an efficient algorithm to compute two sets Pout,left =
{
P out,left(e) | e ∈ Ê

}
and

Pout,right =
{
P out,right(e) | e ∈ Ê

}
of simple paths in graph G, each of which causes congestion at most

η, such that the paths in set Pout,left are non-transversal with respect to Σ, and so are the paths in
set Pout,right. Additionally, for every edge e ∈ Ê, path P out,left(e) has e as its first edge, and it is
left-monotone, while path P out,right(e) has e as its first edge, and is right-monotone. Moreover, for
every vertex v ∈ V ′, exactly n1(v) paths of Pout,left terminate at v, and exactly n3(v) paths of Pout,right

terminate at v.

Consider now some edge e = (u, v) ∈ Ê, and assume that u ∈ S̃i, v ∈ S̃j , and i < j holds. Consider the
paths P out,left(e), P out,right(e). Assume that the last vertex on path P out,left is u′, and the last vertex
on path P out,right is v′. We let P out(e) be the path obtained by concatenating path P out,left(e) with
the reversed path P out,right(e), after deleting the extra copy of edge e. We view path P out(e) as being
directed rom u′ to v′. Therefore, path P out(e) originates at vertex u′ and termiantes at vertex v′, and
it contains the edge e. All inner vertices on P out(e) belong to V ′′. We will sometimes refer to u′ and to
v′ as the first and the last endpoints of path P out(e). We will also refer to the edge of P out(e) that is
incident to u′ as the first edge of path P out(e), and to the edge of P out(e) that is incident to v′ as the
last edge of path P out(e). Assume that u′ ∈ V (Si′′) and v′ ∈ V (Sj′′). We define another set of indices
associated with edge e: span′′(e) = {i′′, i′′ + 1, . . . , j′′ − 1}. Notice that span(e) ⊆ span′′(e) must hold

by the definition of left-monotone and right-monotone paths. Lastly, we set Pout =
{
P out(e) | e ∈ Ê

}
.

For an index 1 ≤ i < r, let Êi ⊆ Ê be the set of all edges e ∈ Ê, with i ∈ span(e). We need the
following simple claim.

Claim 7.45 For every index 1 ≤ i < r, the paths in set
{
P out(e) | e ∈ Êi

}
are non-transversal with

respect to Σ. Moreover, for each edge e = (u, v) ∈ Êi whose left endpoint is u, every vertex of
P out,left(e) \ {v} lies in

⋃
z≤i V (S̃z), and every vertex of P out,right(e) \ {u} lies in

⋃
z>i V (S̃z).

94

Proof: The fact that, for every edge e ∈ Êi, every vertex of P out,left(e) \ {v} lies in
⋃
z≤i V (S̃z),

and every vertex of P out,right(e) \ {u} lies in
⋃
z>i V (S̃z) follows immediately from the definition of

left-monotone and right-monotone paths and edge set Êi. Consider now any pair e, e′ ∈ Êi of edges,
and a vertex v that is an inner vertex of both P out(e) and P out(e′). Assume that v ∈ V (S̃j), for some
index 1 ≤ j ≤ r. From the definition of left-monotone and right-monotone paths, either j ≤ i and
v is an inner vertex of both P out,left(e) and P out,left(e′); or j > i, and v is an inner vertex of both
P out,right(e) and P out,right(e′). In either case, Claim 7.44 ensures that the intersection of P out(e) and
P out(e′) at v is non-transversal.

For every index 1 ≤ t < r, we denote by Nt the number of all edges e ∈ Ê, with t ∈ span′(e), and we
denote by N ′t be the number of all edges e ∈ Ê, with t ∈ span′′(e). We also denote by Et ⊆ Ẽ′ the set
of all edges with one endpoint in St and another in St+1. We need the following claim, whose proof
appears in Appendix G.22.

Claim 7.46 For all 1 ≤ t < r, N ′t = Nt, and Nt ≤ O(log18m) · |Et|.

7.3.2 Step 2: Constructing the Paths of P in and the Auxiliary Cycles

Consider some edge e = (u, v) ∈ Ê, and assume that u is the left endpoint of e. Assume that
span′′(e) = {i′′, i′′ + 1, . . . , j′′ − 1}, and denote by êi′′−1 the first edge on path P out(e), and by êj′′

the last edge on path P out(e). In this step we will construct another path P in(e), whose first edge is
êi′′−1 and last edge is êj′′ . In order to do so, we will select, for all i′′ ≤ z < j′′, some edge êz ∈ Ez,
that we assign to the edge e, and we will compute a path Rz(e) (that we call a segment), whose first
edge is êz−1, last edge is êz, and all inner vertices are contained in Sz. The final path P in(e) will be
obtained by concatenating the segments Ri′′(e), . . . , Rj′′(e). Note that path P in(e) has êi′′−1 and êj′′

as its first and last edges. By concatenating the paths P in(e) and P out(e), we will then obtain the

auxiliary cycle W (e). Our goal in constructing the set P in =
{
P in(e) | e ∈ Ê

}
of paths is to ensure

that these paths cause low congestion, and that these paths are mostly non-transversal with respect to
Σ. In fact, we will ensure that, for every pair P, P ′ ∈ P in of such paths, there is at most one vertex v,
such that the intersection of P and P ′ at v is transversal. Intuitively, the resulting auxiliary cycles in{
W (e) | e ∈ Ê

}
will be exploited in order to show the existence of cheap solutions to the subinstances

of the input instance I that we compute. Each transversal intersection between a pair of such cycles
may give rise to a crossing in these solutions, which motivates the requirement that the paths in P in

have few transversal intesrections is low.

Consider again an edge e ∈ Ê, and assume that span′′(e) = {i′′, i′′ + 1, . . . , j′′ − 1}. Recall that we
have already defined edges êi′′−1 ∈ δ(Si′′−1) and êj′′ ∈ δ(Sj′′−1). We construct a collection R̃(e) ={
Ri′′(e), . . . , Rj′′(e)

}
of paths, and define, for all i′′ ≤ z < j′′, edge êz ∈ Ez, such that, for all

i′′ ≤ z ≤ j′′, path Rz(e) connects edge êz−1 to edge êz, and its inner vertices lie in Sz. In order to
do so, we initially set R̃(e) = ∅ for every edge e ∈ Ê. We then process indices 1 ≤ z ≤ r one by one.
When index z is processed, we will define, for every edge e ∈ Ê with z ∈ span′′(e) or z− 1 ∈ span′′(e),
the segment Rz(e); if z ∈ span′′(e), we will also define the edge êz ∈ Ez, which is the last edge on path
Rz(e). We will ensure that every edge e′ ∈ Ez is assigned to at most O(log18m) edges of Ê. We now
describe an interation where index 1 ≤ z ≤ r is processed.

Iteration Description. We fix an index 1 ≤ z ≤ r, and describe an iteration for processing index
z. Let Az ⊆ Ê be the set of all edges e ∈ Ê, with z ∈ span′′(e). Note that for every edge e ∈ Az, the
corresponding edge êz−1 ∈ Ez−1 is already fixed. Let A′z ⊆ Ê \Az be the set of all edges e ∈ Ê, such
that z − 1 ∈ span′′(e) but z 6∈ span′′(e). Notice that, if e ∈ A′z, then both edges êz−1, êz ∈ δG(Sz) are
already fixed (in this case, edge êz is the last edge on path P out(e)).

95

Consider the augmentation S+
z of the cluster Sz, that we denote for convenience by H. Recall that,

in order to obtain graph H, we start by subdividing every edge e′ ∈ δG(Sz) by vertex te′ , and then
denote by T = {te′ | e′ ∈ δG(Sz)} the set of newly added vertices, that we call terminals. We then let
H be the subgraph of the resulting graph induced by V (Sz) ∪ T . Recall that, from the definition of
nice witness structure, cluster Sz has the α∗ = Ω(1/ log12m)-bandwidth property in G, and so, from
Observation 4.16, vertex set T is α∗-well-linked in H.

We now define a collection M of pairs of terminals, that we call demand pairs, that are associated
with the edges of A′z. Consider an edge e ∈ A′z, and recall that edges êz−1, êz ∈ δG(Sz) are already
defined. The demand pair associated with edge e is (xe, ye), where xe = têz−1 (the terminal vertex
associated with edge êz−1), and ye = têz (the terminal vertex associated with edge êz). We then set
M = {(xe, ye) | e ∈ A′z}. Recall that the edges of Pout cause congestion at most η = O(log18m), and
every edge of Ez−1 is assigned to at most η edges of Ê. Therefore, a terminal te′ may participate in at
most η pairs in M . Using a standard greedy algorithm, we can now compute 2η sets of terminal pairs
M1, . . . ,M2η, such that M =

⋃2η
a=1Ma, and, for all 1 ≤ a ≤ 2η, each terminal participates in at most

one pair in Ma. For each 1 ≤ a ≤ 2η, we use the algorithm from Corollary 4.25, to compute a collection
R(Ma) = {R(x, y) | (x, y) ∈Ma} of paths in graph H, where for every pair (x, y) ∈Ma, path R(x, y)
connects x to y. Since the vertices of T are α∗-well-linked in G, with high probability, the paths in
R(Ma) cause congestion O(log4m/α∗) = O(log16m). If the paths in R(Ma) cause a higher congestion,
then we terminate the algorithm and return FAIL. Note that the set

⋃2η
a=1R(Ma) of paths in graph H

naturally defines a set R′′ = {R(e) | e ∈ A′z} of paths in graph G, where, for every edge e ∈ A′z, path
R(e) has êz−1 as its first edge and êz as its last edge, while all inner vertices of R(e) lie in Sz. From
the above discussion, the paths in R′′ cause congestion at most η′ = 2η ·O(log16m) = O(log34m).

Next, we consider the set Az ⊆ Ez−1 of edges. Let X be a multiset of vertices of T that contains, for
every edge e′ ∈ Az, the corresponding vertex te′ . Since every edge of Ez−1 may only be assigned to at
most η edges of Ê, a vertex may appear in set X at most η times. Recall that |Az| = N ′z, and, from
Claim 7.46, N ′z ≤ η · |Ez|. Therefore, we can define a multiset Y that contains |A| elements, each of
which is a vertex from {te′ | e′ ∈ Ez}, such that at most η copies of each such vertex te′ appear in set
Y . We let M ′ be an arbitrary matching between elements of X and elements of Y . Using the same
procedure as the one employed for the edges of A′z, we construct a set R′ = {R(e) | e ∈ Az} of paths
in graph G, where, for every edge e ∈ Az, path R(e) has êz−1 as its first edge and some edge of Ez as
its last edge, while all inner vertices of R(e) lie in Sz. Additionally, the paths in R′′ cause congestion
at most η′, and every edge of Ez appears on at most η edges of R. (As before, if the paths in set R′′
cause a higher congestion, we terminate the algorithm and return FAIL.) Note that we can assume
without loss of generality that all paths in R′ ∪R′′ are simple paths.

To summarize, we have now constructed two sets R′ = {R(e) | e ∈ Az} ,R′′ = {R(e) | e ∈ A′z} of
paths, with the following properties:

I1. Paths in each of the sets R′,R′′ cause congestion at most η′ = O(log34m);

I2. For every edge e ∈ Az, path R(e) ∈ R′ has êz−1 as its first edge, some edge of Ez as its last
edge, and all inner vertices of R(e) lie in Sz;

I3. Every edge of Ez participates in at most η paths of R′;

I4. For every edge e ∈ A′z, path R(e) ∈ R′′ has êz−1 as its first edge, êz as its last edge, and all inner
vertices of R(e) lie in Sz; and

I5. All paths in set R′ ∪R′′ are simple.

Next, we will iteratively modify the paths in R′ ∪ R′′, while ensuring that Properties I1–I5 hold at
the end of each iteration. In every iteration, we will attempt to reduce the number of transversal

96

intersections between the paths of R′ ∪R′′. In fact we will guarantee that, after each iteration, either∑
R∈R′∪R′′ |E(R)| decreases, or

∑
R∈R′∪R′′ |E(R)| remains unchanged, and the number of triples in

set ΠT (R′ ∪R′′) strictly decreases (see definition immediately after Definition 4.5)

We now describe a single iteration. Assume first that there are two paths R(e), R(e′) ∈ R′, and some
vertex v that is an inner vertex of both R(e) and R(e′), such that the intersection of R(e) with R(e′) at
v is transversal. In this case, we splice paths R(e) and R(e′) at vertex v (see Section 4.1.4), obtaining
two new paths. The first path, that replaces R(e) in R′, originates at edge êz−1 and terminates at the
edge of Ez that served as the last edge of R(e′). The second path, that replaces R(e′) in R′, originates
at edge e′z−1, and terminates at the edge of Ez that served as the last edge of the original path R(e).
Both paths only contain vertices of Sz as inner vertices. From Observation 4.6, either at least one of
the two new paths R(e), R(e′) becomes a non-simple path; or both paths remain simple paths, but
|ΠT (R′ ∪R′′)| decreases. Notice that, in the latter case,

∑
R∈R′∪R′′ |E(R)| remains unchanged. If the

former case happens, then we remove cycles from paths R(e), R(e′), until they become simple paths.
In this case,

∑
R∈R′∪R′′ |E(R)| decreases. In either case, it is easy to verify that Invariants I1–I5

continue to hold. We then proceed to the next iteration.

Assume now that there is a path R(e) ∈ R′∪R′′ and another path R(e′) ∈ R′′, and two distinct vertices
v, v′, both of which are inner vertices on both R(e) and R(e′), such that R(e) and R(e′) intersect
transversally at both v and v′. Let Q be the subpath of R(e) between v and v′, and let Q′ be the
subpath of R(e′) between v and v′. We splice the paths R(e) and R(e′) at both v and v′. Equivalently,
we modify path R(e) by replacing its segment Q with Q′, and we modify path R(e′) by replacing its
segment Q′ with Q. Note that the first and the last edge on each path remains the same, and the
congestion caused by the setR′∪R′′ of paths remains the same. If any of the resulting paths R(e), R(e′)
becomes a non-simple path, then we delete cycles from it, until it becomes a simple path. In this case,∑

R∈R′∪R′′ |E(R)| decreases. Otherwise, we can use Observation 4.6 to conclude that |ΠT (R′ ∪ R′′)
has decreased. Indeed, it is easy to verify that, for any vertex v′′ ∈ V (Sz) \ {v, v′}, the number of
triples (R1, R2, v

′′) ∈ ΠT (R′ ∪ R′′) did not grow. The number of triples (R1, R2, v) ∈ ΠT (R′ ∪ R′′),
and the number of triples (R1, R2, v

′) ∈ ΠT (R′∪R′′) have both decreased (as can be seen by applying
Observation 4.6 to the set of paths that contains, for every path R∗ ∈ R′∪R′′ with v ∈ R∗, a subpath
of R∗ consisting of the two edges of R∗ incident to v, and doing the same for vertex v′). This completes
the description of an iteration. It is easy to verify that Invariants I1–I5 continue to hold.

The algorithm for processing the index z terminates when the path set R′ becomes non-traversal with
respect to Σ, and, for every pair R ∈ R′ ∪ R′′, R′ ∈ R′′ of paths, there is at most one vertex v such
that the intersection of R and R′ at v is transversal. We then denote Rz = R′ ∪ R′′. For every edge
e ∈ Az ∪ A′z, we set Rz(e) = R(e) (the unique path in Rz that originates at edge êz−1). If e ∈ A′z,
then path R(e) is guaranteed to terminate at edge êz, from Invariant I4. If e ∈ Az, then we let êz be
the last edge on path Rz(e). We then add path Rz(e) to set R̃(e).

Once all indices 1 ≤ z ≤ r are processed, we obtain, for every edge e ∈ Ê, the desired set R̃(e) of
paths. If span(e) = {i′′, . . . , j′′ − 1}, then R̃(e) =

{
Ri′′(e), . . . , Rj′′(e)

}
. We then let P in(e) be the

path obtained by concatenating the paths in R̃(e). Recall that the first edge on P in(e) is êi′′−1, which
is the first edge of P out(e), and similary, the last edge on P in(e) is êj′′ , the last edge of P out(e). We
obtain the auxiliary cycle W (e) by concatenating the paths P in(e) and P out(e) (after deleting the extra
copies of edges êi′′−1, êj′′). It is immediate to verify that cycle W (e) is a simple cycle. Lastly, we set

P in =
{
P in(e) | e ∈ Ê

}
and W =

{
W (e) | e ∈ Ê

}
. We refer to W as the set of auxiliary cycles. From

the above discussion and Claim 7.44, we obtain the following immediate observation:

Observation 7.47 Every edge e ∈
⋃r
z=1E(Sz) appears on at most η′ = O(log34m) cycles of W.

Every edge e ∈ E(G) \ (
⋃r
z=1E(Sz)) appears on at most η = O(log18m) cycles of W.

Recall that we denoted, for each index 1 ≤ z < r, by Êz ⊆ Ê the set of all edges e ∈ Ê, with

97

z ∈ span(e). We need the following observation.

Observation 7.48 For every index 1 ≤ z < r, for every pair e, e′ ∈ Êz of distinct edges, there is
at most one vertex v ∈ V (W (e)) ∩ V (W (e′)), such that the intersection of cycles W (e) and W (e′) is
transversal at v. If such a vertex v exists, then v ∈ Sj for some index z < j < r, and either j − 1 is
the last index in both span′′(e), span′′(e′), or j− 1 is the last index in one of these sets, while j belongs
to another.

Proof: Fix an index 1 ≤ z < r and a pair e, e′ ∈ Êz of edges. Let v be any vertex that lies on both
W (e) and W (e′). We consider two cases. The first case is when v ∈ V ′′, that is, there is some index
1 ≤ z′ ≤ r, such that v ∈ V (S̃z) \ V (Sz). Since all inner vertices of paths P in(e), P in(e′) lie in V ′,
vertex v must be an inner vertex of both P out(e) and P out(e′). From Claim 7.45, the intersection of
P out(e) and P out(e′) at vertex v is non-transversal. Therefore, the intersection of W (e) and W (e′) at
v is non-transversal.

The second case is when there is some index 1 ≤ z′ ≤ r, such that v ∈ V (Sz′). Assume that the
intersection of W (e) and W (e′) at v is transversal. From our construction of the path set Rz′ , it must
be the case that at least one of the edges e, e′ lies in A′z′ . Assume without loss of generality that this
edge is e. Notice that, from the construction of set A′z′ , the last index of span′′(e) must be z′ − 1.
Since e′ ∈ Az′ ∪ A′z′ , either z′ ∈ span′′(e′), or the last index in span′′(e′) is z′ − 1. Therefore, if we
denote by j the last index of span′′(e′), then j ≥ z′ − 1 must hold. From our construction, v is the
only vertex of Sz′ , such that the intersection of P in(e) and P in(e′) at v is transversal. Moreover, since
j ≥ z′ − 1, and z′ − 1 is the last index in span′′(e), for every index z′′ 6= z′, for every vertex v′ ∈ Sz′′
that lies on both P in(e) and P in(e′), the intersection of the two paths at v′ must be non-transversal.

7.3.3 Step 3: Laminar Family L of Clusters, and Internal and External Routers for
Clusters of L

We define a laminar family L = {U1, . . . , Ur} of clusters of G, that will be later used in order to
compute a decomposition of the input instance I into subinstances.

For each 1 ≤ i ≤ r, we define cluster Ui to be the subgraph of G induced by
⋃

1≤z≤i V (S̃z). For

convenience, we also denote by U i the subgraph of G induced by
⋃
i<z≤r V (S̃z). We then define a

laminar family L = {U1, . . . , Ur} of clusters of G. Notice that Ur = G, and U1 ⊆ U2 ⊆ · · · ⊆ Ur.
We now fix an index 1 ≤ i ≤ r and consider the set δG(Ui) = E(Ui, U i) of edges. We can partition this
edge set into two subsets: set Ei = E(Si, Si+1), and set Êi, containing all remaining edges. Notice
that Êi is precisely the set of all edges e ∈ Ê with i ∈ span(e).

For all 1 ≤ i ≤ r, we will define an internal router Q(Ui), and an external router Q′(Ui) for cluster Ui.
The internal routers Q(Ui) of the clusters Ui ∈ L will be used in order to compute the decomposition
of I into subinstances. Both the internal and the external routers Q(Ui),Q′(Ui) will be used in order
to argue that the resulting instances have a relatively cheap solution. In order to define these routers,
we first need to define, for all 1 ≤ i ≤ r, an internal router Q(Si) for cluster Si ∈ S. The algorithm
for computing these routers is randomized, and is provided next.

Algorithm for Computing Internal Routers for the Vertebrae.

Recall that we have defined a parameter η̂ = 2O((logm)3/4 log logm). We also use a new parameter
β∗ = 2O(

√
logm·log logm).

We now provide a randomized algorithm that computes, for each cluster Si ∈ S an internal Si-router
Q(Si). Additionally, we compute a partition (Sbad,S light) of the clusters in S. Initially, we set

98

Sbad = S light = ∅. Recall that, from the definition of the nice witness structure, every cluster Si ∈ S
has the α∗-bandwidth property, for α∗ = Ω(1/ log12m).

For each 1 ≤ i ≤ r in turn, we apply Algorithm AlgClassifyCluster from Theorem 6.1 to instance
I = (G,Σ) of MCNwRS and cluster J = Si, with parameter p = 1/m100. If the algorithm returns
a distribution D(Si) over internal Si-routers in Λ(Si), such that Si is β∗-light with respect to D(Si),
then we sample an internal Si-router Q(Si) from the distribution D(Si), and we let ui be the vertex of
Si that serves as the common endpoint of all paths in Q(Si). We refer to vertex ui as the center vertex
of Si. We also add cluster Si to set S light in this case. Otherwise, Algorithm AlgClassifyCluster returns
FAIL. In this case, we add cluster Si to Sbad, and we apply the algorithm from Corollary 4.28 to graph
G and cluster Si. Let D(Si) be the distribution over the set ΛG(Si) of internal Si-routers that the
algorithm returns. We then let Q(Si) be an internal Si-router sampled from the distribution D(Si).
From Corollary 4.28, for each edge e ∈ E(Si), E [cong(Q(Si), e)] ≤ O(log4m/α∗) = O(log16m).

Bad Event E. For an index 1 ≤ i ≤ r, we say that bad event Ei happens, if Si is not a η̂-
bad cluster, but Algorithm AlgClassifyCluster returned FAIL when applied to it. From Theorem 6.1,
Pr[Ei] ≤ 1/m100. We also let E be the bad event that event Ei happens for any index 1 ≤ i ≤ r. From
the union bound, Pr[E] ≤ 1/m99.

Consider again any index 1 ≤ i ≤ r. We will now slightly modify the paths in set Q(Si), to ensure that
they are non-traversal with respect to the rotation system Σ. In order to do so, we start by subdividing
every edge e ∈ δG(Si) with a vertex t(e), and we let Xi = {t(e) | e ∈ δG(Si)} be the resulting set of
new vertices. We truncate the paths of Q(Si), so that each such path originates at a distinct vertex of
Xi and terminates at vertex ui. We then let Yi be the multiset of vertices containing the last vertex
on every path of Q(Si) (so Yi contains |Q(Si)| copies of vertex ui). We apply the algorithm from
Lemma 4.7 to the resulting instance of MCNwRS, set Q(Si) of paths and vertex multisets Xi, Yi, to
obtain another set Q̃(Si) of paths that are non-transversal with respect to Σ. Recall that for every
edge e ∈ E(G), congG(Q̃(Si), e) ≤ congG(Q(Si), e), so in particular all inner vertices of the paths in
Q̃(Si) lie in Si. The path set Q̃(Si) naturally defines a set of paths (internal Si-router) in graph G,
that route the edges of δG(Si) to vertex ui, and are non-transversal with respect to Σ. For convenience
of notation, we denote this internal Si-router by Q(Si) from now on. The following observation follows
immediately from the above discussion, Theorem 6.1 and the definition of β∗-light and η̂-bad clusters
(see Definition 5.4 and Definition 5.5 in Section 5.2), and from the fact that β∗ ≤ η̂.

Observation 7.49 For every cluster Si ∈ S light, for every edge e ∈ E(Si): E
[
(congG(Q(Si), e))

2
]
≤

η̂. Additionally, for every cluster Si ∈ Sbad, for every edge e ∈ E(Si): E [congG(Q(Si), e)] ≤
O(log16m). Moreover, if E did not happen, then every cluster Si ∈ Sbad is η̂-bad, that is:

OPTcnwrs(Si,Σ(Si)) + |E(Si)| ≥
|δG(Si)|2

η̂
,

where Σ(Si) is the rotation system for graph Si induced by Σ. Lastly, Pr [E] ≤ 1/m99.

Internal and External Routers for Clusters of Λ

Fix an index 1 ≤ i ≤ r. We now define an internal router Q(Ui) and an external router Q′(Ui) for
cluster Ui ∈ Λ. We will ensure that all paths of Q(Ui) terminate at the center vertex ui of Si, and
all paths of Q′(Ui) terminate at the center vertex ui+1 of Si+1. In order to do so, we consider the
edges e ∈ δG(Ui) one by one. For each such edge e, we define a path Q(e), whose first edge is e, last
vertex is ui, and all inner vertices lie in Ui, and we define a path Q′(e), whose first edge is e, last
vertex is ui+1, and all inner vertices lie in Ui+1. We will then set Q(Ui) = {Q(e) | e ∈ δ(Ui)}, and
Q′(Ui) = {Q′(e) | e ∈ δ(Ui)}.

99

We now fix an edge e ∈ δG(Ui), and define the two paths Q(e), Q′(e). Recall that δG(Ui) = Ei ∪ Êi.
Assume first that e ∈ Ei. In this case, e ∈ δG(Si) and e ∈ δG(Si+1) must hold. We let Q(e) be the
unique path of the internal Si-router Q(Si) whose first edge is e, and we let Q′(e) be the unique path
of the internal Si+1-router Q(Si+1), whose first edge is e. As required, path Q(e) connects e to ui and
only contains vertices of Ui as inner vertices, while path Q′(e) connects e to ui+1, and only contains
vertices of U i as inner vertices.

Assume now that e ∈ Êi. We denote e = (u, v), and we assume that u is the left endpoint of e.
Since e ∈ Êi, i ∈ span(e), and, since span(e) ⊆ span′′(e), we get that i ∈ span′′(e). From the
construction of the path P in(e), it must contain an edge êi ∈ Ei. Additionally, it must contain some
edge êi−1 ∈ δG(Si) \ {êi} and some edge êi+1 ∈ δG(Si+1) \ {êi} (if e ∈ δG(Si), then êi−1 = e, and if
e ∈ δG(Si+1), then êi+1 = e); see Figure 19. Let ρ(e) ⊆ P in(e) be the subpath of P in(e) that starts
at edge êi−1 and terminates at edge êi+1. Consider now the graph that is obtained from the auxiliary
cycle W (e) by deleting the edge e, and all edges of ρ(e) excluding êi−1 and êi+1. Once we delete
all isolated vertices in the resulting graph, we obtain two contiguous paths. The first path, that we
denote by P , originates at u and has edge êi−1 ∈ δG(Si) as its last edge; all edges and vertices of P
lie in Ui (if e = êi−1, then P = {u}). The second path, that we denote by P ′, originates at v and has
êi+1 ∈ δG(Si+1) as its last edge; all edges and vertices of P ′ lie in U i (if e = êi+1, then P ′ = {v}).
We let Q(e) be the path obtained by concatenating the edge e with the path P , and the unique path
of the internal Si-router Q(Si) that originates at edge êi−1 (see Figure 20). Clearly, path Q(e) has
e as its first edge, ui as its last vertex, and all its inner vertices lie in Ui. Similarly, we let Q′(e) be
the path obtained by concatenating the edge e with the path P ′, and the unique path of the internal
Si+1-router Q(Si+1) that originates at edge êi+1. Clearly, path Q′(e) has e as its first edge, ui+1 as its
last vertex, and all its inner vertices lie in U i.

Figure 19: Construction of paths Q(e) and Q′(e) for an edge e ∈ Êi. Path ρ(e) is shown in green, and
the cut (Ui, V \ Ui) is shown in a pink dashed line.

Once every edge of δG(Ui) is processed, we setQ(Ui) = {Q(e) | e ∈ δ(Ui)} andQ′(Ui) = {Q′(e) | e ∈ δ(Ui)}.
It is immediate to verify that Q(Ui) is an internal Ui-router, while Q′(Ui) is an external Ui-router.
Note that the construction of both routers is randomized, and the only randomized component in the
construction is the selection of the internal routers for the vertebrae. We need the following simple
observation.

Observation 7.50 For all 1 ≤ i < r, the set Q(Ui) of paths is non-transversal with respect to Σ.
Additionally, for every pair Q′(e), Q′(e′) ∈ Q′(Ui) of paths, there is at most one vertex v, such that
Q′(e) and Q′(e′) have a transversal intersection at v. If such a vertex v exists, then v is the unique
vertex, such that the auxiliary cycles W (e),W (e′) have a transversal intersection at v.

100

Figure 20: Paths Q(e) is the union of edge e and the green path; path Q′(e) is the union of edge e
and the brown path.

Proof: We start by considering a pair of paths Q(e), Q(e′) ∈ Q(Ui). Let v be any vertex that serves
as an inner vertex on both paths. We consider three cases. First, if v ∈ V ′′, then e, e′ ∈ Êi must hold,
and, from Observation 7.48, the intersection of Q(e) and Q(e′) at v is non-transversal. The second
case is when v ∈ V (Si). In this case, there must be two paths Q̃1, Q̃2 ∈ Q(Si), such that Q̃1 ⊆ Q(e),
Q̃2 ⊆ Q(e′), and v is an inner vertex on both Q̃1 and Q̃2 (note that it is possible that Q̃1 = Q̃2). In
this case, from the construction of the internal Si-router Q(Si), the intersection of Q(e) and Q(e′) at
v is non-transversal. The third case is when v ∈ V ′ \V (Si). In this case, e, e′ ∈ Êi must hold. Assume
that v ∈ V (Sz) for some index z < i. Clearly, z may not be the last index of span′′(e) or of span′′(e′).
Therefore, from Observation 7.48, the intersection of Q(e) and of Q(e′) at v is non-transversal. We
conclude that the set Q(Ui) of paths is non-transversal with respect to Σ.

Consider now some pair Q′(e), Q′(e′) ∈ Q′(Ui) of paths. Let v be any vertex that serves as an inner
vertex on both paths. We again consider three cases. First, if v ∈ V ′′, then e, e′ ∈ Êi must hold, and,
from Observation 7.48, the intersection of Q′(e) and Q′(e′) at v is non-transversal. The second case
is when v ∈ V (Si+1). In this case, there must be two paths Q̃1, Q̃2 ∈ Q(Si+1), such that Q̃1 ⊆ Q′(e),
Q̃2 ⊆ Q′(e′), and v is an inner vertex on both Q̃1 and Q̃2. In this case, from the construction of the
internal Si+1-router Q(Si+1), the intersection of Q′(v) and Q′(v′) at v is non-transversal. The third
case is when v ∈ V ′\V (Si). In this case, e, e′ ∈ Êi must hold, and v also lies on cycles W (e) and W (e′).
Moreover, the intersection of W (e) and W (e′) must be transversal at v. From Observation 7.48, there
may be at most one vertex v′, such that the intersection of W (e) and W (e′) at v′ is transversal. We
conclude that there is at most one vertex v ∈ V (Q′(e))∩V (Q′(e′)), such that the intersection of Q′(e)
and Q′(e′) at v is transversal. If such a vertex v exists, then v is the unique vertex, such that the
auxiliary cycles W (e),W (e′) have a transversal intersection at v.

From Observation 7.47, and the construction of the internal and external Ui-routers, we obtain the
following immediate observation.

Observation 7.51 For all 1 ≤ i < r, an edge e ∈ E(Si) may appear on at most O(log34m) ·
congG(Q(Si), e) paths of Q(Ui), and an edge e ∈ E(Ui) \ E(Si) may appear on at most O(log34m)
paths of Q(Ui). Similarly, an edge e ∈ E(Si+1) may appear on at most O(log34m) · congG(Q(Si+1), e)
paths of Q′(Ui), and an edge e ∈ E(U i) \E(Si+1) may appear on at most O(log34m) paths of Q′(Ui).

We will also use the following simple corollary of the observation.

Corollary 7.52 For all 1 ≤ z ≤ r, |δG(Uz)| ≤ |δG(Sz)| · O(log34m), and |δG(Uz)| ≤ |δG(Sz+1)| ·
O(log34m).

101

Proof: Recall that we have defined a collection Q(Uz) of paths, routing the edges of δG(Uz) to vertex
uz. Each such path must contain an edge of δG(Sz). Moreover, from Observation 7.51, an edge of
δG(Sz) may lie on at most O(log34m) paths of Q(Uz). Therefore, |δG(Uz)| ≤ |δG(Sz)| ·O(log34m).

Similarly, we have defined a collection Q′(Uz) of paths, routing the edges of δG(Uz) to vertex uz+1.
Each such path must contain an edge of δG(Sz+1). From Observation 7.51, an edge of δG(Sz+1) may
lie on at most O(log34m) paths of Q′(Uz). Therefore, |δG(Uz)| ≤ |δG(Sz+1)| ·O(log34m).

7.3.4 Step 4: Constructing the Collection of Subinstances

Consider again an index 1 ≤ i < r, and the internal Ui-router Q(Ui) = {Q(e) | e ∈ δG(Ui)}. Recall

that all paths in Q(Ui) terminate at vertex ui. Denote δG(ui) =
{
ei1, . . . , e

i
|δ(ui)|

}
, where the edges

are indexed according to their order in Oui ∈ Σ. For all 1 ≤ j ≤ |δ(ui)|, let Aij ⊆ δG(Ui) be the set
of all edges e ∈ δG(Ui), such that the uniue path Q(e) ∈ Q(Ui) that has e as its first edge contains
edge eij as its last edge. We now define an ordering Õi of the edges of δG(Ui): the edges in sets

Ai1, A
i
2, . . . , A

i
|δ(ui)| appear in the order of the indices of their sets, and, for each 1 ≤ j ≤ |δ(ui)|, the

ordering of the edges in set Aij is arbitrary. Notice that the resulting ordering Õi of the edges of

δG(Ui) is precisely the ordering Oguided(Q(Ui),Σ), that is guided by the internal Ui-router Q(Ui) (see
the definition in Section 5.2). For i = r, δG(Ui) = ∅, and the ordering Õr of the edges of δG(Ui) is the
trivial one.

We let I2 be a collection of subinstances of I obtained by computing a laminar family-based decompo-
sition of I (defined in Section 5.1) via the laminar family L = {Ui}1≤i≤r of clusters, and the orderings

Õi of the edge sets δ(Ui) for all 1 ≤ i ≤ r. We denote I2 = {I1, . . . , Ir}, where, for 1 ≤ z ≤ r, instance
Iz = (Gz,Σz) is the instance associated with the cluster Uz. Recall that instance Iz is defined as
follows. Assume first that 1 < z < r. Then graph Gz is obtained from graph G by first contracting all
vertices of Uz−1 into vertex v∗z , and then contracting all vertices of Uz+1 into vertex v∗∗z . Notice that,
equivalently, graph Gz consists of the cluster S̃z ∈ S̃, the two special vertices v∗z , v

∗∗
z , and possibly

some additional edges that are incident to these two special vertices.

The rotation system Σz is defined as follows. Observe first that, for every vertex v ∈ V (Gz)\{v∗z , v∗∗z },
δGz(v) = δG(v). The ordering Ov ∈ Σz of the edges incident to v in Σz remains the same as in Σ.
Notice that δGz(v

∗
z) = δG(Uz−1). We let the ordering Ov∗z ∈ Σz of the edges of δGz(v

∗
z) be the ordering

Õz−1 that we defined above. Lastly, observe that δGz(v
∗∗
z) = δG(Uz). We let the ordering Ov∗∗z ∈ Σz

of the edges of δGz(v
∗∗
z) be the ordering Õz that we defined above. For z = 1, instance I1 = (G1,Σ1)

is defined similarly, except that the instance does not contain vertex v∗1. Instance Ir = (Gr,Σr) is also
defined similarly, except that it does not contain vertex v∗∗r .

We now verify that the resulting collection I2 of instances has all required properties. Fix some index
1 ≤ z ≤ r. Recall that, from the definition of a nice witness structure, there is at most one cluster
C ∈ C with C ⊆ S̃z. Recall also that, for each cluster C ∈ C, there is exactly one cluster Si ∈ S that
contains C. If some cluster C ∈ C is contained in S̃z, then E(S̃z) ⊆ E(C) ∪E(G|C) must hold, and so

E(Gz) ⊆ E(C) ∪ E(G|C) as well. Otherwise, E(S̃z) ⊆ E(G|C), and so E(Gz) ⊆ E(G|C).

From Lemma 5.3, there is an efficient algorithm, that, given, for each instance Iz ∈ I, a solution ϕz,
computes a solution for instance I of value at most

∑r
t=1 cr(ϕz). Next, we bound the total number of

edges in all resulting instances.

Observation 7.53
∑

1≤z≤r |E(Gz)| ≤ O(|E(G)| · log34m).

Proof: Fix an index 1 ≤ z ≤ r. From our construction, |E(Gz)| ≤ |E(S̃z)| + |δG(Uz−1)| + |δG(Uz)|.
From Corollary 7.52, |δG(Uz−1)| ≤ |δG(Sz−1)| · O(log34m), and |δG(Uz)| ≤ |δG(Sz+1)| · O(log34m).

102

Therefore, |E(Gz)| ≤ |E(S̃z)|+ (|δG(Sz−1)|+ |δG(Sz+1)|) ·O(log34m). Summing up over all indices z,
we get that:

r∑
z=1

|E(Gz)| ≤
r∑
z=1

|E(S̃z)|+O(log34m) ·
r∑
z=1

|δG(Sz)| ≤ O(|E(G)| · log34m).

Recall that we have used a randomized algorithm to compute, for all 1 ≤ i ≤ r, an internal Ui-
router Q(Ui) and an external Ui-router Q′(Ui). In order to complete the proof of Theorem 7.4, it is
now enough to show that the expected total optimal solution costs of all instances in I2 (over the
random choices performed by the algorithm that computed the internal and the external Ui-routers)

is bounded by 2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|). The following claim, whose proof appears
in Section 7.4 will finish the proof of Theorem 7.4.

Claim 7.54 E [
∑r

z=1 OPTcnwrs(Iz)] ≤ 2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|).

7.4 Proof of Claim 7.54

Notice that graphs G1, Gr have a somewhat different structure than graphs of {Gz}1<z<r: specifically,
graph G1 does not contain vertex v∗1, and graph Gr does not contain vertex v∗∗r . It would be convenient
for us to modify these two graphs so that we can treat all resulting graphs uniformly. In order to
do so, we add a new dummy vertex v∗1 to graph G1, and connect it with an edge to an arbitrary
vertex v1 ∈ S1. We modify the rotation Ov1 ∈ Σ1 to include the new edge (v1, v

∗
1) at an arbitrary

position in the rotation. Notice that any solution to the resulting new instance I1 = (G1,Σ1) of
MCNwRS immediately provides a solution to the original instance I1 = (G1,Σ1), of the same cost. We
similarly modify graph Gr, by adding a new dummy vertex v∗∗r , which is connected with an edge to
an arbitrary vertex vr ∈ Sr. We modify the rotation Ovr ∈ Σr as before. In order to be consistent,
we also add the vertices v∗1, v

∗∗
r , and edges (v∗1, v1) and (v∗∗r , vr) to the original graph G, and modify

the rotations Ov1 ,Ovr ∈ O, so that they remain consistent with the rotations Ov1 ∈ Σ1 and Ovr ∈ Σr,
respectively. Notice that this modification does not increase OPTcnwrs(I). We also modify the nice
witness structure, by adding two new clusters S̃0 = {v∗1} and S̃r+1 = {v∗∗r } to S̃, and their subclusters
S0 = {v∗1} and Sr+1 = {v∗∗r }. We note that all the above modifications are only performed for ease of
exposition and are not strictly necessary.

Let ϕ∗ be an optimal solution to instance I of MCNwRS. We can assume that no pair of edges cross
twice, and that the image of each edge does not cross itself in ϕ∗. We denote by χ∗ the set of all
unordered pairs (e, e′) of edges of G, such that the images of e and e′ cross in ϕ∗. For all 1 ≤ z ≤ r,
we denote by χ∗z ⊆ χ∗ the set of all unordered pairs (e, e′) of edges of G whose images cross, such that
either e ∈ E(S̃z) ∪ δG(S̃z), or e′ ∈ E(S̃z) ∪ δG(S̃z), or both. We will use the drawing ϕ∗ in order to
construct, for each 1 ≤ z ≤ r, a solution ϕz to instance Iz = (Gz,Σz)

For each 1 ≤ z ≤ r, we construct a solution ϕz to instance Iz, and then argue that the total expected
costs of all these solutions is relatively small. We now fix an index 1 ≤ z ≤ r, and focus on constructing
solution ϕz to instance Iz. The construction of the solution consists of four steps. In the first step,
we construct an auxiliary graph Hz and its drawing ψz. This graph and its drawing are used in the
second step, in order to construct an initial drawing ϕ′z of graph Gz. The number of crossings in
drawing ϕ′z may be quite large, and we modify the drawing in order to lower the number of crossings
in the third step. The resulting drawing, ϕ′′z , will have a sufficiently low expected number of crossings,
but unfortunately it may not obey the rotation Ov∗∗z ∈ Σz. In the fourth and the last step, we modify
this drawing in order to obtain a feasible solution ϕz to instance Iz of MCNwRS, while only slightly
increasing the number of crossings. We now fix an index 1 ≤ z ≤ r, and describe a construction of a
solution ϕz for instance Iz of MCNwRS step by step.

103

7.4.1 Step 1: Computing Auxiliary Graph Hz and Its Drawing

Recall that graph Gz is obtained from graph G by contracting all vertices of
⋃

1≤i<z V (S̃i) into the
special vertex v∗z , and then contracting all vertices of

⋃
z<i≤r into the special vertex v∗∗z . Clearly,

every edge of Gz corresponds to some edge of G, and we do not distinguish between these edges. In
order to simplify the notation, when the index z is fixed, we denote vertices v∗z and v∗∗z by v∗ and v∗∗,
respectively. Notice that δGz(v

∗) = δG(Uz−1) = Ez−1 ∪ Êz−1, while δGz(v
∗∗) = δG(Uz) = Ez ∪ Êz. In

order to obtain the drawing ϕz of graph Gz, we will exploit the internal Uz−1-router Q(Uz−1), that
routes the edges of δG(Uz−1) to vertex uz−1, and the external Uz-router Q′(Uz), that routes the edges
of δG(Uz) to vertex uz+1. For each edge e ∈ δG(Uz−1), we denote by Q(e) the unique path of Q(Uz−1)
whose first edge is e, and for each edge e ∈ δG(Uz), we denote by Q′(e) the unique path of Q′(Uz)
whose first edge is e.

Denote Q∗z = Q(Uz−1) ∪ Q(Uz). For every edge e ∈ E(G), we define a value Nz(e), as follows. If
e ∈ E(G) \ E(Gz), then Nz(e) = congG(Q∗z, e) – the number of paths in Q∗z that contain the edge e.
For each edge e ∈ δG(Uz−1)∪δG(Uz)∪E(S̃z), we set Nz(e) = 1. The will use the following observation.

Observation 7.55 Let e be an edge of E(G) \ E(Gz). If e 6∈ E(Sz−1) ∪ E(Sz+1), then Nz(e) ≤
O(log34m); otherwise, E [Nz(e)] ≤ η̂. Moreover, if e ∈ E(Sz−1) and Sz−1 ∈ S light, then E

[
(Nz(e))

2
]
≤

η̂. Similarly, if e ∈ E(Sz+1) and Sz+1 ∈ S light, then E
[
(Nz(e))

2
]
≤ η̂2. (All expectations here are

over the selections of the internal routers Q(Sz−1) and Q(Sz+1)).

Proof: Consider an edge e ∈ E(G) \E(Gz). Notice that either e ∈ E(Uz−1), or e ∈ E(U z) must hold.
We assume that it is the former; the other case is symmetric. In this case, Nz(e) = congG(Q(Uz−1), e),
and, from Observation 7.51, Nz(e) ≤ O(log34m).

Assume now that e ∈ E(Uz−1). From Observation 7.51, edge emay appear on at most congG(Q(Sz−1), e)·
O(log34m) paths of Q(Uz−1), that is, Nz(e) ≤ congG(Q(Sz−1), e) · O(log34m). From Observa-

tion 7.49, for 1 ≤ i ≤ r, if Si ∈ S light, then E
[
(congG(Q(Si), e))

2
]
≤ η̂, while, if Si ∈ Sbad, then

E [cong(Q(Si), e)] ≤ O(log16m) ≤ η̂. The observation now follows immediately.

We now construct an auxiliary graph Hz, and its drawing ψz. In order to do so, we start with
Hz = G, and ψz = ϕ∗. We call the edges of E(S̃z)∪ δG(S̃z) primary edges, and the remaining edges of
G secondary edges. We now process every secondary edge e one by one. If edge e does not participate
in any path of Q∗z (that is, Nz(e) = 0), then we delete e from Hz and we delete its image from ψz.
Otherwise, we replace e with a set J(e) of Nz(e) parallel copies of e in graph Hz, and we replace
the image of e in ψz with images of these copies, that follow the original image of e in parallel to it,
without crossing each other. For convenience, for each edge e ∈ E(S̃z)∪ δG(Uz−1)∪ δG(Uz), we define
J(e) = {e}, and we think of the graph Hz as having a single copy of the edge e (the edge e itself).
This completes the definition of the graph Hz and its drawing ψz.

For every edge e ∈ E(G) \ E(Gz), we can now assign, to every path of Q∗z containing e, a distinct
copy of this edge from J(e). If edge e 6∈ δG(uz−1), we assign each copy of e in J(e) to a distinct path
of Q∗z containing e arbitrarily. If edge e ∈ δG(uz−1), then we perform the assignment more carefully.
Intuitively, this assignment is performed in a way that is consistent with the ordering Õz−1 of the edges
of δG(Uz−1) that we have defined, and the ordering of the paths of setQ(Uz−1) = {Q(e) | e ∈ δG(Uz−1)}
that it induces.

Assigning the copies of edges of δG(uz−1) to paths. Consider the set δG(Uz−1) of edges. Re-
call that we have defined an ordering Õz−1 of the edges of δG(Uz−1), which is precisely the order-
ing Oguided(Q(Uz−1),Σ), that is guided by the internal Uz−1-router Q(Uz−1). Denote δG(Uz−1) =
{â1, â2, . . . , âq}, where the edges are indexed according to the ordering Õz−1.

104

Recall the procedure that we used in order to define the ordering Õz−1 of the edges of δG(Uz−1) (for
convenience we omit the superscript z − 1): we have denoted δG(uz−1) =

{
e1, . . . , e|δ(uz−1)|

}
, where

the edges are indexed according to their order in the rotation Ouz−1 ∈ Σ. For all 1 ≤ j ≤ |δ(uz−1)|,
we denoted by Aj ⊆ δG(Uz−1) the set of all edges e′ ∈ δG(Uz−1), such that the unique path Q(e′) ∈
Q(Uz−1) originating at edge e′ terminates at edge ej .

We have defined the ordering Õz−1 = (â1, â2, . . . , âq) of the edges of δG(Uz−1) as follows: the edges
that lie in sets A1, A2, . . . , A|δ(uz−1)| appear in the order of the indices of their sets, and, for each
1 ≤ j ≤ |δ(uz−1)|, the ordering of the edges within each set Aj is arbitrary; denote this latter ordering

by Ôj =
{
aj1, a

j
2, . . . , a

j
qj

}
. The current drawing ψz of graph Hz naturally defines a circular ordering

of the edges of δH(uz−1), which is precisely the order in which the images these edges enter the
image of uz−1. In this circular ordering, the edges of each set J(e1), J(e2), . . . , J(e|δG(uz−1)|) appear
consecutively, in the order of the indices of their sets. For each index 1 ≤ j ≤ |δG(uz−1)|, the above
circular ordering defines an ordering Ô′j of the edges of J(ej).

Consider now some edge ej ∈ δG(uz−1), and assume that |J(ej)| = qj . On the one hand, we have
defined the ordering Ô′j of the edges of J(ej) – the order in which the images of these edges in ψz

enter the image of uz−1. On the other hand, we have defined an ordering Ôj =
{
aj1, a

j
2, . . . , a

j
qj

}
of the

edges of Aj – that is, the edges e′ ∈ δG(uz−1), whose corresponding path Q(e′) contains edge ej . For

all 1 ≤ h ≤ qj , we then assign the hth edge of J(ej) in the ordering Ô′j to path Q(ajh). This completes
the assignment of edges of Hz that are incident to vertex uz−1 to the paths of Q(Uz−1).

For every edge âi ∈ δG(Uz−1), we can now obtain a path Q̂(âi) in graph Hz, that originates at edge âi
and terminates at vertex uz−1, with all inner vertices of Q̂(ai) lying in V (Uz−1), by starting from the
path Q(âi) ∈ Q(Uz−1), and replacing every edge e′ ∈ E(G)\E(Gz) with the copy of e′ that is assigned

to path Q(âi). Denote the resulting set of paths in graph Hz by Q̂z =
{
Q̂(âi) | âi ∈ δG(Uz−1)

}
. For

each edge âi ∈ δG(Uz−1), denote by â′i the last edge on path Q̂(âi). Then the paths of Q̂z are mutually
edge-disjoint, and they route the edges of δG(Uz−1) to vertex ui−1 in Hz. All inner vertices on the
paths of Q̂z lie in V (Uz−1). Moreover, the images of edges â′1, . . . , â

′
q enter the image of ui−1 in the

drawing ψz of Hz in the circular order of their indices (and recall that edges â1, . . . , âq are indexed in
the order of their appearance in Õz−1).

Similarly, for every edge a ∈ δG(Uz), we can now obtain a path Q̂′(a) in graph Hz, that originates
at edge a and terminates at vertex uz+1, with all inner vertices of Q̂′(a) lying in V (U z), by starting
from the path Q′(a) ∈ Q′(Uz), and replacing every edge e′ ∈ E(G) \E(Gz) with the copy of e′ that is

assigned to path Q(a). Denote the resulting set of paths in graph Hz by Q̂′z =
{
Q̂′(a) | a ∈ δG(Uz)

}
.

Then the paths of Q̂′z are mutually edge-disjoint, and they route the edges of δG(Uz) to vertex ui+1.
All inner vertices on paths of Q̂′z lie in V (U z). This completes the construction of graph Hz and its
drawing ψz. We now analyze the number of crossings in this graph.

Bounding the Number of Crossings in ψz. Recall that δG(Uz−1) = Ez−1∪Êz−1, while δG(Uz) =
Ez∪Êz. We denote Eover

z = Êz−1∩Êz; note that every edge e ∈ Eover
z has one endpoint in

⋃
1≤i<z V (S̃i),

and another endpoint in
⋃
z<i≤r V (S̃i) (see Figure 21). We also denote by Eleft

z = Êz−1 \Eover
z , and by

Eright
z = Êz \ Eover

z . Notice that every edge e ∈ Eleft
z has one endpoint in

⋃
1≤i<z V (S̃i), and another

endpoint in V (S̃z), while every edge e ∈ Eright
z has one endpoint in V (S̃z) and another endpoint in⋃

z<i≤r V (S̃i) (see Figure 21). From the above definitions, δGz(v
∗) = δG(Uz−1) = Ez−1 ∪Eleft

z ∪Eover
z ,

and δGz(v
∗∗) = δG(Uz) = Ez ∪ Eright

z ∪ Eover
z .

We now reorganize the paths in Q̂z ∪ Q̂′z as follows. We let R′1 =
{
Q̂(e) | e ∈ Ez−1 ∪ Eleft

z

}
, R′′1 =

105

Figure 21: Set Eover
z of edges is shown in red, set Eright

z in blue, and set Eleft
z in green. The left pink

dashed line shows the cut (Uz−1, V \Uz−1), and the right pink dashed line shows the cut (Uz, V \Uz).

{
Q̂′(e) | e ∈ Ez ∪ Eright

z

}
, and R(z)

1 = R′1∪R′′1. For each edge e ∈ Ez−1∪Eleft
z ∪E

right
z ∪Ez, we denote

by R(e) ∈ R(z)
1 the unique path that has edge e as its first edge. For every edge e ∈ Eover

z , we let
R(e) be the concatenation of the paths Q̂(e) ∈ Q̂z and Q̂′(e) ∈ Q̂′z, so that path R(e) is a simple path

connecting vertices uz−1 and uz+1, and it contains the edge e. We then set R(z)
2 = {R(e) | e ∈ Eover

z }.

For every secondary edge e′ in graph G, we denote by N ′z(e
′) the number of paths in set R(z)

1 that

contain a copy of e′, and we denote by N ′′z (e′) the number of paths in set R(z)
2 that contain a copy of e′.

Note that, equivalently, N ′z(e
′) is the total number of paths in Q(Uz−1)∪Q′(Uz) that originate at edges

of Ez−1∪Eleft
z ∪E

right
z ∪Ez and contain e′, while N ′′z (e′) is the total number of paths in Q(Uz−1)∪Q′(Uz)

that originate at edges of Eover
z and contain e′. For a primary edge e′, we set N ′z(e

′) = 1 and N ′′z (e′) = 0.
Clearly, Nz(e

′) = N ′z(e
′) + N ′′z (e′) holds for every edge e′. Intuitively, for each edge e′, the value∑r

z=1N
′
z(e
′) is relatively small, while the value

∑r
z=1N

′′
z (e′) may be quite large. Indeed, recall that

the paths in set Q(Uz−1) ∪Q′(Uz) can be thought of as constructed by composing subpaths of cycles

of
{
W (e′) | e′ ∈ Êz−1 ∪ Êz

}
with the internal routers Q(Sz−1) and Q(Sz+1). Consider an edge e ∈ Ê,

and the corresponding cycle W (e). Assume that span(e) = {i, . . . , j − 1}. Then there is only one
index z for which e ∈ Eleft

z – index z = j. Similarly, there is only one index z for which e ∈ Eright(z)

– index z = i. Therefore, cycle W (e) contributes its subpath to set R(z)
1 only for indices z = i and

z = j. On the other hand, cycle W (e) may contribute a subpath to set R(z)
2 for every index i < z < j.

Because of this, we will try to bound the number of crossings in the final drawing ϕz that we construct
for instance Iz in terms of the values {N ′z(e′)}e′∈E(G). For convenience, when the index z is fixed, we

omit the superscript (z) in the notation R(z)
1 and R(z)

2 .

Notice that, from our assumption about drawing ϕ∗, no pair of edges in drawing ψz of Hz may cross
more than once, and no edge has its image cross itself. Consider any crossing (e1, e2) in drawing ψz.
Assume that e1 is a copy of edge e′1 ∈ E(G), and that e2 is a copy of edge e′2 ∈ E(G). Then the images
of edges e′1, e

′
2 must cross in ϕ∗, and we say that crossing (e′1, e

′
2) in ϕ∗ is responsible for crossing

(e1, e2) in ψz.

We classify the crossings in drawing ψz into several types, and we bound the number of crossings of
each of these types separately. Consider now a crossing (e1, e2) in drawing ψz of graph Hz. Let e′1, e

′
2

be the edges of G, such that e1 ∈ J(e′1) and e2 ∈ J(e′2), so crossing (e′1, e
′
2) of ϕ∗ is responsible for

crossing (e1, e2).

106

Type-1 Crossings. We say that crossing (e1, e2) in ψz is a type-1 crossing if at least one of the two
edges e′1, e

′
2 lies in E(S̃z)∪ δG(S̃z). We assume w.l.o.g. that e′1 ∈ E(S̃z)∪ δG(S̃z). Notice that crossing

(e′1, e
′
2) of ϕ∗ may be responsible for at most Nz(e

′
2) type-1 crossings in ψz. From Observation 7.55,

E [Nz(e
′
2)] ≤ η̂. We note that random variable Nz(e

′
2) may only depend on the random selections of the

internal routers Q(Sz−1) and Q(Sz+1), and in particular it is independent of the random selection of
the internal router Q(Sz). The expected number of crossings for which crossing (e′1, e

′
2) is responsible is

then bounded by η̂. From our definition, crossing (e′1, e
′
2) must lie in χ∗z. Therefore, the total expected

number of type-1 crossings is bounded by |χ∗z| · η̂. We note that the random variable corresponding
to the total number of type-1 crossings only depends on the random selections of the internal routers
Q(Sz−1) and Q(Sz+1), and it is independent of the random selection of the internal router Q(Sz). We
will use this fact later.

Type-2 Crossings. We say that a crossing (e1, e2) in ψz is a type-2 crossing if it is not a type-1
crossing, and, additionally, one of the two edges (say e1) lies on a path of R′1, while the other edge
(edge e2) lies on a path of R′′1. Notice that, in this case, e1 ∈ E(Uz−1) and e2 ∈ E(U z) must hold. A
crossing (e′1, e

′
2) of ψ∗ may be responsible for at most N ′z(e

′
1) ·N ′z(e′2) type-2 crossings of ψz. Moreover,

the random variables N ′z(e
′
1), N ′z(e

′
2) are independent from each other. From Observation 7.55, we can

bound E [N ′z(e
′
1) ·N ′z(e′2)] ≤ E [N ′z(e

′
1)] · η̂. Therefore, we get that the total expected number of type-2

crossings is bounded by: ∑
(e′1,e

′
2)∈χ∗

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])
· η̂.

Type-3 Crossings. We say that a crossing (e1, e2) in ψz is a type-3 crossing if it is not a type-1
or a type-2 crossing, and, additionally, one of the two edges (say e1) lies on a path of R′1, while the
other edge (edge e2) lies on a path of R′1 ∪ R2. We denote by χ̃z−1 the set of all crossings (e′1, e

′
2) of

ϕ∗, where e′1, e
′
2 ∈ E(Sz−1).

Consider any crossing (e′1, e
′
2) of ϕ∗ that does not lie in χ̃z−1. This crossing may be responsible

for at most N ′z(e
′
1) · Nz(e

′
2) + Nz(e

′
1) · N ′z(e′2) type-3 crossings in ψz. Notice that random variables

N ′z(e
′
1), Nz(e

′
2) are independent from each other, as are random variables Nz(e

′
1), N ′z(e

′
2). From

Observation 7.55, we can bound the expected number of type-3 crossings for which crossing (e′1, e
′
2) of

ϕ∗ is responsible by E [N ′z(e
′
1)] · η̂+ E [N ′z(e

′
2)] · η̂. Therefore, the total number of type-3 crossings, for

which crossings of χ∗ \ χ̃z−1 are responsible is bounded by:∑
(e′1,e

′
2)∈χ∗\χ̃z−1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])
· η̂.

A crossing (e′1, e
′
2) ∈ χ̃z−1 may be responsible for up to N ′z(e

′
1) ·Nz(e

′
2) +Nz(e

′
1) ·N ′z(e′2) ≤ 2Nz(e

′
1) ·

Nz(e
′
2) type-3 crossings of ψz. But now the random variables Nz(e

′
1), Nz(e

′
2) are no longer indepden-

dent. We can, however, bound Nz(e
′
1) · Nz(e

′
2) ≤ (Nz(e

′
1))2 + (Nz(e

′
2))2. From Observation 7.51, for

an edge e ∈ E(Sz−1), Nz(e) ≤ O(log34m) · congG(Q(Sz−1), e). Therefore, the total expected number
of type-3 crossings is at most:

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z−1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log68m) ·
∑

(e′1,e
′
2)∈χ̃z−1

(
E
[
(congG(Q(Sz−1), e′1)2

]
+ E

[
(congG(Q(Sz−1), e′2)2

])
.

107

Type-4 Crossings. We say that a crossing (e1, e2) in ψz is a type-4 crossing if it is not a crossing of
one of the first three types, and, additionally, one of the two edges (say, edge e1) lies on a path of R′′1,
while the other edge (edge e2) lies on a path of R′′1 ∪ R2. We denote by χ̃z+1 the set of all crossings
(e′1, e

′
2) of ϕ∗, where e′1, e

′
2 ∈ E(Sz+1).

Consider any crossing (e′1, e
′
2) of ϕ∗ that does not lie in χ̃z+1. As before, this crossing may be responsible

for at most N ′z(e
′
1) · Nz(e

′
2) + Nz(e

′
1) · N ′z(e′2) type-4 crossings in ψz. Using the same analysis as for

type-3 crossings, we can bound the expected number of type-4 crossings for which crossing (e′1, e
′
2) of

ϕ∗ \ χ̃z+1 is responsible by E [N ′z(e
′
1)] · η̂ + E [N ′z(e

′
2)] · η̂. The total number of type-4 crossings, for

which crossings of χ∗ \ χ̃z+1 are responsible is bounded by:∑
(e′1,e

′
2)∈χ∗\χ̃z+1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])
· η̂.

As before, a crossing (e′1, e
′
2) ∈ χ̃z+1 may be responsible for up to N ′z(e

′
1) ·Nz(e

′
2) +Nz(e

′
1) ·N ′z(e′2) ≤

2Nz(e
′
1) · Nz(e

′
2) ≤ 2(Nz(e

′
1))2 + 2(Nz(e

′
2))2 type-4 crossings of ψz. Using the same reasoning as in

type-3 crossings, the total expected number of type-4 crossings is bounded by:

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z+1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log68m) ·
∑

(e′1,e
′
2)∈χ̃z+1

(
E
[
(congG(Q(Sz−1), e′1)2

]
+ E

[
(congG(Q(Sz+1), e′2)2

])
.

Type-5 Crossings All remaining crossings of ψz are type-5 crossings. For each such crossing (e1, e2),
it must be the case that each of the edges e1, e2 belongs to a path of R2. We do not bound the number
of type-5 crossings, as we will eventually eliminate all such crossings.

7.4.2 Step 2: Initial Drawing of Gz

For every edge e ∈ Ez−1 ∪ Eleft
z , we denote by Γ(e) the curve corresponding to the image of path

R(e) ∈ R′1 in the drawing ψz of Hz. Note that, if v is an endpoint of the path R(e) that lies in
V (S̃z), then curve Γ(e) connects the image of v to the image of vertex uz−1 in ψz. For every edge

e ∈ Ez ∪Eright
z , we denote by Γ(e) the curve corresponding to the image of the path R(e) ∈ R′′1 in the

drawing ψz of Hz. Note that, if v is an endpoint of e that lies in V (S̃z), then curve Γ(e) connects the
image of v to the image of vertex uz+1 in ψz. Lastly, for every edge e ∈ Eover

z , we let Γ(e) be the image
of the path R(e) ∈ R2 in ψz. Notice that curve Γ(e) connects the image of uz−1 to the image of uz+1

in ψz. From the constructions of the paths in R′1 ∪ R2, if we denote δG(Uz−1) = {â1, . . . , âq}, where
the edges are indexed in the order of their apperance in the ordering Õz−1, the curves Γ(â1), . . . ,Γ(âq)
enter the image of vertex uz−1 in this circular order.

In order to obtain the initial drawing ϕ′z of Gz, we start with the drawing ψz of graph Hz, and we
delete from it the images of all vertices except those lying in V (S̃z) ∪ {uz−1, uz+1}, and the images of
all edges except those lying in E(S̃z); we view the image of vertex uz−1 as the image of the special
vertex v∗, and the image of vertex uz+1 as the image of the secial vertex v∗∗. We then add to this
drawing the curves in {Γ(e) | e ∈ δG(Uz−1) ∪ δG(Uz)}. Each such curve Γ(e) becomes an image of the
corresponding edge e. Notice that the edges of δG(Uz−1) become incident to v∗ in graph Gz; the edges
of δG(Uz) become incident to v∗∗, and the edges of Eover

z connect v∗ to v∗∗. From the above discussion,
the circular order in which the images of the edges in δGz(v

∗) enter the image of v∗ in the current
drawing is exactly the ordering Õz−1, which is precisely the ordering Ov∗ ∈ Σz. However, the images

108

of the edges of δGz(v
∗∗) may not enter the image of vertex v∗∗ in the correct order. We will fix this

in subsequent steps. There is one major problem with the current drawing of the graph Gz: it is
possible that some point p lies on a large number of curves in set {Γ(e) | e ∈ δG(Uz−1) ∪ δG(Uz)}, and
it is an inner point on each such curve. This may only happen if p corresponds to an image of some
vertex v, where v ∈ V (Uz−1) \ {uz−1}, or v ∈ V (U z) \ {uz+1}. We will now “fix” the images of the
edges of δGz(v

∗) ∪ δGz(v∗∗) by slightly “nudging” them in the vicinity of each such vertex, to ensure
that all resulting curves are in general position. We do so by performing a nudging operation (see
Section 4.4.3).

We process every vertex v ∈
(
V (Uz−1) ∪ V (U z)

)
\{uz−1, uz+1} one by one. Consider an iteration when

any such vertex v is processed. Let A(v) be the set of all edges e ∈ δG(Uz−1)∪ δG(Uz), such that curve
Γ(e) contains the image of vertex v (in ψz). We denote A(v) = {a1, . . . , ak}. Consider the tiny v-disc
D(v) = Dψz(v) in the drawing ψz of graph Hz. For all 1 ≤ i ≤ k, we let si, ti be the two points at
which curve Γ(ai) intersects the boundary of the disc D(v). Note that all points s1, t1, . . . , sk, tk must
be distinct. We use the algorithm from Claim 4.34 in order to construct a collection {γ1, . . . , γk} of
curves, such that, for all 1 ≤ i ≤ k, curve γi has si and ti as its endpoints, and is completely contained
in D(v). Recall that the claim ensures that, for every pair 1 ≤ i < j ≤ k of indices, if the two pairs
(si, ti), (sj , tj) of points cross, then curves γi, γj intersect at exactly one point; otherwise, curves γi, γj
do not intersect. For all 1 ≤ i ≤ k, we modify the curve Γ(ai) as follows: we replace the segment of
the curve between points si, ti with the curve γi.

Once every vertex v ∈
(
V (Uz−1) ∪ V (U z)

)
\ {uz−1, uz+1} is processed in this way, the curves in set

{Γ(e) | e ∈ δG(Uz−1) ∪ δG(Uz)} are in general position, and we obtain a valid drawing of the graph
Gz, that we denote by ϕ′z. The modification of the curves in {Γ(e) | e ∈ δG(Uz−1) ∪ δG(Uz)} do not
affect the endpoints of the curves, and so, for every vertex x ∈ V (Gz) \ {v∗∗}, the images of the edges
of δGz(x) enter the image of x in the order consistent with the rotation Ox ∈ Σz. We now bound the
number of crossings in drawing ϕ′z.

Consider some pair of edges e, e′ ∈ E(Gz) that cross at some point p in the drawing ϕ′z. We say that
this crossing is primary iff point p does not belong to any of the discs in the set{

D(v) | v ∈
(
V (Uz−1) ∪ V (U z)

)
\ {uz−1, uz+1}

}
;

otherwise we say that the crossing is secondary.

Notice that every primary crossing in ϕ′z corresponds to a unique crossing in the drawing ψz of the
graph Hz. Recall that we have partitioned all such crossings into five types, and we have bounded
the number of crossings of each of the first four types. This partition naturally defines a partition of
all primary crossings in ϕ′z into five types. Specifically, primary crossings of type 1 are all crossings
(e, e′) where at least one of the edges e, e′ lies in E(S̃z) ∪ δG(S̃z). Primary crossings of type 2 are

primary crossings between curves Γ(e),Γ(e′), where e ∈ Ez−1 ∪ Eleft
z , while e′ ∈ Ez ∪ Eright

z . Primary
crossings of type 3 are primary crossings between curves Γ(e),Γ(e′), where e ∈ Ez−1 ∪ Eleft

z and
e′ ∈ Ez−1 ∪ Eleft

z ∪ Eover
z , while primary crossings of type 4 are primary crossings between curves

Γ(e),Γ(e′), where e ∈ Ez ∪Eright
z , while e′ ∈ Ez ∪Eright

z ∪Eover
z . Lastly, primary crossings of type 5 are

primary crossings between curves Γ(e),Γ(e′), where e, e′ ∈ Eover
z . The number of primary crossings of

the first four types is bounded as before.

We now consider secondary crossings of ϕz. Notice that each such crossing must be between a pair of
curves Γ(e),Γ(e′), where e, e′ ∈ δG(Uz−1) ∪ δG(Uz).

Consider a pair of curves Γ(e),Γ(e′), where e, e′ ∈ δG(Uz−1) ∪ δG(Uz), and some point p at which the
curves cross, such that the crossing is secondary. Let v ∈

(
V (Uz−1) ∪ V (U z)

)
\ {uz−1, uz+1} be the

vertex such that p lies in the interior of disc D(v). Denote by s, t the points on the boundary of D
that lie on Γ(e), and define s′, t′ similary for Γ(e′). From Claim 4.34, curves Γ(e),Γ(e′) may only cross
inside the disc D(v) if the pairs (s, t), (s′, t′) of points on the boundary of D cross. Consider now

109

the paths R(e) ∈ R1 ∪ R2 and R(e′) ∈ R1 ∪ R2. Denote by e1, e2 the two edges on path R(e) that
immediately precede and immediately follow vertex v, and define edges e′1, e

′
2 similarly for path R(e′).

We now consider three cases.

First, if v ∈ V (Sz−1), then there must be two paths Q,Q′ ∈ Q(Sz−1), such that Q ⊆ R(e) and
Q′ ⊆ R(e′), where Q,Q′ both contain the vertex v. Since the paths of Q(Sz−1) are non-transversal
with respect to Σ, the only way for the two pairs (s, t), (s′, t′) of points to cross is if the set {e1, e2, e

′
1, e
′
2}

contains copies of fewer than four distinct edges of δG(v). In other words, for some edge e∗ ∈ δG(v),
both R(e) and R(e′) contain a copy of e∗. In this case, we say that edge e∗ is responsible for this
secondary crossing between Γ(e) and Γ(e′). The second case is when v ∈ V (Sz+1). The analysis of
this case is similar to the previous case: there must be an edge e∗ ∈ δG(v) such that both R(e) and
R(e′) contain a copy of e∗. We say that e∗ is responsible for this crosisng.

We now consider the third case, when v 6∈ V (Sz−1) ∪ V (Sz+1). We consider the paths R(e), R(e′) ∈
R1 ∪R2, and we define the edges e1, e2, e

′
1, e
′
2 as before. Since v 6∈ V (Sz−1) ∪ V (Sz+1), it must be the

case that v ∈ W (e) ∩W (e′). If there is an edge e∗ ∈ δG(v), such that both R(e) and R(e′) contain a
copy of e∗, then we designate e∗ to be responsible for this crossing as before. Otherwise, the edges in
set {e1, e2, e

′
1, e
′
2} are copies of four distinct edges of δG(V). In this case, the cycles W (e) and W (e′)

must have a transversal intersection at vertex v, from Observation 7.50, and e, e′ ∈ Êz must hold.
In this case, we say that the transversal intersection of W (e) and W (e′) at v is responsible for the
crossing.

We now classify the secondary crossings into three types and bound the number of crossings of the
first two types. We will eventually eliminate all crossings of the third type.

Type-1 secondary crossing. Consider a secondary crossing between a pair Γ(e),Γ(e′) of curves,
for e, e′ ∈ δG(Uz−1)∪ δG(Uz), and a secondary crossing of the two curves at some point p. We say that
the crossing is of type 1 if e ∈ Ez−1 ∪ Eleft

z and e′ ∈ Ez−1 ∪ Eleft
z ∪ Eover

z .

Type-2 secondary crossing. We say that a secondary crossing between a pair Γ(e),Γ(e′) of curves,

for e, e′ ∈ δG(Uz−1) ∪ δG(Uz), is of type 2 if e ∈ Ez ∪ Eright
z and e′ ∈ Ez ∪ Eright

z ∪ Eover
z .

Type-3 secondary crossing. All remaining secondary crossings are of tye 3. Consider any such
crossing between a pair Γ(e),Γ(e′) of curves, for e, e′ ∈ δG(Uz−1)∪ δG(Uz). Notice that it is impossible

that one of the two edges e, e′ lies in Ez−1 ∪ Eleft
z , while the other lies in Ez ∪ Eright

z , since, in such a
case, paths R(e), R(e′) cannot share any edges. Therefore, e, e′ ∈ Eover

z must hold.

We now bound the expected number of type-1 secondary crossing. Consider any such crossing between
a pair Γ(e),Γ(e′) of curves, and assume that the crossing point p lies in disc D(v), for some vertex v.
From the definition of a type-1 crossing, v ∈ V (Uz−1) \{uz−1} must hold. In this case, it is impossible
that a pair of auxiliary cycles W (e),W (e′) with e, e′ ∈ Êz have a transversal intersection at vertex
v, from Observation 7.48. Therefore, some edge of EG(Uz−1) must be responsible for this crossing.
It is immediate to verify that every edge e ∈ EG(Uz−1) may be responsible for at most N ′z(e) ·Nz(e)
type-1 secondary crossings. If e 6∈ E(Sz−1), then, from Observation 7.55, Nz(e) ≤ O(log34m). If
e ∈ E(Sz−1), then, from Observation 7.51, Nz(e) ≤ O(log34m) · congG(Q(Sz−1), e). Therefore, the
total expected number of type-1 secondary crossings is bounded by:

O(log34m) ·
∑

e∈E(Uz−1)\E(Sz−1)

N ′z(e) +O(log68m) ·
∑

e∈E(Sz−1)

E
[
(congG(Q(Sz−1), e))2

]
.

Next, we bound the expected number of type-2 secondary crossings. This time some of the crossigns
are charged to individual edges (that is, some edge of E(U z) is responsible for the crossing), and some

110

crossings are charged to transversal intersections of pairs of cycles W (e′),W (e′′), where e′, e′′ ∈ Êz.
The expected number of edges of the former type is bounded using the same reasoning as for type-1
crossings, and their expected number is at most:

O(log34m) ·
∑

e∈E(Uz)\E(Sz+1)

N ′z(e) +O(log68m) ·
∑

e∈E(Sz+1)

E
[
(congG(Q(Sz), e))

2
]
.

Let ΠT
z denote the set of triples (e, e′, v), where e ∈ Eright

z , e′ ∈ Êz, and v is a vertex that lies on both
W (e) and W (e′), such that cycles W (e) and W (e′) have a transversal intersection at v. Clearly, the
number of type-2 secondary crossings that are charged to transversal intersections of pairs of cycles
is bounded by |ΠT

z |. Overall, we get that the total expected number of type-2 secondary crossings is
bounded by:

O(log34m) ·
∑

e∈E(Uz)\E(Sz+1)

N ′z(e) +O(log68m) ·
∑

e∈E(Sz+1)

E
[
(congG(Q(Sz), e))

2
]

+ |ΠT
z |.

This completes the analysis of the initial drawing ϕ′z of graph Gz. Notice that we did not analyze
the number of type-5 primary crossings and the number of type-3 secondary crossings. These are all
crossings between the images of the edges of Eover

z . Unfortunately, a crossing of the original drawing
ϕ∗ of G may give rise to many crossings between edges of Eover

z in drawings ϕ′z of graphs Gz, for
1 ≤ z ≤ r. In the next step, we will slightly modify the drawing ϕ′z in order to eliminate all such
crossings. Notice that our current bounds on the expected number of crossings in ϕ′z contain terms

like
∑

e∈E(Sz−1) E
[
(congG(Q(Sz−1), e))2

]
. If cluster Sz−1 lies in set S light, then this expression can be

bounded by |E(Sz−1)| · η̂. However, if Sz−1 ∈ Sbad then this bound may no longer be valid. In such
a case we will perform an additional uncrossing operation of the images of edges of δG(Uz−1) in order
to decrease this number of crossings. We also perform such an operation on the images of the edges
of δG(Uz) if Sz+1 ∈ Sbad.

7.4.3 Step 3: Modified Drawing of Gz

In this step we modify the drawing ϕ′z of Gz to obtain a new modified drawing ϕ′′z , by performing one
or more uncrossing operations. We first consider the cases where Sz−1 ∈ Sbad or Sz+1 ∈ Sbad hold,
and perform some initial uncrossings to decrease the number of type-3 primary and type-1 secondary
crossings (in case where Sz−1 ∈ Sbad), and the number type-4 primary and type-2 secondary crossings
(in case where Sz−1 ∈ Sbad). After that we perform one more uncrossing operation that will eliminate
all type-5 primary and type-3 secondary crossings.

Recall that the expected number of type-3 primary crossings and type-1 secondary crossings (that is,
all crossings between images of edge pairs e, e′ where e ∈ Ez−1 ∪Eleft

z and e′ ∈ Ez−1 ∪Eleft
z ∪Eover

z) is
at most:

111

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z−1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log34m) ·
∑

e∈E(Uz−1)\E(Sz−1)

N ′z(e)

+O(log68m) ·
∑

(e′1,e
′
2)∈χ̃z−1

(
E
[
(congG(Q(Sz−1), e′1)2

]
+ E

[
(congG(Q(Sz−1), e′2)2

])
+O(log68m) ·

∑
e∈E(Sz−1)

E
[
(congG(Q(Sz−1), e))2

]
.

From Observation 7.49, if Sz−1 ∈ S light, then for every edge e ∈ E(Sz−1), E
[
(congG(Q(Sz−1), e)2

]
≤ η̂.

Recalling that χ̃z−1 ⊆ χ∗z−1, we get that, if Sz−1 ∈ S light, then the expected number of type-3 primary
and type-1 secondary crossings is bounded by:

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z−1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log34m) ·
∑

e∈E(Uz−1)\E(Sz−1)

N ′z(e)

+O(η̂2) · (|χ∗z−1|+ |E(Sz−1|).

(7)

Recall that the expected number of type-4 primary crossings and type-2 secondary crossings (that is,

all crossings between images of edge pairs e, e′ where e ∈ Ez ∪ Eright
z and e′ ∈ Ez ∪ Eright

z ∪ Eover
z) is

at most:

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z+1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log34m) ·
∑

e∈E(Uz)\E(Sz+1)

N ′z(e)

+O(log68m) ·
∑

(e′1,e
′
2)∈χ̃z+1

(
E
[
(congG(Q(Sz+1), e′1)2

]
+ E

[
(congG(Q(Sz+1), e′2)2

])
+O(log68m) ·

∑
e∈E(Sz+1)

E
[
(congG(Q(Sz), e))

2
]

+ |ΠT
z |

Here, ΠT
z is the set of triples (e, e′, v), where e ∈ Eright

z , e′ ∈ Êz, and cycles W (e) and W (e′) have a
transversal intersection at vertex v.

From Observation 7.49, if Sz+1 ∈ S light, then for every edge e ∈ E(Sz+1), E
[
(congG(Q(Sz+1), e)2

]
≤ η̂.

Recalling that χ̃z+1 ⊆ χ∗z+1, we get that, if Sz+1 ∈ S light, then the expected number of type-4 primary
and type-2 secondary crossings is bounded by:

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z+1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log34m) ·
∑

e∈E(Uz)\E(Sz+1)

N ′z(e)

+O(η̂2) · (|χ∗z+1|+ |E(Sz+1)|) + |ΠT
z |.

(8)

112

We now consider four cases, depending on whether the clusters Sz−1, Sz+1 lie in S light or Sbad.

Case 1: Sz−1 ∈ Sbad and Sz+1 ∈ S light. When Sz−1 ∈ Sbad, we no longer have a bound on
E
[
(congG(Q(Sz−1), e)2

]
for edges e ∈ E(Sz−1), and so the bound from Equation (7) on the number

of type-3 primary and type-1 secondary crossings is no longer valid. Instead, we will perform a type-1
uncrossing of the images of the edges of Ez−1∪Eleft

z ∪Eover
z . Let Γ1 denote the set of curves reprsenting

the images of these edges in ϕ′z. Let Γ2 denote the set of curves reprsenting the images of all remaining
edges of Gz in ϕ′z. We apply the algorithm from Theorem 4.33 to compute a new collection Γ′1 of
curves, where, for each edge e ∈ Ez−1 ∪Eleft

z ∪Eover
z , there is a curve γ(e) ∈ Γ′1 connecting the images

of the endpoints of e. Intuitively, the algortihm for type-1 uncrossing proceeds in iterations, as long
as there is a pair γ1, γ2 ∈ Γ1 of curves that cross at least twice. Assume that p and q are two points
lying on both γ1 and γ2. The algorithm then uncrosses the two curves, by “swapping” the segments
of these curves that connect p and q (see Figure 43 in Appendix D.17 for an illustration.) At the
end of this procedure, every pair of curves in Γ′1 may cross each other at most once. For each curve
γ ∈ Γ2, the number of crossings between γ and the curves in Γ′1 is no higher than the number of
crossings between γ and the curves in Γ1. We modify the images of the edges in Ez−1 ∪Eleft

z ∪Eover
z ,

so that for each such edge e, its new image is the curve γ(e) ∈ Γ′1. Observe that the total number
of primary crossings of types 1,2, and 4 does not increase, and neither does the number of secondary
crossings of type 2. We note however that a primary crossing of type 2 (a crossing between images

of edges e, e′ where e ∈ Ez−1 ∪ Eleft
z and e′ ∈ Ez ∪ Eright

z) may become a primary crossing of type

4 (a crossing between images of edges e, e′ where e′ ∈ Ez ∪ Eright
z and e ∈ Eover

z), and vice versa.
The total number of type-3 primary crossings and of type-1 secondary crossings is now bounded by:(
|Ez−1|+ |Eleft

z |+ |Eover
z |

)2 ≤ |δG(Uz−1)|2.

From Corollary 7.52, |δG(Uz−1)| ≤ |δG(Sz−1)| · O(log34m). Recall that, if Sz−1 ∈ Sbad, and the
bad event E does not happen, then, from Observation 7.49, OPTcnwrs(Sz−1,Σ(Sz−1)) + |E(Sz−1)| ≥
|δG(Sz−1)|2

η̂ , where Σ(Sz−1) is the rotation system for graph Sz−1 induced by Σ. Therefore, |δG(Sz−1)|2 ≤
η̂ ·
(
|χ∗z−1|+ |E(Sz−1)|

)
must hold.

Overall, if Sz−1 ∈ Sbad, and event E did not happen, then the total number of type-3 primary crossings
and of type-1 secondary crossings is now bounded by:

|δG(Uz−1)|2 ≤ η̂2 · |δG(Sz−1)|2 ≤ η̂2 ·
(
|χ∗z−1|+ |E(Sz−1)|

)
.

Combining this with the bound from Equation 7, we get that, regardless of whether Case 1 happened
or not, if event E did not happen, then, after the current modification, the total expected number of
type-3 primary crossings and of type-1 secondary crossings is bounded by:

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z−1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log34m) ·
∑

e∈E(Uz−1)\E(Sz−1)

N ′z(e)

+ η̂2 · (|χ∗z−1|+ |E(Sz−1|).

(9)

Case 2: Sz−1 ∈ S light and Sz+1 ∈ Sbad. We now consider the case where Sz−1 ∈ S light and
Sz+1 ∈ Sbad. The modification that we perform is almost identical to that performed in the case
where Sz−1 ∈ Sbad, except that now we uncross the images of the edges in δG(Uz).

113

As before, when Sz+1 ∈ Sbad, we no longer have a bound on E
[
(congG(Q(Sz+1), e)2

]
for edges

e ∈ E(Sz+1), and so the bound from Equation (8) on the number of type-4 primary and type-2
secondary crossings is no longer valid. Instead, we will perform a type-1 uncrossing of the images of
the edges of Ez ∪Eright

z ∪Eover
z , similarly to the first case. Let Γ1 denote the set of curves reprsenting

the images of these edges in the current drawing ϕ′z. Let Γ2 denote the set of curves reprsenting the
images of all remaining edges of Gz in ϕ′z. We apply the algorithm from Theorem 4.33 to compute a
new collection Γ′1 of curves, where, for each edge e ∈ Ez ∪ Eright

z ∪ Eover
z , there is a curve γ(e) ∈ Γ′1

connecting the images of the endpoints of e. Recall that every pair of curves in Γ′1 may cross at
most once, and, for each curve γ ∈ Γ2, the number of crossings between γ and the curves in Γ′1 is
no higher than the number of crossings between γ and the curves in Γ1. We modify the images of
the edges in Ez ∪ Eright

z ∪ Eover
z , so that for each such edge e, its new image is the curve γ(e) ∈ Γ′1.

As before, the total number of primary crossings of types 1,2, and 3 does not increase, and neither
does the number of secondary crossings of type 1. As before, a primary crossing of type 2 (a crossing

between images of edges e, e′ where e ∈ Ez−1 ∪ Eleft
z and e′ ∈ Ez ∪ Eright

z) may become a primary
crossing of type 3 (a crossing between images of edges e, e′ where e′ ∈ Ez−1 ∪Eleft

z and e ∈ Eover
z), and

vice versa. The total number of type-4 primary crossings and of type-2 secondary crossings is now

bounded by:
(
|Ez|+ |Eright

z |+ |Eover
z |

)2
≤ |δG(Uz)|2. Using the same arguments as in the first case,

and the second statement from Corollary 7.52, we conclude that |δG(Uz)| ≤ |δG(Sz+1)| · O(log34m).
As before, if Sz+1 ∈ Sbad, and the bad event E does not happen, then, from Observation 7.49,

OPTcnwrs(Sz+1,Σ(Sz+1)) + |E(Sz+1)| ≥ |δG(Sz−1)|2
η̂ , where Σ(Sz+1) is the rotation system for graph

Sz+1 induced by Σ. As before, we get that |δG(Sz+1)|2 ≤ η̂ ·
(
|χ∗z+1|+ |E(Sz+1)|

)
.

Overall, if Sz+1 ∈ Sbad, and event E did not happen, then the total number of type-4 primary type-2
secondary crossings is now bounded by:

|δG(Uz+1)|2 ≤ O(log68m) · |δG(Sz+1)|2 ≤ η̂2 ·
(
|χ∗z+1|+ |E(Sz+1)|

)
.

Combining this with the bound from Equation 8, we get that, regardless of whether Case 2 happened
or not, if event E did not happen, then, after the current modification, the total expected number of
type-4 primary crossings and of type-2 secondary crossings is bounded by:

η̂ ·
∑

(e′1,e
′
2)∈χ∗\χ̃z+1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+O(log34m) ·
∑

e∈E(Uz)\E(Sz+1)

N ′z(e)

+ η̂2 · (|χ∗z+1|+ |E(Sz+1)|) + |ΠT
z |.

(10)

Case 3: Sz−1, Sz+1 ∈ S light, and accounting so far. If Sz−1, Sz+1 ∈ S light, then we do not perform
any modifications for now. We now bound the total number of crossings in the current drawing ϕ′z of
graph Gz for cases 1–3, excluding the crossings between pairs of edges in Eover

z . If Case 3 happened,
then the number of crossings did not increase in this step. If Case 1 happened, then the total number of
primary crossings of types 1,2 and 4, and secondary crossings of type 2 did not change, and the number
of primary crossings of type 3 and secondary crossings of type 1 is bounded by Equation (9). Similarly,
If Case 2 happened, then the total number of primary crossings of types 1,2 and 3, and secondary
crossings of type 1 did not change, and the number of primary crossings of type 4 and secondary
crossings of type 2 is bounded by Equation (10). Therefore, if any of the cases 1–3 happened, and
event E did not happen, then the total expected number of crossings in the current drawing ϕ′z of
graph Gz, excluding the crossings between pairs of edges in Eover

z , is at most:

114

η̂2
(
|χ∗z−1|+ |χ∗z|+ |χ∗z+1|+ |E(Sz−1)|+ |E(Sz+1)|

)
+ η̂

∑
(e,e′)∈χ∗

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+ η̂ ·
∑

e∈E(Uz−1)\E(Sz−1)

N ′z(e) + η̂ ·
∑

e∈E(Uz)\E(Sz+1)

N ′z(e) + |ΠT
z |.

(11)

Case 4: Sz−1, Sz+1 ∈ Sbad. In this case, we will perform a type-1 uncrossing of the images of the
edges of Ez−1∪Eleft

z ∪Eover
z ∪Eright

z ∪Ez = δG(Uz−1)∪δG(Uz). Let Γ1 denote the set curves reprsenting
the images of these edges in ϕ′z. Let Γ2 denote the set of curves reprsenting the images of all remaining
edges of Gz in ϕ′z. We apply the algorithm from Theorem 4.33 to compute a new collection Γ′1 of
curves, where, for each edge e ∈ δG(Uz−1) ∪ δG(Uz), there is a curve γ(e) ∈ Γ′1 connecting the images
of the endpoints of e. We are guaranteed that every pair of curves in Γ′1 may cross each other at most
once, and, for each curve γ ∈ Γ2, the number of crossings between γ and the curves in Γ′1 is no greater
than the number of crossings between γ and the curves in Γ1. We modify the images of the edges in
δG(Uz−1) ∪ δG(Uz), so that for each such edge e, its new image is the curve γ(e) ∈ Γ′1. Note that the
total number of type-1 primary crossings does not change. The total number of all other crossings is
bounded by (|δG(Uz−1)| + |δG(Uz)|)2 ≤ O(|δG(Uz−1)|2) + O(|δG(Uz)|2). Using the same reasoning as
in Cases 1 and 2, if event E did not happen, then:

|δG(Uz−1)|2 ≤ η̂2 ·
(
|χ∗z−1|+ |E(Sz−1)|

)
,

and

|δG(Uz)|2 ≤ η̂2 ·
(
|χ∗z+1|+ |E(Sz+1)|

)
,

Therefore, if event E did not happen, the total expected number of crossings in the current drawing
is bounded by:

η̂2 ·
(
|χ∗z+1|+ |χ∗z|+ |χ∗z+1|+ |E(Sz−1)|+ |E(Sz+1)|

)
. (12)

Uncrossing the Edges of Eover
z . So far we have constructed a drawing ϕ′z of graph Gz and bounded

the expected number of crossings in ϕ′z, excluding the crossings between the images of the edges in
Eover
z . In this step, we eliminate all crossings of the latter type, by performing a type-2 uncrossing of

the images of the edges in Eover
z . Specifically, we let Q̃ be the set of paths in graph Gz that contains,

for each edge e ∈ Eover
z , a path Q̃(e), that consists of the edge e only. Recall that each edge e ∈ Eover

z

connects the special vertices v∗, v∗∗ to each other. We view each such path Q̃(e) as being directed
from v∗ to v∗∗. We then apply the algorithm from Theorem 4.37 that performs a type-2 uncrossing
on the images of the paths in Q̃. Let Γ be the resulting set of curves that it produces. Recall that,
for every edge e ∈ Eover

z , there must be a curve γ(e) ∈ Γ, that contains the segment of the image of
edge e that lies in the disc D(v∗). We replace the current image of the edge e with the curve γ(e).
Once the images of all edges e ∈ Eover

z are modified, we obtain the final modified drawing ϕ′′z of graph
Gz. The algorithm from Theorem 4.37 ensures that the images of the edges in Eover

z do not cross each
other. Since the curves in Γ are aligned with the graph that consists of the edges of Eover

z , we are
guaranteed that, for each edge e ∈ E(Gz) \Eover

z , the number of crossings in which edge e participates
does not increase. The algorithm from Theorem 4.37, and the type-1 uncrossings that we performed
in Cases 1 – 3 ensure that the order in which the images of the edges of δGz(v

∗) enter the image of v∗

115

does not change, and remain consistent with the rotation Ov∗ ∈ Σz. To summarize, we have obtained
a drawing ϕ′′z of graph Gz, such that, for every vertex v ∈ V (Gz) \ {v∗∗}, the images of the edges of
δGz(v) enter the image of v in the order consistent with the rotation Ov ∈ Σz, and the total expected
number of crossings in ϕ′′z is bounded by:

η̂2
(
|χ∗z−1|+ |χ∗z|+ |χ∗z+1|+ |E(Sz−1)|+ |E(Sz+1)|

)
+ η̂ ·

∑
(e,e′)∈χ∗

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+ η̂ ·
∑

e∈E(Uz−1)\E(Sz−1)

N ′z(e) + η̂ ·
∑

e∈E(Uz)\E(Sz+1)

N ′z(e) + |ΠT
z |.

(13)

In the next and the final step, we obtain the final solution ϕz to instance Iz = (Gz,Σz) of MCNwRS,
by modifying the current drawing ϕ′′z of graph Gz inside the tiny v∗∗-disc D(v∗∗).

7.4.4 Step 4: the Final Drawing of Graph Gz

In this step we slightly modify the current drawing ϕ′′z of graph Gz in order to obtain the final drawing
ϕz of Gz, which is a valid solution to instance Iz = (Gz,ΣZ) of MCNwRS.

Consider the tiny v∗∗-disc D = Dϕ′′z (v∗∗). Denote δGz(v
∗∗) = {e1, . . . , eh}, and, for all 1 ≤ i ≤ h, let

pi be the point on the image of the edge ei in ϕ′′z that lies on the boundary of the disc D. We assume
that the edges are indexed so that the points p1, . . . , ph are encountered in this order when traversing
the boundary of D in the clock-wise direction. We denote by O this ordering of the edges e1, . . . , eh.
Let O′ be the ordering Ov∗∗ ∈ Σz of the edges of δGz(v

∗∗). We use the algorithm from Corollary 4.32
to compute a collection Γ = {γ(ei) | 1 ≤ i ≤ h} of curves, such that, for each edge ei, curve γ(ei) only
differs from the image of the edge ei in the current drawing ϕ′′z of Gz inside the disc D, and the curves
of Γ enter the image of v∗∗ in the order O′. We then replace, for each edge ei ∈ δGz(v∗∗), the current
image of the edge ei with the curve γ(ei). As the result, we obtain a valid solution ϕz to instance
Iz = (Gz,Σz) of MCNwRS, as the images of the edges in δGz(v

∗∗) now enter the image of v∗∗ in the
correct order. Corollary 4.32 guarantees that the number of crossings between the curves in Γ within
the disc D is bounded by O(dist(O,O′)), and these are the only new crossings. Therefore, the number
of crossings grows by at most O(dist(O,O′)). In the next claim we bound dist(O,O′).
Claim 7.56 If event E did not happen, then the expectation of dist(O,O′) is bounded by:

η̂O(1) ·

 ∑
e∈E(G)

E
[
N ′z(e)

]
+

∑
(e,e′)∈χ∗

(
E
[
N ′z(e)

]
+ E

[
N ′z(e

′)
])

+ η̂O(1) ·
(
|χ∗z−1|+ |χ∗z|+ |χ∗z+1|+ |E(Sz−1)|+ |E(S̃z)|+ |E(Sz+1)|+ |δG(S̃z)|+ |δG(Sz−1)|

)
+ η̂ · cr(ϕ′′z) + |ΠT

z |.

We prove Claim 7.56 below, after we complete the proof of Claim 7.54 using it. For convenience, we de-
note by E∗z = E(Sz+1)∪E(Sz−1)∪E(S̃z)∪δG(S̃z)∪δG(Sz−1). Combining the bound from Equation (13)
with the bound from Claim 7.56, we get that, if Event E did not happen, then E [OPTcnwrs(Iz)] is
bounded by:

η̂O(1)

|χ∗z−1|+ |χ∗z|+ |χ∗z+1|+ |E∗z |+
∑

(e,e′)∈χ∗

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+
∑

e∈E(G)

E
[
N ′z(e)

]
+ |ΠT

z |

 .

116

Note that an edge e ∈ E(G) may belong to at most O(1) sets in {E∗z}
r
z=1. Also, a crossing (e, e′) ∈ χ∗

may belong to at most two sets in {χ∗z}
r
z=1 Therefore, we get that:

E

[
r∑
z=1

OPTcnwrs(Iz)

]
≤ η̂O(1)(|E(G)|+ |χ∗|)

+ η̂O(1) ·
∑

(e,e′)∈χ∗

r∑
z=1

(
E
[
N ′z(e

′
1)
]

+ E
[
N ′z(e

′
2)
])

+ η̂O(1) ·
∑

e∈E(G)

r∑
z=1

E
[
N ′z(e)

]
+ η̂O(1) ·

r∑
z=1

|ΠT
z |

(14)

We use the following two observations, whose proofs appear in Appendix G.23 and Appendix G.24,
respectively, in order to complete the proof of Claim 7.54.

Observation 7.57 For every edge e ∈ E(G),
∑r

z=1 E [N ′z(e)] ≤ O(η̂).

Observation 7.58
∑r

z=1 |ΠT
z | ≤ (|E(G)|+ |χ∗|) ·O(log68m).

Combining Equation (14) with Observations 7.57 and 7.58, and recalling that η̂ = 2O((logm)3/4 log logm),
we get that, if event E did not happen:

E

[
r∑
z=1

OPTcnwrs(Iz)

]
≤ 2O((logm)3/4 log logm) · (|E(G)|+ |χ∗|).

Recall that Pr [E] ≤ 1/m99, and, if E happens,
∑r

z=1 OPTcnwrs(Iz) ≤ m3 must hold. Therefore,

overall, E [
∑r

z=1 OPTcnwrs(Iz)] ≤ 2O((logm)3/4 log logm) · (|E(G)|+ |χ∗|). In order to complete the proof
of Claim 7.54, it is now enough to prove Claim 7.56, which we do next.

7.5 Proof of Claim 7.56

Assume first that Sz+1 ∈ Sbad. Clearly, dist(O,O′) ≤ |δGz(v∗∗)|2 ≤ |δG(Uz)|2. From Corollary 7.52,
|δG(Uz)| ≤ |δG(Sz+1)| ·O(log34m). If the bad event E does not happen, then, from Observation 7.49,

OPTcnwrs(Sz+1,Σ(Sz+1)) + |E(Sz+1)| ≥ |δG(Sz+1)|2
η̂ , where Σ(Sz+1) is the rotation system for graph

Sz−1 induced by Σ. Therefore:

dist(O,O′) ≤ |δG(Uz)|2 ≤ O(log68m) · |δG(Sz+1)|2 ≤ η̂2 ·
(
|χ∗z+1|+ |E(Sz+1)|

)
.

Assume now that Sz ∈ Sbad. As before, dist(O,O′) ≤ |δG(Uz)|2. From Corollary 7.52, |δG(Uz)| ≤
|δG(Sz)|·O(log34m). If the bad event E does not happen, then, from Observation 7.49, OPTcnwrs(Sz,Σ(Sz))+

|E(Sz)| ≥ |δG(Sz)|2
η̂ , where Σ(Sz) is the rotation system for graph Sz induced by Σ. Therefore:

dist(O,O′) ≤ |δG(Uz)|2 ≤ O(log68m) · |δG(Sz)|2 ≤ η2 · (|χ∗z|+ |E(Sz)|) .

We assume from now on that Sz, Sz+1 ∈ S light. In order to complete the proof of Claim 7.56, we
will define, for every edge e ∈ δG(Uz), a curve γ(e), such that all curves in the resulting set Γ∗ =

117

{γ(e) | e ∈ δG(Uz)} are in general position; each one of the curves originates at the image of vertex
v∗∗ in the drawing ϕ′′z of Gz; and each one of the curves terminates at the image of vertex uz in the
drawing ϕ′′z . We will ensure that the order in which the curves in set Γ∗ enter the image of v∗∗ is
precisely the ordering O of their corresponding edges, while the order in which they enter the image
of uz is precisely the ordering O′ of their corresponding edges. We will then bound the number of
crossings between the curves in Γ∗, thereby bounding dist(O,O′).
In order to define the set Γ∗ of curves, we define, for every edge e ∈ δG(Uz), a path R̃(e) in graph
Gz, that connects vertex v∗∗ to vertex uz, and originates at edge e. For each edge e ∈ δG(Uz), the
curve γ(e) is then obtained by slightly altering the image of the path R̃(e) in the drawing ϕ′′z , in
order to ensure that all resulting curves in Γ∗ are in general position. We start by defining the set

R̃ =
{
R̃(e) | e ∈ δG(Uz)

}
of paths.

Set R̃ =
{
R̃(e) | e ∈ δG(Uz)

}
of paths. Consider an edge e ∈ δG(Uz). Assume first that e ∈ Ez.

Denote e = (u, v), where u ∈ Sz and v ∈ Sz+1 (see Figure 22). Note that edge e belongs to graph Gz,
where it connects vertex u to vertex v∗∗. Let Q̃(e) be the unique path of the internal Uz-router Q(Uz)
that originates at edge e; recall that the path terminates at vertex uz, and, from the construction of
the path set Q(Uz), path Q̃(e) is also the unique path of the internal Sz-router Q(Sz) that originates
at edge e. Therefore, all internal vertices of path Q̃(e) lie in Sz, and path Q̃(e) is contained in graph
Gz. We then let R̃(e) be the path Q̃(e) in graph Gz (that now connects vertex uz to vertex v∗∗.)

Figure 22: Definition of path R̃(e) when e ∈ Ez.

Figure 23: Construction of path R̃(e) when e ∈ Eover
z . Path Q̃(e) is shown in green.

Next, we consider an edge e ∈ Eover
z . Assume that e = (u, v), where u ∈

⋃
i<z V (S̃i) and v ∈

⋃
i>z V (S̃i)

118

(see Figure 23). Consider the unique path Q̃(e) ∈ Q(Uz) that originates at edge e. Recall that the
path terminates at vertex uz, and it must contain some edge ae ∈ δG(Sz) (in fact it may only contain
one such edge). Note that, in graph Gz, all vertices of Uz−1 were contracted into vertex v∗, and so
both edges e and ae are incident to vertex v∗ in Gz. The subpath of the path Q̃(e) from edge ae to
vertex uz is precisely the unique path of the internal router Q(Sz) that originates at edge ae, which
we denote by Q̃′(e). We then let R̃(e) be the path obtained by appending the edge e at the beginning
of the path Q̃′(e). Note that path R̃(e) is contained in graph Gz, and it connects vertex v∗∗ to vertex
uz. In fact, path R̃(e) is a concatenation of edge (v∗, v∗∗) and path Q̃′(e).

Lastly, we consider an edge e ∈ Eright
z . Assume that e = (u, v), where u ∈ V (S̃z), and v ∈

⋃
i>z V (S̃i).

Note that edge e is also present in graph Gz, where it now connects vertex u to vertex v∗∗. Consider
the unique path Q̃(e) ∈ Q(Uz) that originates at edge e, and recall that this path terminates at vertex
uz. We now consider two cases. First, if path Q̃(e) is contained in cluster S̃z, then it is contained in
the current graph Gz, except that now it connects vertex v∗∗ to vertex uz. We then set R̃(e) = Q̃(e)
(see Figure 24). We denote by ae the unique edge of R̃(e) that lies in δG(Sz). Otherwise, let u′′ be
the first vertex on path Q̃(e) that does not belong to S̃z, and let u′ be the vertex preceding u′′ on the
path (see Figure 25). Denote a∗e = (u′, u′′). Note that edge a∗e also lies in graph Gz, where it connects
vertex u′ to vertex v∗. Moreover, path Q̃(e) must now contain some edge ae ∈ δG(Sz). Since, in graph
Gz, all vertices of Uz−1 were contracted into the vertex v∗, edge ae is now incident to vertex v∗. The
subpath of the path Q̃(e) from edge ae to vertex uz, that we denote by Q̃′(e), is precisely the unique
path of the internal Sz-router Q(Sz) that originates at edge ae. We then let R̃(e) be the path obtained
by concatenating the subpath of Q̃(e) from edge e to edge a∗e (that, in graph Gz, connects v∗∗ to v∗),
and the path Q̃′(e) (that originates at v∗ in Gz). Note that path R̃(e) is contained in graph Gz, and

it connects vertex v∗∗ to vertex uz. Since δG(Uz) = Ez ∪ Eover
z ∪ Eright

z , we have now constructed a
path R̃(e) for each edge e ∈ δG(Uz).

Figure 24: Construction of path R̃(e) when e ∈ Eright
z and Q̃(e) ⊆ S̃z. Path Q̃(e) is shown in green.

Consider the final set R̃ =
{
R̃(e) | e ∈ δG(Uz)

}
of paths that we have defined in graph Gz. Notice

that, for each edge e ∈ δG(Uz), there is some edge ae ∈ δG(Sz) that lies both on the path Q̃(e) ∈ Q(Uz),
and on path R̃(e) (in the case where e ∈ Ez, we set ae = e; for the other two cases, we have defined
the edge ae explicitly). Moreover, the unique path of the internal Sz-router Q(Sz) that originates at
edge ae is a subpath of R̃(e). Therefore, the last edge on path R̃(e) is identical to the last edge on
the unique path Q̃(e) ∈ Q(Uz) that originates at edge e. Recall that we have defined the ordering
O = Õz of the edges of δG(Uz) = δGz(v

∗∗) to be Oguided(Q(Uz),Σ) – the ordering that is guided by
the internal Uz-router Q(Uz) (see definition in Section 5.2). Since the rotation Ouz in Σ and Σz is
identical, equivalently, O′ = Oguided(R̃,Σz), that is, ordering O′ can be defined as an ordering that is
guided by the set R̃ of paths in graph Gz, with respect to the rotation system Σz.

119

Figure 25: Construction of path R̃(e) when e ∈ Eright
z and Q̃(e) is not contained in S̃z. Path Q̃(e) is

shown in green.

Notice that for every edge e ∈ δG(Uz), an edge e′ may lie on path R̃(e) only if e′ lies on path
Q̃(e) ∈ Q(Uz). From our construction, if e′ ∈ δGz(Uz), then e′ may lie on at most one path of R̃ – the
path R̃(e′). From Observation 7.51, an edge e′ ∈ E(Gz)\E(Sz) may participate in at most O(log34m)
paths of R̃, and an edge e′ ∈ E(Sz) may participate in at most O(log34m) · congG(Q(Sz), e

′) paths of
R̃.

Next, we construct an auxiliary graph H ′z, by replicating some edges of Gz and deleting some other
edges, similarly to our construction of graph Hz. We will use the paths of R̃ in order to define a
collection of edge-disjoint paths R̃′ in the resulting graph H ′z, which will in turn be used in order to
construct the collection Γ∗ of curves.

Graph H ′z and its drawing ψ′z For every edge e ∈ E(Gz), we let Ñ(e) be the number of paths in
R̃ that contain the edge e. From the discussion so far, we obtain the following immediate observation.

Observation 7.59 For each edge e ∈ E(Sz), Ñ(e) ≤ O(log34m) ·congG(Q(Sz), e
′), and for each edge

e ∈ E(Gz) \ E(Sz), Ñ(e) ≤ O(log34m).

In order to construct the graph H ′z, we start with the set V (H ′z) = V (Gz) of vertices. For every edge
e ∈ E(Gz) with Ñ(e) > 0, we add a collection J ′(e) of Ñ(e) parallel copies of the edge e to graph
H ′z. We also assign each copy of edge e in set J ′(e) to a distinct path of R̃ that contains the edge e,
arbitrarily. As in Step 1 of the algorithm for computing a drawing of graph Gz, we can now define

a collection R̃′ =
{
R̃′(e) | e ∈ δG(Uz)

}
of edge-disjoint paths in graph H ′z, as follows: for each edge

e ∈ δG(Uz), path R̃′(e) is obtained from path R̃(e) by replacing each edge e′ ∈ R̃(e) with the copy of
edge e′ that is assigned to path R̃(e).

Drawing ϕ′′z of graph Gz naturally defines drawing ψ′z of graph H ′z: for each edge e ∈ E(Gz) with
Ñ(e) > 0, we draw all copies of e to appear in parallel to the image of e, without crossing each other.

As in Step 1 of the algorithm for constructing a drawing for graph Gz, we can assign the copies of
the edges incident to vertex uz more carefully, to ensure that the images of the paths in R̃′ enter the
image of uz according to the ordering Õz = O′. In other words, if we denote δG(Uz) = {ã′1, ã′2, . . . ã′h},
and the edges are indexed in the order of their appearance in the ordering Õz = O′, and if, for all
1 ≤ i ≤ h, we denote by ã′′i the last edge on the path R̃′(ã′i), then the images of the edges ã′′1, . . . , ã

′′
h

enter the image of vertex uz in the natural order of their indices. Note that the images of edges
ã′1, . . . , ã

′
h enter the image of v∗∗ in the ordering O.

We now bound the number of crossings in the drawing ψ′z of graph H ′z. Consider any crossing in ψ′z

120

between a pair of edges e′1, e
′
2. Assume that e′1 is a copy of edge e1 ∈ E(Gz), and e′2 is a copy of edge

e2 ∈ E(Gz). Clearly, the images of the edges e1 and e2 must cross in drawing ϕ′′z , and we say that this
crossing is responsible for the crossing (e′1, e

′
2). It is easy to see that a crossing (e1, e2) in drawing ϕz

may be responsible for at most Ñ(e1) · Ñ(e2) crossings in ψ′z. If neither of the edges e1, e2 lie in E(Sz),
then, from Observation 7.59, Ñ(e1), Ñ(e2) ≤ O(log34m). Therefore, the total number of crossings of
ψ′z, for which crossings (e1, e2) of ϕ′′z with e1, e2 6∈ E(Sz) are responsible is at most: O(log68m) ·cr(ϕ′′z).
If exactly one of the two edges (say e1) lies in E(Sz), then, from Observation 7.59, Ñ(e1) ≤ O(log34m)·
congG(Q(Sz), e1), while Ñ(e2) ≤ O(log34m). Moreover, crossing (e1, e2) must be a type-1 primary
crossing of ϕ′′z . Recall that the expected number of type-1 crossings in ϕ′′z is bounded by |χ∗z| · η̂. Recall
also that the random variable corresponding to the total number of type-1 primary crossings only
depends on the random choices of the internal routers Q(Sz−1) and Q(Sz+1), and it is independent
of the random choice of the internal router Q(Sz). For each edge e ∈ E(Sz), E [congG(Q(Sz), e)] ≤ η̂
(from Observation 7.49 and our assumption that Sz ∈ S light), and random variable congG(Q(Sz), e)
only depends on the selection of the internal Sz-router Q(Sz). Since the random variable repre-
senting the number of type-1 primary crossings of ϕ′′z is independent from the random variables
{congG(Q(Sz), e)}e∈E(Sz), we get that the total expected number of crossings of ψ′′z , for which crossings

(e1, e2) of ϕ′′z , with exactly one of e1, e2 lying in E(Sz) are responsible, is at most: |χ∗z| · η̂O(1).

Lastly, assume that both edges e1, e2 ∈ E(Sz). Then, from Observation 7.59, Ñ(e1) ≤ O(log34m) ·
congG(Q(Sz), e1) and Ñ(e2) ≤ O(log34m) · congG(Q(Sz), e2). The number of crossigns in drawing ψ′z
for which crossing (e1, e2) is responsible is then bounded by:

O(log68m) · congG(Q(Sz), e1) · congG(Q(Sz), e2)

≤ O(log68m)
(
(congG(Q(Sz), e1))2 + (congG(Q(Sz), e2))2

)
.

From Observation 7.49, and since we have assumed that Sz ∈ S light, for every edge e ∈ E(Sz),

E
[
(congG(Q(Sz), e))

2
]
≤ η̂. As before, random variable (congG(Q(Sz), e))

2 only depends on the

random selection of the internal Sz-router Q(Sz). Clearly, the expected number of crossings of ψ′z for
which crossing (e1, e2) is responsible is at most O(η̂2). Note also that crossing (e1, e2) must a type-1
primary crossing of ϕ′′z , and the expected number of such crossings is bounded by |χ∗z| · η̂. As before,
the random variable corresponding to the number of type-1 primary crossings of ϕ′′z does not depend
on the selection of the internal Sz-router Q(Sz). Therefore, the total expected number of crossings of
ψ′′z , for which crossings (e1, e2) of ϕ′′z , with e1, e2 ∈ E(Sz) are responsible is at most: |χ∗z| · η̂O(1).

Overall, the total expected number of crossings in drawing ψ′z of graph H ′z is bounded by:

cr(ϕ′′z) ·O(log68m) + |χ∗z| · η̂O(1).

Constructing the set Γ∗ of curves. For every edge e ∈ δG(Uz), we initially let γ(e) be the
image of the path R̃′(e) in the drawing ψ′z of graph H ′z. From our construction, the curves in set
Γ∗ = {γ(e) | e ∈ δG(Uz)} all originate at the image of vertex v∗∗, and terminate at the image of vertex
uz in ψ′z. Moreover, from our construction, the order in which the curves of Γ∗ enter the image of v∗∗

is according to the ordering O of the edges of δG(Uz), while the order in which the curves of Γ∗ enter
the image of uz is according to the ordering O′ of the edges of δG(Uz). However, the curves of Γ∗ are
not in general position, as a point p may serve as an inner point on more than 2 such curves; this,
however, may only happen if p is an image of some vertex v ∈ V (Gz)\{uz, v∗∗}. We will now “nudge”
the curves in the vicinity of each such vertex to ensure that the resulting set of curves is in general
position. The nudging procedure is identical to that we have employed in Step 2 (see Section 7.4.2).

121

We process every vertex v ∈ V (Gz)\{uz, v∗∗} one by one. Consider an iteration when any such vertex
v is processed. Let A(v) ⊆ δG(Uz) be the set of all edges e ∈ δG(Uz), such that curve γ(e) contains the
image of vertex v (in ψ′z). We denote A(v) = {a1, . . . , ak}. Consider the tiny v-disc D(v) = Dψ′z(v)
in the drawing ψ′z of graph H ′z. For all 1 ≤ i ≤ k, we let si, ti be the two points at which curve γ(ai)
intersects the boundary of the disc D(v). Note that all points s1, t1, . . . , sk, tk must be distinct. We
use the algorithm from Claim 4.34 in order to construct a collection {γ′1, . . . , γ′k} of curves, such that,
for all 1 ≤ i ≤ k, curve γ′i has si and ti as its endpoints, and is completely contained in D(v). Recall
that the claim ensures that, for every pair 1 ≤ i < j ≤ k of indices, if the two pairs (si, ti), (sj , tj) of
points cross, then curves γi, γj intersect at exactly one point; otherwise, curves γi, γj do not intersect.
For all 1 ≤ i ≤ k, we modify the curve Γ(ai) as follows: we replace the segment of the curve between
points si, ti with the curve γi.

Once every vertex v ∈ V (Gz)\{uz, v∗∗} is processed, we obtain the final collection Γ∗ = {γ(e) | e ∈ δG(Uz)}
of curves, which are now in general position. The order in which these curves enter the images of ver-
tices uz and v∗∗ did not change, but we may have added some new crossings over the course of this
modification of the curves in Γ∗. For convenience, we say that a crossing between a pair of curves
in Γ∗ is primary if this crossing existed before this last modification, and otherwise it is called sec-
ondary. For each point p corresponding to a secondary crossing, there must be a vertex v, with
p ∈ D(v). The expected number of all primary crossings remains unchanged, and is bounded by
cr(ϕ′′z) ·O(log68m) + |χ∗z| · η̂O(1). We now bound the expected number of all secondary crossings.

Consider a pair e1, e2 ∈ δG(Uz) of distinct edges, and assume that there is some vertex v ∈ V (Gz) \
{uz, v∗∗}, such that the curves γ(e1), γ(e2) cross at some point p ∈ D(v). Using the same arguments
as before, this may only happen in one of two cases: either (i) some edge e ∈ δGz(v) lies on both R̃(e1)
and R̃(e2); or (ii) paths R̃(e1), R̃(e2) have a transversal intersection at vertex v. In the former case,
we say that the crossing is a type-1 secondary crossing, and that edge e is responsible for it, while
in the second case we say that the crossing is a type-2 secondary crossing, and that the transversal
intersection of paths R̃(e1), R̃(e2) at vertex v is responsible for it.

Clearly, for every edge e ∈ E(Gz), the total number of type-1 secondary intersections for which e
may be responsible is at most (Ñ(e))2. If e ∈ δGz(v

∗∗), then Ñ(e) = 1, and e may not be re-
sponsible for any type-1 secondary crossings. If e ∈ E(Gz) \ (E(Sz) ∪ δG(v∗∗)), then, from Obser-
vation 7.59, Ñ(e) ≤ O(log34m). Otherwise, if e ∈ E(Sz), then, from Observation 7.59, Ñ(e) ≤
O(log34m) · congG(Q(Sz), e). Moreover, since we have assumed that Sz ∈ S light, from Observa-

tion 7.49, E
[
(congG(Q(Sz), e))

2
]
≤ η̂. Overall, the total expected number of type-1 secondary cross-

ings is bounded by: η̂ · |E(Gz) \ δGz(v∗∗)| ≤ η̂ · (|E(S̃z)| + |δG(Uz−1|). Since, from Corollary 7.52,
|δG(Uz−1)| ≤ |δG(Sz)| · O(log34m), and δG(Sz) ⊆ E(S̃z) ∪ δG(S̃z), we get that the total expected

number of type-1 secondary crossings is at most: η̂ ·
(
|E(S̃z)|+ |δG(S̃z)|

)
.

We now turn to bound the number of type-2 secondary crossings. Consider any such crossing between
a pair of curves γ(e1), γ(e2), and assume that this crossing is charged to transversal intersection of
the paths R̃(e1), R̃(e2) at vertex v with respect to Σz. We claim that in this case, v = v∗ must hold.
Indeed, assume otherwise. As vertex v∗∗ may not serve as an inner vertex on any path of R̃′, it must
be the case that v ∈ V (S̃z). If v ∈ V (Sz), then there must be two paths Q,Q′ ∈ Q(Sz), such that
Q ⊆ R̃(e1) and Q′ ⊆ R̃(e2). From the construction of the internal router Q(Sz), all paths in Q(Sz) are
non-transversal with respect to Σ, so it is impossible that Q and Q′ have a transversal intersection at
v, and the same is true for paths R̃(e1) and R̃(e2). Otherwise, v ∈ V (S̃z) \V (Sz). In this case, v must
be a vertex that lies on each of the two paths Q̃(e1), Q̃(e2) of the internal router Q(Uz), and moreover,
the two paths must have a transversal intersection at v. But that is impossible from Observation 7.50.
Therefore, v = v∗ must hold.

We denote by Π the set of all pairs (e1, e2) ∈ δG(Uz) of edges, such that paths R̃(e1), R̃(e2) have

122

a transversal intersection at vertex v∗, with respect to ΣZ . Clearly, the number of type-2 secondary
crossings between the curves of Γ∗ is bounded by |Π|. We use the following claim, whose proof appears
in Section 7.6, in order to bound E [|Π|].

Claim 7.60

E [|Π|] ≤ η̂2 ·

 ∑
e∈E(G)

E
[
N ′z(e)

]
+

∑
(e,e′)∈χ∗

(
E
[
N ′z(e)

]
+ E

[
N ′z(e

′)
])

+ η̂2 ·
(
|E(Sz−1)|+ |E(S̃z)|+ |δG(Sz−1)|+ |χ∗z−1|+ |χ∗z|

)
+ |ΠT

z |.

In order to complete the proof Claim 7.56, it now remains to bound the expected number of crossings
between the curves of Γ∗. Recall that the expected number of all primary crossings between the curves
of Γ∗ is bounded by cr(ϕ′′z) ·O(log68m) + |χ∗z| · η̂O(1), while the expected number of type-1 secondary

crossings is at most η̂ ·
(
|E(S̃z)|+ |δG(S̃z)|

)
. The expected number of type-2 secondary crossings is

bounded by E [|Π|]. We conclude that, if Sz, Sz+1 ∈ S light, then the expected number of all crossings
between the curves in Γ∗ is bounded by:

η̂O(1) ·

 ∑
e∈E(G)

E
[
N ′z(e)

]
+

∑
(e,e′)∈χ∗

(
E
[
N ′z(e)

]
+ E

[
N ′z(e

′)
])

+ ηO(1) ·
(
|χ∗z−1|+ |χ∗z|+ |E(Sz−1)|+ |E(S̃z)|+ |δG(S̃z)|+ |δG(Sz−1)|

)
+ η̂ · cr(ϕ′′z) + |ΠT

z |.

In order to complete the proof of Claim 7.56, it now remains to prove Claim 7.60, which we do next.

7.6 Proof of Claim 7.60

Assume first that Sz−1 ∈ Sbad. Since we have assumed that Event E did not happen, from Obser-

vation 7.49, OPTcnwrs(Sz−1,Σ(Sz−1)) + |E(Sz−1)| ≥ |δG(Sz−1)|2
η̂ , where Σ(Sz−1) is the rotation system

for graph Sz−1 induced by Σ. We then get that |δG(Sz−1)|2 ≤ η̂ · (|χ∗z−1| + |E(Sz−1)|). On the other

hand, if (e1, e2) ∈ Π, then paths Q̃(e1), Q̃(e2) ∈ Q(Uz) must each contain an edge of δG(Sz−1). Since,
from Observation 7.51, each edge of δG(Sz−1) may appear on at most O(log34m) paths of Q(Uz−1),
we get that |Π| ≤ O(log68m) · |δG(Sz−1)|2 ≤ η̂2 · (|χ∗z−1| + |E(Sz−1)|). From now on we assume that
Sz−1 ∈ S light.

Consider a pair of edges (e1, e2) ∈ Π. Note that both R̃(e1) and R̃(e2) must contain the vertex v∗,

and e1, e2 ∈ δG(Uz) must hold. Recall that δG(Uz) = Ez ∪ Eright
z ∪ Eover

z , and that, for each edge

e ∈ Ez, path R̃(e) may not contain vertex v∗. Therefore, e1, e2 ∈ Eright
z ∪Eover

z must hold. Note that,

for an edge e ∈ Eright
z , it is possible that path R̃(e) does not contain the vertex v∗. For convenience,

we denote by Eright′
z the set of all edges e ∈ Eright

z for which v∗ ∈ R̃(e). We denote by Π1 ⊆ Π the

set of all pairs (e1, e2) where at least one of the two edges e1, e2 lies in Eright′
z , and we denote by

Π2 = Π \ Π1. Clearly, for every pair (e1, e2) ∈ Π2, e1, e2 ∈ Eover
z must hold. We will now define, for

each edge e ∈ Eright′
z ∪Eover

z three special edges a∗e, ae, and âe associated with e, a new cycle Ŵ (e) in
graph G, and some additional structures.

Consider first an edge e ∈ Eover
z . Denote e = (u, v), and assume that u is the left endpoint of the

edge. Then, from the definition of edge set Eover
z , u ∈

⋃
i<z V (S̃i) and v ∈

⋃
i>z V (S̃i) must hold (see

123

Figure 26). In particular, e ∈ δG(Uz−1) ∩ δG(Uz). We denote a∗e = e. Clearly, v∗ ∈ R̃(e) must hold.
We let ae be the edge immediately following vertex v∗ on path R̃(e). Observe that ae is also an edge
of graph G, where it must belong to edge set Ez−1 (see Figure 26 and Figure 23). We denote the
endpoints of edge ae graph G by ae = (xe, ye), with xe ∈ V (Sz−1) and ye ∈ V (Sz). Since edge ae lies
on path Q̃(e), that path visits the cluster Sz−1. We denote by x̂e the first vertex on path Q(e) that
belongs to cluster Sz−1, by âe the edge preceding vertex x̂e on the path, and by ŷe the other endpoint
of edge âe (see Figure 26). From the construction of the set Q(Uz−1) of paths, and the auxiliary cycles
in W, edges âe and ae must lie on the cycle W (e). We denote by W ′(e) the subpath of the auxiliary
cycle W (e) that connects vertex ŷe to vertex ye, such that all inner vertices of W ′(e) lie in Sz−1. We
denote by Ŵ left(e) the subpath of W (e) from ŷe to v, that is internally disjoint from W ′(e), and by
Ŵ right(e) the subpath of W (e) from u to ye that is internally disjoint from W ′(e). Observe that edge
e lies on both Ŵ right(e) and Ŵ left(e). Let P (e) be the path of the internal Sz−1-router Q(Sz−1) that
originates at edge ae, and let P̂ (e) be the path of Q(Sz−1) that originates at edge âe. We now define
a new cycle Ŵ (e) associated with the edge e to be the concatenation of the paths Ŵ left, P̂ (e), P (e),
and Ŵ right (after deleting the extra copy of the edge e, so that we obtain a cycle).

Figure 26: Definition of edges ae, âe and a∗e when edge e ∈ Eover
z . Path W ′e is the concatenation of the

brown path and edges ae, âe. Paths Ŵ left(e) (connecting e to ŷe) and Ŵ right(e) (connecting e to ye)
are shown in pink; both these paths also contain edge e = a∗e.

Next, we consider an edge e ∈ Eright′
z . Denote e = (u, v), and assume that u is the left endpoint of

the edge. Then, from the definition of edge set Eright
z , u ∈ V (S̃z) and v ∈

⋃
i>z V (S̃i) must hold (see

Figure 27). We let a∗e be the first edge on path R̃(e) that is not contained in E(S̃z). Note that a∗e is
also an edge of graph G, where it connects a vertex of V (S̃z), that we denote by y∗e , to a vertex of⋃
i<z V (S̃i), that we denote by x∗e. It is easy to see that edge a∗e must lie on the auxiliary cycle W (e),

and that it belongs to δG(Uz−1), and more specifically to Eleft
z . We will say that edge e owns edge

a∗e, and that edge a∗e belongs to edge e. Note that an edge of Eleft
z may belong to a number of edges

of Eright′
z . Since edge a∗e lies on the auxiliary cycle W (e), it must be the case that z − 1 ∈ span′′(e),

and so cycle W (e) must contain an edge of Ez−1, that we denote by ae (see Figure 27). As before, we
denote the endpoints of edge ae in graph G by ae = (xe, ye), with xe ∈ V (Sz−1) and ye ∈ V (Sz). We
also denote by P (e) the unique path of the internal Sz−1-router Q(Sz−1) that originates at edge ae.
We define the path Ŵ right(e) to be the subpath of the auxiliary cycle W (e), between vertices x∗e and
ye, that is disjoint from cluster Sz−1. Notice that this path contains both edges a∗e and e. Path P̂ (e)

124

and edge êa are defined slightly differently. Recall again that a∗e ∈ δG(Uz−1). We consider the unique
path Q(a∗e) of the internal Uz−1-router Q(Uz−1) that originates at edge a∗e. Recall that path Q(a∗e)
terminates at vertex uz−1, so it must contain some edge of δG(Sz−1), and, from the definition of the
internal router Q(Uz−1), exactly one edge of δG(Sz−1) lies on path Q(a∗e). We denote that edge by
âe = (x̂e, ŷe), where x̂e is the endpoint of the edge that lies in Sz−1. We let Ŵ left(e) be the subpath of
Q(a∗(e)) from vertex y∗e to vertex ŷe. Observe that a∗e ∈W left(e); and that path W left(e) is a subpath
of both the auxiliary cycle W (a∗(e)), and of path W out,left(a∗(e)). We denote by P̂ (e) the unique path
of the internal Sz−1-router Q(Sz−1) that originates at edge âe. Lastly, we define a new cycle Ŵ (e)
associated with edge e, to be the union of paths Ŵ left(e), P̂ (e), P (e), and Ŵ right(e), after we delete
the extra copy of edge a∗e (see Figure 27).

Figure 27: Definitions of edges ae, âe and a∗e when edge e ∈ Eright′
z . Path Ŵ left(e) is the concatenation

of the purple path and edge a∗e. Path Ŵ right(e) is the concatenation of edges a∗e, e, ae and the two
brown paths.

For consistency of notation, for an edge e = (u, v) ∈ Eover
z , where u is the left endpoint of e, we will

also say that e owns the edge a∗e = e, and that edge a∗e belongs to e. We will also denote x∗e = u and
y∗e = v.

For every edge e ∈ Eover
z ∪ Eright′

z , we have now defined two paths P (e), P̂ (e) ∈ Q(Sz−1). We denote
by a′e the last edge on path P (e), and by â′e the last edge on path P̂ (e); both these edges are incident
to uz−1 (see Figure 26 and Figure 27). We now provide several observations that will be useful for us
later.

Observation 7.61 For every pair (e1, e2) ∈ Π, either edge set
{
a′e1 , â

′
e1 , a

′
e2 , â

′
e2

}
contains fewer than

four distinct edges, or edges â′e1 , â
′
e2 , a

′
e1 , a

′
e2 appear in this order in the rotation Ouz−1 ∈ Σ.

Proof: Since (e1, e2) ∈ Π, the paths R̃(e1), R̃(e2) (that lie in graph Gz) have a transversal intersection
at vertex v∗. Since vertex v∗ was obtained by contracting all vertices of Uz−1 in graph G, it is easy
to verify that the edges of path R̃(e1) that immediately precede and follow vertex v∗ on the path
are a∗e1 and ae1 , respectively (see Figure 23 and Figure 25). Similarly, the edges of path R̃(e2) that
immediately precede and follow vertex v∗ on the path are a∗e2 and ae2 , respectively.

Since the paths R̃(e1), R̃(e2) have a transversal intersection at vertex v∗, edges a∗e1 , a
∗
e2 , ae1 , ae2 appear

in this order in the circular ordering Ov∗ ∈ Σz (up to reversing the ordering). We now recall how the
ordering Ov∗ ∈ Σz was constructed.

125

Recall that δGz(v
∗) = δG(Uz−1), and in particular, a∗e1 , ae1 , a

∗
e2 , ae2 ∈ δG(Uz−1). The ordering Ov∗ ∈ Σz

was defined to be identical to the ordering Õz−1 of the edges of δG(Uz−1), which, in turn, is the ordering
guided by the set Q(Uz−1) of paths.

From our construction, it is immediate to verify that the last edge of the unique path in Q(Uz−1) that
originates at edge a∗e1 is â′e1 , and the last edge of the unique path in Q(Uz−1) that originates at edge
ae1 is a′e1 (see Figure 26 and Figure 27). Similarly, the last edge of the unique path in Q(Uz−1) that
originates at edge a∗e2 is â′e2 , and the last edge of the unique path in Q(Uz−1) that originates at edge ae2
is a′e2 . From the definition of the ordering Õz−1, it must be the case that either set {ae1 , âe1 , ae2 , âe2}
contains fewer than four distinct edges, or edges â′e1 , â

′
e2 , a

′
e1 , a

′
e2 appear in this order in the rotation

Ouz−1 ∈ Σ.

We will use the following simple observation in order to bound the congestion that is caused by the

set Ŵ =
{
Ŵ (e) | e ∈ Eover

z ∪ Eright′
z

}
of cycles.

Observation 7.62 Each edge e ∈ Eleft
z may belong to at most O(log34m) edges of Eright′

z . Ad-
ditionally, an edge e ∈ E(G) \ E(Sz−1) may lie on at most O(log68m) cycles of Ŵ, while an
edge e ∈ E(Sz−1) may lie on at most O(log68m) · congG(Q(Sz−1), e) cycles of Ŵ. Lastly, an edge

e ∈ E(G) \
(
E(S̃z) ∪ E(Sz−1)

)
may lie on at most O(log34m) ·N ′z(e) cycles of

{
Ŵ (e′) | e′ ∈ Eright′

z

}
.

Proof: In order to prove the first assertion, consider any edge e ∈ Eleft
z . From our construction, e

may belong to an edge e′ ∈ Eright′
z only if e ∈ W (e′). From Observation 7.47, edge e may lie on at

most O(log34m) cycles of W, and so e may belong to at most O(log34m) edges of Eright′
z .

Consider now some edge e ∈ E(G) \ E(Sz−1). Notice that, if e lies on a cycle Ŵ (e′) for some edge

e′ ∈ Eright′
z ∪ Eover

z , then either e ∈ W (e′), or e ∈ W (a∗e′) must hold. Since, from Observation 7.47,
edge e may lie on at most O(log34m) cycles of W, and, as we have shown, every edge e′′ ∈ Eleft

z may

belong to at most O(log34m) edges of Eright
z , we get that e may lie on at most O(log68m) cycles of

Ŵ.

Consider now an edge e ∈ E(Sz−1). Notice that, if e lies on a cycle Ŵ (e′) for some edge e′ ∈
Eright′
z ∪ Eover

z , then either e ∈ P (e′), or e ∈ P̂ (e′) must hold. Consider some path P ∈ Q(Sz−1) that

contains the edge e, and let a be the first edge on path P . Consider any edge e′ ∈ Eright′
z ∪ Eover

z , for
which P = P (e′) or P = P̂ (e′) holds. Then a = ae′ or a = âe′ must hold, and in particular, edge a
must lie on Ŵ (e′). As we have shown, every edge e ∈ δG(Sz−1) may lie on at most O(log68m) cycles

of Ŵ. Therefore, there are at most O(log68m) edges e′ ∈ Eright′
z ∪ Eover

z , for which P = P (e′) or
P = P̂ (e′) holds. We conclude that e may lie on at most O(log68m) · congG(Q(Sz−1), e) cycles of Ŵ .

It now remains to prove the last assertion. Consider an edge e ∈ E(G) \
(
E(S̃z) ∪ E(Sz−1)

)
. Assume

that e ∈ Ŵ (e′) for some edge e′ ∈ Eright′
z . From our construction, this may only happen if either e

lies on the unique path of Q(Uz) that originates at e′; or e lies on the unique path of Q(Uz−1) that
originates at a∗e′ . Recall that, in the latter case, a∗e′ ∈ Eleft

z must hold. Recall that N ′z(e) is the total

number of paths in Q(Uz−1)∪Q′(Uz) that originate at edges of Ez−1 ∪Eleft
z ∪Eright

z ∪Ez and contain

e. Since each edge a∗ ∈ Eleft
z may belong to at most O(log34m) edges of Eright′

z , we get that, overall,

edge e may lie on at most O(log34m) ·N ′z(e) cycles of
{
Ŵ (e′) | e′ ∈ Eright′

z

}
.

Recall that we have denoted by Π1 ⊆ Π the set of all edge pairs (e1, e2) ∈ Π, where at least one of

the two edges lies in Eright′
z . We will always assume w.l.o.g. that e1 ∈ Eright′

z for each such pair. We
bound the expected cardinalities of sets Π1 and Π2 separately in the following two claims.

Claim 7.63 The expected cardinality of set Π1 is at most:

126

η̂2·

 ∑
e∈E(G)

E
[
N ′z(e)

]
+

∑
(e,e′)∈χ∗

(
E
[
N ′z(e)

]
+ E

[
N ′z(e

′)
])

+ |E(Sz−1|+ |E(S̃z)|+ |χ∗z−1|+ |χ∗z|

+|ΠT
z |.

Proof: We denote by Π1
1 ⊆ Π1 the set of all pairs (e1, e2) ∈ Π1, for which cycles Ŵ (e1), Ŵ (e2) share

at least one edge. We let e be any edge in E(Ŵ (e1))∩E(Ŵ (e2)), and we say that e is responsible for
the pair (e1, e2). Consider now any pair of edges (e1, e2) ∈ Π1 \Π1

1, and their two corresponding cycles
Ŵ (e1), Ŵ (e2). Note that the two cycles do not share edges, and, from Observation 7.61, they have a
transversal intersection at vertex uz−1. Therefore, either there is a pair of edges e′1 ∈ E(Ŵ (e1)) and
e′2 ∈ E(Ŵ (e2)) that cross in the drawing ϕ∗ of G; or there is a vertex v 6= uz−1, such that Ŵ (e1), Ŵ (e2)
have a transversal intersection at v. In the former case, we say that crossing (e′1, e

′
2) is responsible for

the edge pair (e1, e2). In the latter case, we say that the transversal intersection of Ŵ (e1), Ŵ (e2) at
v is responsible for the pair (e1, e2). We denote by Π1

2 ⊆ Π1 \Π1
1 the set of all pairs (e1, e2), such that

some crossing (e′1, e
′
2) is responsible for (e1, e2), and we denote by Π1

3 = Π1 \ (Π1
1∪Π1

2). We now bound
the number of pairs in each one of the three sets one by one in the following three observations.

Observation 7.64 E
[
|Π1

1|
]
≤ η̂2 ·

(∑
e∈E(G) E [N ′z(e)] + |E(Sz−1|+ |E(S̃z)|

)
.

Proof: Consider an edge e ∈ E(G). We will bound the expected number of pairs (e1, e2) ∈ Π1
1 of

edges, for which edge e is responsible. For each such pair, we assume w.l.o.g. that e1 ∈ Eright′
z . We

distinguish between three cases.

The first case is when e ∈ E(G) \
(
E(S̃z) ∪ E(Sz−1)

)
. From Observation 7.62, e may lie on at most

O(log34m) ·N ′z(e) cycles of
{
Ŵ (e′) | e′ ∈ Eright′

z

}
, and on at most O(log68m) cycles of Ŵ. Therefore,

such an edge may be responsible for at most O(log102m) ·N ′z(e) ≤ η̂ ·N ′z(e) edge pairs in Π1
1.

The second case is when e ∈ E(S̃z). In this case, from Observation 7.62, edge e lies on at most
O(log68m) cycles of Ŵ. Therefore, such an edge may be responsible for at most O(log136m) ≤ η̂ edge
pairs in Π1

1, and overall, the edges of S̃z may be responsible for at most η̂ · |EG(S̃z)| edge pairs in Π1
1.

The third and the last case is when e ∈ E(Sz−1). From Observation 7.62, such an edge may lie
on at most O(log68m) · congG(Q(Sz−1), e) cycles of Ŵ , and so it may be responsible for at most
O(log138m) ·(congG(Q(Sz−1), e))2 ≤ η̂ ·(congG(Q(Sz−1), e))2 edge pairs in Π1

1. Since we have assumed

that Sz−1 ∈ S light, from Observation 7.49, E
[
(congG(Q(Sz−1), e))2

]
≤ η̂. Therefore, the expected

number of edge pairs in Π1
1 for which edge e is responsible is at most η̂2, and the total expected

number of edge pairs in Π1
1 for which edges of E(Sz−1) are responsible is at most η̂2 · |E(Sz−1)|. The

bound now follows.

Observation 7.65 E
[
|Π1

2|
]
≤ η̂2 ·

(∑
(e,e′)∈χ∗ (E [N ′z(e)] + E [N ′z(e

′)]) + |χ∗z−1|+ |χ∗z|
)

.

Proof: Consider a crossing (e, e′) ∈ ϕ∗. We bound the number of pairs (e1, e2) ∈ Π1
2 with e1 ∈ Eright′

z ,
for which the crossing (e, e′) is responsible. Recall that, if crossing (e, e′) is responsible for a pair
(e1, e2) ∈ Π1

2, then e ∈ Ŵ (e1) and e′ ∈ Ŵ (e2) must hold.

We first consider the case where neither of the edges e, e′ lie in E(S̃z) ∪ E(Sz−1). In this case, from
Observation 7.62, edge e′ may lie on at most O(log68m) cycles of Ŵ, while edge e may lie on at

most O(log34m) ·N ′z(e) cycles of
{
Ŵ (e′) | e′ ∈ Eright′

z

}
. Therefore, crossing (e, e′) may be responsible

for at most O(log102m) · N ′z(e) ≤ η̂ · N ′z(e) edge pairs in Π1
2. Note that, if either of the edges e, e′

127

lies in E(S̃z) ∪ E(Sz−1), then crossing (e, e′) belongs to χ∗z−1 ∪ χ∗z. We conclude overall, all crossings
(e, e′) ∈ χ∗ \ (χ∗z−1 ∪ χ∗z) may be responsible for at most

∑
(e,e′)∈χ∗ η̂ · (N ′z(e) +N ′z(e

′)) pairs in Π1
2.

Next, we consider the case where at least one of the edges e, e′ lies in E(S̃z) ∪ E(Sz−1), so crossing
(e, e′) belongs to χ∗z−1 ∪ χ∗z. We let N̂(e) be the random variable indicating the number of cycles in

Ŵ containing edge e, and we define random variable N̂(e′) for edge e′ similarly. Notice that random
variables N̂(e), N̂(e′) may not be independent, if e, e′ ∈ E(Sz−1). The total number of edge pairs in
Π1

2 for which crossing (e, e′) is responsible is bounded by N̂(e) · N̂(e′) ≤ (N̂(e))2 + (N̂(e′))2. From
Observation 7.62, combined with Observation 7.49 and our assumption that Sz−1 ∈ S light, we get that

E
[
(N̂(e))2

]
,E
[
(N̂(e′))2)

]
≤ η̂2. We conclude that the expected number of pairs in Π1

2 for which all

crossings (e, e′) ∈ χ∗z−1 ∪ χ∗z are responsible is at most η̂2 · (|χ∗z−1|+ |χ∗z|).

Observation 7.66 |Π1
3| ≤ |ΠT

z |.

Proof: Consider an edge pair (e, e′) ∈ Π1
3. Recall that there must be a vertex v 6= uz−1, such that

cycles Ŵ (e), Ŵ (e′) have a transversal intersection at v. Recall also that e ∈ Eright′
z ⊆ Eright

z . We
claim that v ∈ V (U z) must hold, and moreover, auxiliary cycles W (e),W (e′) must have a transversal
intersection at vertex v.

Indeed, assume first that v ∈ V (Sz−1) \ {uz−1}. In this case, vertex v must lie on P (e) ∪ P̂ (e), and
on P (e′) ∪ P̂ (e′). Since paths P (e), P̂ (e), P (e′), P̂ (e′) all belong to the internal Sz−1-router Q(Sz−1),
they cannot have a transversal intersection at any vertex.

Assume now that v ∈ V (Uz−1) \ V (Sz−1). In this case, by our construction, v lies on the auxiliary
cycle W (a∗e) of the edge a∗e ∈ Eleft

z that belongs to e, and similarly, v lies on the auxiliary cycle
W (a∗e′). Moreover, cycles W (a∗e),W (a∗e′) must have a transversal intersection at vertex v. From
Observation 7.48, this is only possible if v ∈ Sj for some index 1 < j < r, and either j − 1 is the last
index in both span′′(a∗e), span′′(a∗e′), or j − 1 is the last index in one of these sets, while j belongs to
another. This is impossible, since v ∈ V (Uz−1), and a∗e, a

∗
e′ ∈ δG(Uz−1).

We conclude that vertex v may not lie in Uz−1. But then, from the construction of the cycles
Ŵ (e), Ŵ (e′), v must lie on both the auxiliary cycles W (e),W (e′), and the two cycles must have a
transversal intersection at v. From Observation 7.48, this is only possible if v ∈ Sj for some index
1 < j < r, and either j − 1 is the last index in both span′′(e), span′′(e′), or j − 1 is the last index in
one of these sets, while j belongs to another. Since e, e′ ∈ δG(Uz), we conclude that v ∈ V (U z) must
hold, and, from the above discusison, W (e),W (e′) must have a transversal intersection at vertex v.

Recall that ΠT
z is the set of triples (ẽ, ẽ′, ṽ), where ẽ ∈ Eright

z , ẽ′ ∈ Êz, and cycles W (ẽ) and W (ẽ′) have
a transversal intersection at ṽ. We conclude that, if the transversal crossing of cycles Ŵ (e), Ŵ (e′) at
vertex v is responsible for edge pair (e, e′), then triple (e, e′, v) must lie in ΠT

z , and so |Π1
3| ≤ |ΠT

z |.
Combining the bounds from Observations 7.64–7.66, we get that the expected cardinality of set Π1 is
at most:

η̂2·

 ∑
e∈E(G)

E
[
N ′z(e)

]
+

∑
(e,e′)∈χ∗

(
E
[
N ′z(e)

]
+ E

[
N ′z(e

′)
])

+ |E(Sz−1|+ |E(S̃z)|+ |χ∗z−1|+ |χ∗z|

+|ΠT
z |.

We use the following claim to bound the expected cardinality of Π2.

Claim 7.67
E
[
|Π2|

]
≤ η̂2 ·

(
|E(Sz−1)|+ |δG(Sz−1)|+ |χ∗z−1|

)
.

128

Proof: Recall that set Π2 contains all edge pairs (e, e′) ∈ Π, with e, e′ ∈ Eover
z . Consider any edge

e ∈ Eover
z . Recall that we denoted by W ′(e) the subpath of the auxiliary cycle W (e) between vertices

ye and ŷe that intersects cluster Sz−1. We denote by W ′′(e) the subpath of W (e) between vertices
ye and ŷe that does not share edges with W ′(e). Equivalently, W ′′(e) is the concatenation of the
paths Ŵ left(e) and Ŵ right(e) (after the extra copy of edge e is deleted). We denote by H(e) the graph
obtained from the union of the paths W ′(e), P (e) and P̂ (e). The following observation, whose proof
is deferred to Appendix G.25 is central to the proof of Claim 7.67.

Observation 7.68 Let (e1, e2) be a pair of edges in Π2. Then one of the following must happen:
either (i) some edge lies in both H(e1) and H(e2); or (ii) there is a pair of edges ẽ1 ∈ H(e1), ẽ2 ∈
H(e2) ∪W ′′(e2), whose images cross in the drawing ϕ∗ of graph G; or (iii) there is a pair of edges
ẽ′1 ∈ H(e1) ∪W ′′(e1), ẽ′2 ∈ H(e2), whose images cross in the drawing ϕ∗ of graph G.

As before, we partition the set Π2 of edge pairs into two subsets. The first set, Π2
1, containing all

pairs (e1, e2) ∈ Π2, such that there is an edge e ∈ E(H1) ∩ E(H2). In this case, we say that edge
e is responsible for the pair (e1, e2). Set Π2

2 contains all remaining edge pairs (e1, e2) ∈ Π2. From
Observation 7.62, for each such pair (e1, e2) ∈ Π2

2, there must be a crossing in χ∗ between a pair of
edges ẽ1 and ẽ2, such that either (i) ẽ1 ∈ H(e1) and ẽ2 ∈ H(e2)∪W ′′(e2); or (ii) ẽ′1 ∈ H(e1)∪W ′′(e1)
and ẽ′2 ∈ H(e2). For convenience, we will always assume that it is the former. Since H(e1) ⊆
Sz−1 ∪ δG(Sz−1), crossing (e1, e2) must lie in χ∗z−1, and we say that this crossing is responsible for the
pair (e1, e2) ∈ Π. We bound the expected cardinalities of the sets Π2

1,Π
2
2 separately, as before.

In order to bound E
[
|Π2

1|
]
, consider some edge e ∈ E(Sz−1) ∪ δG(Sz−1). Note that edge e may only

lie in graph H(e′), for an edge e′ ∈ Eover
z , if e ∈ W (e′), or e ∈ Ŵ (e′). From Observation 7.47, edge e

may appear on at most O(log34m) auxiliary cycles of W, and, from Observation 7.62, e may lie on at
most O(log68m) · congG(Q(Sz−1), e) cycles of Ŵ . From Observation 7.49, since we have assumed that

Sz−1 ∈ S light, we get that E
[
(congG(Q(Sz−1), e))2

]
≤ η̂. Therefore, the expected number of pairs in

Π2
1, for which edge e is responsible is at most:

O(log136m) ·E
[
(congG(Q(Sz−1, e)))

2
]
≤ η̂2.

We conclude that E
[
|Π2

1|
]
≤ η̂2 · (|E(Sz−1)|+ |δG(Sz−1)|).

In order to bound the expected cardinality of the set Π2
2, consider some edge pair (e1, e2) ∈ Π2

2, and
the crossing (ẽ1, ẽ2) that is responsible for it, where ẽ1 ∈ H(e1) and ẽ2 ∈ H(e2) ∪W ′′(e2). Recall
that H(e1) ⊆ E(Sz−1) ∪ δG(Sz−1), and that crossing (ẽ1, ẽ2) must lie in χ∗z−1. Consider now any
crossing (e, e′) ∈ χ∗z−1, and assume w.l.o.g. that e ∈ E(Sz−1) ∪ δG(Sz−1). If e′ ∈ E(Sz−1) ∪ δG(Sz−1)
as well, then for every pair (e1, e2) ∈ Π2

2 for which crossing (e, e′) is responsible, e ∈ H(e1) and
e′ ∈ H(e2) must hold. As observed above, the total number of edges e1 ∈ δG(Uz−1) with e ∈ H(e1) is
O(log68m) ·congG(Q(Sz−1), e), and similarly, the total number of edges e2 ∈ δG(Uz−1) with e′ ∈ H(e2)
is at most O(log68m) · congG(Q(Sz−1), e′). Therefore, the total number of edge pairs (e1, e2) ∈ Π2

2 for
which crossing (e, e′) is responsible is bounded by:

O(log136m) · congG(Q(Sz−1), e) · congG(Q(Sz−1), e′)

≤ O(log136m) ·
(
(congG(Q(Sz−1), e))2 + (congG(Q(Sz−1), e′))2

)
.

As before, from Observation 7.49 and the assumption that Sz−1 ∈ S light:

E
[
(congG(Q(Sz−1), e))2

]
,E
[(

congG(Q(Sz−1), e′)
)2] ≤ η̂.

129

Therefore, the expected number of edge pairs (e1, e2) ∈ Π2
2 for which crossing (e, e′) is responsible is

at most η̂2.

Lastly, we consider a crossing (e, e′) ∈ χ∗z−1 with e ∈ E(Sz−1)∪δG(Sz−1) and e′ 6∈ E(Sz−1)∪δG(Sz−1).
In this case, for every pair (e1, e2) ∈ Π2

2 for which crossing (e, e′) is responsible, e ∈ H(e1), and
e′ ∈ W ′′(e2) ⊆ W (e2) must hold. As before, the total number of edges e1 ∈ δG(Uz−1) with e ∈ H(e1)
is at most O(log68m) · congG(Q(Sz−1), e), and, from Observation 7.47, edge e′ appears on at most
O(log34m) cycles of W. Therefore, the total expected number of edge pairs (e1, e2) ∈ Π2

2 for which
crossing (e, e′) is responsible is bounded by:

O(log102m) ·E [congG(Q(Sz−1), e)] ≤ η̂2,

from Observation 7.49. Overall, we get that E
[
|Π2

2|
]
≤ η2 · |χ∗z−1|, and:

E
[
|Π2|

]
≤ η̂2 ·

(
|E(Sz−1)|+ |δG(Sz−1)|+ |χ∗z−1|

)
.

Combining the bounds from Claims 7.63 and 7.67, we get that:

E [|Π|] ≤ η̂2 ·

 ∑
e∈E(G)

E
[
N ′z(e)

]
+

∑
(e,e′)∈χ∗

(
E
[
N ′z(e)

]
+ E

[
N ′z(e

′)
])

+ η̂2 ·
(
|E(Sz−1)|+ |E(S̃z)|+ |δG(Sz−1)|+ |χ∗z−1|+ |χ∗z|

)
+ |ΠT

z |,

completing the proof of Claim 7.60.

8 Proof of Theorem 3.12

We assume that we are given a wide instance I = (G,Σ) of MCNwRS, with m = |E(G)|, such that
µ20 ≤ m ≤ m∗. The high-level idea of the proof is to compute a collection C of disjoint clusters in
graph G that have the α0-bandwidth property for α0 = 1/ log3m with |E(G|C)| sufficiently small, and
then to apply the algorithm for computing advanced disengagement from Theorem 7.1 to C, to obtain
a ν-decomposition of I into subinstances. In order to ensure that all subinstances have the required
properties, we need to ensure that, if C is a cluster of C with |E(C)| > m

µ , then for any pair u, v

of disctinct vertices of C whose degree in C is at least m
µ6

, there are at least 8m
µ50

edge-disjoint paths
connecting u to v in C. We start with the following lemma that allows us to compute the desired
collection C of clusters.

Lemma 8.1 There is an efficient algorithm, that, given a wide instance I = (G,Σ) of MCNwRS, with
m = |E(G)|, such that µ20 ≤ m ≤ m∗, computes a collection C of disjoint clusters of G, that have the
following properties:

•
⋃
C∈C V (C) = V (G);

• every cluster C ∈ C has the α0-bandwidth property, for α0 = 1
log3m

;

• for every cluster C ∈ C, for every pair u, v of distinct vertices of C with degG(v), degG(u) ≥ m
µ6

,

there is a collection of at least 8m
µ50

edge-disjoint paths in C connecting u to v; and

130

• |Eout(C)| ≤ m
µ27

.

Proof: The proof of the lemma uses somewhat standard techniques and is similar, for example, to the
proof of Theorem 4.19. We denote by U the set of all vertices of G whose degree is at least m

µ6
. Clearly,

|U | ≤ 2µ6. Our algorithm maintains a collection R of clusters of G. Throughout the algorithm, we
ensure that the following invariants hold:

I1. all clusters in R are mutually disjoint; and

I2.
⋃
R∈R V (R) = V (G).

For a given collection R of clusters with the above properties, we define a budget b(e) for every
edge e ∈ E(G), as follows. If both endpoints of e lie in the same cluster of C, then we set the
budget b(e) = 0. Assume now that the endpoints of e lie in different clusters R,R′ ∈ R. We
define bR(e) = 1 + 8α0 · βARV(m) · log3/2(|δG(R)|), bR′(e) = 1 + 8α0 · βARV(m) · log3/2(|δG(R′)|), and
b(e) = bR(e) + bR′(e). Notice that b(e) ≤ 3 always holds.

For every cluster R ∈ R, we denote UR = U ∩ V (R). For every vertex u ∈ U , we define a budget b(u)
of u as follows. Assume that u ∈ V (R) for some cluster R ∈ R. Then b(u) = 4|UR| · mµ40 . We denote

by B =
∑

e∈E(G) b(e) +
∑

u∈U b(u) the total budget in the system. Clearly, throughout the algorithm,
B ≥

∑
R∈R |δG(R)| holds.

At the beginning of the algorithm, we set R = {G}. Clearly, both invariants hold for R. Moreover,
the budget of every vertex u ∈ U is at most 4|U | · m

µ40
, so the total budget of all vertices in U is at

most 4|U |2 · m
µ40
≤ 16m

µ28
< m

µ27
(since |U | ≤ 2µ6), while the budget of every edge of G is 0. Therefore,

at the beginning of the algorithm, B ≤ m
µ27

holds. We will ensure that, throughout the algorithm, the

total budget B never increases. Since B ≥
∑

R∈R |δG(R)| always holds, this will ensure that, at the
end of the algorithm,

∑
R∈R |δG(R)| ≤ m

µ27
will hold.

Throughout the algorithm, we maintain a partition of the set R of clusters into two subsets: set RA of
active clusters, and set RI of inactive clusters. We will ensure that the following additional invariant
holds:

I3. every cluster R ∈ RI has the α0-bandwidth property; and

I4. for every cluster R ∈ RI , for every pair u, v of distinct vertices of UR, there is a collection of at
least 8m

µ50
edge-disjoint paths in R connecting u to v.

At the beginning of the algorithm, we set RA = R = {G} and RI = ∅. Clearly, all invariants hold
then. We then proceed in iterations, as long as RA 6= ∅.
In order to execute an iteration, we select an arbitrary cluster R ∈ RA to process. We will either
establish that R has the α0-bandwidth property in graph G, and that for every pair u, v ∈ UR of
distinct vertices there is a collection of at least 8m

µ50
edge-disjoint paths in R connecting u to v (in

which case R is moved from RA to RI); or we will modify the set R of clusters in a way that ensures
that the total budget decreases by at least 1/m. An iteration that processes a cluster R ∈ RA consists
of two steps. The purpose of the first step is to either establish the α0-bandwidth property of cluster
R, or to replace it with a collection of smaller clusters in RA. The purpose of the second step is to
either establish that, for every pair u, v ∈ UR of distinct vertices there is a collection of at least 8m

µ50

edge-disjoint paths in R connecting u to v, or to modify the set R of clusters in a way that decreases
the total budget by at least 1/m. We now describe each of the two steps in turn.

131

Step 1: Ensuring the Bandwidth Property. Let R+ be the augmentation of the cluster R in
graph G. Recall that R+ is a graph that is obtained from G through the following process. First, we
subdivide every edge e ∈ δG(R) with a vertex te, and we let T = {te | e ∈ δG(R)} be the resulting set
of vertices. We then let R+ be the subgraph of the resulting graph induced by vertex set V (R)∪T . We
apply Algorithm AARV for computing approximate sparsest cut to graph R+, with the set T of vertices,
to obtain a βARV(m)-approximate sparsest cut (X,Y) in graph R+ with respect to vertex set T . We
now consider two cases. The first case happens if |ER(X,Y)| ≥ α0 · βARV(m) ·min {|X ∩ T |, |Y ∩ T |}.
In this case, we are guaranteed that the minimum sparsity of any T -cut in graph R+ is at least α0,
or equivalently, set T of vertices is α0-well-linked in R+. From Observation 4.16, cluster R has the
α0-bandwidth property in graph G. In this case, we proceed to the second step of the algorithm.

Assume now that |ER(X,Y)| < α0 · βARV(m) · min {|X ∩ T |, |Y ∩ T |}. Since α0 = 1/ log3m, and m
is larger than a large enough constant (because m ≥ µ20), and since βARV(m) = O(

√
logm), we get

that the sparsity of the cut (X,Y) is less than 1. Consider now any vertex t ∈ T , and let v be the
unique neighbor of t in R+. We can assume w.l.o.g. that either t, v both lie in X, or they both lie in
Y . Indeed, if t ∈ X and v ∈ Y , then moving vertex t from X to Y does not increase the sparsity of
the cut (X,Y). This is because, for any two real numbers 1 ≤ a < b, a−1

b−1 ≤
a
b . Similarly, if t ∈ Y and

v ∈ X, then moving t from Y to X does not increase the sparsity of the cut (X,Y). Therefore, we
assume from now on, that for every vertex t ∈ T , if v is the unique neighbor of t in R+, then either
both v, t ∈ X, or both v, t ∈ Y .

Consider now the partition (X ′, Y ′) of V (R), where X ′ = X \ T and Y ′ = Y \ T . It is easy to verify
that |δG(R) ∩ δG(X ′)| = |X ∩ T |, and |δG(R) ∩ δG(Y ′)| = |Y ∩ T |. Let E′ = EG(X ′, Y ′), and assume
w.l.o.g. that |δG(R) ∩ δG(X ′)| ≤ |δG(R) ∩ δG(Y ′)|. Then |E′| < α0 · βARV(m) · |δG(R) ∩ δG(X ′)| must
hold. We remove cluster R from sets R and RA, and we add instead every connected component of
graphs G[X ′] and G[Y ′] to both sets. It is immediate to verify that R remains a collection of disjoint
clusters of G, and that

⋃
R′∈R V (R′) = V (G). Therefore, all invariants continue to hold. We now

show that the total budget B decreases by at least 1/m as the result of this operation.

Note that the only edges whose budgets may change as the result of this operation are edges of
δG(R) ∪ E′. Observe that, for each edge e ∈ δG(R) ∩ δG(Y ′), its budget b(e) may not increase. Since
we have assumed that |δG(R) ∩ δG(X ′)| ≤ |δG(R) ∩ δG(Y ′)|, and since |E′| < |δG(R)|/8, we get that
|δG(X ′)| ≤ 2|δG(R)|/3. Therefore, for every edge e ∈ δG(X ′) ∩ δG(R), its budget b(e) decreases by at
least 8α0 · βARV(m) · log3/2(|δG(R)|) − 8α0 · βARV(m) · log3/2(|δG(X ′)|). Since |δG(X ′)| ≤ 2|δG(R)|/3,
we get that log3/2(|δG(R)|) ≥ log3/2(3|δG(X ′)|/2) ≥ 1 + log3/2(|δG(X ′)|. We conclude that the budget
b(e) of each edge e ∈ δG(X ′) ∩ δG(R) decreases by at least 8α0 · βARV(m). On the other hand, the
budget of every edge e ∈ E′ increases by at most 3. Since |E′| ≤ α0 · βARV(m) · |δG(R) ∩ δG(X ′)|, we
get that the decrease in the budget B is at least:

8α0 · βARV(m) · |δG(X ′) ∩ δG(R)| − 3|E′|
≥ 8α0 · βARV(m) · |δG(X ′) ∩ δG(R)| − 3α0 · βARV(m) · |δG(R) ∩ δG(X ′)|
≥ 5α0 · βARV(m) · |δG(R) ∩ δG(X ′)|
> 1/m,

since α0 ≥ 1/m. Therefore, the total budget of all edges decreases by at least 1/m. Since the clusters
only become smaller, it is easy to verify that the budgets of the vertices of U do not increase. To
conclude, if |ER(X,Y)| < α0 · βARV(m) · min {|X ∩ T |, |Y ∩ T |}, then we have modified the set R of
clusters, so that all invariants continue to hold, and the total budget B decreases by at least 1/m. In
this case, we terminate the current iteration.

From now on we assume that |E(X,Y)| > α0 · βARV(m) · min {|X ∩ T |, |Y ∩ T |}, which, as observed
already, implies that cluster R has the α0-bandwidth property. We now proceed to describe the second
step of the algorithm.

132

Step 2: Ensuring Connectivity of Vertices of U . If, for every pair u, v ∈ UR of distinct vertices,
there is a collection of at least 8m

µ50
edge-disjoint paths in R connecting u to v, then we move cluster R

from RA to RI and terminate the current iteration. It is easy to verify that all invariants continue to
hold.

Assume now that there is a pair u, v ∈ UR of distinct vertices, such that the largest collection of
edge-disjoint paths in graph R connecting u to v contains fewer than 8m

µ50
paths. From the max-flow /

min-cut theorem, there is a cut (X,Y) of R, with u ∈ X, v ∈ Y , and |ER(X,Y)| < 8m
µ50

. We assume

w.l.o.g. that |X∩UR| ≤ |Y ∩UR|. We delete cluster R from R and from RA, and we add instead every
connected component of G[X] and G[Y] to both sets. We now show that the total budget decreases
by at least 1/m as the result of this procedure.

Notice that for every vertex x ∈ U , the budget of x did not increase. Moreover, if x is a vertex of
X ∩ UR, then its original budget was 4|UR| · mµ40 , and its new budget is 4|U ∩X| · m

µ40
≤ 2|UR| · mµ40 .

Since U ∩X 6= ∅, we get that
∑

x∈U b(x) decreased by at least 2m
µ40

.

Next, we consider the changes to the budgets of the edges. First, every edge in set E′ = ER(X,Y)
had budget 0 at the beginning of the iteration, and has budget at most 3 at the end of the iteration.
Since |ER(X,Y)| ≤ 8m

µ50
, the increase in the budget of the edges of E′ is bounded by 24m

µ50
.

We now consider two cases. The first case happens if |δG(R)| ≤ m
3µ40

. In this case, the increase in the

budget of every edge e ∈ δG(R) is bounded by 3 (since edge budgets may not exceed 3), and so the
total increase in the budgets of edges e ∈ δG(R) is bounded by 3|δG(R)| ≤ m

µ40
. The total increase

in all edge budgets is then bounded by m
µ40

+ 24m
µ50

, and, since the total budgets of all vertices in U

decreases by at least 2m
µ40

, we get that the total budget B decreases by at least m
4µ40
≤ 1

m .

Lastly, we assume that |δG(R)| > m
3µ40

. Consider some edge e ∈ δG(R). Since |δG(X)|, |δG(Y)| ≤
|δG(R)|+ |E′|, the increase in the budget of e is bounded by:

8α0 · βARV(m) · (log3/2(|δG(R)|+ |E′|)− log3/2(|δG(R)|)) ≤ 8α0 · βARV(m) · log3/2

(
1 +

|E′|
|δG(R)|

)
.

Since we have assumed that |δG(R)| > m
3µ40

, while |E′| ≤ 3m
µ50

, we get that |E′|
|δG(R)| < 1/2. Since for all

ε ∈ (0, 1/2), ln(1 + ε) ≤ ε, we get that the increase in the budget of e is bounded by 8α0 · βARV(m) ·
|E′|

|δG(R)|·ln(3/2) ≤ 24α0 ·βARV(m)· |E
′|

|δG(R)| . The increase in the budget of all edges of δG(R) is then bounded

by 24α0 · βARV(m) · |E′| ≤ 576mα0βARV(m)
µ50

≤ m
µ49

. Since the budget of all edges in E′ increases by at

most 24m
µ50

, and the budget of the vertices of U decreases by at least 2m
µ40

, the total budget in the system

decreases by at least m
µ40
≥ 1

m .

Since the initial budget B is bounded by m
µ27

, and in every iteration, either a new cluster is added to

set RI , or the budget B decreases by at least 1/m, the number of iterations is bounded by poly(m),
so the algorithm is efficient. Once the algorithm terminates, RI = R holds. We then return the set
C = R of clusters as the outcome of the algorithm. From our invarinats, we are guaranteed that⋃
C∈C V (C) = V (G), every cluster C ∈ C has the α0-bandwidth property, and for every cluster C ∈ C,

for every pair u, v of distinct vertices of C with degG(v),degG(u) ≥ m
µ6

, there is a collection of at least
8m
µ50

edge-disjoint paths in C connecting u to v. Since the total budget B remains bounded by m
µ27

,

and
∑

C∈C |δG(C)| ≤ B, we get that
∑

C∈C |δG(C)| ≤ m
µ27

holds.

We are now ready to complete the proof of Theorem 3.12. We start by applying the algorithm
from Lemma 8.1 to instance I, to obtain a collection C of clusters. We then apply Algorithm
AlgAdvancedDisengagement from Theorem 7.1 to instance I = (G,Σ), cluster set C, parameter µ

133

that remains unchanged, and parameter m = |E(G)|. Let I be the 2O((logm)3/4 log logm)-decomposition
of instance I that the algorithm returns. Recall that every instance I ′ ∈ I is a subinstance of I.
Consider any instance I ′ = (G′,Σ′) ∈ I, and assume that |E(G′)| > m/µ, and that I ′ is a wide
instance. It is enough to prove that instance I ′ is well-connected. Indeed, the algorithm from Theo-
rem 7.1 ensures that there is at most one cluster C ∈ C with E(C) ⊆ E(G′). If no such cluster exists,
then E(G′) ⊆ Eout(C). Since |Eout(C)| ≤ m

µ27
, |E(G′)| ≤ m

µ27
must hold in this case, contradicting our

assumption that |E(G′)| > m/µ. Therefore, there must be a cluser C ∈ C with C ⊆ G′. The algorithm
from Theorem 7.1 then guarantees that E(G′) ⊆ E(C) ∪ Eout(C). Consider some vertex v ∈ V (G′)

with degG′(v) ≥ |E(G′)|
µ5

. Since |E(G′)| ≥ m
µ , degG′(v) ≥ |E(G′)|

µ5
≥ m

µ6
must hold. In particular, since I ′

is a subinstance of I, and since |Eout(C)| ≤ m
µ27

, vertex v must lie in cluster C (as otherwise all edges

incident to v in G′ belong to Eout(C)), and so degG(v) ≥ m
µ6

must hold as well. The algorithm from

Lemma 8.1 ensures that, for every pair u, v of vertices of C with degG(u),degG(v) ≥ m
µ6

, there is a

collection P of at least 8m
µ50
≥ 8|E(G′)|

µ50
edge-disjoint paths in C connecting u to v. Since C ⊆ G′, every

path in P is also contained in G′. We conclude that instance I ′ must be well-connected.

9 An Algorithm for Wide and Well-Connected Instances – Proof of
Theorem 3.13

This section is dedicated to the proof of Theorem 3.13. Recall we are given a wide and a well-connected
instance I = (G,Σ) of the MCNwRS problem. For convenience, throughout this section, we refer to
instance I as Ǐ∗ = (Ǧ∗, Σ̌∗) and denote m̌ = |E(Ǧ∗)|. We let Ǧ be the graph that is obtained from
graph Ǧ∗ by subdividing every edge of Ǧ∗ with a vertex. Since every vertex in V (Ǧ) \ V (Ǧ∗) has
degree 2, we can extend the rotation system Σ̌∗ for graph Ǧ∗ to a rotation system Σ̌ for graph Ǧ, in a
natural way. We denote by Ǐ = (Ǧ, Σ̌) the resulting instance of MCNwRS. We sometimes refer to Ǐ as
the subdivided instance corresponding to Ǐ∗. Note that |E(Ǧ)| = 2m̌ and OPTcnwrs(Ǐ) = OPTcnwrs(Ǐ

∗).
Throughout this section, we will mostly be working with instance Ǐ. We will use notation I and m
when discussing various subinstances of Ǐ. Recall that m̌ ≥ µc′ must hold, where c′ is a large enough
constant. Given a subgraph G ⊆ Ǧ, we let Σ be the rotation system for G induced by Σ̌, and we will
refer to instance I = (G,Σ) as the subinstance of Ǐ defined by graph G.

We start with intuition. Fix an optimal solution ϕ∗ to instance Ǐ, where ϕ∗ is a drawing of graph
Ǧ on the sphere. In order to simplify the exposition, assume that cr(ϕ∗) = OPTcnwrs(I) ≤ m̌2/µc

′
,

where c′ is a large enough constant. Since instance Ǐ∗ is wide, there is a vertex v ∈ V (Ǧ), a partition
(E1, E2) of the edges of δǦ(v), with the edges of E1 appearing consecutively in the rotation Ov ∈ Σ,
and a collection P of at least m̌/µ50 edge-disjoint cycles in graph G, where every cycle P ∈ P contains
an edge of E1 and an edge of E2. Informally, we say that a vertex u of Ǧ is heavy if it lies on a large
number of cycles of P, otherwise we say it is light.

Let P ∗ ∈ P be a cycle that we select uniformly at random. Since |P| ≥ m̌/µ50, the expected number of
crossings in which the edges of E(P ∗) participate in ϕ∗ is relatively small – at most OPTcnwrs(I)·µ50/m̌.
We can use this fact in order to show that, with a high enough probability, there is a near-optimal
solution ϕ′ to instance Ǐ, in which the images of the edges of E(P ∗) do not cross each other, and they
participate in relatively few crossings. Let E′ denote the set of all edges e ∈ E(Ǧ), such that e is
incident to a light vertex u ∈ V (P ∗), and e 6∈ E(P ∗). From the definition of light vertices and the
fact that |P| is large, we can show that with high enough probability, |E′| is quite small. Additionally,
using the cycles in P, we can compute, for every heavy vertex u ∈ V (P ∗), an orientation bu ∈ {−1, 1}.
We show that with high probability, this orientation is consistent with the solution ϕ′ to instance Ǐ.
In other words, if bu = −1, then the images of the edges of δG(u) enter the image of u in ϕ′ according
to the ordering Ou ∈ Σ in clock-wise direction, and otherwise the direction is counter-clock-wise.

134

Note that the image of the cycle P ∗ in the near-optimal solution ϕ′ to instance Ǐ partitions the sphere
into two internally disjoint discs D and D′. Let E′′ be the set of edges of Ǧ whose images cross the
images of the edges of P ∗. From our construction, with reasonably high probability, |E′′| is relatively
small. We can view the image of cycle P ∗ in ϕ′ as splitting graph G\ (E′∪E′′) into two subgraphs, G1

and G2, where G1 contains all edges and vertices that are drawn inside D, while G2 contains all edges
and vertices that are drawn inside D′. The only vertices and edges that the two graphs share are the
vertices and edges of P ∗. We can further ensure that each of the subinstances contains a significant
number of edges, so |E(G1)|, |E(G2)| are both significantly smaller than m̌.

If we could compute the two graphs G1, G2 efficiently, then we could construct two subinstances
I1 = (G′1,Σ

′
1), I2 = (G′2,Σ

′
2) of instance Ǐ, where graph G′1 is obtained from G1 by contracting the

vertices of V (P ∗) into a supernode v∗, and letting the rotation of this supernode in Σ′1 be determined
by the rotations of the vertices of V (P ∗) in instance Ǐ, the orientations of the heavy vertices of P ∗

that we have computed, and the order of the vertices of P ∗ on the cycle; instance I2 is computed
similarly from G2. Given solutions ϕ1, ϕ2 to the instances I1, I2, respectively, we can combine them to
obtain a solution ϕ to instance Ǐ, as follows. First, we un-contract the supernode v∗ in each of the two
instances to obtain a cycle P ∗, and then we “glue” the two drawings together via this cycle. Next, we
insert the edges of E′∪E′′ into the resulting drawing, obtaining a drawing ϕ of G. Since |E′|, |E′′| are
relatively small, so is the increase in the number of crossings relatively to cr(ϕ1) + cr(ϕ2). We could
then apply the same decomposition process recursively to instances I1 and I2 (if these instances are
wide). We refer to I1 and I2 as the contracted instances corresponding to subgraphs G1 and G2 of G,
respectively.

The main difficulty with this approach is that we do not know the optimal solution ϕ∗ to instance Ǐ,
or the near-optimal solution ϕ′, and so we cannot compute the two graphs G1, G2 with the required
properties. We also do not know the set E′′ of edges whose images cross the images of the edges
of E(P ∗) in ϕ′. Instead, we compute a relatively small edge set E∗, and two subgraphs G̃1, G̃2 of
G \ (E′ ∪E∗), for which the following hold. First, E(G̃1)∪E(G̃2)∪E′ ∪E∗ = E(G). Second, the only
vertices and edges that these two graphs share are the vertices and edges of P ∗. Third, the number of
edges in each of the graphs G̃1, G̃2 is significantly smaller than |E(G)|. Lastly, there is a near-optimal
drawing ϕ′ of G \ (E′ ∪E∗), in which the edges of P ∗ do not cross each other. Moreover, if we denote
by D and D′ the two discs of the sphere whose boundaries are the image of P ∗ in ϕ′, then, by slightly
modifying the drawing, we can ensure that all vertices of G̃1 are drawn inside D, all vertices of G̃2

are drawn inside D′, and the number of crossings in which the edges of P ∗ participate is quite small.
Unfortunately, we can no longer guarantee that every edge of G̃1 is drawn inside D and every edge
of G̃2 is drawn inside D′. We can then define the contracted instances I1 and I2 associated with
the graphs G̃1 and G̃2 exactly as before. As before, given solutions to instances I1 and I2, we can
efficiently combine them to obtain a solution to instance Ǐ. But unfortunately we can no longer claim
that OPTcnwrs(I1) +OPTcnwrs(I2) is small. This is since, in the near-optimal drawing of G \ (E′ ∪E∗),
some edges of G̃1 may be partially drawn inside the disc D′, and it is not clear how to “move” them
to the interior of D without significantly increasing the number of crossings. The same is true for
edges of G̃2 that may be partially drawn inside the disc D. This is the main difficulty in designing
our algorithm using the framework outlined above.

Our algorithm consists of two phases. In the first phase, we follow the above framework to construct
an initial collection I of subinstances of Ǐ, that have all required properties, except that we will not
be able to ensure that

∑
I∈I OPTcnwrs(I) is suitably bounded, even if OPTcnwrs(Ǐ) is small. In the

second phase, we will try to “repair” each one of the instances I = (G,Σ) ∈ I, by removing a small
subset of edges from G. We will show that, after the removal of these edges, the expectation of∑

I∈I OPTcnwrs(I) is suitably bounded. In both phases, we rely on the same algorithm outlined above,
that gradually decomposes an input instance I = (G,Σ) into smaller and smaller subinstances. The

135

algorithms for both Phase 1 and Phase 2 follow this high-level framework, though the specifics are
somewhat different. We start with the main definitions that we use throughout this section.

9.1 Main Definitions

Throughout, given a graph H and a drawing ϕ of H on the sphere or in the plane, we denote by F(ϕ)
the set of all faces in drawing ϕ.

We use the notion of a subdivided graph.

Definition 9.1 (Subdivided graph) We say that a graph G is a subdivided graph, if G does not
contain parallel edges, and additionally, for every edge e = (u, v), either degG(u) ≤ 2 or degG(v) ≤ 2
holds.

Note that, if G is any graph, and G′ is a graph obtained by suvdividing every edge of G, then G′ is a
subdivided graph, and so is every subgraph of G′. In particular, graph Ǧ associated with instance Ǐ
of MCNwRS is subdivided, and so is every subgraph of Ǧ.

9.1.1 Cores and Core Structures

The first central notion that we use is that of a core, and its associated core structure.

Definition 9.2 (Core and Core Structure) Let G be a subgraph of Ǧ, and let I = (G,Σ) be the
subinstance of Ǐ defined by G. A core structure for instance I consists of the following:

• a connected subgraph J of G called a core, such that, for every edge e ∈ E(J), graph J \ {e} is
connected (but we also allow J to consist of a single vertex);

• an orientation bu ∈ {−1, 1} for every vertex u ∈ V (J);

• a drawing ρJ of J on the sphere with no crossings, that is consistent with the rotation system Σ
and the orientations in {bu}u∈V (J). In other words, for every vertex u ∈ V (J), the images of the
edges in δJ(u) enter the image of u in ρJ according to their order in the rotation Ou ∈ Σ and
orientation bu (so, e.g. if bu = 1 then the orientation is counter-clock-wise); and

• a distinguished face F ∗(ρJ) ∈ F(ρJ), such that the image of every vertex u ∈ V (J), and the
image of every edge e ∈ E(J) is contained in the boundary of face F ∗(ρJ) in drawing ρJ .

We denote a core structure by J = (J, {bu}u∈V (J) , ρJ , F
∗(ρJ)), and we refer to graph J as the core

associated with J . We denote F×(ρJ) = F(ρJ) \ {F ∗(ρJ)}, and we refer to the faces in F×(ρJ) as the
forbidden faces of the drawing ρJ .

The last two requirements in the above definition impose a certain structure on the core graph J .
Specifically, there must be a collection W of edge-disjoint cycles, with

⋃
W∈W E(W) = E(J), such

that every pair W,W ′ ∈ W of cycles share at most one vertex, which must be a separator vertex for
J (see Figure 28(a) for an illustration).

Note that, since graph G is subdivided, for every edge e ∈ E(G)\E(J), at most one endpoint of e may
lie in J . Indeed, assume that e = (u, v). From the definition of subdivided graphs, either degG(u) ≤ 2
or degG(v) ≤ 2 holds. Assume w.l.o.g. that it is the former. If u ∈ V (J), then graph J contains
at most one edge incident to u, that we denote by e′. But then J \ {e′} is not a connected graph,
contradicting the definition of a core.

136

(a) A core J and its drawing ρJ , with the separator
vertices of J shown in green. The distinguished face
F ∗(ρJ) is the infinite face in this drawing.

(b) Disc D(J) associated with core J , and its
boundary (shown in pink).

Figure 28: An illustration of a core J and its disc D(J).

Consider now a core structure J = (J, {bu}u∈V (J) , ρJ , F
∗(ρJ)), and specifically the drawing ρJ of the

graph J on the sphere. We define a disc D(J), that contains the drawing of J in its interior, such
that the boundary of disc D(J) is contained in face F ∗(ρJ), and it is a simple closed curve that closely
follows the boundary of F ∗(ρJ) (see Figure 28(b)).

Consider some vertex u ∈ V (J), and the tiny u-disc D(u) = DρJ (u) in the drawing ρJ . Since vertex
u lies on the boundary of face F ∗(ρJ), we can define disc D(u) so that, for every maximal segment σ
on the boundary of D(u) that is contained in F ∗(ρJ), there is a contiguous curve σ′ ⊆ σ of non-zero
length, that is contained in the boundary of the disc D(J) (see Figure 29).

Denote δG(u) =
{
eu1 , . . . , e

u
du

}
, where du = degG(u), so that the edges are indexed according to their

ordering in the rotation Ou ∈ Σ. We can then define a collection
{
pu1 , . . . , p

u
du

}
of distinct points on

the boundary of the disc D(u), such that the following hold:

• points pu1 , . . . , p
u
du

are encountered in this order when traversing the boundary of D(u) in the
direction of the orientation bu;

• for every edge eui ∈ E(J), point pui is the unique point on the image of eui in ρJ lying on the
boundary of D(u); and

• if a point pui lies in the interior of face F ∗(ρJ), then it lies on the boundary of the disc D(J).

For all 1 ≤ i ≤ du, we view point pui as representing the edge eui . There is one more property that we
require from a core structure.

Definition 9.3 (Valid Core Structure) We say that a core structure J = (J, {bu}u∈V (J) , ρJ , F
∗(ρJ))

is valid if, for every vertex u ∈ V (J), for every edge eui ∈ δG(u) \ E(J), the corresponding point pui
lies in the interior of face F ∗(ρJ) (and hence on the boundary of the disc D(J)).

In the remainder of this section, whenever we use the term “core structure”, we assume that this core
structure is valid.

137

Figure 29: Illustration of disc D(u) for a core that contains u. Disc D(u) is shown in gray, and disc
D(J) is shown in pink. Note that both discs share portions of their boundaries that are contained in
face F ∗(ρJ) – the infinite face in the current drawing. Edges of J incident to u are shown in blue, and
all other edges that are incident to u are shown in brown.

Ordering O(J) of the Edges of δG(J). Consider a core structure J = (J, {bu}u∈V (J) , ρJ , F
∗(ρJ)),

the drawing ρJ of J , and its corresponding disc D(J). Recall that, for every vertex u ∈ V (J) and
every edge eui ∈ δG(J), we have defined a point pui on the boundary of the disc D(J) representing the
edge eui . Recall that each edge e ∈ δG(J) has exactly one endpoint in J . We define a circular oriented
ordering O(J) of the edges of δG(J) to be the circular order in which the points pui corresponding to
the edges of δG(J) are encountered, as we traverse the boundary of the disc D(J) in the clock-wise
direction.

9.1.2 Drawings of Graphs

Next, we define a valid drawing of a graph G with respect to a core structure J .

Definition 9.4 (A J -Valid Solution) Let G be a subgraph of Ǧ, let I = (G,Σ) be the subinstance
of Ǐ defined by G, and let J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) be a core structure for I. A solution ϕ

of instance I is J -valid if we can define a disc D′(J) that contains the images of all vertices and
edges of the core J in its interior, and the image of the core J in ϕ is identical to ρJ (including the
orientation), with disc D′(J) in ϕ playing the role of the disc D(J) in ρJ . We sometimes refer to a
J -valid solution to instance I as a J -valid drawing of graph G.

Abusing the notation, we will not distinguish between disc D(J) in ρJ and disc D′(J) in ϕ, denoting
both discs by D(J).

Consider now some solution ϕ to instance I, that is J -valid, with respect to some core structure J .
The image of graph J in ϕ partitions the sphere into regions, each of which corresponds to a unique
face of F(ρJ). We do not distinguish between these regions and faces of F(ρJ), so we view F(ρJ) as
a collection of regions in the drawing ϕ of G.

Note that the edges of J may participate in crossings in ϕ, but no two edges of J may cross each
other. Consider now a crossing (e, e′)p in drawing ϕ. We say that it is a dirty crossing if exactly one
of the two edges e, e′ lies in E(J). We denote by χdirty(ϕ) the set of all dirty crossings of drawing ϕ.
We say that an edge e ∈ E(G) \ E(J) is dirty in ϕ if it participates in some dirty crossing of ϕ.

138

Next, we define special types of J -valid drawings, called clean and semi-clean drawings.

Definition 9.5 (Clean and Semi-Clean Drawings) Let G be a subgraph of Ǧ, let I = (G,Σ) be
the subinstance of Ǐ defined by G, let J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) be a core structure for I, and
let ϕ be a solution to instance I. We say that ϕ is a semi-clean solution to instance I, or a semi-clean
drawing of G, with respect to J , if it is a J -valid drawing, and, additionally, the image of every vertex
of V (G) \ V (J) lies outside of the disc D(J) (so in particular it must lie in the interior of the region
F ∗(ρJ) ∈ F(ρJ)).

If, additionally, the image of every edge of E(G) \ E(J) is entirely contained in region F ∗(ρJ), then
we say that ϕ is a clean solution to I with respect to J , or that it is a J -clean solution.

Notice that, from the definition, if ϕ is a clean solution to instance I with respect to core structure
J , then the edges of J may not participate in any crossings in ϕ.

Drawings of Subgraphs and Compatible Drawings. Notice that, if G′ is a subgraph of G that
contains J , then a core structure J for instance I = (G,Σ) remains a valid core structure for the
subinstance I ′ = (G′,Σ′) of Ǐ defined by G′. Therefore, J -valid drawings are well-defined for every
subgraph G′ ⊆ G.

Assume now that we are given a J -valid solution ϕ to instance I, and a subinstance I ′ = (G′,Σ′) of
I that is defined as above. Intuitively, we will often obtain a J -valid solution ϕ′ to instance I ′ by
slightly modifying the solution ϕ to instance I. We will, however, restrict the types of modifications
that we allow. In particular we do now allow adding any new images of edges (or their segments), or
new images of vertices to the forbidden regions in F×(ρJ). We now define these restrictions formally.

Definition 9.6 (Compatible Drawings.) Let G be a subgraph of Ǧ, let I = (G,Σ) be the subin-
stance of Ǐ defined by G, let J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) be a core structure for I, and let ϕ be

a J -valid solution to instance I. Let G′ be a subgraph of G with J ⊆ G′, and let I ′ = (G′,Σ′) be
the subinstance of Ǐ defined by G′. Finally, let ϕ′ be a J -valid solution to instance I ′. We say that
drawing ϕ′ of G′ is compatible with drawing ϕ of G with respect to J , if the following hold:

• the image of the core J and the correpsonding disc D(J) in ϕ′ are identical to those in ϕ;

• if a point p is an inner point of an image of an edge in ϕ′, then it is an inner point of an image
of an edge in ϕ;

• if a point p is a crossing point between a pair of edges in ϕ′, then it is a crossing point between
a pair of edges in ϕ;

• if a point p is an image of a vertex v in ϕ′, then either (i) point p is an image of vertex v in ϕ;
or (ii) vertex v has degree 2 in G′, and point p is an inner point on an image of an edge in ϕ;

• if the image of a vertex v ∈ V (G′) lies outside the region F ∗(ρJ) in ϕ′, then ϕ′(v) = ϕ(v); and

• if σ is a maximal segment of an image of an edge e ∈ E(G′) in ϕ′ that is internally disjoint from
region F ∗(ρJ), then σ ⊆ ϕ(e).

Note that, if we obtain drawing ϕ′ from drawing ϕ, then the only changes that are allowed outside of
region F ∗(ρJ) is the deletion of images of vertices or (segments of) images of edges. In other words,(
ϕ′(G′) \ F ∗(ρJ)

)
⊆
(
ϕ(G) \ F ∗(ρJ)

)
.

139

9.1.3 A J -Contracted Instance

Suppose we are given a subgraphG of Ǧ, together with a core structure J = (J, {bu}u∈V (J) , ρJ , F
∗(ρJ))

for the subinstance I of Ǐ defined by G. We now define a J -contracted subinstance Î = (Ĝ, Σ̂) of
instance I. Graph Ĝ is obtained from graph G, by contracting the vertices of the core J into a
supernode vJ . In order to define the rotation system Σ̂, for every vertex u ∈ V (Ĝ) \ {vJ}, we let the
rotation Ou remain the same as in Σ, and for the supernode vJ , we set the corresponding rotation
OvJ ∈ Σ′ to be the ordering O(J) of the edges of δĜ(vJ) = δG(J) that we have defined above (recall
that this is the order in which points pui appear on the boundary of disc D(J), for all u ∈ V (J) and
1 ≤ i ≤ du).

Throughout our algorithm, we will consider subgraphs G ⊆ Ǧ. Each such subgraph will always be
associated with a core structure J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I of Ǐ defined by

G. The J -contracted subgraph of I will always be denoted by Î = (Ĝ, Σ̂). We denote by m̂(I) = |E(Ĝ)|
– the number of edges in the J -contracted subinstance of I. We need the following simple observation.

Observation 9.7 There is an efficient algorithm, whose input consists of a subgraph G of Ǧ, a core
structure J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I = (G,Σ) of Ǐ defined by G, and a
J -clean solution ϕ to instance I. The output of the algorithm is a solution ϕ̂ to the corresponding
J -contracted instance Î = (Ĝ, Σ̂), with cr(ϕ̂) = cr(ϕ).

Proof: Consider the solution ϕ to instance I. From the definition of a clean solution, there is a disc
D(J) that contains the drawing of J in ϕ, which is in turn identical to drawing ρJ . For every vertex
u ∈ V (G)\V (J), its image appears outside the disc D(J) in ϕ. We are also guaranteed that, for every
edge e ∈ E(G) \ E(J), its drawing ϕ(e) is contained in region F ∗(ρJ).

By slightly manipulating the boundary of the disc D(J), we can ensure that, for every edge e ∈
E(G) \ E(J), if e is not incident to any vertex of J , then ϕ(e) does not intersect disc D(J), and
otherwise, ϕ(e) ∩D(J) is a contiguous curve.

For every edge e ∈ δG(J), denote by pe the unique intersection point between the boundary of D(J)
and the curve ϕ(e). Since the drawing ϕ of G is J -valid, the circular ordering of the points of
{pe | e ∈ δG(J)} on the boundary of disc D(J) is precisely O(J). For each edge e ∈ δG(J), we erase
the segment of ϕ(e) that is contained in D(J). We then contract the disc D(J) into a single point, that
becomes the image of the supernode vJ . We have now obtained a valid solution ϕ̂ to the J -contracted
instance Î, with cr(ϕ̂) = cr(ϕ).

We note that the converse of Observation 9.7 is also true: given a solution ϕ̂ to the J -contracted
instance Î, we can efficiently construct a clean solution ϕ to instance I, with cr(ϕ) = cr(ϕ̂), as follows.
First, we expand the image of the supernode vJ so it becomes a disc, that we denote by D(J). We
then plant the drawing ρJ of the core J inside the disc. Note that the circular ordering in which
the edges of δĜ(vJ) enter the boundary of the disc D(J) from the outside is identical to the circular
ordering in which the edges of δG(J) = δĜ(vJ) enter the boundary of the disc D(J) from the inside,
and their orientations match. Therefore, we can “glue” the corresponding curves to obtain, for each
edge e ∈ δG(J), a valid drawing connecting the images of its endpoints.

9.1.4 Core Enhancement and Promising Sets of Paths

Our main subroutine, called ProcSplit, starts with a subinstance I = (G,Σ) of Ǐ that is defined by
a subgraph G of Ǧ, and a core structure J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for it. We “enhance” the
corresponding core J by adding either one cycle, or one path to it, that we refer to as core enhancenemt.
We also decompose instance I = (G,Σ) into two subinstances, I1 = (G1,Σ1) and I2 = (G2,Σ2), where

140

G1, G2 ⊆ G. Using the enhancement for the core structure J , we then construct two new core
structures: core structure J1 for instance I1, and core structure J2 for instance I2.

In order to avoid cumbersome notation, we will sometimes refer to simple cycles as paths. Given a
simple cycle W , we will designate one of the vertices v ∈ V (W) to be the “endpoint” of the cycle.
When referring to two endpoints of W , we will think of both endpoints as being v.

We start by defining the notions of core enhancement and core enhancement structure.

Definition 9.8 (Core Enhancement) Given a subgraph G of Ǧ, and a core structure
J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I = (G,Σ) of Ǐ defined by G, an enhancement of
the core structure J is a simple path P ⊆ G (that may be a simple cycle), whose both endpoints belong
to J , such that P is internally disjoint from J (see Figure 30).

(a) When P is a simple path. (b) When P is a simple cycle.

Figure 30: An illustration of an enhancement of a core structure J . The core J is shown in blue, and
the enhancement in orange.

For simplicity of notation, we will sometimes refer to an enhancement of a core structure J as an
enhancement of the corresponding core J , or as a J -enhancement. Next, we define a core enhancement
structure.

Definition 9.9 (Core Enhancement Structure) Given a subgraph G of Ǧ, and a core structure
J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I = (G,Σ) of Ǐ defined by G, a J -enhancement
structure consists of:

• a J -enhancement P ;

• an orientation bu ∈ {−1, 1} for every vertex u ∈ V (P) \ V (J); and

• a drawing ρ′ of the graph J ′ = J∪P with no crossings, such that ρ′ is consistent with the rotation
system Σ and the orientations bu for all vertices u ∈ V (J ′) (here, the orientations of vertices of
J are determined by J), and moreover, ρ′ is a clean drawing of J ′ with respect to J .

Intuitively, in the drawing ρ′ of graph J ′, the drawing of graph J should be identical to ρJ , and the path
P should be drawn inside the region F ∗(ρJ). For convenience of notation, we denote a J -enhancement

by A =
(
P, {bu}u∈V (J ′) , ρ

′
)

, where J ′ = J ∪P . We will always assume that, for every vertex u ∈ V (J)

its orientation bu in A is identical to its orientation in J .

141

Promising Set of Paths. We now define promising sets of paths, that will be used in order to
compute an enhancement of a given core structure.

Definition 9.10 (Promising Set of Paths) Let G be a subgraph of Ǧ, let I = (G,Σ) be the subin-
stance of Ǐ defined by G, let J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) be a core structure for I, and let P be
a collection of simple edge-disjoint paths in G, that are internally disjoint from J . We say that P is
a promising set of paths, if there is a partition (E1, E2) of the edges of δG(J), such that the edges of
E1 appear consecutively in the ordering O(J), and every path in P has an edge of E1 as its first edge,
and an edge of E2 as its last edge.

We note that some paths in a promising path set may be cycles. We show an efficient algorithm to
compute a large set of promising paths for an instance I whose corresponding contracted instance is
wide. The proof of the following claim is standard, and it is deferred to Section H.1 of Appendix.

Claim 9.11 There is an efficient algorithm that takes as input a subgraph G ⊆ Ǧ and a core structure
J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I = (G,Σ) of Ǐ defined by graph G, such that the
following properties hold:

• for every vertex v ∈ V (G) with degG(v) ≥ m̂(I)
µ4

, there is a collection Q(v) of at least 2m̂(I)
µ50

edge-disjoint paths in G connecting v to the vertices of J ; and

• the J -contracted subinstance Î of I is wide.

The algorithm computes a promising set of paths for I and J , of cardinality
⌊
m̂(I)
µ50

⌋
.

9.1.5 Splitting a Core Structure and an Instance via an Enhancement Structure

Splitting the Core Structure. Suppose we are given a subgraph G of Ǧ, a core structure J =
(J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I = (G,Σ) of Ǐ defined by G, and an enhancement

structure A =
(
P, {bu}u∈V (J ′) , ρ

′
)

for J , where J ′ = J ∪ P . We now show an efficient algorithm

that, given J and A, splits the core structure J into two new core structures, J1 and J2, using the
enhancement structure A. We refer to (J1,J2) as a split of the core structure J via the enhancement
structure A.

We let ρ′ be the drawing of the graph J ′ on the sphere given by the enhancement structure A. Recall
that there is a disc D(J) that contains the image of J in ρ′, whose drawing in D(J) is identical to
ρJ . Additionally, all vertices and edges of P must be drawn in region F ∗(ρJ) of ρ′. Therefore, in the
drawing ρ′ of J ′, there are two faces incident to the image of the path P , that we denote by F1 and
F2, respectively, and F1 ∪ F2 = F ∗(ρJ) holds. We let J1 ⊆ J ′ be the graph containing all vertices and
edges, whose images lie on the boundary of face F1 in ρ′, and we define graph J2 ⊆ J ′ similarly for
face F2.

We now define the core structure J1, whose corresponding core graph is J1. For every vertex u ∈ V (J1),
its orientation bu is the same as in A. The drawing ρJ1 of J1 is defined to be the drawing of J1 induced
by the drawing ρ′ of J ′. Note that F1 remains a face in the drawing ρJ1 . We then let F ∗(ρJ1) = F1.
The definition of the core structure J2 is symmetric, except that we use core J2 instead of J1 and face
F2 instead of F1 (see Figure 31 for an illustration). This completes the description of the algorithm
for computing a split (J1,J2) of the core structure J via the enhancement structure A.

Next, we define a split of an instance I along a core enhancement structure A.

Definition 9.12 (Splitting an Instance along an Enhancement Structure) Let G be a sub-
graph of Ǧ, let J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) be a core structure for the subinstance I = (G,Σ) of Ǐ

142

(a) Before the split. Core J is
shown in blue and face F ∗(ρJ) is
shown in gray.

(b) Face F ∗(ρJ) is split into faces
F1 and F2 by the image of the en-
hancement path P (shown in or-
ange).

(c) New cores J1 (top) and J2 (bot-
tom).

Figure 31: Splitting a core structure via an enhancement structure.

defined by G, and let A =
(
P, {bu}u∈V (J ′) , ρ

′
)

be an enhancement structure for J , where J ′ = J ∪P .

Let (J1,J2) be the split of J via the enhancement structure A, and denote by J1, J2 the cores of J1

and J2, respectively. A split of instance I along A is a pair I1 = (G1,Σ1), I2 = (G2,Σ2) of instances
of MCNwRS, for which the following hold.

• V (G1) ∪ V (G2) = V (G) and E(G1) ∪ E(G2) ⊆ E(G);

• every vertex v ∈ V (G1) ∩ V (G2) belongs to V (J1) ∩ V (J2);

• instance I1 is the subinstance of Ǐ defined by G1, and instance I2 is the subinstance of Ǐ defined
by G2; and

• J1 is a valid core structure for I1, and J2 is a valid core structure for I2.

Notice that some edges of graph G may not lie in E(G1) ∪ E(G2). We informally refer to such edges
as deleted edges, and we will sometimes denote the set of such deleted edges by Edel. Typically we will
ensure that |Edel| is quite small.

The following crucial observation shows that clean solutions to instances I1 and I2 can be combined
to obtain a clean solution to instance I. The proof is deferred to Section H.2 of Appendix.

Observation 9.13 There is an efficient algorithm, whose input consists of a subgraph G of Ǧ, a core
structure J for the subinstance I = (G,Σ) of Ǐ defined by G, a J -enhancement structure A, and a split
(I1, I2) of I along A, together with a clean solution ϕ1 to instance I1 with respect to J1, and a clean
solution ϕ2 to instance I2 with respect to J2, where (J1,J2) is the split of J along A. The algorithm
computes a clean solution ϕ to instance I with respect to J , with cr(ϕ) ≤ cr(ϕ1)+cr(ϕ2)+|Edel|·|E(G)|,
where Edel = E(G) \ (E(G1) ∪ E(G2)).

9.1.6 Auxiliary Claim

We will use the following simple auxiliary claim several times. The proof is similar to the proof of
Claim 9.9 in [CMT20] and is deferred to Section H.3 of Appendix.

143

Claim 9.14 Let I = (G,Σ) be an instance of MCNwRS, and let P = {P1, . . . , P4k+2} be a collection
of directed simple edge-disjoint paths in G, that are non-transversal with respect to Σ. For all 1 ≤ i ≤
4k + 2, let ei be the first edge on path Pi. Assume that there are two distinct vertices u, v ∈ V (G),
such that all paths in P originate at u and terminate at v, and assume further that edges e1, . . . , e4k+2

appear in this order in the rotation Ou ∈ Σ. Lastly, let ϕ be any solution to instance I, such that the
number of crossings (e, e′)p in ϕ with e or e′ lying in E(P1) is at most k, and assume that the same is
true for E(P2k+1). Then ϕ does not contain a crossing between an edge of P1 and an edge of P2k+1.

9.2 Splitting a Subinstance: Procedure ProcSplit

In this subsection we describe the main subroutine that we use in our algorithm, called ProcSplit. The
goal of the subroutine is to split a given subinstance of the input instance Ǐ into two. In order to
simplify the statement of the main result of this subsection, we start by defining a valid input and a
valid output of the subroutine. Recall that Ǐ = (Ǧ, Σ̌) is the instance of MCNwRS that was obtained
by subdividing the instance that serves as input to Theorem 3.13.

Valid Input for ProcSplit. A valid input to Procedure ProcSplit consists of a subgraph G of Ǧ, a
core structure J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I = (G,Σ) of Ǐ defined by G, and

a promising set P of paths for I and J of cardinality
⌊
|E(G)|
µb

⌋
for some constant b, such that there

exists a solution ϕ to instance I that is J -valid, with cr(ϕ) ≤ |E(G)|2
µ60b

and |χdirty(ϕ)| ≤ |E(G)|
µ60b

.

We emphasize that the solution ϕ to instance I is not given as part of input and it is not known to
the algorithm.

Valid Output for ProcSplit. A valid output for ProcSplit consists of a J -enhancement structure A,
and a split (I1 = (G1,Σ1), I2 = (G2,Σ2)) of I along A. Let P ∗ be the enhancement path of A, and
let (J1,J2) be the split of the core structure J along A. Denote Edel(I) = E(G) \ (E(G1) ∪ E(G2)).
Let G′ = G \ Edel(I), and let I ′ = (G′,Σ′) be the subinstance of Ǐ defined by graph G′. We require
that the following properties hold:

P1. |Edel(I)| ≤ 2cr(ϕ)·µ38b
m + |χdirty(ϕ)|, where m = |E(G)|;

P2. |E(G1)|, |E(G2)| ≤ |E(G)| − |E(G)|
32µb

; and

P3. there is a J -valid solution ϕ′ for instance I ′ that has the following properties:

• drawing ϕ′ is compatible with ϕ;

• the images of the edges of E(J) ∪ E(P ∗) do not cross each other in ϕ′;

• cr(ϕ′) ≤ cr(ϕ);

• the number of crossings in which the edges of P ∗ participate in ϕ′ is at most cr(ϕ)·µ12b
m ;

• if we let ϕ1 be the solution to instance I1 induced by ϕ′, then drawing ϕ1 is J1-valid, and
similarly, if we let ϕ2 be the solution to instance I2 induced by ϕ′, then drawing ϕ2 is
J2-valid.

The main theorem of this subsection summarizes the properties of Procedure ProcSplit.

Theorem 9.15 There is an efficient randomized algorithm, that, given a valid input (G,J ,P) to

procedure ProcSplit, with probability at least 1− 220

µ10b
computes a valid output for the procedure.

144

We will refer to the algorithm from Theorem 9.15 as ProcSplit. The remainder of this subsection
is dedicated to the proof of Theorem 9.15. Throughout the proof, we denote by I = (G,Σ) the
subinstance of Ǐ defined by graph G, by J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) the given core structure
for I, and by m = |E(G)|. The algorithm consists of two steps. In the first step, we compute an
enhancement P ∗ of the core structure J and analyze its properties. In the second step, we complete
the construction of the enhancement structure A and of the split (I1, I2) of instance I along A. We
now describe each of the steps in turn. In order to simplify the exposition, throughout this subsection,
we use “enhancement” and “enhancement structure” when we refer to an enhancement of J and
enhancement structure for J . For simplicity of notation, we also denote the drawing ρJ of the core J
by ρ, and the face F ∗(ρJ) of this drawing by F ∗.

9.2.1 Step 1: Computing an Enhancement

We start by discarding from P all paths that contain more than 32µb edges. Since the paths in P are
edge-disjoint, the number of the discarded path is bounded by m

32µb
, and so |P| ≥ 15m

16µb
continues to

hold.

In order to compute an enhancement, we slightly modify the promising set P of paths, to ensure that,
for every pair P, P ′ ∈ P of distinct paths, for every vertex v ∈ (V (P)∩V (P ′)) \V (J), the intersection
of P and P ′ at vertex v is non-transversal. Throughout, we denote by (E1, E2) the partition of the
edges of δG(J), with the edges of E1 appearing consecutively in the ordering O(J), suh that every
path P ∈ P has an edge of E1 as its first edge and an edge of E2 as its last edge.

In order to modify the set P of paths, we first subdivide every edge e ∈ δG(J) with a new vertex te,
denoting T1 = {te | e ∈ E1} and T2 = {te | e ∈ E2}. Let H be a new graph obtained from G after
we delete the vertices and the edges of J from it, contract all vertices of T1 into a new vertex s, and
contract all vertices of T2 into a new vertex t. We define a rotation system Σ̃ for graph H in a natural
way: For every vertex v ∈ V (H) \ {s, t}, its rotation Ov in Σ̃ remains the same as in Σ. For vertex s
its rotation Os ∈ Σ̃ is the circular ordering of the edges of E1 induced by the ordering O(J). Similarly,
rotation Ot ∈ Σ̃ is the circular ordering of the edges of E2 induced by the ordering O(J).

The set P of paths in graph G defines a set Q of |P| edge-disjoint paths in H that connect s to t, and
are internally disjoint from s and t. We apply the algorithm from Lemma 4.7 to graph H and the set
Q of paths to obtain another set Q′ of |P| simple edge-disjoint paths in H, where every path connects
s to t and is internally disjoint from both s and t as before, but now the paths are non-transversal
with respect to Σ̃. Lastly, path set Q′ naturally defines a collection P∗ of |P| simple edge-disjoint
paths in graph G, where every path in P∗ contains an edge of E1 as its first edge, and an edge of E2

as its last edge, and is internally disjoint from J . Moreover, for every vertex u ∈ V (G) \ V (J), for
every pair P, P ′ ∈ P∗ of paths that contain u, the intersection of P and P ′ at u is non-transversal.
Notice that P∗ remains a promising set of paths of cardinality |P|. We view the paths in P∗ as being
directed from the edges of E1 towards the edges of E2. We denote by k = |P∗|, so k = |P| ≥ 15m

16µb
.

Let E∗1 ⊆ E1 be the subset of edges that belong to the paths of P∗. We denote E∗1 = {e1, . . . , ek},
where the edges are indexed so that e1, . . . , ek appear in the order of their indices in the ordering
O(J). For all 1 ≤ j ≤ k, we denote by Pj ∈ P∗ the unique path originating at the edge ej . We select
an index bk/3c < j∗ < d2k/3e uniformly at random, and we let P ∗ = Pj∗ . Notice that P ∗ is a valid
enhancement for the core structure J , and it is either a simple path or a simple cycle. We say that
path P ∗ is chosen from set P∗. Notice that the probability that a path of P∗ is chosen to be the

enhancement path is at most 4
k ≤

4·16µb

15m ≤ 16µb

m .

We will now define a number of bad events, and we will show that the probability that either of these
events happens is low.

145

Good Paths and Bad Event E1. We need the following definition.

Definition 9.16 (Good path) We say that a path P ∈ P∗ is good if the following hold:

• the number of crossings in which the edges of P participate in ϕ is at most cr(ϕ)·µ12b
m ; and

• there are no crossings in ϕ between edges of P and edges of J .

A path that is not good is called a bad path.

We now bound the number of bad paths in P∗.

Observation 9.17 The number of bad paths in P∗ is at most 4m
µ12b

.

Proof: Since the paths in P∗ are edge-disjoint, and every crossing involves two edges, the number of

paths P ∈ P∗ such that there are more than cr(ϕ)µ12b

m crossings in ϕ in which the edges of P participate,
is at most 2m

µ12b
. Additionally, we are guaranteed that |χdirty(ϕ)| ≤ m

µ60b
. Therefore, the number of paths

P ∈ P∗, for which there is a crossing between an edge of P and an edge of J , is bounded by m
µ60b

.

Overall, the number of bad paths in P∗ is bounded by 2m
µ12b

+ m
µ60b
≤ 4m

µ12b
.

We say that bad event E1 happens if path P ∗ is a bad path. Since the number of bad paths is bounded

by 4m
µ12b

, and a path of P∗ is chosen to be the enhancement path with probability at most 16µb

m , we
immediately get the following observation.

Claim 9.18 Pr [E1] ≤ 64/µ11b.

Heavy and Light Vertices, and Bad Event E2. We use a parameter h = 512cr(ϕ)·µ26b
m . We say

that a vertex x ∈ V (G) is heavy if at least h paths of P∗ contain x; otherwise, we say that x is light.
Recall that in order to define an enhancement structure using the enhancement P ∗, we need to define
an orientation for every inner vertex of P ∗. Intuitively, we would like this orientation to be consistent
with that in the drawing ϕ (which is not known to us). If x is a heavy vertex lying on P ∗, then
computing such an orientation is not difficult, as we can exploit the paths of P∗ containing x to do
so. But if x is a light vertex, we do not have enough information in order to determine its orientation
in ϕ. To get around this problem, we will simply delete all edges incident to the light vertices of P ∗,
except for the edges of P ∗ ∪ J , and then let the orientation of each such vertex be arbitrary. We show
below that with high probability, the number of edges that we delete is relatively small.

Specifically, we denote by E′ the set of all edges e, such that e is incident to some light vertex

x ∈ V (P ∗), and e 6∈ E(J) ∪ E(P ∗). We say that bad event E2 happens if |E′| > cr(ϕ)·µ38b
m . We bound

the probability of Event E2 in the next simple claim.

Claim 9.19 Pr [E2] ≤ 214/µ11b.

Proof: Consider some light vertex x ∈ V (G). Since x lies on fewer than h = 512cr(ϕ)·µ26b
m paths of P∗,

and each such path is chosen to the enhancement with probability at most 16µb

m , the probability that

x lies in V (P ∗) is at most 512cr(ϕ)µ26b

m · 16µb

m ≤ 213cr(ϕ)µ27b

m2 .

Consider now some edge e = (x, y) ∈ E(G). Edge e may lie in E′ only if x is a light vertex lying in

V (P ∗), or the same is true for y. Therefore, the probability that e ∈ E′ is at most 214cr(ϕ)µ27b

m2 , and

E [|E′|] ≤ 214cr(ϕ)µ27b

m . From Markov’s inequality, Pr
[
|E′| > cr(ϕ)·µ38b

m

]
≤ 214

µ11b
.

146

Unlucky Paths and Bad Event E3. If Event E1 does not happen, then we are guaranteed that,
in drawing ϕ, the edges lying on path P ∗ do not cross the edges of J . However, it is still possible that
there are crossings between edges that lie on path P ∗ (that is, the image of path P ∗ crosses itself).
Intuitively, when the image of path P ∗ crosses itself, then we obtain a loop. If we could show that all
vertices lying on this loop are light vertices, then we can “repair” the drawing by straightening the
loop. This is since we delete all edges incident to the light vertices lying on P ∗, except for the edges
of E(P ∗) ∪ E(J). Unfortunately, it may happen that some of the vertices lying on these loops are
heavy vertices. This may only happen in some limited circumstances, in which case we say that path
P ∗ is unlucky. We now define the notion of unlucky paths, and show that the probability that P ∗ is
unlucky is small.

Definition 9.20 (Unlucky Paths) Let x ∈ V (G) \ V (J) be a vertex, and let P ∈ P∗ be a good path
that contains x. Let e, e′ be the two edges of P that are incident to x. Let Ê1(x) ⊆ δG(x) be the set of
edges ê ∈ δG(x), such that ê lies between e and e′ in the rotation Ox ∈ Σ (in clock-wise orientation),
and ê lies on some good path of P∗. Let Ê2(x) ⊆ δG(x) be the set of edges ê ∈ δG(x), such that ê lies
between e′ and e in the rotation Ox ∈ Σ (in clock-wise orientation), and ê lies on some good path of P∗

(see Figure 32). We say that path P is unlucky with respect to vertex x if either |Ê1(x)| < cr(ϕ)µ13b

m

or |Ê2(x)| < cr(ϕ)µ13b

m holds. We say that a path P ∈ P∗ is an unlucky path if there is at least one
heavy vertex x ∈ V (G) \ V (J), such that P is unlucky with respect to x.

Figure 32: Definition of the sets Ê1(x) and Ê2(x) of edges. Path P and its edges e, e′ are shown in
red. Edges of δ(x) are depicted according to the circular order Ox ∈ Σ, and the set δ(x) \ {e, e′} is
split into two subsets (green and blue). Set Ê1(x) contains every green edge that belongs to some
good path of P∗, and set Ê2(x) contains every blue edge that belongs to some good path of P∗.

We will now show that the total number of good paths in P∗ that are unlucky is small, and we will
conclude that the probability that an unlucky path was chosen to be the enhancement path P ∗ is
also small. The proof of the following claim is somewhat technical and is defered to Section H.4 of
Appendix.

Claim 9.21 For every vertex x ∈ V (G) \V (J), the total number of good paths in P∗ that are unlucky

with respect to x is at most 512cr(ϕ)·µ13b
m .

147

We say that bad event E3 happens if P ∗ is an unlucky path.

Claim 9.22 Pr [E3] ≤ 64/µ10b.

Proof: Recall that a heavy vertex must have degree at least h in G. Therefore, the total number of
heavy vertices is at most 2m

h . From Claim 9.21, for every heavy vertex x ∈ V (G) \ V (J), there are

at most 512cr(ϕ)·µ13b
m paths in P∗ that are good and unlucky for x. Since h = 512cr(ϕ)·µ26b

m , the total
number of good paths in P∗ that are unlucky with respect to some heavy vertex is at most:

2m

h
· 512cr(ϕ) · µ13b

m
≤ 2m

µ13b
.

Since the probability that a given path P ∈ P∗ is selected is at most 16µb

m , the probability that an
unlucky path is selected is at most 32

µ12b
.

Recall that we have denoted by E′ the set of all edges e, such that e is incident to some light vertex
x ∈ V (P ∗), and e 6∈ E(J) ∪ E(P ∗). Denote G′ = G \ E′, and let Σ′ be the rotation system for graph
G′ induced by Σ. Denote I ′ = (G′,Σ′), and denote J ′ = J ∪ P ∗. Solution ϕ to instance I naturally
defines a soluton ϕ′ to instance I ′, that is compatible with ϕ, with cr(ϕ) ≤ cr(ϕ′). Moreover, if Event
E1 did not happen, then there are no crossings in this drawing between the edges of E(P ∗) and the
edges of E(J). However, it is possible that this drawing contains crossings between pairs of edges in
E(P ∗). In the next claim we show that, if events E1 and E3 did not happen, then drawing ϕ can be
modified to obtain a solution ϕ′ to instance I ′ that is compatible with ϕ, in which the edges of J ′ do
not cross each other. The proof of the following claim is deferred to Section H.5 of Appendix.

Claim 9.23 Assume that neither of the events E1 and E3 happened. Then there is a solution ϕ′ to
instance I ′ = (G′,Σ′) that is compatible with ϕ, with cr(ϕ′) ≤ cr(ϕ), such that the edges of E(J ′) do
not cross each other in ϕ′. Moreover, if (e, e′)p is a crossing in drawing ϕ′, then there is a crossing
between edges e and e′ at point p in drawing ϕ.

We emphasize that drawing ϕ′ is derived from drawing ϕ and neither are known to our algorithm.
From now on, we fix the solution ϕ′ to instance I ′ = (G′,Σ′) given by Claim 9.23.

Terrible Vertices and Bad Event E4. For a vertex x ∈ V (G), let N(x) denote the number of
paths in P∗ containing x. We also denote by Nbad(x) the number of bad paths in P∗ containing x,
and by Ngood(x) the number of good paths in P∗ containing x. Next, we define the notion of a terrible
vertex.

Definition 9.24 (Terrible Vertex) A vertex x ∈ V (G) is terrible if it is a heavy vertex, and
Nbad(x) ≥ Ngood(x)/64.

We say that a bad event E4 happens if any vertex of P ∗ is a terrible vertex. We bound the probability
of Event E4 in the following claim.

Claim 9.25 Pr [E4] ≤ 218

µ10b
.

Proof: Consider some terrible vertex x ∈ V (G). Let P ′ ⊆ P∗ be the set of all bad paths in P∗
containing x, and let P ′′ ⊆ P∗ be the set of all good paths in P∗ containing x. From the definition of
a terrible vertex, |P ′′| ≤ 64|P ′|. Therefore, we can define a mapping fx : P ′′ → P ′, that maps every
path in P ′′ to some path in P ′, such that, for every path P ∈ P ′, at most 64 paths of P ′′ are mapped

148

to P . If, for a pair P ′′ ∈ P ′′, P ′ ∈ P ′ of paths, fx(P ′′) = P ′, then we say that path P ′ tags path P ′′.
Every bad path also tags itself.

Notice that, if path P ∈ P∗ is a bad path, then the total number of paths that it may tag is bounded
by 64|V (P)| ≤ 212µb (as every path in P∗ contains at most 32µb + 2 vertices). Every path of P∗ that
contains a terrible vertex is now tagged. Since, from Observation 9.17, the number of bad paths in
P∗ is at most 4m

µ12b
, we conclude that the total number of paths in P∗ that contain a terrible vertex is

bounded by 214m
µ11b

. Lastly, since the probability that a given path P ∈ P∗ is selected is at most 16µb

m ,
the probability that a path containing a terrible vertex is selected is bounded by:

214m

µ11b
· 16µb

m
≤ 218

µ10b
.

Bad Event E. Let E be the bad event that either of the events E1, E2, E3, E4 happens. From the
Union Bound and Claims 9.18, 9.19, 9.22 and 9.25, Pr [E] ≤ 220

µ10b
.

9.2.2 Step 2: Computing the Enhancement Structure and the Split

In this step, we compute an orientation bu for every vertex u ∈ V (P ∗) \ V (J), that is identical to the
orientation of u in drawing ϕ′ (though drawing ϕ′ itself is not known to the algorithm). We will then
complete the construction of the enhancement structure A, and compute the split of instance I along
A. Throughout, we denote J ′ = J ∪P ∗. Let ρ′ be the drawing of graph J ′ that is induced by drawing
ϕ′ of G′. If Event E did not happen, then drawing ρ′ has no crossings, and the image of path P ∗ is
drawn in the region F ∗. Let ρJ ′ be the unique drawing of graph J ′ that has the following properties:

• drawing ρJ ′ contains no crossings;

• drawing ρJ ′ obeys the rotation system Σ, and, for every vertex u ∈ V (J), the orientation of u
in ρJ ′ is the orientation bu given by J ;

• the drawing of graph J induced by ρJ ′ is precisely ρJ ; and

• the image of path P ∗ is contained in region F ∗.

Note that there is a unique drawing ρJ ′ of J ′ with the above properties, and it can be computed
efficiently. Moreover, if event E did not happen, then ρJ ′ = ρ′ must hold. The image of path P ∗

partitions the region F ∗ of ρJ ′ into two faces, that we denote by F1 and F2. These two faces define
regions in drawing ϕ′ of G′, that we denote by F1 and F2, as well.

For every vertex u ∈ V (J ′), we consider the tiny u-disc Dϕ′(u). For every edge e ∈ δG′(u), we denote

by σ(e) the segment of ϕ′(e) that is drawn inside the disc Dϕ′(u). Let Ẽ =
(⋃

u∈V (J ′) δG′(u)
)
\E(J ′).

Recall that, from the definiton of a valid core structure, and since the image of path P ∗ is contained in
region F ∗ of ϕ′, for every edge e ∈ Ẽ, segment σ(e) must be contained in region F ∗. We partition edge
set Ẽ into a set Ẽ in of inner edges and the set Ẽout of outer edges, as follows. Edge set Ẽ in contains all
edges e ∈ Ẽ with σ(e) contained in region F1 of ϕ′, and Ẽout contains all remaining edges (so for every
edge e ∈ Ẽout, σ(e) is contained in F2). Let e1 be the first edge of E1 in the ordering O(J). We will
assume without loss of generality that e1 ∈ Ẽ in. We now show an algorithm that correctly computes
the orientation of every vertex u ∈ V (P ∗) \ V (J) in the drawing ϕ′, and the partition (Ẽ in, Ẽout) of
the edges of Ẽ.

149

Before we describe the algorithm, we recall the definition of the oriented circular ordering O(J) of the
edges of δG(J). In order to define the ordering, we considered the disc D(J) in the drawing ρJ of J . In
this drawing, the orientation of every vertex u ∈ V (J) is the orientation bu given by the core structure
J . We have defined, for every edge e ∈ δG(J), a point p(e) on the boundary of the disc D(J), and we
let O(J) be the circular ordering of the edges of δG(J), in which the points p(e) corresponding to these
edges appear on the boundary of the disc D(J), as we traverse the boundary of the disc D(J) in the
clock-wise direction. From the definition of a J -valid drawing, the drawing of the core J induced by
ϕ′ is identical to ρJ , including its orientation. Additionally, for every vertex u ∈ V (J), the orientation
of u in ϕ′ is the orientation bu given by J .

Computing Vertex Orientations and the Partition (Ẽ in, Ẽout). Consider any vertex u ∈
V (P ∗) \ V (J). Let ê(u), ê′(u) be the two edges of P ∗ that are incident to u, where we assume
that ê(u) appears before ê′(u) on P ∗ (we assume that P ∗ is directed from an edge of E1 to an edge
of E2). Edges ê(u), ê′(u) partition the edge set δG′(u) \ {ê(u), ê′(u)} into two subsets, that we denote
by Ê1(u) and Ê2(u), each of which appears consecutively in the rotation Ou ∈ Σ′. Note that either
(i) Ê1(u) ⊆ Ẽ in and Ê2(u) ⊆ Ẽout holds, or (ii) Ê2(u) ⊆ Ẽ in and Ê1(u) ⊆ Ẽout holds. While we do
not know the orientation of vertex u in ϕ′, once we fix this orientation, we can efficiently determine
which of the above two conditions holds. Therefore, we can assume w.l.o.g. that, if the orientation of
u in ϕ′ is 1 then Ê1(u) ⊆ Ẽ in and Ê2(u) ⊆ Ẽout hold (as otherwise we can switch the names Ê1(u)
and Ê2(u)).

We now construct edge sets Ẽ1, Ẽ2, and fix an orientation bu for every vertex u ∈ V (P ∗) \ V (J). We
then show that Ẽ1 = Ẽ in, Ẽ2 = Ẽout, and that the orientations of all vertices of V (P ∗) \V (J) that we
compute are consistent with the drawing ϕ′.

Consider the drawing ρJ ′ of graph J ′ that we have computed. Using this drawing, we can efficiently
determine, for every edge e ∈ Ẽ that is incident to a vertex of J , whether e ∈ Ẽ in or e ∈ Ẽout holds.
In the former case, we add e to Ẽ1, and in the latter case we add it to Ẽ2. Notice that, for every path
P ∈ P∗, the first and the last edges of P are already added to either Ẽ1 or Ẽ2, and so far Ẽ1 ⊆ Ẽ in

and Ẽ2 ⊆ Ẽout holds.

Next, we process every inner vertex u on path P ∗. Consider any such vertex u. If u is a light vertex,
then there are exactly two edges that are incident to u in G′ – the edges of the path P ∗. We can then
set the orientation bu of u to be arbitrary, and we can trivially assume that this orientaiton is identical
to the orientation of u in ϕ′.

Assume now that u is a heavy vertex. In order to establish the orientation of u, we let P(u) contain
all paths P ∈ P∗ \ {P ∗} with u ∈ P . We partition the set P(u) of paths into four subsets: set P1(u)
contains all paths P whose first edge lies in Ẽ1, and the first edge of P that is incident to u lies in
Ê1(u). Set P2(u) contains all paths P whose first edge lies in Ẽ2, and the first edge of P that is incident
to u lies in Ê2(u). Similarly, set P ′1(u) contains all paths P ∈ P(u) whose first edge lies in Ẽ1 and the
first edge that is incident to u lies in Ê2(u), while set P ′2(u) contains all paths P ∈ P ′(u), whose first
edge lies in Ẽ′2 and the first edge that is incident to u lies in Ê1(u). We let w(u) = |P1| + |P2|, and
w′(u) = |P ′1| + |P ′2|. If w(u) ≥ w′(u), then we set bu = 1, add the edges of Ê1(u) to Ẽ1, and add the
edges of Ê2(u) to Ẽ2. Otherwise we set bu = −1, add the edges of Ê1(u) to Ẽ2, and add the edges of
Ê2(u) to Ẽ1.

This completes the algorithm for computing the orientations of the inner vertices of P ∗, and of the
partition (Ẽ1, Ẽ2) of the edge set Ẽ. We use the following claim to show that both are computed
correctly.

Claim 9.26 Assume that Event E did not happen. Then for every vertex u ∈ V (P ∗) \ V (J), the
orientation of u in ϕ′ is bu.

150

Proof: It is now enough to show that, if u ∈ V (P ∗) \ V (J) is a heavy vertex, then the orientation of
u in ϕ′ is bu. We now consider any heavy vertex u ∈ V (P ∗) \ V (J).

Recall that we denotedN(u) = |P(u)|, and we have denoted byNbad(u) andNgood(u) the total number
of bad and good paths in P(u), respectively. Since we have assumed that bad event E4 did not happen,
vertex u is not a terrible vertex, that is, Nbad(u) < Ngood(u)/64. Since N(u) = Nbad(u) +Ngood(u),
we get that Nbad(u) < N(u)/65.

Assume first that the orientation of vertex u in ϕ′ is 1, so Ê1(u) ⊆ Ẽ in and Ê2(u) ⊆ Ẽout. We claim
that in this case w(u) > w′(u) must hold, and so our algorithm sets bu = 1 correctly. Indeed, assume
otherwise. Then w′(u) ≥ N(u)/2. Let Q denote the set of all good paths in P ′1(u) ∪ P ′2(u). Then
|Q| ≥ w′(u)−Nbad(u) ≥ N(u)/2−N(u)/65 ≥ N(u)/4 ≥ h/4, since u is a heavy vertex. We now show
that, for every path Q ∈ Q, there must be a crossing between an edge of Q and an edge of P ∗ in ϕ′.

Indeed, consider any path Q ∈ Q. Since Q ∈ P ′1(u) ∪ P ′2(u), either the first edge of Q lies in Ẽ in and
the last edge of Q lies in Ẽout, or the opposite is true. Therefore, the image of the path Q must cross
the boundary of the region F1. Since path Q is a good path, and it does not contain vertices of J as
inner vertices, no inner point of the image of Q in ϕ′ may belong to the image of J in ϕ′. Since, for
every pair P, P ′ ∈ P∗ of paths, and for every vertex v ∈ (V (P) ∩ V (P ′)) \ V (J), the intersection of P
and P ′ at v is non-transversal, there must be a crossing between an edge of Q and an edge of P ∗ in

ϕ′. But then the edges of P ∗ participate in at least h
4 ≥

128cr(ϕ)·µ26b
m crossings in ϕ′, and hence in ϕ.

However, since we have assumed that bad event E1 did not happen, P ∗ is a good path, and so its edges

may participate in at most cr(ϕ)·µ12b
m crossings in ϕ, a contradiction. Therefore, when the orientation

of u in ϕ′ is 1, our algorithm correctly sets bu = 1.

In the case where the orientation of u in ϕ′ is −1, the analysis is symmetric. In this case, we consider
the set Q′ ⊆ P1(u)∪P2(u) containing all good paths. For each such path P ∈ Q′, the image of P in ϕ
must cross the image of P ∗. If we assume that w(u) ≥ w′(u) in this case, then we reach a contradiction
using the same argument as before. Therefore, w(u) < w′(u) must hold, and our algorithm sets bu = 1
correctly.

We have now obtained an enhancement structure A = (P ∗, {bu}u∈V (J ′) , ρJ ′). For every vertex u ∈
V (J ′), if u ∈ V (J), then its orientaiton bu remains the same as in J , and otherwise we let bu be the
orientation that we have computed above. From the above discussion, if Event E did not happen, then
for every vertex u ∈ V (J ′) the orientation bu is identical to its orientation in ϕ′, and ρJ ′ is the drawing
of J ′ induced by ϕ′. We denote by (J1,J2) the split of J via the enhancement structure A, where J1

is the core structure associated with the face F1. We denote J1 = (J1, {bu}u∈V (J1) , ρJ1 , F
∗(ρJ1)), and

J2 = (J2, {bu}u∈V (J2) , ρJ2 , F
∗(ρJ2)), where F ∗(ρJ1) = F1 and F ∗(ρJ2) = F2.

Computing the Split. We now construct a split of instance I along A. In order to do so, we
construct a flow network H as follows. We start with H = G′, and then subdivide every edge e ∈ Ẽ
with a vertex te, denoting T1 =

{
te | e ∈ Ẽ1

}
and T2 =

{
te | e ∈ Ẽ2

}
. We delete all vertices of J ′ and

their adjacent edges from the resulting graph, contract all vertices of T1 into a source vertex s, and
contract all vertices of T2 into a destination vertex t. We then compute a minimum s-t cut (A,B) in
the resulting flow network H, and we denote by E′′ = EH(A,B). We use the following claim, whose
proof is provided in Section H.6 of Appendix, in order to bound the cardinality of E′′.

Claim 9.27 If Event E did not happen, then |E′′| ≤ 2cr(ϕ)·µ12b
m + |χdirty(ϕ)|.

Let Edel = E′ ∪ E′′. If bad event E did not happen, then |E′| ≤ cr(ϕ)·µ38b
m , and, from Claim 9.27,

|E′′| ≤ 2cr(ϕ)·µ12b
m + |χdirty(ϕ)|. Therefore, overall, if bad event E did not happen, then |Edel| ≤

2cr(ϕ)·µ38b
m + |χdirty(ϕ)|. Let G′′ = G′ \ E′′ = G \ Edel, let Σ′′ be the rotation system for graph G′′

151

induced by Σ, and let I ′′ = (G′′,Σ′′) be the resulting instance of MCNwRS. Solution ϕ′ to instance I ′

then naturally induces a solution to instance I ′′, that we denote by ϕ′′. From Claim 9.23, this solution
is compatible with ϕ, and cr(ϕ′′) ≤ cr(ϕ). Moreover, if Event E did not happen, then the number of

crosings in which the edges of P ∗ participate in ϕ′′ is at most cr(ϕ)·µ12b
m , and the images of edges of

E(J) ∪ E(P ∗) do not cross each other in ϕ′.

We are now ready to define a split (I1 = (G1,Σ1), I2 = (G2,Σ2)) of instance I along the enhacement
structure A. In order to do so, we define two sets A′, B′ of vertices in graph G′, as follows. We
start with A′ = A \ {s} and B′ = B \ {t}, where (A,B) is the cut that we have computed in graph
H. We then add all vertices of the core J1 to A′, and all vertices of the core J2 to B′. We let
G1 = G′′[A′] and G2 = G′′[B′]. The rotation system Σ1 for graph G1 and the rotation system Σ2

for graph G2 are induced by Σ. Let I1 = (G1,Σ1) and I2 = (G2,Σ2) be the resulting two instances
of MCNwRS. It is immediate to verify that (I1, I2) is a valid split of instance I along A. Note that
E(G1) ∪ E(G2) = E(G′′).

Let ϕ1 be the solution to instance I1 induced by ϕ′′, and let ϕ2 be the solution to instance I2 induced
by ϕ′. From our construction and Claim 9.26, if bad event E did not happen, then drawing ϕ1 of G1

is J1-valid, and drawing ϕ2 of G2 is J2-valid.

Lastly, we need the following observation, whose proof appears in Section H.7 of Appendix.

Observation 9.28 If Event E did not happen, then |E(G1)|, |E(G2)| ≤ m− m
32µb

.

We conclude that, if bad event E did not happen, then our algorithm computes a valid output for
Procedure ProcSplit. Since Pr [E] ≤ 220/µ10b, this completes the proof of Theorem 9.15.

9.3 Phase 1 of the Algorithm

In Phase 1, we compute a collection I of subinstances of the subdivided instance Ǐ that almost have
all required properties, except that we will not be able to guarantee that the sum of the optimal
solution costs of the resulting instances is suitably bounded. However, we will ensure that all resulting
instances have a convenient structure, that will be utilized in Phase 2, in order to produce the final
collection of subinstances of Ǐ. The algorithm that is used in Phase 1 is summarized in the following
theorem.

Theorem 9.29 There is an efficient randomized algorithm, whose input consists of a wide and well-
connected instance Ǐ∗ = (Ǧ∗, Σ̌∗), with m̌ = |E(Ǧ∗)| ≥ µc

′
, for some large enough constant c′. Let

Ǐ = (Ǧ, Σ̌) be the coresponding subdivided instance. The algorithm either returns FAIL, or computes a
non-empty collection I of subinstances of Ǐ, such that, for every instance I = (G,Σ) ∈ I, G ⊆ Ǧ, and
I is the subinstance of Ǐ defined by G. Additionally, the algorithm computes, for every instance I ∈ I,
a core structure J (I) for I, such that, if we denote, for every instance I ∈ I, the J (I)-contracted

subinstance of I by Î, and let Î =
{
Î | I ∈ I

}
, then the following hold:

• for every instance I ∈ I, if the corresponding contracted instance Î = (Ĝ, Σ̂) is a wide instance,
then |E(Ĝ)| ≤ m̌/µ;

•
∑

Î=(Ĝ,Σ̂)∈Î |E(Ĝ)| ≤ 2m̌; and

• there is an efficient algorithm, called AlgCombineDrawings1, that, given a solution ϕ(Î) to every
instance Î ∈ Î, computes a solution ϕ̌ to instance Ǐ.

Moreover, if OPTcnwrs(Ǐ) ≤ m̌2/µc
′
, then with probability at least (1 − 1/µ200), all of the following

hold:

152

1. the algorithm does not return FAIL;

2. for every instance I ∈ I, there is a solution ψ(I) to I, that is J (I)-valid, with
∑

I∈I cr(ψ(I)) ≤
OPTcnwrs(Ǐ), and

∑
I∈I |χdirty(ψ(I))| ≤ OPTcnwrs(Ǐ)·µ900

m̌ ; and

3. if algorithm AlgCombineDrawings1 is given as input a solution ϕ(Î) to every instance Î ∈ Î, then
the solution ϕ̌ to instance Ǐ that it computes has cost at most:

∑
Î∈Î cr(ϕ(Î))+OPTcnwrs(Ǐ)·µ8000.

If the algorithm from Theorem 9.29 returns a collection I of subinstances of Ǐ together with a core
structure J (I) for each such subinstance, such that properties (1) – (3) hold, then we say that the
algorithm is successful, and otherwise we say that it is unsuccessful. Notice that, if OPTcnwrs(Ǐ) ≤
m̌2/µc

′
, then the probability that the algorithm is unsuccessful is bounded by 1/µ200.

The remainder of this subsection is dedicated to the proof of Theorem 9.29. The algorithm repeatedly
applies Procedure ProcSplit to subinstances of the input instance Ǐ. Throughout, we set the constant
b used in Procedure ProcSplit to b = 52. We may not always be able to ensure that the input to
Procedure ProcSplit is valid. We will always ensure that the input consists of a graph G ⊆ Ǧ, a core
structure J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) for the subinstance I of Ǐ defined by G, and a promising set

P of paths for I and J of cardinality
⌊
|E(G)|
µ52

⌋
. But unfortunately we may not be able to ensure that

there exists a solution ϕ to instance I that is J -valid, with cr(ϕ) ≤ |E(G)|2
µ60b

and |χdirty(ϕ)| ≤ |E(G)|
µ60b

,
since drawing ϕ is not given explicitly as part of input. If the input to Procedure ProcSplit is not
valid, then the procedure may fail during its execution. In this case, we will assume that the procedure
returned FAIL (we will also say that the procedure fails). It is also possible that the output (A, I1, I2)
of the procedure is not a valid output. We can verify efficiently that A is a valid enhancement structure
for J , and that (I1, I2) is a valid split of I along A. We can also efficiently verify that Property P2
holds for the resulting output. If we establish that either of these properties does not hold, then we
will also assume that the procedure returned FAIL, or that it failed. However, it is possible that all
above properties hold for the procedure’s output, but properties P1 or P3 do not. As we are unable to
efficiently verify these latter two properties, we will say in such a case that the procedure did not fail,
but that it was unsuccessful. If the input to procedure ProcSplit is valid, it is still possible that, with
small probability (up to 210/µ520), its output is not valid. As before, if A is not a valid enhancement
structure for J , or (I1, I2) is not a valid split of I along A, or Property P2 does not hold (which
we can verify efficiently), we will say that the procedure returned FAIL, or that the procedure failed.
Otherwise, if all these properties hold but the output of the procedure is not valid, we will say that
the application of the procedure was unsuccessful. If the procedure returns a valid output, then we
say that its application was successful.

As before, we denote |E(Ǧ∗)| by m̌. The algorithm for Phase 1 consists of a number of iterations.
The input to iteration j ≥ 1 consists of a collection Ij of subinstances of instance Ǐ, where for every
instance I = (G,Σ) ∈ Ij , G ⊆ Ǧ, and I is the subinstance of Ǐ defined by G. Additionally, for every
instance I ∈ Ij , we are given a core structure J (I) for I. We will ensure that, with high probability,
the subinstances in Ij satisfy the following properties:

A1. for every instance I = (G,Σ) ∈ Ij , either the J (I)-contracted subinstance Î = (Ĝ, Σ̂) of I is

narrow, or |E(Ĝ)| ≤ max
{
m̌
µ , 2m̌− (j − 1) · m̌

32µ53

}
;

A2. if we denote by Edel
j = E(Ǧ) \

(⋃
I=(G,Σ)∈Ij E(G)

)
, then |Edel

j | ≤
j·OPTcnwrs(Ǐ)·µ6000

m̌ ;

A3. for every instance I ∈ Ij , there exists a solution ψ(I) to instance I that is J (I)-valid, such that∑
I∈Ij cr(ψ(I)) ≤ OPTcnwrs(Ǐ), and

∑
I∈Ij |χ

dirty(ψ(I))| ≤ j·µ800OPTcnwrs(Ǐ)
m̌ ;

153

A4. for every instance I = (G,Σ) ∈ Ij , whose corresponding J (I)-contracted instance Î = (Ĝ, Σ̂)
is wide with |E(Ĝ)| > m̌/µ, for every vertex v ∈ V (G) with degG(v) ≥ m̌

µ5
, there is a collection

Q(v) of at least 8m̌
µ50
−|Edel

j | edge-disjoint paths in G connecting v to the vertices of the core J(I)

associated with the core structure J (I);

A5. if we denote, for every instance I ∈ Ij , by m̂(I) the number of edges in the corresponding
J (I)-contracted instance Î, then

∑
I∈Ij m̂(I) ≤ 2m̌; and

A6. there is an efficient algorithm, that, given, for every instance I ∈ Ij , a solution ϕ(I) that is clean
with respect to J (I), constructs a solution ϕ(Ǐ) to instance Ǐ, of cost at most

∑
I∈Ij cr(ϕ(I)) +

j · OPTcnwrs(Ǐ) · µ6000.

Specifically, for all j ≥ 1, the input to iteration j consists of a collection Ij of subinstances of Ǐ, where
for every instance I = (G,Σ), G ⊆ Ǧ, and I is the subgraph of Ǐ defined by G. Additionally, for every
instance I ∈ Ij , we are given a core structure J (I) for I. We denote, for each instance I = (G,Σ) ∈ Ij ,
the corresponding J (I)-contracted instance by Î = (Ĝ, Σ̂), and we denote by m̂(I) = |E(Ĝ)|. We
will guarantee that, if Properties A1–A6 hold for input Ij to iteration j, then, with probability at
least 1 − 1

µ400
, at the end of the iteration, we obtain a collection Ij+1 of subinstances of Ǐ, each

of which is defined by a subgraph of Ǧ, and, for every instance I ∈ Ij+1, a core structure J (I),
for which Properties A1–A6 hold. With the remaining probability, the algorithm may either return
FAIL, or produce an output for which some of the properties A1–A6 do not hold. In each of these
two cases, we say that the iteration was unsuccessful. If the input Ij to iteration j does not have
properties A1–A6, then it is possible that the algorithm returns FAIL, or it returns output Ij+1 for
which some of the invariants A1–A6 do not hold. In both of these cases, we say that the iteration
was unsuccessful. If the iteration produces output Ij+1 for which properties A1–A6 hold, then we say
that it was successful. For all j ≥ 1, we denote by Ẽj the bad event that iteration j was unsuccessful.
The number of iterations in our algorithm is at most z = 128

⌈
µ53
⌉
. Note that, from Invariant A1,

for every instance I = (G,Σ) ∈ Iz, either the corresponding J (I)-contracted instance Î = (Ĝ, Σ̂) is
narrow, or |E(Ĝ)| ≤ m̌/µ. We will ensure that, for all 1 ≤ j ≤ z, if OPTcnwrs(Ǐ) ≤ m̌2/µc

′
, then

Pr
[
Ẽj | ¬Ẽ1 ∧ · · · ∧ ¬Ẽj−1

]
≤ 1

µ400
. This will guarantee that, if OPTcnwrs(Ǐ) ≤ m̌2/µc

′
, then with

probability at least 1− 1/µ200, Properties A1–A6 hold for Iz.
The input to the first iteration is a set I1 of instances, consisting of a single instance Ǐ. Since
instance Ǐ∗ is wide, there is at least one vertex v∗ with degǦ(v∗) ≥ m̌/µ4. We define a core structure
J (Ǐ) = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)) associated with instance Ǐ as follows. The core J consists of a
single vertex v∗, and its orientation bv is set to be arbitrary (say 1). Drawing ρJ is the unique trivial
drawing of J , and face F ∗(ρJ) is the unique face of this drawing. It is easy to verify that Invariants
A1–A6 hold for I1. The only invariant that is not immediate is A4. This invariant follows from the
fact that the input instance Ǐ∗ is wide and well-connected. Therefore, for every vertex u of Ǧ with
degǦ(u) ≥ m̌/µ5, degǦ∗(u) ≥ m̌/µ5 also holds, and there is a collection of at least 8m̌

µ50
edge-disjoint

paths connecting u to v∗ in Ǧ∗ and hence in Ǧ.

We now describe the execution of iteration j. Consider an instance I = (G,Σ) ∈ Ij , and its cor-
responding core structure J (I). We say that instance I is inactive if either the J (I)-contracted
subinstance Î = (Ĝ, Σ̂) of I is narrow, or |E(Ĝ)| ≤ m̌/µ. Otherwise, we say that instance I is active.
We denote by IAj the set of all active instances in Ij , and by IIj the set of all inactive instances. We

start with the set Ij+1 containing every instance in IIj . We also maintain the set Edel
j+1 of deleted

edges, that is initialized to Edel
j . We then process every active instance I ∈ IAj one by one. We now

describe the algorithm for processing one such instance I = (G,Σ).

154

Processing instance I = (G,Σ) ∈ IAj . Assume that Invariants A1, A3 and A4 hold for Ij . Denote

J (I) = (J, {bu}u∈V (J) , ρJ , F
∗(ρJ)), |E(G)| = m, and |E(Ĝ)| = m̂(I). Since instance I is active,

m̂(I) > m̌/µ. Since G ⊆ Ǧ, m ≤ 2m̌. Therefore, m
2µ ≤ m̂(I) ≤ m.

Consider any vertex v ∈ V (G) with degG(v) ≥ m̂(I)
µ4

. Since m̂(I) ≥ m̌
µ , we get that degG(v) =

degĜ(v) ≥ m̌
µ5

. From Invariant A4, there is a collection Q(v) of at least 8m̌
µ50
− |Edel

j | ≥ 8m̌
µ50
−

j·OPTcnwrs(Ǐ)·µ6000
m̌ edge-disjoint paths in G connecting v to vertices of J . Since j ≤ z = 128

⌈
µ53
⌉
, if we

assume that OPTcnwrs(Ǐ) ≤ m̌2/µc
′

for a large enough constant c′, we get that |Q(v)| ≥ 4m̌
µ50
≥ 2m̂(I)

µ50
.

We apply the algorithm from Claim 9.11 to instance I and core structure J (I), to obtain a promising

set of paths P, of cardinality
⌊
m̂(I)
µ50

⌋
≥
⌊
m
µ52

⌋
, since m̂(I) ≥ m

2µ . We use the following claim.

Claim 9.30 If OPTcnwrs(Ǐ) ≤ m̌2/µc
′

for some large enough constant c′, and Invariants A1–A6 hold
for Ij, then (G,J (I),P) is a valid input to Procedure ProcSplit.

Proof: From the invariants it is immediate to verify that J (I) is a valid core structure for the
subinstance I of Ǐ defined by G.

Consider the solution ψ(I) to instance I, that is given by Invariant A3. This solution is guaranteed

to be J (I)-valid. It is enough to verify that cr(ψ(I)) ≤ m2

µ3120
and |χdirty(ψ(I))| ≤ m

µ3120
.

Recall that Invariant A3 guarantees that
∑

I′∈Ij cr(ψ(I ′)) ≤ OPTcnwrs(Ǐ). In particular, cr(ψ(I)) ≤
OPTcnwrs(Ǐ) ≤ m̌2

µc′
must hold for a large enough constant c′. Since m ≥ m̂(I) ≥ m̌

µ , we get

that cr(ψ(I)) ≤ m2

µ3120
as required. Similarly, Invariant A3 guarantees that

∑
I′∈Ij |χ

dirty(ψ(I ′))| ≤
j·µ800OPTcnwrs(Ǐ)

m̌ . In particular, |χdirty(ψ(I))| ≤ j·µ800OPTcnwrs(Ǐ)
m̌ . Since OPTcnwrs(Ǐ) ≤ m̌2

µc′
for a large

enough constant c′, while j ≤ z = 128
⌈
µ53
⌉
, we get that |χdirty(ψ(I))| ≤ m̌

µc′−852 . Since m ≥ m̂(I) ≥ m̌
µ ,

we get that |χdirty(ψ(I))| ≤ m
µ3120

.

In order to process instance I ∈ IAj , we apply Procedure ProcSplit to input (G,J (I),P). If the
procedure returns FAIL, then we terminate the algorithm and return FAIL as well. In this case we
say that the current iteration failed. Otherwise, the procedure returns a J (I)-enhancement structure
A, and a split (I1 = (G1,Σ1), I2 = (G2,Σ2)) of I along A. Let P ∗ be the enhancement path of A, and
let (J1,J2) be the split of the core structure J along A. Denote Edel(I) = E(G) \ (E(G1) ∪ E(G2)).
Let G′ = G \ Edel(I), let Σ′ be the rotation system for G′ induced by Σ, and let I ′ = (G′,Σ′) be the
resulting instance of MCNwRS. We add the edges of Edel(I) to set Edel

j+1, and we add instances I1, I2

to the collection Ij+1 of instances, letting J (I1) = J1 and J (I2) = J2. From the definition of a split
of an instance along an enhancement structure, G1, G2 ⊆ G, J1 is a valid core structure for I1, and
J2 is a valid core structure for I2. This completes the description of the algorithm for processing an
instance I ∈ IAj , and of the jth iteration. We now analyze its properties.

We say that iteration j is good if, for every instance I ∈ IAj , the algorithm from Claim 9.11, when
applied to instance I and core structure J (I) returned a promising set of paths P of cardinality⌊
m̂(I)
µ50

⌋
, and additionally, the application of Procedure ProcSplit to input (G,J (I),P) was successful.

We use the following claim to show that iteration j is good with high probability.

Claim 9.31 If Invariants A1–A6 hold for Ij and OPTcnwrs(Ǐ) ≤ m̌2/µc
′
, then the probability that

iteration j is good is at least 1− 1/µ498.

Proof: From the discussion above, if Invariants A1–A6 hold for Ij , and OPTcnwrs(Ǐ) ≤ m̌2/µc
′
,

then for every instance I ∈ IAj , the algorithm from Claim 9.11, when applied to instance I and

155

core structure J (I) returns a promising set of paths P(I) of cardinality
⌊
m̂(I)
µ50

⌋
. Additionally, from

Claim 9.30, if Invariants A1–A6 hold for Ij , and OPTcnwrs(Ǐ) ≤ m̌2/µc
′
, then for every instance

I ∈ IAj , (G,J (I),P(I)) is a valid input to Procedure ProcSplit. In this case, from Theorem 9.15, the
probability that Procedure ProcSplit is either unsuccessful or fails, when applied to (I,J (I),P(I)), is
at most 220/µ520. Since, from Invariant A5,

∑
I∈Ij m̂(I) ≤ 2m̌, while for every active instance I ∈ IAj ,

m̂(I) ≥ m̌/µ, we get that |IAj | ≤ 2µ. From the Union Bound, we conclude that, if Invariants A1–A6

hold, and OPTcnwrs(Ǐ) ≤ m̌2/µc
′
, then the probability that iteration j is good is at least 1− 1/µ498.

Lastly, the next claim allows us to bound the probability of the bad event Ẽz.

Claim 9.32 Assume that Invariants A1–A6 hold for Ij, OPTcnwrs(Ǐ) ≤ m̌2/µc
′
, and that iteration j

is good. Then the bad event Ẽj does not happen.

Proof: Throughout the proof, we assume that Invariants A1–A6 hold for Ij , OPTcnwrs(Ǐ) ≤ m̌2/µc
′
,

and iteration j is good. From the definition of a split of an instance (see Definition 9.12), for every
instance I = (G,Σ) ∈ Ij+1, G ⊆ Ǧ, and I is the subinstance of Ǐ defined by graph G. It is now enough
to show that Invariants A1–A6 continue to hold for the collection Ij+1 of instances.

We first observe that, for each inactive instance I ∈ IIj , invariant A1 continue to hold for I, and m̂(I)
does not change.

Consider now some active instance I = (G,Σ) ∈ IAj , and let (I1 = (G1,Σ1), I2 = (G2,Σ2)) be the split
of I that was computed by Procedure ProcSplit. We also let A be the core enhancement structure
computed by the procedure, and we let (J1,J2) be the split of the core structure J (I) via A. Note that

Property P2 of a valid output for Procedure ProcSplit ensures that |E(G1)|, |E(G2)| ≤ |E(G)|− |E(G)|
32µ52

.

Since |E(G)| ≥ m̂(I) ≥ m̌
µ , we get that |E(G1)|, |E(G2)| ≤ |E(G)| − m̌

32µ53
≤ 2m̌ − j · m̌

32µ53
(from the

fact that Property A1 holds for Ij). This establishes Property A1 for Ij+1.

Recall that Property P1 of a valid output for Procedure ProcSplit ensures that |Edel(I)| ≤ 2cr(ψ(I))·µ2000
|E(G)| +

|χdirty(ψ(I))|. Therefore, we get that:

|Edel
j+1| ≤ |Edel

j |+
∑

I=(G,Σ)∈IAj

(
2cr(ψ(I)) · µ2000

|E(G)|
+ |χdirty(ψ(I))|

)

≤ j · OPTcnwrs(Ǐ) · µ6000

m̌
+
∑
I∈IAj

cr(ψ(I)) · µ2002

m̌
+
∑
I∈IAj

|χdirty(ψ(I))|.

(we have used the fact that Invariant A2 holds for Ij , and that, for every instance I = (G,Σ) ∈
IAj , |E(G)| ≥ m̂(I) ≥ m̌

µ). Recall that, from Invariant A3,
∑

I∈Ij cr(ψ(I)) ≤ OPTcnwrs(Ǐ), and∑
I∈Ij |χ

dirty(ψ(I))| ≤ j·µ800OPTcnwrs(Ǐ)
m̌ ≤ µ854OPTcnwrs(Ǐ)

m̌ (since j ≤ z = 128
⌈
µ53
⌉
). Altogether, we get

that |Edel
j+1| ≤

(j+1)·OPTcnwrs(Ǐ)·µ6000
m̌ , establising Invariant A2 for Ij+1.

Next, we establish Invariant A3 for Ij+1. For every instance I = (G,Σ) ∈ IIj , its solution ψ(I) remains

unchanged. Consider now some instance I = (G,Σ) ∈ IAj , and the two subinstances (I1, I2) of I that

Procedure ProcSplit produced. Let G′ = G \ Edel(I), let Σ′ be the rotation system for G′ induced by
Σ, and let I ′ = (G′,Σ′) be the resulting instance of MCNwRS. Consider the solution ϕ′ for instance
I ′ that is guaranteed by Property P3 of valid output of Procedure ProcSplit. Let ϕ1 be the solution
to instance I1 induced by ϕ′, and let ϕ2 be the solution to instance I2 induced by ϕ′. Property P3
guarantees that ϕ1 is a J1-valid solution to I1, and ϕ2 is a J2-valid solution to I2. We implicitly
set ψ(I1) = ϕ1 and ψ(I2) = ϕ2. From the definition of an instance split, (see Definition 9.12), the
only edges that may be shared by graphs G1 and G2 are edges of E(J) ∪ E(P ∗). Since no pair of

156

edges in E(J) ∪ E(P ∗) may cross each other in ϕ′, we get that cr(ϕ1) + cr(ϕ2) ≤ cr(ϕ′). Moreover, if
(e, e′)p ∈ χdirty(ϕ1), then either (e, e′)p ∈ χdirty(ϕ′), or one of the edges e, e′ lies on P ∗. Since the edges

of P ∗ participate in at most cr(ψ(I))·µ624
|E(G)| ≤ cr(ψ(I))·µ625

m̌ crossings (as |E(G)| ≥ m̂(I) ≥ m̌/µ), we get

that |χdirty(ϕ1)|+ |χdirty(ϕ2)| ≤ |χdirty(ψ(I))|+ cr(ψ(I))·µ625
m̌ .

Overall, we get that: ∑
I∈Ij+1

cr(ψ(I)) ≤
∑
I∈Ij

cr(ψ(I)) ≤ OPTcnwrs(Ǐ);

and: ∑
I∈Ij+1

|χdirty(ψ(I))| ≤
∑
I∈Ij

|χdirty(ψ(I))|+
∑
I∈IAj

cr(ψ(I)) · µ625

m̌

≤ j · µ800OPTcnwrs(Ǐ)

m̌
+

OPTcnwrs(Ǐ) · µ625

m̌

≤ (j + 1) · µ800OPTcnwrs(Ǐ)

m̌
,

establishing Invariant A3 for Ij+1.

Next, we establish Invariant A4. Consider some instance Ĩ = (G̃, Σ̃) ∈ Ij+1 with m̂(Ĩ) > m̌/µ, whose
corresponding J (Ĩ)-contracted graph is wide. If Ĩ ∈ Ij , then Ĩ is an inactive instance, and so Invariant
A4 holds for it. Otherwise, there is some instance I ∈ IAj , such that, if (I1, I2) is the split of instance

I that we have computed, Ĩ = I1 or Ĩ = I2 holds. We assume w.l.o.g. that it is the former. We denote
I = (G,Σ), I1 = (G1,Σ1), and we let J , J1, and J2 be the cores associated with the core structures
J (I), J (I1), and J (I2), respectively. Consider now any vertex v ∈ V (G1), whose degree in G1 is at
least m̌

µ5
. Then degG(v) ≥ m̌

µ5
must hold as well. From Invariant A4, there is a collection Q(v) of at

least 8m̌
µ50
− |Edel

j | edge-disjoint paths in G connecting v to the vertices of J . We assume w.l.o.g. that

the paths in Q(v) are internally disjoint from V (J). Let Q′(v) ⊆ Q(v) be the set of paths that do
not contain edges of Edel(I). Clearly, |Q′(v)| ≥ 8m̌

µ50
− |Edel

j | − |Edel(I)| ≥ 8m̌
µ50
− |Edel

j+1|. We direct the

paths in Q′(v) from v to the vertices of V (J). Notice that every path Q ∈ Q′(v) is contained in graph
G′. Consider now any such path Q ∈ Q′(v). If path Q contains a vertex of P ∗ as an inner vertex,
then we truncate it so it connects v to a vertex of P ∗, and is internally disjoint from V (J) ∪ V (P ∗).
We claim that the resulting path Q must be contained in graph G1. This is since, from the definition
of a split of an instance, V (G1) ∪ V (G2) = V (G), and every vertex u ∈ V (G1) ∩ V (G2) belongs to
V (J1) ∩ V (J2), while J1, J2 ⊆ J ∪ P ∗. Since E(G′) = E(G1) ∪ E(G2), we get that every path Q in
the resulting set Q′(v) is contained in graph G1, and it connects v to a vertex of J1. This establishes
Invariant A4 for Ij+1.

Invariant A5 follows from the fact that, for every instance I ∈ IAj , if (I1 = (G1,Σ1), I2 = (G2,Σ2))
is the split of instance I that we have computed, then E(G1) ∩ E(G2) ⊆ E(J1) ∩ E(J2) (since, from
definition of a split, every vertex u ∈ V (G1)∩V (G2) belongs to V (J1)∩V (J2), and since a subdivided
instance may not have parallel edges).

It now remains to establish Invariant A6. Assume we are given, for every instance I ′ ∈ Ij+1, a
solution ϕ(I ′) that is clean with respect to J (I ′). Consider any active instance I = (G,Σ) ∈ IAj , and
let (I1 = (G1,Σ2), I2 = (G2,Σ2)) be the split of I that we have constructed. We apply the algorithm
from Observation 9.13 in order to obtain a solution ϕ(I) to instance I that is clean with respect to
J (I), and cr(ϕ(I)) ≤ cr(ϕ(I1)) + cr(ϕ(I2)) + |Edel(I)| · |E(G)|. From Property P1 of a valid output

for ProcSplit, |Edel(I)| ≤ 2cr(ϕ)·µ2000
|E(G)| + |χdirty(ψ(I))|. Overall, we have now obtained a solution ϕ(I) for

157

every instance I ∈ Ij , that is clean with respect to J (I), such that:∑
I∈Ij

cr(ϕ(I)) ≤
∑

I′∈Ij+1

cr(ϕ(I ′)) +
∑

I=(G,Σ)∈IAj

|E(G)| ·
(
cr(ψ(I)) · µ2000

|E(G)|
+ |χdirty(ψ(I))|

)
≤

∑
I′∈Ij+1

cr(ϕ(I ′)) +
∑

I=(G,Σ)∈IAj

cr(ψ(I)) · µ2000 + 2m̌ ·
∑

I=(G,Σ)∈IAj

|χdirty(ψ(I))|.

From Invariant A3,
∑

I∈Ij cr(ψ(I)) ≤ OPTcnwrs(Ǐ), and
∑

I∈Ij |χ
dirty(ψ(I))| ≤ j·µ800OPTcnwrs(Ǐ)

m̌ . There-
fore, altogether:∑

I∈Ij

cr(ϕ(I)) ≤
∑

I′∈Ij+1

cr(ϕ(I ′)) + OPTcnwrs(Ǐ) · µ2000 + 2z · µ800 · OPTcnwrs(Ǐ)

≤
∑

I′∈Ij+1

cr(ϕ(I ′)) + 2OPTcnwrs(Ǐ) · µ2000,

since z = 128
⌈
µ53
⌉
. We then apply the algorithm that is guaranteed by Invariant A6 to the collection

Ij of instances, to compute a solution ϕ(Ǐ) to instance Ǐ, whose is at most:∑
I∈Ij

cr(ϕ(I)) + j · OPTcnwrs(Ǐ) · µ6000 ≤
∑

I′∈Ij+1

cr(ϕ(I ′)) + j · OPTcnwrs(Ǐ) · µ6000 + 2OPTcnwrs(Ǐ) · µ2000

≤
∑

I′∈Ij+1

cr(ϕ(I ′)) + (j + 1) · OPTcnwrs(Ǐ) · µ6000.

From Claims 9.31 and 9.32, for all 1 ≤ j ≤ z, if OPTcnwrs(Ǐ) ≤ m̌2/µc
′
, then Pr

[
Ẽj | ¬Ẽ1 ∧ · · · ∧ ¬Ẽj−1

]
≤

1/µ498. Therefore,

Pr
[
Ẽz
]
≤ Pr

[
Ẽz | ¬Ẽ1 ∧ · · · ∧ ¬Ẽz−1

]
+Pr

[
Ẽz−1 | ¬Ẽ1 ∧ · · · ∧ ¬Ẽz−2

]
+. . .+Pr

[
Ẽ1

]
≤ z/µ498 ≤ 1/µ400,

since z = 128
⌈
µ53
⌉
. If the algorithm did not return FAIL, then we return the set Iz of subinstances

of Ǐ, and, for every instance I ∈ Iz, the corresponding core structure I(I). Assume that Event Ẽz did
not happen.

From Invariant A1, we are guaranteed that, for every instance I ∈ I, if the corresponding con-
tracted instance Î = (Ĝ, Σ̂) is a wide instance, then |E(Ĝ)| ≤ m̌/µ. Invariant A5 ensures that∑

Î=(Ĝ,Σ̂)∈Î |E(Ĝ)| ≤ 2m̌, and Invariant A6 provides an efficient algorithm for combining clean solu-

tions ϕ(I) to instances in I ∈ Iz to obtain a solution ϕ̌ to instance Ǐ. If Event Ẽz does not happen,
then we are guaranteed that:

cr(ϕ̌) ≤
∑
I∈Iz

cr(ϕ(I)) + z · OPTcnwrs(Ǐ) · µ6000 ≤
∑
I∈Iz

cr(ϕ(I)) + OPTcnwrs(Ǐ) · µ6054,

(since z = 128
⌈
µ53
⌉
). Since there is an efficient algorithm that, given, for every instance I ∈ Iz, a

solution ϕ̂(I) to the corresponding J (I)-contracted instance Î, computes a solution ϕ(I) to instance I
that is clean with respect to J (I) with cr(ϕ(I)) ≤ cr(ϕ̂(I)), we obtain the desired efficient algorithm
for combining solutions to instances in Î to obtain a solution to instance Ǐ.

Lastly, Invariant A3 ensures that, if Event Ẽz did not happen, then, for every instance I ∈ Iz,
there exists a solution ψ(I) to I that is J (I)-valid, such that

∑
I∈Iz cr(ψ(I)) ≤ OPTcnwrs(Ǐ), and∑

I∈Iz |χ
dirty(ψ(I))| ≤ OPTcnwrs(Ǐ)·zµ800

m̌ ≤ OPTcnwrs(Ǐ)·µ900
m̌ (since z = 128

⌈
µ53
⌉
). Notice also that, if

Event Ẽz does not happen, then the algorithm does not return FAIL. This completes the proof of
Theorem 9.29.

158

9.4 Phase 2 of the Algorithm

The goal of this phase is to “repair” each one of the instances I ∈ I computed in the first phase in order
to ensure that each such instance has a cheap solution that is clean with respect to the core structure
J (I). This, in turn, will ensure that the corresponding contracted graph has a cheap solution as well.
In order to repair an instance I = (G,Σ) ∈ I, we will compute a collection Edel(I) of edges of G. We
will ensure that no edge of the core J(I) corresponding to the core structure J (I) lies in Edel(I). We
can then define a new instance I ′ = (G′,Σ′), where G′ = G \ Edel(I), and Σ′ is the rotation system
for G′ that is induced by Σ. Note that J (I) remains a valid core structure for I ′. Our goal is to
ensure that, on the one hand, |Edel(I)| is not too large, and, on the other hand, there is a solution
ψ(I ′) to instance I ′ that is clean with respect to J (I ′), and cr(ψ(I ′)) is not too large compared to
cr(ψ(I)) + |χdirty(ψ(I))|2, where ψ(I) is the J (I)-valid solution for instance I from Theorem 9.29. We
now state the main result of this subsection, summarizing the algorithm for Phase 2.

Theorem 9.33 There is an efficient randomized algorithm, whose input consists of a large enough
constant b, a subinstance I = (G,Σ) of Ǐ with |E(G)| = m and G ⊆ Ǧ, and a core structure J (I) for I,
whose corresponding core is denoted by J(I). The algorithm computes a set Edel(I) ⊆ E(G) \E(J(I))
of edges, for which the following hold. Let G′ = G \ Edel(I), and let I ′ = (G′,Σ′) be the subinstance
of Ǐ defined by G′. The algorithm ensures that, if there is a solution ψ(I) to instance I that is J (I)-
valid, with cr(ψ(I)) ≤ m2/µ240b, and |χdirty(ψ(I))| ≤ m/µ240b, then with probability at least 1− 1/µ2b,

|Edel(I)| ≤
(
cr(ψ(I))

m + |χdirty(ψ(I))|
)
· µO(b), and there is a solution ψ(I ′) to instance I ′ that is clean

with respect to J (I), with cr(ψ(I ′)) ≤
(
cr(ψ(I)) + |χdirty(ψ(I))|2 + |χdirty(ψ(I))|·|E(G)|

µb

)
· (logm)O(1).

If there is a solution ψ(I) to instance I that is J (I)-valid, with cr(ψ(I)) ≤ m2/µ240b, and |χdirty(ψ(I))| ≤
m/µ240b, then we let ψ(I) be this solution, and we say that ψ(I) is a good solution to instance I.
Otherwise, we let ψ(I) be any solution to instance I that is J (I)-valid, and we say that ψ(I) is a bad
solution to instance I. We say that an application of the algorithm from Theorem 9.33 is successful,

if (i) |Edel(I)| ≤
(
cr(ψ(I))

m + |χdirty(ψ(I))|
)
· µO(b), and (ii) there is a solution ψ(I ′) to the resulting

instance I ′ = (G′,Σ′), that is clean with respect to J (I), with:

cr(ψ(I ′)) ≤
(
cr(ψ(I)) + |χdirty(ψ(I))|2 +

|χdirty(ψ(I))| · |E(G)|
µb

)
· (logm)O(1).

From Theorem 9.33, if there is a good solution ψ(I) to instance I, then the algorithm is successful
with probability at least 1− 1/µ2b. We provide the proof of the theorem below, after we complete the
proof of Theorem 3.13 using it.

9.4.1 Completing the Proof of Theorem 3.13

Given an input instance Ǐ∗ = (Ǧ∗, Σ̌∗), we first apply the algorithm from Theorem 9.29 to this input.
If the algorithm from Theorem 9.29 fails, then we terminate the algorithm and return FAIL as well.
We denote by Ẽ ′1 the bad event that the application of this algorithm is unsuccessful. Recall that, from

Theorem 9.29, if OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, then Pr

[
Ẽ ′1
]
≤ 1/µ200, and, if bad event E ′1 does not happen,

then the algorithm does not fail. We assume from now on that the algorithm from Theorem 9.29 did
not fail. Let I be the collection of subinstances of Ǐ computed by the algorithm from Theorem 9.29.
Recall that, if Event Ẽ ′1 did not happen, then for every instance I ∈ I, there is a solution ψ(I) to I,

that is J (I)-valid, such that:
∑

I∈I cr(ψ(I)) ≤ OPTcnwrs(Ǐ), and
∑

I∈I |χdirty(ψ(I))| ≤ OPTcnwrs(Ǐ)·µ900
m̌ .

We let b be a large enough constant, so that b ≥ 4000. We assume that the parameter c′ from the
statement of Theorem 3.13 is sufficiently large compared to b, for example, c′ ≥ 400b.

159

Recall that, for every instance I = (G,Σ) ∈ I, we have denoted by Î = (Ĝ, Σ̂) the corresponding
J (I)-contracted instance, and by m̂(I) = E(Ĝ). We say that instance I is small if m̂(I) ≤ m̌

µ1000
,

and otherwise it is large. We partition the set I of instances into two subsets: set I1 containing all

small instances, and set I2 containing all large instances. We let Î1 =
{
Î | I ∈ I1

}
contain the set

of all contracted instances corresponding to the instances of I1, and we define set Î2 of instances
corresponding to the instances of I2 similarly. We need the following obsevation.

Observation 9.34 Assume that OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, and that bad event Ẽ ′ did not happen. Then

for every instance I = (G,Σ) ∈ I2, there is a solution ψ(I) to instance I that is J (I)-valid, with
cr(ψ(I)) ≤ m2/µ240b, and |χdirty(ψ(I))| ≤ m/µ240b, where m = |E(G)|.

Proof: Assume that OPTcnwrs(Ǐ) = OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, and that bad event Ẽ ′ did not happen.

Recall that the algorithm from Theorem 9.29 ensures that, for every instance I ∈ I, there is a
solution ψ(I) to I, that is J (I)-valid, with

∑
I∈I cr(ψ(I)) ≤ OPTcnwrs(Ǐ), and

∑
I∈I |χdirty(ψ(I))| ≤

OPTcnwrs(Ǐ)·µ900
m̌ .

Consider now some instance I = (G,Σ) ∈ I2, and denote |E(G)| = m. From the above discussion,

cr(ψ(I)) ≤ OPTcnwrs(Ǐ) ≤ m̌2

µc′
must hold. Since, from definition of set I2 of instances, m ≥ m̂(I) >

m̌
µ1000

holds, we get that cr(ψ(I)) ≤ m2

µc′−2000 ≤ m2

µ240b
, since we can set c′ to be a large enough constant.

Similarly, |χdirty(ψ(I))| ≤ OPTcnwrs(Ǐ)·µ900
m̌ ≤ m̌

µc′−900 , since OPTcnwrs(Ǐ) ≤ m̌2/µc
′
. Using the fact that

m ≥ m̌
µ1000

, we get that:

|χdirty(ψ(I))| ≤ m

µc′−1900
≤ m

µ240b
.

We process every instance I ∈ I2 one by one. For each such instance I, we apply the algorithm from
Theorem 9.33 to instance I, core structure J (I), and the constant parameter b defined above. Let
Ẽ ′2(I) be the bad event that this application of the algorithm was unsuccessful.

From Observation 9.34 and Theorem 9.33, if OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, then Pr

[
Ẽ ′2(I) | ¬Ẽ ′1

]
≤ 1/µ2b.

We denote by I ′ = (G′,Σ′) the resulting instance of MCNwRS, and by Î ′ the corresponding J (I)-

contracted instance. We then denote Î ′2 =
{
Î ′ | I ∈ I2

}
. The final output of our algorithm is the

collection I ′ = Î1 ∪ Î ′2 of subinstances of Ǐ.

We now verify that the collection I ′ of instances has all required properties. First, the algorithm
from Theorem 9.29 ensures that, for every instance I ∈ I, if the corresponding contracted instance
Î = (Ĝ, Σ̂) is a wide instance, then |E(Ĝ)| ≤ m̌/µ. If instance I lies in I2, and Î ′ = (Ĝ′, Σ̂′) is the
J (I)-contracted instance corresponding to I ′, then |E(Ĝ′)| ≤ |E(Ĝ)|, and, if Î is not a wide instance,
then neither is Î ′. This is since graph Ĝ′ can be obtained from graph Ĝ by deleting the edges of
Edel(I) from it5. Therefore, we are guaranteed that, for every instance I ′ = (G′,Σ′) ∈ I ′, if I ′ is a
wide instance, then |E(G′)| ≤ m̌/µ.

The algorithm from Theorem 9.29 also guarantees that
∑

I∈I m̂(I) ≤ 2m̌. Since, for every in-

stance I ∈ I2, the corresponding instance Î ′ = (Ĝ′,Σ′) ∈ Î ′2 has |E(Ĝ′)| ≤ m̂(I), we get that

5This is slightly imprecise, since it is possible that |E(Ĝ′)| < m̂(I). Therefore, a vertex v may be a high-degree vertex
for Ĝ′ but not for graph Ĝ. It is therefore possible that Î is narrow but Î ′ is not, due to difference in the parameters
|E(Ĝ′)| and |E(Ĝ)|. However, we can easily fix this issue by adding m̂(I) − |E(Ĝ′)| new vertices to graph Ĝ′, and
connecting each of these vertices to a vertex whose degree in Ĝ′ is smaller than in Ĝ, so that for every vertex v ∈ V (Ĝ),
degĜ′(v) ≤ degĜ(v) and |E(Ĝ′)| = |E(Ĝ)| holds. This ensures that, if Î is a narrow instance, then so is Î ′. Adding
degree-1 vertices to an instance of MCNwRS does not increase its optimal solution value.

160

∑
I′=(G′,Σ′)∈I′ |E(G′)| ≤ 2m̌.

Let Ẽ ′2 be the bad event that any of the events in
{
Ẽ ′2(I) | I ∈ I2

}
happened. From the definition of

the set I2 of instances, for all I ∈ I2, m̂(I) ≥ m̌
µ1000

. Since, from Theorem 9.29,
∑

I∈I m̂(I) ≤ 2m̌, we

get that |I2| ≤ 2µ1000. Therefore, if OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, then:

Pr
[
Ẽ ′2 | ¬Ẽ ′1

]
≤
∑
I∈I2

Pr
[
Ẽ ′2(I) | ¬Ẽ ′1

]
≤ 2µ1000

µ2b
≤ 1

µ4
,

since b ≥ 4000. Lastly, we let Ẽ ′ be the bad event that either of the events Ẽ ′1 or Ẽ ′2 happened.

Then Pr
[
Ẽ ′
]
≤ Pr

[
Ẽ ′1
]

+ Pr
[
Ẽ ′2 | ¬Ẽ ′1

]
. From the above discussion, if OPTcnwrs(Ǐ

∗) ≤ m̌2/µc
′
, then

Pr
[
Ẽ ′
]
≤ 1

µ200
+ 1

µ4
≤ 1

µ3
. We use the following two observations in order to complete the proof of

Theorem 3.13.

Observation 9.35 Assume that OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, and that event Ẽ ′ did not happen. Then

there is an efficient algorithm, that, given a solution ϕ(I ′) to every instance I ′ ∈ I ′, computes a
solution ϕ̌ to instance Ǐ∗, with cr(ϕ̌) ≤

∑
I′∈I′ cr(ϕ(I ′)) + OPTcnwrs(Ǐ

∗) · µO(1).

Proof: We assume that OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, that Event Ẽ ′ did not happen, and that we are given

a solution ϕ(I ′) to every instance I ′ ∈ I ′. We show an efficient algorithm to compute a solution ϕ̌ to
instance Ǐ. In order to do so, we consider every instance I ∈ I2 one by one, and compute a solution
ϕ(Î) to instance Î, from the solution ϕ(Î ′) to instance Î ′.

Consider now some instance I = (G,Σ) ∈ I2. Let Î = (Ĝ, Σ̂) be the corresponding J (I)-contracted
instance, and let Î ′ = (Ĝ′, Σ̂′) be the J (I)-contracted instance corresponding to the instance I ′. Note
that V (Ĝ) = V (Ĝ′) and E(Ĝ′) = E(Ĝ) \ Edel(I). We use the algorithm from Lemma 2.9 in order to
insert the edges of Edel(I) into the solution ϕ(Î ′) to instance Î ′, obtaining a solution ϕ(Î) to instance
Î, whose cost is at most cr(ϕ(Î ′)) + |Edel(I)| · |E(Ĝ)|. Recall that, from Theorem 9.33:

|Edel(I)| ≤
(
cr(ψ(I))

|E(G)|
+ |χdirty(ψ(I))|

)
· µO(b).

Therefore:

cr(ϕ(Î)) ≤ cr(ϕ(Î ′)) +
(
cr(ψ(I)) + |χdirty(ψ(I))| · |E(Ĝ)|

)
· µO(b)

≤ cr(ϕ(Î ′)) +
(
cr(ψ(I)) + |χdirty(ψ(I))| · m̌

)
· µO(b).

Lastly, using the algorithm from Theorem 9.29, we obtain a solution ϕ̌ to instance Ǐ, whose cost is
bounded by:

cr(ϕ̌) ≤
∑
Î∈Î

cr(ϕ(Î)) + OPTcnwrs(Ǐ) · µ8000

≤
∑
I∈I1

cr(ϕ(Î)) +
∑
I∈I2

(
cr(ϕ(Î ′)) + cr(ψ(I)) · µO(b) + |χdirty(ψ(I))| · m̌ · µO(b)

)
+ OPTcnwrs(Ǐ) · µO(1)

=
∑
I′∈I′

cr(ϕ(I ′)) + OPTcnwrs(Ǐ) · µO(1) +
∑
I∈I2

cr(ψ(I)) · µO(1) +
∑
I∈I2

|χdirty(ψ(I))| · m̌ · µO(1).

From Theorem 9.29, if OPTcnwrs(Ǐ
∗) ≤ m̌2/µc

′
, and Event Ẽ ′ did not happen, then

∑
I∈I cr(ψ(I)) ≤

OPTcnwrs(Ǐ), and
∑

I∈I |χdirty(ψ(I))| ≤ OPTcnwrs(Ǐ)·µ900
m̌ . Therefore, we get that cr(ϕ̌) ≤

∑
I′∈Î′ cr(ϕ(I ′))+

161

OPTcnwrs(Ǐ) · µO(1). By suppressing the vertices that were used to subdivide the edges of graph Ǧ∗ to
obtain graph Ǧ, we obtain a solution to the original instanc Ǐ∗ of the same cost.

Lastly, the following observation will complete the proof of Theorem 3.13.

Observation 9.36 Assume that OPTcnwrs(I
∗) ≤ m̌2/µc

′
, and that event Ẽ ′ did not happen. Then∑

I′∈I′ OPTcnwrs(I
′) ≤ OPTcnwrs(Ǐ

∗) · (log m̌)O(1).

Proof: We bound
∑

I∈I2 OPTcnwrs(Î) and
∑

I∈I1 OPTcnwrs(Î
′) separately.

From Theorem 9.33, if Event Ẽ ′ did not happen, then, for every instance I = (G,Σ) ∈ I2, there is a
solution ψ(I ′) to the corresponding instance I ′, that is clean with respect to J (I), with cr(ψ(I ′)) ≤(
cr(ψ(I)) + |χdirty(ψ(I))|2 + |χdirty(ψ(I))|·|E(G)|

µb

)
· (log m̌)O(1). From Observation 9.7, there is a solution

to the corresponding contracted instance Î ′, of cost at most cr(ψ(I ′)). Altogether, we get that:∑
I∈I2

OPTcnwrs(Î
′) ≤

∑
I∈I2

(
cr(ψ(I)) + |χdirty(ψ(I))|2 +

|χdirty(ψ(I))| · m̌
µb

)
· (log m̌)O(1).

≤
∑
I∈I2

cr(ψ(I)) · (log m̌)O(1) +

∑
I∈I2

|χdirty(ψ(I))|

2

· (log m̌)O(1) +
m̌ · (log m̌)O(1)

µb
·

∑
I∈I2

|χdirty(ψ(I))|

 .

From Theorem 9.29,
∑

I∈I cr(ψ(I)) ≤ OPTcnwrs(Ǐ) and
∑

I∈I |χdirty(ψ(I))| ≤ OPTcnwrs(Ǐ)·µ900
m̌ . Addition-

ally, since we have assumed that OPTcnwrs(Ǐ
∗) = OPTcnwrs(Ǐ) ≤ m̌2/µc

′
for a large enough constant

c′,
(∑

I∈I2 |χ
dirty(ψ(I))|

)2 ≤ (OPTcnwrs(Ǐ))2·µ1800
m̌2 ≤ OPTcnwrs(Ǐ). Altogether, we get that:

∑
I∈I2

OPTcnwrs(Î
′) ≤ OPTcnwrs(Ǐ) · (log m̌)O(1) +

OPTcnwrs(Ǐ) · µ900 · (log m̌)O(1)

µb

≤ OPTcnwrs(Ǐ) · (log m̌)O(1),

since b ≥ 4000.

Next, we bound
∑

I∈I1 OPTcnwrs(Î). Consider some instance I = (G,Σ) ∈ I1 and the solution ψ(I)

that is J (I)-valid. Let J(I) be the core associated with the core structure J (I). Let Edirty(I) ⊆
E(G) \ E(J(I)) be the set of all edges e, such that the image of e in ψ(I) crosses the image of some
edge of J(I). Let Î = (Ĝ, Σ̂) be the J (I)-contracted instance corresponding to instance I.

Denote G′ = G\Edirty(I), and let Σ′ be the rotation system for graph G′ that is induced by Σ. Observe
that J (I) is a valid core structure for the resulting instance I ′ = (G′,Σ′). Let Î ′ = (Ĝ′, Σ̂′) be the
J (I)-contracted instance associated with I ′.

Observe that we can easily modify the solution ψ(I) to instance I to obtain a solution ψ(I ′) to
instance I ′ that is clean with respect to J (I), with cr(ψ(I ′)) ≤ cr(ψ(I)). Indeed, denote J (I) =
(J, {bu}u∈V (J) , ρJ , F

∗). Let ψ′(I ′) be the solution to instance I ′ induced by ψ(I). Since G′ = G \
Edirty(I), for every connected component C of G′, either the images of all edges and vertices of C in
ψ′(I ′) are contained in the region F ∗ of the drawing, or the images of all edges and vertices of C in
ψ′(I ′) are disjoint from F ∗ (note that, if E(C)∩ δG(J) 6= ∅, then the image of C must be contained in
F ∗, since the image of C must intersect the interior of F ∗, from the definition of a valid core structure
(see Definition 9.3)). If the images of all edges and vertices of C in ψ′(I ′) are disjoint from F ∗, then
C ∩ J = ∅ must hold, and so we can simply move the image of C to lie in the interior of the region
F ∗ without changing the drawing of C itself, and without introducing any new crossings. Once we
move the image of each such connected component to lie inside region F ∗, we obtain a solution ψ(I ′)
to instance I ′ that is clean with respect to J (I), and cr(ψ(I ′)) ≤ cr(ψ(I)).

162

From Observation 9.7, there is a solution ψ(Î ′) to the contracted instance Î ′ with cr(ψ(Î ′)) ≤
cr(ψ(I ′)) ≤ cr(ψ(I)). We use the algorithm from Lemma 2.9 in order to insert the edges of Edirty(I)
into the drawing ψ(Î ′) to obtain a solution ψ(Î) of instance Î, with the number of crossings bounded
by cr(ψ(Î ′)) + |Edirty(I)| · |E(Ĝ)| ≤ cr(ψ(I)) + |Edirty(I)| · |E(Ĝ)|. Since I ∈ I1, |E(Ĝ)| ≤ m̌

µ1000
, so

cr(ψ(Î)) ≤ cr(ψ(I)) + |χdirty(I)| · m̌
µ1000

. We then get that:

∑
I∈I1

OPTcnwrs(Î) ≤
∑
I∈I1

cr(ψ(I)) +
∑
I∈I1

|χdirty(I)| · m̌

µ1000
.

From Theorem 9.29,
∑

I∈I cr(ψ(I)) ≤ OPTcnwrs(Ǐ) and
∑

I∈I |χdirty(ψ(I))| ≤ OPTcnwrs(Ǐ)·µ900
m̌ . There-

fore: ∑
I∈I1

OPTcnwrs(Î) ≤ OPTcnwrs(Ǐ) +
m̌

µ1000
· OPTcnwrs(Ǐ) · µ900

m̌
≤ O(OPTcnwrs(Ǐ)).

Overall, we get that
∑

I′∈I′ OPTcnwrs(I
′) =

∑
I∈I1 OPTcnwrs(Î) +

∑
I∈I2 OPTcnwrs(Î

′) ≤ OPTcnwrs(Ǐ) ·
(log m̌)O(1) = OPTcnwrs(Ǐ

∗) · (log m̌)O(1).

In the remainder of this section we focus on the proof of Theorem 9.33. Throughout the proof, we
denote the instance I = (G,Σ) that serves as the input to the algorithm by Ǐ ′ = (Ǧ′, Σ̌′), with |E(Ǧ′)|
denoted by m̌′. We denote the core structure J (I) by J̌ = (J̌ , {bu}u∈V (J̌) , ρJ̌ , F

∗). We can assume

that there is a J̌ -valid solution ψ̌ to instance Ǐ ′ with cr(ψ̌) ≤ (m̌′)2/µ240b, and |χdirty(ψ̌)| ≤ m̌′/µ240b,
since otherwise we can set Edel(Ǐ ′) = E(Ǧ′) \ E(J̌), which trivially satisfies the requirements of the
theorem. From now on we fix a J̌ -valid solution ψ̌ to instance Ǐ ′, with cr(ψ̌) ≤ (m̌′)2/µ240b and
|χdirty(ψ̌)| ≤ m̌′/µ240b. We emphasize that solution ψ̌ is not known to the algorithm.

9.4.2 Proof of Theorem 9.33 – Intuition

For simplicity of exposition, assume that the core J̌ corresponding to the core structure J̌ is a simple
cycle. Generally it is not difficult to modify the solution ψ̌ to instance Ǐ ′ so that it becomes semi-clean,
while only increasing the number of crossings by at most |χdirty(ψ̌)|2. In order to do so, we let Edirty

be the set of all dirty edges – that is, edges whose image in ψ̌ crosses the image of some edge of J̌ . Let
C be the set of all connected components of Ǧ′ \ Edirty. It is easy to verify that for each component
C ∈ C, either the images of all vertices and edges of C in ψ̌ lie in the region F ∗; or the images of all
vertices and edges of C in ψ̌ are disjoint from F ∗. In the latter case, we move the image of C to lie
in the interior of the face F ∗, without changing the image itself. We then need to modify the images
of the edges in set Edirty, so that they connect the new images of their endpoints. This can be easily
done while introducing at most |χdirty(ψ̌)|2 new crossings. We do not provide the details here, since
we do not use this algorithm eventually.

Let ψ̌′ denote this semi-clean solution to instance Ǐ ′ with respect to J̌ . Denote by γ the image of the
cycle J̌ in ψ̌, which must be a simple closed curve. For convenience, we will now denote by Edirty the
set of all dirty edges of Ǧ′ – edges whose image in ψ̌′ crosses the image of some edge of J̌ . Consider
now some dirty edge e ∈ Edirty. For simplicity of exposition, assume that e is not incident to any
vertex of J̌ . Since ψ̌′ is a semi-clean drawing of Ǧ′ with respect to J̌ , the images of the endpoints of e
must lie in region F ∗. Therefore, there must be at least two points on ψ̌′(e) that lie on γ. We assign
the curve ψ̌(e) an arbitrary direction, denote by p the first point on ψ̌′(e) that lies on γ, and by p′ the
last point on ψ̌′(e) that lies on γ. Points p and p′ partition the curve γ into two disjoint simple open
curves, that we denote by γ′ and γ′′, respectively. A simple way to “repair” the drawing of the edge e
so that it no longer crosses the edges of J̌ would be to replace the segment of ψ̌(e) between p and p′

with a new segment σ(e), that follows the curve γ′ closely, in the interior of region F ∗ (see Figure 33).

163

A problem with this approach is that this may greatly increase the number of crossings, as the segment
σ(e) may cross many edges in drawing ψ̌′. Intuitively, the requirements of Theorem 9.33 allow us to

add up to m̌′(log m̌′)O(1)

µb
new crossings to the drawing ψ̌ for each dirty edge whose image we modify, but

unfortunately it is possible that, after the modification, σ(e) crosses the images of many more edges.

(a) Before: the image of e (green) and its intersec-
tions p, p′ (red) with the image of J̌ (blue). Region
F ∗ is shown in gray.

(b) After: the new image of e is shown in
green.

Figure 33: Repairing the image of an edge e ∈ Edirty.

Let S denote the set of all vertices of J̌ whose images lie on γ′, and let T be defined similary for γ′′.
Consider the minimun cut (X,Y) separating vertices of S from vertices of T in graph Ǧ′ \ Edirty, so
S ⊆ X and T ⊆ Y . Assume first that |EǦ′(X,Y)| < m̌′/µb. In this case, we can rearrange the drawing
ψ̌′, so that all vertices and edges of Ǧ[X] \ Edirty are drawn very close to the segment γ′ (but in the
interior of region F ∗), and similarly all vertices and edges of Ǧ[Y] \Edirty are drawn very close to the
segment γ′′. We can then define a curve σ(e) connecting points p and p′, so that σ(e) is contained
in F ∗, and it only crosses the images of the edges in EǦ′(X,Y). Therefore, we can ensure that σ(e)
participates in few crossings. We can then modify the image of edge e to follow the segment σ(e) as
before, without increasing the number of crossings by too much.

Note that each dirty edge e ∈ Edirty may define a different partition (S, T) of the vertices of J̌ , and
a different cut (X,Y). However, if we can ensure that the number of edges crossing each such cut is
sufficiently low, then we can still rearrange the drawing ψ̌′, and modify the drawings of all edges in
Edirty, so that they become contained in region F ∗, while ensuring that the total number of crossings
only increases moderately.

It is however possible that, for some edge e ∈ Edirty, and its corresponding partition (S, T) of V (J̌),
the minimum cut separating S from T in Ǧ′ contains more than m̌′/µb edges. In this case, there must
be at least

⌈
m̌′/µb

⌉
edge-disjoint paths in Ǧ′ connecting vertices of S to vertices of T . We can treat

this set of paths as a promising set of paths, that can be used in order to define an enhancement P of
the core structure J̌ , using Procedure ProcSplit. We can also use the procedure in order to compute
an enhancement structure A, and a split (I1 = (G1,Σ1), I2 = (G2,Σ2)) of instance Ǐ ′ along A. Unlike
the algorithm from Phase 1, we will not view the resulting two instances I1, I2 as separate instances.
Instead, we will initialize the set Edel(Ǐ ′) of deleted edges to edge set E(Ǧ′) \ (E(G1) ∪ E(G2)). We
then consider the graph K = J̌ ∪P , that we call a skeleton , and fix a planar drawing ρK of it (which
is uniquely defined). From Property P3 of valid output to Procedure ProcSplit, there is a drawing ψ

164

of graph Ǧ′ \ Edel(Ǐ ′), that obeys the rotation system Σ̌′, such that drawing ψ is J̌ -valid, and the
edges of J̌ ∪ P do not cross each other in ψ, with cr(ψ) ≤ cr(ψ̌′). If we consider the drawing ρJ̌ of
the core J̌ , then the image of path P partitions face F ∗ into two new faces, that we denote by F1 and
F2. Consider the split (J1,J2) of the core structure J̌ along A. The cores J1, J2 associated with the
core structures J1 and J2, respectively, serve as the boundaries of the faces F1, F2, respectively, in
the drawing ρK of graph K.

We note that the drawing of instance I1 induced by ψ̌ is not necessarily semi-clean with respect to
J1, and the same is true regarding instance I2 and core structure J2. But we could modify ψ̌ to
ensure this property, obtaining a new drawing ψ′ of graph Ǧ′ \ Edel(Ǐ ′) (though this process would
increase the number of crossings by factor poly log m̌′; we ignore this technicality for now). If we now
consider some edge e, whose image in ψ′ crosses the image of some edge in J̌ , then edge e must either
lie in graph G1, or in graph G2. Assume w.l.o.g. that it is the former. In the modified drawing ψ′ of
Ǧ′ \Edel(Ǐ ′), both endpoints of edge e are drawn inside the region F1. The image of e must then cross
the boundary of region F1 in at least two points (recall that the boundary of region F1 in ψ′ is the
image of the core J1). We can again use these two points to define a partition (S, T) of the vertices
of J1, and compute a minimum cut (X,Y) separating S from T in G1. As before, if the value of this
minimum cut is small, then we can modify the current drawing ψ′ locally inside region F1 and modify
the image of the edge e, so that it is contained in F1, and no longer crosses the edges of J̌ . If the
value of this minimum cut is large, then we can again define a promising set of paths for instance I1

and core structure J1, and then invoke Procedure ProcSplit in order to further split core structure J1

and instance I1, thereby adding new edges to set Edel(Ǐ ′).

At a high level, our algorithm can be thought of as maintaining a single skeleton graph K – a planar
subgraph of Ǧ′ with J̌ ⊆ K, such that, for every edge e ∈ E(K), graph K \ {e} is connected. We
also maintain a skeleton structure K, that, in addition to the skeleton K, specifies the orientation bu
of every vertex u ∈ V (K), and a planar drawing ρK of graph K on the sphere. We require that,
for every vertex u ∈ V (J̌), its orientations in K and J̌ are identical, and that drawing ρK of K is
clean with respect to core structure J̌ , and is consistent with rotation system Σ and orientations bu
of the vertices u ∈ V (K). Let F(ρK) be the set of all faces of the drawing ρK . Since drawing ρK
is clean with respect to J̌ , every forbidden face F ∈ F×(ρJ̌) is also a face of F(ρK). We denote by
F×(ρK) = F×(ρJ̌) the set of all such faces of F(ρK), that we refer to as forbidden faces of drawing
ρK . For every face F ∈ F(ρK), the set of vertices and edges of K lying on its boundary define a core
JF . Using the skeleton structure K, we can define a core structure JF associated with the core JF .
We also maintain, for every face F ∈ F(ρK), a subgraph GF of Ǧ′. We let ΣF be the rotation system
for GF induced by Σ, and we let IF = (GF ,ΣF) be the resulting instance of MCNwRS. We require
that JF is a valid core structure for instance IF , and, if face F is a forbidden face, then GF = JF
holds. We will ensure that, for every pair F, F ′ ∈ F(ρK) of distinct faces, every vertex and every edge

of GF ∩GF ′ belong to JF ∩ JF ′ , and that Edel(Ǐ ′) = E(Ǧ′) \
(⋃

F∈F(ρK)E(GF)
)

.

Consider now some face F ∈ F(ρK) \ F×(ρK). Intuitively (though somewhat imprecisely), we say
that the corresponding instance IF is acceptable if, for every parition (S, T) of the vertices of the core
JF , where the vertices of S appear consecutively on the cycle JF , there is a small cut in GF separating
S from T (the definition is slightly more involved when IF is not a simple cycle). If instance IF
is unacceptable, then we will use Procedure ProcSplit in order to further augment the skeleton and
partition instance IF into two subinstances. Once we reach a state where, for every face F ∈ F(ρK) of
the current skeleton K, the corresponding instance IF is acceptable, we terminate the algorithm. We
show that the resulting drawing ψ of graph Ǧ′ \Edel(Ǐ ′) can be modified so that all crossings with the
edges of the original core J̌ are eliminated, and the number of crossings only increases moderately.

165

9.4.3 Proof of Theorem 9.33 – Main Definitions and Notation

In this subsection we define the main notions that we use in the proof of Theorem 9.33, and also state
the main lemmas from which the proof of Theorem 9.33 follows.

Suppose G′ is any subgraph of Ǧ′. Let Σ′ be the rotation system for G′ induced by Σ̌′, and let
I ′ = (G′,Σ′) be the resulting instance of MCNwRS. For brevity, we will say that I ′ = (G′,Σ′) is the
subinstance of Ǐ ′ defined by G′. Recal that Ǧ′ ⊆ Ǧ, so I ′ is also the subinstance of Ǐ defined by G′.

Planar Drawings and Face Boundaries. Suppose we are given a planar graph H, and a drawing
ϕ of H on the sphere with no crossings. As before, we denote by F(ϕ) the set of all faces of the
drawing ϕ. For a face F ∈ F(ϕ), we denote by ∂ϕ(H,F) the subgraph of H containing all vertices
and edges whose images are contained in the boundary of the face F . We omit the subscript ϕ when
clear of context. We sometimes say that the vertices and edges of ∂ϕ(H,F) serve as the boundary of
face F in ϕ.

Skeleton and Skeleton Structure. We now define the central notions that the proof of Theo-
rem 9.33 uses, namely a skeleton and a skeleton structure, that can be thought of as extending the
notions of a core and a core structure.

Definition 9.37 (Skeleton) Let K be a subgraph of Ǧ′. We say that K is a skeleton graph, if
J̌ ′ ⊆ K, and, for every edge e ∈ E(K), graph K \ {e} is connected.

While the definition of the skeleton K is quite general, we will construct the skeleton using a specific
procedure. At the beginning of the algorithm, we let K = J̌ ′. In every iteration of the algorithm, we
augment K by adding to it a simple path (or a cycle) P , whose both endpoints belong to K, and all
inner vertices are disjoint from K. Next, we define a skeleton structure.

Definition 9.38 (Skeleton Structure) A skeleton structure K consists of the following three ingre-
dients:

• a skeleton graph K;

• for every vertex u ∈ V (K), an orientation bu ∈ {−1, 1}, such that, for every vertex u ∈ V (J̌ ′),
its orientation bu is identical to that given by the core structure J̌ ; and

• a drawing ρK of graph K on the sphere with no crossings, such that ρK obeys the rotation system
Σ̌′, the orientation of every vertex u ∈ V (K) in ρK is bu, and drawing ρK is clean with respect
to J̌ ′.

Consider now some skeleton structure K = (K, {bu}u∈V (K) , ρK). For brevity of notation, we denote

by F̃(K) = F(ρK) the set of all faces in the drawing ρK . Since drawing ρK is clean with respect to
J̌ ′, the image of every vertex and every edge of K appears in the region F ∗ = F ∗(ρJ̌ ′) of this drawing
(including its boundary). Therefore, every forbidden face F ∈ F×(ρJ̌ ′) is also a face of F̃(K). We
denote by F̃×(K) = F×(ρJ̌ ′) the set of all such faces, that we refer to as forbidden faces of drawing
ρK , and we denote by F̃ ′(K) = F̃(K) \ F̃×(K) the set of all remaining faces.

Consider some face F ∈ F̃(K), and let JF = ∂ρK (K,F) be the graph consisting of all vertices and edges
of K whose images appear on the boundary of face F in drawing ρK . From the definition of a skeleton
graph K, graph JF is a core. We can then define a core structure JF = (JF , {bu}u∈V (JF) , ρJF , F

∗(ρJF))
as follows: for every vertex u ∈ V (JF), its orientation bu remains the same as in K. Drawing ρJF of
graph JF is the drawing induced by ρK . Notice that face F ∈ F̃(K) remains a face in the drawing

166

ρJF . Face F ∗(ρJF) is then defined to be the face F . (We note that a core structure is generally defined
for some specific graph G′, for which the properties specified in Definition 9.3 must hold. Therefore,
for now we view the core structure JF as simply a tuple (JF , {bu}u∈V (JF) , ρJF , F

∗(ρJF)), and we will

later define a subgraph GF of Ǧ′, for which JF will be a valid core structure.)

K-Valid Drawings. Next, we consider a skeleton structureK = (K, {bu}u∈V (K) , ρK) and a subgraph

G′ ⊆ G with K ⊆ G′. We then define K-valid drawings of graph G′, in a natural way.

Definition 9.39 (K-valid drawings) Let K = (K, {bu}u∈V (K) , ρK) be a skeleton structure, let G′

be a subgraph of Ǧ′ with K ⊆ G′, and let I ′ = (G′,Σ′) be the subinstance of Ǐ ′ defined by G′. We say
that a solution ϕ to instance I ′ is K-valid, if the drawing of the skeleton K induced by ϕ is identical
to ρK , and the orientation of every vertex u ∈ V (K) in drawing ϕ is identical to the orientation bu
given by K. We also say that a K-valid solution ϕ to instance I ′ is a K-valid drawing of graph G′.

Note that, if ϕ is a K-valid solution to instance I ′, for any skeleton structure K, then it is also a
J̌ -valid solution to I ′.

Since we will be considering various core structures JF associated with faces F ∈ F̃(K) of a given
skeleton structure K, the definition of dirty edges and dirty crossings will change depending on which
core structure we consider. As the algorithm pogresses, the drawing ψ that we maintain for the current
graph G′ = Ǧ′ \Edel(Ǐ ′) will evolve. We need to keep track of the crossings in which the edges of the
original core J̌ participate, and of the edges involved in these crossings.

Therefore, given a subgraph G′ ⊆ Ǧ′, a skeleton structure K = (K, {bu}u∈V (K) , ρK), and a K-valid

solution to subinstance I ′ = (G′,Σ′) defined by graph G′, we denote by χ∗(ϕ) the set of all crossings
(e, e′)p in ϕ where e or e′ belong to the core J̌ .

A K-Decomposition of Ǧ′ and Face-Based Instances. Over the course of the algorithm, we
will maintain a skeleton structure K, and an associated decomposition of graph Ǧ′ into subgraphs.
Intuitively, for every face F ∈ F̃(K), we will define a subgraph GF of Ǧ′ that we associate with face
F . We now define a K-decomposition of Ǧ′.

Definition 9.40 (A K-decomposition of Ǧ′) Let K = (K, {bu}u∈V (K) , ρK) be a skeleton struc-

ture, and, for every face F ∈ F̃(K), let JF = (JF , {bu}u∈V (JF) , ρJF , F
∗(ρJF)) be the core structure that

K defines for face F . A K-decomposition of the input graph Ǧ′ is a collection G =
{
GF | F ∈ F̃(K)

}
of subgraphs of Ǧ′, for which the following hold:

• for every face F ∈ F̃(K), the core structure JF associated with face F is a valid core structure
for instance IF = (GF ,ΣF) defined by graph GF ;

• for every forbidden face F ∈ F̃×(K), GF = JF ;

• for every face F ∈ F̃(K), GF ∩K = JF ; and

• for every pair F, F ′ ∈ F̃(K) of distinct faces, V (GF)∩ V (GF ′) ⊆ V (JF)∩ V (JF ′), and E(GF)∩
E(GF ′) ⊆ E(JF) ∩ E(JF ′).

We will sometimes refer to the subinstance IF = (GF ,ΣF) of Ǐ ′ defined by graph GF associated with
a face F ∈ F̃(K) as a face-based subinstance associated with face F .

167

In order to prove Theorem 9.33, we will gradually construct a skeleton K and its associated skeleton
structure K, starting with K = J̌ . We will also maintain a K-decomposition G of the graph Ǧ′. We

will denote by Edel = E(Ǧ′)\
(⋃

F∈F̃(K)E(GF)
)

, and we will view Edel as the set of deleted edges, that

will eventually be added to set Edel(Ǐ ′). We will ensure that |Edel| will remain small over the course of
the algorithm. Consider the graph G′ = Ǧ′ \Edel and its associated subinstance I ′ = (G′,Σ′) of Ǐ ′. We
will ensure that throughout the algorithm, there is a solution ϕ to instance I ′, that is compatible with
the solution ψ(Ǐ ′) to instance Ǐ ′ (with respect to the core structure J̌ ′), with cr(ϕ) ≤ cr(ψ(Ǐ ′)) and
|χ∗(ϕ)| ≤ |χ∗(ψ(Ǐ ′))|. The algorithm terminates once every instance GF in the resulting decomposition
G becomes “acceptable” – a notion that we define next.

Given a skeleton structure K = (K, {bu}u∈V (K) , ρK), a K-decomposition G =
{
GF | F ∈ F̃(K)

}
of

graph Ǧ′, and a face F ∈ F̃(K), we denote by ẼF the set of all edges e ∈ E(GF), such that exactly
one endpoint of e lies in JF ; in other words, ẼF = δGF (JF) (recall that, since GF is a subgraph of the
subdivided graph Ǧ, no edge of E(GF) \ E(JF) may have both its endpoints in the core JF). Recall
that, when we defined a core structure, we have also defined an ordering O(JF) of the edges of ẼF .
Intuitively, this is the order in which the edges of ẼF are encountered in any JF -valid solution to
instance IF , as we follow along the boudary of face F ∗(ρJF) inside the face, in the counter-clock-wise
direction.

Definition 9.41 (Acceptable Instances) Let K = (K, {bu}u∈V (K) , ρK) be skeleton structure, let

G =
{
GF | F ∈ F̃(K)

}
be a K-decomposition of graph Ǧ′, and let F ∈ F̃(K) be a face. Consider a

graph HF , that is obtained from graph GF by first subdividing every edge e ∈ ẼF with a vertex te, and
then deleting all vertices and edges of JF from it. We say that instance GF is acceptable if, for every
partition (E1, E2) of the edges of ẼF , such that the edges of E1 appear consecutively in the ordering
O(JF), there is a cut (X,Y) in graph HF with vertex set {te | e ∈ E1} contained in X, vertex set
{te | e ∈ E2} contained in Y , and |EHF (X,Y)| ≤ m̌′/µ2b.

The main ingredients in the proof of Theorem 9.33 are the following two lemmas.

Lemma 9.42 There is an efficient randomized algorithm, whose input consists of a large enough
constant b ≥ 1, a subinstance Ǐ ′ = (Ǧ′, Σ̌′) of Ǐ with |E(Ǧ′)| = m̌′ and Ǧ′ ⊆ Ǧ, and a core structure
J̌ for Ǐ ′, whose corresponding core is denoted by J̌ . The algorithm either returns FAIL, or computes
a skeleton structure K = (K, {bu}u∈V (K) , ρK), and a K-decomposition G of Ǧ′, such that, for every

face F ∈ F̃(K), the corresponding subinstance IF = (GF ,ΣF) of Ǐ ′ defined by the graph GF ∈ G
is acceptable. Moreover, if there is a solution ψ(Ǐ ′) to instance Ǐ ′ that is J̌ -valid, with cr(ψ(Ǐ ′)) ≤
(m̌′)2/µ240b, and |χ∗(ψ(Ǐ ′))| ≤ m̌′/µ240b, then with probability at least 1− 1/µ2b, the following hold:

• the algorithm does not return FAIL;

• the cardinality of edge set Edel(Ǐ ′) = E(Ǧ′) \
(⋃

F∈F̃(K)E(GF)
)

is bounded by:

(
cr(ψ(Ǐ ′))

m̌′
+ |χ∗(ψ(Ǐ ′))|

)
· µO(b); and

• if we denote G′ = Ǧ′ \Edel(Ǐ ′), and let I ′ = (G′,Σ′) be the subinstance of Ǐ ′ defined by graph G′,
then there is a K-valid solution ϕ to instance I ′, with cr(ϕ) ≤ cr(ψ(Ǐ ′)), |χ∗(ϕ)| ≤ |χ∗(ψ(Ǐ ′))|,
and the total number of crossings in which the edges of E(K) \ E(J̌) participate is at most
cr(ψ(Ǐ′))·µ50b

m̌′ .

168

Lemma 9.43 Suppose we are given a subinstance Ǐ ′ = (Ǧ′, Σ̌′) of Ǐ with Ǧ′ ⊆ Ǧ and |E(Ǧ′)| = m̌′,
a core structure J̌ for Ǐ ′, a skeleton structure K = (K, {bu}u∈V (K) , ρK), and a K-decomposition G of

Ǧ′, such that, for every face F ∈ F̃(K), the corresponding subinstance IF = (GF ,ΣF) of Ǐ ′ defined by

the graph GF ∈ G is acceptable. Let Edel(Ǐ ′) = E(Ǧ′) \
(⋃

F∈F̃(K)E(GF)
)

, G′ = Ǧ′ \ Edel(Ǐ ′), and

let I ′ = (G′,Σ′) be the subinstance of Ǐ ′ defined by graph G′. Assume further that there is a K-valid
solution ϕ to instance I ′, so that the total number of crossings in which the edges of K participate
is N ≤ m̌′

µ3b
and |χ∗(ϕ)| ≤ m̌′/µ240b. Then there is a solution ψ(I ′) to instance I ′ that is clean with

respect to J̌ , with cr(ψ(I ′)) ≤
(
cr(ϕ) +N2 + |χ∗(ϕ)|2 + |χ∗(ϕ)|·m̌′

µb

)
· (log m̌′)O(1).

We provide the proofs of Lemma 9.42 and Lemma 9.43 in Sections 9.4.4 and 9.4.5, respectively. The
proof of Theorem 9.33 easily follows from the above two lemmas. Indeed, consider the input instance
Ǐ ′ = (Ǧ′, Σ̌′) of MCNwRS that is a subinstance of Ǐ, with Ǧ′ ⊆ Ǧ and |E(Ǧ′)| = m̌′, and a core structure
J̌ for Ǐ ′, whose corresponding core is denoted by J̌ . We apply the algorithm from Lemma 9.42 to this
input. If the algorithm returns FAIL, then we set Edel(Ǐ ′) = E(Ǧ′) \E(J̌), and return this edge set as
the output. We say that the algorithm from Lemma 9.42 fails in this case. Otherwise, the algorithm
from Lemma 9.42 computes a skeleton structure K = (K, {bu}u∈V (K) , ρK), and a K-decomposition G
of Ǧ′, such that, for every face F ∈ F̃(K), the corresponding subinstance IF = (GF ,ΣF) of Ǐ ′ defined

by the graph GF ∈ G is acceptable. Let Edel(Ǐ ′) = E(Ǧ′) \
(⋃

F∈F̃(K)E(GF)
)

, let G′ = Ǧ′ \ Edel(Ǐ ′),

and let I ′ = (G′,Σ′) be the subinstance of Ǐ ′ defined by graph G′. We say that the algorithm from

Lemma 9.42 is successful if (i) it does not fail; (ii) |Edel(Ǐ ′)| ≤
(
cr(ψ(Ǐ′))

m̌′ + |χ∗(ψ(Ǐ ′))|
)
· µO(b); and

(iii) there is a K-valid solution ϕ to instance I ′, with cr(ϕ) ≤ cr(ψ(Ǐ ′)), |χ∗(ϕ)| ≤ |χ∗(ψ(Ǐ ′))|, and

the total number of crossings in which the edges of E(K) \ E(J̌) participate is at most cr(ψ(Ǐ′))·µ50b
m̌′ .

If the algorithm is not successful, then we say that it is unsuccessful. Theorem 9.33 guarantees
that, if there is a solution ψ(Ǐ ′) to instance Ǐ ′ that is J̌ -valid, with cr(ψ(Ǐ ′)) ≤ (m̌′)2/µ240b, and
|χ∗(ψ(Ǐ ′))| ≤ m̌′/µ240b, then the algorithm from Lemma 9.42 is successful with probability at least
1 − 1/µ2b. If the algorithm from Lemma 9.42 does not fail, then we return edge set Edel(Ǐ ′) as the
outcome of the algorithm.

In order to complete the proof of Theorem 9.33, it is enough to show that, if there is a solution ψ(Ǐ ′) to
instance Ǐ ′ that is J̌ -valid, with cr(ψ(Ǐ ′)) ≤ (m̌′)2/µ240b and |χ∗(ψ(Ǐ ′))| ≤ m̌′/µ240b, and the algorithm
from Lemma 9.42 is successful, then there is a solution ψ(I ′) to instance I ′ that is clean with respect

to J (I), with cr(ψ(I ′)) ≤
(
cr(ψ(Ǐ ′)) + |χdirty(ψ(Ǐ ′))|2 + |χdirty(ψ(Ǐ′))|·m̌′

µb

)
· (log m̌′)O(1).

Assume that there is a solution ψ(Ǐ ′) to instance Ǐ ′ that is J̌ -valid, with cr(ψ(Ǐ ′)) ≤ (m̌′)2/µ240b and
|χ∗(ψ(Ǐ ′))| ≤ m̌′/µ240b, and that the algorithm from Lemma 9.42 is successful. Then there is a K-
valid solution ϕ to instance I ′, with cr(ϕ) ≤ cr(ψ(Ǐ ′)), |χ∗(ϕ)| ≤ |χ∗(ψ(Ǐ ′))| ≤ m̌′/µ240b, and the total

number of crossings in which the edges of K participate is at most N = cr(ψ(Ǐ′))·µ50b
m̌′ + |χ∗(ψ(Ǐ ′))| ≤ m̌′

µ3b

(since cr(ψ(Ǐ ′)) ≤ (m̌′)2

µ240b
and |χ∗(ψ(Ǐ ′))| ≤ m̌′

µ240b
). From Lemma 9.43, there is a solution ψ(I ′) to

instance I ′ that is clean with respect to J̌ , with cr(ψ(I ′)) ≤
(
cr(ϕ) +N2 + |χ∗(ϕ)|2 + |χ∗(ϕ)|·m̌′

µb

)
·

(log m̌′)O(1). Note that cr(ϕ) ≤ cr(ψ(Ǐ ′)) and |χ∗(ϕ)| ≤ |χ∗(ψ(Ǐ ′))| = |χdirty(ψ(Ǐ ′))|. Additionally,

N ≤ cr(ψ(Ǐ′))·µ50b
m̌′ + |χdirty(ψ(Ǐ ′))|, so N2 ≤ 2(cr(ψ(Ǐ′)))2·µ100b

(m̌′)2 +2|χdirty(ψ(Ǐ ′))|2 ≤ cr(ψ(Ǐ ′)), since we have

assumed that cr(ψ(Ǐ ′)) ≤ (m̌′)2/µ240b. Therefore, we get that:

cr(ψ(I ′)) ≤
(
cr(ψ(Ǐ ′)) + |χdirty(ψ(Ǐ ′))|2 +

|χdirty(ψ(Ǐ ′))| · m̌′

µb

)
· (log m̌′)O(1)

as required.

169

In order to complete the proof of Theorem 9.33, it is now enough to prove Lemma 9.42 and Lemma 9.43,
which we do next.

9.4.4 Proof of Lemma 9.42

The proof of Lemma 9.42 is somewhat similar to the proof of Theorem 9.29, in that we repeatedly
apply Procedure ProcSplit to obtain the desired decomposition, though the details are different. For
simplicity of notation, we say that a solution ψ to instance Ǐ ′ is good, if it is J̌ -valid, with cr(ψ) ≤
(m̌′)2/µ240b, and |χ∗(ψ)| ≤ m̌′/µ240b. If such a solution exists, then we denote it by ψ throughout the
algorithm (though we note that the solution is not known to the algorithm). If such a solution does
not exist, then we let ψ be any J̌ -valid solution to instance Ǐ ′.

Given a skeleton structure K, a K-decomposition G of instance Ǐ ′, and some face F ∈ F̃(K), we denote
by mF = |E(GF)| and by m̂F = |E(GF) \ E(K)|, where GF ∈ G is the graph associated with face
F . Our algorithm consists of at most

⌈
32µ6b

⌉
stages. For 1 ≤ i ≤

⌈
32µ6b

⌉
, the input to stage i is a

skeleton structure Ki, whose corresponding skeleton is denoted by Ki, and a Ki-decomposition Gi of
graph Ǧ′. We will ensure that, with high enough probability, the following properties hold.

A’1. for every face F ∈ F̃(Ki), either mF ≤ m̌′ ·
(

1− i−1
32µ6b

)
, or the corresponding instance IF =

(GF ,ΣF) with GF ∈ Gi is acceptable;

A’2. if we denote by Edel
i = E(Ǧ′)\

(⋃
GF∈Gi E(GF)

)
, then |Edel

i | ≤ (i−1)·
(
cr(ψ)µ100b

m̌′ + |χ∗(ψ)| · µ3b
)

;

and

A’3. let Gi = Ǧ′ \ Edel
i , and let Σi be the rotation system for Gi induced by Σ̌′. Then there exists a

solution ϕi to instance (Gi,Σi), that is Ki-valid, and has the following additional properties:

• cr(ϕi) ≤ cr(ψ);

• |χ∗(ϕi)| ≤ |χ∗(ψ)|; and

• if we denote by N(ϕi) the total number of crossings of ϕi in which the edges of E(Ki)\E(J̌)

participate, then N(ϕi) ≤ cr(ψ)·i·µ40b
m̌′ .

We say that the execution of stage i is successful if the output of the stage satisfies the invariants
A’1–A’3. We denote by Ẽ ′i the bad event that the execution of stage i is unsuccessful.

We start by constructing the input to the first iteration. The skeleton structure K1 is defined by
the core structure J̌ = (J̌ , {bu}u∈V (J̌) , ρJ̌ , F

∗(ρJ̌)) in a natural way: we let the skeleton K1 be J̌ ,

the orientations bu for vertices u ∈ V (J̌) remain unchanged, and the drawing ρǨ1
of skeleton Ǩ1

is ρJ̌ . Notice that the collection F̃(K1) of faces has a single non-forbidden face F ∗ = F ∗(ρJ̌), and
we let GF ∗ = Ǧ′ be the graph associated with that face. For every other face F ∈ F̃(K1), skeleton
structure K1 defines a corresponding core structure JF , whose core graph is denoted by JF . We then

let GF = JF be the graph associated with face F . We let G1 =
{
GF | F ∈ F̃(K)

}
be the resulting

K1-decomposition of Ǧ′, so Edel
1 = ∅, and we let ϕ1 = ψ be the solution to instance Ǐ ′ = (G1,Σ1) that

we defined above. Note that N(ϕ1) = 0. We have now obtained an input to Stage 1 of the algorithm.
If ψ is a good solution to Ǐ ′, then Invariants A’1–A’3 hold for this input.

Stage Execution. We now describe an execution of Stage i, for 1 ≤ i ≤
⌈
32µ6b

⌉
. At the beginning

of Stage i, we set Ki+1 = Ki, denoting the corresponding skeleton by Ki+1, Gi+1 = Gi, and Edel
i+1 = Edel

i .

Let F ′i ⊆ F̃(Ki) be the collection of all faces F , for which the corresponding instance IF = (GF ,ΣF)

170

is not acceptable, where GF ∈ Gi is the graph associated with face F . Denote F ′i = {F1, . . . , Fq}.
Consider any face Fj ∈ F ′i . Since instance IFj = (GFj ,ΣFj) is not acceptable, from the definition

of acceptable instances (see Definition 9.41), |E(GFj)| ≥ m̌′/µ2b must hold. From the definition of
a Ki-decomposition, for every pair GF , GF ′ of graphs, if an edge e lies in both graphs, then e ∈
E(JF)∩E(JF ′). Since an edge e ∈ E(Ki) may lie on the boundary of at most two faces of the drawing
ρKi , we get that

∑q
j=1 |E(GFj)| ≤ 2m̌′. Therefore, q ≤ 2µ2b must hold.

The algorithm for Stage i consists of q iterations. In iteration j, we apply Procedure ProcSplit from
Theorem 9.15 to instance IFj that is defined by graph GFj , and the corresponding core structure
JFj . We will use parameter b′ = 2b instead of parameter b in Procedure ProcSplit. The set Pj of

promising paths of cardinality

⌊
|E(GFj)|
µ2b

⌋
is computed as follows. From the definition of acceptable

instances (see Definition 9.41), if instance IFj is not acceptable, then there is a partition (E1, E2) of

the edges of ẼFj (the edges of GFj with exactly one endpoint in the core JFj), such that the edges of
E1 appear consecutively in the ordering O(JFj), and the minimum cut in the correpsonding graph HFj

separating separating these two sets of edges contains more than m̌′/µ2b edges. From the Maximum

Flow / Minimum Cut theorem, there is a collection Pj of
⌊
m̌′

µ2b

⌋
≥
⌊
|E(GFj)|
µ2b

⌋
edge-disjoint paths in

graph GFj , where each path P ∈ Pj has an edge of E1 as its first edge, an edge of E2 as its last edge,
and is internally disjoint from JFj . Moreover, a set of paths with these properties can be computed
efficiently.

Let Aj =
{
Pj , {bu}u∈V (JFj)∪Pj , ρ

′
}

be the enhancement structure computed by Procedure ProcSplit,

and let (Ij1 = (Gj1,Σ
j
1), Ij2 = (Gj2,Σ

j
2)) be the split of instance IFj along Aj that the algorithm

returns. We denote by Edel(IFj) = E(Gj) \ (E(Gj1) ∪ E(Gj2)) the set of the deleted edges. We add

the edges of Edel(IFj) to Edel
i+1, and we define a new skeleton K ′i+1 and skeleton structure K′i+1 using

the enhancement Aj in a natural way: we let K ′i+1 = Ki+1 ∪ Pj . The orientations of vertices u that
belong to Ki+1 remain unchanged in K′i+1, and the orientations of inner vertices on path Pj are set
to be identical to those given by Aj . Consider now drawing ρ′ of graph JFj ∪ Pj . In this drawing,
the image of the core JFj is identical to that in the drawing ρKi+1 of skeleton Ki+1, and the image of

path Pj is drawn inside face Fj , partitioning it into two faces, F j1 and F j2 . We obtain a drawing ρK′i+1

of the new skeleton K ′i+1 by starting with the drawing ρKi+1 of skeleton Ki+1, and then adding the
drawing of path Pj inside face Fj exactly like in the drawing ρ′. This completes the definition of the

new skeleton structure K′i+1. Notice that F̃(K′i+1) = (F̃(Ki+1) \ {Fj}) ∪
{
F j1 ∪ F

j
2

}
. We modify the

decomposition Gi+1 by replacing graph GFj with the graphs G
F j1

(that becomes associated with face

F j1) and G
F j2

(that becomes associated with face F j2). We then replace skeleton structure Ki+1 with

the new skeleton structure K′i+1 and continue to the next iteration. We denote by E ij the bad event
that the output of Procedure ProcSplit computed in iteration j is not a valid output. This completes
the definition of the algorithm for stage i.

We start with the following observation.

Observation 9.44 Assume that there is a good solution ψ to instance Ǐ ′, that the Invariants A’1–A’3
hold at the beginning of stage i. Then for all 1 ≤ j ≤ q, the input to Procedure ProcSplit in iteration
j of stage i is a valid input.

Proof: Since we have assumed that there is a good solution ψ to instance Ǐ ′, and that the Invariants
A’1–A’3 hold at the beginning of stage i, from Invariant A’3, at the beginning of stage i, there exists
a solution ϕi to instance (Gi,Σi), that is Ki-valid, with cr(ϕi) ≤ cr(ψ), |χ∗(ϕi)| ≤ |χ∗(ψ)|, and

N(ϕi) ≤ cr(ψ)·i·µ40b
m̌′ .

171

Consider now some index 1 ≤ j ≤ q. Let ϕi,j be the solution to instance IFj defined by the graph
GFj ∈ Gi that is induced by ϕi. This solution must be JFj -valid. From the above discussion,

cr(ϕi,j) ≤ cr(ϕi) ≤ cr(ψ) ≤ (m̌′)2

µ240b
≤
|E(GFj)|2

µ120b
,

since |E(GFj)| ≥ m̌′

µ2b
. Next, we bound the number of dirty crossings of drawing ϕi,j with respect to

the core structure JFj . The set of such dirty crossings may include all crossings of χ∗(ϕi) (whose

number is bounded by |χ∗(ψ)| ≤ m̌′

µ240b
≤
|E(GFj)|
µ238b

), and the crossings in which the edges of JFj \ J̌ ′
participate, whose number is bounded by:

N(ϕi) ≤
cr(ψ) · i · µ40b

m̌′
≤ im̌

µ200b
≤
|E(GFj)|
µ150b

,

since cr(ψ) ≤ (m̌′)2

µ240b
, i ≤

⌈
32µ6b

⌉
and |E(GF1)| ≥ m̌′/µ2b. Therefore, the total number of dirty crossings

in drawing ϕi,j with respect to the core structure JFj is bounded by
|E(GF1)|
µ120b

, as required. We conclude

that there exists there exists a solution ϕi,j to instance IGFj that is JFj -valid, with cr(ϕi,j) ≤
|E(GFj)|2

µ60b′

and |χdirty(ϕi,j)| ≤
|E(GFj)|
µ60b′

, and so the input to Procedure ProcSplit in iteration j of stage i is valid.

The following claim is central in the analysis of the algorithm.

Claim 9.45 Assume that there is a good solution ψ to instance Ǐ ′, that Invariants A’1–A’3 hold at
the beginning of stage i, and that neither of the bad events E i1, . . . , E iq happened over the course of the

ith stage. Then Event Ẽ ′i+1 does not happen either, and so Invariants A’1–A’3 hold at the end of stage
i+ 1.

Proof: Throughout the proof, we assume that there is a good solution ψ to instance Ǐ ′, that Invariants
A’1–A’3 hold at the beginning of stage i, and that neither of the bad events E i1, . . . , E iq happens.

We start by establishing Invariant A’1. Consider some face F ∈ F̃(Ki+1). If F ∈ F̃(Ki), then, since F
was not added to the set {F1, . . . , Fq} of faces to be processed in stage i, the corresponding instance
IF = (GF ,ΣF) with GF ∈ Gi is acceptable. Since graph GF remains unchagnged in Gi+1, instance
IF remains an acceptable instance. Assume now that F 6∈ F̃(Ki). Then there must be an index
1 ≤ j ≤ q, for which F = F j1 or F = F j2 . In other words, face F was created in iteration j of Stage i.
Since Event E ij did not happen, the output produced by Procedure ProcSplit in iteration j is a valid

output. From Property P2, |E(G
F j1

)|, |E(G
F j2

)| ≤ |E(GF)|−
|E(GFj)|

32µb′
≤ |E(GFj)|− m̌′

32µ4b
, since b′ = 2b,

and since |E(GFj)| ≥ m̌/µ2b must hold, as instance IFj is not acceptable. Since, from Invariant A’1,

|E(GFj)| ≤ m̌′ ·
(

1− i−1
32µ6b

)
, we get that |E(G

F j1
)|, |E(G

F j2
)| ≤ m̌′ ·

(
1− i

32µ6b

)
. Therefore, invariant

A’1 continues to hold.

Next, we establish Invariant A’2. Fix an index 1 ≤ j ≤ q. Using the arguments from the proof of
Observation 9.44, there is a soluton ϕi,j to instance IFj defined by the graph GFj ∈ Gi, that is JFj -

valid, with cr(ϕi,j) ≤ cr(ψ) ≤
|E(GFj)|2

µ60b′
, and |χdirty(ϕi,j)| ≤ |χ∗(ψ)|+N(ϕi) ≤

|E(GFj)|
µ60b′

. From Property

P1:

172

|Edel(IFj)| ≤
2cr(ϕi,j) · µ38b′

|E(GFj)|
+ |χdirty(ϕi,j)|

≤ 2cr(ψ) · µ78b

m̌′
+ |χ∗(ψ)|+N(ϕi)

≤ 2cr(ψ) · µ78b

m̌′
+ |χ∗(ψ)|+ cr(ψ) · i · µ40b

m̌′

≤ 2cr(ψ) · µ78b

m̌′
+ |χ∗(ψ)|+ 32cr(ψ) · µ46b

m̌′

≤ cr(ψ) · µ80b

m̌′
+ |χ∗(ψ)|.

(we have used the fact that |E(GFj)| ≥ m̌/µ2b, b′ = 2b, and i ≤
⌈
32µ6b

⌉
). Since q ≤ 2µ2b, we get that

|Edel
i+1| ≤ |Edel

i |+
cr(ψ)·µ100b

m̌′ + |χ∗(ψ)| · µ3b, establishing invariant A’2.

It now remains to establish Invariant A’3. For convenience, we denote by G0 = Gi, and, for 1 ≤ j ≤ q,
we denote by Gj the graph obtained after the jth iteration of the ith stage, that is, Gj = Gj−1 \
Edel(IFj). We denote by Ij the subinstance of Ǐ ′ defined by graph Gj . We also denote by K0 = Ki the
initial skeleton at the beginning of phase i, and, for 1 ≤ j ≤ q, we denote by Kj the skeleton obtained
at the end of iteration j, so Kj = Kj−1 ∪Pj . We denote by Kj the skeleton structure associated with
skeleton Kj , that can be obtained from Kj−1 and the enhancement structure Aj as described above.
Lastly, we will define, for all 0 ≤ j ≤ q, a solution ϕj to instance Ij that is Kj-valid. We will ensure
that for all 0 ≤ j < j′ ≤ q, the drawing of graph GFj′ in ϕj is identical to that in ϕ0. Additionally,

we will ensure that cr(ϕj) ≤ cr(ψ) and |χ∗(ϕj)| ≤ |χ∗(ψ)|.
Initially, we let ϕ0 = ϕi be the solution for instance I0 that is guaranteed to exist by Invariant A’3.
Recall that this solution is K0-valid; cr(ϕ0) ≤ cr(ψ); |χ∗(ϕ0)| ≤ |χ∗(ψ)|; and the total number of

crossings of ϕ0 in which the edges of E(K0) \ E(J̌) participate is at most cr(ψ)·i·µ40b
m̌′ . For 0 ≤ j ≤ q,

we denote by N j the total number of crossings in which the edges of E(Kj) \E(J̌) participate in ϕj .

Consider now some index 1 ≤ j ≤ q, and assume that we are given a solution ϕj−1 to instance Ij−1

that is Kj−1-valid. Recall that the drawing of graph GFj induced by ϕj−1 is identical to that in
ϕ0. Therefore, the drawing of GFj induced by ϕj−1 is precisely ϕi,j . From Property P3 of the valid

output to procedure ProcSplit, there is a JFj -valid solution ϕ′j to the subinstance of Ǐ ′ that is defined

by graph G′Fj = GFj \ Edel(IFj), that is compatible with ϕi,j , in which the edges of E(JFj) ∪ E(Pj)
do not cross each other, and the number of crosings in which the edges of Pj participate is at most
cr(ϕj−1)·µ12b′

|E(GFj)| ≤ cr(ψ)·µ26b
m̌′ , since cr(ϕj−1) ≤ cr(ψ), b′ = 2b, and |E(GFj)| ≥ m̌′/µ2b. Note that, from

the definition of compatible drawings (see Definition 9.6), the image of the core JFj in ϕ′j is identical
to that in ϕi,j . The only difference between drawing ϕ′j and ϕi,j is that the images of the edges of

Edel(IFj) were deleted, and some additional local changes were made within the face Fj . We are
guaranteed that, if a point p is an inner point on the image of some edge ϕ′j , then is an inner point
on the image of some edge in ϕi,j . Moreover, if p is an image of some vertex v in ϕ′j , then either (i) p

is the image of v in ϕi,j ; or (ii) the degree of p in GFj \ Edel(IFj) is 2, and p is an inner point on the
image of some edge in ϕi,j . In order to obtain drawing ϕj of graph Gj , we first delete, from drawing
ϕj−1, the images of all edges in Edel(IFj). Next, we delete the image of the graph GFj from the current

drawing, and copy instead the image of the graph GFj \Edel(IFj) from drawing ϕ′j . Note that the two

images of graph GFj \Edel(IFj) are identical except for some small local changes inside face Fj . While
it is possible that edges and vertices of Gj \GFj are drawn inside face Fj in ϕj−1, it is easy to see that
no new crossings between edges of GFj and edges of Gj \GFj are introduced. Since cr(ϕ′j) ≤ cr(ϕi,j),

173

we get that cr(ϕj) ≤ cr(ϕj−1) ≤ cr(ψ). Since the only changes to the drawing outside face Fj is the
deletion of the segments of the images of some edges, |χ∗(ϕj)| ≤ |χ∗(ϕj−1)| ≤ |χ∗(ψ)|. Since we are
guaranteed from Property P3 that the number of crosings in which the edges of Pj participate in ϕ′j

is at most cr(ψ)·µ26b
m̌′ , we get that N j ≤ N j−1 + cr(ψ)·µ26b

m̌′ .

We define the solution ϕi+1 to instance (Gi+1,Σi+1) to be ϕq. From the above discussion, drawing
ϕq is Ki+1-valid, cr(ϕi+1) ≤ cr(ψ), and |χ∗(ϕi)| ≤ |χ∗(ψ)|. Since the number of iterations q ≤ 2µ2b,

and in every iteration we introduce at most cr(ψ)·µ26b
m̌′ new crossings with the edges of the new skeleton

Ki+1, we get that N(ϕi+1) ≤ N(ϕi) + 2µ2b · cr(ψ)·µ26b
m̌′ ≤ cr(ψ)·i·µ40b

m̌′ + 2cr(ψ)·µ28b
m̌′ ≤ cr(ψ)·(i+1)·µ40b

m̌′ .

From Observation 9.44 and Theorem 9.15, for all 1 ≤ j ≤ q, Pr
[
E ij | ¬Ẽ ′1 ∧ · · · ∧ ¬E ′i

]
≤ 220

µ10b′
≤ 220

µ20b
.

Since q ≤ 2µ2b, we get that Pr
[
E ′i+1 | ¬Ẽ ′1 ∧ · · · ∧ ¬E ′i

]
≤ 221

µ18b
. Let Ẽ ′ be the bad event that either of

the events Ẽ ′1, . . . , Ẽ ′z happened. Since z =
⌈
32µ6b

⌉
, we get that Pr

[
Ẽ ′z
]
≥ z

µ20b
≤ 1

µ10b
.

We return the skeleton structure Kz, and the Kz-decomposition Gz of Ǧ′. From Invariant A’1, for
every face F ∈ F̃(Ki), the corresponding instance IF = (GF ,ΣF) with GF ∈ Gi must be acceptable
(this is since the graph associated with an unacceptable instance must have at least m̌′/µ2b edges).
Assume now that there is a good solution ψ to instance Ǐ ′, and that bad event Ẽ ′ did not happen.
Then we are guaranteed that the algorithm does not return FAIL, and, from Invariant A’2, |Edel

z | ≤
z ·
(
cr(ψ)µ100b

m̌′ + |χ∗(ψ)| · µ3b
)
≤ cr(ψ)µ108b

m̌′ + |χdirty(ψ)| · µ10b, since z =
⌈
32µ6b

⌉
. Lastly, Invariant A’3

guarantees that there is a solution ϕ to instance (Gz,Σz), where Gz = Ǧ′ \Edel
z , and Σz is the rotation

system for Gz induced by Σ̌′, with the following properties. First, drawing ϕ is Kz-valid. Additionally,
cr(ϕ) ≤ cr(ψ), |χ∗(ϕ)| ≤ |χ∗(ψ)|, and the total number of crossings in which the edges of E(Kz)\E(J̌)

participate is at most cr(ψ)·z·µ40b
m̌′ ≤ cr(ψ)·µ47b

m̌′ . Since Pr
[
Ẽ ′
]
≤ 1/µ10b, this completes the proof of

Lemma 9.42.

9.4.5 Proof of Lemma 9.43

We assume that we are given a subinstance Ǐ ′ = (Ǧ′, Σ̌′) of Ǐ with |E(Ǧ′)| = m̌′, a core structure J̌ for
Ǐ ′, whose corresponding core graph is denoted by J̌ , a skeleton structure K = (K, {bu}u∈V (K) , ρK), and

a K-decomposition G of Ǧ′, such that, for every face F ∈ F̃(K), the corresponding subinstance IF =

(GF ,ΣF) of Ǐ ′ defined by the graph GF ∈ G is acceptable. Let Edel(Ǐ ′) = E(Ǧ′) \
(⋃

F∈F̃(K)E(GF)
)

,

G = Ǧ′ \ Edel(Ǐ ′), and let I = (G,Σ) be the subinstance of Ǐ ′ defined by graph G. We also assume
that there is a K-valid solution ϕ to instance I, so that the total number of crossings in which the
edges of K participate is at most N ≤ m̌′

µ3b
. Note that J̌ remains a valid core structure, and K remains

a valid skeleton structure for instance I. From this point onward we will only work with instance I,
and we will not need the initial subinstance Ǐ ′ of instance Ǐ, or the set Edel(Ǐ ′) of edges, but we will
use the parameter m̌′ = |E(Ǧ′)|. Our goal is to prove that there is a solution ψ to instance I that is

clean with respect to J̌ , with cr(ψ) ≤
(
cr(ϕ) +N2 + |χ∗(ϕ)|2 + |χ∗(ϕ)|·m̌′

µb

)
· (log m̌′)O(1).

Since the statement of the lemma is existential, it is sufficient to show an algorithm that transforms
the solution ϕ to instance I into another solution ψ that is clean with respect to J̌ , with the number
of crossings bounded as above. In order to do so, we need to “repair” the drawing, so that for every
edge e ∈ E(G), the image of e is disjoint from the interior of the forbidden faces in F̃×(K). We
do so in two steps. In the first step, we modify the drawing ϕ so that, for every non-forbidden face
F ∈ F̃(K) \ F̃×(K), the images of all vertices of graph GF ∈ G associated with face F lie in the region
F of the drawing. We say that an edge e ∈ E(G) \ E(K) is bad if the image of e in the resulting
drawing intersects the interior of at least one forbidden face in F̃×(K). Notice that for each such bad

174

edge e, there must be some face F ∈ F̃(K) \ F̃×(K) with e ∈ GF , so the images of the endpoints of e
lie in region F of the current drawing. In the second step, we further modify the drawing to obtain
a K-clean solution to instance I. In order to do so, for every bad edge e, if e ∈ E(GF) for some face
F ∈ F̃(K) \ F̃×(K), we “move” the image of e so it is drawn completely inside face F . In order to
ensure that the new image of e crosses few edges, we may need to rearrange the current drawing inside
the face F . This step exploits the fact that instance IF corresponding to face F is acceptable.

We now proceed to describe each of the steps in turn. For convenience, we denote F̃ ′ = F̃(K)\F̃×(K).

Step 1: Moving the Vertices

The goal of the first step is to prove the following claim.

Claim 9.46 There is a solution ψ1 to instance I that is K-valid, such that, for every face F ∈ F̃ ′,
the images of all vertices of GF lie in region F of the drawing. Additionally, cr(ψ1) ≤ (cr(ϕ) +N2) ·
(log m̌′)O(1), |χ∗(ψ1)| ≤ |χ∗(ϕ)| · (log m̌′)O(1), and the total number of crossings in which the edges of
K participate in ψ1 is at most N · (log m̌′)O(1).

Proof: Consider some face F ∈ F̃ ′. Recall that we have defined a core structure JF associated with
face F ; we denote by JF the corresponding core graph, so JF ⊆ K. We also denote by IF = (GF ,ΣF)
the instance associated with face F , where GF ∈ G.

Let E′F ⊆ E(GF) be the set of edges e = (x, y) ∈ E(GF), such that either (i) the image of one of the
vertices x, y lies in region F in ϕ, and the image of the other vertex lies outside of F ; or (ii) the images
of both vertices lie outside region F in ϕ, and the image of e crosses the boundary of F . Since JF is
a valid core structure for instance IF (see Definition 9.3), for every edge e ∈ E(GF) that is incident
to a vertex x ∈ V (JF), a segment of ϕ(e) that contains ϕ(x) must be contained in region F in ϕ.
Therefore, for every edge e ∈ E′F , its image ϕ(e) intersects the interior of F , and it must cross the
image of some edge of JF . Since the total number of crossings in which the edges of K participate in
ϕ is bounded by N , we get the following immediate observation:

Observation 9.47
∑

F∈F̃ ′ |E
′
F | ≤ N .

Consider again some face F ∈ F̃ ′. It will be convenient for us to subdivide every edge of E′F with one
or two vertices, and to adjust the drawing ϕ of G to include these new vertices, as follows. Consider
an edge e = (x, y) ∈ E′F . Assume first that for both x and y, their images in ϕ lie outside the region
F . In this case, we replace edge e in both G and GF with a path (x, te, t

′
e, y). Consider now the image

ϕ(e) of edge e in drawing ϕ, and direct it from ϕ(x) to ϕ(y). Let p be the first point on ϕ(e) that
belongs to the boundary of face F , and let p′ be the last point on ϕ(e) lying on the boundary of F .
We place the image of the new vertex te on curve ϕ(e) immediately next to point p, in the interior of
face F . Similarly, we place the image of the new vertex t′e on curve ϕ(e) immediately next to point p′,
in the interior of face F . Assume now that the image of one of the vertices x, y lies in F (for example,
vertex y), and the image of the other vertex (vertex x) lies outside of F . We direct ϕ(e) from ϕ(x)
to ϕ(y), and we let p be the first point on ϕ(e) that lies on the boundary of F . We replace edge e
with a path (x, te, y) in graph G and in graph GF , and we place the image of vertex te on ϕ(e), next
to point p, in the interior of face F . For convenience, the graph that is obtained from G after these
modifications is still denoted by G, and for every face F ∈ F̃ ′, the resulting graph associated with the
face is still denoted by GF . Since the newly added vertices all have degree 2 in G, it is easy to extend
the rotation system Σ for graph G to include these vertices, and we can similarly extend the rotation
system ΣF for each graph GF ∈ G.

For a face F ∈ F̃ ′, let HF ⊆ GF be the graph whose vertex set contains every vertex x ∈ V (GF)
with ϕ(x) 6∈ F , and every edge e ∈ E(GF) whose image in ϕ is disjoint from F . Let E′′F ⊆ E(GF) be

175

the set of all edges e ∈ E(GF) with one endpoint in HF and another in GF \HF . Observe that each
such edge e ∈ E′′F was obtained by subdividing some edge of E′F , so |E′′F | ≤ 2|E′F |. For every edge
e = (x, y) ∈ E′′F with x ∈ V (HF), the intersection of ϕ(e) with the region F is a very short segment of
ϕ(e) that is incident to ϕ(x) (recall that ϕ(x) lies inside F very close to its boundary). We denote by
ZF the set of all endpoints of edges e ∈ E′′F whose image lies in region F . We also note that graph HF

is a subgraph of GF induced by V (HF). Indeed, if e = (x, y) is an edge of GF with x, y ∈ V (HF), then
the image of edge e must be entirely disjoint from region F (otherwise it would have been subdivided).

We need a slight modification of the algorithm for computing a well-linked decomposition from The-
orem 4.19, that is summarized in the following theorem. The proof is deferred to Section H.8 of
Appendix.

Theorem 9.48 There is an efficient algorithm, whose input is a graph G, a vertex-induced subgraph
S of G, and parameters m and α, for which |E(G)| ≤ m and 0 < α < 1

c log2m
hold, for a large enough

constant c. The algorithm computes a collection R of vertex-disjoint clusters of S, and, for every
cluster R ∈ R, two sets P1(R), P2(R) of paths, such that the following hold:

•
⋃
R∈R V (R) = V (S);

• for every cluster R ∈ R, |δG(R)| ≤ |δG(S)|;

• every cluster R ∈ R has the α-bandwidth property in graph G;

•
∑

R∈R |δG(R)| ≤ 4|δG(S)|;

• for every cluster R ∈ R, P1(R) = {P1(e) | e ∈ δG(R)}, where for every edge e ∈ δG(R), path
P1(e) has e as its first edge and some edge of δG(S) as its last edge, and all inner vertices of
P1(e) lie in V (S) \ V (R). Additionally, congG(P1(R)) ≤ 400/α; and

• for every cluster R ∈ R, there is a subset ÊR ⊆ δG(R) of at least b|δG(R)|/64c edges, such that

P2(R) =
{
P2(e) | e ∈ ÊR

}
, where for every edge e ∈ ÊR, path P2(e) has e as its first edge and

some edge of δG(S) as its last edge, and all inner vertices of P2(e) lie in V (S)\V (R). Moreover,

congG
(⋃

R∈R P2(R)
)
≤ O

(
logm
α

)
.

We apply the algorithm from Theorem 9.48 to graph GF , subgraph S = HF of GF , parameter m̌′ and
α = 1

log4 m̌′
, to compute a collection RF of vertex-disjoint clusters of HF , such that

⋃
R∈RF V (R) =

V (HF),
∑

R∈RF |δGF (R)| ≤ 4|E′′F | ≤ 8|E′F |, and every cluster R ∈ RF has the α-bandwidth property
in graph GF . Additionally, the algorithm computes, for every cluster R ∈ RF , a set P1(R) =
{P1(e) | e ∈ δGF (R)} of paths in graph GF , with congGF (P1(R)) ≤ 400/α ≤ O(log4 m̌′), such that,
for every edge e ∈ δGF (R), path P1(e) has e as its first edge and some edge of E′′F as its last edge, and
all inner vertices of P1(e) lie in V (HF) \ V (R). It also computes, for every cluster R ∈ RF , a subset

ÊR ⊆ δG(R) of at least b|δG(R)|/64c edges, and another set P2(R) =
{
P2(e) | e ∈ ÊR

}
of paths, where

for every edge e ∈ ÊR, path P2(e) has e as its first edge and some edge of E′′F as its last edge, such
that all inner vertices of P2(e) lie in V (HF) \ V (R), and the total congestion caused by the paths in⋃
R∈R P2(R) is at most O

(
log m̌′

α

)
≤ O(log5 m̌′). We let E′′′F =

⋃
R∈RF δGF (R), so E′′F ⊆ E′′′F .

It will be convenient for us to further slightly modify graph G, by subdividing some of its edges, as
follows. Consider a face F ∈ F̃ ′ and an edge e = (x, y) ∈ E′′′F . If there are two distinct clusters
R,R′ ∈ RF with x ∈ R and y ∈ R′, then we replace edge e with a path (x, tRe , t

R′
e , y) in G, and we

denote edge ẽ = (tRe , t
R′
e). We also modify the current drawing ϕ by placing the images of the newly

added vertices tRe , t
R′
e on ϕ(e). Otherwise, there must be a cluster R ∈ RF , such that one endpoint of

176

e (say x) lies in R, and the other endpoint (vertex y) lies in ZF . In this case, we replace edge e with a
path (x, tRe , y) in graph G, and we denote edge ẽ = (tRe , y). We place the image of vertex tRe on ϕ(e),
outside the region F .

Let G′ denote the final graph that is obtained from G once every face F ∈ F̃ ′ and every edge e ∈ E′′′F
is processed. For each face F ∈ F̃ ′ we define a subgraph G′F ⊆ G′ similarly, by subdividing the edges
of E′′′F as before, and we denote ẼF = {ẽ | e ∈ E′′′F }. We similarly update graph HF , to obtain a new
graph H ′F ⊆ G′F , as follows. First, for every edge e ∈ E(HF), whose endpoints lie in different clusters
ofRF , we subdivide edge e with two vertices as before. Additionally, for every edge e = (x, y) ∈ E(GF)
with x ∈ V (HF) and y ∈ ZF , we add the new edge (x, tRe) that was obtained by subdividing e to
graph H ′F (here, R ∈ RF is the cluster containing x).

For every cluster R ∈ RF , the set P1(R) of paths naturally defines a set P ′1(R) of paths in graph G′F ,

where P ′1(R) =
{
P ′1(e) | e ∈ δG′F (R)

}
, with congG′F (P ′1(R)) ≤ O(log4 m̌′), such that, for every edge

e ∈ δG′F (R), path P ′1(e) has e as its first edge, and it terminates at some vertex of ZF . Furthermore,
all inner vertices of P ′1(e) lie in V (H ′F) \ V (R). Similarly, set P2(R) of paths naturally defines a
set P ′2(R) of paths in graph G′F , where each path in P ′2(R) starts at a distinct edge of δG′F (R),
terminates at some vertex of ZF , and has all its inner vertices contained in V (H ′F) \V (R). As before,

|P ′2(R)| ≥
⌊
|δG′F (R)|/64

⌋
, and all paths in

⋃
R∈RF P

′
2(R) cause congestion at most O(log5 m̌′).

Notice that drawing ϕ of G naturally defines a drawing ϕ′ of graph G′. We denote Ẽ =
⋃
F∈F̃ ′ ẼF .

Observe that we have never subdivided the edges of the skeleton K, so K ⊆ G′ still holds. We can
naturally extend the rotation system Σ to graph G′, to obtain a rotation system Σ′, and we denote
by I ′ = (G′,Σ′) the resulting instance of MCNwRS.

Let ϕ′′ be any drawing of graph G′, and let (e, e′)p be a crossing of ϕ′′. We say that crossing (e, e′)p
is uninteresting if both e, e′ ∈ Ẽ, and we say that this crossing is interesting otherwise. We prove the
following weaker analogue of Claim 9.46.

Claim 9.49 There is a solution ψ2 to instance I ′ = (G′,Σ′) that is K-valid, such that, for every face
F ∈ F̃ ′, the images of all vertices of G′F lie in region F of the drawing. Additionally, the number of
interesting crossings in ψ2 is bounded by cr(ϕ) · (log m̌′)O(1); |χ∗(ψ2))| ≤ |χ∗(ϕ)| · (log m̌′)O(1); and the
total number of crossings in which the edges of K participate in ψ2 is at most N · (log m̌′)O(1).

The proof of Claim 9.46 easily follows from Claim 9.49. Indeed, consider the solution ψ2 to instance
I ′. We apply type-1 uncrossing operation to the images of the edges in Ẽ (see Section 4.4.2 and
Theorem 4.33 for a formal description). The operation repeatedly selects pairs e, e′ ∈ Ẽ of edges
that cross more than once, and then eliminates at least one of the crossings between these edges by
a local uncrossing operation that “swaps” segments of images of these two edges without affecting
the rest of the drawing. Therefore, if ψ3 is the drawing of graph G′ obtained at the end of this
procedure, then ψ3 is a valid solution to instance I ′ that remains K-valid. Since the edges of the core
J̌ may not belong to Ẽ, |χ∗(ψ3))| ≤ |χ∗(ψ2))| ≤ |χ∗(ϕ))| · (log m̌′)O(1). The number of interesting
crossings in ψ3 is bounded by the number of interesting crossings in ψ2, which, in turn, is bounded by
cr(ϕ) · (log m̌′)O(1). Since the edges of the skeleton K may not lie in Ẽ, the total number of crossings
in which the edges of K participate in ψ3 remains at most N · (log m̌′)O(1). As before, for every face
F ∈ F̃ ′, for every vertex x ∈ V (G′F), ψ3(x) ∈ F . The number of uninteresting crossings in ψ3 is now
bounded by |Ẽ|2, as every pair of edges in Ẽ may now cross at most once. For every face F ∈ F̃ ′,
|ẼF | = |E′′′F | =

∑
R∈RF |δGF (R)| ≤ 8|E′F |. From Observation 9.47,

∑
F∈F̃ ′ |E

′
F | ≤ N . Therefore, |Ẽ| ≤∑

F∈F̃ ′ |ẼF | ≤ 8N . The number of uninteresting crossings in ψ3 is then bounded by |Ẽ|2 ≤ 64N2. We

conclude that the total number of crossings in ψ3 is bounded by (cr(ϕ) +N2) · (log m̌′)O(1). Lastly, we
can modify solution ψ3 to instance I ′ to obtain a solution ψ1 to instance I by suppressing the degree-2
vertices that we used to subdivide some of the edges of graph G. It is immediate to verify that this

177

drawing has all required properties. In order to complete the proof of Claim 9.46, it is now enough to
prove Claim 9.49, which we do next.

Consider a face F ∈ F̃ ′. We partition the edges of ẼF into two subsets: set Ẽ′F containing all edges
(x, y) with x ∈ V (H ′F) and y ∈ ZF , and set Ẽ′′F containing all remaining edges. For a cluster R ∈ RF ,
we denote R+ = R∪ δG′F (R) the augmentation of cluster R with respect to graph G′F . We also denote

by TR =
{
tRe | e ∈ δGF (R)

}
the set of vertices that serve as endpoints of the edges of ẼF and lie in R+.

Note that every edge e ∈ Ẽ′′F connects a vertex of R+
1 to a vertex of R+

2 for some pair R1, R2 ∈ RF of
distinct clusters.

For each face F ∈ F̃ ′ and cluster R ∈ RF , we denote by χ(R) the set of all crossings in the drawing
ϕ′ of G′ in which the edges of R+ participate.

We first use the drawing ϕ′ of G′ to compute, for each cluster R ∈ RF , a drawing ψR+ of graph R+

inside a disc D(R), with the images of the vertices of TR lying on the boundary of the disc. We then
select a location inside the region F , next to its boundary, into which we plant the disc D(R) together
with the drawing ψR+ that is contained in it. Lastly, we modify the images of the edges of Ẽ so that
they connect the new images of their endpoints. All these modifications exploit the sets P ′1(R) and
P ′2(R) of paths that we have defined for every cluster R ∈ RF and face F ∈ F̃ ′. For a face F ∈ F̃ ′
and a cluster R ∈ RF , we can now think of the paths in set P ′1(R) as routing the vertices of TR to
vertices of ZF in graph G′F (after we discard the first edge from each such path), and similarly we
can think of paths in P ′2(R) as routing a subset of at least b|TR|/64c vertices of TR to vertices of ZF
in graph G′F . Recall that the paths in P ′1(R) ∪ P ′2(R) are internally disjoint from V (R), and we can
ensure that they are internally disjoint from ZF . The paths in each set P ′1(R) cause congestion at
most O(log4 m̌′), and the paths in

⋃
R∈R(F) P ′2(R) cause congestion at most O(log5 m̌′) in graph G′F .

Recall also that our transformation of the graph G and the initial drawing ϕ ensures that the image
of every vertex t ∈ ZF in ϕ′ appears in the interior of the region F , very close to its boundary. If e
is the unique edge of Ẽ′ incident to t, then only a small segment of ϕ′(e) that is incident to ϕ′(t) is
contained in F , and that segment does not participate in any crossings.

Computing the Drawings ψR+. Consider a face F ∈ F̃ ′ and a cluster R ∈ RF . We view the
drawing ϕ′ of G′ as a drawing on the sphere. Recall that, from the definition of graph HF , for every
edge e ∈ E(HF), the image of e in ϕ′ is disjoint from F . Consider the disc D(JF), that is associated
with the core JF . Recall that disc D(JF) is a disc that contains the image of the core JF in its
interior, and the boundary of D(JF) closely follows the boundary of the region F inside the region
(see Figure 28(b)). We can assume w.l.o.g. that the images of all vertices of ZF lie on the boundary of
the disc D(JF). We let D(R) be the disc that is the complement of disc D(JF), that is, the boundaries
of both discs are identical, but their interiors are disjoint. Note that, from the definition of the graph
HF , the images of all vertices and edges of graph R+ lie in disc D(R) in drawing ϕ′.

Consider a graph H̃R, containing all edges and vertices of R+, and all edges and vertices that lie on
the paths of P ′1(R). Let ϕ′(R) be the drawing of H̃R that is induced by the drawing ϕ′ of G′. We
apply the algorithm from Corollary 4.38 to perform a type-2 uncrossing of the images of the paths
in P ′1(R). The input to the algorithm is graph H̃R, its subgraph C = R+, and a set Q = P ′1(R) of
paths, together with the drawing ϕ′(R) of H̃R. We direct all paths in P ′1(R) away from the vertices
of TR. The algorithm computes a collection Γ = {γ(t) | t ∈ TR} of curves, where, for every vertex
t ∈ TR, curve γ(t) originates at the image of t in ϕ′(R), and terminates at the image of some vertex
of ZF , which lies on the boundary of disc D(R). For every pair e, e′ ∈ E(H̃R) of distinct edges, let
N(e, e′) denote the number of crossings in the drawing ϕ′(R) between edges e and e′. The algorithm
from Corollary 4.38 also ensures that the curves in Γ do not cross each other, and, for every edge
e ∈ E(R+), the number of crossings between the image of e in ϕ′(R) and the curves in Γ is bounded
by
∑

e′∈E(GR)\E(R+)N(e, e′) · congGF (P ′1(R), e′) ≤ (log m̌′)O(1) ·
∑

e′∈E(GR)\E(R+)N(e, e′).

178

We are now ready to define the drawing ψR+ of graph R+. Recall that for every vertex t ∈ TR, there is
exactly one edge in R+ that is incident to t, and we denote this edge by et = (xt, t), where xt ∈ V (R).
The images of all vertices and edges of R in ψR+ remain the same as in ϕ′(R) (which are in turn
identical to those in ϕ′). For every vertex t ∈ TR, the image of edge et is obtained by concatenating
the image of edge et in ϕ′(R) and the curve γt ∈ Γ. The resulting curve connects the image of vertex
xt in the current drawing, to some point p on the boundary of disc D(R). The image of vertex t
becomes that point p. We note that the image of et is contained in disc D(R). This completes the
definition of the drawing ψR+ of graph R+. This drawing obeys the rotation system Σ′, is contained
in disc D(R), with the vertices of TR lying on the boundary of the disc. From the above discussion,
the total number of crossings in this drawing is bounded by (log m̌′)O(1) · |χ(R)|. For convenience, we
define another disc D′(R), that contains D(R), so that the boundaries of both discs are disjoint.

Modifying the Drawing ϕ′ of G′ In this step we select, for every face F ∈ F̃ ′ and every cluster
R ∈ RF , a small disc D′′(R) in the interior of the region F in ϕ′. We will then copy the contents of
disc D′(R) (including the drawing ψR+) into the disc D′′(R), and extend the images of all edges of
ẼF that are incident to the vertices of TR, so that they terminate at the boundary of the disc D′′(R).
We will then “stitch” the images of these edges inside the region D′′(R) \D(R), so that the image of
each edge terminates at the image of its endpoint.

Consider a face F ∈ F̃ ′, and a cluster R ∈ RF . Since cluster R has the α-bandwidth property,
for α = 1

log4 m̌′
, from Observation 4.16, the set TR of vertices is α-well-linked in R+. We apply the

algorithm from Lemma 4.27 to compute, for every vertex t ∈ T , a set Qt = {Qt(t′) | t′ ∈ TR \ {t}} of
paths, where, for all t′ ∈ TR \ {t}, path Qt(t

′) connects t′ to t. Let T̂R ⊆ TR be the set containing
all vertices t ∈ TR, such that some path of P ′2(R) originates from t. We then select a vertex tR ∈ T̂R
uniformly at random, and we let QR = {Qt(t′) | t′ ∈ TR \ {tR}} be a collection of path connecting
every vertex in TR \ {tR} to tR. We need the following observation.

Observation 9.50 For every edge e ∈ E(R+), E [cong(QR, e)] ≤ O(log8 m̌′).

Proof: Fix an edge e ∈ E(R+). From Lemma 4.27, if we were to select a vertex t ∈ TR uniformly

at random, then E [cong(Qt, e)] ≤ O
(

log4 m̌′

α

)
≤ O(log8 m̌′). Clearly, in the above process, a vertex

t ∈ TR is selected with probability 1/|TR|. Our algorithm instead selects a vertex tR ∈ T̂R uniformly at
random, so a vertex t ∈ T̂R is selected with probability 1

|T̂R|
≤ 128
|TR| , since |T̂R| ≥ b|TR|c 64. Therefore,

E [cong(QR, e)] ≤ 128Et∼TR [cong(Qt, e)] ≤ O(log8 m̌′).

We construct another set Q′R = {Q′(t′) | t′ ∈ TR} of paths in graph G′F , as follows. Consider the
unique path P ′2(tR) ∈ P ′2(R) that originates at vertex tR. We denote by zR ∈ ZF the other endpoint of
path P ′2(tR); recall that the image of zR lies in region F , very close to its boundary. For every vertex
t′ ∈ TR \{tR}, we let Q′(t′) be the path obtained by concatenating path Q(t′) ∈ QR with path P ′2(tR).
For vertex tR, we simply set Q′(tR) = P ′2(tR). The resulting set Q′R = {Q′(t′) | t′ ∈ TR} of paths is
contained in graph G′F , and connects every vertex of TR to vertex zR ∈ ZF . Moreover, the only vertex
of G′F \H ′F that lies on the paths of Q′R is vertex zR. We assume w.l.o.g. that the paths in Q′R are
simple. For every face F ∈ F̃ ′, we denote Q(F) =

⋃
R∈RF Q

′
R. We need the following observation.

Observation 9.51 For every face F ∈ F̃ ′, for every edge e ∈ E(H ′F) ∪ Ẽ′F , E
[
congG′F (Q(F), e)

]
≤

O(log8 m̌′).

Proof: Consider some edge e ∈ E(H ′F) ∪ Ẽ′F . If there is some cluster R ∈ RF with e ∈ E(R),
then denote Re = R; otherwise we let Re be undefined. Recall that there are at most O(log5 m̌′)

179

paths in
⋃
R∈RF P

′
2(R) that contain the edge e. Let S(e) be the collection of pairs (R, t), where

R ∈ RF \ {Re}, t ∈ T̂R, and the uniue path of P ′2(R) that originates at t contains the edge e. From
the above discussion, |S(e)| ≤ O(log5 m̌′). Consider now a pair (R, t) ∈ S(e). The probability that

vertex t is selected as vertex tR is bounded by 1
|T̂R|
≤ 128
|TR| , since |T̂R| ≥

⌊
|TR|
64

⌋
. If vertex t is selected

as tR, then every path in set Q′R may contain the edge e, and the number of such paths is |TR|.
Therefore, the expected number of paths in

⋃
R∈RF \{Re}Q

′
R that contain edge e is at most O(log5 m̌′).

If cluster Re is defined, then E
[
cong(Q′Re , e)

]
≤ E [cong(QRe , e)] ≤ O(log8 m̌′). Therefore, overall,

E
[
congG′F (Q(F), e)

]
≤ O(log8 m̌′).

For every face F ∈ F̃ ′ and cluster R ∈ RF , we let D′′(R) be a very small disc lying in the interior of
region F of ϕ′, right next to the image of vertex zR. Notice that it is possible that for several distinct
clusters R,R′ ∈ RF , zR = zR′ holds. We ensure that all such discs in {D′′(R)}R∈RF are mutually
disjoint. Eventually, for every component R ∈ RF , we will plant the drawing ψR+ inside disc D′′(R),
so that the discs D′(R) and D′′(R) will coincide. In order to modify the images of the edges of ẼF ,
we define, for every cluster R ∈ RF , for every vertex t ∈ TR, a curve γ(t) connecting the image of t
in drawing ϕ′ to the boundary of disc D′′(R). Consider now some edge e ∈ ẼF . Assume first that
e ∈ Ẽ′′F , and that e = (t, t′), with t ∈ TR and t′ ∈ TR′ , for some clusters R,R′ ∈ RF . In order to
define a new image of edge e, we start by concatenating the curve γ(t) with the image of edge e in
ϕ′, and curve γ(t′), thereby obtaining a curve connecting a point on the boundary of disc D′′(R) to
a point on the boundary of disc D′′(R′). We then extend the curve within D′′(R) \ D(R) so that it
originates at the new image of vertex t, and we similarly extend the curve within D′′(R′) \D(R′) so
that it terminates at the new image of vertex t′. Notice that all crossings between the images of the
edges of Ẽ are uninteresting crossings, and Claim 9.49 allows us to introduce arbitrary number of such
crossings. However, we need to ensure that the number of new crossings between the new images of
the edges of Ẽ and the remaining edges of G′ is small. In order to do so, we need to ensure that the
curves in sets {γ(t) | t ∈ TR}, for all F ∈ F̃ ′ and R ∈ RF have few crossings with the images of edges
of G′.

We now proceed to define the curves γ(t), wich is the main component in the remainder of the proof.
Intuitively, these curves will follow the images of the paths in Q(F), for all F ∈ F̃ ′. In order to do so,
for every face F ∈ F̃ ′, for every edge e ∈ E(H ′F)∪ Ẽ′F , let Ne denote the number of paths in set Q(F)
containing the edge e.

Let G′′ be a new graph that is obtained from G′ as follows. For every face F ∈ F̃ ′, for every edge
e ∈ E(H ′F) ∪ Ẽ′F , we add a collection J(e) of Ne + 1 parallel copies of edge e to the graph. We then
let ϕ′′ be a drawing of graph G′′ that is obtained from the drawing ϕ′ of graph G′ in a natural way:
for every face F ∈ F̃ ′ and edge e ∈ E(H ′F) ∪ Ẽ′F , we add images of Ne + 1 copies of edge e in parallel
to the original drawing of edge e, very close to it.

Consider a crossing (e, e′)p in this new drawing ϕ′′. We say that the crossing is of type 1, if there is
some face F ∈ F̃ ′, such that both e and e′ are copies of edges that lie in E(H ′F)∪Ẽ′F . Otherwise, we say
that the crossing is of type 2. If a crossing (e1, e2)p in ϕ′′ is of type 2, then there is a crossing (e′1, e

′
2)p′

in ϕ′ in the vicinity of point p, such that either e′1 = e1, or e1 is a copy of edge e′1, and similarly, either
e′2 = e2, or e2 is a copy of edge e′2. We say that crossing (e′1, e

′
2)p′ in ϕ′ is responsible for crossing

(e1, e2)p in ϕ′′. Since, from Observation 9.51, for every face F ∈ F̃ ′ and edge e ∈ E(H ′F) ∪ Ẽ′F ,

E
[
congG′F (Q(F), e)

]
≤ O(log8 m̌′), and since the random choices made when computing sets Q(F)

of paths for different faces F ∈ F̃ ′ are independent, the expected number of type-2 crossings in ϕ′′

for which a single crossing in ϕ′ is responsible is bounded by O(log16 m̌′). Therefore, the expected
number of type-2 crossings in ϕ′′ is at most cr(ϕ′) ·O(log16 m̌′).

Consider a face F ∈ F̃ ′. We can use the set Q(F) of paths in graph G′ in a natural way, in order

180

to define a set Q̃(F) =
{
Q̃(t) | t ∈

⋃
R∈RF TR

}
of edge-disjoint paths in G′′, where for every cluster

R ∈ RF , for every vertex t ∈ TR, path Q̃(t) connects the image of t in ϕ′ to vertex zR. Since, for every
edge e ∈ E(H ′F)∪ Ẽ′F , we have added Ne + 1 copies of edge e to G′′, for every edge e ∈ ẼF , there is a
copy e∗ ∈ J(e) of edge e (that we call distinguished copy), that does not belong to any path in Q̃(F).
For every component R ∈ RF , for every vertex t ∈ TR, we let γ(t) be the image of path Q̃(t) in ϕ′′.
Notice that curve γ(t) connects the image of t in ϕ′ to the image of vertex zR. We slightly modify the
final segment of γ(t) so that it terminates at the boundary of disc D′′(R) (while ensuring that each
such curve terminates at a different point on the boundary of the disc). We note that we are allowed

to introduce arbitrary number of crossings between the curves in set
{
γ(t) | t ∈

⋃
R∈RF TR

}
, as all

such crossings will become unimportant crossings in the final drawing of graph G′ that we construct.

Consider now some edge e ∈ Ẽ′′F . Assume that e = (t, t′), with t ∈ TR, t′ ∈ TR′ , where R,R′ ∈ RF
are two distinct clusters. We define a curve γ′(e) representing the edge e by concatenating the curve
γ(t), the image of the distinguished copy e∗ of e in ϕ′′; and curve γ(t′). Notice that the resulting curve
γ′(e) connects a point on the boundary of disc D′′(t) to a point on the boundary of disc D′′(t′).

Next, we consider some edge e ∈ Ẽ′F . Assume that e = (t, z), with z ∈ ZF , and t ∈ TR, for some
cluster R ∈ RF . We let γ′(e) be the curve obtained by concatenating the image of the distinguished
copy e∗ of e in ϕ′′ with the curve γ(t). Therefore, curve γ′(e) connects the image of vertex z to a point
on the boundary of disc D′′(t).

Consider the resulting set ΓF =
{
γ′(e) | e ∈ ẼF

}
of curves. Notice that these curves may not be in

general position, since it is possible that for some vertex v ∈ V (H ′F), the point ϕ′′(v) lies on more
than two such curves (for example, this can happen when v lies on several paths in Q(F)). In order to
overcome this difficulty, for every vertex v ∈ V (H ′F) with point ϕ′′(v) lying on more than two curves
of ΓF , we modify the curves of ΓF containing point ϕ′(v) within the tiny v-disc Dϕ′(v), for example,
as described in the nudging procedure (see Section 4.4.3). This may introduce new crossings between
the curves in ΓF , but since these crossings will eventually become unimportant crossings of drawing
ψ2, we can afford to introduce an arbitrary number of such crossings.

We are now ready to define the solution ψ2 to instance I ′. Let G̃ = G′\
⋃
F∈F̃ ′(H

′
F ∪Ẽ′F). The drawing

of graph G̃ in ψ2 remains the same as in ϕ′. Consider now some face F ∈ F̃ ′ and cluster R ∈ RF .
We plant drawing ψR+ inside disc D′′(R), so that the boundaries of discs D′(R) and D′′(R) coincide.
Recall that, in drawing ψR+ , the image of every vertex t ∈ TR appears on the boundary of the disc
D(R), and the images of all other vertices, and of all edges, are disjoint from D′(R) \D(R). It now
remains to add the images of the edges in Ẽ to this drawing. Consider again a face F ∈ F̃ ′, and an
edge e ∈ Ẽ. Initially, we let the image of e be the curve γ′(e) ∈ ΓF . We now need to modify this curve
slightly so it connects the images of the endpoints of edge e. Assume first that e ∈ Ẽ′F , and denote
e = (t, z), with z ∈ ZF , and t ∈ TR, for some cluster R ∈ RF . Then curve γ′(e) connects the image
of z to a point on the boundary of disc D′′(R). Recall that the image of t appears on the boundary
of disc D(R). We extend curve γ′(e) within the region D′′(R) \ D(R), so that it terminates at the
image of vertex t. Assume now that e ∈ Ẽ′′F , and denote e = (t, t′), where t ∈ TR, t′ ∈ TR′ , for some
distinct clusters R,R′ ∈ RF . Initially, we let the image of edge e be the curve γ′(e) that connects a
point on the boundary of D′′(R) to a point on the boundary of D′′(R′). We extend the curve inside
the regions D′′(R) \D(R) and D′′(R′) \D(R′), so that it connects the image of t to the image of t′.
The extensions to the curves in ΓF can be performed so that they remain in general position; we may
introduce an arbitrary number of new crossings between these curves, but we will not introduce any
crossings between these curves and the images of the edges of G̃. This completes the definition of the
solution ψ2 to instance I ′. We now ensure that this drawing has the required properties. Observe
first that every interesting crossing in ψ2 is either between a pair of edges in G̃ (and so it must be a
type-2 crossing in drawing ϕ′′ of G′′); or it is a crossing between a pair of edges of graph R+ for some

181

cluster R ∈
⋃
F∈F̃ ′ RF (in which case it exists in drawing ψR+); or it is a crossing between a curve

in
⋃
F∈F̃ ′ ΓF and an image of an edge of G̃ (in which case it corresponds to some type-2 crossing in

drawing ϕ′′ of G′′). Therefore, if we denote by χ2(ϕ′′) the set of all type-2 crossings in drawing ϕ′′,
then we get that the number of interesting crossings in ψ2 is bounded by:

|χ2(ϕ′′)|+
∑
F∈F̃ ′

∑
R∈RF

cr(ψR+).

Recall that for every cluster R ∈
⋃
F∈F̃ ′ RF , cr(ψR+) ≤ |χ(R)|, where χ(R) the set of all crossings

in the drawing ϕ′ of G′ in which the edges of R+ participate. Therefore,
∑

F∈F̃ ′
∑

R∈RF cr(ψR+) ≤
2cr(ϕ′) ≤ 2cr(ϕ). Since, from the above discussion, the expected number of type-2 crossings in ϕ′′ is
bounded by c · cr(ϕ′) · log16 m̌′ ≤ c · cr(ϕ) · log16 m̌′ for some large enough constant c, we get that the
expected number of type-2 crossings in ϕ′′ is at most 4c · cr(ϕ) · log16 m̌′. We say that a bad event E1

happens if the number of type-2 crossings in ϕ′′ is greater than 16c · cr(ϕ) · log16 m̌′. From Markov’s
inequality, Pr [E1] ≤ 1/4.

Next, we bound |χ∗(ψ2)| – the number of crossings in which the edges of the core J̌ participate. Notice
that the edges of the core J̌ may not lie in

⋃
F∈F̃ ′(H

′
F ∪ Ẽ′F). Consider any crossing (e, e′)p ∈ χ∗(ψ2),

and assume that e ∈ E(J̌). Then either e′ ∈ E(G̃) must hold (in which case crossing (e, e′)p is a type-2
crossing in drawing ϕ′′ of G′′), or e′ ∈ Ẽ (in which case curve γ′(e′) crosses the image of e). Since
curve γ′(e′) was constructed by following the images of one or two paths in

⋃
F∈F̃ ′ Q̃(F) in ϕ′′, and

using the image of edge e′ in ϕ′′, there is a crossing (e, e′′)p in drawing ϕ′′, such that the image of edge
e′′ has a non-zero length intersection with curve γ′(e′).

Therefore, |χ∗(ψ2)| ≤ |χ∗(ϕ′′)|. It now remains to bound the number of crossings in which the edges
of J̌ participate in ϕ′′. Consider any such crossing (e, e′′)p, with e ∈ E(J̌). Then either e′′ ∈ E(G̃),
and crossing (e, e′′)p also exists in drawing ϕ′ of G′; or e′′ is a copy of some edge e′ ∈

⋃
F∈F̃ ′(HF ∪ ẼF),

and crossing (e, e′)p also exists in drawing ϕ′ of G′. In the former case, we say that crossing (e, e′′)p
in ϕ′ is responsible for crossing (e, e′′)p in ϕ′′, while in the latter case we say that crossing (e, e′)p
in ϕ′ is responsible for crossing (e, e′′)p in ϕ′′. Consider now some crossing (e, e′)p in drawing ϕ′. If
e′ ∈ E(G̃), then this crossing may be responsible for at most one crossing in ϕ′′. Otherwise, there
must be a face F ∈ F̃ ′, with e′ ∈ E(HF) ∪ ẼF . In this case, crossing (e, e′)p may be responsible for
at most Ne′ + 1 crossings in ϕ′′. Since, from Observation 9.51, for every face F ∈ F̃ ′, for every edge

e′ ∈ E(H ′F) ∪ Ẽ′F , E [Ne′ + 1] = E
[
congG′F (Q(F), e′) + 1

]
≤ O(log8 m̌′), we get that E [|χ∗(ψ2)|] ≤

c|χ∗(ϕ′)| log8 m̌′ ≤ c|χ∗(ϕ)| log8 m̌′ for some large enough constant c. We say that bad event E2 happens
if |χ∗(ψ2)| > 4c|χ∗(ϕ)| log8 m̌′. As before, from Markov inequality, Pr [E2] ≤ 1/4.

Lastly, we need to bound the number of crossings in which the edges of E(K) participate in the
drawing ψ2. We denote by N(ϕ′) and N(ψ2) the number of crossings in which the edges of E(K)
participate in drawings ϕ′ and ψ2, respectively. Recall that N(ϕ′) is bounded by the number of
crossings in which the edges of K participate in ϕ, which was denoted by N . From the definition,
the edges of E(K) may not lie in

⋃
F∈F̃ ′(H

′
F ∪ Ẽ′F). We can use the same argument that we used

in bounding |χ∗(ψ2)| to show that every crossing (e, e′′)p in ϕ′′ in which e ∈ E(K) can be mapped
to some crossing (e, e′)p in ϕ′, such that the total number of crossings mapped to a single crossing
(e, e′)p is 1 if e′ ∈ E(G̃) and Ne′ + 1 otherwise. Using the same reasoning as above, we get that
E [N(ϕ′′)] ≤ c ·N(ϕ′) · log8 m̌′ ≤ c ·N · log8 m̌′, where c is a large enough constant. We say that bad
event E3 happens if N(ψ2) > 4c ·N · log8 m̌′. As before, from Markov inequality, Pr [E3] ≤ 1/4.

Using the Union Bound, with probability at least 1/4 neither of the bad events E1, E2, E3 happens.
Therefore, there must exist a solution ψ2 to instance I ′ = (G′,Σ′) that is K-valid, such that, for
every face F ∈ F̃ ′, the images of all vertices of G′F lie in region F of the drawing, the number of
interesting crossings in ψ2 is bounded by 4c · cr(ϕ) · log16 m̌′, |χ∗(ψ2)| ≤ 4c · |χ∗(ϕ)| · log8 m̌′, and
N(ψ2) ≤ 4c ·N · log8 m̌′. This completes the proof of Claim 9.49 and of Claim 9.46.

182

Step 2: Moving the Bad Edges

In this step we consider the K-valid solution ψ1 to instance I that is guaranteed to exist from
Claim 9.46. Recall that for every face F ∈ F̃ ′, the images of all vertices of GF lie in region F of
ψ1. Additionally, cr(ψ1) ≤ (cr(ϕ) +N2) · (log m̌′)O(1), |χ∗(ψ1))| ≤ |χ∗(ϕ)| · (log m̌′)O(1), and the total
number of crossings in which the edges of K participate in ψ1 is at most N · (log m̌′)O(1).

For every face F ∈ F̃ ′, we define a disc D(F), that is contained in region F of ψ1, so that the boundary
of disc D(F) closely follows the boundary of the region F . Equivalently, we can think of disc D(F) as
the complement of the disc D(JF) associated with the core JF (see e.g. Definition 9.4); the boundaries
of both discs coincide, and their interiors are disjoint. Note that, if we traverse the boundary of the
disc D(F) in counter-clock direction, we encounter the images of the edges δGF (JF) in the oriented
circular ordering O(JF). Notice however that images of additional edges of G may cross the boundary
of disc D(F) – edges whose images cross the image of some edge in E(JF). As before, we say that an
edge of G is bad if its image in ψ1 crosses the image of some edge of the original core J̌ . Note that
for every bad edge e = (u, v), there must be a face F ∈ F̃ ′ with e ∈ E(GF). Intuitively, in this step,
for each face F ∈ F̃ ′, we will modify the drawing that is contained in disc D(F) in ψ1, and add the
images of the bad edges e ∈ E(GF) to this drawing. In order to do so in a modular fashion, so that
the resulting drawings for different faces F can be “glued” together, we will define a new graph that
is associated with the face F , that, intuitively, will contain all vertices and (segments of) edges that
are drawn inside disc D(F) in ψ1. We will exclude all bad edges that do not lie in GF , and include all
bad edges that lie in GF . We will also subdivide the image of every edge that crosses the boundary
of disc D(F) with a new vertex, whose image will be placed on the boundary of disc D(F). We view
these new vertices as “anchors”. Intuitively, we will allow the image of the graph associated with face
F to be modified arbitrarily, as long as it is contained in disc D(F), and as long as the images of the
anchors remain unchanged. This will allow us to replace the part of the drawing of graph G that is
contained in D(F) with a new drawing, to which the bad edges that lie in GF are added.

We start by constructing a new graph G̃, that is obtained from graph G, by subdividing some edges
of G. Notice that, if graph G̃ is obtained from graph G in this way, then the rotation system Σ for
G naturally defines a rotation system Σ̃ for G̃. We then obtain an instance Ĩ = (G̃, Σ̃) of MCNwRS
problem that we call instance defined by graph G̃. We will also define a solution ϕ̃ to instance Ĩ, that
will be obtained from solution ψ1 to instance I in a natural way. Initially, we start with G̃ = G and
ϕ̃ = ψ1. For every face F ∈ F̃ ′, we also construct a set AF of anchor vertices, whose image in ϕ̃
appears on the boundary of the disc D(F). Initially, we set AF = ∅ for all F ∈ F̃ ′.
Consider some face F ∈ F̃ ′, an an edge e = (x, y) that is incident to some vertex of the core JF .
Recall that exactly one endpoint of e (say x) belongs to the core JF . We subdivide edge e with a new
vertex te, so that edge e is replaced with a path (x, te, y). We also subdivide the image of edge e in ϕ̃
by placing the image of vertex te on the first intersection point of ϕ̃(e) with the boundary of the disc
D(F), as we traverse ϕ̃(e) from x to y. We add vertex te to the set AF of anchor vertices. In our final
graph G̃, we will delete the edge (x, te), and we will view edge (te, y) as representing the original edge
e.

Consider the current graph G̃, and its current drawing ϕ̃. We say that an edge e ∈ E(G̃) is good if its
image in ϕ̃ does not cross the image of any edge in K. Since we have subdivided the edges incident to
the vertices of K that do not lie in E(K), for every face F ∈ F̃ ′, every edge of G̃ that is incident to a
vertex of JF is a good edge. We say that an edge e ∈ E(G̃) is bad if its image in the current drawing
ϕ̃ crosses the image of some edge of the original core J̌ . Notice that the total number of bad edges
is bounded by |χ∗(ϕ̃)| ≤ |χ∗(ψ1)| ≤ |χ∗(ϕ)| · (log m̌′)O(1) from Claim 9.46. Notice also that for every
bad edge e ∈ E(G̃), there must be a face F ∈ F̃ ′, such that the images of both endpoints of e lie in
the disc D(F). Lastly, we say that an edge e ∈ E(G̃) is a migrating edge if it is neither good nor bad.

183

In this case, the image of e must cross the image of some edge in E(K) \ E(J̌). Next, we process all
bad edges and all migrating edges.

Consider first a bad edge e = (x, y), and assume that the images of both x and y lie inside disc D(F)
for some face F ∈ F̃ ′. Then the image of edge e in ϕ̃ must intersect the boundary of the disc D(F) in
at least two points. We direct the image of e in ϕ̃ from x to y, denote by p(e) the first point on the
boundary of disc D(F) that lies on ϕ̃(e), and by p′(e) the last point on the boundary of disc D(F) that
lies on ϕ̃(e). If p(e) is the image of the vertex x, then we denote te = x (in this case, x is already added
to the set AF of anchor vertices for face F). Otherwise, we subdivide the edge e with a new vertex te,
whose image is placed at point p(e), and we add te to the set AF of anchor vertices. Similarly, if p′(e)
is the image of the vertex y in ϕ̃, then we denote t′e = y. Otherwise, we subdivide the edge e with a
new vertex t′e, whose image is placed at point p′(e), and we add t′e to the set AF of anchor vertices. If
edge e has been subdivided twice, then we have replaced it with path (x, te, t

′
e, y). If x 6= te, then edge

(x, te) now becomes a good edge. This edge does not represent any edge in the original graph GF , so
we call it an extra edge. Similarly, if y 6= t′e, then edge (y, t′e) now becomes a good edge, and we also
call it an extra edge. The edge (te, t

′
e) is a bad edge, and we view it as representing the bad edge e.

Note that the images of both endpoints of this edge now appear on the boundary of disc D(F). We
say that face F owns this bad edge.

Lastly, we consider a migrating edge e = (x, y). Note that there must be a face F ∈ F̃ ′, such that the
images of both x and y lie in disc D(F) in ϕ̃. We direct the image of the edge e in ϕ̃ from x to y.
Denote by F1, F2, . . . , Fr the sequence of the regions of F̃ ′ that the image of the edge e visits, in the
order in which it visits them, so F1 = F and Fr = F . For all 1 < i < r, we let σi be the maximal
segment on the image of e that is contained in disc D(Fi), and we denote by pi(e) and p′i(e) the first
and the last endpoints of σi, respectively, that must lie on the boundary of disc D(Fi). We also let
σ1 the segment of ϕ̃(e) from the image of x to the first point that lies on the boundary of disc D(F),
denoting by p′1(e) the endpoint of σ1 that is different from the image of x. Similarly, we let σr be
the segment of ϕ̃(e) from the last point that lies on the boundary of disc D(F) to the image of y,
denoting by pr(e) the endpoint of σr that is different from the image of y. Note that ϕ̃(e) \ (

⋃r
i=1 σi)

is a collection of short segments, each of which lies outside of
⋃
F∈F̃ ′ D(F ′), and crosses some edge of

K. We subdivide edge e, replacing it with a path (x, t′1, t2, t
′
2, . . . , tr, y). For all 1 < i ≤ r, we place the

image of the new vertex ti at point pi(e), and for all 1 ≤ i < r, we place the image of the new vertex
t′i at point p′i(e). Denote t1 = x and t′r = y. For 1 ≤ i ≤ r, denote by ei the new edge (ti, t

′
i), and for

1 ≤ i < r, denote by e′i the new edge (t′i, ti+1). Notice that, for all 1 ≤ i ≤ r, the image of edge ei is
precisely the segment σi, which is contained in disc D(Fi). Both endpoints of the edge are drawn on
the boundary of the disc D(Fi) (except that, for i = 1, the first endpoint of σ1 is the image of x that
may lie in the interior of disc D(F), and, for i = r, the last endpoint of σr is the image of vertex y
that may lie in the interior of disc D(F)). For all 1 ≤ i ≤ r, edge ei now becomes a good edge, and
we also call it an extra edge. As discussed above, the images of edges e′1, . . . , e

′
r−1 are short segments

that lie outside of
⋃
F ′∈F̃ ′ D(F ′) (except for their endpoints that lie on the boundaries of the discs),

and each such segment crosses some edge of K. For all 1 < i < r, we add the new vertices ti and t′i to
the set AFi of anchor vertices for face Fi. Additionally, we add t′1 and tr to AF .

Consider the final graph G̃ obtained after all bad and migrating edges have been procesed, and the
resulting solution ϕ̃ to the instance Ĩ defined by G̃. From the above discussion, the total number of
extra edges in G̃ is bounded by 2N(ψ1) + 2|χ∗(ψ1)|, where N(ψ1) is the number of crossings in which
the edges of the skeleton K participate in ψ1. Recall that N(ψ1) ≤ N · (log m̌′)O(1) ≤ m̌′

µ3b
· (log m̌′)O(1),

and |χ∗(ψ1)| ≤ |χ∗(ψ)| · (log m̌′)O(1) ≤ m̌′

µ240b
· (log m̌′)O(1). Therefore, the total number of exta edges

in graph G̃ is bounded by m̌′

µ2b
.

For every face F ∈ F̃ ′, we now define a subgraph G̃F of graph G̃ associated with face F . The set

184

of vertices of G̃F contains all vertices whose images appear in disc D(F) in the current drawing ϕ̃.
Notice that this includes all vertices in the original graph GF (except for vertices that belong to the
core JF), and, additionally, new vertices whose images were added to the boundary of D(F), and
were added to the set AF of anchor vertices. Therefore, V (G̃F) = (V (GF) \ V (JF)) ∪ AF . The set
of edges consists of all edges of G̃ whose image in ϕ̃ is contained in the disc D(F), and all bad edges
that belong to face F (that is, all bad edges whose both endpoints lie in AF). Notice that, if e is an
edge of G̃F , then either e is an edge of GF , or it was obtained by subdividing some edge of GF , or e
was obtained by subdividing some migrating edge e′ that lied in some graph GF ′ for F ′ 6= F . In the
latter case, the endpoints of e′ belong to the set AF of anchors, and edge e′ with its endpoints forms
a separate connected component in graph G̃F . We need the following observation.

Observation 9.52 Let F ∈ F̃ ′ be a face, and let (S, T) be a partition of the set AF of the anchor
vertices, so that the images of the vertices of S in ϕ̃ appear consecutively on the boundary of disc
D(F). Then there is a collection E′ of at most 4m̌′/µ2b edges in graph G̃F , so that there is no path
connecting a vertex of S to a vertex of T in G̃F \ E′.

Proof: Assume otherwise. From the max-flow min-cut theorem, there is a collection P of
⌈
4m̌′/µ2b

⌉
edge-disjoint paths in graph G̃F connecting vertices of S to vertices of T . Since there are at most
m̌′/µ2b extra edges in graph G̃, there is a subset P ′ ⊆ P of at least

⌈
2m̌′/µ2b

⌉
paths that do not contain

extra edges. Therefore, every path in P ′ only contains edges that were obtained by subdividing the
edges of GF . Observe that the anchor vertices representing the edges in δGF (JF) appear on the
boundary of disc D(F) in drawing ϕ̃ according to the ordering O(JF). Therefore, partition (S, T) of
vertices of AF naturally induces a partition (E1, E2) of the set δGF (JF) of edges, where the edges of E1

appear consecutively in the ordering O(JF). But then the existence of the set P ′ of paths contradicts
the fact that IF is an acceptable instance (see Definition 9.41).

For a face F ∈ F̃ ′, we denote by χ(F) the set of all crossings in the drawing ϕ̃ in which the edges of
G̃F participate, and we denote by Ebad(F) the set of all bad edges that face F owns. The proof of
Lemma 9.43 follows from the following claim.

Claim 9.53 For every face F ∈ F̃ ′, there is a solution ψF to instance ĨF , with:

cr(ψF) ≤
(
|χ(F)|+ |Ebad(F)|2 + |Ebad(F)| · m̌

′

µ2b

)
· (log m̌′)O(1),

such that the drawing of the graph G̃F is contained in disc D(F), and, for every anchor vertex t ∈ AF ,
the image of t in ψF is identical to its image in ϕ̃.

We provide the proof of Claim 9.53 below, after we complete the proof of Lemma 9.43 using it. We
start from the solution ϕ̃ to instance Ĩ. For every face F ∈ F̃ ′, we delete the contents of the disc
D(F), and replace them with the contents of disc D(F) in drawing ψF of graph G̃F . Since the images
of the anchor vertices of AF remain unchanged, once every face F ∈ F̃ ′ is processed, we obtain a
valid solution to instance Ĩ, that we denote by ψ̃′. Since, for every face F ∈ F̃ ′, for every bad edge
e ∈ Ebad(F), the image of e now lies in disc D(F), for every bad face F ′ ∈ F̃×, the image of every edge
of G̃ in ψ̃′ is disjoint from the interior of F ′. Since graph G̃ was obtained from graph G by subdividing
some of its edges, solution ψ̃′ to instance Ĩ naturally defines a solution ψ to instance I, by suppressing
the images of vertices that were used to subdivided edges. From the above discussion, the resulting

185

solution ψ to instance I is clean with respect to J̌ . Moreover:

cr(ψ) ≤ cr(ϕ̃′)

≤ cr(ϕ̃) +
∑
F∈F̃ ′

cr(ψF)

≤ cr(ϕ̃) +
∑
F∈F̃ ′

(
|χ(F)|+ |Ebad(F)|2 + |Ebad(F)| · m̌

′

µ2b

)
· (log m̌′)O(1)

≤ cr(ϕ̃) · (log m̌′)O(1) +
∑
F∈F̃ ′

|Ebad(F)|2 · (log m̌′)O(1) + |χ∗(ψ1)| · m̌
′ · (log m̌′)O(1)

µ2b

≤ (cr(ϕ) +N2) · (log m̌′)O(1) + |χ∗(ψ1)|2 · (log m̌′)O(1) + |χ∗(ϕ)| · m̌
′ · (log m̌′)O(1)

µ2b

≤
(
cr(ϕ) +N2 + |χ∗(ϕ)|2 +

m̌′ · |χ∗(ϕ)|
µ2b

)
(log m̌′)O(1).

In order to complete the proof of Lemma 9.43, it is now enough to prove Claim 9.53, which we do
next.

9.4.6 Proof of Claim 9.53

We fix a face F ∈ F̃ ′. For convenience, we denote graph G̃F by G, and the corresponding instance
ĨF = (G̃F , Σ̃F) of MCNwRS by I = (G,Σ). We also denote the solution to instance I induced by
drawing ϕ̃ of G̃ by ϕ, so |χ(F)| ≥ cr(ϕ). Recall that we are given a disc D(F), that we denote by D,
and a collection AF of anchor vertices (that we denote by A). The images of all vertices of A in ϕ
lie on the boundary of the disc D, and the images of all other vertices of G lie in the interior of the
disc. The set of edges of G is partitioned into two subsets: set Ebad of bad edges, and set Egood of all
remaining edges, that we refer to as good edges. The images of all good edges in ϕ are contained in
disc D. For every bad edge e ∈ Ebad, the endpoints of e (which must be anchor vertices) lie on the
boundary of disc D.

Our goal is to show that there exists another solution ψ to instance I, in which the images of the anchor
vertices remain unchanged from ϕ, the images of all vertices and edges of G are contained in disc D,

and cr(ψ) ≤
(
cr(ϕ) + |Ebad|2 + |Ebad| · m̌′

µ2b

)
· (log m̌′)O(1). Recall that, from Observation 9.52, for any

partition (S, T) of the vertices of A, so that the vertices of S appear consecutively on the boundary of
D in ϕ, there is a set E′ of at most 4m̌′/µ2b edges in G, so that there is no path connecting a vertex
of S to a vertex of T in G \ E′.
We let A′ ⊆ A be the set of vertices that serve as endpoints of the bad edges. Note that the edges of
Ebad define a perfect matching between the vertices of A′. We then let Π = {ϕ(v) | v ∈ A′} be the set
of points that serve as images of the vertices of A′. Let r be the smallest integer, so that |Π| ≤ 2r.
Clearly, 2r ≤ 4|Ebad| ≤ 4m̌′, and r ≤ log(4m̌′). We add additional arbitrary points on the boundary
of the disc D to set Π until Π contains 2r + 1 distinct points. We denote Π = {p0, p1, . . . , p2r}, and we
assume that the points appear on the boundary of disc D in this order, as we traverse the boundary
in counter-clock-wise direction.

Next, we define a number of guiding curves, that we call corridors. We will ensure that all these curves
are disjoint, except for possibly sharing their endpoints. The curves are partitioned into r levels.

The set Λ0 of level-0 curves contains, for all 0 ≤ i < 2r, a curve λ0,i, that connects point pi to
point pi+1, and is contained in the interior of disc D (except for its two endpoints that lie on the
disc boundary). We ensure that all curves in set Λ0 are disjoint from each other. Note that for all

186

0 ≤ i < 2r, points pi and pi+1 partition the boundary of the disc D into two segments. Let σ0,i be
the segment that is disjoint from point pi+2. Then we can define a disc D0,i ⊆ D that corresponds to
curve λ0,i, whose boundary is the concatentation of curves σ0,i and λ0,i.

For a level 0 < j < r, we consider the points in
{
pi·2j | 0 ≤ i ≤ 2r−j

}
, and we connect every consecutive

pair of such points with a curve. Specifically, the set Λj of level-j curves contains, for all 0 ≤ i < 2r−j , a
curve λj,i, that connects point pi·2j to point p(i+1)·2j . We draw these curves so that they are internally
disjoint from each other and from the curves in Λ0 ∪ · · · ∪ Λj−1, and every curve is contained in the
interior of the disc D (except for its endpoints that lie on the disc’s boundary).

As before, for every index 0 ≤ i < 2r−j , points pi·2j , p(i+1)·2j partition the boundary of the disc D into
two segments. We denote by σj,i the segment that does not contain the point p(i+1)·2j+1. We let Dj,i

be the disc that is contained in D, whose boundary is the concatenation of curves σj,i and λj,i (see
Figure 34).

Figure 34: Level-j curves λj,i and λj,i+1, with disc Dj,i+1 shown in red, and a level-(j − 1) curve
λj−1,2i, with disc Dj−1,2i shown in green.

Lastly, the set Λr of level-r curves contains a single curve λr,0 that connects points p0 and p2r . We
ensure that this curve is internally disjoint from all curves in Λ0 ∪ · · · ∪ Λr−1, and is contained in the
interior of D, except for its endpoints that lie on the boundary of the disc. We define a disc Dr,0

associated with this curve exactly like before, so points p0, . . . , pr lie on the boundary of Dr,0.

We denote by Λ =
⋃r
j=0 Λj . Let G′ = G \ Ebad, and let I ′ = (G′,Σ′) be the subinstance of I that

is defined by graph G′. The crux of the proof of Claim 9.53 is the following claim, that allows us to
“rearrange” the image of graph G′, so that each guiding curve only crosses a small number of edges.

Claim 9.54 There is a solution ψ′ to instance I ′, with cr(ψ′) ≤ cr(ϕ) · (log m̌′)O(1), so that the images
of all vertices and edges of G′ lie in disc D, and the images of the anchor vertices in set A remain the
same as in ϕ. Moreover, for every curve λ ∈ Λ, for every vertex v ∈ V (G′), the image of v in ψ′ does
not lie on an inner point of λ; for every edge e ∈ E(G′), the image of e in ψ′ may intersect λ in at
most one point; and the total number of edges in E(G′) whose images intersect λ is at most 4m̌′/µ2b.

We provide the proof of Claim 9.54 in Section H.9 of Appendix. Given two points pi, pi′ ∈ Π, a tunnel
connecting pi to pi′ is a sequence L = (λ1, . . . , λz) of curves of Λ, such that the concatenation of the

187

curves in L is a simple curve connecting points pi and pi′ . The length of the tunnel is z – the number of
curves in the sequence. We also need the following simple observation, whose proof appears in Section
H.11 of Appendix.

Observation 9.55 For every pair pi, pi′ of distinct points of Π, there is a tunnel of length O(log m̌′)
connecting pi to pi′.

The proof of Claim 9.53 easily follows from Claim 9.54 and Observation 9.55. We start with the
solution ψ′ to instance I ′, that is given by Claim 9.54. Recall that cr(ψ′) ≤ cr(ϕ) · (log m̌′)O(1), the
image of G′ is contained in disc D, and the images of the anchor vertices in set A in ψ′ are identical
to those in ϕ. Next, we consider the bad edges one by one, and insert them into the drawing ψ′.
Consider any such bad edge e = (x, y) ∈ Ebad. Recall that there are two points pi, pi′ ∈ Π, such that
ψ′(x) = ϕ(x) = pi, and ψ′(y) = ϕ(x) = pi′ . From our construction of graph G̃, vertices x and y each
have degree 2 in G. Let L = (λ1, . . . , λz) be a tunnel connecting pi to pi′ , with z ≤ O(log m̌′), that
is given by Observation 9.55. We let the image of the edge e to be a simple curve that connect pi to
pi′ , and closely follows the image of the curve γ(L), obtained by concatenating all curves in L, next

to this curve. From Claim 9.54, this new image of edge e crosses the images of at most O
(
m̌′·log m̌′

µ2b

)
edges of G′. We allow the images of the edges of Ebad to cross arbitrarily.

Once all bad edges are processed, we obtain a solution ψ to instance G, where the images of all
vertices and edges are contained in D, and the images of the anchor vertices in A are identical to
those in ϕ. The number of crossings between pairs of edges in E(G′) is at most cr(ϕ) · (log m̌′)O(1); the

number of crossings between edges of Ebad and edges of E(G′) is at most O
(
|Ebad|·m̌′·log m̌′

µ2b

)
; and the

number of crossings between the edges of Ebad may be arbitrary. As our last step, we perform a type-1
uncrossing of the images of the bad edges (see Theorem 4.33). This procedure locally modifies the
images of the bad edges by swapping segments between pairs of images of these edges (see Figure 7).
At the end of this procedure, we are guaranteed that every pair of edges in Ebad cross at most once,
and the number of crossings between the new images of the edges in Ebad and the images of the edges
in E(G′) does not grow. Therefore, the number of crossings in this final solution to instance I is

bounded by cr(ϕ) · (log m̌′)O(1) +O
(
|Ebad|·m̌′·log m̌′

µ2b

)
+ |Ebad|2, as required.

10 An Algorithm for Narrow Instances – Proof of Theorem 3.14

We assume that we are given a narrow instance I = (G,Σ) of the MCNwRS problem. Throughout
this section, we denote |E(G)| = m. We fix some optimal solution ϕ∗ to instance I. We will gradually
construct the desired family I of instances, over the course of three phases. We will employ partitions
of graphs into clusters, that are defined as follows.

Definition 10.1 (Partition into Clusters) Let H be a graph, and let C be a collection of sub-
graphs of H. We say that C is a partition of H into clusters, if each subgraph C ∈ C is a connected
vertex-induced subgraph (cluster) of H,

⋃
C∈C V (C) = V (H), and for every pair C,C ′ ∈ C of distinct

subgraphs, V (C) ∩ V (C ′) = ∅.

Recall that a vertex v ∈ V (G) is a high-degree vertex, if degG(v) ≥ m/µ4. It will be convenient for us
to assume that, if u is a neighbor vertex of a high-degree vertex, then the degree of u is 2, and that no
vertex is a neighbor of two high-degree vertices. In order to achieve this, we simply subdivide every
edge that is incident to a high-degree vertex with a single vertex; if, for an edge e = (u, u′), both its
endpoints are high-degree vertices, then we subdivide this edge with two new vertices. Let G′ denote
the resulting graph, and let Σ′ be the rotation system associated with G′, that is naturally defined

188

from rotation system Σ for G: for every vertex v ∈ V (G)∩V (G′), the circular ordering of the edges of
δG(v) = δG′(v) remains the same, and for every vertex v ∈ V (G′) \ V (G), |δG′(v)| = 2, so its rotation
is trivial. We denote by I ′ = (G′,Σ′) the resulting instance of MCNwRS. Assume that we compute
an η-decomposition I ′ of instance I ′. It is easy to verify that I ′ is also an O(η)-decomposition of
instance I. This is since |E(G′)| ≤ O(|E(G)|), OPTcnwrs(I

′) = OPTcnwrs(I), and, if we are given, for
every instance Ĩ ∈ I, a solution ϕ(Ĩ), then we can efficiently compute a solution ϕ(Ĩ ′) of the same cost
to the corresponding instance Ĩ ′ ∈ I ′. Lastly, a solution to instance I ′ can be efficiently transformed
into a solution to instance I of the same cost. Therefore, from now on we will focus on decomposing
instance I ′ into a collection I ′ of subinstances with required properties. To simplify the notation,
we denote G′ by G, Σ′ by Σ, and I ′ by I. Note that |E(G)| ≤ 3m now holds; every neighbor of a
high-degree vertex in G has degree at most 2; and no vertex is a neighbor of two high-degree vertices.

Intuitively, in order to prove Theorem 3.14, it is enough to compute a partition C of the input graph
G into clusters, such that, for every cluster C ∈ C, |E(C)| ≤ m/µ2 holds; we refer to such clusters
as small clusters. Additionally, we require that the total number of edges with endpoints in different
clusters is small, namely, |Eout(C)| ≤ m/µ2. Once such a collection C of clusters is computed, we
can use the algorithm from Theorem 7.1 in order to compute the desired decomposition I of instance
I. Unfortunately, we are unable to compute such a decomposition C of graph G into small clusters
directly. The main obstacle to computing such a decomposition via standard techniques is that graph
G may contain high-degree vertices. In order to overcome this difficulty, we define a new type of
clusters, called flower clusters. Flower clusters will be used in order to isolate high-degree vertices
in graph G. Eventually, we will compute a decomposition C of G into clusters, where each cluster
in C is either a small cluster or a flower cluster, and the number of edges whose endpoints lie in
different clusters of C is sufficiently small. We now formally define flower clusters (see Figure 35 for
an illustration).

Definition 10.2 (Flower Cluster) We say that a subgraph C ⊆ G is a flower cluster with a center
vertex u(C) ∈ V (C) and a set X (C) = {X1, . . . Xk} of petals, if the following hold:

F1. C is a connected vertex-induced subgraph of G, and for all 1 ≤ i ≤ k, Xi is a vertex-induced
subgraph of C;

F2.
⋃k
i=1 V (Xi) = V (C), and for every pair Xi, Xj ∈ X of clusters with i 6= j, Xi ∩Xj = {u(C)};

F3. the degree of u(C) in G is at least m/µ4, and all other vertices of C have degrees below m/µ4 in
G;

F4. |δG(C)| ≤ 96m/µ42, and the total number of edges e = (u, v) with u ∈ V (Xi) \ {u(C)} and
v ∈ V (Xj) \ {u(C)} for all 1 ≤ i < j ≤ k is at most 96m/µ42;

F5. there is a partition E1, . . . , Ek of all edges of δC(u(C)) into subsets, such that, for all 1 ≤ i ≤ k,
edges in Ei are consecutive in the ordering Ou(C) ∈ Σ, |Ei| ≤ m/(2µ4), and Ei ⊆ E(Xi) (so in
particular δC(u(C)) = δG(u(C)); and

F6. for every cluster Xi ∈ X , there is a set Qi of edge-disjoint paths, routing all edges of δG(Xi) \
δG(u(C)) to u(C), such that all inner vertices on all paths of Qi are contained in Xi.

Notice that Q =
⋃k
i=1Qi is a set of edge-disjoint paths, routing all edges of δG(C) to vertex u(C)

inside C, and its existence certifies that a flower cluster must have 1-bandwidth property.

The remainder of the proof of Theorem 3.14 consists of three phases. In the first phase, we compute a
decomposition C of the graph G into clusters, such that the total number of edges with endpoints lying
in different clusters is small, and every cluster in C is either a small cluster or a flower cluster. We then

189

(a) A schematic view of the petals
X1, X2, X3, X4.

(b) Paths in set Q2 for petal X2 are shown in
pink.

Figure 35: An illustration of a 4-petal flower cluster.

use the algorithm from Theorem 7.1 in order to compute an initial collection I1 of subinstances of
instance I. This collection will have all required properties, except that for some instances Ĩ = (G̃, Σ̃) ∈
I1, |E(G̃)| ≤ m/(2µ) may not hold. We call such instances problematic. Each such problematic
instance consists of a single flower cluster C ∈ C, and possibly some additional edges that lie in
Eout(C) (recall that Eout(C) is the set of all edges whose endpoints belong to different clusters of C).
In the subsequent two phases, we consider each of the problematic instances in I1 separately, and
further decompose it into smaller subinstances. Specifically, suppose we are given some problematic
instance Ĩ = (G̃, Σ̃) ∈ I1 with corresponding flower cluster C ⊆ G̃, whose center is vertex u and
the set of petals is X . Consider any petal X ∈ X . We say that petal X is routable in graph G̃ if
there is a collection P(X) =

{
P (e) | e ∈ δG̃(X) \ δG̃(u)

}
of paths in G̃ that cause congestion at most

4000, such that for each edge e ∈ δG̃(X) \ δG̃(u), path P (e) has e as its first edge and u as its last
vertex, and all inner vertices of P (e) are disjoint from X. We show that, if every petal of a flower
cluster C is routable in G̃, then we can further decompose instance Ĩ into a collection I ′(Ĩ) smaller
subinstances, using reasoning similar to that in the basic disengagement procedure (see Section 5.3).
It is still however possible that for some resulting instance Ĩ ′ = (G̃′, Σ̃′) ∈ I ′(Ĩ), |E(G̃′)| > m/(2µ)
holds. However, the disengagement procedure ensures that such an instance may not contain high-
degree vertices. Therefore, applying the algorithm from Phase 1 to each such instance Ĩ ′ will yield a
decomposition of the initial instance I into subinstances with all required properties. One difficulty
with the approach we have just outlined is that, if Ĩ = (G̃, Σ̃) ∈ I1 is a problematic instance with
corresponding flower cluster C ⊆ G̃, then we are not guaranteed that the petals of C are routable in
G̃. In order to overcome this difficulty, in Phase 2, we consider each such problematic instance Ĩ ∈ I
separately. By performing a layered well-linked decomposition and an additional disengagement step,
we decompose each such instance into a collection of subinstances, such that at most one resulting
subinstance contains the flower cluster, and we further modify this flower cluster to ensure that each
of its petals is routable in the resulting graph. In the third phase, we perform further disengagement
on instances containing flower clusters, that exploits the fact that now every petal of the flower cluster
is routable. Some of the resulting instances may still contain too many edges, but, as we show, they
may not contain high-degree vertices. We then perform one final disengagement on such instances in
order to obtain the final decomposition. We now describe each of the three phases in turn.

190

10.1 Phase 1: Flower Clusters, Small Clusters, and Initial Disengagement

The first phase consists of three steps. In the first step, we carve flower clusters out of the graph G. In
the second step, we decompose the remainder of the graph G into small clusters. Lastly, we perform
a disengagement step for all resulting clusters in the third step.

10.1.1 Step 1: Carving out Flower Clusters

Let S = {s1, . . . , sk} be the set of all vertices of G that have degree at least m/µ4. Notice that, since
we have assumed that no edge connects a pair of high-degree vertices, and |E(G)| ≤ 3m, k ≤ 3µ4 must
hold. In this step, we use with the following lemma, in order to carve flower clusters out of graph G.

Lemma 10.3 There is an efficient algorithm that computes a collection Cf =
{
Cf1 , . . . , C

f
k

}
of disjoint

clusters of G, such that for all 1 ≤ i ≤ k, Cfi is a flower cluster with center si. The algorithm also

computes, for each resulting flower cluster Cfi , the corresponding set X (Cfi) of petals.

Proof: We start with the following simple claim that allows us to compute an initial collection
{C1, . . . , Ck} of clusters with some useful properties. Eventually, for all 1 ≤ i ≤ k, we will define a

flower cluster Cfi ⊆ Ci.

Claim 10.4 There is an efficient algorithm to compute k disjoint clusters C1, . . . , Ck of G, such that
for all 1 ≤ i ≤ k, si ∈ V (Ci), δG(si) ⊆ E(Ci), and |δG(Ci)| ≤ 9m/µ46. Additionally, the algorithm
computes, for all 1 ≤ i ≤ k, a set Qi of edge-disjoint paths routing the edges of δG(Ci) to si, such that
all inner vertices of every path lie in Ci.

Proof: We use the algorithm from Lemma 4.8 to compute, for all 1 ≤ i ≤ k, a set Ai of vertices of
G, such that S ∩ Ai = {si}, and (Ai, V (G) \ Ai) is a minimum cut separating si from the vertices of
S \ {si} in G, and the vertex sets A1, . . . , Ak are mutually disjoint. Recall that the algorithm also
computes, for all 1 ≤ i ≤ k, a set Qi of edge-disjoint paths, routing the edges of δG(Ai) to vertex si,
with all inner vertices on every path of Qi lying in Ai.

Recall that we have assumed that, for all 1 ≤ i ≤ r, for every edge e = (si, ve) ∈ δG(si), the degree of
vertex ve in G is at most 2, and ve is the neighbor of at most one vertex in S – vertex si. If such a
vertex ve does not lie in Ai, then we move it to Ai (if ve lies in some other vertex set Ai′ , we remove it
from that vertex set). Since the degree of ve in G is 2, this does not increase the cardinalities of edge
sets δG(Ai′) for any 1 ≤ i′ ≤ k. Moreover, we can adjust the sets of paths {Qi}ki=1, such that, for all
1 ≤ i ≤ k, set Qi remains a set of edge-disjoint paths routing the edges of δG(Ai) to si, with all inner
vertices on every path lying in Ai.

For all 1 ≤ i ≤ k, we let Ci = G[Ai]. Note that, from the max-flow / min-cut theorem, for each i, there
is a collection Pi of at least |δG(Ci)| edge-disjoint paths connecting si to vertices of S \ {si}. Since
|S| = k ≤ 3µ4, there is some vertex sj ∈ S \ {si}, such that at least |δG(Ci)|/k ≥ |δG(Ci)|/(3µ4) of
the paths in Pi connect si to sj . Since the original instance I that served as input to Theorem 3.14 is
narrow, from Observation 3.10, the number of such paths must be bounded by 2

⌈
m/µ50

⌉
≤ 3m/µ50,

and so for all 1 ≤ i ≤ k, |δG(Ci)| ≤ 9m/µ46.

The following claim will complete the proof of Lemma 10.3.

Claim 10.5 There is an efficient algorithm, that, for all 1 ≤ i ≤ k, computes a flower cluster Cfi ⊆ Ci
with center si, together with a set Xi of petals.

Proof: Fix an index 1 ≤ i ≤ k. For simplicity of notation, in the remainder of the proof, we denote
Ci by C, si by s, and the set Qi of paths by Q. Recall that |δG(C)| ≤ 9m/µ46.

191

Since degG(s) ≥ m/µ4, and δG(s) = δC(s), we get that degC(s) ≥ m/µ4. Let r =
⌊
degC(s) · 6µ4

m

⌋
.

Since m/µ4 ≤ degC(s) ≤ m, we get that 6 ≤ r ≤ 6µ4. We compute a partition E1, . . . , Er of the
edges of δC(s) into disjoint subsets, each of which contains at most

⌊
m/(2µ4)

⌋
edges that appear in

the ordering Os ∈ Σ consecutively. From our choice of r, we get that r ·
⌊
m/(2µ4)

⌋
≥ degG(s), so such

a partition must exist.

Consider now a graph H that is defined as follows. We start with the graph C∪δG(C). Let R be the set
of all endpoints of the edges of δG(C) that do not lie in C. We unify all vertices of R into a vertex a0.
Next, we subdivide every edge e ∈ δC(s) with a new vertex ve, and delete vertex s from the resulting
graph. Finally, for all 1 ≤ j ≤ r, we unify the vertices in set Vj = {ve | e ∈ Ej} into a single vertex
aj , obtaining the graph H. Denote Z = {a0, a1, . . . , ar}. Note that degH(a0) = |δG(C)| ≤ 9m/µ46, so
for all 1 ≤ j ≤ r, there are at most 9m/µ46 edge-disjoint paths connecting a0 to aj . Since the original
instance I that served as input to Theorem 3.14 is a narrow instance, from Observation 3.10, for all
1 ≤ j < j′ ≤ r, the maximum number of edge-disjoint paths connecting aj to aj′ is at most 2m/µ50.
Therefore, for all 1 ≤ j ≤ r, there is a cut separating aj from all vertices of Z \ aj , containing at most
9m/µ46 + 2rm/µ50 ≤ 16m/µ46 edges.

We apply the algorithm from Lemma 4.8 to graph H and vertex set Z. For all 1 ≤ j ≤ r, we denote
by A′j the set of vertices that the algorithm returns for vertex aj . Recall that, if e = (s, x) is an edge
of Ej , then vertex x must have degree at most 2 in graph G. We can then assume without loss of
generality that x lies in A′j ; if it lies in another set A′j′ , or it does not lie in any such set, we can simply
move it to A′j ; this will not increase the values of the cuts |E(A′j′ , V (C) \A′j′)| for any j′. We can also

adjust the sets
{
Q′j
}

of paths that the algorithm from Lemma 4.8 returns for each 1 ≤ j ≤ r, so that

the paths in Q′j are edge-disjoint and route edges of δH(A′j) to vertex aj , with all inner vertices on
every path lying in A′j .

For all 1 ≤ j ≤ k, let Xj be the subgraph of C induced by the vertex set (A′j \ {aj}) ∪ {s}. We then

let Cf be the subgraph of G induced by vertex set
⋃k
j=1 V (Xj). We claim that Cf is a flower cluster

with center s and set X = {X1, . . . , Xr} of petals. We now verify that Cf and X have all required
properties.

First, it is immediate to verify that Cf is a vertex-induced subgraph of G, and that for all 1 ≤ j ≤ r,
Xj is a vertex-induced subgraph of Cf with

⋃r
j=1 V (Xj) = V (Cf), and, for all 1 ≤ j < j′ ≤ r,

Xj ∩ Xj′ = {u}. Additionally, we can assume that C is connected: if this is not the case, then
connected components of C that are disjoint from u can be discarded. This establishes Properties F1
and F2.

Consider now some index 1 ≤ j ≤ r. Since we have assumed that, for every edge e = (u, v) ∈ Ej ,
v ∈ A′j holds, we get that Ej ⊆ Xj . Since δG(s) ⊆ δC(s), and edge sets E1, . . . , Er partition δC(s),

this establishes Property F5. δG(s) ⊆ E(Cf).

Recall that for all 1 ≤ j ≤ r, |δC(Xj) \ δC(s)| ≤ 16m/µ46 (since (A′j , V (H) \ A′j) is a minimum
cut in H separating aj from all vertices of Z \ aj , whose value we have bounded above). Therefore,
|δG(Cf)| ≤ r · 16m/µ46 ≤ (6µ4) · (16m/µ46) ≤ 96m/µ42, and moreover the total number of edges
e = (u, v) with u, v lying in different sets X1, . . . , Xr is also bounded by 96m/µ42. This establishes
Property F4. Since no vertex of S may lie in Cf (as Cf ⊆ C), all vertices of V (C) \ {s} have degrees
at most m/µ4 in G. This establishes Property F3.

Lastly, we need to establish Property F6. Consider any petal Xj ∈ X . From the definition of graph
H, and since vertex a0 may not belong to set A′j , we get that δH(A′j) = δG(Xj) \ δG(s). Recall that
the algorithm from Lemma 4.8 provided a set Q′j of edge-disjoint paths that route the edges of δH(A′j)
to vertex aj , with all inner vertices on the paths lying in A′j . By replacing vertex aj with vertex s on

each such path, we obtain a collection Q′′j of edge-disjoint paths in graph Cf , that route the edges of

192

δG(Xj) to s, with all inner vertices on all paths lying in Xj . We conclude that Cf is a valid flower
cluster with center s and set X of petals.

10.1.2 Step 2: Small Clusters

Let C0 be the cluster that is obtained from graph G after we delete all vertices lying in
⋃
C∈Cf V (C)

from it, that is, C0 = G \ (
⋃
C∈Cf V (C)). Note that, since |Cf | ≤ 3µ4, and, for all C ∈ Cf , |δG(C)| ≤

96m/µ42, we get that |
⋃
C∈Cf δG(C)| ≤ (3µ4) · (96m/µ42) ≤ 288m/µ38, and so |δG(C0)| ≤ 288m/µ38.

In this step, our goal is to further decompose cluster C0 into a collection Cs of clusters, that we refer
to as small clusters. We will require that each cluster C ∈ Cs has the α0-bandwidth property, for
an appropriately chosen parameter α0, and that |E(C)| ≤ |E(G)|/µ2. Moreover, we will require that
the total number of edges whose endpoints lie in different clusters of Cf ∪ Cs is relatively small. We
show an algorithm that either computes such a decomposition of C0, or establishes that OPTcnwrs(I)
is sufficiently large, by utilizing the following lemma; the lemma will also be used later in this section
in a slightly different setting, so it is stated for a more general setting than what is needed here.

Lemma 10.6 There is an efficient algorithm, whose input consists of a graph H, a set T ⊆ V (H) of
k vertices called terminals (where possibly T = ∅), and parameters m, τ ≥ 0, such that |E(H)| ≤ m,
k ≤ m/(64τ logm); every vertex in T has degree 1 in H; and maximum vertex degree in H is at most

m
čτ3 log5m

, for a large enough constant č. The algorithm either correctly certifies that OPTcr(H) ≥

Ω
(

m2

τ4 log5m

)
, or computes a collection C of disjoint clusters of H \ T with the following properties:

• every cluster C ∈ C has the α′-bandwidth property, where α′ = 1
16βARV(m)·logm = Ω

(
1

log1.5m

)
;

•
⋃
C∈C V (C) = V (H) \ T ;

• for every cluster C ∈ C, |E(C)| ≤ m/τ ; and

• |
⋃
C∈C δH(C)| ≤ m/τ .

The proof of the lemma is very similar to the proof of Theorem 6.3 and is deferred to Section I.1 of
Appendix.

We consider the graph C+
0 , that is an augmentation of cluster C0. Recall that C+

0 is obtained from
graph G, by first subdividing every edge e ∈ δG(C0) with a vertex te, setting T = {te | e ∈ δG(C0)},
and letting C+

0 be the subgraph of the resulting graph induced by T ∪V (C0). We apply the algorithm
from Lemma 10.6 to graph H = C+

0 , the set T of terminals, and parameter τ = 160µ1.1. Recall that,
since C0 contains no high-degree vertices, maximum vertex degree in C0 is bounded by m

µ4
≤ m

čτ3 log5m
.

Recall also that |T | = |δG(C0)| ≤ 288m/µ38 ≤ m/(64τ logm). If the algorithm from Lemma 10.6

certifies that OPTcr(C
+
0) ≥ Ω

(
m2

τ4 log5m

)
, then we terminate the algorithm and return FAIL. Notice

that we are guaranteed that OPTcnwrs(I) ≥ Ω
(
m2

µ5

)
.

Therefore, we assume from now on that the algorithm from Lemma 10.6 computed a collection Cs of
disjoint clusters, such that

⋃
C∈Cs V (C) = V (C0), every cluster C ∈ Cs has the α′-bandwidth property

in G, where α′ = 1
16βARV(m)·logm = Ω

(
1

log1.5m

)
, for every cluster C ∈ Cs, |E(C)| ≤ m/(160µ1.1); and

|
⋃
C∈Cs δG(C)| ≤ m/(160µ1.1). We refer to clusters in set Cs as small clusters. Let C = Cs∪Cf . Recall

that Eout(C) is the set of all edges whose endpoints lie in different clusters of C. Since |
⋃
C∈Cs δG(C)| ≤

m/(160µ1.1), |Cf | ≤ 3µ4, and, for all C ∈ Cf , |δG(C)| ≤ 96m/µ42, we get that:

|Eout(C)| ≤ m

160µ1.1
+ (3µ4) · 96m

µ42
≤ m

80µ1.1
. (15)

193

10.1.3 Step 3: Initial Disengagement

In this step, we consider the set C = Cs ∪ Cf of clusters. Recall that all clusters in C are disjoint
and

⋃
C∈C V (C) = V (G). Moreover, every cluster in Cs has the α′-bandwidth property, for α′ =
1

16βARV(m)·logm , while every cluster in Cf has 1-bandwidth property (which follows from the definition

of flower clusters). Since m ≥ µ4, we then get that every cluster in C has the α0-bandwidth property,
for α0 = 1/ log3m′, where m′ = |E(G)| ≤ 3m.

We apply the algorithm from Theorem 7.1 to instance I = (G,Σ) of MCNwRS, with parameter m′

replacing m, and the set C of clusters; parameter µ remains unchanged. Let I1 be the resulting
collection of instances that the algorithm computes, that is a 2O((logm)3/4 log logm)-decomposition of
instance I. Recall that we are guaranteed that, for each instance I ′ = (G′,Σ′) ∈ I1, I ′ is a subinstance
of I, and there is at most one cluster C ∈ C with E(C) ⊆ E(G′), and all other edges of G′ lie in set
Eout(C). We have therefore shown an efficient randomized algorithm that computes a ν0-decomposition

I1 of instance I, for ν0 = 2O((logm)3/4 log logm).

We partition instances in I1 into two subsets, set I ′1 containing all instances I ′ = (G′,Σ′) with
|E(G′)| ≤ m/(2µ), and set I ′′1 containing all remaining instances. We refer to instances in I ′′1 as
problematic instances. Consider now any problematic instance I ′ = (G′,Σ′) ∈ I ′′1 . Recall that, from
the guarantees of Theorem 7.1, there is at most one cluster C ′ ∈ C with C ′ ⊆ G′, and all edges of G′

lie in E(C ′) ∪ Eout(C). Since we are guaranteed that∣∣∣∣ ⋃
C∈C

δ(C)

∣∣∣∣ ≤ ∣∣∣∣ ⋃
C∈Cs

δ(C)

∣∣∣∣+

∣∣∣∣ ⋃
C∈Cf

δ(C)

∣∣∣∣ ≤ m/(160µ) + 288m/µ38 ≤ m/(80µ),

we get that |E(G′) \ E(C ′)| ≤ m/(80µ), and |E(C ′)| ≥ m/(2µ) − m/(80µ). In particular, cluster
C ′ may not be a small cluster, so it must be a flower cluster. We say that C ′ is the flower cluster
associated with the problematic instance I ′ ∈ I ′′1 . In the remaining phases, we will further decompose
each problematic instance into subinstances, proving the following theorem.

Theorem 10.7 There is an efficient randomized algorithm, that, given a problematic instance I ′ =
(G′,Σ′) ∈ I ′′1 , either returns FAIL, or computes a ν1-decomposition Ĩ(I ′) of I ′, where ν1 = 2O((logm)3/4 log logm),
such that, for each instance Ĩ = (G̃, Σ̃) ∈ Ĩ(I ′), |E(G̃)| ≤ m/(2µ). Moreover, if OPTcnwrs(I

′) <

m2/
(
µ18 · 2c′(logm)3/4 log logm

)
for some large enough constant c′, then the probability that the algo-

rithm returns FAIL is at most 1/µ4. (Here, m = |E(G)|, where G is associated with the original
instance I, that serves as input to Theorem 3.14).

Before providing the proof of Theorem 10.7, we show that the proof of Theorem 3.14 follows from it. We
apply the algorithm from Theorem 10.7 to every problematic instance I ′ ∈ I ′′1 . Assume first that, for
each such instance I ′, the algortihm returns a ν1-decomposition Ĩ(I ′) of I ′, such that, for each instance

Ĩ = (G̃, Σ̃) ∈ Ĩ(I ′), |E(G̃)| ≤ m/(2µ). In this case, we return the collection I = I ′1 ∪
(⋃

I′∈I′′1
Ĩ(I ′)

)
of instances. From Claim 2.11, since ν1 · ν2 = 2O((logm)3/4 log logm), I is indeed a ν-decomposition
of I, and, from the above discussion, we are guaranteed that, for every instance Ĩ = (G̃, Σ̃) ∈ I,
|E(G̃)| ≤ m/(2µ).

If, for any problematic instance I ′ ∈ I ′′1 , the algorithm from Theorem 10.7 returned FAIL, then our
algorithm returns FAIL as well.

Recall that µ = 2č(logm∗)7/8 log logm∗ , where m∗ ≥ m. Assume now that OPTcnwrs(I) < m2/µ21. We
will show that in this case, the probability that our algorithm returns FAIL is at most O(1/µ2). Since
we have assumed that m > µ50 (from the statement of Theorem 3.14), |E(G)| < m2/µ20.

Recall that I1 is a 2O((logm)3/4 log logm)-decomposition of instance I, and so:

194

E

∑
I′∈I1

OPTcnwrs(I
′)

 ≤ 2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|) .

In particular, there is some constant c, such that E
[∑

I′∈I′′1
OPTcnwrs(I

′)
]
≤ 2c(logm)3/4 log logm) ·

(OPTcnwrs(I) + |E(G)|). Let E be the bad event that
∑

I′∈I′′1
OPTcnwrs(I

′) > 8µ2 · 2c(logm)3/4 log logm) ·
(OPTcnwrs(I) + |E(G)|). From Markov’s inequality, the probability that E happens is at most 1/(8µ2).

Assume now that OPTcnwrs(I) < m2/µ21, and that the bad event E does not happen. Then for every
problematic instance I ′ ∈ I ′′1 :

OPTcnwrs(I
′) ≤ 8µ2 · 2c(logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|)

≤ 8µ2 · 2c(logm)3/4 log logm) · 2m2

µ21

≤ m2

µ18 · 2c′(logm)3/4 log logm
,

where c′ is the constant from Theorem 10.7. Therefore, if OPTcnwrs(I) < m2/µ21 and Event E does
not happen, then, for every problematic instance I ′ ∈ I ′′1 , the probability that the algorithm from
Theorem 10.7 returns FAIL is at most 1/µ4. Since

∑
I′=(G′,Σ′)∈I1 |E(G′)| ≤ |E(G)| · (logm)O(1), and,

for every problematic instance I ′′ = (G′,Σ′) ∈ I ′′1 , |E(G′)| ≥ m/(2µ), we get that |I ′′1 | ≤ µ ·(logm)O(1).
Therefore, if OPTcnwrs(I) < m2/µ21 and E does not happen, then the probability that the algorithm
from Theorem 10.7 returns FAIL for any problematic instance I ′ ∈ I ′′2 is at most O(1/µ2). Since the
probability that event E happens is at most 1/(8µ2), we get that, if OPTcnwrs(I) < m2/µ21, then the
probability that our algorithm returns FAIL is at most O(1/µ2).

In order to complete the proof of Theorem 3.14, it is now enough to prove Theorem 10.7. From now
on, we fix a single a problematic instance I ′ = (G′,Σ′) ∈ I ′′1 , and its corresponding flower cluster
C ′ ∈ Cf , and provide an algorithm to compute a decomposition of I ′ into subclusters with required
properties.

10.2 Phase 2: Layered Well-Linked Decomposition, Further Disengagement, and
Fixing the Flower Cluster

From now on we focus on the proof of Theorem 10.7. In order to simplify the notation, we denote the
input problematic instance by I = (G,Σ). Our goal is to design an efficient randomized algorithm that
computes a collection I ′ of instances of MCNwRS, such that, for each resulting instance Ĩ = (G̃, Σ̃) ∈ I ′,
|E(G̃)| ≤ m/µ, and additionally,

∑
Ĩ=(G̃,Σ̃)∈I′ |E(G̃)| ≤ O(|E(G)|), and E

[∑
Ĩ∈I′ OPTcnwrs(Ĩ)

]
≤

2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|). We also need to provide an efficient algorithm A(I),
that, given a solution ϕ(Ĩ) to each instance Ĩ ∈ I ′, computes a solution ϕ to instance I, with cr(ϕ) ≤
O
(∑

Ĩ∈I′ cr(ϕ(Ĩ))
)

.

We denote by C the unique flower cluster of Cf contained in G, by u∗ its center vertex, and by
X = {X1, . . . , Xk} its petals. This phase consists of two steps. In the first step, we compute a
layered well-linked decomposition of the graph G with respect to C, and perform disengagement of
the resulting clusters. In the second step, we modify the flower cluster C and its petals to ensure that
every petal is routable in the resulting instance.

195

10.2.1 Step 1: Layered Well-Linked Decomposition and Second Disengagement

In this step, we apply the algorithm from Theorem 4.20 to graph G and cluster C, in order to
compute a valid layered α-well-linked decomposition (W, (L1, . . . ,Lr)) of G with respect to C, for
α = 1

c log2.5m
, where c is some large enough constant independent of m, and r ≤ logm. Note that,

since we have assumed thatm is sufficiently large, every clusterW ∈ W has the α0-bandwidth property,
for α0 = 1/ log3m. Recall that we are additionally guaranteed that

⋃
W∈W V (W) = V (G)\V (C), and

that, for every cluster W ∈ W, |δG(W)| ≤ |δG(C)|. Recall that, for every cluster W ∈ W with W ∈ Li,
we have partitioned the set δG(W) of edges into two subsets: set δdown(W) connecting vertices of W
to vertices that lie in the clusters of {C} ∪ L1 ∪ · · · ∪ Li−1; and set δup(W) containing all remaining
edges, and we are guaranteed that |δup(W)| < |δdown(W)|/ logm.

Lastly, recall that, for every cluster W ∈ W, there is a collection P(W) of paths in G, routing the
edges of δG(W) to edges of δG(C), such that the paths in P(W) avoid W , and cause congestion at most
200/α. Recall that, from Properties F2 and F6 of the flower cluster, there is a collection Q ⊆

⋃k
i=1Qi

of edge-disjoint paths, routing the edges of δG(C) to the vertex u∗, such that all inner vertices on every
path lie in C. By concatenating the paths in P(W) and the paths in Q, we obtain a new collection
Q′(W) of paths, that route the edges of δG(W) to vertex u∗, so that all inner vertices on every path
lie outside W , and cause congestion at most 200/α = O(log2.5m).

We partition the set W of clusters into two subsets W light, and Wbad, as follows. We apply the
algorithm AlgClassifyCluster from Theorem 6.1 to each cluster cluster W ∈ W in turn, with parameter
p = 1/(m∗)4. If the algorithm returns FAIL, then we add cluster W to Wbad. Recall that the
probability that Algorithm AlgClassifyCluster errs, that is, it returns FAIL when W is not η∗-bad, for
η∗ = 2O((logm)3/4 log logm), is at most 1/(m∗)4. Otherwise, the algorithm returns a distribution D(W)
over the set ΛG(W) of internal W -routers, such that cluster W is β∗-light with respect to D(W), where
β∗ = 2O(

√
logm·log logm). We add W to W light in this case. This finishes the algorithm for partitioning

the set W of clusters into W light and Wbad. We let β = max {β∗, η∗}, so that β ≤ 2O((logm)3/4 log logm).

We say that a bad event Ebad happens if set Wbad contains a cluster that is not β-bad. From the
above discussion, Pr [βbad] ≤ 1/(m∗)3, and every cluster W ∈ W light is β-good with respect to the
distribution D(W) over the set ΛG(W) of internal W -routers. Recall that we are also given, for every
cluster W ∈ W, a set Q′(W) of paths routing the edges of δG(W) to vertex u∗ (external W -router),
with congestion at most O(log2.5m) ≤ β.

For every cluster W ∈ W, we define its distribution over the set Λ′G(W) of external W -routers to be the
distribution that assign probability 1 to the path set Q′(W). We let L be a laminar family of clusters
of G, containing cluster G and every cluster of W. We now apply Algorithm AlgBasicDisengagement
to the instance I = (G,Σ), using the laminar family L of clusters, its partition (Wbad,W light ∪ {G}),
and distributions {D(W)}W∈W light and {D′(W)}W∈L, that is given in Section 5.3.

We denote the resulting family of instances by I2(I). Recall that family I2(I) of instances contains a
single global instance Î, and additionally, for every cluster W ∈ W, an instance IW .

If we denote the global instance by Î = (Ĝ, Σ̂), then graph Ĝ is obtained from graph G by contracting
every cluster W ∈ W into a supernode vW . In particular, the flower cluster C is contained in Ĝ. For
every cluster W ∈ W, if we denote corresponding instance by IW = (GW ,ΣW), then graph GW is
obtained from graph G by contracting all vertices of V (G)\V (W) into a single vertex v∗. In particular,
no edge of cluster C may lie in GW , and so every edge of GW is an edge of set Eout(C), where C is the
set of clusters computed in Phase 1. Therefore, |E(GW)| ≤ m/(2µ).

Note that the depth of laminar family L is 1. From Lemma 5.6, if event Ebad did not happen,

196

E

 ∑
I′∈I2(I)

OPTcnwrs(I
′)

 ≤ O (β2 · (OPTcnwrs(I) + |E(G)|)
)

≤ 2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|) .

If bad event Ebad happened, then
∑

I′∈I2(I) OPTcnwrs(I
′) ≤ m3. Since Pr [Ebad] ≤ 1/(m∗)3, we get

that overall:

E

 ∑
I′∈I2(I)

OPTcnwrs(I
′)

 ≤ 2O((logm)3/4 log logm) · (OPTcnwrs(I) + |E(G)|) . (16)

Additionally, from Lemma 5.2, we get that
∑

I′=(G′,Σ′)∈I2(I) |E(G′)| ≤ O(|E(G)|).
Lastly, from Lemma 5.3, there is an efficient algorithm, that, given, for each instance I ′ ∈ I2(I), a
solution ϕ(I ′), computes a solution for instance I of value at most

∑
I′∈I cr(ϕ(I ′)).

Note that the set I2(I) of instances has all properties required in Theorem 10.7, with one exception:
it is possible that, in the global instance Î = (Ĝ, Σ̂), |E(Ĝ)| > m/(2µ).

In order to overcome this difficulty, we further decompose instance Î into subinstances, proving the
following lemma.

Lemma 10.8 There is an efficient randomized algorithm, that either returns FAIL, or computes a ν2-
decomposition Ĩ of instance Î, for ν2 = 2O((logm)3/4 log logm), such that, for each instance Ĩ = (G̃, Σ̃) ∈
Ĩ, |E(G̃)| ≤ m/(2µ). Moreover, if OPTcnwrs(Î) < m2

c′′µ13 for some large enough constant c′′, then the

probability that the algorithm returns FAIL is at most 1/(8µ4).

We prove the lemma below, after we complete the proof of Theorem 10.7 using it. If the algorithm
from Lemma 10.8 returns ν2-decomposition Ĩ of instance Î, then we return the collection Ĩ(I) =
Ĩ ∪ {IW |W ∈ W} of instances, which is now guaranteed to be a ν1-decomposition of instance I,

where ν1 = 2O((logm)3/4 log logm). We are also guaranteed that, for each instance Ĩ = (G̃, Σ̃) ∈ Ĩ,
|E(G̃)| ≤ m/(2µ).

Assume now that OPTcnwrs(I) < m2/
(
µ18 · 2c′(logm)3/4 log logm

)
for some large enough constant c′.

Recall that, from Equation 16, E
[∑

I′∈I2(I) OPTcnwrs(I
′)
]
≤ 2O((logm)3/4 log logm)·(OPTcnwrs(I) + |E(G)|),

and in particular E
[
OPTcnwrs(Î)

]
≤ ν∗ · (OPTcnwrs(I) + |E(G)|), for some ν∗ = 2O((logm)3/4 log logm).

We say that a bad event E ′ happens if OPTcnwrs(Î) > 8µ4 ·ν∗ · (OPTcnwrs(I) + |E(G)|). From Markov’s
inequality, Pr [E ′] ≤ 1/(8µ4).

By letting c′ be a large enough constant, we can assume that, if OPTcnwrs(I) < m2/
(
µ18 · 2c′(logm)3/4 log logm

)
,

then OPTcnwrs(I) < m2

16c′′µ18·ν∗ , where c′′ is the constant from Lemma 10.8. Since we have assumed (in

the statement of Theorem 3.14) that m > µ50 and since µ > ν∗, we get that |E(G)| < m2

16c′′µ18·ν∗ . To

conclude, if OPTcnwrs(I) < m2/
(
µ18 · 2c′(logm)3/4 log logm

)
, then (OPTcnwrs(I)) + |E(G)|) < m2

8c′′µ18·ν∗ .

If, additionally, Event E ′ did not happen, then OPTcnwrs(Î) < m2

c′′µ11 . In this case, the algorithm from

Lemma 10.8 may only return FAIL with probability at most 1/(8µ4). To conclude, if OPTcnwrs(I) <

m2/
(
µ18 · 2c′(logm)3/4 log logm

)
, then our algorithm may return FAIL in only two cases: either (i) event

E ′ happened (which happens with probability at most 1/(8µ4)); or (ii) OPTcnwrs(Î) < c′′m2

µ11
, and yet

197

the algorithm from Lemma 10.8 returns FAIL (which happens with probability at most 1/(8µ3)).

Overall, if OPTcnwrs(I) < m2/
(
µ18 · 2c′(logm)3/4 log logm

)
, then the algorithm only returns FAIL with

probability at most 1/(4µ4).

From now on we focus on the proof of Lemma 10.8. Recall that we have denoted Î = (Ĝ, Σ̂), and that
graph Ĝ is obtained from G by contracting every cluster W ∈ W into a vertex vW , that we refer to as
a supernode. We denote the resulting set of supernodes by U = {vW |W ∈ W}. Recall that the flower
cluster C ⊆ Ĝ, and the edges of E(Ĝ) \ E(C) lie in Eout(C), where C is the set of clusters computed
in Phase 1. Therefore, |E(Ĝ) \ E(C)| ≤ m/(160µ). Partition (L1, . . . ,Lr) of the set W of clusters
into r ≤ logm layers naturally defines a partition L1, . . . , Lr of the set U of vertices into layers, where
vertex vW lies in layer Li iff W ∈ Li. For convenience, we denote L0 = V (C). For all 1 ≤ i ≤ r, for
every vertex v ∈ Li, we partition the set δ(v) of its edges into two subsets: set δdown(v) connecting v
to vertices of L0 ∪ · · · ∪ Li−1 and set δup(v) containing all remaining edges, that connect v to vertices
of Li ∪ · · · ∪ Lr. In the following step, we may move some vertices of U from their current layer to
layer L0. The definition of the sets δdown(v′), δup(v′) of edges is always with respect to the current
partition of vertices of Ĝ into layers. Observe that Property L4 of layered well-linked decomposition
ensures the following property:

P1. For every vertex v ∈ U , |δup(v)| < |δdown(v)|/ logm;

For convenience of notation, in the remainder of this proof we denote instance Î = (Ĝ, Σ̂) by I = (G,Σ).
We use the parameter m from before, so |E(G)| ≤ m holds.

10.2.2 Step 2: Fixing Petals for Routability

Recall that, as part of the definiton of the flower cluster C, we are given a collection X = {X1, . . . , Xk}
of petals of C. Consider now some petal Xi ∈ X . Let Êi = δG(Xi) \ δG(u∗), where u∗ is the center of
the flower cluster C. We will use the following definition.

Definition 10.9 Let G be a graph, and let Cf be a flower cluster in G, with center u∗ and a set
X = {X1, . . . , Xk} of petals. For 1 ≤ i ≤ k, we say that petal Xi is routable in G if there is a

collection Q′i =
{
Q′(e) | e ∈ Êi

}
of paths in G, where for each edge e ∈ Êi, path Q′(e) has e as its

first edge, terminates at vertex u∗, and its inner vertices are disjoint from Xi, such that the paths in
Q′i cause congestion at most 3000.

As we show later, if every petal in X is routable, then we can decompose the current instance I into
smaller instances, each of which will correspond to a distinct petal in X (together with an additional
“global” instance). Unfortunately, it is possible that some petals in X are not routable. We overcome
this difficulty by “fixing” the flower cluster C. We do so iteratively, while ensuring that Property P1
continues to hold after each iteration. In every iteration, we select some vertex of U to be added to
some petal Xi of X . The set Êi = δG(Xi) \ δG(u∗) of edges is always defined with respect to the
current petal Xi. In addition to maintaining Property P1, we will maintain the following important
property:

P2. For every petal Xi ∈ X , there is a set Qi =
{
Q(e) | e ∈ Êi

}
of edge-disjoint paths, where for

each edge e ∈ Êi, path Q(e) has e as its first edge, vertex u∗ as its last vertex, and all inner
vertices of Q(e) lie in Xi.

We now describe the algorithm for fixing the petals of C. While there is some petal Xi ∈ X , and some
vertex v ∈ U , such that at least |δG(v)|/2 neighbors of v in G lie in Xi, we add v to Xi, and remove

198

it from U . In other words, we update Xi to be the subgraph of G induced by vertex set V (Xi) ∪ {v},
and we update C to be the subgraph of G induced by vertex set V (C) ∪ {v}. We also remove v from
its current layer Lj and add it to L0. It is immediate to verify that Property P1 continues to hold
after each iteration. We now show that the same is true for Property P2.

Consider an iteration, when some vertex v ∈ U was added to some petal Xi ∈ X . Partition the edges
of δG(v) into two subsets: set δ′(v) connecting vertex v to vertices of Xi, and set δ′′(v) containing
all remaining edges. From our definitions, at the beginning of the current iteration, δ′(v) ⊆ Êi held.
Therefore, set Qi contained, for each edge e ∈ δ′(v), a path Q(e), connecting e to u∗, such that all
inner vertices of Q(e) belong to Xi. At the end of the current iteration, the edges of δ′(v) no longer lie
in Êi, and the edges of δ′′(v) are added to Êi instead. Since |δ′′(v)| ≤ |δ′(v)|, we can define a mapping
M , that maps every edge of δ′′(v) to a distinct edge of δ′(v). We update the set Qi of paths as follows:
first, we remove from it all paths whose first edge lies in δ′(v). Next, for each edge e ∈ δ′′(v), we add
a new path Q(e) to Qi, that is obtained by appending e to the original path Q(e′), where e′ = M(e)
is the edge of δ′(v) to which edge e is mapped. Therefore, Property P2 continues to hold after each
iteration. Lastly, we consider the cluster C and its corresponding set X of petals obtained at the end
of the algorithm.

We slightly modify Property F4 of the flower cluster, and replace it with the following property, that
we refer to as Modified Property F4:

|δG(C)| ≤ 96m/µ42 and |
k⋃
i=1

δ(Xi)| ≤
192m

µ42
.

If Properties F1 – F6 hold for a cluster C ′, with Property F4 replaced with its modified counterpart,
then we say that C ′ is a modified flower cluster. We now prove that cluster C is a valid modified
cluster.

Claim 10.10 Cluster C is a valid modified flower cluster in the current graph G.

Proof: It is immediate to verify that throughout the algorithm, Property F1 continues to hold.
Recall that, from Property F4 in the definition of a flower cluster, at the beginning of the algorithm,
|δG(C)| ≤ 96m/µ42 held. We claim that this property continues to hold throughout the algorithm.
Indeed, when a vertex v ∈ U is added to C, there is some petal Xi ∈ X , such that |δ′(v)| ≥ |δ′′(v)|,
where δ′(v) contains all edges connecting v to vertices of Xi, and δ′′(v) contains all remaining edges
of δ(v). Notice that edges of δ′(v) are removed from δG(C) at the end of the iteration, while only
the edges of δ′′(v) may be added to δG(C) at the end of the current iteration. Therefore, |δG(C)|
does not increase, and modified Property F4 continues to hold throughout the algorithm. From the
above discussion, whenever a vertex v is added to cluster C, degG(v) ≤ 2|δG(C)| ≤ 192m/µ42 (from
Property F4). Therefore, Property F3 holds throughout the algorithm. It is immediate to verify that
Properties F2 and F5 continue to hold throughout the algorithm, and we have already established
Property F6 for the final cluster C.

Lastly, we show that, once the algorithm terminates, every petal in X is routable in G.

Claim 10.11 At the end of the algorithm, every petal of X is routable in G.

Proof: Consider some petal Xi ∈ X . Recall that we have defined the set Êi = δG(Xi) \ δG(u∗) of
edges, where u∗ is the center of the flower cluster C. Recall that our goal is to show that there is a

collection Q′i =
{
Q′(e) | e ∈ Êi

}
of paths, where for each edge e ∈ Êi, path Q′(e) has e as its first

edge, terminates at vertex u∗, and is internally disjoint from Xi, such that the paths in Q′i cause

199

congestion at most 3000. Let Q̂i be the set of all paths in graph G, where each path Q ∈ Q̂i contains
some edge of Êi as its first edge, terminates at vertex u∗, and is internally disjoint from Xi. From the
integrality of flow, it is enough to show that there exists a flow f̂i, defined over the set Q̂i of paths, in
which every edge of Êi sends one flow unit, such that flow f̂i causes congestion at most 3000. From
now on we focus on proving that such a flow indeed exists.

For the sake of the proof we will define layer L0 slightly differently than before: we let L0 = V (C) \
V (Xi \ {u∗}). For each index 0 ≤ j ≤ r, we let Sj = L0 ∪ L1 ∪ · · · ∪ Lj . We then let the set E∗j of
edges contain all edges of δG(Sj), except for those insident to vertex u∗. Notice that in particular,
since Sr = V (G) \ (V (Xi) \ {u∗}), edge set E∗r is precisely the edge set Êi = EG(Xi) \ δG(u∗). For all
0 ≤ j ≤ r, we let P∗j be the set of all paths P , such that the first edge of P lies in E∗j , the last vertex
of P is u∗, and all inner vertices of P lie in Sj . We prove the following claim.

Claim 10.12 For all 0 ≤ j ≤ r, there is a flow f∗j defined over the set P∗j of paths, in which every

edge of E∗j sends one flow unit, such that the paths in P∗j cause congestion at most
(

1 + 8
logm

)j
.

Note that proof of Claim 10.12 will finish the proof of Claim 10.11. Indeed, as observed already,
E∗r = Êi, and it is easy to verify that P∗r = Q̂i. In flow f∗r , every edge of Êi sends one flow unit, as

required, and the congestion of the flow is at most
(

1 + 8
logm

)r
≤ 3000, since r ≤ logm. Therefore, in

order to complete the proof of Claim 10.11, it is now enough to prove Claim 10.12, which we do next.

Proof of Claim 10.12. The proof is by induction on j. The base is when j = 0. Recall that
S0 = L0 = V (C) \ (V (Xi) \ u∗). The set E∗0 of edges is then a subset of

⋃
i′ 6=i Êi′ . Recall that, from

the definition of the flower cluster, for all 1 ≤ i′ ≤ k, there is a collection Qi′ of edge-disjoint paths
routing the edges of Êi′ to vertex u∗, with all inner vertices on every path contained in Xi′ . For each
index i 6= i′, for each edge e ∈ Êi′ , let Q(e) ∈ Qi′ be the unique path whose first edge is e. Observe

that
⋃
i′ 6=iQi′ ⊆ P∗0 . By sending one flow unit on each path in

{
Q(e) | e ∈ Ê0

}
, we obtain the desired

flow f∗0 , defined over the set P∗0 of paths, in which each edge of E∗0 sends one flow unit. The congestion
of the flow is 1.

We now prove that the claim holds for an index 1 ≤ j ≤ r, provided that it holds for index j − 1.

Consider some vertex v ∈ Lj . We partition the edges of δdown(v) into two subsets: set δdown
1 (v)

containing all edges connecting v to vertices of Xi, and set δdown
2 (v) containing all remaining edges of

δdown(v). Notice that the edges of δdown
2 (v) lie in E∗j−1 but not in E∗j , while edges of δup(v) lie in E∗j

but not in E∗j−1. In fact, since Sj = Sj−1 ∪ Lj , E∗j ⊆
(
E∗j−1 \

(⋃
v∈Lj δ

down
2 (v)

))
∪
(⋃

v∈Lj δ
up(v)

)
(we use inclusion rather than equality since an edge of δup(v) may connect v to a vertex of Lj).

Consider again some vertex v ∈ Lj . Recall that |δdown
1 (v)| ≤ | degG(v)|/2 (since the algorithm for fixing

the flower cluster C has terminated), while |δup(v)| ≤ |δdown(v)|/ logm ≤ degG(v)/ logm. Therefore,

|δdown
2 (v)| ≥

(
1
2 −

1
logm

)
degG(v), while |E∗j ∩ δG(v)| ⊆ |δup(v)| + |δdown

1 (v)| ≤
(

1
2 + 1

logm

)
deg(v).

Overall, we get that |E∗j ∩ δG(v)| ≤
(

1 + 8
logm

)
|δdown

2 (v)|.

Let Rj(v) denote the collection of all paths that can be obtained by combining two edges: an edge of
E∗j ∩ δG(v) and an edge of δdown

2 (v); the paths are directed towards edges of δdown
2 (v). Clearly, there

is a flow f ′v, defined over the paths in Rj(v), where every edge of E∗j ∩ δG(v) sends one flow unit,

every edge of δdown
2 (v) receives at most

(
1 + 8

logm

)
flow units, and the flow causes congestion at most(

1 + 8
logm

)
(for example, we can obtain such a flow by spreading the flow originating at every edge

of E∗j ∩ δG(v) evenly among the edges of δdown
2 (v)).

Next, we define a new flow fj(v), in which every edge of E∗j ∩ δG(v) sends one flow unit via a subset
of paths of P∗j . Consider any flow-path R ∈ Rj(v), and assume that R consists of two edges: e ∈

200

E∗j ∩ δG(v) and e′ ∈ δdown
2 (v). Recall that edge e′ sends 1 flow unit in flow f∗j−1. For every path

P ∈ P∗j−1 whose first edge is e′, we consider a path RP obtained by appending the edge e at the

beginning of the path, so that path RP now starts with edge e, and terminates at vertex u∗ as before.
Observe that path RP lies in path set P∗j . Let x = f∗j−1(P) be the amount of flow sent via path P in
flow fj−1, and let x′ = f ′v(R) be the amount of flow sent via path R in flow f ′v. We then send (x · x′)
flow units via path RP in flow fj(v). Notice that, since every edge of E∗j ∩ δG(v) sends one flow unit

in flow f ′v, and every edge of δdown
2 (v) sends one flow unit in flow fj−1, this ensures that every edge of

E∗j ∩ δG(v) sends one flow unit in the new flow fj(v) that we just defined. Moreover, since every edge

e′ ∈ δdown
2 (v) receives at most

(
1 + 8

logm

)
flow units in f ′v, for each flow-path P ∈ P∗j−1 whose first

edge is e′, the total amount of flow sent along path P in the new flow fj(v) is at most
(

1 + 8
logm

)
times

the amount of flow sent via path P in f∗j−1. In other words, we can think of flow fj(v) as obtained as
follows: we start with flow f∗j−1, and discard flow on all flow-paths except those whose first edge lies

in δdown
2 (v). Next, we scale the flow on each resulting flow-path by at most factor

(
1 + 8

logm

)
. Lastly,

we combine the resulting flow with flow f ′v.

We are now ready to define the final flow f∗j . Recall that the set E∗j of edges can be obtained from edge

set E∗j−1 by first deleting the edges of
⋃
v∈Lj δ

down
2 (v) from it, and then adding a subset of the edges

of
⋃
v∈Lj δ

up(v) to it. For every edge e ∈ E∗j ∩ E∗j−1, for every path P ∈ P∗j−1 ∩ P∗j , whose first edge

is e, the flow f∗j (P) remains the same as the flow f∗j−1(P). This ensures that each edge of E∗j ∩ E∗j−1

sends one flow unit in the new flow, as Pj−1 ⊆ Pj . For every vertex v ∈ Lj , we use the flow fj(v) in
order to send flow from the edges of δup(v)∩E∗j . Specifically, for each edge e ∈ δup(v)∩E∗j , for every
path P ∈ P∗j whose first edge is e, we set the flow f∗j (P) to be equal to the flow sent via this path by
fj(v). This ensures that every edge in E∗j \E∗j−1 sends one flow unit in the new flow f∗j . This finishes
the description of the flow f∗j . From the above discussion, every edge of E∗j sends one flow unit in f∗j .
It now remains to analyze the congestion of the flow.

Observe that flow f∗j can be obtained as follows. We start with the flow f∗j−1, and we scale the flow on

some of the flow-paths by at most factor
(

1 + 8
logm

)
(this is since for every vertex v ∈ Lj , for each edge

e ∈ δdown
2 (v), edge e receives at most

(
1 + 8

logm

)
flow units via flow f ′v, and this flow utilizes the flow

that e sends in f∗j−1 in order to reach vertex u∗). Lastly, we combine the resulting flow with the flows
f ′v for all vertices v ∈ Lj . It is then easy to verify that the congestion caused by flow f∗j is bounded

by the congestion caused by flow f∗j−1 times
(

1 + 8
logm

)
. Since, from the induction hypothesis, flow

f∗j−1 causes congestion at most
(

1 + 8
logm

)j−1
, flow f∗j causes congestion at most

(
1 + 8

logm

)j
.

10.3 Phase 3: Petal-Based Disengagement and the Final Family of Instances

In this subsection we first compute a collection I3 of subinstances of the current instance I = (G,Σ).
These subinstances will “almost” have all properties required in Lemma 10.8, except that we will not
be able to guarantee that for each resulting subinstance Ĩ = (G̃, Ẽ), |E(G̃)| ≤ m/(2µ). However,
we will guarantee that each such resulting graph G̃ does not have vertices whose degree is at least
m/µ4. This fact will be used in the second part of this subsection in order to further decompose
each subinstance of I3 into smaller subinstances. This will be done using an algorithm similar to that
from Phase 1, except that now, since the instances we apply the algorithm to do not have high-degree
vertices, we will not obtain any flower clusters, and so each subinstance obtained in this final phase
will be sufficiently small.

201

The intuition for the current phase is that we would like to define a set of clusters in the current
graph G, using the set X = {X1, . . . , Xk} of petals of the flower cluster, and then perform basic
disengagement, described in Section 5.3 on instance I with the set X of clusters. Unfortunately, the
set X of clusters is not laminar, as the clusters in X all share vertex u∗. In order to overcome this
obstacle, the algorithm in this phase consists of three steps. In the first step we “split” the vertex u∗,
by creating new vertices u1, . . . , uk, each of which is then added to a distinct cluster Xi. We show that
the optimal solution value to the resulting split instance that we construct is bounded by OPTcnwrs(I),
and that any solution to this new split instance can be efficiently transformed into a solution to the
original instance, by only slightly increasing the solution cost. In the second step, we perform a basic
disengagement of the new split instance using the modified set X of clusters. We show that each of
the resulting instances does not contain vertices of degree at least m/µ4. We also bound the total
solution cost and the total number of edges in the new instances. In the third and the final step we
further decompose each resulting instance, exploiting the low degrees of its vertices. We now describe
each of the steps in turn.

10.3.1 Step 1: the Split Instance

Recall that we are given an instance I = (G,Σ) of the MCNwRS problem, and a (modified) flower
cluster C ⊆ G with center u∗, and a set X = {X1, . . . , Xk} of petals, such that each petal is routable
in G.

For all 1 ≤ i ≤ r, we let Ei = E(Xi) ∩ δG(u∗), and we denote Ei = (ei,1, . . . , ei,qi), where the edges
are indexed according to their order in the ordering Ou∗ ∈ Σ; in other words, the ordering of the set
δG(u∗) of edges in Σ is: Ou∗ = (e1,1, . . . , e1,q1 , e2,1, . . . , e2,q2 , . . . , ek,1, . . . , ek,qk). For all 1 ≤ i ≤ r, we

also let Êi = δG(Xi) \ δG(u∗), and we denote |Êi| = q̂i; see Figure 36(a) for an illustration.

Recall that, from Property F6 of a flower cluster, there is a set Qi of edge-disjoint paths routing the
edges of Êi to the edges of Ei, such that every inner vertex on every path lies in Xi, and, since petal
Xi is routable in G, there is a set Q′i of paths in graph G, routing the edges of Êi to vertex u∗ such
that the paths are internally disjoint from Xi and cause congestion at most 3000.

(a) An original petal Xi. Paths of Qi are shown in
pink and paths of Q′i are shown in orange.

(b) New cluster X ′i.

Figure 36: Construction of a split instance I ′ = (G′,Σ′).

In order to define the new split instance I ′ = (G′,Σ′), we start with a graph G′ = G\ δG(u∗). We then
add k new vertices u1, . . . , uk to G′. Next, we process each index 1 ≤ i ≤ k one by one. When index i

is processed, we add a collection A′i =
{
a′i,1, . . . , a

′
i,q̂i

}
of q̂i parallel edges connecting u∗ to ui (recall

that q̂i = |Êi|). Additionally, for every edge ei,j = (u∗, xi,j) ∈ Ei, we add a new edge ai,j = (ui, xi,j)

202

to graph G′; we view ai,j as a copy of edge ei,j , and we will not distinguish between these edges. We
denote Ai = {ai,j | 1 ≤ j ≤ qi}. In order to complete the construction of graph G′, for every edge
e = (u, v) 6∈ δG(u∗) of the graph G whose endpoints lie in different petals, we subdivide the edge e
with a new vertex ye.

For all 1 ≤ i ≤ k, we let X ′i be the subgraph of G′ induced by (V (Xi) \ {u∗}) ∪ {ui}. Notice that
graph X ′i is completely identical to graph Xi, except that vertex u∗ is replaced by vertex ui. For all
1 ≤ i ≤ k, we denote by Âi = δG′(X

′
i) \ A′i, where A′i is the set of parallel edges connecting ui to u∗

(see Figure 36(b)). It is easy to see that there is a one-to-one correspondence between edges of Âi in
graph G′ and edges of Êi in graph G.

In order to complete the definition of the split instance I ′, we need to define its corresponding rotation
system Σ′. It is easy to verify that, every vertex v ∈ V (G′) \ {u∗, u1, . . . , uk} whose degree in G′

is greater than 2, δG′(v) = δG(v) holds (we do not distinguish here between edges whose endpoints
lie in different petals of G and their subdivided counterparts). For each such vertex, we set the
ordering O′v ∈ Σ′ of the edges of δG′(v) to be the same as the ordering Ov ∈ Σ of the edges of
δG(v). Note that δG′(u

∗) = A′1 ∪ · · · ∪ A′k. We set the ordering O′u∗ ∈ Σ′ of the edges of δG′(u
∗) to

be (a′1,1, . . . , a
′
1,q̂1

, a′2,1, . . . , a
′
2,q̂2

, . . . , a′k,1, . . . , a
′
k,q̂k

). In other words, edges in sets A′1, . . . , A
′
k appear in

this order of their sets, and within each set A′i, the edges of
{
a′i,j

}q̂i
j=1

are ordered in the increasing order

of index j. Lastly, for all 1 ≤ i ≤ k, we define the ordering O′ui ∈ Σ′ of the edges of δG′(ui) = A′i ∪Ai
to be: (a′i,1, a

′
i,2, . . . , a

′
i,q̂i
, ai,qi , ai,qi−1, . . . , ai,1).

(a) Schematic view of graph G′ when C is a 4-petal
flower cluster.

(b) The ordering O′u∗ ∈ Σ′ of edges of δG′(u
∗).

Figure 37: Split instance I ′ = (G′,Σ′).

This completes the definition of the new split instance I ′ = (G′,Σ′); see Figure 37 for an illustration.
We now establish some of its properties. We start with the following easy observation:

Observation 10.13 |E(G′)| ≤ 4|E(G)|, and OPTcnwrs(I
′) ≤ OPTcnwrs(I).

The proof of Observation 10.13 is immediate. The first statement is immediate to see. For the second
statement, given any solution ϕ to instance I, we can obtain a solution ϕ′ to instance I ′ by splitting
the vertex u∗ to obtain images of vertices u1, . . . , uk and images of the edges in sets A′1, . . . , A

′
k in a

natural way (see Figure 38), and subdividing images of edges whose endpoints lie in different petals
of G.

The next lemma shows that a solution to instance I ′ can be transformed into a solution to instance
I while only slightly increasing the solution cost. The proof uses arguments similar to those used in

203

(a) Before: the images of the original vertex u∗

and its incident edges in ϕ.
(b) After: the images of the new vertices
u, u1, . . . , uk and their incident edges in ϕ′.

Figure 38: Transforming a solution for instance I into a solution for instance I ′.

basic and advanced disengagement, but is somewhat tedious, and is deferred to Appendix I.2.

Lemma 10.14 There is an efficient algorithm that, given a solution ϕ′ to instance I ′, computes a
solution ϕ to instance I, with cr(ϕ) ≤ O(cr(ϕ′)).

10.3.2 Step 2: Disengagement of the Petals

In this step, we consider the split instance I ′ = (G′,Σ′) that was constructed in Step 1 of the current
phase, and we will apply Algorithm AlgBasicDisengagement from Section 5.3 to this instance, together
with the family L = {X ′1, . . . , X ′k} of clusters in order to perform a basic disengagement of these
clusers, with a parameter β = c(logm)18, where c is a large enough constant. Note that the clusters of
L are disjoint, so L is a laminar family of clusters. In order to be able to use AlgBasicDisengagement,
we need to define, for each cluster X ′i, a distribution D′(X ′i) over the set Λ′(X ′i) of external routers for
X ′i.

Consider some cluster X ′i ∈ L. Recall that petal Xi is routable in G, and so there is a set Q′i of
paths in G, routing the edges of Êi = δG(Xi) \ δG(u∗) to vertex u∗, such that the paths in Q′i cause
congestion at most 3000, and they are internally disjoint from Xi. By suitably subdividing the first
edge of every path in Q′i, and by replacing the last edge ei′,j on each such path by the corresponding

edge ai′,j , we obtain a collection Q′′i of paths in graph G′, routing the edges of Âi to vertices of
{ui′}i′ 6=i, such that the paths in Q′′i are internally disjoint from X ′i, and cause congestion at most
3000. Note that, for all 1 ≤ i′ ≤ k with i′ 6= i, the number of paths terminating at vertex ui′ is at
most 3000|Â′i′ | ≤ 3000q̂i ≤ 3000|A′i′ |. Therefore, by appending an edge of A′i′ at the end of each such

path, for all indices i′ 6= i, we obtain a set P ′i =
{
P (â) | â ∈ Âi

}
of paths in graph G′, that cause

congestion at most 3000, such that for each edge â ∈ Âi, path P (â) has â as its first edge, terminates
at vertex u∗, and is internally disjoint from X ′i. Lastly, for every edge a′i,j ∈ A′i, we define a path
P (a′i,j) consisting of only the edge a′i,j itself, and add that path to set P ′i. We have now obtained a set
P ′i of paths in graph G′, routing the edges of δG′(X

′
i) to vertex u∗, such that the paths are internally

disjoint from X ′i. Therefore, P ′i ∈ Λ′(X ′i). We then let the distribution D′(X ′i) choose the path set P ′i
with probability 1.

We add each such cluster X ′i to the set Llight of light clusters, and define, for each such cluster X ′i, a
distribution D(X ′i) over the set Λ(X ′i) of internal routers for X ′i, such that X ′i is β-light with respect

204

to D(X ′i). In fact, the disctibution D(X ′i) will select a single set Pi ∈ Λ(X ′i) of paths with probability
1. The set Pi of paths is constructed as follows. From the properties of the flower cluster, there is a
set Qi of edge-disjoint paths in graph G, routing the edges of δG(Xi) \ δG(u∗) to vertex u∗, such that
every inner vertex on every path lies in Xi. Since cluster X ′i can be obtained from Xi by replacing
vertex ui with vertex u∗, we obtain a collection Pi of edge-disjoint paths, routing the edges of Âi to
vertex ui, such that every inner vertex on every path lies in X ′i. For every edge a′i,j ∈ A′i, we add a
path P (a′i,j), consisting of the edge a′i,j only, to set Pi. We then obtain a set Pi of edge-disjoint paths,
routing the edges of δG′(X

′
i) to vertex ui inside X ′i, that is, Pi ∈ Λ(Xi).

Consider the set I3 of subinstances of I ′, that is obtained by performing a basic disengagement of
instance I ′ via the tuple (L,Lbad,Llight, {D′(X ′i)}

k
i=1 , {D(X ′i)}

k
i=1) (here, we set Lbad = ∅).

Recall that family I3 of instances contains a single global instance Î = (Ĝ, Σ̂), where graph Ĝ is
obtained from graph G′ by contracting, for all 1 ≤ i ≤ k, the vertices of X ′i into a supernode.
Additionally, for every cluster X ′i ∈ L, we obtain an instance I(X ′i) = (Gi,Σi), where graph Gi is
obtained from graph Gi, by contracting all vertices of V (G′) \ V (X ′i) into a supernode.

We summarize the properties of the resulting family I3 of instances in the following claim.

Claim 10.15 •
∑

Ĩ=(G̃,Σ̃)∈I3 |E(G̃)| ≤ O(|E(G)|);

• E
[∑

Ĩ∈I3 OPTcnwrs(Ĩ)
]
≤ O

(
(OPTcnwrs(I) + |E(G)|) · log36m

)
;

• There is an efficient algorithm, that, given, for each instance Ĩ ∈ I3, a solution ϕ(Ĩ), computes

a solution to instance I of cost at most O
(∑

Ĩ∈I3 cr(ϕ(Ĩ))
)

.

Proof: For the first assertion, recall that, from Lemma 5.2
∑

Ĩ=(G̃,Σ̃)∈I3 |E(G̃)| ≤ O(|E(G′)|). Since,

from the construction of the split instance, |E(G′)| ≤ O(|E(G)|), the assertion follows.

In order to prove the second assertion, recall that, from Lemma 5.6, E
[∑

Ĩ∈I3 OPTcnwrs(Ĩ)
]
≤

O
(
β2 · (OPTcnwrs(I

′) + |E(G′)|)
)
. Since, as discussed above, OPTcnwrs(I

′) ≤ OPTcnwrs(I), |E(G′)| ≤
O(|E(G)|), and β ≤ O(log18m), the assertion follows.

In order to prove the last assertion, we use the algorithm from Lemma 5.3, that, given, for each
instance Ĩ ∈ I3, a solution ϕ(Ĩ), computes a solution ϕ′ for instance I ′ of cost at most

∑
Ĩ∈I3 cr(ϕ(Ĩ)).

We then use the algorithm from Lemma 10.14 in order to compute a solution ϕ for instance I of cost

at most O(cr(ϕ′)) ≤ O
(∑

Ĩ∈I3 cr(ϕ(Ĩ))
)

.

Consider now the global instance Î = (Ĝ, Σ̂). Since graph Ĝ is obtained from G′ by contracting every
cluster X ′i into a supernode, for every edge e ∈ E(Ĝ), either e is incident to u∗, or it corresponds to
an edge of Eout(C), where C is the initial collection of clusters that we computed in Phase 1. Recall
that, from Equation (15), |Eout(C)| ≤ m/(80µ). Recall that degG′(u

∗) =
∑k

i=1 q̂i =
∑k

i=1 |Êi|. From

Modified Property F4 of the flower cluster,
∑k

i=1 |Êi| ≤ 200m/µ42. Therefore, overall, |E(Ĝ)| ≤
|Eout(C)|+ degG′(u

∗) ≤ m/(40µ).

Next, we consider petal-based instances, and we prove that for each such instance, the maximum
vertex degree is small.

Claim 10.16 For all 1 ≤ i ≤ k, if I(X ′i) = (Gi,Σi) is the instance of Ĩ associated with cluster X ′i,
then every vertex degree in graph Gi is less than m/µ4.

Proof: Recall that graph Gi is obtained from graph G′ by contracting all vertices of V (G′) \ V (X ′i)
into a supernode, that we denote by u′. Recall that graph X ′i is identical to the petal Xi, except that

205

we replace vertex u∗ with vertex ui. From the definition of a flower cluster, every vertex of Xi, except
for vertex u∗, has degree less than m/µ4 in G. The degree of vertex ui in the new graph is bounded by
qi + q̂i. Here, qi = |Ai| = |Ei| ≤ m/(2µ4) from Property F5 of the flower cluster, and q̂i ≤ 200m/µ42

from Modified Property F4 of the flower cluster. Therefore, the degree of ui in graph Gi is less than
m/µ4. It now remains to bound the degree of the supernode u′ in graph Gi. The edges incident to
u′ are the edges of A′i ∪ Âi, and their number is bounded by 2q̂i, which, from the above discussion, is
bounded by 400m/µ42.

10.3.3 Step 3: Final Decomposition

In this step, we consider each petal-based instance I(X ′i) = (Gi,Σi) in which |E(Gi)| > m/(2µ). We
further decompose each such instance into subinstances, by exploiting the fact that graph Gi does not
have high-degree vertices, using the following lemma.

Lemma 10.17 There is an efficient randomized algorithm, that, given an instance Ĩ = (G̃, Σ̃) of
MCNwRS and parameters m,µ, such that m is greater than a large enough constant, m/(2µ) <
|E(G̃)| ≤ 3m, µ ≥ 2Ω(

√
logm), and maximum vertex degree in G̃ is less than m/µ4, either cor-

rectly establishes that OPTcnwrs(I) ≥ Ω
(
m2

µ5.5

)
, or computes a ν3-decomposition Ĩ ′ of Ĩ, for ν3 =

2O((logm)3/4 log logm), such that, for every instance Ĩ ′ = (G̃′, Σ̃′) ∈ Ĩ ′, |E(G̃′)| ≤ m/(2µ).

We prove the lemma below, after we complete the proof of Lemma 10.8 using it. Consider some index
1 ≤ i ≤ k. If |E(Gi)| < m/(2µ), then we let the set I(X ′i) of subinstances of I(X ′i) consist of a
single instance – instance I(X ′i). Otherwise, we apply the algorithm from Lemma 10.17 to instance
I(X ′i) = (Gi,Σi) ∈ I3. If the algorithm from Lemma 10.17 computes a ν3-decomposition Ĩ of I(X ′i),
such that, for every instance Ĩ ′ = (G̃′, Σ̃′) ∈ Ĩ, |E(G̃′)| ≤ m/(2µ), then we set I(X ′i) = Ĩ. Otherwise,
we terminate the algorithm and return FAIL.

If, every time Lemma 10.17 is invoked, it returns a ν3-decomposition of the corresponding instance

I(X ′i), then we output a collection
{
Î
}
∪
(⋃k

i=1 I(X ′i)
)

of instances. From Claim 2.11, it is immediate

to verify that this algorithm produces a ν2-decomposition of instance I for ν2 = O(ν3) (since the
family I3 of subinstances of I computed in Step 2 of the current phase is an O(log36m)-decomposition
of instance I, from Claim 10.15), and the graph associated with each instance has at most m/(2µ)
edges.

Assume now that OPTcnwrs(Î) < m2

c′′µ13 for some large enough constant c′′. Recall that |E(G)| ≤ O(m),

and, from the statement of Theorem 3.14, m ≥ µ50, so |E(G)| < m2

µ13
. Therefore, (OPTcnwrs(Î) +

|E(G)|) < 2m2

c′′µ13 .

Recall that, from Claim 10.15, E
[∑

Ĩ∈I3 OPTcnwrs(Ĩ)
]
≤ O(OPTcnwrs(I) + |E(G)|). We say that a

bad event E ′′ happens if
∑k

i=1 OPTcnwrs(I(X ′i)) > cµ5(OPTcnwrs(I) + |E(G)|) for some large enough
constant c. From Markov’s inequality, Pr [E ′′] ≤ 1/(8µ4).

If OPTcnwrs(Î) < m2

c′′µ13 , and the bad event E ′′ did not appen, then for all 1 ≤ i ≤ k, OPTcnwrs(I(X ′i)) <

cµ5(OPTcnwrs(I) + |E(G)|) ≤ 2cm2

c′′µ8 . Note that our algorithm may only return FAIL if there is some

index 1 ≤ i ≤ k, such that |E(Gi)| ≥ m/(2µ), and OPTcnwrs(I(X ′i)) ≥ Ω
(
|E(Gi)|2
µ5.5

)
≥ Ω

(
m2

µ7.5

)
. From

the above discussion, and since we can choose c′′ to be a large enough constant compared to c, if
OPTcnwrs(Î) < m2

c′′µ13 , then the algorithm may only return FAIL if E ′′ happens, which happens with

probability at most 1/(8µ4).

In order to complete Lemma 10.8, and Theorem 3.14, it is now enough to prove Lemma 10.17.

206

Proof of Lemma 10.17. In order to simplify the notation, we denote instance Ĩ = (G̃, Σ̃) by
I = (G,Σ). We will essentially repeat the algorithm from Phase 1, except that, since there are no
high-degree vertices in G, we do not need to deal with flower cluster, and all instances that we will
obtain in the final decomposition will be small.

We start by applying the algorithm from Lemma 10.6 to graph H = G, with terminal set T = ∅,
parameter τ = 2µ1.1, and the parameter m replaced with 3m. Recall that the maximum vertex degree
in G is less than m

µ4
< 3m

čτ3 log5(3m)
, as required.

Assume first that the algorithm from Lemma 10.6 establishes that that OPTcr(G) ≥ Ω
(

m2

τ4 log5m

)
≥

Ω
(
m2

µ5.5

)
. We then terminate the algorithm and report that OPTcnwrs(I) ≥ Ω

(
m2

µ5.5

)
.

Therefore, we assume from now on that the algorithm from Lemma 10.6 computes a collection C′
of disjoint clusters of G, such that every cluster C ∈ C′ has the α′-bandwidth property, where α′ =

Ω
(

1
log1.5m

)
. Since m ≥ µ4, we then get that every cluster in C′ has the α0 = 1/ log3m-bandwidth

property. Additionally, we are guaranteed that, for each such cluster C ∈ C′, |E(C)| ≤ m/τ ≤ m/(4µ),⋃
C∈C′ V (C) = V (G), and |

⋃
C∈C′ δG(C)| ≤ m/τ = m/(2µ1.1). Notice that in particular, the number

of edges of G with endpoints in different clusters is |Eout(C′)| ≤ m/(2µ1.1). Since we have assumed
that |E(G)| ≥ m/(2µ), we get that

∑
C∈C′ |δG(C)| ≤ |E(G)|/µ0.1.

We apply the algorithm from Theorem 7.1 to instance I = (G,Σ) of MCNwRS, and the set C′ of
clusters. Let Ĩ ′ be the resulting collection of subinstances of I that the algorithm computes. Recall
that the algorithm guarantees that Ĩ ′ is a 2O((logm)3/4 log logm)-decomposition of I, and moreover, for
each instance Ĩ ′ = (G̃′, Σ̃′) ∈ Ĩ ′, there is at most one cluster C ∈ C′ with E(C) ⊆ E(G̃′), and all
other edges of G̃′ lie in set Eout(C′). Since |Eout(C′)| ≤ m/(2µ1.1), and, for every cluster C ∈ C′,
|E(C)| ≤ m/(4µ), we are guaranteed that, for every instance Ĩ ′ = (G̃′, Σ̃′) ∈ Ĩ ′, |E(G̃′)| ≤ m/(2µ).

11 Constructing Internal Routers - Proof of Theorem 6.4

We will repeatedly use the following simple lemma, whose proof is provided in Appendix J.1.

Lemma 11.1 Let G be a graph, let T be a set of vertices that are α-well-linked in G, for some
0 < α < 1, and let T ′ be a subset of T . Suppose we are given a vertex x ∈ V (G), and a set P of paths
in G, routing the vertices of T ′ to x. Then there is a set P ′ of paths routing the vertices of T to x,

such that, for every edge e ∈ E(G), congG(P ′, e) ≤
⌈
|T |
|T ′|

⌉
(congG(P, e) + d1/αe).

For conveninence, we denote the contracted graph H|C by Ĥ, and we denote |E(Ĥ)| = m̂. From
the statement of Theorem 6.4, k ≥ m̂/η. Observe that, from Claim 4.39, the set T of terminals is
(αα′)-well-linked in H. We will assume in the remainder of the proof that logm is greater than some
large enough constant c′0 (whose value we can set later). If this is not the case, then, n, and therefore
k, is bounded by a constant 2c

′
0 . We can then use an arbitrary spanning tree τ of the graph H, rooted

at an arbitrary vertex y, in order to define a set Q of paths routing all terminals of T to y, where for
each terminal t ∈ T , the corresponding path Qt ∈ Q is the unique path connecting t to y in the tree
τ . Since |T | is bounded by a constant, for every edge e ∈ E(H), congH(Q, e) ≤ O(1). We then return
a distribution D consisting of a single set Q that has probability value 1. Therefore, we assume from
now on that logm > c′0 for some large enough constant c′0 whose value we set later.

We start with some intuition. Assume first that graph H contains a grid (or a grid minor) of size
(Ω(kαα′/ poly logm)×Ω(kαα′/poly logm)), and a collection P of paths connecting every terminal to
a distinct vertex on the first row of the grid, such that the paths in P cause a low edge-congestion.
For this special case, the algorithm of [Sid10] (see also the proof of Lemma D.10 in the full version of

207

[Chu11]) provides a distribution D over routers Q ∈ Λ(H,T) with the required properties. Moreover,
if H is a bounded-degree planar graph, with a set T of terminals that is (αα′)-well-linked, then there is
an efficient algorithm to compute such a grid minor, together with the required collection P of paths.
If H is planar but no longer bounded-degree, we can still compute a grid-like structure in it, and apply
the same arguments as in [Sid10] in order to compute the desired distribution D. The difficulty in our
case is that the input graph H may be far from being planar, and, even though, from the Excluded
Grid theorem of Robertson and Seymour [RS86], it must contain a large grid-like structure, without
having a drawing of H in the plane with a small number of crossing, we do not know how to compute
such a structure6.

The proof of Theorem 6.4 consists of five steps. In the first step, we will either establish that
OPTcnwrs(I) is sufficiently large (so the algorithm can return FAIL), or compute a subgraph Ĥ ′ ⊆ Ĥ,
and a partition (X,Y) of V (Ĥ ′), such that each of the clusters Ĥ ′[X], Ĥ ′[Y] has the α̂-bandwidth
property, for α̂ = Ω(α/ log4m), together with a large collection of edge-disjoint paths routing the
terminals to the edges of EĤ′(X,Y) in graph Ĥ ′. Intuitively, we will view from this point onward the

edges of EĤ′(X,Y) as a new set of terminals, that we denote by T̃ (more precisely, we subdivide each
edge of EĤ′(X,Y) with a new vertex that becomes a new terminal). We show that it is sufficient to

prove an analogue of Theorem 6.4 for this new set T̃ of terminals. The clusters Ĥ ′[X], Ĥ ′[Y] of graph
Ĥ ′ naturally define a partition (H1, H2) of the graph H into two disjoint subgraphs. In the second
step, we either establish that OPTcnwrs(I) is suffciently large (so the algorithm can return FAIL), or
compute some vertex x of H1, and a collection P of paths in graph H1, routing the terminals of T̃
to x, such that the paths in P cause a relatively low edge-congestion. We exploit this set P of paths
in order to define an ordering of the terminals in T̃ , which is in turn exploited in the third step in
order to compute a “skeleton” of the grid-like structure. We compute the grid-like structure itself in
the fourth step. In the fifth and the final step, we generalize the arguments from [Sid10] and [Chu11]
in order to obtain the desired distribution D over routers Q ∈ Λ(H,T), by exploiting this grid-like
structure.

Before we proceed, we need to consider four simple special cases. In the first case,
∑

C∈C |δH(C)|2 is

large. In the second case, we can route a large subset of the terminals to a single vertex of V (Ĥ)∩V (H)
in the graph Ĥ via edge-disjont paths. The third case is when OPTcnwrs(H,Σ) = 0, and the fourth
special case is when k < η6.

Special Case 1:
∑

C∈C |δH(C)|2 is large. We consider the case where
∑

C∈C |δH(C)|2 ≥ (kα4α′)2

c0 log50m
,

where c0 is the constant from the statement of Theorem 6.4. For every cluster C ∈ C, let ΣC be the
rotation system for C induced by Σ. In this case, since we are guaranteed that every cluster C ∈ C is
η′-bad, that is, OPTcnwrs(C,ΣC) + |E(C)| ≥ |δ(C)|2/η′, we get that:

OPTcnwrs(I) + |E(H \ T)| ≥
∑
C∈C

(OPTcnwrs(C,ΣC) + |E(C)|) ≥
∑
C∈C

|δH(C)|2

η′
≥ (kα4α′)2

c0η′ log50m
.

Therefore, if
∑

C∈C |δH(C)|2 ≥ (kα4α′)2

c0 log50m
, the algorithm returns FAIL and terminates. We assume from

now on that:

∑
C∈C
|δH(C)|2 < (kα4α′)2

c0 log50m
. (17)

6We note that we need the grid-like structure to have dimensions (k′ × k′), where k′ is almost linear in k. Therefore,
we cannot use the known bounds for the Excluded Minor Theorem (e.g. from [CT19]) for general graphs, and instead
we need to use an analogue of the stronger version of the theorem for planar graphs.

208

Special Case 2: Routing of terminals to a single vertex. The second special case happens
if there exists a collection P0 of at least kα2

1024c3CMG log6 k
edge-disjoint paths in graph Ĥ routing some

subset T0 ⊆ T of terminals to some vertex x (here cCMG is the constant from Claim 4.23).

Note that, if Special Case 1 did not happen, and c0 is a large enough constant, then x may not be a
supernode. Indeed, assume that x = vC for some cluster C ∈ C. Then:

|δH(C)|2 ≥ Ω

(
(kα2)2

log12 k

)
≥ (kα4α′)2

c0 log50m
,

which is, assuming that c0 is a large enough constant, a contradiction. Therefore, we can assume that
x is not a supernode. From Claim 4.41, since the clusters in C have the α′-bandwidth property, there
is a collection P ′0 of paths in graph H, routing the vertices of T0 to x, with edge-congestion at most
d1/α′e ≤ 2/α′. Since the set T of terminals is (αα′)-well-linked in graph H, from Lemma 11.1, there
is a set Q of paths in graph H, routing the vertices of T to x with congestion at most:⌈

|T |
|T0|

⌉(
2

α′
+

⌈
1

αα′

⌉)
≤ O

(
log6 k

α3α′

)
.

Note that a setQ of paths with the above properties can be computed efficiently via standard maximum
flow algorithm. We return a distribution D consisting of a single router Q with probability value 1,

and terminate the algorithm. Clearly, for every edge e ∈ E(H), E
[
(cong(Q, e))2

]
≤ O

(
log32m
α12(α′)8

)
.

Special Case 3: OPTcnwrs(I) = 0. Recall that we can efficiently check whether OPTcnwrs(I) = 0,
using the algorithm from Theorem 2.7. Assume now that OPTcnwrs(H,Σ) = 0. We use the following
theorem from [CMT20].

Lemma 11.2 (Lemma E.2 in [CMT20]) There is an efficient algorithm, that, given a planar graph
H and a subset T of r vertices of V (H) that are α-well-linked in H for some 0 < α < 1, computes a
distribution D over the routers in Λ(H,T), such that the distribution has support size O(r2), and for
each edge e ∈ E(H),

E(u∗,Q)∼D
[
(congH(Q, e))2

]
= O

(
log r

α4

)
.

Recall that the set T of terminals is α-well-linked in the contracted graph H|C , and every cluster C ∈ C
has the α′-bandwidth property. From Claim 4.39, the set T of terminals is (αα′)-well-linked in H. We
then apply the algorithm from Lemma 11.2 to graph H, terminal set T and parameter (αα′). Let D
be the distribution over the set Λ(H,T) of routers that we obtain. Then:

EQ∼D
[
(congH(Q, e))2

]
= O

(
log k

(αα′)4

)
≤ O

(
log32m

α12(α′)8

)
.

Special Case 4: k < η6, but OPTcnwrs(I) > 0. Note that (kα4α′)2

c0η′ log50m
≤ η12

η′ < 1 in this case (as,

from the statement of Theorem 6.4, η′ > η13). Since we have assumed that OPTcnwrs(I) > 0, we get

that OPTcnwrs(I) ≥ 1 > (kα4α′)2

c0η′ log50m
. We then simply return FAIL and terminate the algorithm.

In the remainder of the proof, we assume that neither of the four special cases happened. We now
describe each step of the algorithm in detail.

209

11.1 Step 1: Splitting the Contracted Graph

In this step, we split the contracted graph Ĥ, using the algorithm summarized in the following theorem.

Theorem 11.3 There is an efficient randomized algorithm that returns FAIL with probability at most
1/poly(k), and, if it does not return FAIL, then it computes a subgraph Ĥ ′ ⊆ Ĥ and a partition (X,Y)
of V (Ĥ ′) such that:

• clusters Ĥ ′[X] and Ĥ ′[Y] both have the α̂′-bandwidth property in Ĥ ′, for α̂′ = Ω(α/ log4m); and

• there is a set R of Ω(α3k/ log8m) edge-disjoint paths in graph Ĥ ′, routing a subset of terminals
to edges of EĤ′(X,Y).

Proof: We start by applying the algorithm from Claim 4.23 to graph Ĥ and the set T of terminals, to
obtain a graph W with V (W) = T and maximum vertex degree at most cCMG log2 k, and an embedding
P̂ of W into Ĥ with congestion at most (cCMG log2 k)/α. Let Ê be the bad event that W is not a 1/4-

expander. Then Pr
[
Ê
]
≤ 1/ poly(k). Define graph Ĥ ′ as the union of all paths in P̂. We need the

following observation.

Observation 11.4 If event Ê did not happen, then the set T of vertices is α̂-well-linked in Ĥ ′, for
α̂ = α

4cCMG log2 k
, and the maximum vertex degree in Ĥ ′ is at most d = αk

512cCMG log2 k
.

Proof: Assume that Event Ê did not happen. We first prove that the set T of terminals is α̂-well-
linked in Ĥ. Consider any paritition (A,B) of vertices of Ĥ ′, and denote TA = T ∩ A, TB = T ∩ B.
Assume w.l.o.g. that |TA| ≤ |TB|. Then it is sufficient to show that |EĤ′(A,B)| ≥ α̂ · |TA|.
Consider the partition (TA, TB) of the vertices of W , and denote E′ = EW (TA, TB). Since W is a 1/4-
expander, |E′| ≥ |TA|/4 must hold. Consider now the set R̂ ⊆ P̂ of paths containing the embeddings
P (e) of every edge e ∈ E′. Each path R ∈ R̂ connects a vertex of TA to a vertex of TB, so it must
contain an edge of |EĤ(A,B)|. Since |R̂| ≥ |TA|/4, and the paths in P̂ cause edge-congestion at most
(cCMG log2 k)/α, we get that |EĤ(A,B)| ≥ α · |TA|/(4cCMG log2 k) ≥ α̂|TA|.
Assume now that maximum vertex degree in Ĥ ′ is greater than d, and let x be a vertex whose degree
is at least d. Let Q̂ ⊆ P̂ be the set of all paths containing the vertex x. Consider any such path
Q ∈ Q̂. The endpoints of this path are two distinct terminals t, t′ ∈ T . We let Q′ ⊆ Q be the subpath

of Q between the terminal t and the vertex x, and we let Q′ =
{
Q′ | Q ∈ Q̂

}
.

Recall that every vertex in W has degree at most cCMG log2 k, and so a terminal in T may be an endpoint
of at most cCMG log2 k paths in P̂. Therefore, there is a subset Q′′ ⊆ Q′ of at least d/(2cCMG log2 k)
paths in Ĥ ′, each of which originates at a distinct terminal. Since paths in Q′′ cause congestion at
most (cCMG log2 k)/α, from Claim 4.2, there is a collection Q′′′ of edge-disjoint paths in graph Ĥ ′,
routing a subset of terminals to x with:

|Q′′′| ≥ |Q′′| · α

cCMG log2 k
≥ dα

2c2
CMG log4 k

≥ α2k

1024c3
CMG log6 k

,

contradicting the fact that Special Case 2 did not happen.

Next, we use the following lemma to compute the required sets X, Y of vertices. The proof follows
immediately from techniques that were introduced in [Chu12] and then refined in [CL12, CC16, Chu16].
Unfortunately, all these proofs assumed that the input graph has a bounded maximum vertex degree,
and additionally the proofs are somewhat more involved than the proof that we need here (this is
because these proofs could only afford a poly log k loss in the cardinality of the set R of paths relatively
to |T |, while we can afford a poly logm loss). Therefore, we provide a proof of the lemma in Section
J.2 of the Appendix for completeness.

210

Lemma 11.5 There is an efficient algorithm that, given as input an m-edge graph G, and a subset
T of k vertices of G called terminals, together with a parameter 0 < α̃ < 1, such that the maximum
vertex degree in G is at most α̃k/64, and every vertex of T has degree 1 in G, either returns FAIL, or
computes a partition (X,Y) of V (G), such that:

• each of the clusters G[X], G[Y] has the α̃′-bandwidth property, for α̃′ = Ω(α̃/ log2m); and

• there is a set R of at least Ω(α̃3k/ log2m) edge-disjoint paths in graph G, routing a subset of
terminals to edges of EG(X,Y).

Moreover, if the set T of vertices is α̃-well-linked in G, then the algorithm never returns FAIL.

We apply the algorithm from Lemma 11.5 to graph Ĥ ′, the set T of terminals, and parameter α̃ =
α̂ = α

4cCMG log2 k
. Recall that we are guaranteed that the maximum vertex degree in graph Ĥ ′ is at

most d = αk
512cCMG log2 k

≤ α̃k
64 . Note that the algorithm from Lemma 11.5 may only return FAIL if

the set T of terminals is not α̃-well-linked in Ĥ ′, which, from Observation 11.4, may only happen if
event Ê happened, which in turn may only happen with probability 1/ poly(k). If the algorithm from
Lemma 11.5 returned FAIL, then we terminate the algorithm and return FAIL as well. Therefore,
we assume from now on that the algorithm from Lemma 11.5 did not return FAIL. Let (X,Y) be
the partition of V (Ĥ ′) that the algorithm returns. We are then guaranteed that each of the clusters
Ĥ ′[X], Ĥ ′[Y] has the α̃′-bandwidth property in H̃, where α̃′ = Ω(α̃/ log2m) = Ω(α/ log4m). The
algorithm also ensures that there is a collection R of edge-disjoint paths in Ĥ ′, routing a subset of the
terminals to edges of EĤ′(X,Y), with |R| ≥ Ω(α̃3k/ log2m) ≥ Ω(α3k/ log8m). This completes the
proof of Theorem 11.3.

If the algorithm from Theorem 11.3 returned FAIL (which may only happen with probability at most
1/poly(k)), then we terminate the algorithm and return FAIL as well. Therefore, we assume from now
on that the algorithm from Theorem 11.3 returned a subgraph Ĥ ′ ⊆ Ĥ and a partition (X,Y) of V (Ĥ ′)
such that each of the clusters Ĥ ′[X] and Ĥ ′[Y] has the α̂′-bandwidth property, for α̂′ = Θ(α/ log4m),
and there is a set R of Ω(α3k/ log8m) edge-disjoint paths in graph Ĥ ′, routing a subset of terminals to
edges of EĤ′(X,Y). Notice that we can compute the path set R with the above properties efficiently,
using standard maximum flow algorithms. We assume w.l.o.g. that edges of EĤ(X,Y) do not serve
as inner edges on paths in R. Let E′ ⊆ EĤ′(X,Y) be the subset of edges containing the last edge on
every path in R, so, by reversing the direction of the paths in R, we can view the set R of paths as
routing the edges of E′ to the terminals. In the remainder of this step, we will slightly modify the
graphs H and Ĥ, and we will continue working with the modified graphs only in the following steps.

Let Ĥ ′′ ⊆ Ĥ ′ be the graph obtained from Ĥ ′ by first deleting all edges of EĤ′(X,Y) \ E′ from it,

and then subdividing every edge e ∈ E′ with a vertex te. We denote T̃ = {te | e ∈ E′}, and we refer
to vertices of T̃ as pseudo-terminals. Recall that |T̃ | = |R| = Ω(α3k/ log8m), and there is a set R′
of edge-disjoint paths in the resulting graph Ĥ ′′, routing the vertices of T̃ to the vertices of T . We
define Ĥ1 = Ĥ ′′[X ∪ T̃], the subgraph of Ĥ ′′ induced by the set X ∪ T̃ of vertices, and we define
Ĥ2 = Ĥ ′′[Y ∪ T̃] similarly. From the α̂′-bandwidth property of the clusters Ĥ ′[X] and Ĥ ′[Y] in Ĥ ′, we
are guaranteed that the vertices of T̃ are α̂′-well-linked in both Ĥ1 and in Ĥ2, where α̂′ = Θ(α/ log4m).
Let C′ ⊆ C be the subset of all clusters C whose corresponding supernode vC lies in graph Ĥ ′′.

For convenience, we also subdivide, in graph H, every edge e ∈ E′, with the vertex te, so graph Ĥ ′′

can be now viewed as a subgraph of the contracted graph H|C .

Next, we let H ′ ⊆ H be the subgraph of H that corresponds to graph Ĥ ′′. In other words, graph
H ′ is obtained from Ĥ ′′ by replacing every supernode vC with the corresponding cluster C ∈ C′.
Equivalently, we can obtain graph H ′ from H, by deleting every edge of E(Ĥ) \ E(Ĥ ′′) and every

211

regular (non-supernode) vertex of V (Ĥ) \ V (Ĥ ′′). Additionally, for every cluster C ∈ C \ C′, we delete
all edges and vertices of C from H ′. We also define a rotation system Σ′ for graph H ′, which is
naturally induced by Σ (vertices te ∈ T̃ all have degree 2, so their corresponding ordering Ote of
incident edges can be set arbitrarily). Let I ′ = (H ′,Σ′) be the resulting instance of MCNwRS.

We partition the set C′ of clusters into two subsets: set CX contains all clusters C ∈ C′ with vC ∈ X,
and set CY contains all clusters C ∈ C′ with vC ∈ Y . We can similarly define the graphs H1, H2 ⊆ H ′,
that correspond to the contracted graphs Ĥ1 and Ĥ2, respectively: let X ′ be the set of vertices of H ′,
containing every vertex x ∈ V (H ′), such that either x ∈ C for some cluster C ∈ CX , or x is a regular
vertex of Ĥ ′′ lying in X. Similarly, we let Y ′ contain all vertices y ∈ V (H), such that either y ∈ C
for some cluster C ∈ CY , or y is a regular vertex of Ĥ ′′ lying in Y . We then let H1 = H ′[X ∪ T̃], and
H2 = H ′[Y ∪ T̃].

The following observation, summarizing properties of instance I ′, is immediate.

Observation 11.6 Instance I ′ = (H ′,Σ′) of MCNwRS satisties the following properties:

• OPTcnwrs(I
′) ≤ OPTcnwrs(I);

• Ĥ ′′ = H ′|C′;

• |E(Ĥ ′′)| ≤ 2|E(Ĥ)| ≤ 2ηk ≤ O(|T̃ |η log8m/α3); and

• graph Ĥ1 is a contracted graph of H1 with respect to CX , and graph Ĥ2 is a contracted graph of
H2 with respect to CY . In other words, Ĥ1 = (H1)|CX , and Ĥ2 = (H2)|CY .

For the third assertion we have used the fact that k ≥ |E(Ĥ)|/η from the statement of Theorem 6.4,
and |T̃ | ≥ Ω(α3k/ log8m).

Recall that Λ(H ′, T̃) denotes the set of all routers in graph H ′, with respect to the set T̃ of terminals.
Each such router Q is a set of paths, routing the vertices of T̃ to some vertex of H ′. Intuitively, from
now on we would like to work with instance I ′ = (H ′,Σ′) of MCNwRS, and the new set T̃ of terminals.
To this end, we start by showing that, in order to obtain the desired distribution D over the routers
of Λ(H,T), it is now sufficient to compute a distribution D′ over the routers of Λ(H ′, T̃), such that
for every edge e ∈ E(H ′), EQ′∼D′

[
(congH′(Q, e))2

]
is low.

Observation 11.7 There is an efficient algorithm, that, given an explicit distribution D′ over the
routers of Λ(H ′, T̃), such that for every edge e′ ∈ E(H ′), EQ′∼D′

[
(congH′(Q′, e′))2

]
≤ β holds, com-

putes an explicit distribution D over the routers of Λ(H,T), such that for every edge e ∈ E(H),

EQ∼D
[
(congH(Q, e))2

]
≤ O

(
β log16m
α8(α′)4

)
.

Proof: Recall that H ′ ⊆ H. Consider some router Q′ ∈ Λ(H ′, T̃), whose probability value in
distribution D′ is p(Q′) > 0. We compute a router Q ∈ Λ(H,T) corresponding to Q′, and we assign
to Q the same probability value p(Q′).
We now show an algorithm for computing a router Q ∈ Λ(H,T) from a router Q′ ∈ Λ(H ′, T̃). We
denote by x′ the vertex that serves as the center of the router Q′. Recall that there is a set R′ of
edge-disjoint paths in graph Ĥ ′′, routing the vertices of T̃ to the vertices of T , and moreover, a set
of paths with these properties can be found efficiently via a standard maximum s-t flow computation.
Since Ĥ ′′ = H ′|C′ , and every cluster in C′ has the α′-bandwidth property in H ′, from Claim 4.41, we can

efficiently compute a set R0 of edge-disjoint paths in graph H ′, routing a subset T0 ⊆ T of terminals
to T̃ , with |R0| ≥ α′ · |R′|/2 = α′ · |T̃ |/2 = Ω(α′α3k/ log8m). By concatenating the paths in R0 and
the paths in Q′, we obtain a collection R′0 of paths in graph H ′, routing the terminals of T0 to vertex
x′, such that for every edge e ∈ E(H), congH′(R′0, e) ≤ congH′(Q′, e) + 1. Since the set T of terminals

212

is (αα′)-well-linked in graph H (from Claim 4.39), from Lemma 11.1, there exists a collection Q of
paths in graph H, routing the terminals in T to vertex x′, such that for every edge e ∈ E(H):

congH(Q, e) ≤
⌈
|T |
|T0|

⌉(
congH(R′0, e) +

⌈
1

αα′

⌉)
≤ O

(
log8m

α′α3

)
·
(

congH′(Q′, e) +
2

αα′

)
.

A set Q of paths with these properties can be computed efficiently via standard maximum s-t flow
algorithms.

For every router Q′ ∈ Λ(H ′, T̃), whose probability value in distribution D′ is p(Q′) > 0, we have
computed a corresponding router Q ∈ Λ(H,T), and we have assigned to it the same probability value
p(Q) = p(Q′). This completes the definition of the distribution D over the routers in Λ(H,T). From
the above discussion, for every edge e ∈ E(H),

EQ∼D
[
(congH(Q, e))2

]
≤ O

(
log16 k

α8(α′)4

)
·
(
EQ′∼D′

[
(congH′(Q′, e))2

]
+ 1
)
≤ O

(
β log16m

α8(α′)4

)
.

The following immediate corollary is obtained by plugging in the bounds required by Theorem 6.4
into Observation 11.7.

Corollary 11.8 There is an efficient algorithm, that, given an explicit distribution D′ over the routers

of Λ(H ′, T̃), such that for every edge e′ ∈ E(H ′), EQ′∼D′
[
(congH′(Q′, e′))2

]
≤ O

(
log16m
(αα′)4

)
holds,

produces an explicit distribution D over the routers of Λ(H,T), such that, for every edge e ∈ E(H):

EQ∼D
[
(congH(Q, e))2

]
≤ O

(
log32m

α12(α′)8

)
.

Denote k̃ = |T̃ |. Recall that k̃ ≥ Ω
(

α3k
log8m

)
, so (kα4α′)2

c0 log50m
≤ O

(
(k̃α̂′α′)2

c0 log20m

)
. We use a large enough

constant c1, whose value will be set later, and we set c0 = c2
1. We can then assume that (kα4α′)2

c0 log50m
≤

(k̃α̂′α′)2

c1 log20m
. In particular, from Equation 17, we get that

∑
C∈C |δH′(C)|2 < (kα4α′)2

c0 log50m
≤ (k̃α̂′α′)2

c1 log20m
. Addi-

tionally, if |E(H ′ \ T̃)|+ OPTcnwrs(I
′) > (k̃α̂′α′)2

c1η′ log20m
, then |E(H \ T)|+ OPTcnwrs(I) > (kα4α′)2

c0η′ log50m
.

In order to complete the proof of Theorem 6.4, it is now enough to design a randomized algorithm,
that either returns FAIL, or computes a distribution D′ over the routers in Λ(H ′, T̃), such that,

for every edge e ∈ E(H ′), EQ′∼D′
[
(congH′(Q′, e))2

]
≤ O

(
log16m
(αα′)4

)
. It is enough to ensure that, if

|E(H ′ \ T̃)|+ OPTcnwrs(H
′,Σ′) ≤ (k̃α̂′α′)2

c1η′ log20m
, then the probability that the algorithm returns FAIL is

at most 1/2.

In the remainder of the proof we focus on the above goal. It would be convenient for us to simplify
the notation, by denoting H ′ by H, Σ′ by Σ, I ′ by I, Ĥ ′′ by Ĥ, and α̂′ by α̃. We also denote C′ by C.
We now summarize all properties of the new graphs H, Ĥ that we have established so far, and in the
remainder of the proof of Theorem 6.4 we will only work with these new graphs.

Summary of the Outcome of Step 1. We assume from now on that we are given an instance
I = (H,Σ) of MCNwRS, a set T̃ of terminals in graph H, and a collection C of disjoint subgraphs
(clusters) of H \ T̃ . We denote |T̃ | = k̃. The corresponding contracted graph is denoted by Ĥ = H|C .

We are also given a partition (X,Y) of V (H) \ T̃ (note that for convenience of notation, X and Y
are now subsets of vertices of H, and not of Ĥ), and a parition CX , CY of C, such that each cluster
C ∈ CX has V (C) ⊆ X, and each cluster C ∈ CY has V (C) ⊆ Y . We denote H1 = H[X ∪ T̃] and

213

H2 = H[Y ∪ T̃]. We also denote by Ĥ1 = (H1)|CX the contracted graph of H1 with respect to CX , and

similarly by Ĥ2 = (H2)|CY .

We now summarize the properties of the graphs that we have defined and the relationships between
the main parameters.

P1. k̃ ≥ Ω(α3k/ log8m);

P2. every cluster C ∈ C has the α′-bandwidth property in H;

P3. |E(Ĥ)| ≤ O
(
k̃·η log8m

α3

)
(from Observation 11.6);

P4. every vertex of T̃ has degree 1 inH1, and vertex set T̃ is α̃-well-linked in Ĥ1, for α̃ = Θ(α/ log4m);

P5. similarly, every vertex of T̃ has degree 1 in H2, and vertex set T̃ is α̃-well-linked in Ĥ2; and

P6.
∑

C∈C |δH(C)|2 < (k̃α̃α′)2

c1 log20m
, where c1 is some large enough constant, whose value we can set later.

Our goal is to design an efficient randomized algorithm, that either returns FAIL, or computes a dis-
tribution D over the routers in Λ(H, T̃), such that, for every edge e ∈ E(H), EQ∼D

[
(congH(Q, e))2

]
≤

O
(

log16m
(αα′)4

)
. It is enough to ensure that, if OPTcnwrs(I)+ |E(H \T)| < (k̃α̃α′)2

c1η′ log20m
, then the probability

that the algorithm returns FAIL is at most 1/2.

11.2 Step 2: Routing the Terminals to a Single Vertex, and an Expanded Graph

In this step we start by considering the graph Ĥ1 and the set T̃ of terminals in it. Our goal is to
compute a collection J of paths in graph Ĥ1, routing all terminals of T̃ to a single regular vertex, such
that the paths in J cause a relatively low congestion in graph Ĥ1. We show that, if such a collection
of paths does not exist, then OPTcnwrs(I) is high. Intuitively, we will use the set J of paths in order
to define an ordering of the terminals in T̃ , which will in turn be used in order to compute a grid-like
structure in graph H2. Once we compute the desired set J of paths, we will replace the graph H with
its low-degree analogue H∗, that we refer to as the expanded graph. The remaining steps in the proof
of Theorem 6.4 will use this expanded graph only.

11.2.1 Routing the Terminals to a Single Vertex in Ĥ1

We process regular vertices of V (Ĥ1) (that is, vertices of V (Ĥ1)∩ V (H1)) one by one. For each such
vertex x, we compute a set J (x) of paths in graph Ĥ1, with the following properties:

• every path in J (x) originates at a distinct vertex of T̃ and terminates at x;

• the paths in J (x) are edge-disjoint; and

• J (x) is a maximum-cardinality set of paths in Ĥ1 with the above two properties.

Note that such a set J (x) of paths can be computed via a standard maximum s-t flow computation.
Throughout, we use a parameter k̃′ = k̃α5/(c′η log36m), where c′ is a large enough constant whose
value we set later.

If, for every vertex x ∈ V (H1), |J (x)| < k̃′, then we reurn FAIL and terminate the algorithm. In
the following lemma, whose proof is deferred to Section J.3 of Appendix we show that, in this case,

214

OPTcnwrs(I) ≥ Ω
(

(k̃α̃α′)2

η′ log20m

)
must hold. Note that, since we can set c1 to be a large enough constant,

we can ensure that OPTcnwrs(I) > (k̃α̃α′)2

c1η′ log20m
holds in this case. The value of the constant c′ that is

used in the definition of the parameter k̃′ is set in the proof of the lemma.

Lemma 11.9 If, for every vertex x ∈ V (Ĥ1)∩V (H1), |J (x)| < k̃′, then OPTcnwrs(I) ≥ Ω
(

(k̃α̃α′)2

η′ log20m

)
.

From now on we assume that there is some vertex x ∈ V (Ĥ1) ∩ V (H1), for which |J (x)| ≥ k̃′.

11.2.2 The Expanded Graph

From now on we fix the vertex x ∈ V (Ĥ1) ∩ V (H1), and we let J = J (x) be a set of at least k̃′

edge-disjoint paths in graph Ĥ1, routing a subset T̃0 ⊆ T̃ of terminals to vertex x.

We are now ready to define the expanded graph H∗. We start with graph H∗ being empty, and
then process every vertex u ∈ V (H2) \ T̃ one by one. We now describe an iteration when a vertex
u ∈ V (H2) \ T̃ is processed. We denote by d(u) the degree of the vertex u in graph H2. Let
e1(u), . . . , ed(u)(u) be the edges that are incident to u in H2, indexed according to their ordering in
Ou ∈ Σ. We let Π(u) be a (d(u)× d(u)) grid, and we denote the vertices on the first row of this grid
by s1(u), . . . , sd(u)(u) indexed in their natural left-to-right order. We add the vertices and the edges
of the grid Π(u) to graph H∗. We refer to the edges in the resulting grids Π(u) as inner edges. Once
every vertex u ∈ V (H2) \ T̃ is processed, we add the vertices of T̃ to the graph H∗. Recall that every
terminal t ∈ T̃ has degree 1 in H2. We denote the unique edge et incident to t by e1(t), and we denote
s1(t) = t.

Next, we add a collection of outer edges to graph H∗, as follows. Consider any edge e = (u, v) ∈ E(H2).
Assume that e is the ith edge of u and the jth edge of v, that is, e = ei(u) = ej(v). Then we add an
edge e′ = (si(u), sj(v)) to graph H∗, and we view this edge as the copy of the edge e ∈ E(H2). We
will not distinguish between the edge e of H2, and the edge e′ of H∗.

Our last step is to add vertex x to graph H∗, that connects to every terminal t ∈ T̃ with an edge
(x, t), that is also viewed as an outer edge. The following lemma, whose proof is deferred to Section
J.4 of Appendix, allows us to compute an ordering Õ of the terminals, such that the graph H∗ has a
drawing ϕ with few crossings, in which the inner edges do not participate in any crossings, and the
images of the edges incident to x enter x in order consistent with Õ.

Lemma 11.10 There is an efficient algorithm that computes an ordering Õ of the terminals in T̃ , such

that there is a drawing ϕ of graph H∗ with at most O
(
OPTcnwrs(I) · η

2 log74m
α12(α′)4

)
+O

(
k̃η log37m
α6(α′)2

)
cross-

ings, in which all crossings are between pairs of outer edges. Moreover, if we denote T̃ =
{
t1, . . . , tk̃

}
,

where the terminals are indexed according to the ordering Õ, and, for each 1 ≤ i ≤ tk̃, denote by
ei = (ti, x) the edge of H∗ connecting ti to x, then the images of the edges e1, . . . , ek̃ enter the image
of x in this circular order in the drawing ϕ.

From now on we fix the ordering Õ of the terminals in T̃ given by Lemma 11.10, and the drawing ϕ
of H∗ (which is not known to the algorithm).

It will be convenient for us to slightly modify the graph H∗ as follows. We denote the terminals by
T̃ =

{
t1, . . . , tk̃

}
, where the terminals are indexed according to the circular ordering Õ. Let H ′ be a

graph obtained from H∗, by first deleting the vertex x from it, and then adding, for all 1 ≤ i < k̃, an
edge e∗i = (ti, ti+1), and another edge e∗

k̃
= (tk̃, t1). We denote this set of the newly added edges by

E∗, and we view them as inner edges. Note that the edges of E∗ form a simple cycle, that we denote
by L∗. We also denote H ′′ = H ′ \ E∗.

215

We note that the drawing ϕ of H∗ can be easily extended to obtain a drawing ϕ′ of graph H ′ in the
plane, so that the inner edges of H ′ do not participate in any crossings, and the image of the cycle L∗

(which must be a simple closed curve) is the boundary of the outer face.

In order to do so, we start with the drawing ϕ of H∗ on the sphere, and then consider the tiny x-disc
D = Dϕ(x), denoting its boundary by γ∗. For every terminal ti ∈ T̃ , we denote by ei the unique edge
incident to ti in H ′′, and by e′i = (ti, x). We also denote by γi, γ

′
i the images of the edges ei, e

′
i in

drawing ϕ. Let pi be the unique point on the intersection of γ′i and γ∗. We move the image of terminal
ti to point pi. We then modify the image of the edge ei, so that it becomes a concatenation of γi,
and the portion of γ′i lying outside the interior of D. Lastly, we draw the edges of E∗ in a natural
way, where edge e∗i is simply a segment of γ∗ between the images of ti and ti+1, so that all resulting
segments are mutually internally disjoint. Once we delete the vertex x from this drawing, no part
of the resulting drawing is contained in the interior of the disc D, and the image of the cycle L∗ is
precisely η, so we can view the resuting drawing ϕ′ of H ′ as a drawing in the plane, with D being its
outer face. Note that this transformation does not increase the number of crossings.

The next observation follows by substituting parameters and bounds that we have already established.
The proof is included in Section J.5 of Appendix.

Observation 11.11 Let c2 be a large enough constant. We can set the value of constant c1 so that it

is large enough, and, if OPTcnwrs(I) < (k̃α̃α′)2

c1η′ log20m
, then cr(ϕ′) ≤ cr(ϕ) ≤ k̃2

c2η5
.

We will se the value of constant c2 later, and the value of constant c1 will then be set using Obser-

vation 11.11. It is now enough to ensure that, if cr(ϕ′) < k̃2

η5
, then the probability that the algorithm

returns FAIL is at most 1/2.

Let Λ′ = Λ(H ′′, T̃) be the collection of all routers in graph H ′′ with respect to the set T̃ of terminals.
We need the following simple observation, whose proof is deferred to Section J.6 of the Appendix.

Observation 11.12 There is an efficient algorithm, that, given an explicit distribution D over the
routers of Λ′, such that for every outer edge e ∈ E(H ′′), EQ∼D

[
(congH′′(Q, e))2

]
≤ β, computes an

explicit distribution D′ over the routers in Λ(H, T̃), where for every edge e ∈ E(H), EQ′∼D′
[
(congH(Q′, e))2

]
≤

β.

11.2.3 Summary of Step 2

In the remainder of the proof of Theorem 6.4 we will work with graph H ′ only. Recall that graph

H ′ contains a set E∗ =
{
e∗1, . . . , e

∗
k̃

}
of edges (that are considered to be inner edges), where for

all 1 ≤ i ≤ k̃, e∗i = (ti, ti+1) (we use indexing modulo k̃). The set E∗ of edges defines a cycle
L∗ = (t1, . . . , tk̃) in graph H ′. We also denoted H ′′ = H ′ \E∗. Recall that graph H ′′ is obtained from

a subgraph H2 ⊆ H, by replacing every vertex v ∈ V (H2) \ T̃ with a grid Π(v). All edges lying in the
resulting grids Π(v), and the edges of E∗ are inner edges, while all other edges of H ′ are outer edges.
Each outer edge of H ′ corresponds to some edge of graph H2, and we do not distinguish between these
edges. Note that in graph H ′, all vertices have degrees at most 4. We will also use the clustering CY
of graph H2, and the fact that, from Property P6:

∑
C∈CY

|δH(C)|2 < (k̃α̃α′)2

c1 log20m
. (18)

We further partition the outer edges of graph H ′′ into two subsets: type-1 outer edges and type-2
outer edges. Consider any outer edge e in graph H ′′, and let e′ = (u, v) be the corresponding edge in

216

graph H. If u and v both lie in the same cluster C ∈ CY , then we say that e is a type-2 outer edge, and
otherwise it is a type-1 outer edge. Intuitively, for each type-1 outer edge, there is a corresponding
edge in the contracted graph Ĥ = H|C . From Property P3, we obtain the following observation.

Observation 11.13 There is a universal constant c (independent of c1 and c2), such that the total
number of type-1 outer edges in H ′′ is bounded by ck̃ · η log8m/α3.

Recall that from Property P4, every vertex of T̃ has 1 in H2, and vertex set T̃ is α̃-well-linked in
Ĥ2. Combining this with the α′-bandwidth property of every cluster C ∈ CY from Property P2, from
Claim 4.39, the set T̃ of terminals is α̃ ·α′-well-linked in H2. Lastly, using the fact that each graph in
{Π(v) | v ∈ V (H2)} has the 1-bandwidth property, from Claim 4.39, we get the following observation.

Observation 11.14 The set T̃ of terminals is α∗-well-linked in H ′′, where α∗ = α̃ · α′ = Θ(αα′/ log4m).
Moreover, each terminal in T̃ has degree 1 in H ′′ and degree 3 in H ′.

(we have used the fact that α̃ = Θ(α/ log4m) (see Property P4)).

We will restrict our attention to special types of drawings of graph H ′, called legal drawings, that we
define next.

Definition 11.15 (Legal drawing of H ′) We say that a drawing ϕ∗ of graph H ′ in the plane is
legal if it has the following properties:

• no inner edge of H ′ participates in any crossing of ϕ∗, and in particular the image of the cycle
L∗ is a simple closed curve, denoted by γ∗; and

• γ∗ is the boundary of the outer face in the drawing.

We let ϕ∗ be a legal drawing of H ′ with smallest number of crossings, and we denote by cr∗ the number

of crossings in ϕ∗. From Observation 11.11, if OPTcnwrs(I) < (k̃α̃α′)2

c1η′ log20m
, then cr∗ ≤ k̃2

c2η5
.

Denote T̃ =
{
t1, . . . , tk̃

}
, where the terminals are indexed according their ordering in Õ. We partition

the set T̃ of terminals into four subsets T1, . . . , T4, where T1, T2, T3 contain
⌊
k̃/4
⌋

consecutive terminals

from T̃ each, and T4 contains the remaining terminals, in a natural way using the ordering Õ, that

is, T1 =
{
t1, . . . , tbk̃/4c

}
, T2 =

{
tbk̃/4c+1, . . . , t2bk̃/4c

}
, T3 =

{
t2bk̃/4c+1, . . . , t3bk̃/4c

}
, and T4 ={

t3bk̃/4c+1, . . . , tk̃

}
. Clearly, each of the four sets contains at least

⌊
k̃/4
⌋

terminals.

Recall that in a legal drawing ϕ of H ′, the image of the cycle L∗ is a simple closed curve, that we
denoted by γ∗. It will be convenient for us to view this curve γ∗ as the boundary of a rectangular
area in the plane, that encloses the legal drawing of H ′. We sometimes refer to this rectangular area
as the bounding box of the drawing, and denote it by B∗. We will think of the terminals in T1 and T3

as appearing on the left and on the right boundaries of B∗, respectively, and of the terminals in T2

and T4 as appearing on the top and the bottom boundaries of B∗, respectively.

For all 1 ≤ i ≤ 4, we let Õi be the ordering of the terminals in Ti consistent with their ordering on the
boundary of B∗ (where each ordering Õi is no longer circular), so that the terminals in sets T1 and
in T3 appear in the bottom-to-top order, and the terminals in T2 and T4 appear in their left-to-right
order (so Õ is obtained by concatenationg Õ1, Õ2, the reversed ordering Õ3, and the reversed ordering
Õ4).

Recall that Λ′ = Λ(H ′′, T̃). Our goal from now on is to design a randomized algorithm, that ei-
ther computes a distribution D over the routers of Λ′, such that for every outer edge e ∈ E(H ′′),

EQ∼D
[
(congH′(Q, e))2

]
≤ O

(
log16m
(αα′)4

)
, or returns FAIL. It is enough to ensure that, if cr∗ ≤ k̃2

c2η5
for

some large enough constant c2, whose value we can set later, then the probability that the algorithm
returns FAIL is at most 1/4.

217

11.3 Step 3: Constructing a Grid Skeleton

In this and the following step we will construct a grid-like structure in graph H ′′. Recall that the set T̃
of terminals is α∗-well-linked in graph H ′′. From Theorem 4.17 there is a set P ′ of paths in H ′′, routing
all terminals of T1 to terminals of T3, with edge-congestion at most d1/α∗e, such that the routing is

one-to-one. From Claim 4.2, there is a collection P ′′ of at least |T1|/ d1/α∗e =
⌊
k̃/4
⌋
/ d1/α∗e ≥ α∗k̃/8

edge-disjoint paths in H ′′, routing some subset of terminals of T1 to a subset of terminal of T3, in
graph H ′′. Moreover, since graph H ′′ has maximum vertex degree at most 4, using arguments similar

to those in the proof of Claim 4.2, there is a collection P of
⌊
α∗k̃/32

⌋
node-disjoint paths in graph

H ′′, routing some subset A ⊆ T1 of terminals, to some subset A′ ⊆ T3 of terminals. We can compute
such a set P of paths efficiently using standard maximum s-t flow algorithms.

Using similar reasoning, we can compute a collection R of
⌊
α∗k̃/32

⌋
node-disjoint paths in graph H ′′,

routing some subset B ⊆ T2 of terminals, to some subset B′ ⊆ T4 of terminals.

Intuitively, after we discard a small subset of paths from each of the sets P and R, the remaining
paths will be used in order to construct a grid-like structure, where paths in P will serve as horizontal
paths of the grid, and paths in R will serve as vertical paths. If the paths in the resulting sets do not
form a grid-like structure, then we will terminate the algorithm with a FAIL. We will prove that, if

cr∗ ≤ k̃2

c2η5
for a large enough constant c2, then we will construct the grid-like structure successfully

with probability at least 3/4.

We denote P0 = P and R0 = R. Recall that so far, |P0|, |R0| ≥
⌊
α∗k̃/32

⌋
.

Intuitively, if the dimensions of the grid-like structure that we construct are (h×h), then we need h to
be quite close to k̃, since this grid-like structure will be exploited in order to define the distribution D
over the routers of Λ′. We will first construct a smaller grid-like structure, that we call a grid skeleton.
This grid skeleton will be associated with a grid Π∗ of smaller dimensions, that we sometimes call a
supergrid. We then extend this grid skeleton to construct a large enough grid-like structure.

We will use two additional parameters. The first parameter is:

λ =
224c · η log8m

α∗α3
,

where c is the constant from Observation 11.13. Notice that, since α∗ = Θ(αα′/ log4m), we get that

λ = O
(
η log12m
α4α′

)
. Moreover, since η > c∗ log12m

α4α′ for a large enough constant c∗ (from the statement

of Theorem 6.4), λ < η2 holds. The supergrid that we construct will have dimensions (Θ(λ)×Θ(λ)).
The second parameter is:

ψ =

⌊
α∗k̃

64λ

⌋
=

⌊
α3(α∗)2k̃

230cη log8m

⌋
.

Clearly, |R0|, |P0| ≥ λψ. Note that, since α∗ = Θ(αα′/ log4m), ψ ≥ Ω
(
k̃
η ·

α5(α′)2

log16m

)
. Since η > c∗ log16m

α5(α′)2

from the statement of Theorem 6.4, we get that ψ > 16k̃
η2

. Every cell of the supergrid will be associated

with a collection of Θ(ψ) horizontal paths and Θ(ψ) vertical paths, that will help us form the grid-like
structure.

We discard paths from P0 and from R0 arbitrarily, until |P0| = |R0| = λψ holds.

We denote by A0 ⊆ T1, A
′
0 ⊆ T3 the endpoints of the paths in P0, and we denote by B0 ⊆ T4, B′0 ⊆ T2

the endpoints of the paths in R0.

218

Grid Skeleton Construction

We view the paths in P0 as directed from vertices of A0 to vertices of A′0. Recall that A0 ⊆ T1, so
the ordering Õ1 of the terminals in T1 defines an ordering OA0 = {a1, . . . , aλψ} of the terminals in A0.
This ordering in turn defines an ordering OP0 of the paths in P0, as follows: if, for all 1 ≤ i ≤ λψ,
Pi ∈ P0 is the path originating from ai, then OP0 = {P1, . . . , Pλψ}.
Similarly, we view the paths in R0 as directed from vertices of B0 to vertices of B′0. Ordering Õ4 of
terminals in T4 defines an ordering OB0 = {b1, . . . , bλψ} of the vertices in B0, which in turn defines an
ordering OR0 = {R1, . . . , Rλψ} of paths in R0, where for all i, path Ri originates at vertex bi.

We partition the set P0 of paths into groups U1, . . . ,Uλ of cardinality ψ each, using the ordering OP0 , so
for 1 ≤ i < λ, set Ui is the ith set of ψ consecutive paths of P0. Let λ′ = b(λ− 1)/2c. For all 1 ≤ i ≤ λ′,
we let P ∗i be a path that is chosen uniformly at random from set U2i. Let P∗ =

{
P ∗1 , . . . , P

∗
λ′
}

be the
resulting set of chosen paths. Intuitively, the path in P∗ will serve as the horizontal paths in the grid
skeleton that we construct. We then let P1 ⊆ P0 be the set containing all paths in sets {U2i−1}λ

′+1
i=1 .

We perform similar computation on the set R0 of paths. First, we partition R0 into groups U ′1, . . . ,U ′λ
of cardinality ψ each, using the ordering OR0 , so for 1 ≤ i < λ, set U ′i is the ith set of ψ consecutive
paths of R0. For all 1 ≤ i ≤ λ′, we let R∗i be a path that is chosen uniformly at random from set U ′2i.
Let R∗ =

{
R∗1, . . . , R

∗
λ′
}

be the resulting set of chosen paths. Intuitively, the path in R∗ will serve as
the vertical paths in the grid skeleton that we construct. We then let R1 ⊆ R0 be the set containing

all paths in sets
{
U ′2i−1

}λ′+1

i=1
.

We let E1 be the bad event that there are two distinct paths Q,Q′ ∈ R∗ ∪ P∗, and two distinct edges
e ∈ E(Q), e′ ∈ E(Q′), such that the images of e and e′ cross in the drawing ϕ∗ of H ′.

Observation 11.16 If cr∗ < k̃2

c2η5
, then Pr [E1] ≤ 1/64.

Proof: Consider any crossing (e, e′) in the drawing ϕ∗. We say that crossing (e, e′) is selected if there
are two distinct paths Q,Q′ ∈ R∗ ∪ P∗ with e ∈ E(Q), e′ ∈ E(Q′). Notice that e may belong to at
most two paths in R0 ∪P0 (one path in each set), and the same is true for e′. Each path of R0 ∪P0 is
chosen to R∗ ∪P∗ with probability at most 1/ψ. Therefore, the probability that a path containing e,
and a path containing e′ are chosen to R∗ ∪ P∗ is at most 4/ψ2. Since E1 can only happen if at least

one crossing is chosen, from the union bound, Pr [E1] ≤ 4cr∗/ψ2. Since ψ > 16k̃
η2

, if cr∗ < k̃2

c2η5
, then:

Pr [E1] ≤ 4cr∗

ψ2
≤ 1

64c2η
≤ 1

64
.

We say that a path Q ∈ R0 ∪ P0 is heavy iff there are at least ψ
64λ crossings (e, e′) in ϕ∗, such that at

least one of the edges e, e′ lies on path Q. We say that a bad event E2 happens iff at least one path in
R∗ ∪ P∗ is heavy.

Observation 11.17 If cr∗ < k̃2

c2η5
, then Pr [E2] ≤ 1/64.

Proof: Note that every edge of H ′′ may lie on at most two paths of R0∪P0, and every crossing (e, e′)
involves two edges. Therefore, the total number of heavy paths in R0 ∪ P0 is bounded by 4cr∗

ψ/(64λ) =

28λ·cr∗
ψ . Assuming that cr∗ < k̃2

c2η5
, and using the fact that ψ = Ω

(
k̃
η ·

α5(α′)2

log16m

)
and λ = O

(
η log12m
α4α′

)
,

we get that the total number of heavy paths in R0 ∪ P0 is bounded by:

28λ · cr∗

ψ
≤ O

(
k̃2

c2η5
· η log12m

α4α′
· η
k̃
· log16m

α5(α′)2

)
≤ O

(
k̃ log28m

c2η3α9(α′)3

)
.

219

Note that each heavy path may be selected to R∗ ∪P∗ with probability at most 1/ψ. Therfore, using

the union bound and the fact that ψ = Ω
(
k̃
η ·

α5(α′)2

log16m

)
, we get that:

Pr [E2] ≤ O

(
k̃ log28m

ψ · c2η3α9(α′)3

)
≤ O

(
log44m

c2η2α14(α′)5

)
.

Recall that, from the conditions of Theorem 6.4, η ≥ c∗ log46m/(α10(α′)4), where c∗ is a sufficiently

large constant. Therefore, if cr∗ < k̃2

c2η5
, then Pr [E2] ≤ 1/64.

Let R′ ⊆ R1, P ′ ⊆ P1 be the sets containing all paths Q, such that, in drawing ϕ∗, the image of some
edge of Q crosses the image of some edge lying on the paths of R∗ ∪ P∗. Note that the drawing ϕ∗ is
not known to us, and so neither are the sets R′,P ′ of paths. We will also use the following observation:

Observation 11.18 If E2 did not happen, then |R′|, |P ′| ≤ ψ/32.

Proof: Recall that |R∗|+ |P∗| ≤ λ. If bad event E2 did not happen, then for each path Q ∈ R∗ ∪P∗,
there are at most ψ

64λ crossings in ϕ∗, in which edges of Q participate. Therefore, if event E2 did not
happen, there are in total at most ψ/64 crossings (e, e′) in the drawing ϕ∗, where at least one of the
edges e, e′ lies on a path of P∗ ∪ Q∗. Let E′ ⊆ E(H ′′) be the set of all edges e, such that there is
an edge e′ lying on some path of P∗ ∪ Q∗, and crossing (e, e′) is present in ϕ∗. Then |E′| ≤ ψ/32.
Each path in R′ ∪ P ′ must contain an edge of E′. As the paths in each of the sets R′,P ′ are disjoint,
|R′|, |P ′| ≤ ψ/32 must hold.

Summary of Step 3. In this step we have constructed a grid skeleton, that consists of two sets of
paths: P∗ =

{
P ∗1 , . . . , P

∗
λ′
}

, and R∗ =
{
R∗1, . . . , R

∗
λ′
}

, where λ′ = b(λ− 1)/2c. Recall that P∗ ⊆ P0,
and the paths in P∗ are indexed according to their order in OP0 . Recall that we have also defined the

set P1 ⊆ P0 of paths, containing all paths in sets {U2i−1}λ
′+1
i=1 . It would be convinient for us to re-index

the groups Ui as follows: for 0 ≤ i ≤ λ′, set Ui = U2i+1. In other words, the paths of U0 lie before path
P ∗1 in the ordering OP0 , the paths of Uλ′ lie after P ∗λ′ in this ordering, and, for 1 ≤ i < λ′, the paths
of Ui lie between paths P ∗i and P ∗i+1. Similarly, R∗ ⊆ R0, and the paths in R∗ are indexed according
to their order in OR0 . We have also defined the set R1 ⊆ R0 of paths, containing all paths in sets{
U ′2i−1

}λ′+1

i=1
. As before, we re-index them as follows: for 0 ≤ i ≤ λ′, we set U ′i = U ′2i+1. Therefore,

the paths of U ′0 lie before path R∗1 in the ordering OR0 , the paths of U ′λ′ lie after R∗λ′ in this ordering,
and, for 1 ≤ i < λ′, the paths of U ′i lie between paths R∗i and R∗i+1.

From our definition, if E1 did not happen, then for every pair Q,Q′ ∈ P∗ ∪Q∗ of distinct paths, their
images in ϕ∗ do not cross (but note that the image of a single path may cross itself).

We have also defined a set P ′ ⊆ P1 and a set R′ ⊆ R1 of paths, containing all paths Q whose image
crosses the image of some path in R∗ ∪ P∗ in drawing ϕ∗. From Observation 11.18, if Event E2 does
not happen, then |P ′|, |R′| ≤ ψ/32. Note that the sets P ′,R′ of paths are not known to the algorithm.

It will be convenient for us to consider the ((λ′ + 1)× (λ′ + 1))-grid Π∗. We view the columns of the
grid as corresponding to the left boundary of the bounding box B∗, the paths in

{
R∗1, . . . , R

∗
λ′
}

, and
the right boundary of the bounding box B∗. For convenience, we index the columns of the grid from 0
to λ′+ 1, so the left boundary of the bounding box corresponds to column 0, and, for 1 ≤ i ≤ λ′, path
P ∗i represents the ith column of the grid, with the right boundary of B∗ repersenting the last column.
Similarly, we view the bottom boundary of B∗, the paths in

{
P ∗1 , . . . , P

∗
λ′
}

, and the top boundary of
B∗ as representing the rows of the grid, in the bottom-to-top order. As before, we index the rows of
the grid so that the botommost row has index 0 and the topmost row has index λ′+1. Notice however
that the union of the paths in P∗ ∪R∗ does not necessarily form a proper grid graph, as it is possible
that, for a pair P ∈ P∗, R ∈ R∗ of paths, P ∩R is a collection of several disjoint paths.

220

We will now consider the drawing ϕ∗ of H ′′, and we will use it to define vertical and horizontal strips
corresponding to paths in P∗ and R∗, respectively. We will also associate, with each cell of the grid
Π∗, some region of the plane. We assume in the following definitions that Event E1 did not happen.

Consider first the image γi of some path P ∗i ∈ P∗ in the drawing ϕ∗. Note that γi is not necessarily a
simple curve. We define two simple curves, γti and γbi , where γti follows the image of γi from the top,
and γbi follows it from the bottom. In other words, we let γbi be a simple curve, whose every point lies
on γi, that has the same endpoints as γi, such that the following holds: for every point p ∈ γi, either
p ∈ γbi , or p lies above γbi in the bounding box B∗. We define the other curve, γti symmetrically, so
curve γi is contained in the disc whose boundary is γti ∪ γbi (see Figure 39). For convenience, we let
γt0 be the bottom boundary of the bounding box B∗, and γbλ′+1 be the top boundary of the bounding
box B∗. We now define, for all 0 ≤ i ≤ λ′, a region of the plane that we call the ith horizontal strip,
and denote by HStripi. This strip is simply the closed region of the bounding box between the curves
γti and γbi+1.

Figure 39: An illustration of curves γti and γbi . The curve γi is shown in purple.

For every vertical path R∗i ∈ R∗, we also define two curves, γ`i and γri , that follow the image γi of R∗i
in ϕ∗ on its left and on its right, respectively. We denote by γr0 the left boundary of the bounding box
B∗, and by γ`λ′+1 its right boundary. For all 0 ≤ i ≤ λ′, we define a vertical strip VStripi to be the

closed region of the bounding box B∗ betwen γri and γ`i+1.

The following observation is immediate from the fact that the paths in P0 are node-disjoint, and so
are the paths in R0.

Observation 11.19 If R ∈ R1 is a path whose image in ϕ∗ intersects the interior of more than one
vertical strip in

{
VStrip0, . . . ,VStripλ′+1

}
, then R ∈ R′. Similarly, if P ∈ P1 is a path whose image in

ϕ∗ intersects the interior of more than one horizontal strip in
{
HStrip0, . . . ,HStripλ′+1

}
, then P ∈ P ′.

Lastly, for all 0 ≤ i, j ≤ λ′, we let CellRegioni,j = HStripi ∩VStripj be a closed region of the plane that
we associate with cell Celli,j of the grid Π∗.

11.4 Step 4: Constructing a Grid-Like Structure

In this step we further delete some paths from sets R1 and P1 to ensure that the resulting paths form
a grid-like structure. This is done in three stages. In the first stage, we discard some paths to ensure
that every remaining path in R1 intersects the paths in P∗ “in order” (we formally define this notion
later), and we process the paths in P1 similarly. In the second stage, we associate, with every cell
of the grid Π∗ a collection of horizontal paths and a collection of vertical paths. In the third stage,

221

we ensure that, for every cell of the grid Π∗, there are many inersections between its corresponding
horizontal and vertical paths.

Before we continue, we discard some paths of R1 ∪ P1 that must lie in R′ ∪ P ′. Specifically, consider
some path P ∈ P1, and assume that it lies in group Ui, for some 0 ≤ i ≤ λ′. Let (a, a′) be the endpoints
of path P , with a ∈ T1 and a′ ∈ T3. Notice that from the definition, if i > 0, then a must lie, in the
ordering Õ1 of the terminals of T1, after the endpoint of the path P ∗i that belongs to T1. Similarly, if
i < λ′, then a must lie before the endpoint of the path P ∗i+1 that belongs to T1 in the same ordering.
In particular, we are guaranteed that, in the drawing ϕ∗, the image of P must intersect the interior
of the horizontal strip HStripi. Consider now the endpoint a′ of P . If i > 0, let a′i be the endpoint
of path P ∗i that lies in T3, and if i < λ′, let a′i+1 be the endpoint of path Pi′+1 that lies in T3. Note

that, if a′ lies before a′i in the ordering Õ3 of T3, or if a′ lies after a′i+1 in the ordering Õ3, then the
image of P has to intersect the interior of an additional horizontal strip, and, from Observation 11.19,
path P must lie in P ′. We discard each such path from set P1 (and from the corresponding set Ui).
This ensures that, if P ∈ Ui, then its endpoint a′ must lie between a′i and a′i+1 in Õ3, if 1 ≤ i ≤ λ′; it
must lie before a′i+1 if i = 0, and it must lie after a′i if i = λ′. We process the paths in R1 similarly,
discarding paths as needed. Notice that so far all paths that we have discarded from P1 ∪ R1 lie in
P ′ ∪R′.

11.4.1 In-Order Intersection

In this stage we discard some additional paths from P1 ∪R1, to ensure that every remaining path in
P1 interesects the paths in R∗ in-order (notion that we define below); we do the same for paths in R1.
We will ensure that all paths discarded at this stage lie in P ′ ∪R′.
Since the definitions and the algorithms for the paths in P1 and for the paths in R1 are symmetric,
we only describe the algorithm to process the paths in P1 here.

Let P ∈ P1 be any path, that we view as directed from its endpoint that lies in T1 to its endpoint lying
in T3. Let X(P) = {x1, . . . , xr} denote all vertices of P lying on paths in R∗, that is, X(P) = V (P)∩(⋃λ′

i=1 V (R∗i)
)

. We assume that the vertices of X(P) are indexed in the order of their appearance on

P . For each such vertex xj , let ij be the index of the path R∗ij ∈ R
∗ containing xj .

Definition 11.20 (In-order intersection) We say that path P intersects the paths of R∗ in-order,
if r ≥ λ′, i1 = 1, ir = λ′, and, for 1 ≤ j < r, |ij − ij+1| ≤ 1.

Notice that the definition requires that path P intersects every path of R∗ at least once; the first path
of R∗ that it intersects must be R∗1, and the last path must be R∗λ′ , and for every consecutive pair
xj , xj+1 of vertices in X(P), either both vertices lie on the same path of R∗, or they lie on consecutive
paths of R∗. Notice that path P is still allowed to intersect a path of R∗ many times, and may go
back and forth across all these paths several times.

Observation 11.21 Assume that Event E1 did not happen. Let P ∈ P1 be a path that intersect the
paths of R∗ not in-order. Then P ∈ P ′ must hold.

Proof: Assume first that i1 6= 1, that is, vertex x1 lies on some path R∗i with i 6= 1. Let p be a point
on the image of path P in ϕ∗ that is very close to its first endpoint, so p lies in the interior of the
vertical strip VStrip1, and let p′ be the image of the point x1. Clearly, p′ does not lie in the interior or
on the boundary of VStrip1, so the image of path P must cross the right boundary of VStrip1, which
means that the image of some edge of P and the image of some edge of R∗1 cross in ϕ∗.

The cases where ir 6= λ′, or there is an index 1 ≤ j < r with ij − ij+1 > 1 are treated similarly, as is
the case when r < λ′.

222

We discard from P1 all paths P that intersect the paths of R∗ not in-order. We denote by P2 ⊆ P1

the set of remaining paths. We also update the groups U0, . . . ,Uλ′ accordingly. Observe that so far
all paths that we have discarded from P1 lie in P ′. From Observation 11.18, assuming that Events E1

and E2 did not happen, the number of paths that we have discarded so far from P1 is at most ψ/32.
In particular, for all 0 ≤ i ≤ λ′, |Ui| ≥ 31ψ/32 still holds.

We perform the same transformation on set R1 of paths, obtaining a new set R2 of paths, each of
which intersects the paths of P∗ in-order. We also update the groups U ′0, . . . ,U ′λ′ . As before, for all
0 ≤ i ≤ λ′, |U ′i | ≥ 31ψ/32 still holds.

11.4.2 Definining Paths Associated with Grid Cells

For every path P ∈ P2, for all 1 ≤ i ≤ λ′, we denote by vi(P) the first vertex on path P that belongs
to the vertical path R∗i ; note that, from the definition of in-order intersection, such a vertex must
exist. For all 1 ≤ i < λ′, we define the ith segment of P , σi(P), to be the subpath of P between vi(P)
and vi+1(P). We also let σ0(P) be the subpath of P from its first vertex (which must be a terminal
of T1) to v1(P), and by σλ′(P) the subpath of P from vλ′(P) to the last vertex of P (which must be
a terminal of T3). Note that the sets of edges that lie on paths σ0(P), . . . , σλ′(P) partition E(P).

Similarly, for every path R ∈ R2, for all 1 ≤ i ≤ λ′, we denote by vi(R) the first vertex on path R
that lies on the horizontal path P ∗i . For all 1 ≤ i < λ′, we define the ith segment of P , σi(R), to be
the subpath of R between vi(R) and vi+1(R). We also let σ0(R) be the subpath of R from its first
vertex (which must be a terminal of T4) to v1(R), and by σλ′(R) the subpath of R from vλ′(R) to the
last vertex of R (which must be a terminal of T2).

Consider now some cell Celli,j of the grid Π∗, for some 0 ≤ i, j ≤ λ′. We define the set P i,j of horizontal
paths, and the set Ri,j of vertical paths associated with cell Celli,j , as follows. In order to define the
set P i,j of horizontal paths, we consider the group Ui ⊆ P2, and, for every path P ∈ Ui, we include its

jth segment σj(P) in P i,j , so P i,j = {σj(P) | P ∈ Ui}. Similarly, we define Ri,j =
{
σi(R) | R ∈ U ′j

}
.

We need the following observation.

Observation 11.22 Let P ∈ Ui, R ∈ U ′j be a pair of paths, for some 1 < i, j < λ′, and assume that
their subpaths σj(P) ⊆ P, σi(R) ⊆ R do not share any vertices. Then either P ∈ P ′, or R ∈ R′, or
the images of σj(P) and σi(R) cross in the drawing ϕ∗.

Proof: Assume that P 6∈ P ′ and R 6∈ R′, that is, the images of the paths P,R do not cross the
images of the paths in P∗ ∪ R∗ in ϕ∗. From the definition of set Ui, the image of P intersects the
interior of the horizontal strip HStripi, and path P does not share any vertices with the paths of P∗.
Therefore, the image of P must be contained in the strip HStripi, and it is disjoint from its top and
bottom boundaries γti , γ

b
i+1. Using similar reasoning, the image of R is contained in the strip VStripj ,

and it is disjoint from its left and right boundaries, γrj , γ
`
j+1. Consider now the segment σj(P) of P ,

whose endpoints lie on R∗j and R∗j+1, respectively. Let σ′j(P) ⊆ σj(P) be the shortest subpath of
σj(P) whose first endpoint lies on R∗j , and whose last endpoint lies on R∗j+1; such a path must exist
because we can let σ′j(P) = σj(P). From the definition of in-order intersection, no inner vertex of σ′j
may lie on any path of R∗. It is then easy to verify that the image of σ′j(P) in ϕ∗ must be contained
in CellRegioni,j , and it must split this region into two subregions: one whose top boundary contains a

segment of γbi+1, and one whose bottom boundary contains a segment of γti .

Using the same reasoning, we can select a segment σ′i(R), whose first endpoint lies on P ∗i , last endpoint
lies on P ∗i+1, and all inner vertices are disjoint from the vertices lying on the paths in P∗. As before,
the image of σ′(R) must be contained in CellRegioni,j , but it connects a point on its top boundary to
a point on its bottom boundary. Therefore, the image of σ′i(R) must cross the image of σ′j(P).

223

11.4.3 Completing the Construction of the Grid-Like Structure

In order to complete the construction of the grid-like structure, we need to ensure that, for every pair
1 < i, j < λ′ of indices, there are many intersection between the sets P i,j and Ri,j of paths. More
specifically, we need to ensure that every path σ ∈ P i,j intersects many paths in Ri,j , and vice versa.
This is needed in order to ensure well-linkedness properties: namely, that the collection of vertices
containing the first and the last vertex on every path of P i,j is sufficiently well-linked in the graph
obtained from the union of the paths in Ri,j∪P i,j . This property, in turn, will be exploited in order to
construct the routers of Λ′ over which the distribution D will be defined. This motivates the following
definition.

Definition 11.23 (Bad Paths) For a pair 0 < i, j < λ′ of indices, we say that a path P ∈ Ui is bad
for cell Celli,j if there are at least ψ/16 paths in Ri,j that are disjoint from σj(P). Similarly, we say
that a path R ∈ U ′j is bad for cell Celli,j if there are at least ψ/16 paths in P i,j that are disjoint from
σi(R).

Consider now some index 0 < i < λ′. We say that a path P ∈ Ui is bad if it is bad for at least one
cell in {Celli,j | 0 < j < λ′}. Similarly, for an index 0 < j < λ′, a path R ∈ U ′j is bad if it is bad for at
least one cell in {Celli,j | 0 < i < λ′}.

The following observation bounds the number of bad paths in each group Ui of horizontal paths, and
in each group U ′j of vertical paths.

Observation 11.24 Assume that cr∗ ≤ k̃2

c2η5
, and that neither of the events E1, E2 happenned. Then

for all 0 < i < λ′, at most ψ/16 paths in Ui are bad. Similarly, for all 0 < j < λ′, at most ψ/16 paths
in U ′j are bad.

Proof: Fix an index 0 < i < λ′, and the corresponding set Ui ⊆ P2 of paths. We partition the set of
all bad paths in Ui into two subsets: set B1 contains all bad paths lying in P ′, and set B2 contains all
remaining bad paths. From Observation 11.18, |B1| ≤ ψ/32.

We further partition the set B2 of bad paths into subsets
{
Bj2 | 0 < j < λ′

}
, where a path P lies in

Bj2 if it is bad for cell Celli,j (if path P is bad for several cells, we add it to any of the corresponding

sets). Consider now some index 0 < j < λ′, and some path P ∈ Bj2. From the definition, there is a set
Σ′ ⊆ Ri,j of at least ψ/16 paths that do not share any vertices with P . From Observation 11.18, at
most ψ/32 of these paths may lie in R′. Let Σ′′ ⊆ Σ′ be the collection of the remaining paths, whose
cardinality is at least ψ/32. From Observation 11.22, for every path σ′ ∈ Σ′, the images of σj(P), and
of σ′ must cross. We let χj(P) denote the set of all crossings (e, e′), where e ∈ σj(P), and e′ is an edge

on a path of Σ′′, so |χj(P)| ≥ ψ/32. We then let χj =
⋃
P∈Bj2

χj(P), so |χj | ≥ |Bj2| · ψ/32. Lastly, we

let χ =
⋃λ′−1
j=1 χj . Notice that set χ contains at least |B2| · ψ/32 distinct crossings in the drawing ϕ∗.

Assume for contradiction that |B2| > ψ/32. Then:

cr∗ >
ψ2

210
>

k̃2

4η4
>

k̃2

c2η5
,

since ψ > 16k̃
η2

, a contradiction. Therefore, |B2| ≤ ψ/32, and overall there are at most ψ/16 bad paths

in Ui. The proof for path sets U ′j ⊆ R2 is identical.

For all 0 < i < λ′, we discard every bad path from Ui. If |Ui| < d7ψ/8e for any i, then we terminate

the algorithm and return FAIL. Notice that in this case, from Observation 11.24, if cr∗ < k̃2

c2η5
, then

at least one of the events E1, E2 must have happened, and the probability for this is at most 1/8.

224

Therefore, we assume that for all 0 < i < λ′, |Ui| ≥ d7ψ/8e holds. We discard additional arbitrary

paths from Ui, until |Ui| = d7ψ/8e. We then let P3 =
⋃λ′

i=1 Ui denote the resulting set of paths.

Similarly, for all 0 < j < λ′, we discard every bad path from U ′j . If, as the result, |U ′j | falls below
d7ψ/8e, we terminate the algorithm and return FAIL. Otherwise, we discard additional arbitrary paths

as needed, so that |U ′j | = d7ψ/8e holds. We also let R3 =
⋃λ′

j=1 U ′j .
For all 0 < i, j < λ′, we also update the path sets P i,j and Ri,j accordingly, discarding the paths that
are no longer subpaths of paths in P3 ∪R3. Since we are still guaranteed that |P i,j |, |Ri,j | = d7ψ/8e,
and since every path that is bad for cell Celli,j was discarded, we are guaranteed that every path in

P i,j intersects at least 7ψ
8 −

ψ
16 = 13ψ

16 paths of Ri,j and vice versa. Since we use this fact later, we
summarize it in the following observation.

Observation 11.25 For all 0 < i, j < λ′, |P i,j |, |Ri,j | = d7ψ/8e. Every path in P i,j intersects at
least 13ψ

16 paths of Ri,j and vice versa.

This concludes the construction of the grid-like structure.

11.5 Step 5: the Routing

Recall that we have denoted by Λ′ = Λ(H ′′, T̃) the set of all routers in graph H ′′ with respect to the set
T̃ of terminals. In this final step we design an efficient algorithm to compute an explicit distribution
D over the routers of Λ′, such that for every outer edge e ∈ E(H ′′), EQ∼D

[
(congH′′(Q, e))2

]
≤

O
(

log16m
(αα′)4

)
.

Our algorithm closely follows the arguments of [Sid10] (see also Lemma D.10 in the full version of
[Chu11]), who showed a similar result for a grid graph. In order to provide intuition, we first present
their algorithm. Assume that we are given a (q× q) grid graph G for some integer q, and let T be the
set of vertices lying on the first row of the grid, that we refer to as terminals. For convenience, assume
that q is an integral power of 2. Our goal is to compute a distribution D′ over the routers of in Λ(G,T).
We need to ensure that, for every edge e ∈ E(G), the expectation EQ∼D′

[
(congG(Q, e))2

]
≤ O(log q).

For every vertex v in the top right quadrant of the grid, we will define a set Q(v) of paths in G,
routing the terminals in T to v. Our distribution D then assigns, to each such router Q(v), the same
probability value 4/q2.

We now fix a vertex v in the top right quadrant of the grid, and define the routerQ(v). Let r = log(q/4).
For 0 ≤ i ≤ r, let Si be a square subgrid of G, of size (2i × 2i), whose upper right corner has the
same column-index as vertex v, and the same row-index as the bottom left corner of Si−1 (we think
of S0 as a (1 × 1)-grid consisting only of vertex v). We refer to the subgrids Si of G as squares, and
specifically to square Si as level-i square. For all 0 ≤ i ≤ r, we denote by Ti the set of vertices lying
on the bottom boundary of square Si. Using the well-linkedness of the grids, it is easy to show that
for all 1 ≤ i ≤ r, there is a collection Pi of paths in graph Si, routing vertices of Ti to vertices of
Ti−1 with congestion at most 2, such that every vertex of Ti−1 serves as endpoint of at most two such
paths. For 1 ≤ i ≤ r, let Let P ′i be a multipset obtained from set Pi by creating 2r−i+1 copies of every
path in Pi. Let Tr+1 ⊆ T be a set of |Tr| vertices lying on the bottom boundary of the grid G, that
contains, for every vertex t ∈ Tr, vertex t′ on the bottom boundary of the grid with the same column
index as t. Let Pt be the subpath of the corresponding column of G connecting t to t′, and denote
P ′r+1 = {Pt | t ∈ Tr}.
By concatenating the paths in P ′1, . . . ,P ′r+1, we obtain a collection Q′(v) of paths in grid G, routing
the terminals in Tr+1 to vertex v. Notice that for all 0 ≤ i ≤ r, for every edge e lying in Si, the
congestion on edge e due to paths in Q′(v) is at most 2r−i+2. The key in analyzing the expectation
EQ∼D′

[
(congG(Q, e))2

]
is to notice that, for all 1 ≤ i ≤ r, square Si is a (2i× 2i)-subgrid of G, whose

225

upper right corner is chosen uniformly at random from a set of q2/4 possible points. The total number
of subgrids of G of size (2i× 2i) that contain e is 22i, so the probability that any of them is selected is
bounded by 22i+2/q2. Therefore, for all 1 ≤ i ≤ r, with probability at most 22i+2−2r, edge e belongs
to square Si, and in this case, congG(Q, e) ≤ 2r−i+2. Therefore, we get that:

EQ∼D′
[
(congG(Q, e))2

]
≤

r∑
i=1

22i+2−2r · 22r−2i+4 ≤ O(r) = O(log q).

Using the well-linkedness of the terminals in T , it is immediate to extend the set Q′(v) of paths to
a set Q∗(v) routing all terminals in T to v, while increasing the congestion on every edge of G by at
most an additive constant and a multiplicative constant factor. This provides the final distribution D
over the routers Q(v) ∈ Λ(G,T).

We will simulate a similar process on the grid Π∗, and its corresponding grid-like structure that we have
constructed. Notice however that Π∗ is only a (λ′× λ′)-grid (where η ≤ λ′ ≤ η2), while the number of
terminals that we need to route is much larger (comparable to |R3|). Therefore, we will attempt to
route all terminals to a single cell Celli,j in the top right quadrant of the grid Π∗ (in other words, we
will route them to vertices lying on paths in P i,j ∪Ri,j). This in itself is not sufficient, since we need
to route them to a single vertex of H ′′. This means that we may need to perform some routing within
the cell Celli,j , that is, within the graph obtained from the union of the paths in P i,j ∪ Ri,j . While
generally such a routing (with low congestion on outer edges) may be difficult to compute, we will
select a large collection of cells (called good cells) in the top right quadrant of the grid Π∗, for which
such a routing is easy to obtain. We will then define, for each good cell, the corresponding set of paths
routing the terminals to a single vertex y∗ ∈ V (H ′′). We do so by simulating the process described
above: we define square subgrids {Si} of the grid Π∗, and we associate these subgrids with sets of
horizontal and vertical paths (subpaths of some paths in P3 ∪R3), so that the desired well-linkedness
properties of graphs corresponding to each subgrid Si are achieved. Eventually, the distribution D
chooses one of the good cells uniformly at random, and uses the associated router Q ∈ Λ′ in order to
route the terminals to a single vertex of H ′′. The analysis of expected congestion squared on every
outer edge of H ′′ is very similar to the one outlined above.

We start by defining the notion of good cells of the grid Π∗, and showing that a large enough number
of such cells exist in the upper right quadrant of Π∗. We will then define square subgrids of Π∗ and
associate sets of paths with each such subgrid to ensure the required well-linkedness properties. Lastly,
we show how to construct the desired routing Q for each good cell.

11.5.1 Good Cells

Fix a pair of indices 0 < i, j < λ′, and consider the cell Celli,j of the grid Π∗, and the two corresponding
sets P i,j , Ri,j of paths.

Definition 11.26 (Good cells) A path σ ∈ P i,j is good for cell Celli,j if σ contains no outer edges.
We say that cell Celli,j is good if some path σ ∈ P i,j is good for Celli,j; otherwise we say it is bad.

Assume that cell Celli,j is good, and let σ ∈ P i,j be any horizontal path that is good for this cell.
Since σ contains no outer edges, there must be a vertex y ∈ V (H), such that V (σ) ⊆ V (Π(y)). Recall
that, from Observation 11.25, |Ri,j | = d7ψ/8e, and that σ intersects at least 13ψ/16 paths of Ri,j .
Let R̂i,j ⊆ Ri,j be a set of d13ψ/16e paths, each of which shares at least one vertex with σ. Note that
each such path then must contain a vertex of Π(y). We denote by Portalsi,j the set of vertices that
contains, for every path σ′ ∈ R̂i,j , the first vertex of σ′ (by definition, each such vertex must lie on
path P ∗i). For convenience, we denote vertex y of H by yi,j .

226

Let Z be the set of all pairs of indices bλ′/2c ≤ i, j < λ′, such that Celli,j is good. Next, we show
that |Z| is sufficiently large. Our routing algorithm will then choose a pair (i, j) of indices from Z
uniformly at random, and route the terminals to the vertices in set Portalsi,j , from where they will be
routed to vertices of Π(yi,j), and eventually to some specific vertex of Π(yi,j).

Claim 11.27 |Z| ≥ (λ′)2/16.

Proof: Let B be a collection of all bad cells Celli,j lying in the top right quadrant, that is, bλ′/2c ≤
i, j < λ′. It is enough to show that |B| < (λ′)2/16.

Consider now some bad cell Celli,j ∈ B, and any path Q ∈ P i,j . Since cell Celli,j is bad, Q must contain
at least one outer edge. We say that Q is a type-1 bad path for cell Celli,j if it contains at least one
type-1 outer edge (recall that a type-1 outer edge e corresponds to some edge in graph H that is not
contained in any cluster of C). Otherwise, every outer edge on path Q is a type-2 outer edge, and
in this case we say that Q is a type-2 bad cluster for Celli,j . We say that cell Celli,j is type-1 bad if
at least ψ/32 paths of P i,j are type-1 bad for this cell, and otherwise it is type-2 bad. We partition
the set B of bad cells into two subsets: set B1 contains all type-1 bad cells, and set B2 contains all
type-2 bad cells. It is now enough to prove that |B1|, |B2| < (λ′)2/32, which we do in the following
two observations.

Observation 11.28 |B1| < (λ′)2/32.

Proof: Assume for contradiction that |B1| ≥ (λ′)2/32. Consider a type-1 bad cell Celli,j ∈ B1, and let
Qi,j ⊆ P i,j be a set of dψ/32e paths that are type-1 bad paths for cell Celli,j . Each path in Qi,j must
contain at least one type-1 bad edge. Since the paths in Qi,j are edge-disjoint, there is a set Ei,j of
at least ψ/32 type-1 outer edges of H ′′, lying on paths of Qi,j . Since every edge of H ′′ may lie on at
most one path in P, the total number of outer edges in H ′′ must be at least:

|B1| · ψ
32

≥ (λ′)2 · ψ
210

≥ λ2 · ψ
214

,

as λ′ = b(λ− 1)/2c ≥ λ/4. Recall that ψ =
⌊
α∗k̃
64λ

⌋
and λ = 224c·η log8m

α∗α3 , where c is the constant from

Observation 11.13. Therefore, we get that the total number of outer edges in H ′′ is at least 2ck̃η log8m
α3 ,

contradicting Observation 11.13.

Observation 11.29 |B2| < (λ′)2/32.

Proof: For a cluster C ∈ C, let X(C) =
⋃
y∈V (C) V (Π(y)). Note that all terminals of H lie outside

of the clusters in C, and so X(C) ∩ T̃ = ∅. If a path Q ∈ P3 ∪ R3 contains a vertex of X(C), then it
must contain at least one edge of δH(C). As the paths in P ∪R cause edge-congestion at most 2, the
total number of paths Q ∈ P ∪R with a non-empty intersection with X(C) is at most 2δH(C).

Let IntPairs ⊆ P3 × R3 be the collection of all pairs of paths P ∈ P3, R ∈ R3, such that P and R
share at least one vertex. For a cluster C ∈ C, let IntPairs′C ⊆ IntPairs denote the collection of all
pairs (P,R) ∈ IntPairs of paths, such that some vertex v ∈ X(C) lies on both P and R. Clearly, if
(P,R) ∈ IntPairs′C , then each of the paths P , R must contain at least one edge of δH(C). Therefore,
from the above discussion, |IntPairs′C | ≤ 4|δH(C)|2. Let IntPairs′ =

⋃
C∈CY IntPairs′C . Then:

|IntPairs′| ≤
∑
C∈CY

|IntPairs′C | ≤ 4
∑
C∈CY

|δH(C)|2.

227

From Equation 18 (see Section 11.2.3),
∑

C∈CY |δH(C)|2 < (k̃α̃α′)2

c1 log20m
, so we get that:

|IntPairs′| < 4(k̃α̃α′)2

c1 log20m
, (19)

where c1 is an arbitrarily large constant.

In the remainder of the proof, we assume for contradiction that |B2| ≥ (λ′)2/32, and we will show that

|IntPairs′| ≥ 4(k̃α̃α′)2

c1 log20m
must hold, contradicting Equation 19.

Consider a type-2 bad cell Celli,j ∈ B2. Recall that every path in P i,j contains at least one outer
edge, and at most ψ/32 such paths contain a type-1 bad edge. Since, from Observation 11.25, |P i,j | =
d7ψ/8e, there is a collection Σ ⊆ P i,j of at least 3ψ/4 paths P , such that all edges on P are either
inner edges, or type-2 outer edges. Therefore, if P ∈ Σ is any such path, then there is some cluster
C ∈ C with V (P) ⊆ X(C). Recall that, from Observation 11.25, each path P ∈ Σ intersects at
least 13ψ

16 paths of Ri,j . Clearly, if a path R ∈ Ri,j intersects a path P ∈ Σ, then (P,R) ∈ IntPairs′.

Therefore, intersections between pairs of paths in P i,j × Ri,j contribute at least 13ψ
16 ·

3ψ
4 ≥

ψ2

2 pairs
to set IntPairs′. Therfore, if we denote by IntPairs′i,j the collection of all pairs (P,R) ∈ IntPairs′,
where a subpath σ of P lies in P i,j , and a subpath σ′ of R lies in P i,j , and σ, σ′ contain a vertex

v ∈ X(C), for some cluster C ∈ C, then, from the above discussion, |IntPairs′i,j | ≥
ψ2

2 . We claim that
for every pair (P,R) ∈ IntPairs′ of paths, there is at most one pair of indices 0 < i, j < λ′, such that
(P,R) ∈ IntPairs′i,j . Indeed, assume that P ∈ Ui and R ∈ U ′j . For a pair 0 < i′, j′ < λ′ of indices, P i′,j′

contains a subpath of P iff i′ = i, and Ri′,j′ contains a subpath of R iff j′ = j. So the only pair (i′, j′)
of indices for which (P,R) ∈ IntPairs′i′,j′ may hold is (i, j). Overall, we get that |IntPairs′| ≥ |B2| ·ψ2/2.

Assuming that |B2| ≥ (λ′)2/32, since λ′ = b(λ− 1)/2c ≥ λ/4, we get that |IntPairs′| ≥ λ2ψ2

1024 .

Recall that ψ =
⌊
α∗k̃
64λ

⌋
, and, from Observation 11.14, α∗ = Θ(α̃α′). We conclude that:

|IntPairs′| ≥ (α∗)2k̃2

222
≥ Ω

(
(α̃α′k̃)2

)
.

Since we can choose c1 to be a sufficiently large constant, this contradicts Equation 19.

11.5.2 Square Subgrids and Corresponding Sets of Paths

For integers 1 ≤ i, j < λ′ and ` ≤ min {i, j}, a square subgrid S = S(i, j, `) of Π∗ (that we also refer to as
a square) is defined as the collection of cells CellSet(S) =

{
Celli′,j′ | i− `+ 1 ≤ i′ ≤ i; j − `+ 1 ≤ j′ ≤ j

}
.

Intuitively, S(i, j, `) is a subgrid of Π∗ of size (`× `), whose top right corner is the cell Celli,j .

Given a square S = S(i, j, `), we associate with it a collection P(S) of horizontal paths, and R(S) of
vertical paths, as follows. Intuitively, consider the graph obtained by taking the union of all paths
P i′,j′ , where Celli′,j′ ∈ CellSet(S). This graph is a collection of disjoint paths, each of which is a subpath

of a distinct path in
⋃i
i′=i−`+1 Ui′ ; we let P(S) be this set of paths. Formally, for all i− `+ 1 ≤ i′ ≤ i,

for every path P ∈ Ui′ , we include in P(S) the subpath of P from the first vertex of σj−`+1(P) to the
last vertex of σj(P). Similarly, set R(S) contains, for all j − ` + 1 ≤ j′ ≤ j, for every path R ∈ U ′j′ ,
the subpath of R from the first vertex of σ′i−`+1(R) to the last vertex of σ′i(R). Notice that, from
Observation 11.25, |P(S)| = |R(S)| = d7ψ/8e · `.
We denote by EntryPortals(S) the set of all vertices that serve as the first endpoint of the paths in
P(S), and by ExitPortals(S) the set of all vertices that serve as the last endpoint of the paths in P(S).
We denote by G(S) the graph obtained by the union of the paths in P(S) ∪R(S).

The following claim will be crucial for our algorithm for computing the routing paths for each good
cell.

228

Claim 11.30 Let S = S(i, j, `) be a square of Π∗, for some 1 ≤ i, j < λ′ and ` ≤ min {i, j}, and
let Y ⊆ EntryPortals(S), Y ′ ⊆ ExitPortals(S) be two subsets of vertices of cardinality z each, where
z ≤ ψ`/2. Then there is a collection Q of edge-disjoint paths in graph G(S), which is a one-to-one
routing from Y to Y ′.

Proof: Assume for contradiction that the claim is false. Then, from the maximum flow / minimum
cut theorem, there is a collection E′ of at most z−1 edges in graph G(S), such that G(S)\E′ contains
no path connecting a vertex of Y to a vertex of Y ′. Recall that each vertex of Y is an endpoint of a
distinct path in P(S), and all paths in P(S) are edge-disjoint. Since |Y | = z, while |E′| ≤ z− 1, there
is some path P ∈ P(S), whose endpoint y belongs to Y , such that P contains no edge of E′. Using
the same arguments, there is some path P ′ ∈ P(S), whose endpoint y′ belongs to Y ′, that contains no
edge of E′. Clearly, P 6= P ′ must hold, as otherwise there is a path in G(S) \ E′ connecting y to y′ –
the path P . It is now enough to show that there is some path R ∈ R(S), that contains no edge of E′,
but R ∩ P 6= ∅ and R ∩ P ′ 6= ∅ hold. Indeed, in this case, P ∪ R ∪ P ′ ⊆ G(S) \ E′, and so y remains
connected to y′ in G(S) \ E′.
We now show that path R with such properties must exist. Let P̃ ∈ P3 be the path with P ⊆ P̃ ,
and assume that P̃ ∈ Ui′ Similarly, let P̃ ′ ∈ P3 be the path with P ′ ⊆ P̃ ′, and assume that P̃ ′ ∈ Ui′′
(where possibly i′ = i′′). Consider some index j − ` + 1 ≤ j′ ≤ `. Recall |U ′j′ | = d7ψ/8e, and, for

every path R ∈ U ′j′ , segment σ′i′(R), lies in Ri′,j′ , and segment σ′i′′(R) lies in Ri′′,j′ . Moreover, from

Observation 11.25, path σj′(P̃) must intersect at least 13ψ
16 paths of

{
σ′i′(R) | U ′j′

}
, and similarly path

σj′(P̃
′) must intersect at least 13ψ

16 paths of
{
σ′i′′(R) | U ′j′

}
. Therefore, there is a subset U ′′j′ ⊆ U ′j′ of at

least ψ/2 paths R, such that both P and P ′ intersect the subpath of R that belongs to R(S). Overall,
there are at least `ψ/2 paths R ∈ R(S) that intersect the subpaths of P and of P ′ that lie in P(S).
Since z ≤ `ψ/2, at least one such path is disjoint from E′.

11.5.3 Routing the Terminals to Good Cells

We fix some good cell Celli,j in the top right quadrant of the grid, that is, bλ′/2c ≤ i, j < λ′. Recall
that we have defined a vertex yi,j ∈ V (H), and a collection R̂i,j ⊆ Ri,j of ψ′ = d13ψ/16e paths, each
of which contains a vertex of Π(yi,j). We have also defined a set Portalsi,j of vertices that contains,
for every path σ′ ∈ R̂i,j , the first vertex on σ′. Let y∗i,j be an arbitrary vertex of Π(yi,j).

We define a set Qi,j of paths in H ′′, routing the terminals of T̃ to vertex y∗i,j , so Qi,j ∈ Λ′. In order to
do so, we first define a set Q′i,j of paths, routing a constant fraction of the terminals of T4 to vertices
of Π(yi,j), and then extend this path set in order to obtain routing of all terminals to vertex y∗i,j .

Routing to Celli,j. In order to define the routing, we let z = blog(λ′/4)c, and we define z+1 squares

Si,j0 , Si,j1 , . . . , Si,jz . In order to simplify the notation, we will omit the superscript i, j for now.

Square S0 is S(i, j, 1), so it consists of a single cell Celli,j . We denote by Portalsi,j0 = Portalsi,j the
set of ψ′ vertices that we have defined. We let Q0 be the set of ψ′ paths, containing, for every path
σ′ ∈ R̂i,j , a subpath of σ′ between a vertex of Portalsi,j0 and a vertex of Π(yi,j). Therefore, Q0 is a set

of ψ′ edge-disjoint paths, routing vertices of Portalsi,j0 to vertices of Π(yi,j), and all paths of Q0 are
contained in R(S0). We say that cell Celli,j is the bottom right corner of square S0.

Fix some index 1 ≤ r ≤ z, and assume that we have defined squares S0, . . . , Sr−1. We now define
square Sr. We let Sr = (ir, j, 2

r), so the length of the side of the square is 2r, and the coordinates
of the top right corner of Sr are (ir, j); here, j is the column index of the initial cell Celli,j , and
ir is the cell immediately under the right bottom corner cell of Sr−1. In other words, if Sr−1 =

229

(ir−1, j, 2
r−1), then ir = ir−1 + 2r−1. We assume that we have also defined a collection Portalsr−1 ⊆

EntryPortals(Sr−1), containing 2r−1 · ψ′ vertices. Note that the top boundary of square Sr appears
immediately under bottom boundary of square Sr−1, so EntryPortals(Sr−1) ⊆ ExitPortals(Sr), and in
particular Portalsr−1 ⊆ ExitPortals(Sr). We select an arbitrary subset Portalsr ⊆ EntryPortals(Sr) of
2r · ψ′ vertices. By partitioning set Portalsr into two equal-cardinality subsets Y1, Y2, and applying
Claim 11.30 to each of them separately, we obtain two collectionsQ1

r ,Q2
r of edge-disjoint paths in graph

G(Sr), routing vertex sets Y1 and Y2, respectively, to vertex set Portalsr−1, in a one-to-one routing.
Therefore, there is a set Qr of paths in G(Sr), routing vertex set Portalsr to vertex set Portalsr−1 with
edge-congestion at most 2, such that every vertex in Portalsr−1 is an endpoint of at most two such
paths. Moreover, we can compute such set Qr of paths efficiently via standard maximum flow.

Lastly, consider the last square Sz. We define a subset T ∗ ⊆ T4 of terminals, as follows. For every
vertex v ∈ Portalsz, let Rv ∈ R be the vertical path containing v, and let tv ∈ T4 be the terminal that
serves as an endpoint of path Rv. We then let T ∗ = {tv | v ∈ Portalsz}, and we let Qz+1 be a set of
paths containing, for every vertex v ∈ Portalsz, the subpath of Rv between tv and v. Therefore, set
Qz+1 of paths routes terminals of T ∗ to vertices of Portalsz, and the paths in Qz+1 are edge-disjoint. It
is also easy to verify that the paths in Qz+1 do not contain any edges from graphs G(S0)∪· · ·∪G(Sz).

Note that, since ψ =
⌊
α∗k̃
64λ

⌋
and α∗ = Θ(αα′/ log4m),

|T ∗| = 2z · ψ′ = 2blog(λ′/4)c · d13ψ/16e = Ω(λ′ · ψ) = Ω(λψ) = Ω(α∗k̃) = Ω(k̃αα′/ log4m).

To summarize, we have defined a collection {S0, . . . , Sz} of squares in the grid Π∗, where for all
0 ≤ r ≤ z, square Sr has dimensions (2r×2r). The squares are aligned on the right, and are stacked on
top of each other, with square S0 containing a single cell, Celli,j . This guarantees that all corresponding
graphs G(Sr) are mutually disjoint, except that, for all 0 ≤ r < z, V (Sr)∩V (Sr+1) = EntryPortals(Sr).
We have defined, for all 0 ≤ r ≤ z, a set Portalsr ⊆ EntryPortals(Sr) of 2r · ψ′ vertices, and a set Qr of
paths contained in G(Sr), routing vertices of Portalsr to vertices of Portalsr−1 with edge-congestion at
most 2, so that every vertex of Portalsr−1 serves as an endpoint of at most two such paths. Additionally,
in graph G(S0), we have defined a set Q0 of ψ′ paths routing vertices of Portals0 to vertices of Π(yi,j),
and an additional set Qz+1 of edge-disjoint paths routing terminals in T ∗ to vertices of Portalsz in a
one-to-one routing, so that paths in Qz+1 do not contain edges of G(S0) ∪ · · · ∪G(Sz).

We are now ready to define a set Q′i,j of paths, routing terminals of T ∗ to vertices of Π(yi,j). In order
to do so, for all 0 ≤ r ≤ z, we let Q′r be a multi-set of paths, contianing, for every path σ′ ∈ Qr,
2z−r copies of the path σ′. Therefore, paths in Q′r cause edge-congestion 2z−r+1 in G(Sr). Set Q′i,j of
paths is obtained by concatenating paths in sets Qz+1,Q′z, . . . ,Q′0. It is easy to verify that paths in
Q′i,j route all terminals in T ∗ to vertices of Π(yi,j).

Recall that |T ∗| = Ω(k̃αα′/ log4m), and |T̃ | = k̃. Moreover, from Observation 11.14, The set T̃ of
terminals is α∗-well-linked in H ′′, where α∗ = Θ(αα′/ log4m). From Lemma 11.1, there is a set Qi,j of
paths in graph H ′′, routing all vertices of T̃ to vertices of Π(yi,j), such that, for every edge e ∈ E(H ′′):

congH′′(Qi,j , e) ≤

⌈
k̃

|T ∗|

⌉ (
congH′′(Q′i,j , e) + d1/α∗e

)
≤ O

(
log4m

αα′

)
·
(

congH′′(Q′i,j , e) +
log4m

αα′

)
.

Distribution D and Analysis. The final distribution D over the routers of Λ′ is defined as follows.
For every pair (i, j) of indices in Z, we extend the paths in set Qi,j via the inner edges of Π(yi,j) so
that each such path terminates at vertex y∗i,j , obtaining a router of Λ′. Each such resulting router Qi,j
is assigned the same distribution 1/|Z|; recall that, from Claim 11.27, |Z| ≥ (λ′)2/16.

We now fix some outer edge e ∈ E(H ′′), and analyze the expectation EQi,j∼D
[
(congH′′(Qi,j , e))2

]
.

230

Recall that there is at most one path P ∈ P that contains e, and at most one path R ∈ R containing
e. Moreover, there is at most one pair (i1, j1) of indices with edge e lying on some path of P i1,j1 , and
at most one pair (i2, j2) of indices with edge e lying on a path of Ri2,j2 .

We first focus on pair (i1, j1) of indices, and the corresponding cell Celli1,j1 . Fix some pair (i, j) ∈ Z
of indices, and 0 ≤ r ≤ z. If Celli1,j1 ∈ Si,jr , then segment σj1(P) of P may lie on at most 2z−r+1

paths in Q′i,j . Notice that there are at most 22r+2 square subgrids S of Π∗ of dimension (2r × 2r),
that contain the cell Celli1,j1 . For each such square S, there is exactly one pair (i(S), j(S)) of indices,

for which S
i(S),j(S)
r = S. Since |Z| ≥ (λ′)2/16, the probability that an index (i, j) ∈ Z is chosen

for which Celli1,j1 lies in the square Si,jr is at most O(22r+2/(λ′)2). Recall that, if Celli1,j1 ∈ Si,jr ,
then congH′′(Q′i,j) ≤ 2z−r+1 ≤ O(λ′/2r). Moreover, if Celli1,j1 does not lie in any of the squares

Si,j0 , . . . , Si,jz , then congH′′(Q′i,j) ≤ 1. The analysis for cell Celli2,j2 is symmetric. Therefore, altogether
(now taking into account both the cells Celli1,j1 and Celli2,j2), we get that:

E(i,j)∈Z
[
(congH′′(Q′i,j , e))2

]
≤ O(1) +

z∑
r=0

O

(
22r+2

(λ′)2
· (λ′)2

22r

)
= O(z) ≤ O(logm).

Lastly, since congH′′(Qi,j , e) ≤ O
(

log4m
αα′

)
·
(

congH′′(Q′i,j , e) + log4m
αα′

)
, we get that:

EQi,j∼D
[
(congH′′(Qi,j , e))2

]
≤ O

(
log16m

(αα′)4

)
.

231

A Proof of Corollary 1.3

In this section, we provide the proof of Corollary 1.3 from Theorem 1.1 and Theorem 1.2. Suppose
we are given a simple n-vertex graph G with maximum vertex degree ∆. We use the algorithm
from Theorem 1.2 in order to compute an instance I = (G′,Σ) of MCNwRS, with m = |E(G′)| ≤
O (OPTcr(G) · poly(∆ · log n)), and OPTcnwrs(I) ≤ O (OPTcr(G) · poly(∆ · log n)). Notice that, since
G is a simple graph, OPTcr(G) ≤ |E(G)|2 ≤ n4, and ∆ ≤ n. Therefore, m = |E(G′)| ≤ poly(n).

We use the algorithm from Theorem 1.1 to compute a solution to instance I of MCNwRS, such that,
w.h.p., the number of crossings in the solution is bounded by 2O((logm)7/8 log logm) · (OPTcnwrs(I) +m).
Lastly, using the algorithm from Theorem 1.2, we efficiently compute a drawing of graph G, with the
number of crossings bounded by:(

2O((logm)7/8 log logm) · (OPTcnwrs(I) +m) + OPTcr(G)
)
· poly(∆ log n)

≤ O
(

2O((logn)7/8 log logn) · poly(∆)
)
· OPTcr(G).

B Proofs Omitted from Section 2

B.1 Proof of Theorem 2.7

For every vertex u ∈ V (G), we denote du = degG(v), and we denote δG(u) = {e1(u), . . . , edu(u)},
where the edges are indexed according to their order in the rotation Ou ∈ Σ.

In order to prove the theorem, we construct a new graph G′, that is obtained from G by replacing
every vertex u ∈ V (G) with the (du × du)-grid. We show that, if OPTcnwrs(I) = 0, then graph G′ is
planar. We then provide an algorithm, that, given a planar drawing of G′, computes a solution to
instance I of MCNwRS whose cost is 0.

We start by defining the graph G′. For every vertex u ∈ V (G), we let Hu be the (du × du) grid. We
denote the vertices that appear on the first row of grid Hu by x1(u), . . . , xdu(u), in the natural order
of their appearance. In order to construct graph G′, we start with the disjoint union of the graphs in
{Hu}u∈V (G). We then consider every edge e ∈ E(G) one by one. Let e = (u, u′) be any such edge, and

assume that e = ei(u) = ej(u
′) (that is, e is the ith edge incident to u, and the jth edge incident to

u′). We then add edge e′ = (xi(u), xj(u
′)) to graph G′, and we view edge e′ as representing the edge

e ∈ E(G). This completes the construction of the graph G′. We call the edges of G′ that lie in set
{e′ | e ∈ E(G)} primary edges, and the remaining edges of G′ secondary edges. Notice that, from our
construction, a vertex of G′ may be incident to at most one primary edge. We use the following two
observations.

Observation B.1 If OPTcnwrs(I) = 0, then graph G′ is planar.

Proof: Assume that OPTcnwrs(I) = 0, and let ϕ be a solution to instance I of MCNwRS, with
cr(ϕ) = 0. We transform drawing ϕ to obtain a planar drawing ψ of the graph G′.

In order to do so, for every vertex u ∈ V (G), we consider the tiny u-disc D(u) = Dϕ(u). For every
edge ei(u) ∈ δG(u), we denote by pi(u) the unique point of the image of ei(u) in ϕ that lies on the
boundary of the disc D(u). Note that points p1(u), . . . , pdu(u) must appear on the boundary of disc
D(u) in this circular order. If they are encountered in this order as we traverse the boundary of
D(u) in counter-clock-wise direction, then we say that vertex u is positive; otherwise we say that it
is negative. We let D′(u) be a disc that is contained in D(u), such that the boundaries of D(u) and
D′(u) are disjoint.

232

Consider now a vertex u ∈ V (G), and let ψu be the standard drawing of the grid Hu. We let D̃(u) be
a disc in the drawing ψu, such that the image of the grid Hu is contained in D̃(u), and the images of
vertices x1(u), . . . , xdu(u), that we denote by p′1(u), . . . , p′du(u) lie on the boundary of D̃(u), and are

encountered in this order as we traverse the boundary of D̃(u) in the counter-clock-wise direction. We
also ensure that the only points of ψu(Hu) that lie on the boundary of D̃(u) are p′1(u), . . . , p′du(u).

In order to define a planar drawing ψ of graph G′, we process every vertex u ∈ V (G) one by one.
Consider any such vertex u. If u is a positive vertex, then we plant the drawing ψu of Hu inside the
disc D′(u) that we defined before, so that the discs D̃(u) and D′(u) coincide. Observe that, in this
case, points p1(u), . . . , pdu(u) are encountered in this order on the boundary of D(u) as we traverse
it in counter-clock-wise direction; and similarly, points p′1(u), . . . , p′du(u) are encountered in this order
on the boundary of D′(u) as we traverse it in counter-clock-wise direction. For all 1 ≤ i ≤ du, we can
then define a curve γi(u) connecting points pi(u) and p′i(u), that is contained in D(u), and is internally
disjoint from D′(u). Moreover, we can ensure that all curves in {γi(u) | 1 ≤ i ≤ du} are disjoint from
each other and are internally disjoint from the boundary of Du. If u is a negative vertex, then we
repeat the same process, except that we plant a mirror image of the drawing ψu of Hu inside the
disc D′(u). This allows us to define the set {γi(u) | 1 ≤ i ≤ du} of disjoint curves as before, where for
1 ≤ i ≤ du, curve γi(u) connects points pi(u) and p′i(u), is contained in D(u), and is internally disjoint
from D′(u).

So far, for every vertex u ∈ V (G), we have defined the images of the vertices and the edges of the grid
Hu in ψ. In order to complete the drawing ψ of graph G′, we process the edges e ∈ E(G) one by one.
Consider any such edge e = (u, u′), and assume that e = ei(u) = ej(u

′). Note that the image ϕ(e) of
edge e contains points pi(u) and pj(u

′). Let σ(e) be the segment of ϕ(e) between these two points.
Notice that, by construction, σ(e) is internally disjoint from all discs in {D(u′′)}u′′∈V (G). Recall that

graph G′ contains an edge e′ = (xi(u), xj(u
′)) representing edge e. We let the image of edge e′ in ψ be

the concatenation of curves γi(u) (that connects the image of xi(u) to point pi(u); σ(e) (connecting
pi(u) to pj(u)); and γj(u

′) (connecting pj(u
′) to the image of xj(u

′)). This completes the definition of
the drawing ψ of G′. It is immediate to verify that it is a planar drawing.

Observation B.2 There is an efficient algorithm, that, given a planar drawing ϕ′ of graph G′, com-
putes a feasible solution ϕ to instance I of MCNwRS with no crossings.

Proof: Consider the planar drawing ϕ′ of graph G′ on the sphere. Recall that for all r ≥ 1, the
(r × r)-grid graph has a unique planar drawing. Therefore, for every vertex u ∈ V (G), the drawing
of grid Hu that is induced by ϕ′ is the standard drawing ψu of the grid. Recall that the boundary of
the grid Hu is a simple cycle. Let γu be the closed curve, that is obtained by taking the union of the
images of all edges of the boundary of Hu. Notice that γu must be a simple curve, and, moreover, for
every pair u′, u′′ of distinct vertices of G′, γu′ ∩ γu′′ = ∅. For a vertex u ∈ V (G), let D′(u) be the disc
whose boundary is γu, such that the drawing of Hu in ϕ′ is contained in D′(u). We denote by p∗(u)
the image of vertex vdu,du of the grid Hu, and, for 1 ≤ i ≤ r, by pi(u) the image of vertex xi(u). Note
that points p1(u), . . . , pdu(u), p∗(u) appear in this circular order on the boundary of D′(u). Notice also
that it is possible that, for a pair u′ 6= u′′ of vertices of G, D′(u′) ⊆ D′(u′′).
Let Γ denote the set of curves that contains, for every primary edge e′ of G′, its image ϕ′(e′). We use
the following claim.

Claim B.3 There is an efficient algorithm that constructs, for each vertex u ∈ V (G) and index
1 ≤ i ≤ du, a curve γi(u) that is contained in D′(u) and connects pi(u) to p∗(u). Moreover, for every
pair γ, γ′ of distinct curves in set Γ ∪ {γi(u) | u ∈ V (G); 1 ≤ i ≤ du}, every point p ∈ γ ∩ γ′ must be
an endpoint of both curves.

We prove the claim below, after we complete the proof of Observation B.2 using it. We define a

233

drawing ϕ of graph G as follows. For every vertex u ∈ V (G), the image ϕ(u) is defined to be p∗(u).
Consider now some edge e = (u, u′) ∈ E(G), and assume that e = ei(u) = ej(u

′). We then let the
image of e in ϕ be the concatenation of three curves: (i) curve γi(u), connecting p∗(u) to pi(u); (ii)
the image of edge e′ = (vi(u), vj(u

′)) ∈ E(G′) in drawing ϕ′, that connects pi(u) to pj(u
′); and (iii)

curve γj(u
′), connecting pj(u

′) to p∗(u′). Notice that the resulting curve connects ϕ(u) to ϕ(u′), as
required. This completes the definition of the drawing ϕ of G.

We now show that this is a legal drawing, and that the number of crossings in this drawing is 0.
Indeed, assume for contradition that there are two edges e1, e2 ∈ E(G), and that some point p lies
in ϕ(e1) ∩ ϕ(e2). Note that the endpoints of ϕ(e2) may not be inner points of ϕ(e1) and vice versa.
Therefore, p is an inner point on both ϕ(e1) and ϕ(e2). From our construction, there must be two
curves γ, γ′ ∈ Γ ∪ {γi(u) | u ∈ V (G); 1 ≤ i ≤ du}, with γ ⊆ ϕ(e1) and γ′ ⊆ ϕ(e2) that contain p.
From Claim B.3, point p must be an endpoint of both curves. Assume that e1 = (u1, u

′
1), and that

e1 = ei(u1) = ej(u
′
1). Then, from our construction, p = pi(u1) or p = pj(u

′
1) must hold. Similarly,

assuming that e2 = (u2, u
′
2), and that e2 = ei′(u2) = ej′(u

′
2), we get that p = pi′(u2) or p = pj′(u

′
2)

must hold. This may only happen if two distinct primary edges of G′ are incident to the same vertex
of G′, which is impossible from our construction. We conclude that ϕ is a valid drawing of G with 0
crossings.

Next, we show that ϕ obeys the rotation system Σ. Consider some vertex u ∈ V (G), and a tiny u-disc
Dϕ(u). For 1 ≤ i ≤ du, let p̃i(u) be the point on the boundary of Dϕ(u) that lies on the image of
edge ei(u) in ϕ. In particular, point p̃i(u) belongs to the curve γi(u), whose endpoints are pi(u), p∗(u).
Since points p1(u), . . . , pdu(u) appear on the boundary of disc D′(u) in this circular order, and the
curves γ1(u), . . . , γdu(u) are internally disjoint, points p̃1(u), . . . , p̃du(u) must appear on the boundary
of disc Dϕ(u) in this circular order. We conclude that drawing ϕ of G obeys the rotation system Σ.

In order to complete the proof of Observation B.2, it is now enough to prove Claim B.3, which we do
next.

Proof of Claim B.3. Consider a vertex u ∈ V (G). For convenience, for 1 ≤ i, j ≤ du, we denote by
vi,j(u) the unique vertex of the grid Hu lying in the intersection of its ith row and jth column.

Let A(u) = {a1(u), . . . , adu−1(u)} be the sequence of edges on the last row of the grid Hu. Recall
that, for 1 ≤ i < du, curve ϕ′(ai(u)) is contained in the boundary of the disc D′(u). We denote
σi(u) = ϕ′(ai(u)), and draw another curve σ′i(u), whose endpoints are the same as those of σi(u),
such that σ′i(u) is contained in the interior of D′(u); is internally disjoint from σi(u) and the images
of all edges of G′ in ϕ′; and it is drawn in parallel to σi(u) right next to it. Next, we let D̂i(u) be
the disc, whose boundary is the union of the curves σi(u) and σ′i(u) (see Figure 40(a)). Lastly, we
let D̂(u) ⊆ D′(u) be smallest disc, whose interior contains, for all 1 ≤ i ≤ du − 1, the disc D̂i(u),
and, for all 1 ≤ i ≤ du, the intersection of the tiny vdu,i(u)-disc Dϕ′(vdu,i(u)) and the disc D′(u) (see
Figure 40(b)).

From our construction, the only vertices of G′ whose images are contained in disc D̂(u) are the vertices
lying in the last row of the grid Hu. The only edges of G′ that may have a non-empty intersection
with disc D̂(u) are the edges of Hu that are incident to the vertices of Hu lying in the last row of the
grid.

Consider now some index 1 ≤ i ≤ du. Let γ′i(u) be the curve obtained by concatenating the images of
all edges that lie on the ith column of grid Hu. We truncate the curve γ′i(u), so that it terminates at a
point on the boundary of disc D̂(u), and is internally disjoint from disc D̂(u). We denote by p′i(u) the
point on the boundary of D̂(u) that lies on γ′i(u). Note that curve γ′i(u) connects points pi(u) and p′i(u);
it is contained in disc D′(u), and it is internally disjoint from disc D̂(u). It is easy to verify that, since
drawing ϕ′ of G′ is planar, curves γ′i(u), . . . , γ′du(u) are disjoint from each other. For all 1 ≤ i ≤ du,

we then let γ′′i (u) be any simple curve connecting p′i(u) to p∗(u), that is contained in disc D̂(u); we

234

(a) Curves in {σi(u), σ′i(u)}i, and the corresponding

discs
{
D̂i(u)

}
i
. The boundary of disc D′(u) is shown

in black.

(b) Disc D̂(u) is shown in red.

Figure 40: Illustration of curves in {σi(u), σ′i(u)}i and the corresponding discs.

construct the curves γ′′1 (u), . . . , γ′′du(u) so that they are internally disjoint from each other. For all
1 ≤ i ≤ du, we then let γi(u) be the curve obtained by concatenating γ′i(u) and γ′′i (u). It is immediate
to verify that curve γi(u) is contained in D′(u), and it connects pi(u) to p∗(u). From our construction,
it is easy to verify that, for any pair γ, γ′ of distinct curves in set Γ ∪ {γi(u) | u ∈ V (G); 1 ≤ i ≤ du},
every point p ∈ γ ∩ γ′ must be an endpoint of both curves.

We are now ready to complete the proof of Theorem 2.7. We construct the graph G′ as described above,
and use the algorithm from Theorem 2.4 to test whether graph G′ is planar, and if so, to compute
a planar drawing ϕ′ of G′. If G′ is not planar, then we correctly establish that OPTcnwrs(G,Σ) 6= 0,
from Observation B.1. If G′ is planar, then we apply the algorithm from Observation B.2 to graph G′

and its planar drawing ϕ′, to compute a valid solution ϕ to instance I of MCNwRS with cr(ϕ) = 0.

B.2 Proof of Theorem 2.8

We start with any feasible solution ϕ to instance I, and then gradually modify it to ensure that every
pair of edges in G cross at most once. As long as there is a pair e, e′ ∈ E(G) of distinct edges, whose
images cross at least twice in ϕ, we perform the following modification step. Let p, q be two crossing
points between curves ϕ(e), ϕ(e′), that appear consecutively on ϕ(e); in other words, the segment of
ϕ(e) between a and b contains no other point that lies on ϕ(e′). We “uncross” the images of edges e
and e′, as shown in Figure 41. (In Sections 4.4.2 and D.17 we provide a more formal description of this
uncrossing process, that we refer to as type-1 uncrossing). It is easy to see that, after this uncrossing
step, the new drawing remains a feasible solution to instance I, and the number of crossings in the
drawing decreases by at least 2. We continue this process until every pair of edges of G cross at most
once in ϕ. It is clear that the resulting drawing contains at most |E(G)|2 crossings.

B.3 Proof of Claim 2.11

Denote I = (G,Σ) and m = |E(G)|. Recall that from Property D1,
∑

I′=(G′,Σ′)∈I′ |E(G′)| ≤ m ·
(logm)O(1), so in particular, for every instance I ′ = (G′,Σ′) ∈ I ′, |E(G′)| ≤ m · (logm)O(1). From
the same property, for every instance I ′ = (G′,Σ′) ∈ I ′,

∑
I′′=(G′′,Σ′′)∈I′′(I′) |E(G′′)| ≤ |E(G′)| ·

235

(a) Before: Curves ϕ(e) (red) and ϕ(e′)
(blue) cross at p and q.

(b) After: The modified curves no longer
cross at p or at q.

Figure 41: Uncrossing two curves.

(log(|E(G′)|))O(1) ≤ |E(G′)| · (logm)O(1). Therefore, altogether, we get that:∑
I′′=(G′′,Σ′′)∈I

|E(G′′)| =
∑
I′∈I′

∑
I′′=(G′′,Σ′′)∈I′′(I′)

|E(G′′)|

≤
∑

I′=(G′,Σ′)∈I′
|E(G′)| · (logm)O(1)

≤ m · (logm)O(1),

establishing Property D1.

Next, we establish Property D’2, using the same property of Algorithms Alg1 and Alg2:

E

[∑
I′′∈I′′

OPTcnwrs(I
′′)

]
=
∑
I′∈I′

E

 ∑
I′′∈I′′(I′)

OPTcnwrs(I
′′)


≤

∑
I′=(G′,Σ′)∈I′

E

[(
OPTcnwrs(I

′) + |E(G′)|
)
· ν ′′
]

= ν ′′ ·

 ∑
I′=(G′,Σ′)∈I′

|E(G′)|

+ ν ′′ ·E

[∑
I′∈I′

OPTcnwrs(I
′)

]
≤ O(ν ′′ ·m · (logm)O(1)) + (OPTcnwrs(I) +m) · (ν ′ν ′′)

≤ (OPTcnwrs(I) +m) · ν ′′ ·max
{

2ν ′, (logm)O(1)
}

≤ (OPTcnwrs(I) +m) · ν.

Lastly, we establish Property D3 of Algorithm Alg, using the same property of algorithms Alg1 and
Alg2. Assume that we are given, for every instance I ′′ ∈ I ′′, a feasible solution ϕ(I ′′) to I ′′. We
process instances I ′ ∈ I ′ one by one. For each such instance, we apply Algorithm Alg(I ′′(I ′)) that
is given by Property D3 of the decomposition I ′′(I ′) to solutions ϕ(I ′′) of instances I ′′ ∈ I ′′(I ′), to

obtain a solution ϕ(I ′) to instance I ′ of cost at most O
(∑

I′′∈I′′(I′) cr(ϕ(I ′′))
)

. We then apply the

236

algorithm Alg(I ′), given by Property D3 of the decomposition I ′ of I, to the resulting solutions ϕ(I ′)
for instances I ′ ∈ I ′, to obtain a solution ϕ(I) to instance I, whose cost is at most:

O

(∑
I′∈I′

cr(ϕ(I ′))

)
≤ O

(∑
I′′∈I

cr(ϕ(I ′′))

)
.

C Proofs Omitted from Section 3

C.1 Proof of Claim 3.7

The proof is by induction on h(I). The base case is when h(I) = 0, so v(I) is a leaf vertex of T ∗,
and hence of T . Denote I = (G,Σ). From Observation 3.5, either |E(G)| ≤ µc

′′
; or OPTcnwrs(I) = 0;

or OPTcnwrs(I) > |E(G)|2/µc′′ . If OPTcnwrs(I) = 0, then the algorithm returns a solution of cost 0.
Otherwise, OPTcnwrs(I) ≥ 1, and, if |E(G)| ≤ µc

′′
, then the algorithm returns the trivial solution,

of cost at most |E(G)|2 ≤ |E(G)| · µc′′ . Lastly, if OPTcnwrs(I) > |E(G)|2/µc′′ , then, since the trivial
solution ϕ′ is considered by the algorithm, it returns a solution of cost at most |E(G)|2 ≤ OPTcnwrs(I) ·
µc
′′
.

Assume now that the claim holds for all vertices v(I) of T ∗ with h(I) < q, for some 0 < q ≤ dep(T).
Consider any vertex v(I) of the tree T ∗ with h(I) = q. Let v(I1), . . . , v(Ik) be the child vertices of
v(I) in the tree T ∗. Denote I = (G,Σ) and |E(G)| = m. Additionally, for all 1 ≤ r ≤ k, denote
Ir = (Gr,Σr) and mr = |E(Gr)|.
Since instance I is not a leaf instance of T , |E(G)| ≥ µc

′′
must hold. Since we have assumed that

event E does not happen, either OPTcnwrs(I) > |E(G)|2/µc′′ , or
∑k

r=1 OPTcnwrs(Ir) ≤ (OPTcnwrs(I) +

m) · 2cg(logm)3/4 log logm must hold. In the former case, the algorithm is guaranteed to return a solution
to I whose cost is at most |E(G)|2 ≤ OPTcnwrs(I) · µc′′ , since the trivial solution ϕ′ is considered as
one of the possible solutions. From now on we focus on latter case. For all 1 ≤ r ≤ k, let ϕr be the
solution to instance Ir that the algorithm computes recursively. From the induction hypothesis, for
all 1 ≤ r ≤ k:

cr(ϕr) ≤ 2c̃·h(Ir)·(logm∗)3/4 log logm∗ · µc′′·cg · OPTcnwrs(Ir) + (logm∗)4cgh(Ir)µ2c′′·c̃ ·mr.

Notice that, for all 1 ≤ r ≤ k, h(Ir) ≤ q− 1. Moreover, from Theorem 3.1,
∑k

r=1mr ≤ m · (logm)cg ≤
m · (logm∗)cg . Lastly, as noted already,

∑k
r=1 OPTcnwrs(Ir) ≤ (OPTcnwrs(I) + m) · 2cg(logm)3/4 log logm

must hold. Altogether, we get that:

k∑
r=1

cr(ϕr) ≤ 2c̃·(q−1)·(logm∗)3/4 log logm∗ · µc′′·cg ·
k∑
r=1

OPTcnwrs(Ir) + (logm∗)4cg(q−1)µ2c′′·c̃ ·
k∑
r=1

mr

≤ 2c̃·(q−1)·(logm∗)3/4 log logm∗ · µc′′·cg · (OPTcnwrs(I) +m) · 2cg(logm)3/4 log logm

+ (logm∗)4cg(q−1)µ2c′′·c̃ ·m · (logm∗)cg

≤ 2c̃·(q−0.5)·(logm∗)3/4 log logm∗ · µc′′·cg · OPTcnwrs(I) + (logm∗)4cgq−3cgµ2c′′·c̃ ·m

+ 2c̃·(q−0.5)·(logm∗)3/4 log logm∗ · µc′′·cg ·m.

Since q ≤ dep(T) ≤ (logm∗)1/8

c∗ log logm∗ from Observation 3.2, the last term is bounded by:

2c̃·(logm∗)7/8/c∗ · µc′′·cg ·m ≤ µ2c′′·cg ·m

237

(since µ = 2c
∗(logm∗)7/8 log logm∗). Therefore, we get that:

k∑
r=1

cr(ϕr) ≤ 2c̃·(q−0.5)·(logm∗)3/4 log logm∗ · µc′′·cg · OPTcnwrs(I) + (logm∗)4cgq−2cgµ2c′′·c̃ ·m.

The solution that our algorithm returns for instance I is obtained by applying Algorithm AlgCombineDrawings
from Theorem 3.1 to solutions ϕ1, . . . , ϕk to instances I1, . . . , Ik (or some other solution the algorithm
considers, if its cost is smaller). Since event E does not happen, the cost of the resulting solution is
bounded by:

cg ·
(k∑
r=1

cr(ϕr)

)
+ (OPTcnwrs(I) +m) · µcg

≤ cg · 2c̃·(q−0.5)·(logm∗)3/4 log logm∗ · µc′′·cg · OPTcnwrs(I) + µcg · OPTcnwrs(I)

+ cg · (logm∗)4cgq−2cgµ2c′′·c̃ ·m+ µcg ·m

≤ 2c̃·q·(logm∗)3/4 log logm∗ · µc′′·cg · OPTcnwrs(I) + (logm∗)4cgqµ2c′′·c̃ ·m,

as required.

C.2 Proof of Claim 3.17

We construct the solution ϕ(I) to instance I in three steps. In the first step, we compute a solution

ϕ(I ′) to every instance I ′ ∈ Î(n)
large∪Ĩ

(n)
large, as follows. Consider any instance I ′ = (G′,Σ′) ∈ Î(n)

large∪Ĩ
(n)
large.

Recall that we are given a solution ϕ(I ′′) to every instance I ′′ ∈ I(I ′). Recall also that I(I ′) is a
ν-decomposition of instance I ′. We apply the efficient algorithm Alg(I(I ′)) from the definition of ν-
decomposition to the drawings in set {ϕ(I ′′)}I′′∈I(I′), to compute a feasible solution ϕ(I ′) to instance

I ′, of cost cr(ϕ(I ′)) ≤ O
(∑

I′′∈I(I′) cr(ϕ(I ′′))
)

. Overall, we get that:∑
I′∈Î(n)large∪Ĩ

(n)
large

cr(ϕ(I ′)) ≤
∑
I′′∈I∗

O(cr(ϕ(I ′′))). (20)

We have now obtained a solution ϕ(I ′) to every instance I ′ ∈
(
Îsmall ∪ Î

(n)
large ∪ Ĩsmall ∪ Ĩ

(n)
large

)
.

In the second step, we compute a solution ϕ(I ′) to every instance I ′ ∈ Î(w)
large. Consider any such

instance I ′ ∈ Î(w)
large. Recall that we applied the algorithm from Theorem 3.13 to instance I ′, to obtain

a collection Ĩ(I ′) of instances of MCNwRS. Every instance in the resulting collection belongs to Ĩsmall or

to Ĩ(n)
large. We use Algorithm AlgCombineDrawings′, that is guaranteed from Theorem 3.13, to compute

a solution ϕ(I ′) to instance I ′. Since we have assumed that event E2 did not happen, the cost of the
solution is bounded by: cr(ϕ(I ′)) ≤

∑
Ĩ=(G̃,Σ̃)∈Ĩ(I′) cr(ϕ(Ĩ)) + OPTcnwrs(I

′) · µc′g . Overall, we get that:∑
I′∈Î(w)

large

cr(ϕ(I ′)) ≤
∑
I′′∈I∗

O(cr(ϕ(I ′′)) +
∑

I′∈Î(w)
large

OPTcnwrs(I
′) · µc′g . (21)

We now describe the third step. We have so far obtained a solution ϕ(I ′) to every instance I ′ ∈(
Îsmall ∪ Î

(n)
large ∪ Î

(w)
large

)
, that is, a solution to every instance in Î. Recall that Î is a ν1-decomposition

of the input instance I. Since we have assumed that Event E1 did not happen,
∑

I′∈Î OPTcnwrs(I
′) ≤

100 · (OPTcnwrs(I) +m) · ν1. By combining Inequalities 20 and 21, we get that:

238

∑
I′∈Î

cr(ϕ(I ′)) ≤
∑
I′′∈I∗

O(cr(ϕ(I ′′)) +
∑

I′∈Î(w)
large

OPTcnwrs(I
′) · µc′g

≤
∑
I′′∈I∗

O(cr(ϕ(I ′′)) + 100 · (OPTcnwrs(I) +m) · ν1 · µc
′
g

≤
∑
I′′∈I∗

O(cr(ϕ(I ′′)) + (OPTcnwrs(I) +m) · µO(1),

(22)

since ν1 = 2O((logm)3/4 log logm) and µ� ν1.

Lastly, we apply the efficient algorithm Alg(Î) that is guaranteed by the definition of ν1-decomposition
to the solutions {ϕ(I ′)}I′∈Î , to obtain a feasible solution ϕ(I) to instance I. The cost of the solution

is bounded by
∑

I′∈Î O(cr(ϕ(I ′))) ≤
∑

I′′∈I∗ O(cr(ϕ(I ′′)) + (OPTcnwrs(I) +m) · µO(1), as required.

C.3 Proof of Observation 3.18

Throughout the proof, we assume that OPTcnwrs(I) ≤ |E(G)|2/µc′ and bad event E did not happen.

Since event E1 does not happen:∑
I′∈Î

OPTcnwrs(I
′) ≤ 100ν1 · (OPTcnwrs(I) +m). (23)

Recall that Î = Îsmall ∪ Î
(n)
large ∪ Î

(w)
large. In Step 2 of the algorithm, applied the algorithm from Theo-

rem 3.13 to every instance I ′ = (G′,Σ′) ∈ Î(w)
large, to compute a collection Ĩ(I ′) of instances of MCNwRS.

Consider now any such instance I ′ ∈ Î(w)
large. Since we have assumed that Event E2 did not happen:∑

Ĩ∈Ĩ(I′)

OPTcnwrs(Ĩ) ≤ OPTcnwrs(I
′) · (log |E(G′)|)c′g ≤ OPTcnwrs(I

′) · (logm)c
′
g .

Recall that we have defined Ĩ =
⋃
I′∈Î(w)

large

Ĩ(I ′). Combining the above inequality with Equation 23,

and recalling that ν1 = 2O((logm)3/4 log logm), we get that:

∑
Ĩ∈Ĩ

OPTcnwrs(Ĩ) ≤
∑

I′∈Î(w)
large

OPTcnwrs(I
′) · (logm)c

′
g ≤ (OPTcnwrs(I) +m) · 2O((logm)3/4 log logm). (24)

Consider now an instance I ′ = (G′,Σ′) ∈ Î(n)
large ∪ Ĩ

(n)
large. Since we have assumed that event E3 does not

happen, from the definition of a ν-decomposition:

E

 ∑
I′′∈I(I′)

OPTcnwrs(I
′′)

 ≤ (OPTcnwrs(I
′) + |E(G′)|

)
· ν.

Recall that Ismall =
⋃
I′∈Î(n)large∪Ĩ

(n)
large

I(I ′). Recall also that, from Inequality 1,
∑

I′=(G′,Σ′)∈Î(n)large

|E(G′)| ≤

m ·(logm)c
′
g , and from Inequality 3,

∑
I′=(G′,Σ′)∈Ĩ(n)large

|E(G′)| ≤ 2m ·(logm)c
′
g . Altogether, we get that:

239

E

 ∑
I′′∈Ismall

OPTcnwrs(I
′′)

 ≤ ∑
I′=(G′,Σ′)∈Î(n)large∪Ĩ

(n)
large

(
OPTcnwrs(I

′) + |E(G′)|
)
· ν

≤
∑

I′∈Î(n)large∪Ĩ
(n)
large

OPTcnwrs(I
′) · ν + 4m · (logm)c

′
g · ν

≤ (OPTcnwrs(I) +m) · 2O((logm)3/4 log logm)

(25)

(we have used Equations 23 and 24 in order to bound
∑

I′∈Î(n)large

OPTcnwrs(I
′) and

∑
I′∈Î(n)large

OPTcnwrs(I
′),

respectively, and the fact that ν1, ν ≤ 2O((logm)3/4 log logm)).

Finally, by combining Equations 23, 24 and 25, we get that:

E

[∑
I′′∈I∗

OPTcnwrs(I
′′)

]
≤ E

 ∑
I′′∈Îsmall

OPTcnwrs(I
′′) +

∑
I′′∈Ĩsmall

OPTcnwrs(I
′′) +

∑
I′′∈Ismall

OPTcnwrs(I
′′)


≤ (OPTcnwrs(I) +m) · 2O((logm)3/4 log logm).

We denote this expectation by η′. Let Ê be the bad event that
∑

I′′∈I∗ OPTcnwrs(I
′′) > 100η′. From

Markov inequality, Pr
[
Ê | ¬E

]
< 1/100.

D Proofs Omitted from Section 4

D.1 Proof of Claim 4.2

Denote k = |P| and ρ = congG(P). We define an undirected s-t flow network H, as follows. We start
with the graph G, and set the capacity of every edge in G to be 1. We then add a source vertex s, that
connects to every vertex v ∈ V (G) with an edge of capacity nS(v), and a destination vertex t, that
connects to every vertex v ∈ V (G) with an edge of capacity nT (v). Notice that, by sending 1/ρ flow
units on every path P ∈ P, we obtain an s-t flow of value k/ρ in this network. From the integrality
of flow, since all edge capacities in H are integral, there is an integral s-t flow in H, of value at least
k/ρ. This integral flow defines the desired collection P ′ of at least k/ρ edge-disjoint paths in graph
G. We can use standard algorithms for computing maximum s-t flow in order to obtain the set P ′ of
paths with these properties.

D.2 Proof of Observation 4.6

We first show that S(P ′) = S(P) and T (P ′) = T (P). We denote by s and t the first and the last
endpoints of P , respectively, and by s′ and t′ the first and the last endpoints of P ′, respectively. From
the construction, the first endpoint of P̃ is s, the last endpoint of P̃ is t′, the first endpoint of P̃ ′ is s′,
and the last endpoint of P̃ ′ is t. It is then immediate to verify that S(P ′) = S(P) and T (P ′) = T (P).

We now prove the second assertion. In order to do so, we assume that both P̃ , P̃ ′ are simple paths,
and we will show that |ΠT (P ′)| < |ΠT (P)|.
For every vertex u ∈ V (G), let N1(u) be the number of triples of ΠT (P) in which u participates, and
let N2(u) be the number of triples of ΠT (P ′) in which u participates. It is enough to show that, for
every vertex u ∈ V (G) \ {v}, N2(u) ≤ N1(u), and that N2(v) < N1(v).

240

Consider some vertex u ∈ V (G) \ {v}. We will assign, to every triple (Q,Q′, u) ∈ ΠT (P ′), a unique
triple in ΠT (P) that is responsible to it, and we will ensure that every triple in ΠT (P) is responsible
for at most one such triple.

Consider some triple (Q,Q′, u) ∈ ΠT (P ′). If neither of the two paths Q,Q′ lies in
{
P̃ , P̃ ′

}
, then triple

(Q,Q′, u) lies in ΠT (P) as well, and we make (Q,Q′, u) responsible for itself. If Q = P̃ and Q′ = P̃ ′

(or the other way around), then either Q is a subpath of P and Q′ is a subpath of P ′, or the other
way around (we use the fact that paths P, P ′ are simple, so Q,Q′ may not be subpaths of the same
path). In either case, it is easy to see that triple (P, P ′, u) lied in ΠT (P). We make the triple (P, P ′, u)

responsible for triple (Q,Q, u). The last case is when exactly one of the paths Q,Q′ is in
{
P̃ , P̃ ′

}
. We

assume w.l.o.g. that Q = P̃ , and Q′ 6∈
{
P̃ , P̃ ′

}
. If u lies on path P between its first vertex and v, then

triple (P,Q′, u) lies in ΠT (P), and we make it responsible for (Q,Q′, u). Otherwise, triple (P ′, Q′, u)
lies in ΠT (P), and we make it responsible for (Q,Q′, u).

It is easy to see that every triple (Q̂, Q̂′, u) ∈ ΠT (P) is responsible for at most one triple in ΠT (P ′).
Indeed, if neither of Q̂, Q̂′ lies in {P, P ′}, then triple (Q̂, Q̂′, u) may only be responsible for itself. If
both Q̂, Q̂′ ∈ {P, P ′}, then triple (P, P ′, u) may only be responsible for triple (P̃ , P̃ ′, u). If exactly
one of Q̂, Q̂′ lies in {P, P ′}, for example, Q̂ = P , then two cases are possible: if vertex u lies between
the first endpoint of P and v, then triple (P,Q′, u) may only be responsible for triple (P̃ , Q′, u), and
otherwise it may only be responsible for triple (P̃ ′, Q′, u). We conclude that N2(u) ≤ N1(u).

Consider now the case where u = v, and consider some triple (Q,Q′, v) ∈ ΠT (P ′). If neither of the two

paths Q,Q′ lies in
{
P̃ , P̃ ′

}
, then triple (Q,Q′, v) lies in ΠT (P), and we make (Q,Q′, v) responsible

for itself. Note that, in case where u = v, it is impossible that the triple (P̃ , P̃ ′, v) lies in ΠT (P ′).
Therefore, it remains to consider the triples (Q,Q′, v), where exactly one of the paths Q,Q′ lies in{
P̃ , P̃ ′

}
. We call such triples problematic triples, and we assume w.l.o.g. that in each such triple,

Q 6∈
{
P̃ , P̃ ′

}
. If path Q participates in a problematic triple, then we say that path Q is a problematic

path.

We denote by ea, e
′
a the two edges on path P that are incident to vertex v, and we assume that

ea appears before e′a on P . We denote by eb, e
′
b the two edges on path P ′ that are incident to v,

and we assume that eb appears before e′b on P ′. Recall that path P̃ contains edges ea and e′b, while
path P̃ ′ contains edges eb and e′a. Recall that edges ea, eb, e

′
a, e
′
b must appear in this circular order in

Ov ∈ Σ, since paths P and P ′ are transversal (recall that the ordering is unoriented). We use the
edges of {ea, eb, e′a, e′b} to partition the edge set δG(v)\{ea, eb, e′a, e′b} into four subsets: set E1 of edges
appearing between ea and eb in Ov; set E2 of edges appearing between eb and e′a; set E3 of edges
appearing between e′a and e′b, and set E4 of all remaining edges, that must appear between e′b and ea
(see Figure 42).

Figure 42: A schematic view of edges ea, eb, e
′
a, e
′
b and edge sets {Ei}1≤i≤4.

241

Consider now some problematic path Q, and denote by e(Q), e′(Q) the two edges that lie on Q and are
incident to v. Note that e(Q), e′(Q) must lie in different sets of {E1, . . . , E4}. Since path P̃ contains
edges ea, e

′
b, while path P̃ ′ contains edges e′a, eb, in order for path Q to be problematic, at least one of

the two edges e(Q), e′(Q) must lie in one of the sets E2, E4. We assume w.l.o.g. that e(Q) ∈ E2. If
e′(Q) ∈ E4, then both (Q, P̃ , v) and (Q, P̃ ′, v) are problematic pairs. But in this case, both (Q,P, v)
and (Q,P ′, v) lied in ΠT (P). We make triple (Q,P, v) responsible for (Q, P̃ , v), and we make triple
(Q,P ′, v) responsible for (Q, P̃ ′, v). Otherwise, e′Q ∈ E1 or e′Q ∈ E3 must hold. In the either case, the

only problematic triple involving path Q is (Q, P̃ ′, v). In the former case, (Q,P ′, v) ∈ ΠT (P), and we
make this triple responsible for (Q, P̃ ′, v), while in the latter case, (Q,P, v) ∈ ΠT (P), and we make
this triple responsible for (Q, P̃ ′, v). So far, we have assigned, to every triple (Q,Q′, v) ∈ ΠT (P ′), a
distinct triple (Q̂, Q̂′, v) ∈ ΠT (P) that is responsible for it. Note that triple (P, P ′, v) is not responsible
for any triple (Q,Q′, v) ∈ ΠT (P ′), so N2(v) < N1(v). We conclude that |ΠT (P ′)| < |ΠT (P)|.

D.3 Proof of Lemma 4.7

We first preprocess the set R of paths by removing cycles from the paths, to obtain a collection R of
simple paths. The algorithm is iterative. Throughout the algorithm, we maintain a set R̂ of paths
in G, that is initialized to be R. The algorithm proceeds in iterations, as long as ΠT (R̂) 6= ∅. An
iteration is executed as follows. Let (P, P ′, v) be any triple in ΠT (R̂). We perform path splicing of
P and P ′ at vertex v, obtaining two new paths P̃ and P̃ ′. We then remove cycles from P̃ and P̃ ′,
to obtain two simple paths, which are then added to R̂, replacing the paths P and P ′. Note that,
from Observation 4.6, multisets S(R̂), T (R̂) remain unchanged after the execution of the iteration.
It is also easy to verify, from the definition of the splicing procedure, that, for every edge e ∈ E(G),
congG(R̂, e) may not increase after the iteration execution. Moreover, if the paths P̃ , P̃ ′ obtained after
the splicing procedure are simple, then |ΠT (R)| is guaranteed to decrease after the current iteration,
while otherwise,

∑
R∈R̂ |E(R)| must decrease. We conclude that, after every iteration of the algorithm,

either
∑

R∈R̂ |E(R)| decreases, or
∑

R∈R̂ |E(R)| remains unchanged and |ΠT (R̂)| decreases. Since

|ΠT (R̂)| ≤ |R̂|2 · |V (G)|, the number of iterations in the algorithm is bounded by |R̂|2 · |V (G)| · |E(G)|,
and so the algorithm is efficient. The output R′ of the algorithm is the set R̂ of paths that is
obtained when the algorithm terminates. From the above discussion, we get that S(R′) = S(R) and
T (R′) = T (R). Once the algorithm terminates, the paths in set R′ = R̂ are non-transversal with
respect to Σ. Lastly, from the above discussion, for every edge e ∈ E(G), congG(R̂, e) may not increase
over the course of the algorithm, and so congG(R′, e) ≤ congG(R, e) must hold.

D.4 Proof of Lemma 4.8

We use the following claim.

Claim D.1 Let G be a graph, S a subset of vertices in G, and x, y ∈ S two distinct vertices. Assume
that (A,B) is a minimum cut separating x from S \ {x} with x ∈ A, and (A′, B′) is a minimum
cut separating y from S \ {y} with y ∈ A′. Consider another cut (Â, B̂), where Â = A \ A′, and
B̂ = V (G) \ Â. Then (Â, B̂) is a minimum cut separating x from S \ {x} in G.

Proof: Since (A′, B′) is a cut separating y from S \ {y} with y ∈ A′, we get that A′ ∩ S = {y}.
Similarly, A ∩ S = {x}. Therefore, Â ∩ S = {x}, and so (Â, B̂) is indeed a cut separating x from
S \{x}. It now remains to show that |E(Â, B̂)| ≤ |E(A,B)|. Denote Â′ = A′ \A, and B̂′ = V (G)\ Â′.
Using the same argument as above, (Â′, B̂′) is a cut separating y from S \ {y}.
From submodularity of cuts, for any pair X,Y of vertex subsets in a graph G, |δG(X)| + |δG(Y)| ≥

242

|δG(X \ Y)|+ |δG(Y \X)|. Therefore:

|δG(A)|+ |δG(A′)| ≥ |δG(A \A′)|+ |δG(A′ \A)| = |δG(Â)|+ |δG(Â′)|.

Notice however that (A,B) is a minimum cut separating x from S \ {x}, so |δG(A)| = |E(A,B)| ≤
|E(Â, B̂)| = |δG(Â)|. Similarly, since (A′, B′) is a minimum cut separating y from S \ {y}, we get
that |δG(A′)| = |E(A′, B′)| ≤ |E(Â′, B̂′)| = |δG(Â′)|. We conclude that |δG(A)|+ |δG(A′)| = |δG(Â)|+
|δG(Â′)| must hold. If we assume for contradiction that (Â, B̂) is not a minimum cut separating x
from S \ {x}, then |δG(A)| < |δG(Â)| must hold, and so |δG(A′)| > |δG(Â′)|, a contradiction to the
minimality of the cut (A′, B′). We conclude that (Â, B̂) is a minimum cut separating x from S \ {x}.

We now complete the proof of Lemma 4.8 using Claim D.1. Recall that we are given a set S =
{s1, . . . , sk} of vertices of graph G. We first compute, for all 1 ≤ i ≤ k, a minimum cut separating
{si} from S \ {si} in G, that we denote by (Ui, Ui), with si ∈ Ui. For each 1 ≤ i ≤ k, we then let
Ai = Ui \ (

⋃
1≤j≤k,j 6=i Uj). Clearly, for all 1 ≤ i < j ≤ k, Ai ∩Aj = ∅.

Consider now some index 1 ≤ i ≤ k. We claim that (Ai, V (G) \ Ai) is a minimum cut separating si
from S \ {si} in graph G. For convenience, assume that i = k (the other cases are symmetric). For all
1 ≤ j < k, let Zj = Uk \ (U1 ∪U2 ∪ · · · ∪Uj), so that Zk−1 = Ak. Set Z0 = Uk. By applying Claim D.1
to each of the sets Z0, . . . , Zk−1 in turn, and using the fact that, for all 1 ≤ j ≤ k− 1, Zj = Zj−1 \Uj ,
we get that, for all 0 ≤ j ≤ k− 1, (Zj , V (G) \Zj) is a minimum cut separating sk from S \ {sk} in G.

It remains to compute, for each 1 ≤ i ≤ k, a set Qi of paths routing the edges of δ(Ai) to si. Fix
an index 1 ≤ i ≤ k. We construct a flow network as follows. Let Hi be the graph obtained from
G[Ai] ∪ δG(Ai), by contracting all vertices that do not belong to Ai into a single vertex, that we
denote by ti. We set the capacity of every edge in Hi to be 1, and compute a maximum si-ti flow in
the resulting network. From the max-flow / min-cut theorem, the value of the resulting flow must be
|δG(Aj)|, and from the integrality of flow we can ensure that the resulting flow is integral. We can then
use this flow to obtain a set Qi = {Qi(e) | e ∈ δG(e)} of edge-disjoint paths, where, for all e ∈ δG(e),
path Qi(e) has e as its first edge, si as its last vertex, and all inner vertices of Qi(e) are contained in
Ai.

D.5 Proof of Theorem 4.11

Let 0 < η < 1 be some parameter. In order to avoid confusion, throughout this proof, we will refer to
η-balanced cuts as η-edge-balanced cuts. We now define the notion of η-vertex-balanced cuts, that will
be used in this proof. We say that a cut (A,B) in a graph G is η-vertex-balanced if |A|, |B| ≤ η · |V (G)|.
We say that a cut (A,B) is a minimum η-vertex-balanced cut in G if (A,B) is an η-vertex-balanced
cut of minimum value |E(A,B)|. We need the following theorem.

Theorem D.2 (Corollary 2 in [ARV09]) For every constant 1/2 < η < 1, there is another con-
stant η < η′ < 1, and an efficient algorithm, that, given any simple connected graph G with n vertices,
computes an η′-vertex-balanced cut (A,B) in G, whose value |E(A,B)| is at most βARV(n) times the
value of a minimum η-vertex-balanced cut of G.

We now turn to prove Theorem 4.11. Let G be the input graph, with |E(G)| = m. For every vertex
v ∈ V (G), we denote by dv = degG(v) the degree of v in G. For each such vertex v ∈ V (G), we denote
δG(v) = {e1(v), . . . , edv(v)}, where the edges are indexed arbitrarily, and we let Kv be a complete
graph on dv vertices. We denote V (Kv) = {x1(v), . . . , xdv(v)}.
We construct a new graph H as follows. First, we let H be a disjoint union of graphs Kv, for all
v ∈ V (G). We call all edges in

⋃
v∈V (G)E(Kv) internal edges. Next, we consider the edges of the

243

graph G one by one. Consider any such edge e = (v, v′), and assume that e = ei(v) = ej(v
′).

In other words, e is the ith edge incident to v and the jth edge incident to v′. We add the edge
e′ = (xi(v), xj(v

′)) to graph H, and we view this edge as the copy of the edge e. We call the resulting
set {e′ | e ∈ E(H)} of edges external edges of H. This completes the definition of the graph H. Note
that |V (H)| =

∑
v∈V (G) dv = 2m, and every vertex of H is incident to exactly one external edge.

Consider now any cut (A′, B′) in graph H. We say that cut (A′, B′) is canonical if, for every vertex
v ∈ V (G), either V (Kv) ⊆ A′, or V (Kv) ⊆ B′.
Let (X,Y) be a minimum η̂-edge-balanced cut in graph G, and let ρ = |EG(X,Y)| denote its value.
We start with the following observation.

Observation D.3 There is an η1-vertex-balanced cut in graph H of value at most ρ, for η1 = 1+η̂
2 .

Proof: We construct a cut (X ′, Y ′) in graph H using the cut (X,Y) in G, as follows. We start
with X ′, Y ′ = ∅. For every vertex v ∈ V (H), if v ∈ X, then we add all vertices of Kv to X ′, and
otherwise we add them to Y ′. It is immediate to verify that the value of the resulting cut (X ′, Y ′) is
|EH(X ′, Y ′)| = |EG(X,Y)| = ρ.

We now show that cut (X ′, Y ′) is η1-vertex-balanced. In order to do so, it is enough to show that
|X ′|, |Y ′| ≤ η1 · |V (H)|. We show that |X ′| ≤ η1 · |V (H)|. The proof for Y ′ is symmetric. Indeed:

|X ′| =
∑
v∈X
|V (Kv)| =

∑
v∈X

dv = 2|EG(X)|+ |EG(X,Y)| ≤ |EG(X)|+m ≤ η̂m+m ≤ 1 + η̂

2
· |V (H)|,

which is bounded by η1|V (H)| (we have used the fact that |V (H)| = 2m).

We can now use the algorithm from Theorem D.2 to compute an η2-vertex-balanced cut (X ′, Y ′) in
graph H, whose value is at most ρ′ = βARV(2m) · ρ. Here, η1 < η2 < 1 is some constant. Note that,
if cut (X ′, Y ′) were canonical, we could immediately obtain a corresponding cut (A,B) in graph G,
whose value is at most ρ′, with the guarantee that (A,B) is a η̂′-edge-balanced cut, for some constant
η̂′. We use the following observation in order to convert the cut into a canonical one.

Observation D.4 There is an efficient algorithm, that, given an η′-vertex-balanced cut (X ′, Y ′) in
graph H of value ρ′, for some 0 < η′ < 1, computes a canonical η∗-vertex-balanced cut (X∗, Y ∗) in

graph H of value ρ∗ ≤ O(ρ′), for η∗ = max
{

1+η′

2 , 0.95
}

.

Proof: For every vertex v ∈ V (G), we denote Xv = X ′ ∩ V (Kv) and Yv = Y ′ ∩ V (Kv). Notice
that graph Kv contributes |Xv| · |Yv| edges to the cut (X ′, Y ′). We say that vertex v is indecisive if

|Xv|, |Yv| ≥ 1−η′
2 · dv, and we say that it is decisive otherwise.

We modify the cut (X ′, Y ′) in two steps. In the first step, we construct a new cut (X ′′, Y ′′) in graph H
as follows. We start from (X ′′, Y ′′) = (X ′, Y ′). We then consider every decisive vertex v ∈ V (G) one

by one. Consider any such vertex v, and recall that either |Xv| < 1−η′
2 ·dv holds, or |Yv| < 1−η′

2 ·dv. In
the former case, we move the vertices of Xv to Y ′′, while in the latter case we move the vertices of Yv
to X ′′. Notice that |Xv| · |Yv| edges of Kv lie in the cut (X ′, Y ′). At the end of the current iteration,
no internal edges of Kv contribute to the cut (X ′′, Y ′′), but we may have added new external edges
to the cut: if vertices of Xv were moved to Y ′′, then we may have added up to |Xv| such new edges
(edges incident to vertices of Xv), and otherwise we may have added up to |Yv| such new edges. In
either case, it is easy to see that |E(X ′′, Y ′′)| may not grow as the result of the current iteration. The
first step terminates once every decisive vertex of G is processed. Notice that the total number of new
vertices that we may have added to set X ′′ over the course of this step is at most:

1− η′

2
·
∑

v∈V (G)

dv ≤ (1− η′)m.

244

Since we are guaranteed that |X ′| ≤ η′ · (2m), we get that, at the end of the current step, |X ′′| ≤
η′ · (2m) + (1− η′)m ≤ 1+η′

2 · (2m) holds. Similarly, |Y ′′| ≤ 1+η′

2 · (2m). We conclude that (X ′′, Y ′′) is

an η′′-vertex-balanced cut in H, of value at most ρ′, where η′′ = 1+η′

2 .

In the second step, we construct the final cut (X∗, Y ∗) in H by taking care of indecisive vertices.
Assume first that there is some indecisive vertex v ∈ V (H) with dv ≥ m/10. Notice that, in this case,

the number of edges that graph Kv contributes to cut (X ′, Y ′) is at least |Xv| · |Yv| ≥ 1−η′
4 · (dv)2 ≥

1−η′
400 ·m

2. Therefore, ρ′ > 1−η′
400 ·m

2 must hold. Consider now a new cut (X∗, Y ∗) in graph H, where
X∗ = V (Kv) and Y ∗ = V (H)\X∗. Notice that |X∗| = dv ≤ m and |Y ∗| ≤ 2m−|X∗| ≤ 2m·0.95 holds.
Therefore, cut (X∗, Y ∗) is 0.95-vertex-balanced. Additionally, |EH(X∗, Y ∗)| ≤ dv ≤ m ≤ O(ρ′). We
then return the cut (X∗, Y ∗) as the outcome of the algorithm. We assume from now on that for every
indecisive vertex v ∈ V (H), dv < m/10.

We start with (X∗, Y ∗) = (X ′′, Y ′′), and then process every indecisive vertex v ∈ V (G) one by
one. Consider an iteration when vertex v is processed. Recall that graph Kv contributes at least
|Xv| · |Yv| ≥ max {|Xv|, |Yv|} edges to the cut (X∗, Y ∗). If |X∗| < |Y ∗|, then we move the vertices of
Yv from Y ∗ to X∗. Notice that, after this transformation, the inner edges of Kv no longer contribute
to the cut, and at most |Yv| new outer edges are added to the cut. Therefore, the value of the cut
does not increase. Otherwise, |X∗| ≥ |Y ∗|, and we move the vertices of Xv from X∗ to Y ∗. Using the
same argument as before, the value of the cut does not increase. This completes the description of an
iteration. Consider the cut (X∗, Y ∗) that is obtained at the end of the algorithm, after all indecisive
vertices are processed.

We now show that |X∗|, |Y ∗| ≤ η∗ · (2m). We prove this for X∗, and the proof for Y ∗ is symmetric.
We consider two cases. First, if no new vertices were added to X∗ over the course of the second step,
then |X∗| ≤ |X ′′| ≤ 1+η′

2 · (2m). Assume now that some vertices were added to X∗, and let v be the
last indecisive vertex of G, for which the vertices of Kv were added to X∗. Then before vertex v was
processed, |X∗| ≤ |Y ∗| held. Since dv ≤ m/10 from our assumption, at the end of the iteration when
v was processed, |X∗| ≤ 1.1m held. Since no new vertices were added to X∗ in subsequent iterations,
we get that |X∗| ≤ 1.1m ≤ η∗ · (2m) holds at the end of the algorithm. We conclude that (X∗, Y ∗) is
an η∗-balanced cut, of value at most O(ρ′).

By applying the algorithm from Observation D.4 to the η′-vertex-balanced cut (X ′, Y ′) in graph H,

we obtain a canonical η∗-vertex-balanced cut (X∗, Y ∗) in graph H, with η∗ = max
{

1+η′

2 , 0.95
}

, whose

value is ρ∗ ≤ O(ρ′) = O(βARV(m)) ·ρ. We use this cut in order to construct a cut (A,B) in G as follows:
for every vertex v ∈ V (G), if V (Kv) ⊆ X∗, then vertex v is added to A, and otherwise it is added to
B. Notice that |EG(A)| ≤

∑
v∈A dv/2 ≤ |X∗|/2 ≤ η∗ ·m. Similarly, |EG(B)| ≤ η∗ ·m. Therefore, cut

(A,B) is η∗-edge-balanced. Additionally, |EG(A,B)| ≤ |EH(A∗, B∗)| ≤ O(βARV(m)) · ρ.

D.6 Proof of Theorem 4.12

We use the following theorem from [LT79].

Theorem D.5 (Theorem 4 from [LT79]) Let G be any simple n-vertex planar graph with weights
wv ≥ 0 on its vertices v ∈ V (G), such that

∑
v∈V (G)wv ≤ 1. Then there is a partition (A,B,C) of

V (G), such that no edge connects a vertex of A to a vertex in B;
∑

v∈Awv,
∑

v∈B wv ≤ 2/3; and

|C| ≤
√

8n.

In order to prove Lemma 4.12, we define a new simple planar graph G′ that is obtained by modifying
graph G, using its optimal drawing. We then apply Theorem D.5 to graph G′, and transform the
resulting partition (A,B,C) of V (G′) into a (3/4)-edge-balanced cut of graph G, whose value is at
most O(

√
OPTcr(G) + ∆ ·m).

245

In order to define graph G′, we first define an intermediate graph G1. Consider the input graph G
and its optimal drawing ϕ in the plane. For every vertex v ∈ V (G), we denote dv = degG(v), and we
denote δG(v) = {e1(v), . . . , edv(v)}, where the edges are indexed according to the order in which their
images enter the image of v in ϕ, in the counter-clock-wise direction. We let Hv be the (dv × dv)-grid,
and we denote the set of the vertices on the first row of the grid by X(v) = {x1(v), . . . , xdv(v)}, where
the vertices are indexed in their natural order. In order to define graph G1, we start with the disjoint
union of all grids in {Hv}v∈V (G). We refer to the edges that lie in these grids as internal edges. Next,

we process every edge e ∈ E(G) one by one. Consider any such edge e = (v, v′), and assume that
e = ei(v) = ej(v

′), that is, e is the ith edge incident to v and the jth edge incident to v′. We then
add an edge e′ = (xi(v), xj(v

′)) to graph G1. We think of edge e′ as the copy of the edge e in G1.
The edges in set {e′ | e ∈ E(G)} are called external edges of graph G1. We say that a cut (A,B) in
graph G1 is canonical if, for every vertex v ∈ V (G), either V (Hv) ⊆ A, or V (Hv) ⊆ B holds. Note
that a canonical cut (A,B) in graph G1 naturally defines a cut (A′, B′) of the same value on graph
G, where a vertex v ∈ V (G) is added to A′ if V (Hv) ⊆ A, and it is added to B′ otherwise. Lastly,
note that the optimal drawing ϕ of G defines a drawing ϕ1 of G1 with the same number of crossings.
In order to obtain drawing ϕ1 of G1, we start with the drawing ϕ of G, and then inflate the image of
every vertex v ∈ V (G), so that it becomes a disc D(v). We place another smaller disc D′(v) inside
D(v), so that the boundaries of both discs are disjoint. We then place the standard drawing of the
grid Hv inside disc D′(v), so that vertices x1(v), . . . , xdv(v) appear on the boundary of the disc D′(v)
in this counter-clock-wise order. By slightly extending the images of the edges e1(v), . . . , edv(v) inside
D(v) \ D′(v), we can ensure that the image of each such edge ei(v) terminates at the image of the
vertex xi(v). Once all vertices of V (G) are processed in this manner, we obtain a drawing ϕ1 of graph
G1, in which the number of crossings is bounded by cr(ϕ) = OPTcr(G).

In order to obtain the final graph G′, we start with G′ = G1, and we denote V (G1) = X. Next,
for every external edge e′ ∈ E(G1), we subdivide the edge with a new vertex ue′ . In other words,
if e′ = (xi(v), xj(v

′)), then we replace the edge with a path consisting of two edges: (xi(v), ue′),
and (ue′ , xj(v

′)). We denote this new set of vertices representing the external edges of G1 by U =
{ue′ | e ∈ E(G)}. Note that drawing ϕ1 of graph G1 can be easily transformed into a drawing of this
new graph, without increasing the number of crossings. Denote the resulting drawing by ϕ2. In our
last step, for every crossing point p between a pair a, a′ of edges in drawing ϕ2, we replace point p with
a new vertex yp. In other words, if a = (s, t) and a′ = (s′, t′), then we add a new vertex yp to the graph.
We then replace edge a = (s, t) with two new edges, (s, yp) and (yp, t), and we similarly replace edge
a′ with two new edges, (s′, yp) and (yp, t

′). We continue processing every crossing point in drawing
ϕ2 one by one in this manner, until no more crossings remain. We denote this new set of vertices,
that represent all crossing points in the original drawing ϕ2, by Y . Note that |Y | = OPTcr(G). This
completes the definition of the graph G′. Observe that V (G′) = X ∪ Y ∪ U , and so:

|V (G′)| =
∑

v∈V (G)

(dv)
2 +m+ OPTcr(G) ≤ ∆ ·

∑
v∈V (G)

dv +m+ OPTcr(G) ≤ 3∆m+ OPTcr(G).

It is also immediate to verify that G′ is a simple planar graph, and that the maximum vertex degree
in G′ is at most 4. We now assign weights wv to vertices v ∈ V (G′), as follows: every vertex ue′ ∈ U
is assigned weight 1/m, and all other vertices are assigned weight 0. It is immediate to verify that∑

v∈V (G′)wv = 1.

From Theorem D.5, there is a partition (A,B,C) of V (G′), such that no edge connects a vertex of
A to a vertex in B;

∑
v∈Awv,

∑
v∈B wv ≤ 2/3; and |C| ≤

√
8|V (G′)| ≤

√
24∆m+ 8OPTcr(G). We

convert this partition of vertices of G′ into a (3/4)-balanced cut in graph G in three steps. In the first
step, we use the partition (A,B,C) of V (G′) in order to construct a cut (A1, B1) in graph G1. In the
second step, we transform this cut into a canonical cut (A2, B2) in graph G1. Lastly, in the third step,

246

we use this canonical cut in order to define the final cut (A∗, B∗) in graph G. We now describe each
of the steps in turn.

Step 1: Cut in Graph G1. We define a cut (A1, B1) in graph G1 as follows. We start with
A1 = B1 = ∅, and then process every vertex v ∈ V (G) one by one. When vertex v ∈ V (G) is
processed, we consider every vertex x ∈ V (Hv). If x ∈ A ∪C, then we add x to A1, and otherwise we
add x to B1.

Consider now the resulting cut (A1, B1) in graph G1. We first claim that |EG1(A1, B1)| ≤ 4|C|. In
order to prove this, we assign, to every edge e ∈ EG1(A1, B1), some vertex x ∈ C that is responsible
for e, and we will ensure that every vertex of C is responsible for at most 4 edges of EG1(A1, B1).
Consider some edge e ∈ EG1(A1, B1). If either of the endpoints of e lies in set C, then we assign e to
that endpoint. Otherwise, there must be some vertex x of graph G′ that subdivided the edge e (so
either x ∈ U or x ∈ Y holds), and x ∈ C. In this case, we assign e to this vertex x. Since the degree of
every vertex in G′ is at most 4, every vertex of C may be assigned to at most 4 edges of EG1(A1, B1),
and so we conclude that |EG1(A1, B1)| ≤ 4|C| ≤ 4 ·

√
24∆m+ 8OPTcr(G).

Next, we bound the total number of external edges in EG1(A1) and in EG1(B1). For convenience, de-
note by E′ the set of all external edges in graph G1. Consider some external edge e′ = (xi(v), xj(v

′)) ∈
E′. Let P (e′) be the path that replaced the edge e′ in graph G′. Recall that path P (e′) is a path
connecting xi(v) to xj(v

′), it contains the vertex ue′ representing the edge e′, and possibly additional
vertices representing the crossing points of edge e′ with other edges. We claim that either vertex ye′

lies in A, or some vertex of P (e′) (including possibly xi(v) or xj(v
′)) must lie in C. Indeed, assume

that ye′ 6∈ A. If none of the vertices of P (e′) lie in C, then ye′ ∈ B, while xi(v), xj(v
′) ∈ A must hold.

This is impossible since there are no edges connecting vertices of A to vertices of B. Therefore, either
ye′ ∈ A, or at least one vertex on P (e′) lies in C. Since every vertex of G′ has degree at most 4, every
vertex of C may lie on at most 4 paths in {P (e′) | e ∈ E(G)}. Since the weight of every vertex in U
is 1/m, we get that:

|E′ ∩ EG1(A1)| ≤ |U ∩A|+ 4|C| ≤ m ·
∑
v∈A

wv + 4|C| ≤ 2m/3 + 4 ·
√

24∆m+ 8OPTcr(G).

Using similar reasoning, |E′ ∩ EG1(B1)| ≤ 2m/3 + 4 ·
√

24∆m+ 8OPTcr(G).

Step 2: Canonical Cut in Graph G1. In this step we construct a cut (A2, B2) in graph G1

that is canonical, by gradually modifying the cut (A1, B1). For every vertex v ∈ V (G), we denote
nA(v) = |X(v) ∩A1|, and nB(v) = |X(v) ∩B1|. We use the following simple observation.

Observation D.6 For every vertex v ∈ V (G), |E(Hv) ∩ EG1(A1, B1)| ≥ min {nA(v), nB(v)}.

Proof: We partition the columns of the grid Hv into two subsets, W ′,W ′′, as follows. For 1 ≤ i ≤ dv,
the ith column of the grid is added to set W ′ if vertex xi(v) (the vertex of the ith column that lies on
the first row of the grid) lies in A1. Otherwise, the ith column is added to W ′′.
We now consider three cases. The first case happens if, for every row R of the grid Hv, at least one edge
of R lies in EG1(A1, B1). Clearly, in this case, |E(Hv)∩EG1(A1, B1)| ≥ dv ≥ min {nA(v), nB(v)}. The
second case happens if, for every column W ∈ W ′, at least one edge of W lies in EG1(A1, B1). In this
case, |E(Hv)∩EG1(A1, B1)| ≥ nA(v) ≥ min {nA(v), nB(v)}. Lastly, the third case happens if, for every
column W ∈ W ′′, at least one edge of W lies in EG1(A1, B1). In this case, |E(Hv) ∩ EG1(A1, B1)| ≥
nB(v) ≥ min {nA(v), nB(v)}.
We now claim that at least one of the above three cases has to happen. Indeed, assume otherwise.
Then there is some row R of the grid, and two columns W ∈ W ′, W ′ ∈ W ′′, such that no edge of

247

E(R) ∪ E(W ′) ∪ E(W ′′) lies in EG1(A1, B1). Assume that W ′ is the ith column and W ′′ is the jth
column of the grid Hv. Since xi(v) ∈ A1, xj(v) ∈ B1, and R ∪W ′ ∪W ′′ is a connected graph, this is
impossible.

We say that a vertex v ∈ V (G) is indecisive iff nA, nB ≥ dv/32; otherwise we say that vertex v is
decisive. We start with (A2, B2) = (A1, B1), and then gradually modify this cut, by processing the
decisive vertices one by one. When such a vertex v is processed, if nA < dv/32, then we move the
vertices of V (Hv)∩A2 from A2 to B2. Notice that this transformation adds up to nA new external edges
to cut EG1(A2, B2) – the edges incident to the vertices of X(v)∩A2. However, from Observation D.6,
at least nA = |X(v) ∩A2| edges of Hv contributed to the cut EG1(A2, B2) before this transformation,
and they no longer contribute to the cut after the transformation. Therefore, |EG1(A2, B2)| does not
increase as the result of this transformation. If nA ≥ dv/32, then nB < dv/32 must hold, and we move
the vertices of V (Hv) ∩ B2 from B2 to A2. Using the same arguments as before, |EG1(A2, B2)| does
not increase.

Consider the cut (A2, B2) of G1 that is obtained after all decisive vertices are processed. From the
above discussion, |EG1(A2, B2)| ≤ |EG1(A1, B1)| ≤ 4 ·

√
24∆m+ 8OPTcr(G). Moreover, the total

number of new edges of E′ that were added to EG1(A2) is bounded by
∑

v∈V (G) dv/32 ≤ m/16. Since

|E′ ∩ EG1(A1)| ≤ 2m/3 + 4 ·
√

24∆m+ 8OPTcr(G), if OPTcr(G) ≤ m2/240 and ∆ ≤ m/240, then

|E′ ∩ EG1(A2)| ≤ m/16 + 2m/3 + 4 ·
√

24∆m+ 8OPTcr(G) ≤ 3m/4.

Using the same reasoning, if OPTcr(G) ≤ m2/240, then |E′ ∩ EG1(B2)| ≤ 3m/4.

Next, we construct a canonical cut (A3, B3) in graph G1, by starting with (A3, B3) = (A2, B2), and
processing every indecisive vertex v ∈ V (G) one by one. When vertex v is processed, if |E′∩EG1(A3)| ≤
|E′∩EG1(B3)|, then we move all vertices of Hv∩B3 from B3 to A3, and otherwise we move all vertices
of Hv ∩A3 from A3 to B3. Note that in either case, the total number of external edges that are added
to cut (A3, B3) is bounded by dv. From Observation D.6, the number of edges of Hv that contributed
to the cut (A3, B3) before this transformation is at least min {nA, nB}. Since vertex v is indecisive,
nA, nB ≥ dv/32. Once every indecisive vertex of G is processed, we obtain the final cut (A3, B3) in
graph G1, that must be canonical. From the above discussion:

|EG1(A3, B3)| ≤ 32 · |EG1(A2, B2)| ≤ 32|EG1(A1, B1)| ≤ O
(√

∆m+ OPTcr(G)
)
.

We claim that |E′ ∩ EG1(A3)|, |E′ ∩ EG1(B3)| ≤ 3m/4. We prove this for A3, as the proof for B3 is
symmetric. If no new vertices were added to set A3, then |E′ ∩ EG1(A3)| ≤ |E′ ∩ EG1(A2)| ≤ 3m/4
holds. Assume now that new vertices were added to A3, and let v be the last indecisive vertex that
was processed by the algorithm, for which vertices of Hv were added to A3. Then, before vertex
v was processed, |E′ ∩ EG1(A3)| ≤ |E′ ∩ EG1(B3)| held; therefore, |E′ ∩ EG1(A3)| ≤ m/2. Note
that moving the vertices of V (Hv) ∩ B3 from B3 to A3 could have added at most dv ≤ ∆ ≤ m/240

new edges to E′ ∩ EG1(A3), and so |E′ ∩ EG1(A3)| ≤ 3m/4 must hold at the end of this iteration.
Since the iteration when v was processed is the last iteration when vertices were added to A3, we
conclude that |E′ ∩ EG1(A3)| ≤ 3m/4 holds at the end of the algorithm. Using the same reasoning,
|E′ ∩ EG1(B3)| ≤ 3m/4 holds as well.

Step 3: Balanced Cut in G. We are now ready to define the final cut (A∗, B∗) in graph G. We
add to A∗ every vertex v ∈ V (G) with V (Hv) ⊆ A3, and we add all remaining vertices of V (G) to

B∗. It is easy to verify that |EG(A∗, B∗)| = |EG1(A3, B3)| ≤ O
(√

∆m+ OPTcr(G)
)

. Additionally,

|EG(A∗)| ≤ |E′ ∩ EG1(A3)| ≤ 3m/4, and similarly |EG(B∗)| ≤ |E′ ∩ EG1(B3)| ≤ 3m/4. We conclude
that (A∗, B∗) is a (3/4)-edge-balanced cut in graph G, whose value is at most O(

√
OPTcr(G) + ∆ ·m).

248

D.7 Proof of Observation 4.14

The proof is practically identical to the proof of Observation D.6. Consider a cut (A,B) in graph H,
and denote nA = |S ∩A| and nB = |S ∩B|. It is enough to show that |E(A,B)| ≥ min {nA, nB}.
We partition the columns of the grid graph H into two subsets, W ′,W ′′, as follows. For 1 ≤ i ≤ r, the
ith column of the grid is added to set W ′ if the unique vertex of S lying in the ith column belongs to
A. Otherwise, the ith column is added to W ′′.
We now consider three cases. The first case happens if, for every row R of the grid H, at least
one edge of R lies in E(A,B). Clearly, in this case, |E(A,B)| ≥ r ≥ min {nA, nB}. The second
case happens if, for every column W ∈ W ′, at least one edge of W lies in E(A,B). In this case,
|E(A,B)| ≥ nA ≥ min {nA, nB}. Lastly, the third case happens if, for every column W ∈ W ′′, at least
one edge of W lies in E(A,B). In this case, |E(A,B)| ≥ nB ≥ min {nA, nB}.
We now claim that at least one of the above three cases has to happen. Indeed, assume otherwise.
Then there is some row R of the grid, and two columns W ∈ W ′, W ′ ∈ W ′′, such that no edge of
E(R) ∪ E(W ′) ∪ E(W ′′) lies in E(A,B). But the unique vertex of S ∩ V (W) lies in A, the unique
vertex of S ∩ V (W ′) lies in B, and R ∪W ′ ∪W ′′ is a connected graph, a contradiction.

D.8 Proof of Theorem 4.17

We construct an s-t flow network, as follows. We start with the graph G, and then add a new source
vertex s, that connects to every vertex in T1 with an edge. We also add a new destination vertex
t, and connect every vertex of T2 to t with an edge. Denote the resulting graph by H. For every
edge e ∈ E(H), if e is incident to s or to t, then we set its capacity c(e) = 1, and otherwise we set
c(e) = d1/αe. Note that the capacity of every edge in the resulting flow network is integral.

We show below that the value of the maximum s-t flow in the resulting flow network is k = |T1|. From
the integrality of flow, we can then compute an integral s-t flow f of value k in H. Let P be the set
of all s-t paths in graph H. Since flow f is integral, and since the capacity of every edge incident to
s and to t is 1, for every path P ∈ P, f(P) = 0 or f(P) = 1 holds. Moreover, if P ′ ⊆ P is the set of
all paths P with f(P) = 1, then |P ′| = k. Since the capacity of every edge in {(s, x) | x ∈ T1}, and
the capacity of every edge in {(y, x) | y ∈ T1} is 1, each such edge belongs to exactly one path in P ′.
Therefore, set P ′ of paths naturally defines a one-to-one routing Q of vertices of T1 to vertices of T2

in graph G, with congG(Q) ≤ d1/αe. In order to complete the proof of the theorem, it is now enough
to show that the value of the maximum s-t flow in graph H is at least k.

Assume for contradiction that this is not the case. Consider a minimum s-t cut (A,B) in graph H.
From our assumption, the value of the cut is less than k. We partition the set T1 of vertices into two
subsets: set T ′1 = T1 ∩ A and set T ′′1 = T1 ∩ B. Note that, for every vertex x ∈ T ′′1 , its corresponding
edge (s, x) belongs to the cut E(A,B). We denote by E1 = {(s, x) | x ∈ T ′′1 } the corresponding set of
edges. We also partition the set T2 of vertices into two subsets: set T ′2 = T2 ∩B and set T ′′2 = T2 ∩A.
Note that, for every vertex y ∈ T ′′2 , its corresponding edge (y, t) belongs to the cut E(A,B). We
denote by E2 = {(y, t) | y ∈ T ′′2 } the corresponding set of edges.

Lastly, we denote by E′ = E(A,B) \ (E1 ∪E2) the set of the remaining edges in the cut (A,B). Note
that each edge in E′ has capacity d1/αe, while each edge in E1 ∪ E2 has capacity 1. Since we have
assumed that the value of the cut (A,B) is less than k, we get that:

|T ′′1 |+ |T ′′2 |+ |E′| · d1/αe = |E1|+ |E2|+ |E′| · d1/αe =
∑

e∈EH(A,B)

c(e) < k (26)

We define a cut (A′, B′) in graph G using cut (A,B) as follows: A′ = A\{s} and B′ = B \{t}. Notice

249

that |EG(A′, B′)| = |E′|. From Equation (26), we then get that:

|EG(A′, B′)| = |E′| < α · (k − |T ′′1 | − |T ′′2 |)

Since |T ′1| = k − |T ′′1 | and |T ′2| = k − |T ′′2 |, we get that:

|EG(A′, B′)| < α ·min
{
|T ′1|, |T ′2|

}
.

Lastly, since T ′1 ⊆ A′ and T ′2 ⊆ B′, we get that |EG(A′, B′)| < α ·min {|T ∩A′|, |T ∩B′|}, contradicting
the fact that the set T of vertices is α-well-linked in G.

D.9 Proof of Theorem 4.19

Assume first that 0 < α ≤ 1/m. Then we simply let R = {S}. Since α ≤ 1/m, and S is a connected
graph, it is easy to verify that it has the α-bandwidth property in graph G. For each edge e ∈ δG(S),
we simply let P (e) be the path that contains the single edge e. It is easy to verify that cluster set
R = {S}, and the set P(S) = {P (e) | e ∈ δG(S)} of paths have all required properties.

We assume from now on that 1
m < α < min

{
1

64βARV(m)·logm ,
1

48 log2m

}
holds.

Our algorithm maintains a collection R of clusters of S, that is initialized to R = {S}. Throughout
the algorithm, we ensure that the following invariants hold:

I1. all clusters in R are mutually disjoint;

I2.
⋃
R∈R V (R) = V (S); and

I3. for every cluster R ∈ R, |δG(R)| ≤ |δG(S)|.

For a given collection R of clusters with the above properties, we define a budget b(e) for every edge
e ∈ E(G), as follows. If e ∈ δG(S), and the endpoint of e that lies in S belongs to a cluster R ∈ R, then
we set the budget b(e) = 1 + 8α · βARV(m) · log3/2(|δG(R)|). If edge e has its endpoints in two distinct
clusters R,R′ ∈ R, then we set b(e) = 2+8α ·βARV(m) · log3/2(|δG(R)|)+8α ·βARV(m) · log3/2(|δG(R′)|).
Otherwise, we set b(e) = 0. Notice that, for every edge e ∈ E(G), b(e) ≤ 3 always holds. Additionally,
for every edge e ∈

⋃
R∈R δG(R), b(e) ≥ 2 if the endpoints of e lie in two different clusters of R, and

b(e) ≥ 1 if e ∈ δG(S). Therefore, if we denote by B =
∑

e∈E(G) b(e) the total budget in the system,
then, throughout the algorithm, B ≥

∑
R∈R |δG(R)| holds. Lastly, observe that, at the beginning of

the algorithm, B ≤ |δG(S)| · (1 + O(α · βARV(m) · logm)). Throughout the algorithm, we will modify
the clusters in set R, leading to changes in the budgets of the edges of G. We will ensure however
that the total budget B never increases, and so, if R is the final set of clusters that we obtain, then∑

R∈R |δG(R)| ≤ B ≤ (1 +O(α · βARV(m) · logm)) = (1 +O(α · log1.5m)) holds.

Throughout the algorithm, we maintain a partition of the set R of clusters into two subsets: set RA of
active clusters, and set RI of inactive clusters. We will ensure that the following additional invariant
holds:

I4. every cluster R ∈ RI has the α-bandwidth property.

Additionally, we will store, with every inactive cluster R ∈ RI , a set P(R) = {P (e) | e ∈ δG(R)} of
paths in graph G, (that we refer to as witness set of paths for R), such that congG(P(R)) ≤ 100,
and, for every edge e ∈ δG(R), path P (e) has e as its first edge and some edge of δG(S) as its last
edge, and all inner vertices of P (e) lie in V (S) \ V (R). At the beginning of the algorithm, we set

250

RA = R = {S} and RI = ∅. Clearly, all invariants hold at the beginning of the algorithm. We then
proceed in iterations, as long as RA 6= ∅.
In order to execute an iteration, we select an arbitrary cluster R ∈ RA to process. We will either
establish that R has the α-bandwidth property in graph G and compute a witness set P(R) of paths
for R (in which case R is moved from RA to RI); or we will modify the set R of clusters so that the
total budget of all edges decreases by at least 1/m. An iteration that processes a cluster R ∈ RA
consists of two steps. The purpose of the first step is to either establish the α-bandwidth property of
cluster R, or to replace it with a collection of smaller clusters in R. The purpose of the second step
is to either compute the witness set P(R) of paths for cluster R, or to modify the set R of clusters so
that the total budget of all edges decreases. We now describe each of the two steps in turn.

Step 1: Bandwidth Property. Let R ∈ RA be any active cluster, and let R+ be the augmentation
of R in graph G. Recall that R+ is a graph that is obtained from G through the following process. First,
we subdivide every edge e ∈ δG(R) with a vertex te, and we let T = {te | e ∈ δG(R)} be the resulting
set of vertices. We then let R+ be the subgraph of the resulting graph induced by vertex set V (R)∪T .
We apply Algorithm AARV for computing approximate sparsest cut to graph R+, with the set T of
vertices, to obtain a βARV(m)-approximate sparsest cut (X,Y) in graph R+ with respect to vertex set T .
We now consider two cases. The first case happens if |E(X,Y)| ≥ α ·βARV(m) ·min {|X ∩ T |, |Y ∩ T |}.
In this case, we are guaranteed that the minimum sparsity of any T -cut in graph R+ is at least α,
or equivalently, set T of vertices is α-well-linked in R+. From Observation 4.16, cluster R has the
α-bandwidth property in graph G. In this case, we proceed to the second step of the algorithm.

Assume now that |E(X,Y)| < α·βARV(m)·min {|X ∩ T |, |Y ∩ T |}. Since α ≤ min
{

1
64βARV(m)·logm ,

1
48 log2m

}
,

we get that the sparsity of the cut (X,Y) is less than 1. Consider now any vertex t ∈ T , and let v be
the unique neighbor of t in R+. We can assume w.l.o.g. that either t, v both lie in X, or they both lie
in Y . Indeed, if t ∈ X and v ∈ Y , then moving vertex t from X to Y does not increase the sparsity of
the cut (X,Y). This is because, for any two real numbers 1 ≤ a < b, a−1

b−1 ≤
a
b . Similarly, if t ∈ Y and

v ∈ X, then moving t from Y to X does not increase the sparsity of the cut (X,Y). Therefore, we
assume from now on, that for every vertex t ∈ T , if v is the unique neighbor of t in R+, then either
both v, t ∈ X, or both v, t ∈ Y .

Consider now the partition (X ′, Y ′) of V (R), where X ′ = X \ T and Y ′ = Y \ T . It is easy to verify
that |δG(R) ∩ δG(X ′)| = |X ∩ T |, and |δG(R) ∩ δG(Y ′)| = |Y ∩ T |. Let E′ = EG(X ′, Y ′), and assume
w.l.o.g. that |δG(R) ∩ δG(X ′)| ≤ |δG(R) ∩ δG(Y ′)|. Then |E′| < α · βARV(m) · |δG(R) ∩ δG(X ′)| must
hold. We remove cluster R from sets R and RA, and we add instead every connected component of
graphs G[X ′] and G[Y ′] to both sets. It is immediate to verify that R remains a collection of disjoint
clusters of G, and that

⋃
R′∈R V (R′) = V (G). Since |E′| < min {|δG(R) ∩ δG(X ′)|, |δG(R) ∩ δG(Y ′)|},

we get that for every cluster C that we just added to R, |δG(C)| ≤ |δG(R)| ≤ |δG(S)| (from Invariant
I3). Therefore, all invariants continue to hold. We now show that the total budget B decreases by at
least 1/m as the result of this operation.

Note that the only edges whose budgets may change as the result of this operation are edges of
δG(R) ∪ E′. Observe that, for each edge e ∈ δG(R) ∩ δG(Y ′), its budget b(e) may not increase. Since
we have assumed that |δG(R) ∩ δG(X ′)| ≤ |δG(R) ∩ δG(Y ′)|, and since |E′| < |δG(R)|/8, we get that
|δG(X ′)| ≤ 2|δG(R)|/3. Therefore, for every edge e ∈ δG(X ′) ∩ δG(R), its budget b(e) decreases by at
least 8α ·βARV(m) · log3/2(|δG(R)|)−8α ·βARV(m) · log3/2(|δG(X ′)|). Since |δG(X ′)| ≤ 2|δG(R)|/3, we get
that log3/2(|δG(R)|) ≤ log3/2(3|δG(X ′)|/2) ≤ 1 + log3/2(|δG(X ′)|. We conclude that the budget b(e) of
each edge e ∈ δG(X ′) ∩ δG(R) decreases by at least 8α · βARV(m). On the other hand, the budget of
every edge e ∈ E′ increases by at most 3. Since |E′| ≤ α · βARV(m) · |δG(R) ∩ δG(X ′)|, we get that the

251

decrease in the budget B is at least:

8α · βARV(m) · |δG(X ′) ∩ δG(R)| − 3|E′|
≥ 8α · βARV(m) · |δG(X ′) ∩ δG(R)| − 3α · βARV(m) · |δG(R) ∩ δG(X ′)|
≥ 5α · βARV(m) · |δG(R) ∩ δG(X ′)|
> 1/m,

since α ≥ 1/m. To conclude, if |E(X,Y)| < α ·βARV(m) ·min {|X ∩ T |, |Y ∩ T |}, then we have modified
the set R of clusters, so that all invariants continue to hold, and the total budget B decreases by at
least 1/m. In this case, we terminate the current iteration.

From now on we assume that |E(X,Y)| > α · βARV(m) · min {|X ∩ T |, |Y ∩ T |}, which, as observed
already, implies that cluster R has the α-bandwidth property. We now proceed to describe the second
step of the algorithm.

Step 2: Witness Set of Paths. In the second step, we attempt to compute a witness set P(R) of
paths for cluster R. If we succeed in doing so, we will move cluster R from RA to RI . Otherwise, we
will further modify the set R of clusters, so that all invariants continue to hold, and the total budget
decreases by at least 1/m.

We construct the following flow network. Starting from graph G, we contract all vertices of R into a
source vertex s, and we contract all vertices of V (G) \ V (S) into a destination vertex t. Denote the
resulting graph by H, and observe that δH(s) = δG(R), and δH(t) = δG(S). We set the capacity c(e)
of every edge incident to s to 1, and the capacity of every other edge in graph H to 100. We then
compute the maximum s-t flow f in the resulting flow network.

We consider two cases. The first case is when the value of the flow f is |δH(s)|. Since all edge capacities
are integral, we can assume that flow f is integral as well. Note that in this case, for every path P
connecting s to t, either f(P) = 0 or f(P) = 1 must hold, as the capacities of all edges incident to s
are 1. Therefore, flow f naturally defines a collection P ′(R) of s-t paths, with congH(P ′(R)) ≤ 100,
where each edge e ∈ δG(s) serves as the first edge of exactly one such path. Set P ′(R) of paths then
naturally defines a witness set P(R) = {P (e) | e ∈ δG(R)} of paths for cluster R in graph G, with
congG(P(R)) ≤ 100, where, for every edge e ∈ δG(R), path P (e) has e as its first edge and some edge
of δG(S) as its last edge, with all inner vertices of P (e) lying in V (S) \ V (R). We then move cluster
R from RA to RI and terminate the current iteration. It is easy to verify that all invariants continue
to hold, and the total budget B does not change.

It remains to consider the second case, where the value of the flow f in H is less than |δH(s)|. We
compute a minimum s-t cut (A′, B′) in graph H, whose value is less than |δH(s)|. We partition the set
E(A′, B′) of edges into two subsets: set E′ = E(A′, B′) ∩ δH(s), and set E′′ = E(A′, B′) \ E′. Recall
that the capacity of every edge in E′ is 1, while the capacity of every edge in E′′ is 100. Therefore,
|E′|+ 100|E′′| < |δG(R)|.
Observe that cut (A′, B′) in H naturally defines cut (A,B) of graph S: we let A = (A′ \ {s})∪ V (R),
and B = V (S) \A. Notice that δG(A) = EH(A′, B′).

Let A denote the set of all connected components of graph S[A] = G[A]. Let X denote the set of all
clusers R′ ∈ R with R′ ∩ A 6= ∅. For each such cluster R′ ∈ X , let Y(R′) be the set of all connected
components of R′ \A. We need the following observation.

Observation D.7 For every cluster C ∈ A, |δG(C)| ≤ |δG(R)|. Additionally, for every cluster
R′ ∈ X , and every cluster R′′ ∈ Y(R′), |δG(R′′)| ≤ |δG(R′)|.

Proof: Consider first some cluster C ∈ A. Clearly, δG(C) ⊆ δG(A) ⊆ EH(A′, B′). Since |EH(A′, B′)| <
|δH(s)| = |δG(R)|, we get that |δG(C)| ≤ |δG(R)|.

252

Consider now some cluster R′ ∈ X . Denote by R′A the subgraph of R′ induced by V (R′) ∩ A, and

denote by R′B = R′ \ A. Let E1 = δG(R′) ∩ δG(R′A), E2 = δG(R′) ∩ δG(R′B), and Ê = EG(R′A, R
′
B).

We show below that |Ê| ≤ |E1| must hold. Assume for now that this is true, and consider any cluster
R′′ ∈ Y(R′). Since R′′ is a connected component of R′B, we get that δG(R′′) ⊆ E2 ∪ Ê. Therefore, if

|Ê| ≤ |E1|, then |δG(R′′)| ≤ |E2|+ |Ê| ≤ |E1|+ |E2| = |δG(R′)| holds.

It now remains to prove that |Ê| ≤ |E1|. Consider the cut (A′, B′) in graph H, and recall that it
is a minimum s-t cut. From the definition of the cut (A,B), the edges of Ê belong to the edge
set EH(A′, B′). Since none of these edges is incident to s, the capacity of every edge in Ê is 100.
Consider now a new s-t cut (A′′, B′′) in graph H, where A′′ = A′ \ V (R′A) and B′′ = B′ ∪ V (R′B).

Note that the edges of Ê no longer contribute to this cut, and the only new edges that were added
to this cut are the edges of E1, each of which has a capacity that is either 1 or 100. Therefore,∑

e∈EH(A′′,B′′) c(e) ≤
∑

e∈EH(A′,B′) c(e) − 100|Ê| + 100|E1|. Since (A′, B′) is a minimum s-t cut in

graph H, |Ê| ≤ |E1| must hold.

We perform the following modifications to the sets R,RI and RA of clusters. First, we remove cluster
R from R and from RA, and we add every cluster of A to both sets instead. Next, we consider every
cluster R′ ∈ X one by one. We remove each such cluster R′ from R, and we add instead every cluster
in Y(R′) to R. We also remove cluster R′ from the cluster set in

{
RI ,RA

}
to which it belongs, and

we add every cluster of Y(R′) to set RI . This completes the description of the modification of the
sets R,RI ,RA of clusters. Note that all clusters in R remain disjoint, and

⋃
R′′∈R′ V (R′′) = V (S)

continues to hold. Moreover, from Observation D.7, combined with Invariant I3, for every cluster
R′ ∈ R, |δG(R′)| ≤ |δG(S)| continues to hold. It remains to show that the total budget B decreases
by at least 1/m.

Consider any edge e ∈ E(G)\E′′, whose budget, at the end of the current step, is non-zero. Assume first
that the budget of e was non-zero at the beginning of the current step. Then, from Observation D.7,
the budget of e could not have increased as the result of the current step. If the budget of an edge e
was 0 at the beginning of the current step and is non-zero at the end of the current step, then e ∈ E′′
must hold. Therefore, the only edges whose budget may have increased as the result of the current
step are edges of E′′.

For each edge e ∈ E′′, its budget may have grown from 0 to at most 3, while the number of all such
edges is |E′′| < (|δG(R)| − |E′|)/100. Therefore, the total increase in the budget B due to the edges
of E′′ is at most (|δG(R)| − |E′|)/30. We show that this increase is compensated by the decrease in
the budgets of the edges of δG(R) \E′. Consider any edge e ∈ δG(R) \E′. Edge e had budget at least
1 originally, but after the current iteration, since the endpoints of e both lie in A, its budget becomes
0. Therefore, the decrease in the budget B due to the edges of δG(R) \ E′ is at least |δG(R) \ E′|.
Overall, we get that the decrease in the budget B is at least:

|δG(R) \ E′| − (|δG(R)| − |E′|)/30 ≥ 1/2.

This concludes the description of an iteration. The algorithm terminates when RI = ∅ holds, at
which point we obtain the final set R of clusters, together with the witness sets {P(R)}R∈R of paths,
that, from the invariants, have all required properties. In particular, as observed above, since B ≥∑

R∈R |δG(R)|, and B never increases over the course of the algorithm,
∑

R∈R |δG(R)| ≤ B ≤ (1 +
O(α ·βARV(m) · logm)) = (1 +O(α · log1.5m)) holds. It remains to prove that the algorithm is efficient.
Clearly, the algorithm for executing every iteration is efficient. We now show that the number of
iterations is bounded by O(m3). Consider any iteration i of the algorithm. Recall that, as the result
of iteration i, either the budget B decreased by at least 1/m (in which case we say that i is a type-
1 iteration); or budget B did not change, but the number of clusters in set RI decreases by 1 (in
which case we say that i is a type-2 iteration). It is then immediate to see that the number of type-1
iterations, over the course of the algorithm, is bounded by O(m2). Since every cluster of R must

253

contain at least one vertex, and |V (S)| ≤ m (because S is a connected graph), the number of type-2
iterations executed between every consecutive pair of type-1 iterations is bounded by O(m). Therefore,
the total number of iterations of the algorithm is O(m3), and so the algorithm is efficient.

D.10 Proof of Theorem 4.20

Note that by letting c be a large enough constant, we can ensure that α < min
{

1
64βARV(m)·logm ,

1
48 log2m

}
holds.

The algorithm starts with layer L0 containing a single subgraph of H – the subgraph C, and then
performs iterations. The input to iteration i is layers L0,L1, . . . ,Li−1, each of which is a collection
of disjoint clusters of H. We ensure that all clusters in

⋃i−1
i′=0 Li′ are mutually disjoint, and each

cluster W ∈
⋃i−1
i′=1 Li′ has α-bandwidth property. We let Si be the subgraph of H induced by vertex

set
⋃i−1
i′=0

⋃
W∈Li′

V (W), and we let Ei = δH(Si). In subsequent iterations, we will create layers

Li,Li+1, . . ., each of which will contain clusters that are disjoint from Si. Notice that, for all 1 ≤ i′ < i,
for every cluster W ∈ Li′ , the partition of the edges of δH(W) into δdown(W) and δup(W) is now settled,
since the layers L0, . . . ,Li′−1 will not undergo any changes in subsequent iterations, and the edges of
Ei ∩ δH(W) are guaranteed to lie in δup(W). We will ensure that, for all 1 ≤ i′ < i, every cluster
in Li′ has properties L2, L3 and L4. We will also ensure that |Ei| ≤ |δH(C)|/2i−1. The algorithm
terminates once Si = H. Since we ensure that for all i, |Ei| ≤ |δH(C)|/2i−1, the number of iterations
is bounded by logm.

We now describe the execution of the ith iteration. We start by considering the subgraph S′i = H\V (Si)
of H. We apply the algorithm from Theorem 4.19 to graph H, its subgraph S = S′i, and the parameter

α = 1
c log2.5m

. As observed already, α < min
{

1
64βARV(m)·logm ,

1
48 log2m

}
holds. (If graph S′i is not

connected, then we apply the algorithm to every connected component of S′i separately). Let Wi

be the collection of clusters that the algorithm returns. Recall that we are guaranteed that the sets
{V (W)}W∈Wi

of vertices partition V (S′i), and for each such cluster W ∈ Wi, |δH(W)| ≤ |δH(S′i)| =
|δH(Si)| ≤ |δH(C)|. We are also guaranteed that each cluster W ∈ Wi has the α-bandwidth property,

and that
∑

W∈Wi
|δH(W)| ≤ |δH(S′i)| ·

(
1 +O(α · log3/2m)

)
= |Ei| ·

(
1 +O(α · log3/2m)

)
. Since

α = 1
c log2.5m

for a large enough constant c, we can ensure that
∑

W∈Wi
|δH(W)| ≤ |Ei|·

(
1 + 1

1000 logm

)
.

If there is a cluster W ∈ Wi with |EH(W)| < |δH(W)|/(64 logm), then remove W from Wi and add
each of its vertices as a separate cluster toWi. Clearly, we have increased the sum

∑
W∈Wi

|δH(W)| by
a factor of at most (1 + 1/(32 logm)) (since each edge appears in at most two sets of {δH(W)}W∈Wi

).
Therefore, for the resulting set Wi, we get that:

∑
W∈Wi

|δH(W)| ≤ |Ei| ·
(

1 +
1

1000 logm

)
·
(

1 +
1

32 logm

)
≤ |Ei| ·

(
1 +

1

16 logm

)
.

Recall that the algorithm from Theorem 4.19 also computes, for each cluster W ∈ W, a set P ′(W) of
paths in graph H routing the edges of δH(W) to edges of δH(S′i) = Ei, such that the paths of P ′(W)
avoid W and cause congestion at most 100 in H.

We partition the set Wi of clusters into two subsets: set W ′i contains all clusters W ∈ Wi, such
that |δH(W) \ Ei| < |δH(W) ∩ Ei|/ logm, and set W ′′i contains all remaining clusters. We then set
Li =W ′i. This finishes the description of the iteration. Recall that we define Si+1 to be the subgraph
of H induced by the set V (Si) ∪

(⋃
W∈Li V (W)

)
of vertices, and Ei+1 = δH(Si+1). We now analyze

the iteration. First, from the algorithm, every cluster W ∈ Li satisfies Property L3, since the first
inequality is guaranteed by Theorem 4.19, and we have replaced every cluster that does not satisfies
the second inequality of Property L3 by single-vertex clusters. We now prove the following claim.

254

Claim D.8 |Ei+1| ≤ |Ei|/2.

Proof: We partition the set Ei+1 of edges into two subsets. The first set, E′i+1, contains all edges
of Ei+1 that lie in the sets {δH(W) \ Ei}W∈W ′i . Since, for each cluster W ∈ W ′i, |δH(W) \ Ei| ≤
|δH(W) ∩ Ei|/ logm, we get that |E′i+1| ≤ |Ei|/ logm. The second set, E′′i+1, contains all remaining
edges of Ei+1. It is easy to verify that every edge of E′′i+1 belongs to set δH(W)∩Ei of edges for some
cluster W ∈ W ′′i .

Recall that
∑

W∈Wi
|δH(W)| ≤ |Ei| ·

(
1 + 1

16 logm

)
. Therefore, since Ei ⊆

⋃
W∈Wi

δH(W), we get that∑
W∈W ′′i

|δH(W) \ Ei| ≤ |Ei|
16 logm . For every cluster W ∈ W ′′i , |δH(W) \ Ei| ≥ |δH(W)∩Ei|

logm from the

definition of set W ′′i . Therefore:

|E′′i+1| =
∑

W∈W ′′i

|δH(W) ∩ Ei| ≤ (logm) ·
∑

W∈W ′′i

|δH(W) \ Ei| ≤
|Ei|
16

.

Altogether, |Ei+1| = |E′i+1|+ |E′′i+1| ≤ |Ei|/2.

Recall that we have already established that, for every cluster W ∈ Li, |δH(W)| ≤ |δH(C)|. Consider
any such cluster W ∈ Li. Since layers L0, . . . ,Li will remain unchanged in the remainder of the
algorithm, the partition of the edge set δH(W) into δup(W) and δdown(W) is now settled, and moreover
δdown(W) = δH(W)∩Ei, while δup(W) = δH(W) \Ei. From the definition of cluster set W ′i = Li, we
get that, for every cluster W ∈ Li, |δup(W)| ≤ |δdown(W)|/ logm holds. Therefore, property L4 holds
for every cluster W ∈ Li. Recall that we have already established property L2 for each such cluster
as well.

The algorithm terminates once Si = H. Let r denote the index of the last iteration. Since, for all i,
|Ei+1| ≤ |Ei|/2, r ≤ logm holds. We letW =

⋃r
i=1 Li be the final collection of clusters. We now claim

that (W, (L1, . . . ,Lr)) is a valid layered α-well-linked decomposition of H with respect to C. Note
that our algorithm immediately guarantees Property L1, and we have already established Properties
L2 – L4 of the decomposition. In order to establish property L5, observe that for all 1 ≤ i ≤ r:∑
W∈Li

|δH(W)| =
∑
W∈Li

(|δup(W)|+ |δdown(W)|) ≤
∑
W∈Li

2|δdown(W)| =
∑
W∈Li

2|δH(W) ∩ Ei| = 2|Ei|.

Therefore, ∑
W∈W

|δH(W)| ≤ 2
∑

1≤i≤r
|Ei| ≤ 4|E1| = 4|δH(C)|.

We conclude that property L5 holds for the decomposition. Lastly, it remains to establish property
L6. We do so using the following claim.

Claim D.9 For all 0 ≤ i < r, there is a collection Ri+1 = {R(e) | e ∈ Ei+1} of paths such that, for
every edge e ∈ Ei+1, path R(e) has e as its first edge, and some edge e′ ∈ Ei as its last edge. Moreover,
every edge e′ ∈ Ei participates in at most one path of Ri+1, the paths in Ri+1 cause congestion at
most d1/αe, and for each path R(e) ∈ Ri+1, all inner vertices on R(e) lie in Si+1 \ Si.

Proof: We partition the set Ei+1 of edges into two subsets: E′i+1 = Ei ∩Ei+1, and E′′i+1 = Ei+1 \Ei.
For each edge e ∈ E′i+1, the path R(e) consists of a single edge – the edge e.

Observe that E′′i+1 ⊆
(⋃

W∈Li δH(W)
)
\Ei. For every cluster W ∈ Li, we let Ê(W) = δH(W) ∩E′′i+1.

Clearly, Ê(W) ⊆ δup(W). Recall that δdown(W) = δH(W) ∩ Ei, and |δdown(W)| > |δup(W)|. From
Corollary 4.18, there is a set R(W) of paths, that is a one-to-one routing of edges in δup(W) to a

255

subset of edges in δdown(W), such that, for each path Q ∈ R(W), all its edges, except for the first
and the last, belong to E(W), and the paths in R(W) cause congestion at most d1/αe. For each edge
e ∈ Ê(W) ⊆ δup(W), we let R(e) ∈ R(W) be the unique path whose first edge is e. We have now
defined, for each edge e ∈ Ei+1, a path R(e), whose first edge is e, last edge lies in Ei, and all inner
vertices lie in Si+1 \ Si =

⋃
W∈Li V (W). It is immediate to verify that the resulting set Ri+1 of paths

causes congestion at most d1/αe, and that each edge of Ei participates in at most one such path.

We obtain the following immediate corollary of Claim D.9.

Corollary D.10 For all 0 ≤ i < r, there is a collection R′i+1 = {R′(e) | e ∈ Ei+1} of paths such that,
for every edge e ∈ Ei+1, path R′(e) has e as its first edge, some edge of δH(C) as its last edge, and
all its inner vertices are contained in Si+1 \ C. Moreover, every edge in δH(C) may participate in at
most one path in R′i+1, and the paths in R′i+1 cause congestion at most d1/αe.

Proof: The proof is by induction on i. For i = 0, we let the set R′1 of paths contain, for each edge
e ∈ δH(C) = δH(S1), a path R′(e) that consists of a single edge - the edge e.

Assume now that we have defined the sets R′1, . . . ,R′i of paths. In order to define the set R′i+1 =
{R′(e) | e ∈ Ei+1} of paths, consider any edge e ∈ Ei+1, and let R(e) ∈ Ri+1 be the unique path that
has e as its first edge. Denote by e′ ∈ Ei the last edge on path R(e), and consider the path R′(e′) ∈ Ri,
connecting e′ to an edge of δH(C). We obtain the path R′(e) by concatenating R(e) and R′(e′). It is
easy to verify that the resulting set R′i+1 = {R′(e) | e ∈ Ei+1} of paths has all required properties.

We are now ready to establish Property L6 of the decomposition. Consider some layer Li, for 1 ≤ i ≤ r,
and some cluster W ∈ Li. Recall that, when the algorithm from Theorem 4.19 was applied to cluster
S′i in iteration i, it returned a set P ′(W) of paths in graph H, routing the edges of δH(W) to edges
of δH(S′i) = Ei, such that the paths of P ′(W) avoid W and cause congestion at most 100 in H. We
can assume without loss of generality that, if an edge of Ei lies on a path of P ′(W), then it is the
last edge on that path. Equivalently, no path of P ′(W) may contain a vertex of Si as its inner vertex.
Consider now some edge e ∈ δH(W), and let P ′(e) ∈ P ′(W) be the path whose first edge is e. Let
e′ ∈ Ei be the last edge on path P ′(e), and let R′(e′) be the unique path in R′i that has e′ as its first
edge. Recall that the last edge of R′i lies in δH(C). Moreover, since all inner vertices on path R′(e′) lie
in Si \ C, no inner vertex of path R′(e′) may lie in W . By concatenating the paths P ′(e) and R′(e′),
we obtain a path P (e), whose first edge is e, and last edge lies in δH(C). From the above discussion,
no inner vertex of P (e) lies in W . We then let P(W) = {P (e) | e ∈ δH(W)}. We have now obtained
a set of paths routing the edges of δH(W) to edges of δH(C), such that the paths in P(W) avoid W .
It now remains to analyze the congestion that this set of paths causes in graph H. As the set P ′(W)
of paths causes congestion at most 100, every edge e′ ∈ Ei may participate in at most 100 such paths.
Since the congestion caused by the set R′i of paths is at most d1/αe, and since no vertex of Si may
serve as an inner vertex on a path of P ′(W), the total congestion caused by paths in P(W) is at most
100 ·

⌈
1
α

⌉
≤ 200

α .

D.11 Proof of Claim 4.23

For convenience, we sometimes refer to vertices of T as terminals. We use the cut-matching game of
Khandekar, Rao and Vazirani [KRV09], defined as follows. The game is played between two players,
called the cut player and the matching player. The input to the game is an even integer N . The game
is played in iterations. We start with a graph W , whose vertex set V has cardinality N , and the edge
set is empty. In every iteration, some edges are added to W . The game ends when W becomes a
1
2 -expander. The goal of the cut player is to construct a 1

2 -expander in as few iterations as possible,
whereas the goal of the matching player is to prevent the construction of the expander for as long as
possible. The iterations proceed as follows. In every iteration j, the cut player chooses a partition

256

(Zj , Z
′
j) of V with |Zj | = |Z ′j |, and the matching player chooses a perfect matching Mj that matches

the nodes of Zj to the nodes of Z ′j . The edges of Mj are then added to W . Khandekar, Rao, and
Vazirani [KRV09] showed that there is an efficient randomized algorithm for the cut player (that is,
an algorithm that, in every iteration j, given the current graph W , computes a partition (Zj , Z

′
j) of

V with |Zj | = |Z ′j |), that guarantees that after O(log2N) iterations, with high probability, graph W
is a (1/2)-expander, regardless of the specific matchings chosen by the matching player.

We use the above cut-matching game in order to compute an expander W with vertex set T , and to
embed it into G, using standard techniques. If |T | is an even integer, then we start with the graph
W containing the vertices of T ; otherwise, we let t ∈ T be an arbitrary vertex, and we start with
V (W) = T \ {t}. Initially, E(W) = ∅. We then perform iterations. In the ith iteration, we apply the
algorithm of the cut player to the current graph W , and obtain a partition (Zi, Z

′
i) of its vertices with

|Zj | = |Z ′j |. Using the algorithm from Theorem 4.17, we compute a collection Pi of paths in graph G,
routing vertices of Zi to vertices of Z ′i, so that every vertex of Zi ∪ Z ′i is an endpoint of exactly one
path in Pi, and the paths in Pi cause congestion at most d1/αe ≤ 2/α in G. Let Mi be the perfect
matching between vertices of Zi and vertices of Z ′i defined by the set Pi of paths: that is, we add to
Mi a pair (t, t′) of vertices iff some path in Pi has endpoints t and t′. We then treat Mi as the response
of the matching player, and add the edges of Mi to W , completing the current iteration of the game.

Let W be the graph obtained after i∗ = O(log2 k) iterations, that is guaranteed to be a 1/2-expander
with high probability. We then set P =

⋃i∗

i=1 Pi. It is immediate to verify that P is an embedding of
W into G. Since each set Pi of paths causes congestion O(1/α), and i∗ ≤ O(log2 k), the paths in P
cause congestion O((log2 k)/α). If |T | is even, then we have constructed the desired expander and its
embedding into G as required. If |T | is odd, then we add the terminal t to the graph W . Let P be
any path in graph G, connecting t to any terminal t′ ∈ T \ {t}; such a path must exist since the set
of terminals is α-well-linked in G. We then add edge (t, t′) to graph W , and we let its embedding be
P (e) = P ; we add path P to P. It is easy to verify that this final graph W is 1/4 expander, provided
that the original graph W obtained at the end of the cut-matching game was a 1/2-expander. We have
also obtained an embedding of W into G with congestion O((log2 k)/α). Lastly, since the number of
iterations in the cut-matching game is O(log2 k), and the set of edges that is added to W in every
iteration is a maching, we get that the maximum vertex degree in W is O(log2 k).

D.12 Proof of Observation 4.24

We assume that c > 2120 is a large enough constant. Let ∆ denote the maximum vertex degree in
W . Since c is a large enough constant, we can assume that ∆ ≤ c1/8 log2 k < k/240. Assume for
contradiction that OPTcr(W) < k2/(c log8 k). From Lemma 4.12, there is a (3/4)-edge-balanced cut
(A,B) in W , with:

|EW (A,B)| ≤ O(
√
OPTcr(W) + ∆ · |E(W)|) ≤ O(

√
OPTcr(W) + c1/4 · k · log4 k) ≤ O

(
k

c1/4 log4 k

)
.

(We have used the fact that, since k > c, and c is a large enough constant, log4 k < k
c3/4 log8 k

.)

Since cut (A,B) is a (3/4)-edge-balanced cut, |EW (A)| ≤ 3|E(W)|/4. Therefore, |EW (B)| ≥ |E(W)|/4−
|EW (A,B)| ≥ |E(W)|/8. Since the degree of every vertex in W is at most ∆ ≤ c1/8 log2 k, we get that

|B| ≥ |E(W)|
8∆ ≥ |E(W)|

8c1/8 log2 k
. Using the same reasoning, |A| ≥ |E(W)|

8c1/8 log2 k
. Since graph W is a 1

4 -expander,

|EW (A,B)| ≥ 1
4 ·min {|A|, |B|} ≥ 1

4 ·
|E(W)|

8c1/8 log2 k
> k

32c1/8 log2 k
must hold, a contradiction.

257

D.13 Proof of Corollary 4.25

The proof relies on known results for routing on expanders, that are summarized in the next claim,
that is well-known, and follows immediately from the results of [LR99]. A proof can be found, e.g. in
[Chu12].

Claim D.11 (Corollary C.2 in [Chu12]) There is an efficient randomized algorithm that, given
as input an n-vertex α-expander H, and any partial matching M over the vertices of H, computes,
for every pair (u, v) ∈ M , a path P (u, v) connecting u to v in H, such that with high probability, the
set {P (u, v) | (u, v) ∈M} of paths causes congestion O(log2 n/α) in H.

We start by computing a graph W with V (W) = T , and its embedding P = {P (e) | e ∈ E(W)}
into G with congestion O((log2 k)/α) using the algorithm from Claim 4.23 (recall that, with high
probability, W is an (1/4)-expander). Next, we use the algorithm from Claim D.11 to compute a
collection R′ = {R′(u, v) | (u, v) ∈M} of paths in graph W , where for all (u, v) ∈ M , path R(u, v)
connects u to v in W , such that the congestion of the set R′ of paths in W is O(log2 k) with high
probability.

Lastly, we consider the paths R′(u, v) ∈ R′ one by one. We transform each such path R′(u, v) into a
path R(u, v) connecting u to v in graph G by replacing, for every edge e ∈ R′(u, v), the edge e with
the path P (e) ∈ P embedding the edge e into G. Since the paths in R′ with high probability cause
congestion at most O(log2 k) in W , while the paths in P cause congestion O(log2 k/α) in G, we get
that with high probability, the paths in the resulting set R = {R(u, v) | (u, v) ∈M} cause congestion
O(log4 k/α) in G.

D.14 Proof of Corollary 4.26

We partition the set E(K) of edges into 3z matchings M1, . . . ,M3z, and then use Corollary 4.25

to compute, for each 1 ≤ i ≤ 3z, a set R̃i =
{
P̃ (e) | e ∈Mi

}
of paths in graph G, where for all

e = (t, t′) ∈ Mi, path P̃ (e) connects t to t′, and with high probability, the paths in P̃i cause edge-
congestion O((log4 z)/α) in graph G. Let P̃ =

⋃3z
i=1 P̃i. Then P̃ is an embedding of Kz into G, and

with high probability, the congestion of this embedding is O((z log4 z)/α).

D.15 Proof of Lemma 4.31

Suppose we are given a graph G, and, for every vertex v ∈ V (G), an oriented circular ordering (Ov, bv)
of edges in δG(v). We say that a drawing ϕ of G obeys the oriented orderings {(Ov, bv)}v∈V at the
vertices of G if, for every vertex v ∈ V (G), the oriented circular order in which the images of the edges
of δG(v) enter v in ϕ is (Ov, bv). We use the following theorem from [PSŠ11].

Theorem D.12 (Corollary 5.6 of [PSŠ11]) There is an efficient algorithm, that, given a two-
vertex loopless multigraph G (so V (G) = {v, v′} and E(G) only contains parallel edges connecting
v to v′), and, for each vertex v ∈ V (G), an oriented ordering (Ov, bv) of its incident edges, computes a
drawing ϕ of G that obeys the given oriented orderings, such that cr(ϕ) is at most twice the minimum
number of crossings of any drawing of G that obeys the given oriented orderings.

The proof of Lemma 4.31 easily follows Theorem D.12. Recall that we are given a pair (O, b), (O′, b′)
of oriented orderings of a collection U of elements. We construct a two-vertex loopless graph G with
oriented ordering on its vertices, as follows. Denote U = {u1, . . . , ur}. The vertex set of G is {v, v′}.
The edge set of G consists of r parallel edges connecting v to v′, that we denote by eu1 , eu2 , . . . eur ,
respectively. The oriented ordering (O, b) of the elements of U naturally defines an oriented ordering

258

(Ô, b) of the edges of G, and similarly, the oriented ordering (O, b′) of the elements of U defines an
oriented ordering (Ô, b′) of the edges of G. We define the oriented orderings for the vertices of G as
follows: (Ov, bv) = (Ô,−b) and (Ov′ , bv′) = (Ô′, b′).
Consider any drawing ϕ of G on the sphere that obeys the oriented orderings for v, v′ defined above.
Let D′ = Dϕ(v′) be a tiny v′-disc. For all 1 ≤ i ≤ r, we denote the unique point on the image of
edge eui that lies on the boundary of D′ by by p′i. Similarly, we let D̂ = Dϕ(v) be a tiny v-disc, and,
for all 1 ≤ i ≤ r, we denote the unique point on the image of edge eui that lies on the boundary of
D̂ by pi. Let D be the disc whose boundary is the same as the boundary of D̂, but whose interior is
disjoint from that of D̂. Then D′ ⊆ D, and the boundaries of the two discs are disjoint. Furthermore,
points p1, . . . , pr appear on the boundary of D according to the oriented ordering (O, b), and points
p′1, . . . , p

′
r appear on the boundary of D′ according to the oriented ordering (O′, b′). For all 1 ≤ i ≤ r,

let γi be the segment of the image of the edge eui between points pi and p′i. Then {γi | 1 ≤ i ≤ r} is a
set of reordering curves for the orderings (O, b) and (O′, b′), and moreover, the cost of this curve set
is exactly the number of crossings in ϕ.

Using a similar reasoning, any set Γ of reordering curves for the orderings (O, b) and (O′, b′) can be
converted into a drawing of graph G that obeys the oriented orderings at vertices v and v′, in which
the number of crossings is exactly the cost of Γ. Therefore, there is a drawing of G that obeys the
oriented orderings at v and v′, whose number of crossings is bounded by dist((O, b), (O′, b′)). We apply
the algorithm from Theorem D.12 to graph G, and then compute a set of reordering curves from the
resulting drawing of G as described above. From the above discussion, the cost of the resulting set of
curves is at most 2 · dist((O, b), (O′, b′)).

D.16 Proof of Corollary 4.32

The proof easily follows from Lemma 4.31. We denote δG(v) = {e1, . . . , er}, and, for all 1 ≤ i ≤ r,
we let pi be the unique point of ϕ(ei) lying on the boundary of the disc D. Let σi be the segment
of ϕ(ei) that is disjoint from the interior of the disc D. In other words, if ei = (v, ui), then σi is a
curve connecting ϕ(ui) to pi. Note that the points p1, . . . , pr appear on the boundary of D according
to the circular ordering O′v of their corresponding edges. We assume w.l.o.g. that the orientation of
the ordering is b′v = −1.

Let D′ be another disc, that is contained in D, with ϕ(v) lying in the interior of D′, such that the
boundaries of D and D′ are disjoint. We place points p′1, . . . , p

′
r on the boundary of the disc D′,

so that all resulting points are distinct, and they appear on the boundary of D′ in the order Ov of
their corresponding edges, using a positive orientation of the ordering. For all 1 ≤ i ≤ r, we can
compute a simple curve γi, connecting ϕ(v) to p′i, such that γi is contained in D′ and only intersects
the boundary of D′ at its endpoint p′i. We also ensure that all resulting curves γ1, . . . , γr are mutually
internally disjoint. Using the algorithm from Lemma 4.31, we compute a collection Γ = {γ′1, . . . , γ′r}
of reordering curves, where for 1 ≤ i ≤ r, curve γ′i connects pi to p′i, is contained in D, and is disjoint
from the interior of D′. Note that the total number of crossings between the curves in Γ is at most
2·dist((Ov, 1), (O′v,−1)). For all 1 ≤ i ≤ r, we define a new image of the edge ei to be the concatenation
of the curves σi, γ

′
i, and γi. The images of all remaining edges and vertices of G remain unchanged.

Denote the resulting drawing of the graph G by ϕ′. It is immediate to verify that the edges of δG(v)
enter the image of v in the order Ov in ϕ′, and that the drawings of ϕ and ϕ′ are identical except for
the segments of the images of the edges in δG(v) that lie inside the disc D. It is also immediate to
verify that cr(ϕ′) ≤ cr(ϕ) + 2 · dist((Ov, 1), (O′v,−1)).

We repeat the same algorithm again, only this time the points p′1, . . . , p
′
r are placed on the boundary

of disc D′ in the order Ov of their corresponding edges, using a negative orientation of the ordering.
The remainder of the algorithm remains unchanged, and produces a drawing ϕ′′ of G. As before, the

259

edges of δG(v) enter the image of v in the order Ov in ϕ′′, and the drawings of ϕ and ϕ′′ are identical
except for the segments of the images of the edges in δG(v) that lie inside the disc D. Moreover,
cr(ϕ′′) ≤ cr(ϕ) + 2 · dist((Ov,−1), (O′v,−1)). Let ϕ∗ be the drawing with smaller number of crossings,
among ϕ′ and ϕ′′. Our algorithm returns the drawing ϕ∗ as its final outcome. From the above
discussion, cr(ϕ∗) ≤ cr(ϕ) + 2 · dist(Ov,O′v).

D.17 Proof of Theorem 4.33

Let Z be the set of crossings points between the curves of Γ. For each such crossing point z ∈ Z, we
consider a tiny disc Dz, that contains the point z in its interior. We select the discs Dz to ensure that
all such discs are disjoint, and, moreover, if z is a crossing point between curves γ1, γ2, then for every
curve γ ∈ Γ \ {γ1, γ2}, γ ∩Dz = ∅, while for every curve γ ∈ {γ1 ∪ γ2}, γ ∩Dz is a simple open curve
whose endpoints lie on the boundary of Dz.

We start with Γ′1 = Γ1, and then iteratively modify the curves in Γ′1, as long as there is a pair of
distinct curves γ1, γ2 ∈ Γ′1 that cross more than once. Each iteration is executed as follows. Let
γ1, γ2 ∈ Γ′1 be a pair of curves that cross more than once, and let z, z′ be two crossing points between
γ1, γ2, that appear consecutively on γ1. In other words, no other point that appears between z and
z′ on γ1 may belong to γ2. We denote by s1, t1 the endpoints of γ1, such that z appears closer to s1

than z′ on γ1. Similarly, we denote by s2, t2 the endpoints of γ2, such that z appears closer to s2 than
z′ on γ2. We denote by x1, x2 the two points of γ1 that lie on the boundary of disc Dz, and denote by
x3, x4 the two points of γ1 lying on the boundary of disc Dz′ , such that the points x1, z, x2, x3, z

′, x4

appear on γ1 in this order. We define points y1, y2, y3, y4 on γ2 similarly (see Figure 43(a)).

(a) Before: Curve γ1 is shown in blue and curve γ2 is
shown in red. The disc on the left is Dz, and the disc
on the right is Dz′ .

(b) After: Curve γ′1 is shown in blue and curve γ′2 is
shown in red.

Figure 43: An iteration of the algorithm for performing a type-1 uncrossing.

In order to execute the iteration, we slightly modify the curves γ1, γ2, by “swapping” their segments
between points x2, x3 and y2, y3, respectively, and slightly nudging them inside the discs Dz, Dz′ , as
show in Figure 43. We now describe the construction of the new curves γ′1, γ

′
2 more formally. Note

that the points x1, x2, y1, y2 appear on the boundary of Dz clockwise in either the order (x1, y1, x2, y2)
or the order (x1, y2, x2, y1). Therefore, we can find two disjoint simple curves η1 and η2 that are
contained in disc Dz, with η1 connecting x1 to y2, and η2 connecting y1 to x2. Similarly, we compute
two disjoint simple curves curves η′1, η

′
2, that are contained in disc Dz′ , with η′1 connecting y3 to x4,

and η′2 connecting x3 to y4 (see Figure 43(b)).

We let γ′1 be a curve, that is constructed by concatenating the following five curves: (1) the segment
of γ1 from s1 to x1; (2) curve η1; (3) the segment of γ2 from y2 to y3; (4) curve η′1; and (5) the segment
of γ1 from x4 to t1. Similarly, let γ′2 be a curve, that is constructed by concatenating the following

260

five curves: (1) the segment of γ2 from s2 to y1; (2) curve η2; (3) the segment of γ1 from x2 to x3;
(4) curve η′2; and (5) the segment of γ2 from y4 to t2. We then remove any self loops from the two
curves, to obtain the final curves γ′1, γ

′
2, that replace the curves γ1, γ2 in Γ′1. Note that γ′1 has the same

endpoints as γ1, and the same is true for γ′2 and γ2. It is also easy to verify that, at the end of the
iteration, the number of crossings between the curves of Γ′1 ∪ Γ2 strictly decreases, and the number of
crossings between the curves of Γ′1 and the curves of Γ2, that we denoted by χ(Γ′1,Γ2), does not grow.
Moreover, for every curve γ ∈ Γ2, the number of crossings of γ with the curves in Γ′1 may not grow
either. Once the algorithm terminates, we obtain the desired set Γ′1 of curves, in which every pair of
distinct curves crosses at most once. From the above discussion, it is immediate to verify that the
curves in Γ′1 have all required properties. Since the curves in Γ are in general position, the number of
iterations is bounded by the number of crossing points between the curves.

D.18 Proof of Claim 4.34

We start by constructing a collection Γ′ = {γ′i | 1 ≤ i ≤ k} of curves that are in general position, such
that for all 1 ≤ i ≤ k, curve γ′i has si and ti as its endpoints, and is contained in disc D. In order
to construct the set Γ′ of curves, we let p be any point in the interior of the disc D, and r > 0 be
some real number, such that a radius-r circle centered at point p is contained in the disc D. For all
1 ≤ i ≤ k, let `i be a straight line, connecting point si to p, and `′i a straight line, connecting point
ti to p. We can assume that both lines are contained in the disc D, by stretching the disc as needed.
For all 1 ≤ i ≤ k, we choose a radius 0 < ri < r, so that 0 < r1 < · · · < rk < r holds. For an index
1 ≤ i ≤ k, we let Ci be the boundary of a radius-ri circle centered at point p, and we let qi, q

′
i be

the points on lines `i and `′i, respectively, that lie on Ci. We let curve γ′i be a concatenation of three
curves: the segment of `i from si to qi; a segment of Ci between qi and q′i; and the segment of `′i from
q′i to ti. Consider the resulting set Γ′ = {γ′i | 1 ≤ i ≤ k} of curves. Clearly, for all 1 ≤ i ≤ k, curve γ′i
has si and ti as its endpoints, and is contained in disc D. It is also easy to verify that curves of Γ′ are
in general position.

Next, we use the algorithm from Theorem 4.33 to perform a type-1 uncrossing of the curves in Γ′.
Specifically, we set Γ1 = Γ′ and Γ2 = ∅. We denote by Γ = Γ′1 = {γi | 1 ≤ i ≤ k} the set of curves that
the algorithm outputs. Recall that, for all 1 ≤ i ≤ k, curve γi has si and ti as its endpoints; the curves
in Γ are in general position; and every pair of curves in Γ cross at most once. From the description of
the type-1 uncrossing operation, it is easy to verify that all curves in Γ are contained in the disc D.

Consider now two pairs (si, ti), (sj , tj) of points, with i 6= j. Note that curve γi partitions the disc D
into two regions, that we denote by F and F ′. If the two pairs (si, ti), (sj , tj) cross, then sj , tj may not
lie on the boundary of the same region, and so curve γj must cross curve γi exactly once. If the two
pairs do not cross, then sj , tj either both lie on the boundary of F , or they both lie on the boundary
of F ′. It is then impossible that curves γi, γj cross exactly once, and, since every pair of curves cross
at most once, they cannot cross.

D.19 Proof of Theorem 4.37

We start with an initial set Γ′ = {γ′(Q) | Q ∈ Q} of curves, where, for each path Q ∈ Q, γ′(Q) is the
image of the path Q in ϕ. In other words, γ′(Q) is the concatenation of the images of the edges of Q
in ϕ. Note however that the resulting set Γ′ of curves may not be in general position. This is since
a vertex v ∈ V (G) may serve as an inner vertex on more than two paths of Q, and in such a case its
image ϕ(v) serves as an inner point of more than two curves in Γ′. Let V ′ ⊆ V (G) be the set of all
vertices v ∈ V (G), such that more than two paths in Q contain v.

In our first step, we transform the set Γ′ of curves so that the resulting curves are in general position,

261

while ensuring that the endpoints of each curve γ′(Q) remain unchanged, and each such curve γ′(Q)
remains aligned with the graph

⋃
Q′∈QQ

′. We do so by performing a nudging operation around every
vertex v ∈ V ′, as follows.

Consider any vertex v ∈ V ′, and let Q(v) ⊆ Q be the set of all paths containing vertex v. Note
that v must be an inner vertex on each such path. For convenience, we denote Q(v) = {Q1, . . . , Qz}.
Consider the tiny v-disc D = Dϕ(v). For all 1 ≤ i ≤ z, denote by ai and bi the two points on
curve γ(Qi) that lie on the boundary of disc D. We use the algorithm from Claim 4.34 to compute
a collection {σ1, . . . , σz} of curves, such that, for all 1 ≤ i ≤ z, curve σi connects ai to bi, and the
interior of the curve is contained in the interior of D. Recall that every pair of resulting curves crosses
at most once, and every point in the interior of D may be contained in at most two curves. For all
1 ≤ i ≤ z, we modify the curve γ(Qi), by replacing the segment of the curve that is contained in disc
D with σi. Once every vertex v ∈ V ′ is processed, we obtain a collection Γ′′ = {γ′′(Q) | Q ∈ Q} of
curves, where for every path Q ∈ Q, curve γ′′(Q) connects ϕ(s(Q)) to ϕ(t(Q)). Moreover, it is easy to
verify that each resulting curve γ′′(Q) ∈ Γ′′ is aligned with the drawing of the graph

⋃
Q′∈QQ

′ induced
by ϕ, and that the curves in Γ′′ are in general position.

We let S be the multiset of points that contains, for every curve γ′′(Q) ∈ Γ′′ its first endpoint ϕ(s(Q)),
and we let T be the multiset of points contianing the last endpoint of each such curve.

We initially let, for each path Q ∈ Q, γ(Q) be the curve obtained by deleting all loops from γ′′(Q),
and we denote by Γ = {γ(Q) | Q ∈ Q} the resulting set of curves. We gradually modify the curves
in Γ in order to eliminate all crossings between them. Throughout the algorithm, we ensure that for
each path Q ∈ Q, curve γ(Q) originates at point ϕ(s(Q)), and moreover, if e1(Q) is the first edge on
path Q, then segment ϕ(e1(Q)) ∩ Dϕ(s(Q)) is contained in γ(Q). We also ensure that the multiset
containing the last point on every curve of Γ remains unchanged throughout the algorithm. Let P
be the collection of all points p, such that at least two curves of Γ contain p as an inner point. We
perform iterations, as long as P 6= ∅. Each iteration is executed as follows. Let p ∈ P be any point,
and let Q,Q′ ∈ Q be two paths whose corresponding curves γ(Q), γ(Q′) contain the point p. Let x, x′

be the two points of γ(Q) that lie on the boundary of the tiny p-disc D(p), with x appearing before
x′ on γ(Q). Let y, y′ be the two points of γ(Q′), that lie on the boundary of D(p), with y appearing
before y′ on γ(Q′). We now consider two cases. In the first case, the circular clock-wise ordering of
points x, x′, y, y′ on the boundary of D(p) is either (x, y, x′, y′), or (x, y′, x′, y). In this case, the two
pairs (x, y′) and (y, x′) of points on the boundary of D(p) do not cross. Therefore, from Claim 4.34,
we can construct two disjoint curves σ, σ′ that are contained in D(p), with σ connecting x to y′ and
σ′ connecting y to x′. We let γ′(Q) be a curve that is obtained by concatenating the segment of
γ(Q) from its first endpoint to x; the curve σ; and the segment of γ(Q′) from y′ to its last endpoint.
Similarly, we let γ′(Q′) be a curve that is obtained by concatenating the segment of γ(Q′) from its first
endpoint to y; the curve σ′; and the segment of γ(Q) from x′ to its last endpoint. We then replace
γ(Q) with γ′(Q) and γ(Q′) with γ′(Q′) in Γ. In the second case, the circular clock-wise ordering of
points x, x′, y, y′ on the boundary of D(p) must be either (x, x′, y, y′), or (x′, x, y, y′), or (x, x′, y′, y),
or (x′, x, y′, y). In either case, the two pairs (x, x′) and (y, y′) of points on the boundary of D(p) do
not cross. Therefore, from Claim 4.34, we can construct two disjoint curves σ, σ′ that are contained
in D(p), with σ connecting x to x′ and σ′ connecting y to y′. We modify curve γ(Q) by replacing
its segment that is contained in D(p) with σ, and we similarly replace the segment of γ(Q′) that is
contained in D(p) with σ′. If either of the new curves γ(Q), γ(Q′) has loops, we turn the corresponding
curve into a simple one by removing all loops from it. We also update the set P of points, by removing
from it points that no longer belong to two curves in Γ. This finishes the description of an iteration.
It is easy to verify that no new crossing points between curves in Γ are created, the curves in Γ remain
in general position, and each such curve is aligned with the drawing of the graph

⋃
Q′′∈QQ

′′ induced
by ϕ. It is also easy to verify that the invariants continue to hold.

262

Consider the set Γ of curves that we obtain at the end of the algorithm. Clearly, the curves in Γ do
not cross with each other, and they are aligned with the drawing of the graph

⋃
Q∈QQ induced by

ϕ. It is also immediate to verify that they have all remaining required properties. Since |P | strictly
decreases from iteration to iteration, the number of iterations is bounded by the number of crossings
of the drawing ϕ of G, which is in turn bounded by the input size. Each iteration can be executed in
time polynomial in the input size, so the algorithm is efficient.

D.20 Proof of Corollary 4.38

For each edge e ∈ E(G) \E(C), we let ne = congG(Q, e). Let H be a new graph, with V (H) = V (G),
whose edge set consists of the set E(C) of edges, and, for each edge e ∈ E(G) \ E(C), a set J(e) of
ne parallel copies of the edge e. Note that the drawing ϕ of graph G naturally defines a drawing ϕ′

of graph H. In order to obtain the drawing ϕ′ of H, we start with the drawing ϕ of G, and then, for
every edge e ∈ E(G) \ E(C) with ne > 0, we draw the edges of J(e) in parallel to ϕ(e), very close to
it. We also delete the images of all edges e ∈ E(G) \ E(C) with ne = 0. Note that, for every edge
e ∈ E(C), the number of crossings between ϕ′(e) and the images of the edges of E(H) \ E(C) in the
drawing ϕ′ is at most

∑
e′∈E(G)\E(C) χ(e, e′) · congG(Q, e′), where χ(e, e′) is the number of crossings

between ϕ(e) and ϕ(e′).

The set Q of paths in graph G naturally defines a set Q′ of edge-disjoint paths in graph H, where, for
each edge e ∈ E(G) \ E(C), for every path Q ∈ Q containing the edge e, we replace e with a distinct
edge of J(e) on path Q. In particular, the multisets S(Q), S(Q′) of vertices containing the first vertex
of every path in set Q and Q′, respectively, remain unchanged, and the same is true regarding the
multisets T (Q), T (Q′) of paths, containing the last vertex of every path in set Q and Q′, respectively.

We apply the algorithm from Theorem 4.37 to graph H, the drawing ϕ′ of H, and the set Q′ of
edge-disjoint paths in H. Let Γ′ = {γ′(Q′) | Q′ ∈ Q′} be the resulting set of curves. Recall that, for
every path Q ∈ Q, there is a distinct path Q′ ∈ Q′, that is obtained from Q by replacing each edge
e ∈ E(Q) with one of its copies. For each path Q ∈ Q, we then let γ(Q) = γ′(Q′), and we consider
the resulting set Γ = {γ(Q) | Q ∈ Q} of curves. The algorithm from Theorem 4.37 ensures that the
curves in Γ do not cross each other, and that, for every path Q ∈ Q, s(γ(Q)) = ϕ(s(Q)). It also
guarantees that the multiset T (Γ) is precisely the multiset {ϕ(t(Q)) | Q ∈ Q}. Lastly, consider any
edge e ∈ E(C). Since the curves in set Γ′ are aligned with the drawing of the graph

⋃
Q′∈Q′ Q

′ induced
by ϕ′, the number of crossings between ϕ′(e) = ϕ(e) and the curves in set Γ′ = Γ is bounded by the
number of crossings between ϕ′(e) and the images of the edges of E(H) \ E(C) in drawing ϕ′ of H,
which is, in turn, bounded by

∑
e′∈E(G)\E(C) χ(e, e′) · congG(Q, e′).

D.21 Proof of Claim 4.39

Consider any T -cut (A,B) in graph G, and denote TA = T ∩ A and TB = T ∩ B. Assume without
loss of generality that |TA| ≤ |TB|. It is enough to show that |EG(A,B)| ≥ (α1α2) · |TA|. Assume for
contradiction that this is not the case.

Denote H = G|C . We partition the set V (H) of vertices into two subsets: set V ′ = V (H) ∩ V (G) of
regular vertices, and set V ′′ = {vC | C ∈ C} of supernodes. Note that T ⊆ V ′ must hold. We use the
cut (A,B) in G, in order to construct a cut (A′, B′) in graph H, with A′ ∩ T = TA and B′ ∩ T = TB,
such that |EH(A′, B′)| < α2 · |TA|, contradicting the fact that vertex set T is α2-well-linked in graph
GC .

In order to construct the cut (A′, B′) in H, we first process every vertex v ∈ V ′ one by one. For each
such vertex v, if v ∈ A, then we add v to A′, and otherwise we add it to B′. Notice that this process
guarantees that TA ⊆ A′ and TB ⊆ B′.

263

Next, we process every cluster C ∈ C one by one. Notice that partition (A,B) of V (G) naturally
defines a partition (AC , BC) of V (C), where AC = A ∩ V (C) and BC = B ∩ V (C). We denote
E′C = EG(AC , BC), E1(C) = δG(AC) \E′C , and E2(C) = δG(BC) \E′C . If |E1(C)| ≤ |E2(C)|, then we
add supernode vC to B′, and otherwise we add it to A′. Assume w.l.o.g. that vC was added to B′,
so |E1(C)| ≤ |E2(C)| holds. From the α1-bandwidth property of C, we get that |E′C | ≥ α1 · |E1(C)|.
Notice that the edges of E′C lie in the cut (A,B) in graph G, but they do not contribute to the cut
(A′, B′) in graph H. On the other hand, edges of E1(C) may lie in EH(A′, B′) \EG(A,B). We charge
the edges of E1(C) to the edges of E′. Since |E′| ≥ α1 · |E1(C)|, every edge of E′ pays at most 1/α1

units for the edges of E1(C), so the total charge to the edges of E′ is |E1(C)|.
Once every cluster C ∈ C is processed, we obtain the final cut (A′, B′) in graph H. For every
edge e ∈ EH(A′, B′), either e ∈ EG(A,B), or e is charged to some edges of EG(A,B) \ EH(A′, B′).
Since the charge to every edge of EG(A,B) \ EH(A′, B′) is at most 1/α1, we get that |EH(A′, B′)| ≤
|EG(A,B)|/α1. Since we have assumed that |EG(A,B)| < (α1α2) · |TA|, we get that |EH(A′, B′)| <
α2 · |TA| = α2 · |T ∩A′|, contradicting the fact that vertex set T is α2-well-linked in H.

D.22 Proof of Corollary 4.40

Let G+ be the graph obtained from G by subividing each edge e ∈ δG(R) with a new vertex te. Denote
T = {te | e ∈ δG(R)}. Recall that the augmentation R+ of cluster R in G is defined to be the subgraph
of G+ induced by vertex set V (R) ∪ T . It is immediate to verify that every cluster C ∈ C has the
α1-bandwidth property in graph R+. Furthermore, from Observation 4.16, the set T of vertices is
α2-well-linked in graph R+

|C . By applying Claim 4.39 to graph R+, vertex set T and collection C of

clusters, we get that T is (α1 · α2)-well-linked in graph R+. From Observation 4.16, cluster R has the
(α1 · α2)-bandwidth property in G.

D.23 Proof of Claim 4.41

For convenience, we denote |T | = k. We assume w.l.o.g. that the paths in P are simple, and we direct
each such path towards x. We then graduately modify the paths in P, by processing the clusters of C
one by one.

Consider any cluster C ∈ C, and let P(C) ⊆ P be the subset of paths that contain the supernode vC .
For each path P ∈ P(C), let eP (C) and e′P (C) denote the edges appearing immediately before and im-
mediately after vC on P . We denote E1(C) = {eP (C) | P ∈ P(C)} and E2(C) = {e′P (C) | P ∈ P(C)}.
We use the algorithm from Corollary 4.18, to compute a collection R(C) of paths that is a one-to-one
routing of the edges of E1(C) to the edges of E2(C), such that all inner vertices on the paths of R(C)
lie in C, and every edge in E(C) participates in at most d1/αe such paths. We modify the paths in set
P(C) as follows. First, for each path P ∈ P(C), we delete the vertex vC from P , together with its two
incident edges. Let P1, P2 be the two resulting subpaths of P . We then let P1(C) = {P1 | P ∈ P(C)},
and P2(C) = {P2 | P ∈ P(C)}. Lastly, let P ′(C) be the set of paths obtained by concatenating the
paths in P1(C),R(C) and P2(C). We delete from P the paths that belong to P(C), and add the paths
of P ′(C) instead. It is easy to verify that the resulting set P of paths still routes the vertices of T to
x.

Once we process every cluster C ∈ C, we obtain a collection P ′ of k paths, routing the vertices of T to
vertex x in graph G. Since the paths of P at the beginning of the algorithms are edge-disjoint, for each
edge e ∈ E(G)\

(⋃
C∈C E(C)

)
, congG(P ′, e) ≤ 1. From our construction, for each edge e ∈

⋃
C∈C E(C),

congG(P ′, e) ≤ d1/αe ≤ 2/α. Lastly, we apply the algorithm from Claim 4.2, to graph G and the set
P ′ of paths, to obtain a collection P ′′ of at least αk/2 edge-disjoint paths in graph G, where each path
in P ′′ connects a distinct vertex of T to x.

264

D.24 Proof of Claim 4.42

Let ϕ∗ be an optimal solution to instance I of MCNwRS. Let G′ be the graph that is obtained from
G by subdividing every edge e ∈

⋃
C∈C δG(C) with a vertex te, and let T =

{
te | e ∈

⋃
C∈C δG(C)

}
be

the resulting set of new vertices. For every cluster C ∈ C, we denote by TC = {te | e ∈ δG(C)}, and
we let C+ be the subgraph of G′ induced by vertex set V (C) ∪ TC . From Observation 4.16, vertex
set TC is α-well-linked in C+. Observe that drawing ϕ∗ of G naturally defines a drawing ϕ′ of graph
G′, with cr(ϕ′) = cr(ϕ∗). We denote C = {C1, . . . , Cr}, where the clusters are indexed arbitrarily. For
1 ≤ i ≤ r, we let Ci = {C1, . . . , Ci}, and we let G′i = G′|Ci . We also denote G′0 = G′. We perform r

iterations. The input to the ith iteration is a drawing ϕ′i−1 of the graph G′i−1, and the output is a
drawing ϕ′i of the graph G′i. We set ϕ′0 = ϕ′.

We now describe the ith iteration, for 1 ≤ i ≤ r. For convenience, we denote Ci = C. Corollary 4.28
guarantees that there is a distribution D(C) over the set Λ(C) of internal C-routers, such that, for
every edge e ∈ E(C), EQ(C)∼D(C) [cong(Q(C), e)] ≤ O((log |δG(C)|)4/α) ≤ O((log4m)/α). We let
Q(C) = {Q(e) | e ∈ δG(C)} be an internal C-router sampled from the distribution D(C), and we
denote by u(C) the center of the router Q(C). Note that the set Q(C) of paths in graph G naturally
defines a set of paths in graph C+, routing the vertices of TC to vertex u(C). Abusing the notation,
we denote this set of paths by Q(C) as well.

Applying the algorithm from Corollary 4.38 to graph G′i−1, its drawing ϕ′i−1, subgraph G′i−1 \C+, and

the set Q(C) of paths, we obtain a collection Γ(C) =
{
γ(e) | e ∈ δG′i−1

(C)
}

of curves, such that, for

every edge e ∈ δG′i−1
(C), curve γ(e) originates at the image of the endpoint of e that lies in TC , and

terminates at the image of u(C). Furthermore, the curves in Γ do not cross each other, and, for every
edge e ∈ E(G′i−1)\E(C+), the number of crossings between ϕ′i−1(e) and the curves in Γ(C) is bounded
by
∑

e′∈E(C+) χ(e, e′) · congG′(Q(C), e′), where χ(e, e′) is the number of crossings between ϕ′i−1(e) and

ϕ′i−1(e′). For every edge e′ ∈ E(C+), and every crossing (e, e′)p between e and e′ in ϕ′i−1, we charge
this crossing congG(Q(C), e′) units, and we say that crossing (e, e′)p is responsible for congG′(Q(C), e′)
new crossings between the edge e and the curves in Γ(C). Therefore, the total charge to all crossings
between e and the edges of E(C+) is at least the total number of crossings between ϕ′i−1(e) and the
curves in Γ(C). We obtain a drawing ϕ′i of the graph Gi as follows. We start from the drawing ϕ′i−1 of
graph G′i−1, and delete all edges and vertices of C+

i \TC from it. We place the image of the supernode
vCi at the image of the vertex u(Ci) in ϕ′i−1. For every edge e ∈ δG′i(vCi), we let γ(e) ∈ Γ be the new
image of the edge e. This concludes the definition of the drawing ϕ′i of graph G′i. Note that:

cr(ϕ′i)− cr(ϕ′i−1) ≤
∑

e∈E(G′i−1)\E(C+
i)

∑
e′∈E(C+

i)

χ(e, e′) · congG′(Q(C), e′).

Once every cluster C ∈ C is processed in this manner, we obtain the final drawing ϕ of G|C , by
suppressing the images of the vertices of T in the drawing ϕ′r of the graph G′r. Note that for every
vertex x ∈ V (G|C)∩ V (G), we did not modify the images of the edges of δG(x) inside the tiny ϕ∗-disc
Dϕ∗(x), so the order in which these edges enter the image of x continues to be Ox. It now remains to
bound the number of crossings in the drawing ϕ. We only bound the number of new crossings that
were added due to the transformations that we perform.

Consider some crossing (e, e′)p in the drawing ϕ′ of graph G′. If neither of the edges e, e′ lie in⋃
C∈C E(C+), then no new crossings between these edges were introduced, and this crossing was

not charged for any new crossings. Assume next that e ∈ E(C+
i), for some cluster Ci ∈ C, and

e′ 6∈
⋃
C∈C E(C+). Then crossing (e, e′)p may be responsible for up to congG′(Q(Ci), e) new crossings.

Each of these new crossings is between the image of e′ and the images of the edges of δG′i(vCi),
and so they cannot be responsible for any additional new crossings. Since E [congG′(Q(Ci), e)] ≤

265

O((log4m)/α), the total expected number of crossings for which crossing (e, e′)p is responsible is at
most O((log4m)/α).

Lastly, assume that e ∈ E(C+
i) and e′ ∈ E(C+

j), for Ci, Cj ∈ C. If i = j, then crossing (e, e′)p is not
responsible for any new crossings. Assume now without loss of generality that i < j. After cluster Ci
is processed, crossing (e, e′)p may be responsible for at most congG′(Q(Ci), e) new crossings. All these
new crossings are between the images of the edges of δG′i(vCi) and the image of edge e′. Once cluster Cj
is processed, each of the resulting crossings may in turn be responsible for at most congG′(Q(Cj), e

′)
new crossings. Each of these new crossings is between images of edges in δG′j (vCi) and images of

edges in δG′j (vCj), so they in turn will not be responsible for any new crossing. Therefore, overall,

crossing (e, e′)p may be responsible for up to congG′(Q(Ci), e) · congG′(Q(Cj), e
′) new crossings. Since

congG′(Q(Ci), e) and congG′(Q(Cj), e
′) are independent random variables, and the expected value of

each of these variables is at most O((log4m)/α), the expected number of crossings for which crossing
(e, e′)p is responsible is at most O((log8m)/α2). We conclude that E [cr(ϕ)] ≤ O((log8m)/α2)·cr(ϕ′) ≤
O((log8m)/α2) · OPTcnwrs(I). Therefore, there exists a drawing ϕ of the contracted graph G|C , with

cr(ϕ) ≤ O((OPTcnwrs(I) · log8m)/α2), in which, for every regular vertex x ∈ V (G|C) ∩ V (G), the
ordering of the edges of δG(x) as they enter x in ϕ is consistent with the rotation Ox ∈ Σ.

E Proofs Omitted from Section 5

E.1 Proof of Lemma 5.3

In this proof, we assume that all drawings are on the sphere. For every cluster C ∈ L, denote by
W(C) ⊆ L the set of all child clusters of C, and by W∗(C) ⊆ L the set of all descendant clusters of
C. We define a new instance I ′C = (G′C ,Σ

′
C) of MCNwRS associated with cluster C, as follows. If

C = G, then G′C = G and Σ′C = Σ. Otherwise, graph G′C is obtained from graph G, by contracting
all vertices of V (G) \ V (C) into a supernode v∗. Rotation system Σ′C is defined as follows. Note that
δG′C (v∗) = δG(C). We define the rotation Ov∗ ∈ Σ′C to be O(C). For every other vertex v ∈ V (G′C),
δG′C (v) = δG(v) holds, and its rotation Ov ∈ Σ′C remains the same as in Σ. This completes the
definition of instance I ′C . Notice that instance IC can be obtained from instance I ′C by contracting,
for each cluster C ′ ∈ W(C), the vertices of C ′ into a supernode vC′ , and then setting the rotation of
the edges incident to this supernode to O(C ′).

We prove by induction that there is an efficient algorithm, that, given a cluster C ∈ L, and solutions
{ϕ(IC′)}C′∈W∗(C) to instances associated with the descendant clusters of C, computes a solution ϕ′(I ′C)

to instance I ′C , of cost at most
∑

C′∈W∗(C) ϕ(IC′). Since I ′G = I, this will complete the proof of the
lemma.

The proof is by induction of the length of the longest path in the partitioning tree τ(L) between v(C)
and its descendant. The base of the induction is when cluster C is the leaf of the tree τ(L). In this
case, I ′C = IC holds, and we let ϕ′(I ′C) = ϕ(IC).

For the induction step, we consider some cluster C ∈ L, whose corresponding vertex v(C) is not a leaf
vertex of the tree τ(L). Assume that W(C) = {C1, . . . , Cr}. For convenience, for each 1 ≤ i ≤ r, we
denote the supernode vCi representing cluster Ci in graph GC by vi. By applying the induction hypoth-
esis to every cluster Ci ∈ W(C), we obtain a solution ϕ′i = ϕ′(I ′Ci) to instance I ′Ci of MCNwRS, whose
cost is cr(ϕ′i) ≤

∑
C′∈W∗(Ci) cr(ϕ(IC′)). It is now enough to show an efficient algorithm that constructs

a solution ϕ′(I ′C) to instance I ′C , whose cost is at most cr(ϕ(IC))+
∑r

i=1 cr(ϕ
′
i) ≤

∑
C′∈W∗(C) cr(ϕ(IC′)).

We start with the solution ϕ̃ = ϕ(IC) to instance IC , and we process the clusters C1, . . . , Cr one by
one, gradually modifying the drawing ϕ̃. We now describe the iteration when cluster Ci is processed.
We denote δG′C (vi) = δG(Ci) =

{
ei1, . . . , e

i
qi

}
, where the edges are indexed according to their ordering

266

in O(Ci). For all 1 ≤ j ≤ qi, we denote eij = (xj , yj), where xj ∈ Ci. Let Di = Dϕ̃(vi) be a tiny vi-disc

in the drawing ϕ̃. For all 1 ≤ j ≤ qi, we denote by pij the unique point on the image of edge eij that

lies on the boundary of the disc Di, and we let γ(eij) denote the segment of the image of eij that is

disjoint from the interior of Di. Therefore, γ(eij) connects the image of vertex yj to point pij . Notice

that points pi1, . . . , p
i
qi appear on the boundary of Di in this circular order. If the orientation of this

ordering is positive, then we say that vertex vi is positive, and otherwise we say that it is negative.
We erase the parts of the images of all edges in the interior of disc Di, and we erase the image of the
vertex vi from the current drawing. We place another disc D′i inside Di, so that D′i ⊆ Di, and the
boundaries of both discs are disjoint.

Next, we consider the drawing ϕ′i of the graph G′Ci . We let D̂i = Dϕ′i
(v∗) be a tiny v∗-disc in this

drawing. Recall that δG′Ci
(v∗) = δG(Ci). For all 1 ≤ j ≤ qi, we denote by p̂ij the unique point on

the image of the edge eij in ϕ′i that lies on the boundary of the disc D̂i. Note that points p̂i1, . . . , p̂
i
qi

must appear on the boundary of the disc D̂i in this circular order, from the definition of the rotation
Ov∗ ∈ Σ′Ci . We assume w.l.o.g. that, if vertex vi is positive, then the orientation of this ordering is
negative, and otherwise it is positive (if this is not the case then we simply flip the drawing ϕ′i). Let
D̂′i be the disc that has the same boundary as D̂i but whose interior is disjoint from that of D̂i (so
D̂′i is the complement of disc D̂i; recall that the drawing ϕ′i is on the sphere). For all 1 ≤ j ≤ qi, we
denote by γ′(eij) the segment of the image of edge eij that lies inside D̂′i. Therefore, γ′(eij) connects

the image of vertex xj to point p̂ij .

We copy the disc D̂′i, together with its contents (in ϕ′i), to the current drawing ϕ̃, so that the boundaries
and the interiors of the discs D̂′i and D′i coincide. Assume w.l.o.g. that vertex vi is positive. Then
points pi1, . . . , p

i
qi appear on the boundary of disc D′i in this counter-clock-wise order, while points

p̂i1, . . . , p̂
i
qi appear on the boundary of disc D̂′i in this counter-clock-wise order. Therefore, we can

compute a collection {σ1, . . . , σqi} of mutually disjoint curves, where for all 1 ≤ j ≤ qi, curve σj has
endpoints pij and p̂ij , and all inner points of σj lie in Di \D′i, and are disjoint from the boundary of
Di. For all 1 ≤ j ≤ qi, we now define the image of the edge ej = (xj , yj) to be the concatenation of
the curves γij , σj , and γ̂ij .

Once every cluster Ci ∈ W(C) is processed in this manner, we obtain a solution ϕ′(I ′C) to instance
I ′C of MCNwRS. It is immediate to verify that the total number of crossings in this solution is at
most cr(ϕ(IC))+

∑r
i=1 cr(ϕ

′
i) ≤

∑
C′∈W∗(C) cr(ϕ(IC′)). The lemma follows by letting ϕ be the solution

ϕ′(IC′) that we construct for instance IC′ , where C ′ = G.

E.2 Proof of Lemma 5.6

Throughout the proof, we denote |E(G)| = m.

Consider first a cluster C ∈ Llight. Recall that, in order to define instance IC , we used the distribution
D(C) over the internal C-routers, where C is β-light with respect to D(C). We selected a router Q(C)
from the distribution D(C) at random, whose center vertex is denoted by u(C). We then used the
algorithm from Lemma 4.7 to compute a non-transversal set Q̃(C) of paths, routing all edges of δG(C)
to vertex u(C), so Q̃(C) is also an internal C-router. The set Q̃(C) of paths was used in order to
define the ordering O(C) of the edges of δG(C), which was in turned used in order to define instance
IC .

Consider now a cluster C ∈ Lbad. We apply the algorithm from Corollary 4.28 to C, obtaining
a distribution D(C) over the set Λ(C) of internal C-routers, such that, for every edge e ∈ E(C),
EQ∼D [cong(Q(C), e)] ≤ O(log4m/α0) ≤ O(log16m). We then select a router Q(C) from the distri-
bution D(C) at random, and denote by u(C) its center vertex. We view the paths of Q(C) as being

267

directed towards u(C). Next, we use the algoritm from Lemma 4.7 to compute a non-transversal set
Q̃(C) of paths, routing all edges of δG(C) to vertex u(C), so Q̃(C) is also an internal C-router. The
algorithm ensures that, for every edge e ∈ E(G), congG(Q̃(C), e) ≤ congG(Q(C), e).

Consider an optimal solution ϕ∗ to instance I of MCNwRS. For every cluster C ∈ L, denote by
χ(C) the set of all crossings (e, e′)p in the drawing ϕ∗, where at least one of the edges e, e′ lies in
E(C) ∪ δG(C). Recall that I = {IC | C ∈ L}. The proof of the lemma follows from the following
claim.

Claim E.1 For every cluster C ∈ L, E [OPTcnwrs(IC)] ≤ O(β2 · (|χ(C)|+ |E(C)|)).

Indeed, for all 1 ≤ i ≤ dep(L), let Li ⊆ L be the set of all clusters that lie at level i of the laminar
family. Note that all clusters in Li are mutually disjoint. Therefore, every crossing (e, e′)p of the
drawing ϕ∗ may contribute to the sets χ(C) of at most four clusters of Li: at most two clusters C
with e ∈ E(C) ∪ δG(C), and at most two clusters C ′ with e ∈ E(C ′) ∪ δG(C ′). Therefore:∑

C∈Li

E [OPTcnwrs(IC)] ≤
∑
C∈Li

O(β2 · (|χ(C)|+ |E(C)|)) ≤ O(β2 · (OPTcnwrs(I) + |E(G)|)).

Summing this up over all 1 ≤ i ≤ dep(L), we get that E
[∑

I′∈I OPTcnwrs(I
′)
]
≤ O(dep(L) · β2 ·

(OPTcnwrs(I) + |E(G)|)). In order to complete the proof of Lemma 5.6, it is now enough to prove
Claim E.1, which we do next.

In the remainder of this proof, we fix a cluster C ∈ L. Recall that there is a distribution D′(C) over
the set Λ′(C) of external C-routers, such that for every edge e of E(G \ C),

EQ′(C)∼D′(C)

[
congG(Q′(C), e)

]
≤ β.

We sample an external C-router Q′(C) from the distribution D′(C). We view the paths of Q′(C) as
being directed towards vertex u′(C), that is the center of the router. We apply the algorithm from
Lemma 4.7 to obtain a collection Q̃′(C) of non-transversal paths, routing the edges of δG(C) to u′(C),
such that, for every edge e ∈ E(G), congG(Q̃′(C), e) ≤ congG(Q′(C), e). In particular, Q̃′(C) is also
an external C-router with center vertex u′(C).

In order to simplify the notation, we denote Q̃′(C) by Q′, and Q̃(C) by Q. To summarize, Q′ is an
external C-router, and we are guaranteed that, for every edge e ∈ E(G\C), E [congG(Q′, e)] ≤ β. Set
Q of paths is an internal C-router. If C ∈ Lbad, then for every edge e ∈ E(C), E [cong(Q, e)] ≤ β,
while, if C ∈ Llight then, for every edge e ∈ E(C), E

[
(congG(Q, e))2

]
≤ β. We denote the center

vertex of router Q by u, and the center vertex of router Q′ by u′.

We denote by W = {C1, . . . , Cr} the set of child-clusters of C. We partition W into two subsets:
Wbad =W ∩Lbad, and W light =W ∩Llight. For convenience, for all 1 ≤ i ≤ r, we denote the internal
Ci-router Q̃(Ci) that we have constructed by Qi, and its center vertex by ui. Recall that, if Ci ∈ Lbad,
then for every edge e ∈ E(Ci), E [cong(Qi, e)] ≤ β, while, if Ci ∈ Llight then, for every edge e ∈ E(Ci),
E
[
(congG(Qi, e))2

]
≤ β.

It will be convenient for us to also define another cluster C0 to be the connected component of G \C
containing the vertex u′ – the center vertex of the external C-router Q′. It is immediate to verify that
the set Q′ of paths is an internal C0-router, and for consistency we denote it by Q0. We also denote
the center vertex of this router by u0 = u′. Recall that each one of the sets Q0,Q1, . . . ,Qr of paths is
non-transversal with respect to Σ. For convenience, we denote R = C \ (

⋃r
i=1Ci), and Q∗ =

⋃r
i=0Qi.

Lastly, it will be convenient for us to assume that no edge of G has its endpoints in two distinct clusters
of C0, C1, . . . , Cr. For each such edge e, we subdivide the edge with a new vertex ve, that is added to
graph R as an isolated vertex. Note that, for all 0 ≤ i < j ≤ r, the only vertices that may be shared
by paths in Qi and paths in Qj are vertices of V (R), which must serve as endpoints of those paths.

268

The remainder of the proof of Claim E.1 consists of three steps. In the first step, we will define a new
graph H by slightly modifying graph G, and compute its drawing ψ. In the second step, we use graph
H and its drawing ψ in order to construct an initial drawing ϕ′ of graph GC (associated with instance
IC = (GC ,ΣC) ∈ I of MCNwRS). This drawing, however, may not obey all rotations in ΣC . In the
third and the last step, we modify drawing ϕ′ to obtain the final drawing ϕ′′ of GC , that is a valid
solution to instance IC of MCNwRS. We now describe each of the three steps in turn.

E.2.1 Step 1: Graph H

We assign, to every edge e ∈ E(G), an integer ne ≥ 0, as follows. For every edge e ∈ E(R) ∪ δG(R),
we let ne = 1. For every other edge e ∈ E(G) \ E(R), we let ne = congG(Q∗, e).
In order to construct graph H, we start with V (H) = V (G). For every edge e = (u, v) ∈ E(G) with
ne > 0, we add a set J(e) of ne parallel edges (u, v) to graph H, and we call the edges of J(e) copies
of edge e. This completes the definition of the graph H. Note that graph H is a random graph, as
values {ne}e∈E(G) are random variables.

Consider the optimal solution ϕ∗ to instance I of MCNwRS. We use ϕ∗ in order to define a drawing
ψ of the graph H, in a natural way: for every vertex v ∈ V (H), its image in ψ remains the same as
in ϕ∗. For every edge e ∈ E(G) with n(e) ≥ 1, we draw the edges of J(e) in parallel to the image
of e in ϕ∗, immediately next to it, so that their images do not cross. Consider the resulting drawing
ψ of graph H, and let (e′1, e

′
2)p be a crossing of ψ. Assume that e′1 ∈ J(e1) and e′2 ∈ J(e2). Then

the images of the edges e1, e2 cross in ϕ∗, at some point p′ that is very close to point p. We say that
crossing (e1, e2)p′ of ϕ∗ is responsible for the crossing (e′1, e

′
2)p of ψ.

Next, we classify the crossings of the drawing ψ into three types, and we bound the expected number
of crossings of some of the types. Consider some crossing (e′1, e

′
2)p of ψ, and let (e1, e2)p′ be the crossing

of ϕ∗ that is responsible for (e′1, e
′
2)p. We say that crossing (e′1, e

′
2)p is a type-1 crossing if there is

some cluster Ci ∈ W light, with e1, e2 ∈ E(Ci). We say that it is a type-2 crossing if there is an index
0 ≤ i ≤ r with e1, e2 ∈ E(Ci), and either i = 0 or Ci ∈ Wbad holds. We say that (e′1, e

′
2)p is a type-3

crossing otherwise.

We now bound the expected number of type-1 and type-3 crossings. We do not bound the number of
type-2 crossings, as all such crossings will eventually be eliminated.

Type-1 crossings. Consider some cluster Ci ∈ W light, and some crossing (e1, e2)p′ of ϕ∗, such that
e1, e2 ∈ E(Ci). Notice that crossing (e1, e2)p′ lies in χ(Ci). The number of type-1 crossings in ϕ
that this crossing is responsible for is ne1 · ne2 ≤ n2

e1 + n2
e2 . Observe that, for an edge e ∈ E(Ci),

ne = congG(Qi, e), and so E
[
n2
e

]
= E

[
(congG(Qi, e))2

]
≤ β. We conclude that the total expected

number of type-1 crossings in ψ is bounded by:∑
Ci∈W light

∑
(e1,e2)p′∈χ(Ci)

E
[
n2
e1 + n2

e2

]
≤

∑
Ci∈W light

O(β · |χ(Ci)|) ≤ O(β · |χ(C)|).

Type-3 crossings. Consider some crossing (e1, e2)p′ of ϕ∗. If edges e1, e2 lie in the same cluster
Ci, for 0 ≤ i ≤ r, then this crossing may not be responsible for any type-3 crossings in ψ. Assume
now that this is not the case. Then the total number of type-3 crossings that (e1, e2)p′ is responsible
for is at most ne1 · ne2 . Furthermore ne1 , ne2 are independent random variables, each of which has
expectation at most β. Therefore, the expected number of type-3 crossings for which crossing (e1, e2)p′

is responsible is at most β2. Note that, at least one of the edges e1, e2 must lie in E(C) ∪ δG(C), so
crossing (e1, e2)p′ must lie in χ(C). We conclude that the total expected number of type-3 crossings

269

in ϕ is at most |χ(C)| · β2.

Consider now an index 0 ≤ i ≤ r, and let Ei = δG(Ci). From our definition, for every edge e ∈ Ei,
ne = 1. Recall that we have defined a set Qi = {Q(e) | e ∈ Ei} of paths in graph G, routing all edges of
Ei to the vertex ui ∈ V (Ci). The paths in Qi are non-transversal with respect to Σ, and all their inner

vertices are contained in Ci. We will now define a corresponding set Q̂i =
{
Q̂(e) | e ∈ Ei

}
of paths in

graph H, routing the edges of Ei to the same vertex ui, such that the paths in Q̂i are edge-disjoint.
In order to do so, we assign, to every path Q(e) ∈ Qi, for every edge e′ ∈ E(Q(e)) \ {e}, a copy of the
edge e′ from J(e′), such that every copy of edge e′ is assigned to a distinct path. We will then obtain
path Q̂(e) from path Q(e) by replacing every edge e′ ∈ E(Q(e)) \ {e} with its copy that was assigned
to Q(e).

Consider any edge e′ ∈ E(Ci). If e′ is not incident to the vertex ui, then we assign each copy of e′

to a distinct path in Qi that contains e′ arbitrarily. Assume now that edge e′ is incident to vertex
ui, and that Ci 6∈ W light. In this case, as before, we assign each copy of e′ to a distinct path in Qi
that contains e′ arbitrarily. It now remains to consider the case where Ci ∈ W light, and edges that are
incident to vertex ui. We need to assign copies of such edges to paths in Qi more carefully. The goal
of this more careful assignment is to achieve the following property: if we denote Ei = {e1, . . . , ehi},
where the edges are indexed according to the ordering O(Ci), and, for each such edge ej , we denote
by e′j be the last edge on path Q̂(ej) (that we are trying to construct), then the images of the edges{
e′1, . . . , e

′
hi

}
enter the image of ui in the drawing ψ of graph H in this circular order. We now describe

the procedure for assigning copies of edges of δG(ui) to paths in Qi.
We start by revisiting the definition of the ordering O(Ci) of the edges of Ei = δG(Ci), which is
an ordering that is guided by the set Qi of paths and the rotation system Σ. Denote δG(ui) ={
ai1, . . . , a

i
zi

}
, where the edges are indexed according to their circular ordering Oui ∈ Σ. We assume

w.l.o.g. that the orientation of this ordering in the drawing ϕ∗ of G is negative (or clock-wise). For
all 1 ≤ j ≤ zi, let Qji ⊆ Qi the set of paths in Qi whose last edge is aij . We defined an ordering

Ôi of the paths in Qi, where the paths in sets Q1
i , . . . ,Q

zi
i appear in the natural order of their

indices, and for all 1 ≤ j ≤ zi, the ordering of the paths in set Qji is arbitrary. We denote Qji ={
Q(ei,j1), Q(ei,j2), . . . , Q(ei,jmi,j)

}
, and assume that these paths are indexed according to the ordering

that we have chosen when defining Ôi.
Ordering Ôi of the paths in Qi was then used to define the ordering O(Ci) of the edges in Ei: we
obtain the ordering O(Ci) from Ôi by replacing, for every path Q(ei,j`) ∈ Qi, the path Q(ei,j`) in Ô
with the edge ei,j` (the first edge of Q(ei,j`)).

Consider now some edge aij ∈ δG(ui). Recall that we have defined a set J(aij) of naij
= mi,j copies

of the edge aij . We denote these copies by âi,j1 , . . . , âi,jmi,j , where the copies are indexed according to
the order in which their images enter the image of vertex ui in the drawing ψ of H, in the clock-wise
direction. For all 1 ≤ ` ≤ mi,j , we assign the copy âi,j` of edge aij to the path Q(ei,j`). This completes
the assignment of the copies of the edges incident to vertex ui to the paths of Qi.

We now define a set Q̂i =
{
Q̂(e) | e ∈ Ei

}
of paths in graph H, routing the edges of Ei to vertex ui,

as follows. For every edge e ∈ Ei, path Q̂(e) is obtained from the path Q(e) ∈ Qi by replacing every
edge e′ ∈ E(Q(e)) \ {e} with the copy of e′ that was assigned to path Q(e). The following observation
summarizes the properties of the path set Q̂i, that follow immediately from our construction.

Observation E.2 Paths in set Q̂i =
{
Q̂(e) | e ∈ Ei

}
route the edges of Ei to vertex ui in graph H,

and all inner vertices on all paths in Q̂i lie in V (Ci). Moreover, the paths of Q̂i are edge-disjoint.
Additionally, if Ci ∈ W light, then the following holds. Denote Ei = {e1, . . . , ehi}, where the edges are

270

indexed according to the ordering O(Ci). For each such edge ej, let e′j be the last edge on path Q̂(ej).
Then the images of the edges e′1, . . . , e

′
hi

enter the image of ui in the drawing ψ of graph H in the
circular order of their indices.

E.2.2 Step 2: Initial Drawing of Graph GC

In this step we exploit the drawing ψ of graph H that we have constructed in the first step, in order
to construct an initial drawing ϕ′ of graph GC .

In order to construct the drawing ϕ′ of graph GC , we start with the drawing ψ of graph H, and then
gradually modify it. We place the image of the vertex v∗ in ϕ′ at point ψ(u0), and, for all 1 ≤ i ≤ r,
we place the image of the vertex vCi at point ψ(ui). Intuitively, the images of the vertices and the
edges of R will remain unchanged. For all 0 ≤ i ≤ r, we will utilize the images of the paths of Q̂i in
ψ in order to draw the edges of Ei. There are two issues with this approach. First, we did not bound
the expected number of type-2 crossings in ψ, so there may be many crossings between pairs of edges
lying on paths of Qi, where i = 0, or Ci ∈ Wbad. We take care of this issue by performing a type-2
uncrossing for each such path set Q̂i, to obtain the drawings of the edges in Ei. The second problem
then remains for indices i with Ci ∈ W light. Since several paths from Q̂i may share the same vertex,
there could be points that lie on images of multiple paths of Q̂i. We take care of this latter issue by
employing a nudging procedure. We now describe each of these two operations in turn.

Uncrossing. We consider indices i for which either i = 0 or Ci ∈ Wbad holds one by one. Consider
any such index i. We view every path of Q̂i as being directed towards the vertex ui. We use the
algorithm from Theorem 4.37 in order to compute a type-2 uncrossing, that produces, for every edge
e ∈ Ei, a directed curve γ(e), that connects the image of the endpoint of e that lies in R to the image
of ui in ψ. Recall that we are guaranteed that the curves in the resulting set Γi = {γ(e) | e ∈ Ei} do
not cross each other, and each such curve is aligned with the drawing of graph

⋃
Q̂(e)∈Q̂i Q̂(e) induced

by ψ.

Let ψ′ be a drawing obtained from ψ as follows. For every index i with i = 0 or Ci ∈ Wbad, we delete
the images of all vertices of V (Ci) and all edges with at least one endpoint in V (Ci) from the drawing.
If i = 0, then we place the image of vertex v∗ at point ψ(u0), and otherwise we place the image of
vertex vCi at point ψ(ui). For every edge e ∈ Ei, we then let γ(e) ∈ Γi be the image of the edge e.

Note that this uncrossing step has eliminated all type-2 crossings, and every crossing in the resulting
drawing ψ′ corresponds to a distinct type-1 or type-3 crossing of ψ. Therefore, the expected number
of crossings of ψ′ is bounded by O(β2 · |χ(C)|). We call all crossings that are currently present in
drawing ψ′ primary crossings.

Nudging. We now consider the indices i with Ci ∈ W light one by one. When such an index i is
considered, we delete the images of all vertices of V (Ci) and all edges with at least one endpoint in
V (Ci) from the current drawing ψ′. We then place the image of vertex vCi at point ψ(ui). For every
edge e ∈ Ei, we initially let γ(e) be the image of the path Q̂(e) ∈ Q̂i in ψ, and we add γ(e) to the
current drawing as the image of the edge e. Note that the curves in {γ(e) | e ∈ Ei} enter the image
of vCi in the order O(Ci) of their corresponding edges in Ei, from Observation E.2. However, it is
possible that, for some vertex x ∈ V (Ci), point ψ(x) lies on more than two curves from {γ(e) | e ∈ Ei}.
We process each vertex x ∈ V (Ci) \ {ui} one by one. Consider any such vertex x, and let Qx ⊆ Q̂i
be the set of all paths containing vertex x. Note that x must be an inner vertex on each such path.
For convenience, we denote Qx = {Q(e1), . . . , Q(ez)}. Consider the tiny x-disc D = Dψ(x). For all
1 ≤ j ≤ z, denote by sj and tj the two points on the curve γ(ej) that lie on the boundary of disc D.
We use the algorithm from Claim 4.34 to compute a collection {σ1, . . . , σz} of curves, such that, for

271

all 1 ≤ j ≤ z, curve σj connects sj to tj , and the interior of the curve is contained in the interior of
D. Recall that every pair of resulting curves crosses at most once, and every point in the interior of
D may be contained in at most two curves. Consider now a pair σ`, σ`′ of curves, and assume that
these two curves cross. Recall that, from Claim 4.34, this may only happen if the two pairs (s`, t`),
(s`′ , t`′) of points cross. Denote by e1, e2 the two edges that lie on path Q̂(e`) immediately before and
immediately after vertex x, and denote by e′1, e

′
2 the two edges that lie on path Q̂(e`′) immediately

before and immediately after vertex x. We assume that edges e1, e2 are copies of edges ê1, ê2 of G, and
similarly, e′1, e

′
2 are copies of edges ê′1, ê

′
2 of G, respectively. Assume first that there are four distinct

edges in set {ê1, ê
′
1, ê2, ê

′
2}. From the fact that the two pairs (s`, t`), (s`′ , t`′) of points cross, we get

that these four edges must appear in the rotation Ox ∈ Σ in the order (ê1, ê
′
1, ê2, ê

′
2). Since the paths

of Qi are non-transversal with respect to Σ, this is impossible. Therefore, we conclude that paths
Q(e`), Q(e`′) must share an edge that is incident to x. If e∗ is an edge incident to x that the two paths
share, then we say that e∗ is responsible for the crossing between σ` and σ`′ .

For all 1 ≤ j ≤ z, we modify the curve γ(ej), by replacing the segment of the curve that is contained
in disc D with σj . Once every vertex x ∈ V (Ci) \ {ui} is processed, we obtain the final set Γ′i =
{γ′(e) | e ∈ Ei} of curves, which are now guaranteed to be in general position. For every edge e ∈ Ei,
we modify the image of edge e in the current drawing, by replacing it with the new curve γ′(e). As
before, curves of Γ′i enter the image of vCi according to the ordering O(Ci).

Once every index i with Ci ∈ W light is processed, we obtain a valid drawing ϕ′ of the graph GC . In
this drawing, for every index i with Ci ∈ W light, the images of the edges in set Ei = δGC (vCi) enter
the image of vertex vCi according to the ordering OvCi ∈ ΣC , which is precisely O(Ci). However, for

indices i with Ci ∈ Wbad, this property may not hold, and the edges incident to v∗ may enter the
image of v∗ in an arbitrary order. For every other vertex v of GC , the rotation Ov ∈ ΣC is identical
to the rotation Ov ∈ Σ, and is obeyed by the current drawing ϕ′. We modify the drawing ϕ′ to
obtain a drawing that is consistent with the rotation system ΣC in the third step. Notice however
that the nudging operation may have introduced some new crossings. Each such new crossing must
be contained in a disc Dψ(x), for some vertex x that must lie in some cluster Ci ∈ W light. We call all
such new crossings secondary crossings. We now bound the total number of secondary crossings.

Fix an index i with Ci ∈ W light, and consider some vertex x ∈ V (Ci). Every secondary crossing that is
contained in Dψ(x) is a crossing between a pair σ`, σ`′ of curves that we have defined when processing
vertex x, and each such crossing was charged to an edge of G that is incident to x, whose copies lie on
the corresponding two paths Q̂(e`), Q̂(e`′) ∈ Q̂i. If e is an edge that is incident to x in G, then there
are at most (congG(Qi, e))2 pairs of paths in Qi that contain e, and each such pair of paths may give
rise to a single secondary crossing in Dψ(x) that is charged to edge e. Therefore, the total expected
number of secondary crossings that are contained in discs Dψ(x) for vertices x ∈ V (Ci) is bounded
by: ∑

e∈E(Ci)

O(E
[
(congG(Qi, e))2

]
) ≤ O(β · |E(Ci)|),

since Ci ∈ W light.

We conclude that the total expected number of secondary crossings in ϕ′ is at most
∑

Ci∈W light O(β ·
|E(Ci)|) ≤ O(β ·|E(C)|), and the total number of all crossings in ϕ′ is at most O(β2 ·(|χ(C)|+|E(C)|)).

E.2.3 Step 3: the Final Drawing

So far we have obtained a drawing ϕ′ of graph GC , that obeys the rotations Ov ∈ ΣC for all vertices
v ∈ V (GC), except possibly for vertex v∗, and vertices vCi , for Ci ∈ Wbad. We now fix this drawing

272

to obtain a final drawing ϕ′′ of GC that obeys the rotation system ΣC .

Let U = {v∗}∪
{
vCi | Ci ∈ Wbad

}
. For each vertex x ∈ U , we denote by Ô(x) = Ox ∈ ΣC the rotation

associated with vertex x in the rotation system ΣC , and by Ô′(x) the circular order in which the edges
of δGC (x) enter the image of x in the current drawing ϕ′. Note that, for a vertex x = vCi , where
Ci ∈ Wbad, if we denote by Σ(Ci) the rotation system induced by Σ for cluster C, then the following
must hold:

dist(Ô(x), Ô′(x)) ≤ |δGC (x)|2 = |δG(Ci)|2 ≤ β · (OPTcnwrs(Ci,Σ(Ci))+ |E(Ci)|) ≤ β(|χ(Ci)|+ |E(Ci)|).

(we have used the fact that cluster Ci is a β-bad cluster). We use the following claim, whose proof
appears in Section E.3, in order to bound dist(Ô(v∗), Ô′(v∗)).

Claim E.3 E
[
dist(Ô(v∗), Ô′(v∗))

]
≤ β2 · (|χ(C)|+ |E(C)|).

In order to compute the final drawing ϕ′′ of graph GC , we process the vertices x ∈ U one by one.
When vertex x is processed, we apply the algorithm from Corollary 4.32 to it. The algorithm modifies
the current drawing of graph GC within the tiny x-disc D(x) to ensure that the images of the edges
of δGC (x) enter the image of x in the circular order Ô(x). This modification increases the number of
crossings in the current drawing by at most 2 · dist(Ô(x), Ô′(x)). Once every vertex of U is processed,
we obtain the final drawing ϕ′′ of graph GC , which obeys the rotation system ΣC . Moreover, cr(ϕ′′) ≤
cr(ϕ′) +

∑
x∈U 2 · dist(Ô(x), Ô′(x)). Recall that E [cr(ϕ′)] ≤ O(β2) · (|χ(C)| + |E(C)|), and that, for

every vertex x = vCi with Ci ∈ Wbad, dist(Ô(x), Ô′(x)) ≤ β(|χ(Ci)|+ |E(Ci)|). Combining this with
Claim E.3, we get that:

E
[
cr(ϕ′′)

]
≤ O(β2) · (|χ(C)|+ |E(C)|) +

∑
Ci∈Wbad

O(β) · (|χ(Ci)|+ |E(Ci)|) ≤ O(β2 · (|χ(C)|+ |E(C)|)).

This completes the proof of Claim E.1.

E.3 Proof of Claim E.3

Clearly, dist(Ô(v∗), Ô′(v∗)) ≤ |δGC (v∗)|2 = |δG(C)|2. If C ∈ Lbad, then cluster C is β-bad, and so
dist(Ô(v∗), Ô′(v∗)) ≤ |δG(C)|2 ≤ β · (|χ(C)|+ |E(C)|) from the definition of β-bad clusters. Therefore,
we assume from now on that C ∈ Llight.

For convenience of notation, we denote v∗ by u′, and we denote Ô(v∗) and Ô′(v∗) by O and O′,
respectively. We also denote E′ = δG(C) = δGC (u′). In order to prove the claim, we will construct a
collection Γ = {γ(e) | e ∈ E′} of curves in the plane, all of which connect two points p and q. We will
ensure that the order in which the curves enter the point p is precisely O′, and the order in which they
enter the point q is O. We will also ensure that the curves of Γ are in general position. By showing
that the expected number of crossings between the curves in Γ is relatively small, we will obtain the
desired bound on E [dist(O,O′)].
In order to construct the curves in Γ, we consider again the intance I of MCNwRS and its optimal
solution ϕ∗. Recall that we have computed an internal C-router Q = {Q(e) | e ∈ E′}, where for
each edge e ∈ E′, path Q(e) originates with edge e, terminates at vertex u, and all its inner vertices
lie in C. The paths in Q are non-transversal with respect to Σ, and, for every edge e′ ∈ E(C),
E
[
(congG(Q, e′))2

]
≤ β. We have also constructed an external C-router Q′ = {Q′(e) | e ∈ E′}, where

for each edge e ∈ E′, path Q(e) originates with edge e, terminates at vertex u′, and all its inner
vertices are disjoint from C. The paths in Q′ are non-transversal with respect to Σ, and, for every
edge e′ ∈ E(G \ C), E [congG(Q′, e′)] ≤ β. We note that path set Q′ is exactly the same as path set

273

Q0 – the internal router for C0, that we used in the first step of the algorithm. Intuitively, we would
like to let p be the image of vertex u′ and q the image of vertex u in ϕ∗. For every edge e ∈ E′, we
would like to use the concatenation of the images of paths Q(e) and Q′(e) in ϕ∗ in order to construct
the curve γ(e). This approach has several problems. First, the paths in sets Q and Q′ may share
edges and vertices, and so the resulting curves may not be in a general position. Second, there could
be many crossings between edges lying on the paths of Q′, which may lead to many crossings between
curves of Γ. We take care of all these issues in the following three steps. In the first step, we take care
of the congestion issue by constructing a graph H ′ and its drawing ψ′. The construction is somewhat
similar to the construction of graph H, in that we make several copies of some of the edges of G, in a
way that allows us to define edge-disjoint paths in graph H ′ replacing the path sets Q and Q′. In the
second step, we perform uncrossing of curves corresponding to the paths in Q′, in order to eliminate
some of the crossings. In the third step we perform nudging of curves corresponding to the paths in
Q. We now describe each of these steps in turn.

Graph H ′. For each edge e ∈ E′, we set n′e = 1. For an edge e ∈ E(C), we set n′e = congG(Q, e),
and for an edge e ∈ E(G \ C), we set n′e = congG(Q′, e). For every other edge e, we set n′e = 0. Note
that for each edge e ∈ E(G \ C), n′e = ne holds, where ne is the parameter that we have used in the
construction of graph H in Step 1 of the algorithm.

In order to construct graph H ′, we start with V (H ′) = V (G). For every edge e = (x, y) ∈ E(G) with
n′e 6= 0, we add a new set J ′(e) of n′e parallel edges connecting x to y to graph H ′, that we view as
copies of edge e. As before, we use the drawing ϕ∗ of G in order to compute a drawing ψ′ of graph H ′.
For every vertex x ∈ V (H ′), we let its image in ψ′ be ϕ∗(x). For every edge e ∈ E(G) with n′e 6= 0,
we draw the edges of J ′(e) in parallel to the image of e in ϕ∗. Recall that for each edge e ∈ E(G \C),
n′e = ne holds, and so set J ′(e) of copies of e can be thought of as being identical to the set J(e) of
copies of e that we have constructed for graph H. We ensure that the specific drawing of the edges of
J ′(e) in ψ′ is identical to the drawing of these edges in ψ.

We now bound the expected number of crossings in the resulting drawing ψ′ of graph H ′. Consider any
such crossing (e′1, e

′
2)p′ , and assume that e′1 ∈ J ′(e1), e′2 ∈ J ′(e2) holds for some edges e1, e2 ∈ E(G).

Then there must be some crossing (e1, e2)p in the drawing ϕ∗ of G, with point p lying very close
to point p′. We say that crossing (e1, e2)p of ϕ∗ is responsible for the crossing (e′1, e

′
2)p′ of ψ′. It is

immediate to verify that every crossing (e1, e2)p of ϕ∗ may be responsible for at most n′e1 ·n
′
e2 crossings

of ψ′.

We classify the crossings of ψ′ into three types. Let (e′1, e
′
2)p′ be a crossing of ψ′, and let (e1, e2)p be

the crossing of ϕ∗ responsible for it. We say that (e′1, e
′
2)p′ is a type-1 crossing if e1, e2 ∈ E(C). We

say that it is a type-2 crossing if e1, e2 ∈ E(G) \ (E(C)∪ δG(C)). Otherwise, we say that it is a type-3
crossing. We now bound the expected number of type-1 and type-3 crossings; type-2 crossings will
eventually be eliminated.

In order to bound the expected number of type-1 crossings, consider any crossing (e1, e2)p of ϕ∗ with
e1, e2 ∈ E(C). Recall that this crossing may be responsible for at most n′e1 ·n

′
e2 ≤ (n′e1)2+(n′e2)2 type-1

crossings of ψ′, and moreover, (e1, e2)p ∈ χ(C) must hold. Since we have assumed that C ∈ Llight, for
every edge e ∈ E(C), E

[
(n′e)

2
]

= E
[
(congG(Q, e))2

]
≤ β. Therefore, the expected number of type-1

crossings of ψ′ for which (e1, e2)p is responsible for is at most E
[
(n′e1)2 + (n′e1)2

]
≤ 2β. Overall, the

total expected number of type-1 crossings in ψ′ is then bounded by O(β · |χ(C)|).
In order to bound the expected number of type-3 crossings, consider any crossing (e1, e2)p of ϕ∗, and
assume that neither e1, e2 ∈ E(C) nor e1, e2 ∈ E(G) \ (E(C)∪ δG(C)) holds. Recall that this crossing
may be repsonsible for at most n′e1 · n

′
e2 type-3 crossings of ψ′. Moreover, n′e1 , n

′
e2 are independent

random variables, and the expected value of each such variable is at most β. Therefore, the expected
number of type-3 crossings of ψ′ for which crossing (e1, e2)p of ϕ∗ is responsible for is at most β2.

274

Notice that one of the edges e1, e2 lies in E(C) ∪ δG(C), and so (e1, e2)p ∈ χ(C) must hold. Overall,
the total expected number of type-3 crossings in ψ′ is then bounded by O(β2 · |χ(C)|).
We conclude that the total expected number of type-1 and type-3 crossings in ψ′ is at most O(β2 ·
|χ(C)|).

Next, we construct a set Q̂′ =
{
Q̂′(e) | e ∈ E′

}
of edge-disjoint paths in graph H ′, routing the edges

of E′ to vertex u′. In order to do so, we assign, for every path Q′(e) ∈ Q′, for every edge e′ ∈
E(Q′(e)) \ {e}, a copy of edge e′ to path Q′(e). Observe that path set Q′ in graph G was denoted by
Q0 in Step 1 of the algorithm, and, as observed before, for every edge e′ ∈ E(G) \ (E(C) ∪ δG(C)),
ne′ = n′e′ and so J(e′) = J ′(e′). For each such edge e′ ∈ E(G) \ (E(C) ∪ δG(C)), we assign a distinct
copy of e′ ∈ J ′(e′) to every path in Q′ that contains e′. We ensure that this assignment is exactly
the same as the assignment done in Step 1 of the algorithm. For each edge e ∈ E′, we then obtain a
path Q̂′(e) in graph H ′ from path Q′(e) by replacing each edge e′ ∈ E(Q′(e)) \ {e} with the copy of

e′ that was assigned to e′. We then denote Q̂′ =
{
Q̂′(e) | e ∈ E′

}
. From our construction, Q̂′ is a set

of edge-disjoint paths in graph H ′, routing the edges of E′ to vertex u′, and all inner vertices on the
paths in Q̂′ are disjoint from C. Moreover, from our construction, Q̂′ = Q̂0 – the set of edge-disjoint
paths in H that we have constructed in Step 1 of the algorithm.

We also construct a set Q̂ =
{
Q̂(e) | e ∈ E′

}
of edge-disjoint paths in graph H ′, routing the edges of

E′ to vertex u. In order to do so, we assign, for every path Q(e) ∈ Q, for every edge e′ ∈ E(Q(e))\{e},
a copy of edge e′ to path Q(e). Consider now any edge e′ ∈ E(C). If edge e′ is not incident to vertex
u, then we assign every copy of e in J ′(e′) to a distinct path of Q containing e′ arbitrarily. If edge e′

is incident to vertex u, then we perform the assignment more carefully, using the same procedure that
we used for every cluster Ci ∈ W light in order to assign, for each edge e′ incident to ui, copies of e′ to
paths in Qi; we do not repeat the description of the procedure there. For each edge e ∈ E′, we obtain
a path Q̂(e) in graph H ′ from path Q(e) by replacing each edge e′ ∈ E(Q(e)) \ {e} with the copy of

e′ that was assigned to e′. We then denote Q̂ =
{
Q̂(e) | e ∈ E′

}
. Recall that O = O(C) is a circular

ordering of the edges of E′ = δG(C) that is guided by the set Q of paths and the rotation system
Σ. As in Step 1 of the algorithm, our assignment of edges incident to vertex u ensures the following
crucial property. Denote E′ = {e1, . . . , ek}, where the edges are indexed according to the ordering O.
For each such edge ej , let e′j be the last edge on path Q̂(ej). Then the images of edges e′1, . . . , e

′
k enter

the image of the vertex u in the drawing ψ′ of H ′ in the order of their indices.

Uncrossing. We view every path of Q̂′ as being directed towards the vertex u′. We use the algorithm
from Theorem 4.37 in order to compute a type-2 uncrossing, that produces, for every edge ej ∈ E′,
a directed curve γ̂′(ej), that connects the image of the endpoint of ej lying in C to u′. Recall that
we are guaranteed that the curves in the resulting set Γ̂′ = {γ̂′(ej) | ej ∈ E′} do not cross each other,
and each such curve is aligned with the drawing of graph

⋃
Q̂′(e`)∈Q̂′ Q̂

′(e`) induced by ψ′ (which is

identical to the drawing induced by ψ). Notice that the steps that we have followed in constructing
the set Γ̂′ of curves are identical to those we followed in order to construct the set Γ0 of curves, and
so the resulting two sets of curves are identical. In particular, the order in which the curves of Γ̂ enter
the image of vertex u′ in ψ′ is exactly O′.
We now construct another set of curves, Γ̂ = {γ̂(ej) | ej ∈ E′}, by letting, for each edge ej ∈ E′, γ̂(ej)
be the image of the path Q̂(ej) ∈ Q̂ in the drawing ψ′ of H ′. From our construction of the set Q̂ of
paths, the order in which the curves of Γ̂ enter the image of vertex u in ψ is exactly O. For every edge
ej ∈ E′, we then let γ(ej) be a curve, connecting the images of u and u′ in ψ′, obtained by combining
the curves γ̂(ej) and γ̂′(ej). In order to combine the two curves, let yj be the endpoint of ej lying
in C, and let pj be the unique point on ψ′(ej) that lies on the boundary of the tiny yj-disc Dψ′(yj).

275

We truncate curve γ̂′(ej) so it connects point pj to the image of vertex u′, and we truncate the curve
γ̂(ej), so it connects point pj to the image of vertex u. We then concatenate the resulting two curves
to obtain the curve γ(ej).

Consider the resulting set Γ = {γ(ej) | ej ∈ E′} of curves. From the above discussion, the curves enter
the image of u′ in ψ′ according to the ordering O′, and they enter the image of u according to the
ordering O. The total number of crossings between the curves in Γ is bounded by cr(ψ′). We call all
such crossings primary crossings. Recall that the expected number of primary crossings is at most
O(β2 · |χ(C)|). However, the curves in Γ may not be in general position. This is since some vertices
x ∈ V (C) may lie on a number of paths in Q̂. In the next step we perform “nudging” around such
vertices, to ensure that the resulting curves are in general position.

Nudging. The nudging procedure and its analysis are identical to those from Step 2 of the algorithm.
We only need to perform nudging of the curves in Γ around vertices x ∈ V (C) \ {u}.
We process each vertex x ∈ V (C) \ {u} one by one. Consider any such vertex x, and let Qx ⊆ Q̂
be the set of all paths containing vertex x. Note that x must be an inner vertex on each such path.

For convenience, we denote Qx =
{
Q̂(e1), . . . , Q̂(ez)

}
. Consider the tiny x-disc D = Dψ′(x). For all

1 ≤ j ≤ z, denote by sj and tj the two points on the curve γ(ej) that lie on the boundary of disc D.
We use the algorithm from Claim 4.34 to compute a collection {σ1, . . . , σz} of curves, such that, for
all 1 ≤ j ≤ z, curve σj connects sj to tj , and the interior of the curve is contained in the interior of
D. Recall that every pair of resulting curves crosses at most once, and every point in the interior of
D may be contained in at most two curves. Consider now a pair σ`, σ`′ of curves, and assume that
these two curves cross. Recall that, from Claim 4.34, this may only happen if the two pairs (s`, t`),
(s`′ , t`′) of points cross. Denote by e1, e2 the two edges that lie on path Q̂(e`) immediately before and
immediately after vertex x, and denote by e′1, e

′
2 the two edges that lie on path Q̂(e`′) immediately

before and immediately after vertex x. We assume that edges e1, e2 are copies of edges ê1, ê2 of G, and
similarly, e′1, e

′
2 are copies of edges ê′1, ê

′
2 of G, respectively. Assume first that there are four distinct

edges in set {ê1, ê
′
1, ê2, ê

′
2}. From the fact that the two pairs (s`, t`), (s`′ , t`′) of points cross, we get

that these four edges must appear in Ox ∈ Σ in the order (ê1, ê
′
1, ê2, ê

′
2). Since the paths of Q are

non-transversal with respect to Σ, this is impossible. Therefore, we conclude that paths Q(e`), Q(e`′)
must share an edge that is incident to x. If e∗ is an edge incident to x that the two paths share, then
we say that e∗ is responsible for the crossing between σ` and σ`′ .

For all 1 ≤ j ≤ z, we modify the curve γ(ej), by replacing the segment of the curve that is contained
in disc D with σj . Once every vertex x ∈ V (C) \ {u} is processed, we obtain the final set Γ∗ =
{γ∗(e) | e ∈ E′} of curves, which are now guaranteed to be in general position. Notice that as before,
the curves in Γ∗ enter the image of u′ according to the ordering O′, and they enter the image of u
according to the ordering O. It now only remains to bound the expected number of crossings between
the curves of Γ∗.

Notice that the nudging operation may have introduced some new crossings. Each such new crossing
must be contained in a disc Dψ′(x), for some vertex x ∈ V (C) \ {u}. We call all such new crossings
secondary crossings. We now bound the expected number of secondary crossings.

Consider some vertex x ∈ V (C) \ {u}. Every secondary crossing that is contained in Dψ′(x) is a
crossing between a pair σ`, σ`′ of curves that we have defined when processing vertex x, and each such
crossing was charged to an edge of G that is incident to x. If e is an edge of G that is incident to x,
then there are at most (congG(Q, e))2 pairs of paths in Qx that contain copies of e, and each such pair
of paths may give rise to a single secondary crossing in Dψ′(x) that is charged to edge e. Therefore,

276

the total expected number of secondary crossings is bounded by:∑
e∈E(C)

O(E
[
(congG(Q, e))2

]
) ≤ O(β · |E(C)|),

since we have assumed that C ∈ W light.

Overall, the expected number of crossings between the curves in Γ∗ is at most O(β2 ·(|χ(C)|+|E(C)|)),
proving that E [dist(O,O′)] ≤ O(β2 · (|χ(C)|+ |E(C)|)).

F Proofs Omitted from Section 6

F.1 Proof of Theorem 6.3

Note that, since graph G is connected, |V (G)| ≤ m + 1 ≤ 2m must hold. Throughout, we use a
parameter η′ = cη log3/2m log2m, were c is a large enough constant, whose value we set later.

The algorithm maintains a collection C of disjoint clusters of G\T , such that
⋃
C∈C V (C) = V (G)\T .

Set C of clusters is partitioned into two subsets: set CA of active clusters and set CI of inactive clusters.
We will ensure that every cluster C ∈ CI has the α′-bandwidth property. Set CI of inactive clusters is,
in turn, partitioned into three subsets, CI1 , CI2 , and CI3 . For every cluster C ∈ CI3 , we will define a vertex
u(C) ∈ V (C), and an internal C-router Q(C), whose center vertex is u(C), such that the paths in
Q(C) are edge-disjoint. For every cluster C ∈ CI1 , we will ensure that |E(C)| ≤ O(η4 log8m) · |δG(C)|
holds. Lastly, for every cluster C ∈ CI2 , we will ensure that OPTcr(C) ≥ Ω(|E(C)|2/(η2 poly logm)),
and |E(C)| > Ω(η4|δG(C)| log8m). We start with CI = ∅, and CA containing a single cluster G \ T
(note that graph G \ T is connected since G is connected and every terminal has degree 1). The
algorithm terminates once CA = ∅, and once this happens, we return CI as the algorithm’s outcome.

In order to bound the number of edges in the contracted graph E(G|C), we will use edge budgets and
vertex budgets, that are defined as follows.

Edge Budgets. If an edge e belongs to the boundary δG(C) of a cluster C ∈ C, then, if C ∈ CI ,
we set the budget BC(e) = 1, and otherwise we set it to be BC(e) = log3/2(|δG(C)|). If cluster C is
the unique cluster with e ∈ δG(C), then we set B(e) = BC(e). If there are two clusters C 6= C ′ ∈ C
with e ∈ δG(C) and e ∈ δG(C ′), then we set B(e) = BC(e) + BC′(e). Lastly, if no cluster C ∈ C with
e ∈ δG(C) exists, then we set B(e) = 0.

Vertex Budgets. Vertex budgets are defined as follows. For every cluster C ∈ CA, for every vertex

v ∈ V (C), we set the budget B(v) =
cdegC(v) log3/2m·log2(|E(C)|)

8η′ , where c is the constant used in the

definition of η′. The budgets of all other vertices are set to 0.

Cluster Budgets and Total Budget. For a cluster C ∈ C, we define its edge-budget BE(C) =∑
e∈δG(C)BC(e), and its vertex-budget BV (C) =

∑
v∈V (C)B(v). The total budget of a cluster C ∈ C

is B(C) = BE(C)+BV (C), and the total budget in the system is B∗ =
∑

C∈C B(C) =
∑

e∈E(G)B(e)+∑
v∈V (G\T)B(v).

Notice that at the beginning of the algorithm, the budget of every vertex v ∈ V (G) \T is bounded by:

c · degG\T (v) · log3/2m · log2 |E(G)|
8η′

≤ degG(v)

8η
,

277

the budget of every edge incident to a vertex in T is at most log3/2(|T |) ≤ 16 logm, while the budget of
every other edge is 0. Therefore, the total budget B∗ in the system at the beginning of the algorithm
is:

m

4η
+ 16k logm ≤ m

η
,

since k ≤ m
16η logm from the statement of Theorem 6.3.

We will ensure that, throughout the algorithm, the total budget B∗ never increases. Since, from the
definition, B∗ ≥

∑
C∈C |δG(C)|, this ensures that, when the algorithm terminates, |E(G|C)| ≤ m/η, so

the set CI of clusters and its partition (CI1 , CI2 , CI3) is a valid output of the algorithm.

As mentioned above, the algorithm starts with CI = ∅, and CA contains a single cluster – cluster G\T .
As long as CA 6= ∅, we perform iterations, where in each iteration we select an arbitrary cluster C ∈ CA
to process. We now describe the execution of an iteration in which cluster C ∈ CA is processed. The
algorithm for processing cluster C consists of three steps, that we describe next.

Step 1: Bandwidth Property. In this step we will either establish that C has the α′-bandwidth
property, or we will partition it into smaller clusters that will replace C in set CA. Let C+ be the
augmentation of cluster C. Recall that C+ is a graph that is obtained as follows. We start with the
graph G, and we subdivide every edge e ∈ δG(C) with a vertex te, letting T (C) = {te | e ∈ δG(C)}
be this new set of vertices. We then let C+ be the subgraph of the resulting graph induced by
V (C) ∪ T (C). From Observation 4.16, cluster C has the α′-bandwidth property iff the set T (C) of
vertices is α′-well-linked in C+. We apply the algorithm AARV to graph C+ and terminal set T (C),
to obtain an βARV(m) = O(

√
logm)-approximate sparsest cut (X,Y) in graph C+ with respect to the

set T (C) of terminals.

We can assume without loss of generality that, for every vertex te ∈ T (C), if te ∈ X, and e′ = (te, v)
is the unique edge that is incident to te in C+, then v ∈ X as well (as otherwise we can move te to
Y , making the cut only sparser). Similarly, if te ∈ Y , then v ∈ Y as well. We assume w.l.o.g. that
|X ∩ T (C)| ≤ |Y ∩ T (C)|. We then consider two cases. First, if |E(X,Y)| ≥ α′ · βARV(m) · |X ∩ T (C)|,
then we are guaranteed that vertex set T (C) is α′-well-linked in C+, and therefore cluster C has the
α′-bandwidth property. Assume now that |E(X,Y)| < α′ · βARV(m) · |X ∩ T (C)|.
Let X ′ = X \ T (C) and Y ′ = Y \ T (C), so (X ′, Y ′) is a partition of C. Note that |T (C) ∩ X| =
|δG(C) ∩ δG(X ′)| and similarly |T (C) ∩ Y | = |δG(C) ∩ δG(Y ′)|.
We remove cluster C from CA, and we add all connected components of C[X ′] and C[Y ′] to CA instead.
Observe that we are still guaranteed that

⋃
C′∈C V (C ′) = V (G)\T . We now show that the total budget

in the system does not increase as the result of this step.

Since |X ′|, |Y ′| < |V (C)|, it is immediate to verify that, for every vertex v of C, its budget may only
decrease. The only edges whose budget may increase are the edges of EC(X ′, Y ′). The number of
such edges is bounded by α′ ·βARV(m) · |X ∩T (C)| = α′ ·βARV(m) · |δG(C)∩ δG(X ′)|, and the budget of
each of them increases by at most 2 log3/2m ≤ 8 logm, so the total increase in the budget of all edges
due to this step is bounded by:

8α′ · βARV(m) · |δG(C) ∩ δG(X ′)| · logm ≤ |δG(C) ∩ δG(X ′)|,

since α′ = 1
16βARV(m)·logm .

Consider now some edge e ∈ δG(C)∩ δG(X ′). Since we have assumed that |X ∩T (C)| ≤ |Y ∩T (C)|, it
is easy to verify that |δG(X ′)| ≤ 2|δG(C)|/3. Therefore, if an endpoint of an edge e ∈ δG(C) belongs
to a new cluster C ′ ⊆ G[X ′], then the new budget BC′(e) becomes at most:

log3/2(|δG(X ′)|) ≤ log3/2(|δG(C)|)− 1.

278

The total decrease in the global budget due to the edges of δG(X ′) ∩ δG(C) is then at least |δG(C) ∩
δG(X ′)|. We conclude that overall the global budget does not increase.

We assume from now on that algorithm AARV returned a cut (X,Y) of C+ with |E(X,Y)| ≥ α′ ·
βARV(m) · |X ∩ T (C)|, and so cluster C has the α′-bandwidth property.

Assume now that |E(C)| ≤ (η′)4|δG(C)|. From the definition of η′, we are then guaranteed that
|E(C)| ≤ O(η4 log8m) · |δG(C)|. We then remove cluster C from CA and add it to the set CI of inactive
clusters, and to the set CI1 of clusters. Therefore, we assume from now on that |E(C)| > (η′)4|δG(C)|.

Step 2: Sparse Balanced Cut. In this step, we apply the algorithm from Theorem 4.11 to graph
C with parameter ĉ = 3/4, to obtain a ĉ′-edge-balanced cut (Z,Z ′) of C (where 1/2 < ĉ′ < 1),
whose value is at most O(βARV(m)) times the value of a minimum 3/4-edge-balanced cut of C. We
say that this step is successful if |EG(Z,Z ′)| < |E(C)|/η′. Assume first that the step was successful.
Then we remove cluster C from set CA, and add all connected components of graphs C[Z], C[Z ′] to
set CA insead. We now show that the total budget in the system does not increase as the result of
this step. Observe that the budget of every vertex may only decrease, and the same is true for the
budget of every edge, except for the edges in set δG(C) ∪ EG(Z,Z ′). The budget of each such edge
may increase by at most 2 log3/2m, so the total increase in the budgets of all edges is bounded by

(|δG(C)|+ |EG(Z,Z ′)|) ·2 log3/2m ≤
4|E(C)|·log3/2m

η′ (we have used the fact that |E(C)| > (η′)4|δG(C)|).
We now show that this increase in total budget is compensated by the decrease in the budgets of the
vertices of Z.

Assume without loss of generality that |E(Z)| ≤ |E(Z ′)|. Recall that for every vertex v ∈ Z, its

original budget is: B(v) =
c degC(v) log3/2m·log2(|E(C)|)

8η′ . From our assumption that |E(Z)| ≤ |E(Z ′)|,
log2(|E(Z)|) ≤ log2(|E(C)|)− 1. The new budget of vertex v is:

B′(v) =
cdegZ(v) log3/2m · log2(|E(Z)|)

8η′
≤
cdegZ(v) log3/2m · (log2(|E(C)|)− 1)

8η′
.

Therefore, for every vertex v ∈ Z, its budget decreases by at least
cdegZ(v) log3/2m

8η′ .

From the definition of a (3/4)-edge-balanced cut, |E(Z ′)| ≤ ĉ′|E(C)|, for some universal constant ĉ′.
In particular: ∑

v∈Z
degZ(v) ≥ |E(C)| − |E(Z ′)| ≥ (1− ĉ′)|E(C)|.

Overall, the budget of the vertices in Z decreases by at least:

c log3/2m

8η′
·
∑
v∈Z

degZ(v) ≥
c log3/2m

8η′
· (1− ĉ′) · |E(C)|.

Since ĉ′ < 1, and we can set c to be a large enough constant, we can ensure that this is at least
4|E(C)|·log3/2m

η′ , so the overall budget in the system does not increase.

If the current step is successful, then we replace cluster C with the connected components of C[Z] and
C[Z ′] in set CA and continue to the next iteration. Therefore, we assume from now on that the current
step was not successful. In other words, the algorithm from Theorem 4.11 returned a cut(Z,Z ′) with
|EG(Z,Z ′)| ≥ |E(C)|/η′. Since this cut is within factor βARV(m) = O(

√
logm) from the minimum

3/4-edge-balanced cut, we conclude that the value of the minimum 3/4-edge-balanced cut in C is at

least ρ = |E(C)|
η′·βARV(m) .

From Lemma 4.12, if the maximum vertex degree ∆ in graph C is at most |E(C)|/240 and OPTcr(C) ≤
|E(C)|2/240, then graph C has a (3/4)-edge-balanced cut of value at most c̃ ·

√
OPTcr(C) + ∆ · |E(C)|

279

where c̃ > 240 is some universal constant. As the size of the minimum 3/4-balanced cut in C is at least
ρ, we conclude that either ∆ ≥ |E(C)|/240, or OPTcr(C) > |E(C)|2/240, or

√
OPTcr(C) + ∆ · |E(C)| ≥

ρ/c̃. The latter can only happen if either OPTcr(C) ≥ ρ2/c̃2, or ∆ ≥ ρ2/(c̃2 · |E(C)|). Substituting

the value of ρ = |E(C)|
η′·βARV(m) , we conclude that either OPTcr(C) ≥ |E(C)|2

(c̃η′βARV(m))2
, or ∆ ≥ |E(C)|

(c̃η′βARV(m))2
, or

∆ ≥ |E(C)|
240

. Note that we can check whether the last two conditions hold efficiently. If they do not

hold, then we are guaranteed that OPTcr(C) ≥ |E(C)|2
(c̃η′βARV(m))2

≥ |E(C)|2
η2 poly logm

. Recall that we are also

guaranteed that |E(C)| > (η′)4 · |δG(C)| = Ω(η4|δG(C)| log8m). We then remove cluster C from the
set CA of active clusters and add it to set CI of inactive clusters, where it joins the set CI2 of clusters.

From now on we can assume that |E(C)| > Ω(η4|δG(C)| log8m), and that either ∆ ≥ |E(C)|
(c̃η′βARV(m))2

, or

∆ ≥ |E(C)|
240

hold. Note that, since η′ = cη log3/2m log2m, and since we can set c to be a large enough

constant, we can ensure that |E(C)|
240

≥ |E(C)|
c̃2(η′)2βARV(m)

. Therefore, from now on we assume that there is

some vertex v∗ in graph C, whose degree in C is at least |E(C)|
(c̃η′βARV(m))2

. Since we have assumed that

|E(C)| ≥ (η′)4|δG(C)|, we get that degG(v∗) ≥ 8|δG(C)|η′.

Step 3: routing to a vertex We consider again the graph C+ that we have defined in Step 1,
with the corresponding set T (C) = {te | e ∈ δG(C)} of terminal vertices. Using standard Maximum
Flow computation, we compute a maximum-cardinality set P of edge-disjoint paths, where each path
connects a distinct vertex of T (C) to to vertex v∗. We now consider two cases. In the first case,
|P| = |δG(C)|. In this case, there is a set Q(C) of edge-disjoint paths in cluster C, routing edges of
δe(C) to vertex v∗, which can be easily obtained from P. We then remove cluster C from the set CA
of active clusters and add it to set CI of inactive clusters, where it joins cluster set CI3 .

Assume now that |P| < |δG(C)|. From the maximum flow / minimum cut theorem, there is a collection
E′ of at most |δG(C)| edges in graph C+, such that, in graph C+ \E′, there is no path connecting an
edge of δG(C) to vertex u∗. Let C ′ be the connected component of C+ \E′ containing v∗, so C ′ ⊆ C.
Note that δG(C ′) ⊆ E′, so there is a set Q(C ′) of edge-disjoint paths routing the edges of δG(C ′) to
vertex v∗, with all inner vertices of the paths in Q(C ′) lying in C ′; in other words, Q(C ′) is an internal
C ′-router. We add cluster C ′ to set CI and CI3 . Next, we delete cluster C from CA, and we add every
connected component of C \ C ′ as a new cluster to set CA.

It now remains to prove that the total budget in the system does not increase as the result of these
changes. Note that the budget of every vertex may only decrease, and the budget of every edge,
except for the edges of δG(C) ∪ E′, may also only decrease. The increase in the budget of every edge
in δG(C) ∪ E′ is bounded by 2 log3/2m. Therefore, the total increase in the budget is bounded by
(|δG(C)| + |E′|) · 2 log3/2m ≤ 4|δG(C)| · log3/2m. Note that the budget of vertex v∗ was initially at

least
cdegC(v) log3/2m·log2(|E(C)|)

8η′ , and it becomes 0 at the end of this step. Therefore, the decrease in
the budget is at least:

cdegC(v∗) log3/2m · log2(|E(C)|)
8η′

≥ 4|δG(C)| · log3/2m,

since degC(v∗) ≥ 8|δG(C)|η′. Overall, the budget does not grow. The algorithm terminates once CA
becomes empty, and it returns the set CI of clusters. From our invariants, it is immediate to verify that
this set of clusters has all required properties. It remains to establish that the algorithm is efficient.
In every iteration of the algorithm, we either add a cluster to set CI , or we split a single cluster of
CA into at least two clusters. Once a cluster is added to CI , it remains there until the end of the
algorithm. It is then easy to verify that the number of iterations is bounded by O(|V (G)|) ≤ O(m),
and every iteration can be executed efficiently.

280

F.2 Proof of Observation 6.5

Let ϕ∗ be the optimal solution to instance (C̃,ΣC̃). We can assume w.l.o.g. that every pair of edges

cross at most once in ϕ∗. Denote by χ the collection of all pairs e, e′ ∈ E(C̃) of edges, such that the
images of e and e′ cross in ϕ∗.

Assume for now that, for every cluster W ∈ W light, the routers Q(W) and Q̂(W) are fixed, and so
the rotation system Σ̂ for graph H is fixed as well. For every edge e ∈ E(C̃), we define an integer
N(e) as follows. If there is a cluster W ∈ W light with e ∈ E(W), then we let N(e) be the number of
paths in Q̂(W) containing e. Therefore, N(e) = congG(Q̂(W), e) ≤ congG(Q(W), e). Otherwise, we
set N(e) = 1. We will prove the following observation:

Observation F.1 Suppose the routers Q̂(W) for all clusters W ∈ W light are fixed, and let Σ̂ be the
corresponding rotation system for H. Then:

OPTcnwrs(H, Σ̂) ≤ O

 ∑
(e,e′)∈χ

N(e) ·N(e′)

+O

 ∑
e∈E(C̃)

(N(e))2


.

The proof of Observation 6.5 immediately follows from Observation F.1. Indeed:

E
[
OPTcnwrs(H, Σ̂)

]
≤ E

 ∑
(e,e′)∈χ

O(N(e) ·N(e′)) +
∑

e∈E(C̃)

O((N(e))2)


≤ O

 ∑
(e,e′)∈χ

E
[
N(e) ·N(e′)

]+O

 ∑
e∈E(C̃)

E
[
(N(e))2

]
≤ O

 ∑
(e,e′)∈χ

(
E
[
(N(e))2

]
+ E

[
(N(e′))2

])+O

 ∑
e∈E(C̃)

E
[
N(e))2

] .

Consider now some edge e ∈ E(C̃). Assume first that there is some cluster W ∈ W light with e ∈ E(W).
Then, as observed above, N(e) ≤ congG(Q(W), e). Since Q(W) is a router of ΛG(W) that is drawn
from the distribution D(W), and since cluster W is βi-light with respect to D(W), we get that:

EQ(W)∼D(W)

[
(N(e))2

]
≤ EQ(W)∼D(W)

[
(congG(Q(W), e))2

]
≤ βi.

Otherwise, e ∈ E(C̃) \
(⋃

W∈W light E(W)
)
, and so N(e) = 1 holds. Overall, for every edge e ∈ E(C̃),

E
[
(N(e))2

]
≤ βi. Therefore, we get that:

E
[
OPTcnwrs(H, Σ̂)

]
≤ |χ| ·O(βi) + |E(C̃)| ·O(βi) = O

(
βi ·

(
OPTcnwrs(C̃,ΣC̃) + |E(C̃)|

))
.

In order to complete the proof of Observation 6.5, it is now enough to prove Observation F.1.

281

Proof of Observation F.1. The proof uses arguments that are very similar to those used in the
proof of Lemma 5.6, and more specifically in the proof of Claim E.1. Similar argument are used in
several places throughout this paper, so we only provide a proof sketch here. We start with the optimal
solution ϕ∗ to instance (C̃,ΣC̃), and then gradually transform it to obtain a solution ψ̂ to instance

(H, Σ̂).

Let C∗ be the graph that is obtained from C̃ as follows. We let V (C∗) = V (C̃). For every edge
e = (u, v) ∈ E(C̃) with N(e) > 0, we add a set J(e) of N(e) parallel edges (u, v) to graph C∗. We call
the edges of J(e) copies of edge e. We can modify the solution ϕ∗ to instance C̃ to obtain a drawing
ψ of graph C∗ in a natural way: the images of all vertices of C̃ remain unchanged. For every edge
e ∈ E(C̃), we draw the images of the edges of J(e) in ψ in parallel very close to the original image
of edge e in ϕ∗. It is immediate to verify that the number of crossings in the resulting drawing ψ of
graph C∗ is bounded by

∑
(e,e′)∈χN(e) ·N(e′).

Consider now some cluster W ∈ W light. We will now define, for every edge e ∈ δC̃(W), a curve γ∗(e),

that will serve as the image of e in the solution ψ̂ to instance (H, Σ̂) that we construct. Note that for
each edge e ∈ δC̃(W), N(e) = 1, and so set J(e) of edges contains exactly one copy of edge e. We do
not distinguis between edge e and its unique copy in J(e).

We use the internalW -router Q̂(W) in graphG, in order to define a collection Q̂′(W) =
{
Q̂′(e) | e ∈ δC̃(W)

}
of edge-disjoint paths in graph C∗∪δC̃(W), such that, for every edge e ∈ δC̃(W), path Q̂′(e) originates

at edge e, terminates at vertex u(W) (the center vertex of the router Q̂(W)), and all internal vertices
of Q̂′(e) lie in V (W). In order to obtain the collection Q̂′(W) of paths from the router Q̂(W), for
every edge e ∈ E(W) with N(e) > 0, we assign every copy of e in J(e) to a distinct path of Q̂(W)
that contains the edge e.

Consider any edge e ∈ δC̃(W), and denote e = (xe, ye), where xe ∈ V (W). Initially, we let γ(e) be

the image of the path Q̂′(e) in the drawing ψ of C∗. Let Γ(W) =
{
γ(e) | e ∈ δC̃(W)

}
be the resulting

collection of curves. Note that, for every edge e ∈ δC̃(W), curve γ(e) connects the image of vertex ye
in drawing ϕ∗ to the image of vertex u(W) in the same drawing.

We are now ready to construct an initial drawing ψ′ of the graph H. For regular every vertex
v ∈ V (H) ∩ V (C̃), the image of v in ψ′ remains the same as in ϕ∗ (and in ψ). For every edge e of H
whose both endpoints are regular vertices, the image of e remains the same as in ϕ∗ (and the same
as in ψ). Consider now some cluster W ∈ W light. The image of the supernode vW in drawing ψ′ is
the image of vertex u(W) in ϕ∗ (and in ψ). For every edge e ∈ δC̃(W), the initial image of edge e is
the curve γ(e). Lastly, since the degree of every terminal t ∈ T is 1 in H, we can add these terminals
and their adjacent edges to the current drawing without increasing the number of crossings. We note
that the resulting drawing ψ′ of graph H may not be a valid drawing. This is since, whenever there is
a cluster W ∈ W light and a vertex x ∈ V (W) that lies on more than two paths of Q̂(W), then point
p = ϕ∗(x) belongs to more than two curves of Γ(W), and hence more than two edges cross at point p.
In order to overcome this difficulty, for every cluster W ∈ W light, for every vertex x ∈ V (W) that lies
on at least two paths of Q̂(W), we perform a nudging operatio of the curves in Γ(W) in the vicinity
of vertex x (see Section 4.4.3). The curves are modified locally inside the tiny x-disc Dϕ∗(x) to ensure
that every point of Dϕ∗(x) lies on at most two curves. Consider now a pair e1, e2 ∈ δC̃(W) of edges.

Let Q̂(e1), Q̂(e2) be the paths of Q̂(W) that originate at e1 and e2, respectively, and assume that both
paths contain vertex x. From the definition of the nudging procedure (see also Claim 4.34), and since
the paths in Q̂(W) are non-transversal with respect to ΣC̃ , the curves γ(e1), γ(e2) that are obtained
at the end of the nudging operation may only cross inside disc Dϕ∗(x) if some edge e∗ ∈ δC̃(x) lies on

both Q̂(e1) and Q̂(e2). We say that edge e∗ is responsible for this crossing of γ(e1) and γ(e2).

For every edge e ∈ δC̃(W), let γ′(e) be the curve that is obtained after the nudging operation is

282

performed for every vertex x ∈ V (W) that belongs to at least two paths of Q̂(W), and denote
Γ′(W) =

{
γ′(e) | e ∈ δC̃(W)

}
. For every edge e ∈ δC̃(W), we replace the image of edge e in the

current drawing with the curve γ′(e).

Consider the drawing ψ′ of graph H that is obtained after all clusters W ∈ W light are processed. It is
now easy to verify that ψ′ is a valid drawing of graph H. We partition the crossigns of drawing ψ′ into
two types: a crossing is of type 1 if it is present in drawing ψ, and it is of type 2 otherwise. Equivalently,
a crossing (e, e′)p of ψ′ is of type 2 if there is a cluster W ∈ W light, and a vertex x ∈ V (W), such that
the crossing point p lies in Dϕ∗(x).

The number of type-1 crossings in ψ′ remains bounded by cr(ψ) ≤
∑

(e,e′)∈χN(e) ·N(e′). In order to

bound the number of type-2 crossings, observe that for every cluster W ∈ W light, vertex x ∈ V (W)
and edge e ∈ δC̃(x), the number of type-2 crossings for which edge e may be responsible is at most

(congC̃(Q̂(W), e))2 = (N(e))2. Overall, we get that cr(ψ′) ≤
∑

(e,e′)∈χN(e) ·N(e′) +
∑

e∈E(C̃)(N(e))2.

Observe that for every regular vertex x ∈ V (H) ∩ V (C̃), drawing ψ′ of H obeys the rotation Ox ∈ Σ̂
(which is identical to the rotation of x in ΣC̃). However, it is possible that for some supernodes vW , the

rotation OvW ∈ Σ̂ is not obeyed by ψ′. We fix this issue by introducing at most O
(∑

e∈E(C̃)(N(e))2
)

additional crossings, as follows.

Consider a cluster W ∈ W light, and denote δC̃(u(W)) = {a1, a2, . . . , ar}, where the edges are indexed

according to their order in the rotation Ou(W) ∈ ΣC̃ . For all 1 ≤ i ≤ r, let Qi ⊆ Q̂(W) be the
set of paths whose last edge is ai. Denote by Ai ⊆ δC̃(W) the set of edges e, for which the unique

path Q̂(e) ∈ Q̂(W) that originates at e terminates at edge ai; in other words, Q̂(e) ∈ Qi. Denote by
Γ′i ⊆ Γ′(W) the set of the images of the edges of Ai in the current drawing ψ′. Let O′ be that the
circular order of the edges of δC̃(W) = A1 ∪A2 ∪ · · · ∪Ar, in which their images in ψ′ enter the image
of vW . Then for all 1 ≤ i ≤ r, the edges of Ai appear consecutively in O′ in some arbitrary order,
while the edges lying in different groups of A1, A2, . . . , Ar appear in O′ in the natural order of the
indices of these groups.

Recall that the rotation OvW ∈ Σ̂ is a circular ordering of the edges of δC̃(W) = A1∪A2∪· · ·∪Ar that is

guided by the paths of Q̂(W). In this ordering, for all 1 ≤ i ≤ r, the edges of Ai appear consecutively
in some arbitrary order, while the edges lying in different groups of A1, A2, . . . , Ar appear in OvW
in the natural order of the indices of these groups. In other words, the only difference between the
orderings O′ and OvW is that, for all 1 ≤ i ≤ r, the edges of Ai may appear in different order in the
two orderings. Therefore, dist(O′,OvW) ≤

∑r
i=1 |Ai|2 =

∑r
i=1(congC̃(Q̂(W), ei))

2 ≤
∑r

i=1(N(ei))
2.

For all 1 ≤ i ≤ r, we slightly modify the curves of Γ′i inside the tiny vW -disc Dψ′(vW) to ensure
that the images of the edges of δC̃(W) enter the image of vertex vW in the circular order OvW .
From the above discussion, this can be done by introducing at most

∑r
i=1(N(ei))

2 new crossings.

Once every cluster W ∈ W light is processed, we obtain a valid solution ψ̂ to instance (H, Σ̂), with

cr(ψ̂) ≤ O
(∑

(e,e′)∈χN(e) ·N(e′) +
∑

e∈E(C̃)(N(e))2
)

.

G Proofs Omitted from Section 7

G.1 Proof of Claim 7.9

Consider any cluster R ∈ L. Let N(R) denote the number of clusters C ∈ C with C ⊆ R. Clearly,
N(R) ≤ |C| ≤ m must hold.

Assume first that R 6= G, and vertex v(R) is unmarked in the tree τ(L). Let R′ be the parent-cluster
of R, that is v(R′) is the parent vertex of v(R) in τ(L). In this case, the algorithm from Theorem 7.8,

283

when applied to the graph G′ corresponding to cluster R′, returned a type-2 legal clustering R of
G′, with R ∈ R, and moreover, R is not the distinguished cluster R∗. Let C′ denote the set of all
clusters C ∈ C with C ⊆ R′, so that N(R′) = |C′|. Recall that, from the definition of type-2 legal

clustering, the distinguished cluster R∗ must contain at least
⌊(

1− 1/2(logm)3/4
)
|C′|
⌋

clusters of C′.

Therefore, if N(R′) ≥ 2(logm)3/4 , then R may contain at most 2N(R′)/2(logm)3/4 clusters of C′, that is,

N(R) ≤ 2N(R′)/2(logm)3/4 . Otherwise, N(R) ≤ 1 must hold. Consider now any root-to-leaf path P in
three τ(L), and assume that R1, R2, . . . , Rz is the sequence of unmarked clusters whose corresponding

vertices appear on the path in this order. Then, for all 1 ≤ i < z, N(Ri+1) ≤
⌈
2N(Ri)/2

(logm)3/4
⌉
,

and so z ≤ O
(

log3/4m
)

must hold.

Next, we consider a cluster R ∈ L\{G}, whose corresponding vertex v(R) in tree τ(L) is marked. Let
R′ be the parent-cluster of R. Note that two cases are possible. The first case is that the algorithm
from Theorem 7.8 was applied to the graph corresponding to R′, and it returned a type-1 legal clus-

tering R with R ∈ R. In this case, the theorem guarantees that N(R) ≤
⌊(

1− 1/2(logm)3/4
)
N(R′)

⌋
.

In the second case, there is a parent-cluster R′′ of cluster R′, to which the algorithm from Theorem 7.8
was applied, and it returned a type-2 legal clustering R, with R′ ∈ R, such that R′ = R∗ is the distin-
guished cluster of the decomposition, and cluster R lies in the type-1 legal clustering R′ of the graph
corresponding to cluster R′. In this latter case, from the definition of type-2 legal clustering, we are

guaranteed that N(R) ≤
⌊(

1− 1/2(logm)3/4
)
N(R′′)

⌋
. Therefore, if we consider any root-to-leaf path

P in the tree τ(L), and we let R′1, R
′
2, . . . , R

′
y be the sequence of marked clusters whose corresponding

vertices lie on P in this order, then for all 1 < i < by/2c, N(R′2i) ≤
(

1− 1/2(logm)3/4
)
N(R′2i−2).

Since N(G) ≤ m, we get that y ≤ O
(

2(logm)3/4 · logm
)
≤ 2O((logm)3/4).

G.2 Proof of Claim 7.10

The proof is by induction on the distance from v(R) to the root of the tree τ(L). Recall that, for
R = G, we set D′′(R) to assign probability 1 to an empty set of paths.

If v(R) is the child vertex of v(G), then consider the graph G′, that is obtained from G by adding
a new special vertex v∗ to it, that connects with an edge to some arbitrary vertex v0. Recall that,
when we applied the algorithm from Theorem 7.8 to this graph G′, it computed a legal clustering
R of G′, with R ∈ R, together with a distribution D′(R) over the sets of paths in Λ′G′(R), such
that, for every edge e ∈ E(G′) \ E(R), EQ′(R)∼D′(R) [congG′(Q′(R), e)] ≤ β. Consider any external
router Q′(R) ∈ Λ′G′(R) that is assigned a non-zero probabilty. Let u be the vertex at which every
path of Q′(R) terminates. If u 6= v∗, then, since vertex v∗ has degree 1 in G′, no path in Q′(R)
contains the vertex v∗, and so the paths of Q′(R) lie in G. Otherwise, by removing the last vertex
from each path in Q′(R), we obtain a new set Q′′(R) of paths in Λ′G(R), such that, for every edge
e ∈ E(G), congG(Q′′(R), e) ≤ congG(Q′(R), e). Therefore, we can transform D′(R) into a distribution
D′′(R) over the family Λ′G(R) of external R-routers, such that, for every edge e ∈ E(G) \ E(R),
EQ′(R)∼D′′(R) [congG(Q′(R), e)] ≤ β.

Next, we consider any cluster R ∈ L, such that the distance from v(R) to v(G) in tree τ(L) is
greater than 1. Let R′ be the parent-cluster of R, and let G′ be the graph obtained from G by
contracting all vertices of V (G) \ V (R′) into a special vertex v∗. Recall that, from Theorem 7.8,
we have obtained a distribution D′(R) over external routers in Λ′G′(R), such that, for every edge
e ∈ E(G′) \ E(R), EQ′(R)∼D′(R) [congG′(Q′(R), e)] ≤ β. Recall that, if v(R) is a marked vertex, every
router Q′(R) ∈ Λ′G′(R), to which D′(R) assigns a non-zero probability, is careful with respect to v∗,
that is, the paths in Q′(R) cause congestion at most 1 on every edge e ∈ δG′(v∗).

284

Let i denote the number of unmarked vertices on the path connecting v(R′) to the root of τ(L). From
the induction hypothesis, we have computed a distribution D′′(R′) over the external routers in Λ′G(R′),
such that, for every edge e ∈ E(G) \ E(R′), EQ′(R′)∼D′′(R′) [congG(Q′(R′), e)] ≤ βi+1.

We now compute the desired distribution a distribution D′′(R) over the external routers in Λ′G(R),
such that, for every edge e ∈ E(G) \ E(R), EQ′(R)∼D′′(R) [congG(Q′(R), e)] ≤ βj+1, where j = i if
vertex v(R) is marked, and j = i + 1 otherwise. We provide the distribution implicitly, by providing
an efficient algorithm for drawing a set Q̃′(R) of paths from the distribution. The algorithm for
drawing an external router from the distribution D′′(R) proceeds as follows.

First, the algorithm draws an external router Q′(R) ∈ Λ′G′(R) for cluster R in graph G′. If the paths
in Q′(R) do not contain the vertex v∗, then this is the set of paths that we return. We now assume
that at least one path in set Q′(R) contains vertex v∗. We denote by u′ the vertex of G′ that serves
as the last vertex on every path in Q′(R).

Next, the algorithm draws a router Q′(R′) ∈ Λ′G(R′) from the distribution D′′(R′) that we have
constructed by the induction hypothesis. We denote by u′′ the vertex of G that serves as the last
vertex on every path in Q′(R′). The final set Q̃′(R) of paths that the algorithm returns is constructed
by combining the sets Q′(R) and Q′(R′) of paths, as follows.

We consider two cases. The first case is when u′ = v∗. In this case, for every edge e ∈ δG′(R) = δG(R),
the unique path Q(e) ∈ Q′(R) that as e as its first edge terminates at vertex v∗. We denote by e′

the last edge on path Q(e). Note that edge e′, that is incident to vertex v∗ in graph G′, corresponds
to an edge of δG(R′) in graph G; we do not distinguish between the two edges. Therefore, there is
some path Q′(e) ∈ Q′(R′), whose first edge is e′, and last vertex is u′′. By concatenating the paths
Q(e) and Q′(e), we obtain path Q∗(e) in graph G, connecting edge e to vertex u′′. We then let
Q̃′(R) = {Q∗(e) | e ∈ δG(R)} be the final set of paths that the algorithm outputs.

The second case is when u′ 6= v∗. In this case, some paths in Q′(R) may contain vertex v∗ as an
inner vertex. Consider any path Q ∈ Q′(R) that contains the vertex v∗, and let e ∈ δG′(v∗) be any
edge that is incident to v∗ that the path contains. Recall that e ∈ δG(R), and so there is some path
Q′(e) ∈ Q′(R′), whose first edge is e, and last vertex is u′′. We replace edge e with path Q′(e) on path
Q. Note that originally path Q must have contained two edges that are incident to v∗; denote them by
e and e′. We have replaced edge e with a path connecting e to vertex u′′ in graph G, and we replace
edge e′ with a path connecting e′ to u′′ in graph G, but we reverse the direction of the path. In this
way, we can glue the two paths to each other via the vertex u′′. Once every path of Q′(R) containing
v∗ is processed in this manner, we obtain the final set Q̃′(R) of paths in graph G.

This completes the definition of the distribution D′′(R) over the set Λ′G(R) of external routers for
R in G. It now remains to analyze the expected congestion on each edge of E(G) \ E(R). Fix
any edge e ∈ E(G) \ E(R). First, if edge e lies in graph R′ ∪ δG(R′), then congG(Q̃′(R), e) =

congG′(Q′(R), e), and so, from the definition of helpful clustering, EQ̃′(R)∼D′′(R)

[
congG(Q̃′(R), e)

]
≤

EQ′(R)∼D′(R) [congG′(Q′(R), e)] ≤ β.

Assume now that e ∈ E(G) \ (E(R′) ∪ δG(R′)). Note that, if the set Q′(R) ∈ Λ′G′(R) that was drawn
from distribution D′(R) is careful with respect to vertex v∗, then every edge of δG′(v

∗) may lie on at
most one path ofQ′(R) ∈ Λ′G′(R), and so every path in the setQ′(R′) that was drawn from distribution

D′′(R′) ∈ Λ′G(R′) is used by at most one path in Q̃′(R). Therefore: EQ̃′(R)∼D′′(R)

[
congG(Q̃′(R), e)

]
≤

EQ′(R′)∼D′′(R′) [congG(Q′(R′), e)] ≤ βi+1 in this case.

Recall that, if vertex v(R) is marked, then every router Q′(R) that has non-zero probability to be
drawn from distribution D′(R) is careful with respect to v∗, while the number of unmarked vertices
on the unique path connecting v(R) to v(G) in tree τ(L) is i.

It remains to consider the case where vertex v(R) is unmarked. Consider the following two-step

285

process for drawing a router Q̃′(R) ∈ ΛG(R) from the distribution D′′(R), that is equivalent to the
one described above. In the first step, we select a router Q′(R′) ∈ ΛG(R′) from the distribution
D′′(R′). Then, in the second step, we select a router Q′(R) ∈ ΛG′(R) from distribution D′(R). Lastly,
composing the two sets of paths as described above, we obain the final router Q̃′(R).

Fix an edge e ∈ E(G) \ (E(R′) ∪ δG(R′)), and assume that the set of paths Q′(R′) ∈ ΛG(R′)
that was chosen from the distribution D′′(R′) causes congestion z on edge e. We denote Q′(R′) =
{Q(e′) | e′ ∈ δG(R′)}, where path Q(e′) originates at edge e′ and terminates at vertex u′′. Let E′ ⊆
δG(R′) be the set of all edges e′, whose corresponding path Q(e′) contains the edge e, so |E′| = z.
Denoting E′ = {e1, . . . , ez}, and assuming that the path set Q′(R′) is fixed, we can now write:

EQ′(R)∼D′(R)

[
congG(Q̃′(R), e)

]
= EQ′(R)∼D′(R)

[
z∑
i=1

congG′(Q′(R), ei)

]
≤ βz.

Recall that z is the congestion caused by the set Q′(R′) of paths on edge e. Therefore, overall:

EQ̃′(R)∼D′′(R)

[
congG(Q̃′(R), e)

]
≤ β ·EQ′(R′)∼D′′(R′)

[
congG(Q′(R′), e)

]
≤ βi+2,

from the induction hypothesis. Since, in the case that v(R) is unmarked, the number of unmarked
vertices on the path connecting v(R) to v(G) in tree τ(L) is i + 1, this completes the proof of the
claim.

G.3 Proof of Claim 7.11

Consider some cluster R ∈ L. Let R be the set of child-clusters of R. Consider the graph R̃ =
R \

(⋃
R′∈RR

′). Note that, from the definition of the laminar family, every edge of E(G) may lie in

at most one graph in the collection
{
R̃ | R ∈ L

}
.

Observe that collection I1 of instances can be defined as I1 = {I(R) | R ∈ L}, where I(R) = (G(R),Σ(R))
is the instance associated with cluster R. Graph G(R) is obtained from graph G, by first contracting
the vertices of V (G)\V (R) into a supernode v∗, and then contracting each child cluster R′ of R into a
supernode v(R′). We partition the set of edges of G(R) into two subsets: the first subset, that we call
internal edges, and denote by E1(R), is the edge set E(R̃). The second subset, that we call external
edges, and denote by E2(R), is the set of all edges that are incident to the supernodes of G(R). From
the above discussion,

∑
R∈L |E1(R)| ≤ |E(G)|, as every edge may serve as an internal edge for at

most one graph G(R). It now remains to bound the total number of external edges in all graphs in
{G(R) | R ∈ L}.
For all 1 ≤ i ≤ dep(L), we denote by Li ⊆ L the set of all clusters R ∈ L, such that vertex v(R) lies
at distance exactly i from the root of the tree τ(L). Note that for each cluster R ∈ Li, every external
edge e ∈ E2(R) corresponds to some edge of the original graph G that has at least one endpoint in
cluster R. Moreover, since every basic cluster C ∈ C is either contained in R or is disjoint from R,
each such edge must lie in Eout(C). Since the clusters in set Li are disjoint from each other, we get
that

∑
R∈Li |E2(R)| ≤

∑
C∈C |δG(C)| ≤ |E(G)|/µ0.1, from the statement of Theorem 7.3.

Since, from Claim 7.9, dep(L) ≤ 2O((logm)3/4), while µ ≥ 2c
∗(logm)7/8 log logm for a large enough constant

c∗, we get that, overall:

∑
R∈L
|E2(R)| ≤ dep(L) · |E(G)|

µ0.1
≤ 2O((logm)3/4) · |E(G)|

20.1·c∗(logm)7/8 log logm
≤ |E(G)|.

286

G.4 Proof of Observation 7.12

Let u′ be the parent-vertex of u in τ . Denote U = V (τu), and U ′ = V (Ĥ) \ U . Recall that we have
denoted by S the cluster of H that is defined by vertex set U ⊆ V (Ĥ).

Let R′ ⊆ R contain all clusters R with vR ∈ U . Notice that, from Theorem 4.9, (U,U ′) is the minimum
cut in graph Ĥ separating u from u′. Let E′ = EĤ(U,U ′). Observe that, equivalently, E′ = δH(S).

From the properties of minimum cut, there is a set P of edge-disjoint paths in graph Ĥ, routing the
edges of E′ = δĤ(U) to vertex u, such that all internal vertices on every path of P lie in U . Similarly,

there is a set P ′ of edge-disjoint paths in graph Ĥ, routing the edges of E′ = δĤ(U ′) to vertex u′, such
that all internal vertices on every path of P ′ lie in U ′.

The existence of the set P of paths in Ĥ[U] immediately implies that cluster Ĥ[U] has the 1-bandwidth
property in graph Ĥ. Since graph Ĥ[U] is precisely the contracted graph of S with respect to cluster
set R′, that is, Ĥ[U] = S|R′ , and since every cluster in R′ has the α-bandwidth property, from
Corollary 4.40, cluster S has the α-bandwidth property in graph H.

Next, we show an algorithm to construct the desired distribution D′(S) over the external routers in
Λ′H(S). We start with the set P ′ of paths routing the edges of E′ to vertex u′ in graph Ĥ[U ′].

Assume first that u′ is not a supernode. Let Ĥ ′ be the graph obtained as follows: we first subdivide
every edge e ∈ E′ with a terminal vertex te, and we let T = {te | e ∈ E′} be the resulting set of
terminals. We then let Ĥ ′ be the subgraph of the resulting graph induced by vertex set U ′ ∪ T . Let
R′′ ⊆ R be the set of all clusters R with vR ∈ U ′. We apply the algorithm from Claim 4.41 to
graph Ĥ ′, cluster set R′′, and set P ′ of paths, to obtain a set P ′′ of paths in graph H, such that,
for every edge e ∈

⋃
R∈R′′ E(R), the paths of P ′′ cause congestion at most d1/αe, and for every edge

e ∈ E(H \ U) \
(⋃

R∈R′′ E(R)
)
, the paths of P ′′ cause congestion at most 1. We are also guaranteed

that the paths in P ′′ route the edges of δH(S) to vertex u′, and all internal vertices on every path in P ′′
are disjoint from U . Lastly, since the edges incident to the special vertex v∗ do not lie in the clusters
of R′′, the set P ′′ of paths is careful with respect to v∗. From the above discussion, P ′′ ∈ Λ′H(S). We
then let distribution D′(S) assign probability 1 to the set P ′′ of paths.

Assume now that vertex u′ is a supernode, and u′ = vR for some cluster R ∈ R. We repeat the
algorithm from above, except that, when we apply the algorithm from Claim 4.41 to graph Ĥ ′, we
use cluster set R′′ \ {R} instead of R′′. The resulting set of paths P ′′ then routes the edges of E′

to the edges of δG(R), and they remain internally disjoint from cluster S. As before, the set P ′′ of
edges is careful with respect to v∗, and it causes edge-congestion at most d1/αe. Moreover, every
edge of δG(R) participates in at most one path in P ′′. We then use the algorithm from Lemma 4.27
in order to compute a distribution D(R) over the internal R-routers in ΛH(R), such that, for every
edge e ∈ E(R), EQ∈D(R) [cong(Q, e)] ≤ O(log4m/α) (in order to use the lemma we subdivide every
edge in δG(R) with a terminal, and apply the lemma to the augmented cluster R+ together with the
resulting set of terminals). In order to define the distribution D′(S), we first select a set Q ∈ ΛG(R)
of paths from the distribution D(R), and then concatenate the paths in P ′′ with the paths in Q. It is
immediate to verify that the resulting distribution D′(S) is supported over the external S-routers in
Λ′H(S), which are careful with respect to v∗, and that EQ′(S)∼D′(S) [congH(Q′(S), e)] ≤ O(log4m/α).

G.5 Proof of Observation 7.17

Consider some cluster J ∈ J , and let u0 be the center node of cluster J . It is enough to show that
there is a set P of paths (internal J-router) in graph Ĥ ′, routing all edges of δĤ′(J) to vertex u0, so
that every inner vertex on every path in P lies in J , and the congestion of P is at most O(logm). Let
P∗ be the set of all paths P in graph Ĥ ′, such that the first edge on P lies in δĤ′(J), the last vertex
of P is u0, and all inner vertices of P lie in J .

287

Recall that a flow f defined over a set P ′ of (directed) paths is an assigment of a flow value f(P) to
every path P ∈ P ′. Given such a flow f , we say that an edge e sends one flow unit iff the total amount
of flow f(P), for all paths P ∈ P ′ that originate at edge e, is 1. The congestion caused by flow f is
the maximum, over all edges e′, of

∑
P∈P′:
e∈P

f(P).

We show below that there is a flow f , defined over the set P∗ of paths, in which every edge e ∈ δH′(J)
sends one flow unit, and the flow causes congestion at most O(logm). From the integrality of flow, it
then follows that that there is a set P of paths routing the edges of δĤ′(J) to vertex u0, so that for
every path of P, every inner vertex on the path lies in J , and the congestion of P is at most O(logm),
and so cluster J has Ω(1/ logm)-bandwidth property. From now on we focus on defining the flow f .

For 1 ≤ i ≤ h, let L′i = Li ∩ V (J), and let Ji be the subgraph of J induced by vertex set {u0} ∪ L′1 ∪
· · · ∪L′i. We also let J0 be the graph that consists of a single vertex – vertex u0. For all 0 ≤ i ≤ h, we
denote Ei = δĤ′(Ji), and we denote by P∗i the set of all paths P in graph Ĥ ′, such that the first edge of
P lies in Ei, the last vertex of P is u0, and all inner vertices of P are contained in Ji. Additionally, we
let Ẽi ⊆ Ei be the set of all the edges e ∈ Ei, such that, for some vertex v ∈ V (Ji) \ {u0}, e ∈ δup(v).
We let P̃∗i ⊆ P∗i be the set of all paths whose first edge lies in Ẽi. Note that any flow fi defined over
the set P∗i of paths immediately defines a flow f ′i over the set P̃∗i of paths, by setting, for every path
P ∈ P̃∗i , f ′(P) = f(P), and setting the flow on all other paths to 0. We call f ′i the restriction of flow
fi to the set P̃∗i of paths. We prove the following claim.

Claim G.1 For all 1 ≤ i ≤ h, there is a flow fi, defined over the set P∗i of paths, in which every edge
of Ei sends one flow unit, and the total congestion is bounded by 2512 · i. Moreover, if we let f ′i be the

restriction of fi to the set P̃∗i of paths, then the congestion caused by f ′i is at most
(

1 + 256
logm

)i
.

Notice that the proof of Observation 7.17 immediately follows from Claim G.1, since Jh = J , and
flow fh defines the desired flow in graph J , that causes congestion at most O(h) ≤ O(logm). It now
remains to prove Claim G.1.

Proof of Claim G.1. The proof is by induction on i. The base is when i = 0. In this case,
δĤ′(J0) = δĤ′(u0). The set P∗0 of paths contains, for every edge e ∈ δĤ′(u0), a path P (e) that only
consists of the edge e itself. We obtain flow f0 by sending one flow unit on each such path P (e). Note
that Ẽ0 = ∅ in this case, and the resulting flow has congestion 1.

Assume now that the claim holds for some 0 ≤ i < h. We now prove it for i+ 1.

We partition the set Ei+1 of edges into two subsets. The first subset, E′i+1 is Ei+1 ∩ Ei. The second
subset, E′′i+1 contains all remaining edges of Ei+1. It is easy to verify that, for every edge e ∈ E′′i+1,
there is some vertex v ∈ L′i+1, with e ∈ δĤ′(v) \ Ei.
For every edge e ∈ E′i+1, the flow on the paths that originate from e remains unchanged from fi. In
other words, for every path P ∈ P∗i that starts with edge e ∈ E′i+1 (and hence P ∈ P∗i+1), we set
fi+1(P) = fi(P).

Consider now some vertex v ∈ L′i. Note that, when vertex v was added to cluster J , the number
of edges connecting v to vertices that belonged to J at that time was at least |δĤ′(v)|/128. From
the definition of layered well-linked decomposition, |δup(v)| < |δdown(v)|/ logm ≤ |δĤ′(v)|/ logm.
Therefore, at the time when v was added to J , there were at least |δĤ′(v)|/256 edges in δdown(v),
that connected v to the vertices of J . It is immediate to verify that each such edge must lie in Ei,
and moreover, it must lie in Ẽi. To conclude, there is a set E′(v) ⊆ δdown(v) of at least |δĤ′(v)|/256

edges, that lie in Ẽi. Note that none of these edges may lie in Ei+1. We now define the flow fi+1 that
originates at the edges of δĤ′(v) ∩ E′′i+1.

Every edge e ∈ δĤ′(v) \ E′(v) that lies in E′′i+1, spreads one unit of flow evenly among the edges of
E′(v), and then uses the flow that each of these edges sends in fi, in order to reach u0. In other words,

288

for every edge e ∈ δĤ′(v) ∩ E′′i+1, for every edge e′ ∈ E′(v), and for every path P ∈ P∗i whose first
edge is e′, we consider the path P ′ ∈ P∗i+1, that is obtained by appending the edge e at the beginning
of path P , and we set fi+1(P ′) = fi(P)/|E′(v)|. Since each edge e ∈ E′(v) sends one flow unit in fi,
each edge e ∈ δĤ′(v)∩E′′i+1 now sends one flow unit in fi+1. This completes the definition of the flow
fi+1. We now analyze the congestion caused by this flow.

First, the flow on the paths originating at the edges of E′i+1 remains unchanged, and causes congestion
at most 2512i. Next, we consider on flow on paths originating at edges of E′′i+1. Consider again some
vertex v ∈ L′i+1, and recall that |E′(v)| ≥ |δĤ′(v)|/256. Observe that edges of E′(v) must lie in

edge set Ẽi. Since every edge e ∈ δĤ′(v) ∩ E′′i+1 spreads one unit of flow evenly among the edges

of E′(v), each edge of E′(v) is responsible for sending at most
|δĤ′ (v)|
|E′(v)| ≤ 256 flow units. In other

words, for each edge e ∈ E′(v), the flow originating at e in fi is scaled by at most factor 256 in order
to obtain flow fi+1. Therefore, the flow fi+1 originating at edges of E′′i+1 causes congestion at most

256 ·
(

1 + 256
logm

)i
. Overall, flow fi causes congestion at most 2512i+ 256 ·

(
1 + 256

logm

)i
≤ 2512 · (i+ 1),

since i+ 1 ≤ h ≤ logm.

Lastly, we bound the congestion of the flow f ′i+1, which is the restriction of the flow fi+1 to the set P̃∗i
of paths. We partition the edges of Ẽi+1 into two subsets: Ẽ′i+1 = Ẽi ∩ Ẽi+1, and Ẽ′′i+1 containing all

remaining edges. Observe that for each edge e ∈ Ẽ′′i+1, there is some vertex v ∈ L′i+1 with e ∈ δup(v).

The flow f ′i+1 that originates at the edges of Ẽ′i+1 remains unchanged from f ′i , and causes congestion

at most
(

1 + 256
logm

)i
. In order to bound the congestion caused by the flow f ′i+1 originating from

edges of Ẽ′i+1, consider some vertex v ∈ L′i+1. Recall that |E′(v)| ≥ |δĤ′(v)|/256, while |δup(v)| <
|δĤ′(v)|/ logm ≤ 256|E′(v)|/ logm. Since every edge e ∈ δup(v) \ E′(v) spreads one unit of flow

evenly among the edges of E′(v), each edge of E′(v) is responsible for sending at most |δ
up(v)|
|E′(v)| ≤

256
logm

flow units. In other words, for each edge e ∈ E′(v), the flow originating at e in f ′i is scaled by at
most factor 256/ logm in order to obtain flow f ′i+1. Therefore, the flow f ′i+1 originating at edges

of Ẽ′′i+1 causes congestion at most 256
logm ·

(
1 + 256

logm

)i
. Overall, flow f ′i+1 causes congestion at most(

1 + 256
logm

)i
+ 256

logm ·
(

1 + 256
logm

)i
≤
(

1 + 256
logm

)i+1
.

G.6 Proof of Claim 7.21

We denote by E′ = δȞ(S). We define a cluster S′ in graph G, corresponding to cluster S, as usual:
First, we define vertex set V (S′), and then we let S′ be the subgraph of G induced by V (S′). Vertex
set V (S′) contains every regular vertex of S. Additionally, for every R-node vR ∈ S, it contains all
vertices of R, and for every J-node vJ ′ ∈ S, it contains all vertices of the cluster J ′ ∈ J ′. We start
with the following simple observation.

Observation G.2 There is an efficient algorithm to compute a distribution D′(S′) over the set Λ′G(S′)
of external S′-routers in G, such that, for every edge e ∈ E(G)\E(S′), EQ′(S′)∼D′(S′) [cong(Q′(S′), e)] ≤
O(log14.5m).

Proof: Recall that every cluster R ∈ R has the α1 = 1/ log6m-bandwidth property in graph G, and
every cluster J ′ ∈ J ′ has the Ω(1/ log9.5m)-bandwidth property in G. Let x be the vertex of graph
Ȟ that serves as the last vertex on every path of P(S). Assume first that x is a regular vertex, that
is, x ∈ V (G). Then we can use the algorithm from Claim 4.41 (by first subdividing every edge of E′

with a terminal) to obtain a collection P(S′) of paths in graph G, that is an external S′-router, such

289

that the paths in P(S′) cause congestion O
(
log10.5m

)
. We define a distribution D′(S′) over the set

Λ′G(S′) of external S′-routers, that assigns probability 1 to the router P(S′).

Assume now that x is a supernode, that corresponds to some cluster A ∈ R′′ ∪ J ′. Again, applying
the algorithm from Claim 4.41 (but this time replacing the graph G with the graph that is obtained
from G by contracting cluster A into a supernode x), we obtain a collection P(S′) of paths in graph
G, routing the edges of E′ = δG(S′) to the edges of δG(A), with congestion O(log10.5m), such that the
paths in P(S′) are internally disjoint from both S′ and A. Moreover, from Claim 4.41 the paths in
P(S′) cause congestion at most β′ = O(logm) on the edges of δG(A). Recall that cluster A must have
the Ω(1/ log9.5m)-bandwidth property in G. By applying the algorithm from Lemma 4.27 to cluster
A, we obtain a distribution D(A) over the set ΛG(A) of internal A-routers, such that, for every edge
e ∈ E(A), EQ(A)∼D(A) [cong(Q(A), e)] ≤ O((log4m) · (log9.5m)) = O(log13.5m). We now define the
distribution D′(S′) over the set Λ′G(S′) of external S′-routers, by providing an algorithm to draw a
set of paths from the distribution. In order to do so, we first choose a set Q(A) ∈ ΛG(A) of paths
from the distribution D(A). Denote Q(A) = {Q(e) | e ∈ δG(A)}, where path Q(e) has e as its first
edge. Let Q′ be a multi-set of paths, in which, for every edge e ∈ ΛG(A), the path Q(e) is included
congG(P(S′), e) ≤ O(logm) times. We then concatenate the paths in P(S′) with the paths in Q′,
obtaining an external S′-router Q′(S′) ∈ ΛG(S′). From the above discussion, it is immediate to verify
that, for every edge e ∈ E(G) \ E(S′), EQ′(S′)∼D′(S′) [cong(Q′(S′), e)] ≤ O(log14.5m).

We now consider three cases, depending on whether cluster S contains any J-node, and whether the
cluster J ′ ∈ J corresponding to the J-node has a cluster of C or of W ′ as its center cluster.

Case 1. The first case happens if there is at least one J-node vJ ′ ∈ S, such that the center-cluster
of the cluster J ′ ∈ J is a cluster of C, that we denote by C∗ (see Figure 44). Let C∗ ⊆ C be the set of
all clusters C ∈ C with C ⊆ S′, and let R∗ ⊆ R be the set of all clusters R ∈ R with R ⊆ S′. Observe
that cluster C∗ may not be contained in any cluster of R, from the definition of cluster set J . We
will modify the set R of clusters, by deleting the clusters of R∗ from it, and adding a new set R∗∗ of
clusters instead, so that the resulting cluster set R̃ = (R \ R∗) ∪ R∗∗ is a helpful clustering that is
better than R.

Figure 44: Case 1: S′ contains at least one J ′-cluster (shown in brown) whose center cluster C∗ ∈ C
is marked with ∗. Clusters of R∗ are shown in red.

In order to define the new set R∗∗ of clusters, we start with the augmented cluster X = (S′)+; that
is, we subdivide every edge e ∈ E′ in graph G with a terminal te, and we let T = {te | e ∈ E′} be the
resulting set of terminals. We then let X be the subgraph of the resulting graph induced by T ∪V (S′).

290

Next, we obtain a graph X ′ from X, by contracting every basic cluster C ∈ C∗ into a supernode
vC , so X ′ = X|C∗ . We apply the algorithm from Theorem 4.19 to graph X ′, its cluster X ′ \ T , and

parameter α0 = 1/ log3m (so the requirement that α0 < min
{

1
64βARV(m)·logm ,

1
48 log2m

}
is satisfied).

The algorithm computes a collection Y of clusters of X ′ \ T (the well-linked decomosition), such that
the vertex sets {V (Y)}Y ∈Y partition V (X ′) \ T , and every cluster Y ∈ T has the α0-bandwidth
property, with |δX′(Y)| ≤ |T | = |E′|. We are also guaranteed that:∑

Y ∈Y
|δX′(Y)| ≤ |T | ·

(
1 +O(α0 · log1.5m)

)
= |E′| ·

(
1 +O(α0 · log1.5m)

)
. (27)

Recall that, additionally, the algorithm computes, for every cluster Y ∈ Y, a set P(Y) = {P (e) | e ∈ δX′(Y)}
of paths, such that, for every edge e ∈ δX′(Y), path P (e) has e as its first edge, and some terminal
of T as its last vertex, with all inner vertices of P (e) lying in V (X ′) \ V (Y). We are also guaranteed
that, for every cluster Y ∈ Y, the set P(Y) of paths causes edge-congestion at most 100 in X ′.

We now define the set R∗∗ of clusters, that will be added to R instead of the clusters of R∗. For
every cluster Y ∈ Y, we let RY be the cluster of graph G corresponding to cluster Y . Intuitively,
RY is obtained from Y by uncontracting all basic clusters whose corresponding supernode lies in Y .
Formally, we denote by C(Y) ⊆ C the set of all basic clusters C whose corresponding supernode vC
lies in Y . We define vertex set V (RY) to contain all regular vertices lying in Y (that is, vertices
of V (Y) ∩ V (G)), and all vertices of

⋃
C∈C(Y) V (C). We then let RY be the subgraph of G induced

by V (RY). Note that Y = (RY)|C(Y). Since every cluster in C has the α0-bandwidth property,
and every cluster Y ∈ Y has the α0-bandwidth property, from Corollary 4.40, cluster RY has the
α2

0 = α1-bandwidth property. Consider now the set P(Y) of paths in graph X ′, routing the edges
of δX′(Y) to the vertices of T , with congestion at most 100, and recall that the paths of P(Y)
are internally disjoint from Y . Since Y = (RY)|C(Y), and every cluster in C has the α0-bandwidth
property, we can use the algorithm from Claim 4.41, to obtain a collection P(RY) of paths in graph
G, routing the edges of δG(RY) to the edges of E′, with congestion at most 200/α0, such that the
paths in P(RY) are internally disjoint from RY , and they cause congestion at most 100 on edges
of E′. We are now ready to define a distribution D′(RY) over the set Λ′G(RY) of external RY -
routers in G, by providing an algorithm to draw an external router Q′(RY) from the distribution.
In order to draw a set Q′(RY) of paths from distribution D′(RY), we start by drawing an external
S′-router Q′(S′) ∈ ΛG(S′) from the distribution D′(S′) given by Observation G.2. Recall that paths
in Q′(S′) route the edges of E′ to some vertex u 6∈ S′, they are internally disjoint from S′, and
EQ′(S′)∼D′(S′) [cong(Q′(S′), e)] ≤ O(log14.5m). We denote Q′(S) = {Q(e) | e ∈ δG(S′)}, where for all
e ∈ δG(S′), path Q(e) has e as its first edge. We let Q′′ be a multi-set of paths obtained by including,
for each edge e ∈ δG(S′), exactly congG(P(RY), e) ≤ 100 copies of the path Q(e). By concatenating the
paths in P(RY) with the paths in Q′′, we obtain a set Q′(RY) of paths (an external RY -router), routing
the edges of δG(RY) to vertex u in G, such that the paths in the set are inernally disjoint from RY . For
every edge in E(S′), the congestion caused by the paths in Q′(RY) is at most 200/α0 ≤ O(log3m),
while for every edge e ∈ E(G \ S′), congG(Q′(RY), e) ≤ 100 congG(Q′(S′), e). This completes the
definition of the distribution D′(RY) over the set Λ′G(RY) of external RY -routers. From the above
discussion, for every edge e ∈ E(G) \ E(RY), EQ′(RY)∼D′(RY) [cong(Q′(RY), e)] ≤ O(log15.5m) ≤ β,

since β = log18m. We set R∗∗ = {RY | Y ∈ Y}, and we define a new clustering R̃ = (R \R∗) ∪R∗∗.
It is immediate to verify that all clusters in R̃ are disjoint from each other and every cluster R ∈ R̃
has α1-bandwidth property. From the construction of the graph X ′, we are guaranteed that, for every
basic cluster C ∈ C, and for every cluster R ∈ R, either C ⊆ R, or C ∩ R = ∅ must hold. We have
also defined, for every cluster R ∈ R, a distribution D′(R) over external R-routers in Λ′G(R), such
that, for every edge e ∈ E(G) \E(R), EQ′(R)∼D′(R) [congG(Q′(R), e)] ≤ β. Since we have ensured that

291

vertices v∗, u∗ do not lie in set S, we are guaranteed that R∗ ∈ R \R∗, and so R∗ ∈ R̃. Similarly, the
special vertex v∗ does not lie in any cluster of R̃. Therefore, (R̃,

{
D′(R)R∈R̃

}
) is a helpful clustering

of G with respect to v∗ and C, with R∗ ∈ R̃. It now only remains to show that it is better than the
original clustering R.

Observe that the only basic clusters that may be contained in the clusters of R∗ are the clusters of C∗.
From the definition of the set J of clusters, since cluster C∗ ∈ C∗ is a center-cluster of some cluster
J ′ ∈ J ′, we are guaraneed that cluster C∗ is not contained in any cluster of R. But, since the vertices
of {V (Y)}Y ∈Y partition vertex set V (X ′) \ T , we are guaranteed that every cluster of C∗ is contained
in some cluster of R∗∗. Therefore, the number of basic clusters of C contained in G \

(⋃
R∈RR

)
is

strictly greater than the number of basic clusters of C contained in G \
(⋃

R∈R̃R
)
. We conclude that

clustering R̃ is a better clustering than R.

Case 2. We now consider the second case, where cluster S does not contain any J-node, so every
vertex of S is either an R-node or a regular vertex. In this case, we proceed exactly as before: we
define the augmented cluster X = (S′)+ and its contracted version X ′ = X|C∗ . We then compute
a well-linked decomposition Y of X ′ \ T , and the corresponding set R∗∗ = {RY | Y ∈ Y} of clusters
of G exactly as before. We also define a new clustering R̃ and the distributions D′(RY) over sets
of RY -routers for clusters RY ∈ R∗∗ exactly as before. Using the same reasoning as in Case 1, the
final clustering (R̃,

{
D′(R)R∈R̃

}
) is a helpful clustering of G with respect to v∗ and C, with R∗ ∈ R̃.

However, since we are no longer guaranteed that S contains a J-node (which in turn contains a cluster
of C as a center cluster), we need to employ a different argument in order to prove that R̃ is a better
clustering than R. Since S does not contain any J-node, from the definition of a simplifying cluster,
|EȞ(S)| ≥ |δȞ(S)|/ logm = |E′|/ logm must hold. Notice that every edge of EȞ(S) corresponds to
an edge of S′|R∗ , and so |E(S′|R∗)| ≥ |E

′|/ logm. On the other hand, from Equation (27), |E(S′|R∗∗)| ≤∑
Y ∈Y |δX′(Y)| − |E′| ≤ O(|E′|α0 · log1.5m) < |E′|/ logm, since α0 = 1/ log3m. From our definition

of the set R̃ of clusters, |E(G|R̃)| = |E(G|R)| − |E(S′|R∗)|+ |E(S′|R∗∗)| < |E(G|R)|. We conclude that

the new helpful clustering R̃ is better than R.

Case 3. It remains to consider the third case, where S contains at least one J-node, and for each
such J-node vJ ′ , the center-cluster of the cluster J ′ ∈ J ′ lies in W ′. We fix any J-node vJ ′ ∈ V (S),
and we denote by W ′ ∈ W ′ the center-cluster of J ′.

There is a difficulty with following the approach used in Cases 1 and 2 in this case: it is possible that
every cluster of C∗ is contained in some cluster of R∗, and, additionally, it is possible that the total
number of edges in S′|R∗ is quite small compared to |E′|. While we could still obtain a new helpful

clustering R̃ in the same way as in Cases 1 and 2, it may no longer be the case that R̃ is a better
clustering than R. In order to overcome this difficulty, we will replace cluster S′ of G with a different
cluster S̃′ ⊆ S′ that has similar properties to cluster S′, except that, if we denote by R̃∗ the set of all
clusters R ∈ R∗ with R ⊆ S̃′, then |E(S′|R̃∗)| is sufficiently large compared to |EG(S̃′)|. We construct

the cluster S̃′ using the following claim.

Claim G.3 There is an efficient algorithm, that, if Case 3 happenned, computes a cluster S̃′ ⊆ S′ in
graph G, such that for every cluster R ∈ R∗, either R ⊆ S̃′ or R ∩ S̃′ = ∅ holds, and similarly, for
every cluster C ∈ C∗, either C ⊆ S̃′ or C ∩ S̃′ = ∅ holds. Moreover, if we denote by R̃∗ the set of
all clusters R ∈ R∗ with R ⊆ S̃′, then |E(S̃′|R̃∗)| ≥ |δG(S̃′)|/(64 logm). Additionally, the algorithm

computes a distribution D′(S̃′) over the set Λ′G(S̃′) of external S̃′-routers in graph G, such that, for

every edge e ∈ E(G \ S̃′), EQ′(S̃′)∼D′(S̃′)

[
cong(Q′(S̃′), e)

]
≤ O(log14.5m).

292

We provide the proof of Claim G.3 below, after completing the proof of Claim 7.21 using it. We
employ the algorithm from Cases 1 and 2, except that we apply it to cluster S̃′ of G instead of S′, and
we replace the set R∗ of clusters with R̃∗. Let C̃∗ ⊆ C∗ be the set of all basic clusters C ∈ C∗ with
C ⊆ S̃′. Let R̃∗∗ be the set of clusters that the algorithm from Cases 1 and 2 computes (that were
denoted by R∗∗ before), when applied to cluster S̃′. For every cluster R ∈ R̃∗∗, the algorithm obtains
a distribution D′(R) over the set Λ′G(R) of external R-routers. Let R̃ = (R \ R̃∗) ∪ R̃∗∗. Using the
same arguments as in Cases 1 and 2, (R̃, {D′(R)}R∈R̃) is a helpful clustering in G with respect to v∗

and C, with R∗ ∈ R̃. It now only remains to show that R̃ is a better clustering than R.

As in Case 2, the only basic clusters of C that the clusters of R̃∗ may contain are the clusters of C̃∗.
As in Case 2, each such cluster is guaranteed to be contained in some cluster of R̃∗∗. Therefore, the
number of clusters of C that are contained in G \ (

⋃
R∈RR) is greater than or equal to the number of

clusters of C that are contained in G \ (
⋃
R∈R̃R). In order to prove that R̃ is a better clustering than

R, it is now enough to prove that |E(G|R̃)| < |E(G|R)|.

We denote δG(S̃′) by E′′. On the one hand, from Claim G.3, |E(S̃′|R̃∗)| ≥ |E
′′|/(64 logm). On the

other hand, from Equation (27), |E(S̃′|R̃∗∗)| ≤
∑

Y ∈Y |δX′(Y)| − |E′′| ≤ |E′′| · O(α0 · log1.5m)) <

|E′′|/(64 logm), since α0 = 1/ log3m. As in Case 2, |E(G|R̃)| = |E(G|R)| − |E(S′|R̃∗)| + |E(S′|R̃∗∗)| <
|E(G|R)|. Therefore, R̃ is a better clustering than R. It now remains to complete the proof of
Claim G.3, which we do next.

Proof of Claim G.3. Recall that we have fixed a J-node vJ ′ ∈ V (S), and a center-cluster W ′ ∈ W ′
of the cluster J ′ ∈ J ′. We let S̃′ be a vertex-induced subgraph of S′ with the following properties:

• W ′ ⊆ S̃′;

• for every cluster R ∈ R∗, either R ⊆ S̃′, or R ∩ S̃′ = ∅;

• for every cluster C ∈ C∗, either C ⊆ S̃′ or C ∩ S̃′ = ∅; and

• |E(S̃′)| is minimized among all graphs S̃′ for which the above conditions hold.

Such a graph S̃′ can be computed via standard minimum cut computation: we start with graph G,
and we let G1 be the graph obtained from G by contracting the cluster W ′ into a source s, and
contracting G \ S′ into a destination t. Next, we obtain a graph G2 from G, by contracting every
cluster R ∈ R with R ⊆ S′ \W ′ into a supernode vR, and similarly contracting every basic cluster
C ∈ C′ with C ⊆ S′ \W ′ into a supernode vC . Let (Z,Z ′) be the minimum s-t cut in G2, and denote
E′′ = EG2(Z,Z ′). Observe that, from the max-flow / min-cut theorem, there is a collection Q of
edge-disjoint path in graph G2, routing the edges of E′′ to t, such that all paths in Q are internally
disjoint from Z. We let S̃′ ⊆ S′ be the subgraph of S̃′ that is defined by Z (that is, we un-contract
every cluster of R∪C whose corresponding supernode lies in Z). Note that δG(S̃′) = E′′, and W ′ ⊆ S̃′.
Let W ∈ W be the W -cluster in graph Ĥ = G|C′∪R that corresponds to W ′; in other words, cluster

W ′ was obtained from W by un-contracting its supernodes. Let R̃∗ the set of all clusters R ∈ R∗
with R ⊆ S̃′. Clearly, every edge of W is an edge of S′|R̃∗ . From the definition of a valid set of

W -clusters, |E(S′|R̃∗)| ≥ |EĤ(W)| ≥ |δĤ(W)|/(64 logm) ≥ |E′′|/(64 logm) (we have used the fact that

|E(Z,Z ′)| ≤ |δG(W ′)| = |δĤ(W)| must hold, from the definition of minimum cut).

It now remains to define the distribution D′(S̃′) over the set Λ′G(S̃′) of external S̃′-routers in graph G.
As before, we will provide an efficient algorithm to draw a set Q′(S′) of paths from the distribution.
As observed already, there is a set Q of edge-disjoint paths in graph G2 routing the edges of δG2(Z)
to vertex t, so that the paths are internally disjoint from cluster Z. Note that every edge e ∈ E′′

293

has exactly one path Q(e) ∈ Q whose first edge is e, and the last edge of Q(e) lies in E′. Since
every cluster of R has the α1 = 1/ log6m-bandwidth property, and every cluster C ∈ C has the
α0 = 1/ log3m-bandwidth property, we can use the algorithm from Claim 4.41 to compute a collection
P = {P (e) | e ∈ E′′} of paths in graph G1, where for every edge e ∈ E′′, path P (e) has e as its
first edge and some edge of E′ as its last edge. Moreover, the paths in P cause edge-congestion
at most 2/α1 ≤ 2/ log6m in graph G1, and congestion at most 1 on edges of E′, and they are
internally disjoint from S̃′. Note that the paths of P are also contained in the original graph G. We
are now ready to define the distribution D′(S̃′). In order to draw an external S̃′-router Q′(S̃′) ∈
Λ′G(S̃′) from the distribution, we first draw a set Q′(S′) ∈ ΛG(S′) of paths from the distribution
D′(S′), given by Observation G.2. Recall that paths in Q′(S′) route the edges of E′ to some vertex
u 6∈ S′, they are internally disjoint from S′, and EQ′(S′)∼D′(S′) [cong(Q′(S′), e)] ≤ O(log14.5m). By

concatenating the paths in P with the paths in Q′(S′), we obtain a set Q′(S̃′) of paths, routing the
edges of δG(S̃′) to vertex u in G, such that the paths in the set are inernally disjoint from S̃′. Moreover,
for every edge of S′ ∪ E′, the congestion caused by the paths in Q′(S̃′) is at most O(log6m), while
for every edge of G \ S′, congG(Q′(S̃′), e) ≤ congG(Q′(S′), e). This completes the definition of the
distribution D′(S̃′) over the set Λ′G(S̃′) of external S̃′-routers. Clearly, for every edge e ∈ E(G \ S̃′),
EQ′(S̃′)∼D′(S̃′)

[
cong(Q′(S̃′), e)

]
≤ O(log14.5m).

G.7 Proof of Observation 7.24

Consider any vertex v ∈ V (Ȟ) \ (
⋃r
i=1 S

′
i), and assume that it lies in Si \ S′i, for some 1 ≤ i ≤ r.

Recall that |δup(v)| ≤ |δȞ(v)|/ logm must hold, and, since v was not added to S′i, |δdown,straight′′(v)| ≤
|δȞ(v)|/128. Therefore, |δdown,right(v)|+ |δdown,left(v)|+ |δdown,straight′(v)| ≥ 63|δȞ(v)|/64 holds.

Assume now that i > 1, and consider the Gomory-Hu tree τ of the graph Ȟ, and the two connected
components of the graph obtained from τ after the edge (ui−1, ui) is removed from τ . Denote by
A the set of all vertices lying in the connected component containing ui−1, and by B the set of
all vertices lying in the other connected component. From the definition of cluster Si, v ∈ B, and
moreover, (A,B) is the minimum ui−1-ui cut in graph Ȟ. Therefore, if we let A′ = A ∪ {v} and
B′ = B \ {v}, then |EȞ(A′, B′)| ≥ |EȞ(A,B)| must hold. Observe that the only difference between
the edge sets EȞ(A′, B′) and EȞ(A,B) is that the edges of δdown,left(v) contribute to EȞ(A,B) but not

to EȞ(A′, B′); the edges of δdown,right(v)∪ δdown,straight′(v)∪ δdown,straight′′(v) contribute to EȞ(A′, B′)
but not to EȞ(A,B); and the edges of δup(v) may contribute to either cut (see Figure 45). Therefore,
it must be the case that:

|δdown,left(v)| ≤ |δdown,right(v)|+ |δdown,straight′(v)|+ |δdown,straight′′(v)|+ |δup(v)|.

From the definition of the layers L1, . . . , Lh, |δup(v)| ≤ |δ(v)|/ logm, and, since v was not added to S′i,
|δdown,straight′′(v)| ≤ |δ(v)|/128. Therefore:

|δdown,left(v)| ≤ |δdown,right(v)|+ |δdown,straight′(v)|+ |δ(v)|/64.

If we assume, for contradiction, that |δdown,left(v)| > 2(|δdown,right(v)|+ |δdown,straight′(v)|), then, com-
bining this with the above inequality, we will get that |δdown,right(v)| + |δdown,straight′(v)| < |δ(v)|/64,
and therefore, |δdown,left(v)| < |δ(v)|/32, contradicting the fact that |δdown,left(v)| + |δdown,right(v)| +
|δdown,straight′(v)| ≥ 63|δ(v)|/64. We conclude that |δdown,left(v)| ≤ 2(|δdown,right(v)|+ |δdown,straight′(v)|)
must hold.

We now show that Sr = S′r. Assume for contradiction that this is not the case, and let v ∈
Sr \ S′r be a vertex that minimizes the index j for which v ∈ L′j . Notice that, from the defini-

294

Figure 45: Illustration for the proof of Observation 7.24. The edges of δdown,left(v) are shown in blue,
the edges of δdown,straight′′(v) are shown in red, the edges of δdown,straight′(v) are shown in green, and
the edges of δdown,right(v) are shown in brown. The blue edges lie in E(A,B) \ E(A′, B′). The edges
crossing the pink dashed line lie in E(A′, B′) \ E(A,B). Additionally, edges of δup(v) may lie in set
E(A′, B′) \ E(A,B).

tion, δdown,right(v), δdown,straight′(v) = ∅ must hold. Since we have established that |δdown,left(v)| ≤
2(|δdown,right(v)| + |δdown,straight′(v)|), we get that δdown,left = ∅ as well. Altogether, we get that
δdown(v) = δdown,straight′′(v). Since |δup(v)| ≤ |δȞ(v)|/ logm, we get that the number of edges con-

necting v to vertices of S′r, |δdown,straight′′(v)| > |δȞ(v)|/2, and so v should have been added to set S′r.
Therefore, Sr = S′r must hold.

The proof that |δdown,right(v)| ≤ 2(|δdown,left(v)|+ |δdown,straight′(v)|) is similar, except that now we need
to consider the cut obtained by deleting the edge (ui, ui+1) from the tree τ . The proof that S1 = S′1 is
symmetric to the proof that Sr = S′r (in fact, if we reverse the order of the vertices u1, . . . , ur on path
P ∗, by rooting the tree τ at vertex ur = u∗, then the definitions of sets Si, S

′
i will remain unchanged,

and we can simply repeat the proof from above).

G.8 Proof of Observation 7.25

Consider any vertex v ∈ V (Ȟ) \ (
⋃r
i=1 S

′
i). From Observation 7.24, |δdown,left(v)| ≤ 2(|δdown,right(v)|+

|δdown,straight′(v)|). Therefore:

|δdown,left(v)|+ |δdown,right(v)|+ |δdown,straight′(v)| ≤ 3(|δdown,right(v)|+ |δdown,straight′(v)|).

On the other hand, since |δdown,straight′′(v)| ≤ |δȞ(v)|/128, and |δup(v)| ≤ |δȞ(v)|/ logm, we get that:

|δdown,left(v)|+ |δdown,right(v)|+ |δdown,straight′(v)| ≥
(

127

128
− 1

logm

)
· |δȞ(v)|.

By combining the two inequalities, we get that:

|δdown,right(v)|+ |δdown,straight′(v)| ≥
(

127

384
− 1

3 logm

)
· |δȞ(v)| > |δdown,straight′′(v)|+ |δup(v)|.

295

Therefore, we can define a mapping f right(v), that maps every edge of δdown,straight′′(v) ∪ δup(v) to a
distinct edge of δdown,right(v) ∪ δdown,straight′(v).

Using exactly the same reasoning, we get that:

|δdown,left(v)|+ |δdown,straight′(v)| > |δdown,straight′′(v)|+ |δup(v)|.

Therefore, we can define a mapping f left(v), that maps every edge of δdown,straight′′(v) ∪ δup(v) to a
distinct edge of δdown,left(v) ∪ δdown,straight′(v).

G.9 Constructing the Monotone Paths – proof of Lemma 7.27

For all 1 ≤ j ≤ h, we define two sets of edges, Eleft
j and Eright

j , as follows. Start with Eleft
j = Eright

j = ∅.
For all 1 ≤ i ≤ r, for every vertex v ∈ Ui,j \ {S′i}, we add all edges of δdown,left(v) ∪ δdown,straight′(v)

to Eleft
j , and similarly, we add all edges of δdown,right(v) ∪ δdown,straight′(v) to Eright

j . We prove the
following claim.

Claim G.4 There is an efficient algorithm to construct, for all 1 ≤ j ≤ h, a set P left
j =

{
P left(e) | e ∈ Eleft

j

}
of edge-disjoint left-monotone paths, and a set Pright

j =
{
P right(e) | e ∈ Eright

j

}
of edge-disjoint right-

monotone paths, such that, for every edge e ∈ Eleft
j , path P left(e) starts with edge e, and similarly, for

every edge e′ ∈ Eright
j , path P right(e′) starts with edge e′.

Proof: The proof is by induction on j. The base is when j = 1. Consider some vertex v ∈ Ui,1 \ {S′i},
for some 1 ≤ i ≤ r. Note that every edge in δdown(v) must connect v to a vertex of L′0, and every
vertex of L′0 lies in {u1, . . . , ur}. Consider now some edge e = (v, u) that is incident to v, that lies
in Eleft

1 . Note that e 6∈ δdown,straight′(v), as all edges connecting u to ui lie in δdown,straight′′(v), and no
edge of δdown(v) may connect v to a vertex outside {u1, . . . , ur}. Therefore, e ∈ δleft(v) must hold.
We then let P left(e) = (e). It is immediate to verify that it is a left-monotone path. We define paths

P right(e) for every edge e ∈ δȞ(v) ∩ E
right
1 similarly.

We assume now that the claim holds for some index 1 ≤ j < h, and we prove it for index j + 1.
Consider some vertex v ∈ Ui,j+1 \ {S′i}, for some 1 ≤ i ≤ r, and let e = (v, u) be any edge that is
incident to v and lies in Eleft

j . In this case, e ∈ δdown,left(v) ∪ δdown,straight′(v) must hold. If we denote
by 1 ≤ i′ ≤ r, 1 ≤ j′ ≤ h the indices for which u ∈ Ui′,j′ , then i′ ≤ i and j′ ≤ j must hold.

Assume first that u ∈ S′1 ∪ · · · ∪ S′r. In this case, since e 6∈ δdown,straight′′(v), e ∈ δdown,left(v) must
hold, and i′ < i. In this case, we let P left(e) = (e). It is easy to see that this path is a valid
left-monotone path. Otherwise, u 6∈ S′1 ∪ · · · ∪ S′r, and e ∈ δup(u). We then consider the edge
e′ ∈ δdown,left(u) ∪ δdown,straight′(u) to which edge e is mapped by f left(u). We then let P left(e) be
the path obtained by concatenating the edge e and the path P left(e′) ∈ P left

j′ . Since path P left(e′) is

left-monotone, and since j′ ≤ j and i ≤ i, path P left(e) is also left-monotone. We note that edge
e, by the definition, may not lie on any path in P left

1 ∪ · · · ∪ P left
j . Moreover, edge e is the only

edge that is mapped to edge e′ by map f left(u). This ensures that all paths in the resulting set

P left
j =

{
P left(e′′) | e′′ ∈ Eleft

j

}
are edge-disjoint.

The construction of the set Pright
j+1 of paths is symmetric.

We are now ready to complete the proof of Lemma 7.27. Consider an edge e = (u, v) ∈ Ê, with u ∈ Si,
v ∈ Si′ , and i < i′. We describe the construction of path P (e, u); the construction of path P (e, v)
is symmetric. If u ∈ S′i, then path P (e, u) consists only of the vertex u. It is a left-monotone path
by definition. Therefore, we assume now that u 6∈ S′i. We assume that u lies in layer L′j , for some

296

1 ≤ j ≤ h, and v lies in layer L′j′ , for some 0 ≤ j′ ≥ h (vertex u may not lie in L′0, since we have
assumed that u 6∈ S′i).
We now consider two cases. The first case is when j ≤ j′. In this case, e ∈ δup(u). We let e′ ∈
δdown,left(u)∪ δdown,straight′(u) be the edge to which e is mapped by f left(u). Since e′ ∈ Eleft

j , there is a

left-monotone path P left(e′) ∈ P left
j . We then let P (e, u) be the path obtained by concatenating edge

e with path P left(e′). It is easy to verify that path P (e, u) is left-monotone.

The second case is when j > j′. In this case, e ∈ δright(u). Recall that, from Observation 7.24,
|δdown,right(u)| ≤ 2(|δdown,left(u)| + |δdown,straight′(u)|). Therefore, we can define another mapping
gleft(u), that maps the edges of δdown,right(u) to edges of δdown,left(u) ∪ δdown,straight′(u), such that
at most two edges are mapped to every edge of δdown,left(u) ∪ δdown,straight′(u). We then let e′ be the
edge to which e is mapped by gleft(u). As before, e′ ∈ Eleft

j must hold, and so there is a left-monotone

path P left(e′) ∈ P left
j . We then let P (e, u) be the path obtained by concatenating edge e with path

P left(e′) as before. This finishes the definition of the path P (e, u). Path P (e, v) is defined symmetri-

cally. Since the paths in
(⋃h

j=1 P
right
j

)
∪
(⋃h

j=1 P
right
j

)
cause congestion O(logm), it is easy to verify

that the set
{
P (e, v), P (e, u) | e = (u, v) ∈ Ê

}
of paths causes congestion O(logm).

G.10 Proof of Observation 7.29

Fix an index 1 < i < r. Consider the two connected components of the Gomory-Hu tree τ that are
obtained after the edge (ui−1, ui) is deleted from it. Denote the sets of vertices of the two components
by A and B, where ui−1 ∈ A. Recall that (A,B) is the minimum cut separating ui−1 from ui in Ȟ.
Observe that A = V (S1) ∪ · · · ∪ V (Si−1), while B = V (Si) ∪ · · · ∪ V (Sr). Note also that:

|E(A,B)| ≥ |E′i−1|+ |Ẽleft
i |+ |Ẽleft

i+1|+ |Ẽover
i |

(see Figure 46).

Figure 46: Illustration for the Proof of Observation 7.29. Cut (A,B) is shown in a pink dashed line.

Next, we consider another ui−1–ui cut (X,Y) in Ȟ, where Y = V (Si), and X = V (Ȟ) \ Y . Observe
that:

|E(X,Y)| = |E′i−1|+ |Ẽleft
i |+ |Ẽ

right
i |+ |E′i|

(see Figure 47).

297

Figure 47: Illustration for the Proof of Observation 7.29. Cut (X,Y) is shown in a pink dashed line.

Since |E(A,B)| ≤ |E(X,Y)| must hold, we conclude that:

|Ẽleft
i+1|+ |Ẽover

i | ≤ |Ẽright
i |+ |E′i|. (28)

We now repeat the same reasoning with cuts separating ui+1 from ui+2. Consider the two connected
components of the Gomory-Hu tree τ that are obtained after the edge (ui+1, ui+2) is deleted from it.
Denote the sets of vertices of the two components by A′ and, B′, where ui+1 ∈ A′. Recall that (A′, B′)
is the minimum cut separating ui+1 from ui+2 in Ȟ. Note that A′ = V (S1) ∪ · · · ∪ V (Si+1), and:

|E(A′, B′)| ≥ |E′i+1|+ |Ẽ
right
i+1 |+ |Ẽ

right
i |+ |Ẽover

i |

(see Figure 48).

Figure 48: Illustration for the proof of Observation 7.29, with cut (A,B) shown in a pink dashed line.

We now consider another ui+1–ui+2 cut (X ′, Y ′) in Ȟ, where X ′ = V (Si+1), and Y ′ = V (Ȟ) \ X ′.
Observe that:

|E(X ′, Y ′) = |E′i+1|+ |Ẽ
right
i+1 |+ |E

′
i|+ |Ẽleft

i+1|

(see Figure 49).

Since |E(A′, B′)| ≤ |E(X ′, Y ′)| must hold, we conclude that:

|Ẽright
i |+ |Ẽover

i | ≤ |E′i|+ |Ẽleft
i+1|. (29)

298

Figure 49: Illustration for the proof of Observation 7.29, with cut (X,Y) shown in a pink dashed line.

By adding Equation (28) and Equation (29), we conclude that |Ẽover
i | ≤ |E′i|. We also immediately

get that |Ẽleft
i+1| ≤ |E′i|+ |Ẽ

right
i | from Equation (28) and |Ẽright

i | ≤ |E′i|+ |Ẽleft
i+1| from Equation (29).

G.11 Proof of Claim 7.30

Fix an index 1 < i < r. We prove that |δdown(S′′i)| ≤ 0.1|δright(S′′i)|, and show the existence of the set
Pright of paths. The proof that |δdown(S′′i)| ≤ 0.1|δleft(S′′i)| and the proof of the existence of the set
P left of paths is symmetric.

Let P be the set of all paths P in graph Ȟ, such that the first edge of P lies in δdown(S′′i), the last edge
lies in δright(S′′i), and all inner vertices of P lies in S′′i . We show a flow f , defined over the set P of
paths, in which every edge in δdown(S′′i) sends one flow unit, every edge in δright(S′′i) receives at most
1/10 flow unit, and each edge of E(S′′i) carries at most one flow unit. The existence of such a flow will
then prove that |δdown(S′′i)| ≤ 0.1|δright(S′′i)|, and will imply the existence of the path set Pright with
the required properties from the integrality of flow.

In order to define the flow f , we consider the vertices of S′′i in the decreasing order of their levels
L′h, . . . , L

′
1. When we consider level L′j , for 1 ≤ j ≤ h, we assume that, for every vertex v ∈ L′j∩S′′i , for

every edge e ∈ δup(v), connecting v to another vertex of S′′i , the flow on edge e is fixed already, and that
the only edges that are incident to v that may carry non-zero flow are edges of δup(v)∪δdown,straight′′(v).
Initially, for every edge e ∈ δdown(S′′i), we set f(e) = 1. Note that for every edge e ∈ δdown(S′′i), if v is
the endpoint of e lying in S′′i , then e ∈ δdown,straight′′(v).

We start with the level L′h. Consider any vertex v ∈ L′h. From the definition, δup(v) = ∅. Re-

call that, from Observation 7.24, |δdown,right(v)| + |δdown,left(v)| + |δdown,straight′(v)| ≥ 63|δ(v)|/64,
and additionally, |δdown,left(v)| ≤ 2(|δdown,right(v)| + |δdown,straight′(v)|). Therefore, |δdown,right(v)| +
|δdown,straight′(v)| ≥ 21|δ(v)|/64 must hold. At the same time, |δdown,straight′′(v)| ≤ |δ(v)|/128. We now
consider two cases. The first case is when |δdown,straight′(v)| ≥ |δ(v)|/64. In this case, |δdown,straight′′(v)| ≤
|δdown,straight′(v)| holds. We assign, to each edge e ∈ δdown,straight′′(v), a distinct edge e′ ∈ δdown,straight′(v),
and we set f(e′) = f(e). Consider now the second case, where |δdown,right(v)| ≥ |δ(v)|/8 must
hold. In this case, |δdown,straight′′(v)| ≤ |δdown,straight′(v)|/10. We can now assign, to each edge
e ∈ δdown,straight′′(v) ten distinct edges e1, . . . , e10 ∈ δdown,right(v), such that each edge of δdown,right(v)
is assigned to at most one edge of δdown,straight′′(v). If edge e′ ∈ δdown,right(v) is assigned to edge
e ∈ δdown,straight′′(v), then we set f(e′) = f(e)/10.

Assume now that we have processed levels L′h, . . . , L
′
j+1, and consider some level L′j . Let v ∈ L′j ∩ S′′i

be any vertex. The processing of vertex v is similar to the one above, except that now some edges
of δup(v) may carry flow, and we need to forward this flow to edges in δdown(v). As before, from
Observation 7.24, |δdown,right(v)| + |δdown,left(v)| + |δdown,straight′(v)| ≥ 63|δ(v)|/64, and additionally,
|δdown,left(v)| ≤ 2(|δdown,right(v)| + |δdown,straight′(v)|). Therefore, |δdown,right(v)| + |δdown,straight′(v)| ≥

299

21|δ(v)|/64 must hold. At the same time, |δdown,straight′′(v)| ≤ |δ(v)|/128, and δup(v) ≤ δdown(v)/ logm.
We again consider two cases. The first case is when |δdown,straight′(v)| ≥ |δ(v)|/64. In this case,
|δdown′′(v)|+ |δup(v)| ≤ |δdown,straight′(v)| holds. We assign, to each edge e ∈ δdown,straight′′(v) ∪ δup(v),
a distinct edge e′ ∈ δdown,straight′(v), and we set f(e′) = f(e). Consider now the second case, where
|δdown,right(v)| ≥ |δ(v)|/8 must hold. In this case, |δdown,straight′′(v)|+ |δup(v)| ≤ |δdown,straight′(v)|/10.
As before, we can assign, to each edge e ∈ δdown,straight′′(v) ∪ δup(v) ten distinct edges e1, . . . , e10 ∈
δdown,right(v), such that each edge of δdown,right(v) is assigned to at most one edge of δdown,straight′′(v)∪
δup(v). If edge e′ ∈ δdown,right(v) is assigned to edge e ∈ δdown,straight′′(v) ∪ δup(v), then we set
f(e′) = f(e)/10.

Notice that, when vertices v ∈ L′1 are processed, we are guaranteed that δdown′(v) = ∅, and so
eventually all flow originating at the edges of δdown(S′′i) reaches the edges of δright(S′′i). This completes
the definition of the flow f . It is immediate to verify that f is defined over the set P of paths; every
edge in δdown(S′′i) sends one flow unit; every edge in δright(S′′i) receives at most 1/10 flow units; and
each edge of E(S′′i) carries at most one flow unit.

G.12 Proof of Claim 7.31

We prove that |δleft(S′′i)| ≤ 1.1|δright(S′′i)|; the proof that |δright(S′′i)| ≤ 1.1|δleft(S′′i)| is symmetric.
Consider the cut (A,B) in graph Ȟ, where A = V (S1) ∪ · · · ∪ V (Si−1), and B = V (Si) ∪ · · · ∪ V (Sr)
(see Figure 50).

Figure 50: Illustration for the proof of Claim 7.31, with cut (A,B) shown in a pink dashed line.

Note that A and B are precisely the sets of vertices of the two connected components of the graph
τ \ {(ui−1, ui)}, where τ is the Gomory-Hu tree of graph Ȟ. Therefore, (A,B) is the minimum
ui−1-ui cut in Ȟ. We now consider another ui−1-ui cut (A′, B′) in Ȟ, where A′ = A ∪ V (S′′i), and
B′ = B \ V (S′′i) (see Figure 51).

Observe that edges of δleft(S′′i) contribute to E(A,B) but not to E(A′, B′), while edges of δright(S′′i)∪
δdown(S′′i) contribute to E(A′, B′) but not to E(A,B), and this is the only difference between the two
edge sets. Since (A,B) is the minimum ui−1-ui cut, we get that |δleft(S′′i)| ≤ |δright(S′′i)|+ |δdown(S′′i)|
must hold. Since, from Claim 7.30, |δdown(S′′i)| ≤ 0.1|δright(S′′i)|, we conclude that |δleft(S′′i)| ≤
1.1|δright(S′′i)|.

G.13 Proof of Claim 7.32

Fix an index 1 < i < r. We start by proving that |δright(S′′i)| ≤ 1.3|Ei|+ 1.3|δright(S′i)|.

300

Figure 51: Illustration for the proof of Claim 7.31, with cut (A′, B′) shown in a pink dashed line.
Edges of δdown(S′′i) are shown in black.

As before, we consider the cut (A,B) in graph Ȟ, where A = V (S1) ∪ · · · ∪ V (Si−1), and B =
V (Si) ∪ · · · ∪ V (Sr) (see Figure 52). As before, A and B are precisely the sets of vertices of the two
connected components of the graph τ \ {(ui−1, ui)}, where τ is the Gomory-Hu tree of graph Ȟ, and
so (A,B) is the minimum ui−1-ui cut in Ȟ. We now consider another ui−1-ui cut (A′, B′) in Ȟ, where
B′ = V (S′i), and A′ = V (Ȟ) \ V (S′i) (see Figure 53).

Figure 52: Illustration for the proof of Claim 7.32, with cut (A,B) shown in a pink dashed line. Edges
of δleft(S′i) are shown in light green, and edges of δleft(S′′i) are shown in blue.

Note that |E(A,B)| ≥ |Ei−1| + |δleft(S′i)| + |δleft(S′′i)|, while |E(A′, B′)| = |Ei−1| + |δleft(S′i)| +
|δdown(S′′i)| + |Ei| + |δright(S′i)|. From the fact that (A,B) is the minimum ui−1-ui cut, it must be
the case that:

|δleft(S′′i)| ≤ |δdown(S′′i)|+ |Ei|+ |δright(S′i)|

Since, from Claim 7.31, |δright(S′′i)| ≤ 1.1|δleft(S′′i)|, and, from Claim 7.30, |δdown(S′′i)| ≤ 0.1|δright(S′′i)|,
we get that:

|δright(S′′i)| ≤ 1.1|δleft(S′′i)|
≤ 1.1|δdown(S′′i)|+ 1.1|Ei|+ 1.1|δright(S′i)|
≤ 0.11|δright(S′′i)|+ 1.1|Ei|+ 1.1|δright(S′i)|,

301

Figure 53: Illustration for the proof of Claim 7.32, with cut (A′, B′) shown in a pink dashed line.
Edges of δright(S′i) are shown in brown, and edges of δleft(S′i) are shown in green.

and so |δright(S′′i)| ≤ 1.3|Ei|+ 1.3|δright(S′i)|.
The proof that |δleft(S′′i+1)| ≤ 1.3|Ei| + 1.3|δleft(S′i+1)| is symmetric. We consider the cut (X,Y) in
graph Ȟ, where X = V (S1)∪· · ·∪V (Si+1), and Y = V (Si+2)∪· · ·∪V (Sr) (see Figure 54). Note that X
and Y are precisely the sets of vertices of the two connected components of the graph τ \{(ui+1, ui+2)},
where τ is the Gomory-Hu tree of graph Ȟ, and so (X,Y) is the minimum ui+1-ui+2 cut in Ȟ. We
now consider another ui+1-ui+2 cut (X ′, Y ′) in Ȟ, where X ′ = V (S′i+1), and Y ′ = V (Ȟ) \ V (S′i+1)
(see Figure 55).

Figure 54: Illustration for the proof of Claim 7.32, with cut (X,Y) shown in a pink dashed line. Edges
of δright(S′i+1) are shown in light green, and edges of δright(S′′i+1) are shown in dark green.

Note that |E(X,Y)| ≥ |Ei+1|+|δright(S′i+1)|+|δright(S′′i+1)|, while |E(X ′, Y ′)| = |Ei+1|+|δright(S′i+1)|+
|δleft(S′i+1)|+ |δdown(S′′i+1)|+ |Ei|. From the fact that (X,Y) is the minimum ui-ui+1 cut, it must be
the case that:

|δright(S′′i+1)| ≤ |δleft(S′i+1)|+ |δdown(S′′i+1)|+ |Ei|

Since, from Claim 7.31, |δleft(S′′i+1)| ≤ 1.1|δright(S′′i+1)|, and, from Claim 7.30, |δdown(S′′i+1)| ≤ 0.1|δleft(S′′i+1)|,
we get that:

302

Figure 55: Illustration for the proof of Claim 7.32, with cut (X ′, Y ′) shown in a pink dashed line.
Edges of δright(S′i+1) are shown in brown, and edges of δleft(S′i+1) are shown in green.

|δleft(S′′i+1)| ≤ 1.1|δright(S′′i+1)|
≤ 1.1|δdown(S′′i+1)|+ 1.1|Ei|+ 1.1|δleft(S′i+1)|
≤ 0.11|δleft(S′′i+1)|+ 1.1|Ei|+ 1.1|δleft(S′i)|,

and so |δleft(S′′i+1)| ≤ 1.3|Ei|+ 1.3|δleft(S′i+1)|.

G.14 Proof of Claim 7.33

Fix an index 1 ≤ i < r. As before, we consider the cut (A,B) in graph Ȟ, where A = V (S1) ∪ · · · ∪
V (Si−1), and B = V (Si) ∪ · · · ∪ V (Sr). As before, A and B are precisely the sets of vertices of the
two connected components of the graph τ \ {(ui−1, ui)}, where τ is the Gomory-Hu tree of graph Ȟ,
and so (A,B) is the minimum ui−1-ui cut in Ȟ (see Figure 56).

Figure 56: Illustration for the proof of Claim 7.33, with cut (A,B) shown in pink dashed line. Edges
of δleft(S′i) are shown in green.

We now consider another ui−1-ui cut (A′, B′) in Ȟ, where B′ = V (S′i), and A′ = V (Ȟ) \ V (S′i) (see
Figure 57).

303

Figure 57: Illustration for the proof of Claim 7.33, with cut (A′, B′) shown in pink dashed line. Edges
of δleft(S′i) are shown in green, and edges of δright(S′i) are shown in brown.

Note that |E(A,B)| ≥ |Ei−1|+ |δleft(S′i)|+ |Ẽleft
i+1|, while |E(A′, B′)| = |Ei−1|+ |δleft(S′i)|+ |δdown(S′′i)|+

|Ei|+ |δright(S′i)|. From the fact that (A,B) is the minimum ui−1-ui cut, it must be the case that:

|Ẽleft
i+1| ≤ |δdown(S′′i)|+ |Ei|+ |δright(S′i)|

Recall that, from Claim 7.30, |δdown(S′′i)| ≤ 0.1|δright(S′′i)|, and, from Claim 7.32, |δright(S′′i)| ≤
1.3|Ei|+ 1.3|δright(S′i)|. Therefore, δdown(S′′i) ≤ 0.13|Ei|+ 0.13|δright(S′i)|, and:

|Ẽleft
i+1| ≤ 1.13|Ei|+ 1.13|δright(S′i)|. (30)

Consider now the set δleft(S′i+1) of edges (see Figure 58). Recall that this set contains every edge
e = (u, v) with u ∈ V (S′i+1), and v either lying in V (S1) ∪ · · · ∪ V (Si−1), or in V (S′′i). In the former

case, e ∈ Ẽleft
i+1, while in the latter case, e ∈ δright(S′′i). Therefore, |δleft(S′i+1)| ≤ |Ẽleft

i+1| + |δright(S′′i)|.
From Claim 7.32: |δright(S′′i)| ≤ 1.3|Ei| + 1.3|δright(S′i)|. Combining this with Equation (30), we get
that |δleft(S′i+1)| ≤ |Ẽleft

i+1|+ |δright(S′′i)| ≤ 2.5|Ei|+ 2.5|δright(S′i)|, as required.

Figure 58: Set δleft(S′i+1) of edges (shown in green).

We now employ a symmetric argument in order to bound |δright(S′i)|: consider the cut (X,Y) in graph
Ȟ, where X = V (S1) ∪ · · · ∪ V (Si+1), and Y = V (Si+2) ∪ · · · ∪ V (Sr) (see Figure 59).

As before, X and Y are precisely the sets of vertices of the two connected components of the graph
τ \ {(ui+1, ui+2)}, where τ is the Gomory-Hu tree of graph Ȟ, and so (X,Y) is the minimum ui+1-

304

Figure 59: Illustration for the proof of Claim 7.33, with cut (X,Y) shown in pink dashed line. Edges
of δright(S′i+1) are shown in brown.

ui+2 cut in Ȟ. We now consider another ui+1-ui+2 cut (X ′, Y ′) in Ȟ, where X ′ = V (S′i+1), and

Y ′ = V (Ȟ) \ V (S′i+1) (see Figure 60). Note that |E(X,Y)| ≥ |Ei+1| + |δright(S′i+1)| + |Ẽright
i |, while

|E(X ′, Y ′)| = |Ei+1|+ |δright(S′i+1)|+ |Ei|+ |δleft(S′i+1)|+ |δdown(S′′i+1)|. From the fact that (X,Y) is
the minimum ui+1-ui+2 cut, it must be the case that:

|Ẽright
i | ≤ |Ei|+ |δleft(S′i+1)|+ |δdown(S′′i+1)|.

Figure 60: Illustration for the proof of Claim 7.33, with cut (X ′, Y ′) shown in pink dashed line. Edges
of δleft(S′i+1) are shown in green, and edges of δright(S′i+1) are shown in brown.

As before, from Claim 7.30, |δdown(S′′i+1)| ≤ 0.1 · |δleft(S′′i+1)|, and, from Claim 7.32, |δleft(S′′i+1)| ≤
1.3|Ei|+ 1.3|δleft(S′i+1)|. Therefore, |δdown(S′′i)| ≤ 0.13|Ei|+ 0.13|δleft(S′i+1)|, and:

|Ẽright
i | ≤ 1.13|Ei|+ 1.13|δleft(S′i+1)|. (31)

Consider now edge set δright(S′i). Recall that it contains every edge e = (u, v) with u ∈ V (Si), such

that either v ∈ V (Si+2) ∪ · · · ∪ V (Sr), or v ∈ V (S′′i+1). In the former case, e ∈ Ẽright
i , and in the

latter case, v ∈ δleft(S′′i+1) holds. Therefore, |δright(S′i)| ≤ |Ẽ
right
i | + |δleft(S′′i+1)|. From Claim 7.32:

|δleft(S′′i+1)| ≤ 1.3|Ei| + 1.3|δleft(S′i+1)|. Therefore, altogether, |δright(S′i)| ≤ |Ẽ
right
i | + |δleft(S′′i+1)| ≤

2.5|Ei|+ 2.5|δleft(S′i+1)|.

305

G.15 Proof of Claim 7.34

Fix some index 1 < i < r, and recall how graph S′i ⊆ Si was constructed. Initially, we set V (S′i) = {ui}.
As long as there was any vertex x ∈ Si \ S′i, such that the number of edges connecting x to vertices of
V (S′i) was at least |δ(x)|/128, we added x to V (S′i). Recall that |δup(x)| ≤ |δ(x)|/ logm. Therefore,

at least |δ(x)|
(

1
128 −

1
logm

)
edges that connect x to vertices of V (S′i) lie in δdown(x). We then let S′i

be the subgraph of Ȟ induced by V (S′i).

Denote V (S′i) = {ui = x0, x1, . . . , xz}, where the vertices x1, . . . , xz were added to S′i in the order of
their indices. Notice that for all 1 ≤ a ≤ z, if xa ∈ L′ja , then, from the above discussion, at least one
vertex in {x0, . . . , xa−1} must lie in L′1 ∪ L′2 ∪ · · · ∪ L′ja−1. It is then easy to see (by induction on a),
that, if ui ∈ L′j , for some 1 ≤ j ≤ h, then every vertex of S′i \ {ui} lies in L′j+1 ∪ · · · ∪ L′h.

For all 0 ≤ a ≤ z, we consider the vertex set Xa = {x0, . . . , xa}, and we define a weight wa(e) of every
edge e ∈ E(Ȟ) with respect to Xa as follows. First, we let δup(Xa) be the set of all edges e = (x, y) with
x ∈ Xa, y 6∈ Xa, such that e ∈ δup(x). Every edge e ∈ δup(Xa) is assigned weight wa(e) = 130. Every
edge e ∈

(⋃
v∈Xa δ(v)

)
\ δup(Xa) is assigned weight wa(e) = 1. All other edges e ∈ E(Ȟ) are assigned

weight wa(e) = 0. We denote Wa =
∑

e∈E(Ȟ)wa(e). Observe that W0 = |δdown(ui)| + 130|δup(ui)| ≤

|δ(ui)| ·
(

1 + 130
logm

)
. Additionally, Wz ≥ |

⋃
v∈Xz δ(v)| = |

⋃
v∈S′i

δ(v)|. We now show that for all

1 ≤ a ≤ z, Wa ≤Wa−1. Notice that, if this is the case, then |δ(S′i)| ≤Wz ≤W0 ≤ |δ(ui)| ·
(

1 + 130
logm

)
.

Therefore, in order to complete the proof of Claim 7.34, it is enough to prove the following observation.

Observation G.5 For all 1 ≤ a ≤ z, Wa ≤Wa−1.

Proof: Consider some index 1 ≤ a ≤ z. Recall that Xa = Xa−1 ∪ {xa}. Recall that, as observed

above, at least |δ(xa)|
(

1
128 −

1
logm

)
edges that connect xa to vertices of Xa−1 lie in δdown(xa). Denote

this edge set by E∗ ⊆ δup(Xa). Each edge e ∈ E∗ has wa−1(e) = 130, and wa(e) = 1. Additionally,
every edge e ∈ δdown(xa) \ E∗ has wa−1(e) = 0 and wa(e) = 1. Finally, each edge e ∈ δup(xa) has
wa−1(e) = 0 and wa(e) = 130. For all other edges e′ ∈ E(Ȟ), wa−1(e′) = wa(e

′). Therefore, altogether,
we get that:

Wa = Wa−1 − 129|E∗|+ |δdown(xa) \ E∗|+ 130|δup(xa)|
= Wa−1 − 130|E∗|+ |δdown(xa)|+ 130|δup(xa)|

≤Wa−1 − 130 · |δ(xa)|
(

1

128
− 1

logm

)
+ |δ(xa)| ·

(
1 +

130

logm

)
≤Wa−1 −

|δ(xa)|
64

+
|δ(xa)| · 260

logm

≤Wa−1.

(we have used the fact that |E∗| ≥ |δ(xa)|
(

1
128 −

1
logm

)
and that m is sufficiently large).

G.16 Proof of Claim 7.36

Assume that there is an index 1 ≤ a ≤ r, such that at least |δ(ui∗)|/16 edges connect ui∗ to vertices
of S′′a . We start by proving that |δright(S′′a)| ≥ |δ(ui∗)| · logm

256 . Denote by E′ the set of all edges
connecting ui∗ to vertices of S′′a , so |E′| ≥ |δ(ui∗)|/16. We denote by E′′ = E′ ∩ δdown(ui∗). Since
|δup(ui∗)| ≤ |δ(ui∗)|/ logm, |E′′| ≥ |δ(ui∗)|/32.

306

Consider now a set P of paths, defined as follows: P contains every path P of Ȟ, whose first edge lies
in E′′, last edge lies in δright(S′′a), and all inner vertices lie in S′′a . We will show a flow f defined over
the paths in P, in which every edge in E′′ sends logm

8 flow units, every edge in δright(S′′a) receives at
most one flow unit, and every edge e ∈ E(S′′a) carries at most one flow unit. Clearly, this will prove
that |δright(S′′a)| ≥ |E′′| · logm

8 ≥ |δ(ui∗)| · logm
256 .

We now focus on defining the flow f . Initially, we set the flow on every edge e ∈ E′′ to logm
8 , and for

every edge of e′ ∈ E(Ȟ) \ E′′, we set f(e′) = 0. Note that, if e = (ui∗ , v) ∈ E′′, then e ∈ δup(v) must
hold, since e ∈ δdown(ui∗) from the definition of E′′. Next, we consider indices j = h, h− 1, . . . , 1 one
by one. We assume that, when index j is considered, for every vertex v ∈ L′j ∩ S′′a , for every edge

e ∈ δup(v), the flow f(e) is fixed, and f(e) ≤ logm
8 . During the iteration when index j is processed we

will finalize the flow values f(e′) for every edge e′ ∈
{
δdown(v) | v ∈ L′j ∩ S′′a

}
.

We now describe the iteration when index j is processed. Consider any vertex v ∈ L′j ∩ S′′a . Recall

that |δup(v)| ≤ |δ(v)|/ logm, and so the total flow that the edges of δup(v) carry is bounded by |δ(v)|
logm ·

logm
8 ≤ |δ(v)|

8 . Recall that, from Observation 7.24, |δdown,right(v)|+ |δdown,left(v)|+ |δdown,straight′(v)| ≥
63|δ(v)|/64, and |δdown,left(v)| ≤ 2(|δdown,right(v)|+ |δdown,straight′(v)|). By combining the two inequal-
ities, we get that |δdown,right(v)| + |δdown,straight′(v)| ≥ 21|δ(v)|/64. We now define the flow on every
edge e′ ∈ δdown(v), as follows. If e′ ∈ δdown,left(v)∪ δdown,straight′′(v), then we set f(e′) = 0. Otherwise,

e′ ∈ δdown,right(v)∪ δdown,straight′(v). We then set f(e′) =
∑
e∈δup(v) f(e)

|δdown,right(v)|+|δdown,straight′ (v)| . From the above

discussion, we are guaranteed that for every edge e ∈ δdown(v), f(e) ≤ 1. This completes the descrip-
tion of the interation where index j is processed. Once al indices j = r, r − 1, . . . , 1 are processed,
we obtain a final flow f . From the construction of the flow f , flow conservation constraints hold for
every vertex v ∈ S′′a . The only edges that carry non-zero flow are edges of E′′ ∪ E(S′′a) ∪ δright(S′′a).
Moreover, each edge in E′′ carries logm

8 flow units, and every edge in δright(S′′a) carries at most one
flow unit. We can then apply standard flow-paths decomposition of the flow f , to obtain a flow that
is defined over the set P of paths, where every edge of E′′ sends logm

8 flow units, and every edge in

δright(S′′a) receives at most one flow unit. We conclude that |δright(S′′a)| ≥ |E′′| · logm
8 ≥ |δ(ui∗)| · logm

256 .

The proof that |δleft(S′′a)| ≥ |δ(ui∗)| · logm
256 is symmetric.

Lastly, we prove that ua is a J-node. Observe first that, since S′′a 6= ∅, from Observation 7.24,
a 6∈ {1, r}. Conisder a cut (A,B) in graph Ȟ, where A = S1 ∪ · · · ∪Sa−1, and B = Sa ∪Sa+1 ∪ · · · ∪Sr
(see Figure 61). From the construction of the Gomory-Hu tree τ , (A,B) is a minimum ua−1-ua cut in
graph Ȟ. Since δleft(S′′a) ⊆ E(A,B), we get that |E(A,B)| ≥ |δleft(S′′a)| ≥ |δ(ui∗)| · logm

256 .

Figure 61: Illustration for the Proof of Claim 7.36, with cut (A,B) shown in pink dashed line. Edges
of δleft(S′′a) are shown in green.

307

Consider another ua−1-ua cut (A′, B′) in graph Ȟ, where B′ = S′a and A′ = V (Ȟ)\S′a (see Figure 62).
Then |E(A′, B′)| ≥ |E(A,B)| ≥ |δ(ui∗)| · logm

256 .

Figure 62: Illustration for the Proof of Claim 7.36, with cut (A′, B′) shown in pink dashed line.

Assume now for contradiction that ua is not a J-node. Then from Claim 7.34, |E(A′, B′)| = |δ(S′a)| ≤(
1 + 130

logm

)
|δ(ua)| ≤ 2|δ(ua)|. Therefore, we conclude that |δ(ua)| ≥ |E(A′,B′)|

2 ≥ |δ(ui∗)| · logm
512 >

|δ(ui∗)|, contradicting the choice of the index i∗ (we have used the fact that m is sufficiently large).

G.17 Proof of Claim 7.38

We consider two cuts in graph Ȟ. The first cut, (A1, B1) is defined as follows: A1 = V (S1) ∪
· · · ∪ V (Si), B1 = V (Si+1) ∪ · · · ∪ V (Sr). From the defintion of the Gomory-Hu tree τ , and from
Corollary 4.10, (A1, B1) is a minimum ui–ui+1 cut in graph Ȟ, and moreover, there is a set P1 =
{P (e) | e ∈ E(A1, B1)} of edge-disjoint paths in graph Ȟ, where, for each edge e ∈ E(A1, B1), path
P (e) has e as its first edge, vertex ui as its last vertex, and is internally disjoint from B1, and hence from
S∗. We can define another ui–ui+1 cut (A′1, B

′
1) in graph Ȟ, where B′1 = V (S′i+1), and A′1 = V (Ȟ)\B′1.

Since (A1, B1) is a minimum ui–ui+1 cut, we get that:

|E(A1, B1)| ≤ |E(A′1, B
′
1)| = |δ(S′i+1)| ≤ 2|δ(ui+1)| ≤ 2|δ(ui)|

(we have used Claim 7.34 for the penultimate inequality, and the definition of the index i = i∗ for the
last inequality).

Similarly, we consider a second cut (A2, B2), that is defined as follows: A2 = V (S1) ∪ · · · ∪ V (Si+2),
B2 = V (Si+3) ∪ · · · ∪ V (Sr). As before, from the defintion of the Gomory-Hu tree τ , and from
Corollary 4.10, (A2, B2) is a minimum ui+2–ui+3 cut in graph Ȟ, and moreover, there is a set P2 =
{P ′(e) | e ∈ E(A2, B2)} of edge-disjoint paths in graph Ȟ, where, for each edge e ∈ E(A2, B2), path
P ′(e) has e as its first edge, vertex ui+3 as its last vertex, and is internally disjoint from A2, and hence
from S∗. As before, we can define another ui+2–ui+3 cut (A′2, B

′
2) in graph Ȟ, setting A′2 = V (S′i+2),

and B′2 = V (Ȟ) \A′2. Since (A2, B2) is a minimum ui+2–ui+3 cut, we get that:

|E(A2, B2)| ≤ |E(A′2, B
′
2)| = |δ(S′i+2)| ≤ 2|δ(ui+2)| ≤ 2|δ(ui)|.

Observe that δ(S∗) = E(A1, B1) ∪ E(A2, B2) (see Figure 63). Therefore, from the above discussion,
|δ(S∗)| ≤ 4|δ(ui)|. On the other hand, all edges connecting ui to vertices of

⋃
a>i+2 Sa lie in set

Ẽover
i+1 (see Figure 63), and so, from Observation 7.29, |E′i+1| ≥ |Ẽover

i+1 | ≥ |δ(ui)|/16. Recall that

308

Figure 63: Illustration for the proof of Claim 7.38. The edges of E∗ are shown in red and brown. At
least |δ(ui)|/16 edges of E∗ (shown in brown) have an endpoint in Si+1 ∪ . . . ,∪Sr, and these edges
belong to set E(A2, B2).

E′i+1 = E(Si+1, Si+2), and so in particular, E′i+1 ⊆ E(S∗). We conclude that |E(S∗)| ≥ |E′i+1| ≥
|δ(ui)|/16 ≥ |δ(S∗)|/64.

In order to prove that S∗ is a simplifying cluster, it is now enough to show a collection P∗ =
{P ∗(e) | e ∈ δ(S∗)} of paths in graph Ȟ, that cause congestion at most β′ = O(logm), such that,
for every edge e ∈ δ(S∗), path P ∗(e) has e as its first edge, vertex ui+3 as its last vertex, and it is
internally disjoint from S∗.

Recall that we have defined a set P2 = {P ′(e) | e ∈ E(A2, B2)} of edge-disjoint paths in graph Ȟ,
where, for each edge e ∈ E(A2, B2), path P ′(e) has e as its first edge, vertex ui+3 as its last vertex,
and is internally S∗. For each edge e ∈ E(A2, B2), we set P ∗(e) = P (e). Since δ(S∗) = E(A1, B1) ∪
E(A2, B2), it remains to define the paths P ∗(e) for edges e ∈ E(A1, B1).

As observed above, |E(A1, B1)| ≤ 2|δ(ui)|. From Observation 7.37, at least |δ(ui)|/16 edges connect
ui to vertices of

⋃
a>i+2 Sa. Denote this set of edges by Ẽ∗. Clearly, Ẽ∗ ⊆ E(A2, B2) (see Figure 63).

Since |E(A1, B1)| ≤ 2|δ(ui)| ≤ 32|Ẽ∗|, we can define a mapping M from the edges of E(A1, B1) to
edges of Ẽ∗, such that, for every edge e′ ∈ Ẽ∗, at most 32 edges of E(A1, B1) are mapped to it.
Consider now some edge e ∈ E(A1, B1). The final path P ∗(e) is a concatenation of two paths. The
first path is P (e) ∈ P1, that originates at e, terminates at ui, and it is internally disjoint from S∗.
Let e′ = M(e) be the edge of Ẽ∗ to which edge e is mapped (recall that e′ must be incident to ui).
The second path is P ′(e′) ∈ P2, that starts at edge e′ and terminates at vertex ui+3. This completes
the definition of the set P∗ = {P ∗(e) | e ∈ δ(S∗)} of paths. From the construction, for every edge
e ∈ δ(S∗), path P ∗(e) has e as its first edge, vertex ui+3 as its last vertex, and it is internally disjoint
from S∗. It now remains to bound the congestion of the path set P∗. Recall that each of the path sets
P1,P2 causes congestion 1. Each path in P1 is used once, and each path in P2 may be used by up to
33 paths. Therefore, the total congestion caused by paths in P∗ is at most 34. We conclude that S∗

is a simplfying cluster.

309

G.18 Proof of Claim 7.39

Since ui+1 is a J-node, in order to prove that S∗ is a simplifying cluster, it is enough to show a
collection P∗ = {P ∗(e) | e ∈ δ(ui+1)} of paths in graph Ȟ, causing congestion at most β′ = O(logm),
where for each edge e ∈ δ(ui+1), path P ∗(e) has e as its first edge, vertex ui+2 as its last vertex,
and is internally disjoint from S∗. As before, we define two cuts in graph Ȟ: cut (A1, B1), with
A1 = V (S1)∪ · · · ∪V (Si) and B1 = V (Ȟ) \A1, and cut (A2, B2), with A2 = V (S1)∪ · · · ∪V (Si+1) and
B2 = V (Ȟ) \ A2. As before, from our construction, (A1, B1) is a minimum ui–ui+1 cut in Ȟ, and so
there is a set P1 = {P (e) | e ∈ E(A1, B1)} of edge-disjoint paths, that are internally disjoint from B1,
where for each edge e ∈ E(A1, B1), path P (e) has e as its first edge and vertex ui as its last vertex.
Similarly, (A2, B2) is a minimum ui+1–ui+2 cut in Ȟ, and so there is a set P2 = {P ′(e) | e ∈ E(A2, B2)}
of edge-disjoint paths, that are internally disjoint from A2, where for each edge e ∈ E(A2, B2), path
P ′(e) has e as its first edge and vertex ui+2 as its last vertex.

We partition the edge set δ(S∗) into three subsets (see Figure 64). The first subset, that we denote
by δ1, contains all edges of δ(S∗) that lie in the set E(A2, B2). The second set, that we denote
by δ2, contains all edges of δ(S∗) that lie in δdown(S′′i+1) – that is, they connect ui+1 to vertices
of S′′i+1. The third set δ3 contains all remaining edges. Note that every edge of δ3 must lie in
Ei ∪ δleft(S′i+1) ⊆ E(A1, B1). We now consider each of the three sets of edges in turn.

Figure 64: Partition of the set δ(S∗) of edges into three subsets: set δ1 (shown in green), set δ2 (shown
in black), and set δ3 (shown in red). The pink dashed line on the left shows cut (A1, B1), and the pink
dashed line on the right shows cut (A2, B2).

First, for every edge e ∈ δ1, we let P ∗(e) = P ′(e), where P ′(e) is the path of P2, that has e as its first
edge, vertex ui+2 as its last vertex, and is internally disjoint from S∗. We set P∗1 = {P ∗(e) | e ∈ δ1}.
Clearly, P∗1 ⊆ P2, and the paths in P∗1 are edge-disjoint.

Next, we consider the edges of δ2 = δdown(S′′i+1). Recall that, from Claim 7.30, there is a set Pright ={
P right(e) | e ∈ δ2

}
of edge-disjoint paths in Ȟ, where, for each edge e ∈ δ2, path P right(e) has e as its

first edge, some edge of δright(S′′i+1) as its last edge, and all inner vertices of P right(e) are contained
in S′′i+1, so that the paths of Pright are internally disjoint from S∗. Consider an edge e ∈ δ2, and let

310

e′ ∈ δright(S′′i+1) be the last edge on the path P right(e). Then e′ ∈ E(A2, B2). We let P ∗(e) be the
path obtained by concatenating the path P right(e) with the path P ′(e′) ∈ P2. Clearly, path P ∗(e)
has e as its first edge, vertex ui+2 as its last vertex, and it is internally disjoint from S∗. We set
P∗2 = {P ∗(e) | e ∈ δ2}. It is easy to verify that the paths of P∗2 are edge-disjoint.

Lastly, we consider the edges of δ3 ⊆ E(A1, B1). Observe that a cut (A′1, B
′
1), where A′1 = {ui}, and

B′1 = V (Ȟ) \ A′1 is a ui–ui+1-cut in graph Ȟ, and so |δ3| ≤ |E(A1, B1)| ≤ |E(A′1, B
′
1)| ≤ |δ(ui)|. We

denote by Ẽ′ the set of all edges connecting ui to vertices of S′′i+1, and we denote by Ẽ′′ the set of all
edges connecitng ui to vertices of Si+2 ∪ · · · ∪ Sr.
Recall that set E∗ of edges contains all edges connecting ui to vertices of

⋃
a>i Sa. Let Ěi ⊆ Ei be

the set of edges connecting ui to ui+1. Since S′i+1 = {ui+1}, E∗ = Ẽ′ ∪ Ẽ′′ ∪ Ěi. From our assumtion,
|E∗| ≥ |δ(ui)|/4. Furthermore, since vertex ui was not added to the J-cluster corresponding to vertex
ui+1, |Ěi| ≤ |δ(ui)|/128. Therefore, either |Ẽ′| ≥ |δ(ui)|/16, or |Ẽ′′| ≥ |δ(ui)|/16 must hold.

We assume first that it is the latter. Since |δ3| ≤ |δ(ui)|, we can define a mapping M from the edges
of δ3 to edges of Ẽ′′, where, for each edge e′ ∈ Ẽ′′, at most 16 edges of δ3 are mapped to e′. Observe
that Ẽ′′ ⊆ E(A2, B2). Consider now some edge e ∈ δ3. We obtain the path P ∗(e) by concatenating
two paths: path P (e) ∈ P1, connecting e to vertex ui, and the path P ′(e′) ∈ P2, where e′ is the edge
of Ẽ′′ to which e is mapped. Recall that P ′(e′) has e′ as its first edge and ui+2 as its last vertex; edge
e′ is incident to ui. Therefore, path P ∗(e) has e as its first edge, vertex ui+2 as its last vertex, and it
is internally disjoint from S∗. We then set P∗3 = {P ∗(e) | e ∈ δ3}. It is easy to verify that the paths
of P∗3 cause edge-congestion at most 17.

Lastly, we assume that |Ẽ′| ≥ |δ(ui)|/16. As before, we define a mapping M from edges of δ3 to edges
of Ẽ′, where, for each edge e′ ∈ Ẽ′, at most 16 edges of δ3 are mapped to e′. Consider now some edge
e′ = (ui, v) ∈ Ẽ′, and recall that v ∈ S′′i+1. Recall that the algorithm from Lemma 7.27 provided a
construction of a right-monotone path P (e′, v). This path starts with edge e′, and it must terminate
at some vertex of V (S′i+2) ∪ V (S′i+3) ∪ · · · ∪ V (S′r). All inner vertices on path P (e′, v) must lie in
V (S′′i+1) ∪ V (S′′i+2) ∪ · · · ∪ V (S′′r). Therefore, if e′′ is the first edge of P (e′, v) that is not contained in

S′′i+1, then e′′ ∈ E(A2, B2). We denote by P̃ (e′) the subpath of P (e′, v) that starts with edge e′ and

ends with edge e′′. From Lemma 7.27, we are guaranteed that all paths in set
{
P̃ (e′) | e′ ∈ Ẽ′

}
cause

congestion O(logm). Consider now some edge e ∈ δ3. We let P ∗(e) be a path that is a concatenation
of three paths. The first path is the path P (e) ∈ P1, that connects e to ui. Let e′ ∈ Ẽ′ be the edge
to which e is mapped by M . The second path is P̃ (e′), connecting e′ to some edge e′′ ∈ E(A2, B2).
The third path is the path P ′(e′′) ∈ P2, connecting e′′ to vertex ui+2. It is immediate to verify that
the resulting path P ∗(e) has e as its first edge, ui+2 as its last vertex, and it is internally disjoint from
S∗. We then set P∗3 = {P ∗(e) | e ∈ δ3}. It is easy to verify that the paths of P∗3 cause congestion at
most O(logm).

Finally, we set P∗ = P∗1 ∪ P∗2 ∪ P∗3 . From our construction, the set P∗ of paths routes the edges of
δ(S∗) to vertex ui+2, the paths of P∗ are internally disjoint from S∗, and they cause edge-congestion
O(logm) as required. We conclude that S∗ is a simplifying cluster.

G.19 Proof of Claim 7.41

Since ui+2 is a J-node, in order to prove that S∗ is a simplifying cluster, it is enough to show a
collection P∗ = {P ∗(e) | e ∈ δ(ui+2)} of paths in graph Ȟ, where for each edge e ∈ δ(ui+2), path
P ∗(e) has e as its first edge, vertex ui+3 as its last vertex, and is internally disjoint from S∗. The
construction of the set P∗ of paths is almost identical to that from Case 2.

As before, we define two cuts in graph Ȟ: cut (A1, B1), with A1 = V (S1) ∪ · · · ∪ V (Si+1) and
B1 = V (Ȟ) \ A1, and cut (A2, B2), with A2 = V (S1) ∪ · · · ∪ V (Si+2) and B2 = V (Ȟ) \ A2 (see

311

Figure 65). As before, from our construction, (A1, B1) is a minimum ui+1–ui+2 cut in Ȟ, and so
there is a set P1 = {P (e) | e ∈ E(A1, B1)} of edge-disjoint paths, that are internally disjoint from B1,
where for each edge e ∈ E(A1, B1), path P (e) has e as its first edge and vertex ui+1 as its last vertex.
Similarly, (A2, B2) is a minimum ui+2–ui+3 cut in Ȟ, and so there is a set P2 = {P ′(e) | e ∈ E(A2, B2)}
of edge-disjoint paths, that are internally disjoint from A2, where for each edge e ∈ E(A2, B2), path
P ′(e) has e as its first edge and vertex ui+3 as its last vertex.

Figure 65: Illustration for the proof of Claim 7.41. Edges of δ1 are shown in green, edges of δ2 are
shown in black, and edges of δ3 are shown in red. The pink dashed line on the left shows cut (A1, B1)
and the pink dashed line on the right shows cut (A2, B2).

As before, we partition the edge set δ(S∗) into three subsets. The first subset, that we denote by δ1,
contains all edges of δ(S∗) that lie in the set E(A2, B2). The second set, that we denote by δ2, contains
all edges of δ(S∗) that lie in δdown(S′′i+2) – that is, they connect ui+2 to vertices of S′′i+2. The third set
δ3 contains all remaining edges. As before, δ3 must lie in Ei+1 ∪ δleft(S′i+2) ⊆ E(A1, B1). We consider
each of the three sets of edges in turn.

The constructions of the path sets P∗1 = {P ∗(e) | e ∈ δ1} and P∗2 = {P ∗(e) | e ∈ δ2} remain exactly
the same as in Case 2. We now focus on constructing the set P∗3 = {P ∗(e) | e ∈ δ3} of paths.

Consider the edges of δ3 ⊆ E(A1, B1). Recall that we have assumed that ui+1 is not a J-node. From
the choice of the index i∗ = i, |δ(ui+1)| ≤ |δ(ui)|. As before, we consider another ui+1–ui+2 cut
(A′1, B

′
1), where A′1 = {ui+1}, and B′1 = V (Ȟ) \ A′1. As before, |δ3| ≤ |E(A1, B1)| ≤ |E(A′1, B

′
1)| ≤

|δ(ui+1)| ≤ |δ(ui)|.
We denote by Ẽ′ the set of all edges connecting ui to vertices of S′′i+2, and by Ẽ′′ the set of all edges
connecitng ui to vertices of Si+3 ∪ · · · ∪ Sr. Since ui+2 is a J-node, S′i+2 = {ui+2}. As before, since
vertex ui was not added to the J-cluster corresponding to vertex ui+2, the number of edges connecting
ui to ui+2 is bounded by |δ(ui)|/128. Recall that we have established that at least |δ(ui)|/8 edges
connect ui to vertices of

⋃
a>i+1 V (Sa). Each such edge either lies in Ẽ′∪ Ẽ′′, or it connects ui to ui+2.

Therefore, either |Ẽ′| ≥ |δ(ui)|/32, or |Ẽ′′| ≥ |δ(ui)|/32 must hold. The remainder of the construction
of the paths in P∗3 is very similar to that for Case 2.

312

We assume first that |Ẽ′′| ≥ |δ(ui)|/32. Since |δ3| ≤ |δ(ui)|, we can define a mapping M from the
edges of δ3 to edges of Ẽ′′, where, for each edge e′ ∈ Ẽ′′, at most 32 edges of δ3 are mapped to e′.
Observe that Ẽ′′ ⊆ E(A1, B1) and Ẽ′′ ⊆ E(A2, B2). Consider now some edge e ∈ δ3. We obtain the
path P ∗(e) by concatenating three paths. The first path is path P (e) ∈ P1, connecting e to vertex
ui+1. Denote by e′ the edge of Ẽ′′ to which edge e is mapped. The second path is path P (e′) ∈ P1

(which we reverse), connecting vertex ui+1 to edge e′. The third path is path P ′(e′) ∈ P2, connecting
edge e′ to vertex ui+3. Clearly, path P ∗(e) has e as its first edge, vertex ui+3 as its last vertex, and it
is internally disjoint from S∗. We then set P∗3 = {P ∗(e) | e ∈ δ3}. It is easy to verify that the paths
of P∗3 cause edge-congestion at most O(1).

Finally, we assume that |Ẽ′| ≥ |δ(ui)|/32. Recall that the edges of Ẽ′ connect vertex ui to vertices of
S′′i+2, and in particular Ẽ′ ⊆ E(A1, B1). As before, we define a mapping M from edges of δ3 to edges

of Ẽ′, where, for each edge e′ ∈ Ẽ′, at most 32 edges of δ3 are mapped to e′.

Consider now some edge e′ = (ui, v) ∈ Ẽ′, and recall that v ∈ S′′i+1. Recall that the algorithm from
Lemma 7.27 provides a construction of a right-monotone path P (e′, v). This path starts with edge
e′, and it must terminate at some vertex of V (S′i+3) ∪ V (S′i+4) ∪ · · · ∪ V (S′r). All inner vertices on
path P (e′, v) must lie in V (S′′i+2) ∪ V (S′′i+3) ∪ · · · ∪ V (S′′r). Therefore, if e′′ is the first edge of P (e′, v)

that is not contained in S′′i+2, then e′′ ∈ E(A2, B2). We denote by P̃ (e′) the subpath of P (e′, v) that
starts with edge e′ and ends with edge e′′. From Lemma 7.27, we are guaranteed that all paths in set{
P̃ (e′) | e′ ∈ Ẽ′

}
cause congestion O(logm). Consider now some edge e ∈ δ3. We let P ∗(e) be a path

that is a concatenation of four paths. The first path is the path P (e) ∈ P1, that connects e to ui+1.
Let e′ ∈ Ẽ′ be the edge to which e is mapped by M , and recall that e′ ∈ E(A1, B1). The second path is
P (e′) ∈ P1, which we reverse, so the path now connects vertex ui+1 to edge e′. The third path is P̃ (e′),
connecting e′ to some edge e′′ ∈ E(A2, B2). The fourth and the last path is the path P ′(e′′) ∈ P2,
connecting e′′ to vertex ui+3. It is immediate to verify that the resulting path P ∗(e) has e as its first
edge, ui+3 as its last vertex, and it is internally disjoint from S∗. We then set P∗3 = {P ∗(e) | e ∈ δ3}.
From the above discussion, the paths of P∗3 cause congestion at most O(logm).

Lastly, we set P∗ = P∗1 ∪ P∗2 ∪ P∗3 . It is easy to verify that the set P∗ of paths routes the edges of
δ(S∗) to vertex ui+3, the paths are internally disjoint from S∗, and they cause congestion O(logm) as
required. We conclude that S∗ is a simplifying cluster.

G.20 Proof of Claim 7.42

Since ui+1 is a J-node, it is enough to show a collection P∗ = {P ∗(e) | e ∈ δ(ui+1)} of paths in graph
Ȟ, where for each edge e ∈ δ(ui+1), path P ∗(e) has e as its first edge, vertex ui+2 as its last vertex,
and is internally disjoint from S∗. As before, we define two cuts in graph Ȟ: cut (A1, B1), with
A1 = V (S1)∪ · · · ∪V (Si) and B1 = V (Ȟ) \A1, and cut (A2, B2), with A2 = V (S1)∪ · · · ∪V (Si+1) and
B2 = V (Ȟ) \ A2. As before, from our construction, (A1, B1) is a minimum ui–ui+1 cut in Ȟ, and so
there is a set P1 = {P (e) | e ∈ E(A1, B1)} of edge-disjoint paths, that are internally disjoint from B1,
where for each edge e ∈ E(A1, B1), path P (e) has e as its first edge and vertex ui as its last vertex.
Similarly, (A2, B2) is a minimum ui+1–ui+2 cut in Ȟ, and so there is a set P2 = {P ′(e) | e ∈ E(A2, B2)}
of edge-disjoint paths, that are internally disjoint from A2, where for each edge e ∈ E(A2, B2), path
P ′(e) has e as its first edge and vertex ui+2 as its last vertex.

As before, we partition the set δ(S∗) of edges into three subsets (see Figure 66). The first subset,
that we denote by δ1, contains all edges of δ(S∗) that lie in the set E(A2, B2). The second set, that
we denote by δ2, contains all edges of δ(S∗) that lie in δdown(S′′i+1) – that is, they connect ui+1 to
vertices of S′′i+1. The third set, δ3, contains all remaining edges. As before, very edge of δ3 must lie in
Ei ∪ δleft(S′i+1) ⊆ E(A1, B1). We now consider each of the three sets of edges in turn.

313

Figure 66: Illustration for the proof of Claim 7.42. Edges of δ1 are shown in green, edges of δ2 are
shown in black, and edges of δ3 are shown in red. Additionally, edges of Ẽ′ are shown in purple and
edges of Ẽ′′ are shown in brown. The pink dashed line on the left shows cut (A1, B1) and the pink
dashed line on the right shows cut (A2, B2).

First, for every edge e ∈ δ1, we let P ∗(e) = P ′(e), where P ′(e) is the path of P2, that has e as its first
edge, vertex ui+2 as its last vertex, and is internally disjoint from S∗. We set P∗1 = {P ∗(e) | e ∈ δ1}.
Clearly, P∗1 ⊆ P2, and the paths in P∗1 are edge-disjoint.

Next, we consider the edges of δ2 = δdown(S′′i+1). Recall that, from Claim 7.30, there is a set Pright ={
P right(e) | e ∈ δ2

}
of edge-disjoint paths in Ȟ, where, for each edge e ∈ δ2, path P right(e) has e as its

first edge, some edge of δright(S′′i+1) as its last edge, and all inner vertices of P right(e) are contained
in S′′i+1, so that the paths of Pright are internally disjoint from S∗. Consider an edge e ∈ δ2, and let
e′ ∈ δright(S′′i+1) be the last edge on the path P right(e). Then e′ ∈ E(A2, B2). We let P ∗(e) be the
path obtained by concatenating the path P right(e) with the path P ′(e′) ∈ P2. Clearly, path P ∗(e)
has e as its first edge, vertex ui+2 as its last vertex, and it is internally disjoint from S∗. We set
P∗2 = {P ∗(e) | e ∈ δ2}. It is easy to verify that the paths of P∗2 are edge-disjoint.

Lastly, we consider the edges of δ3 ⊆ E(A1, B1). Clearly, |δ3| ≤ |Ei| + |Êi| ≤ 8|Ei| + 7|δright(S′i)| +
7|δleft(S′i+1)|, from Equation (6). Note that, if i = 1, then, from Observation 7.24, S′1 = S1, and so
δleft(S′2) = ∅. Otherwise, from Claim 7.33, |δleft(S′i+1)| ≤ 2.5|Ei| + 2.5|δright(S′i)|. In either case, we
get that:

|δ3| ≤ 30|Ei|+ 29|δright(S′i)| ≤ 30|δright(S′i)|,

since have assumed that |δright(S′i)| > 64|Ei|. We partition the set δright(S′i) into two subsets: set Ẽ′,
containing all edges (ui, v), with v ∈ S′′i+1, and set Ẽ′′, containing all remaining edges. Note that, for

each edge (ui, v) ∈ Ẽ′′, v ∈ Si+2 ∪ · · · ∪ Sr must hold. The remainder of the construction of the set
P∗3 = {P ∗(e) | e ∈ δ3} of paths is very similar to the analysis of Case 2 in the proof of Lemma 7.35.
Since |δ3| ≤ 30|δright(S′i)|, either |Ẽ′| ≥ |δ3|/60 or |Ẽ′′| ≥ |δ3|/60 must hold. Assume first that it is
the latter. Then we can define a map M from the edges of δ3 to edges of Ẽ′′, where, for each edge

314

e′ ∈ Ẽ′′, at most 60 edges of δ3 are mapped to e′. Observe that Ẽ′′ ⊆ E(A2, B2). Consider now some
edge e ∈ δ3. We obtain the path P ∗(e) by concatenating two paths: path P (e) ∈ P1, connecting e to
vertex ui, and the path P ′(e′) ∈ P2, where e′ is the edge of Ẽ′′ to which e is mapped. Recall that path
P ′(e′) has e′ as its first edge and ui+2 as its last vertex, and that edge e′ is incident to ui. Therefore,
path P ∗(e) has e as its first edge, vertex ui+2 as its last vertex, and it is internally disjoint from S∗.
We then set P∗3 = {P ∗(e) | e ∈ δ3}. It is easy to verify that the paths of P∗3 cause edge-congestion at
most 60.

Lastly, we assume that |Ẽ′| ≥ |δ3|/60. As before, we define a mapping M from edges of δ3 to edges of
Ẽ′, where, for each edge e′ ∈ Ẽ′, at most 60 edges of δ3 are mapped to e′. Consider now some edge
e′ = (ui, v) ∈ Ẽ′, and recall that v ∈ S′′i+1. Recall that the algorithm from Lemma 7.27 provided a
construction of a right-monotone path P (e′, v). This path starts with edge e′, and it must terminate
in some vertex of V (S′i+2) ∪ V (S′i+3) ∪ · · · ∪ V (S′r). All inner vertices on path P (e′, v) must lie in
V (S′′i+1) ∪ V (S′′i+2) ∪ · · · ∪ V (S′′r). Therefore, if e′′ is the first edge of P (e′, v) that is not contained in

S′′i+1, then e′′ ∈ E(A2, V2). We denote by P̃ (e′) the subpath of P (e′, v) that starts with edge e′ and

ends with edge e′′. From Lemma 7.27, we are guaranteed that all paths in set
{
P̃ (e′) | e′ ∈ Ẽ′

}
cause

congestion O(logm). Consider now some edge e ∈ δ3. We let P ∗(e) be a path that is a concatenation
of three paths. The first path is the path P (e) ∈ P1, that connects e to ui. Let e′ ∈ Ẽ′ be the edge
to which e is mapped by M . The second path is P̃ (e′), connecting e′ to some edge e′′ ∈ E(A2, B2).
The third path is the path P ′(e′′) ∈ P2, connecting e′′ to vertex ui+2. It is immediate to verify that
the resulting path P ∗(e) has e as its first edge, ui+2 as its last vertex, and it is internally disjoint from
S∗. We then set P∗3 = {P ∗(e) | e ∈ δ3}. From the above discussion, the paths of P∗3 cause congestion
at most O(logm).

Finally, we set P∗ = P∗1 ∪ P∗2 ∪ P∗3 . It is easy to verify that the set P∗ of paths routes the edges of
δ(S∗) to vertex ui+2 with congestion O(logm), and all paths of P∗ are internally disjoint from S∗. We
conclude that S∗ is a simplifying cluster, a contradiction.

G.21 Proof of Claim 7.44

We provide the construction of the set Pout,left of paths; the construction of the set Pout,right of paths
is symmetric.

We maintain a set R =
{
R(e) | e ∈ Ê

}
of paths, that we gradually modify over the course of the algo-

rithm. We will ensure that, throughout the algorithm, R is a collection of simple paths that contains,
for each edge e ∈ Ê, a path R(e) that originates at e and is a left-monotone path. Additionally, for
every vertex v ∈ V ′, the number of paths of R terminating at v is n1(v) throughout the algorithm.
Initially, for each edge e ∈ Ê, we let R(e) be the path obtained by appending edge e at the beginning

of the path P 1(e) ∈ P̂(e), and we set R =
{
R(e) | e ∈ Ê

}
. Clearly, all invariants hold for the initial

set R of paths.

We perform the algorithm as long as there are two paths R(e), R(e′) in R, and some vertex v that lies
on both paths, such that the intersection of R(e) and R(e′) at v is transversal. Note that v must be
an inner vertex on both R(e) and R(e′). Assume that path R(e) terminates at some vertex u ∈ V ′,
while path R(e′) terminates at vertex u′ ∈ V ′. We perform splicing of paths R(e), R(e′) at vertex v
(see Section 4.1.4), obtaining two new paths: path R̃(e), whose first edge is e and last vertex is u′;
and path R̃(e′), whose first edge is e′ and last vertex is u. If any of the resulting paths R̃(e), R̃(e′) is
non-simple, we remove cycles from it, until it becomes a simple path. We then update the set R of
paths by replacing R(e) and R(e′) with paths R̃(e) and R̃(e′), respectively. It is easy to verify that, if
R(e), R(e′) were both left-monotone paths, then so are paths R̃(e) and R̃(e′). It is also immediate to
verify that all other invariants hold. Clearly, when the algorithm terminates, the final set Pout,left = R

315

of paths has all required properties.

It now remains to show that the algorithm is efficient. From Observation 4.6, after every iteration,
either (i)

∑
R∈R |E(R)| decreases, or (ii) |ΠT (R)| decreases, and

∑
R∈R |E(R)| remains fixed. It is

then immediate to verify that the algorithm terminates after poly(|E(G)|) iterations.

G.22 Proof of Claim 7.46

In order to prove the claim, we use the following observation.

Observation G.6 Let I be a collection of k intervals of non-zero length, where for each interval
I ∈ I, I ⊆ [0, r], interval I is closed on the left and open on the right, and the endpoints of I are
integers in {0, . . . , r}. Let I ′ be another collection of k intervals of non-zero length, where for each
interval I ′ ∈ I ′, I ′ ⊆ [0, r], interval I ′ is closed on the left and open on the right, and the endpoints of
I ′ are integers in {0, . . . , r}. Assume further that for every integer 0 ≤ i ≤ r, the number of intervals
of I for which i serves as the left endpoint is equal to the number of intervals of I ′ for which i serves as
the left endpoint, and similarly, the number of intervals of I for which i serves as the right endpoint is
equal to the number of intervals of I ′ for which i serves as the right endpoint. Then for every integer
p ∈ [0, r), the total number of intervals in I containing p is equal to the total number of intervals in
I ′ containing p.

Proof: Let p be any integer in [0, r). Consider any interval I = (a, b) ∈ I ∪ I ′. Clearly, p ∈ I iff
a ≤ p < b.

Let I1 ⊆ I be the set of all intervals I = [a, b) ∈ I with a ≤ p, and let I2 ⊆ I be the set of all
intervals I = [a, b) ∈ I with b ≤ p. Clearly, I2 ⊆ I1, and an interval I ∈ I contains the point p iff
I ∈ I1 \ I2. We define subsets I ′1, I ′2 of intervals of I ′ similarly. As before, an interval I ′ ∈ I ′ contains
the point p iff I ′ ∈ I ′1 \ I ′2. Since, for every integer 0 ≤ i ≤ p, the number of intervals in I whose left
endpoint is i is equal to the number of intervals in I ′ whose left endpoint is i, we get that |I1| = |I ′1|.
Similarly, since, for every integer 0 ≤ i ≤ p, the number of intervals in I whose right endpoint is i is
equal to the number of intervals in I ′ whose right endpoint is i, we get that |I2| = |I ′2|. Therefore,
|I1 \ I2| = |I ′2 \ I ′2|. Since I1 \ I2 is precisely the set of all intervals I ∈ I that contain p, and I ′1 \ I ′2
is precisely the set of all intervals I ′ ∈ I ′ that contiain p, the observation follows.

We construct two collections of intervals, I =
{
I(e) | e ∈ Ê

}
, and I ′ =

{
I ′(e) | e ∈ Ê

}
, as fol-

lows. Consider an edge e ∈ Ê. Assume that span′(e) = {i′, i′ + 1, . . . , j′ − 1}, and that span′′(e) =
{i′′, i′′ + 1, . . . , j′′ − 1}. We then let I(e) = [i′, j′) and I ′(e) = [i′′, j′′).

Let L be the multiset of integers, that serve as the left endpoint of every interval in I. Consider an
integer 1 ≤ i ≤ r. The number of times that i appears in set L is equal to the number of edges e ∈ Ê,
such that i is the first element of span′(e); equivalently, the prefix path P 1(e) must terminate at a
vertex of Si. Therefore, the number of times that integer i appears in L is

∑
v∈V (Si)

n1(v). Note that,

if i is the left endpoint of some interval I ′(e) ∈ I ′, then path P out(e) must originate at a vertex of Si.
Therefore, path P out,left(e) that was constructed by the algorithm from Claim 7.44 must terminate at
a vertex of Si. From Claim 7.44, for every vertex v ∈ V ′, the number of paths of Pout,left terminating
at v is exactly n1(v). Therefore, the number of intervals of I ′ for which i serves as the left endpoint
is equal to

∑
v∈V (Si)

n1(v), which is exactly the number of intervals of I, for which i serves as the left
endpoint.

Using similar reasoning, for every integer 1 ≤ i ≤ r, the number of intervals of I ′ for which i serves as
the right endpoint is equal to the number of intervals of I, for which i serves as the right endpoint.

Note that for each integer 1 ≤ t ≤ r, the number of intervals of I containing t is precisely Nt, while
the number of intervals of I ′ containing t is precisely N ′t . We conclude that Nt = N ′t .

316

In order to prove the second assertion, observe that, for every index 1 ≤ t < r, for every edge e ∈ Ê
with t ∈ span′(e), the mid-segment P 2(e) of the nice guiding path P (e) ∈ P̂ must contain some edge
of Et. Since the paths in P̂ cause congestion at most O(log18m), we get that Nt ≤ O(log18m) · |Et|.

G.23 Proof of Observation 7.57

Consider an edge e ∈ E(G). Recall that, if e is a primary edge for an index 1 ≤ z ≤ r (that is,
e ∈ E(S̃z) ∪ δG(S̃z)), then N ′z(e) = 1. Otherwise, N ′z(e) is the number of paths in set:{

Q(e′) | e′ ∈ Ez−1 ∪ Eleft
z

}
∪
{
Q′(e′) | e′ ∈ Ez ∪ Eright

z

}
that contain e. Here, for an edge e′ ∈ Ez−1 ∪ Eleft

z , Q(e′) is the unique path of the internal router

Q(Uz−1) that originates at e′, and for an edge e′ ∈ Ez ∪ Eright
z , Q′(e′) is the unique path of the

external router Q′(Uz) that originates at e′. If a secondary edge e ∈ E(Sz−1) ∪ E(Sz+1), then, from
Observation 7.55, E [N ′z(e)] ≤ E [Nz(e)] ≤ η̂. Otherwise, N ′z(e) is the total number of auxiliary cycles

in set
{
W (e′) | e′ ∈ Eleft

z ∪ Eright
z

}
that contain the edge e. Consider now some edge e′ ∈ Ê, and

assume that span(e′) = {i, . . . , j − 1}. Then e′ may lie in set Eleft
z ∪ Eright

z only for z ∈ {i, j}. It
may also be a primary edge only for indices z ∈ {i, j}. Since, from Observation 7.47, edge e may
appear on at most O(log34m) cycles in W, and since there are at most O(1) indices z, for which

e ∈ Ez−1 ∪ Ez ∪ Eleft
z ∪ Eright

z , or e is a primary edge, we get that, overall,

E

[
r∑
z=1

N ′z(e)

]
≤ O(η̂) +O(log34m) ≤ O(η̂).

G.24 Proof of Observation 7.58

Recall that, for 1 ≤ z ≤ r, ΠT
z is the set of all triples (e, e′, v), where e ∈ Eright

z , e′ ∈ Êz, and v
is a vertex that lies on both W (e) and W (e′), such that cycles W (e) and W (e′) have a transversal

intersection at v. Note that Eright
z ⊆ Êz. Recall that, from Observation 7.48, for every pair e, e′ ∈ Êz

of edges, there is at most one vertex v, such that W (e) and W (e′) have a transversal intersection at
vertex v. We say that a triple (e, e′, v) ∈ ΠT

z is a type-1 triple if the cycles W (e),W (e′) share an edge.
Let (e, e′, v) be a type-1 triple of ΠT

z , and let e∗ be an arbitrary edge shared by W (e) and W (e′). We
say that edge e∗ is responsible for the triple (e, e′, v). If the cycles W (e),W (e′) do not share edges,
then we say that triple (e, e′, v) is a type-2 triple.

We now bound the total number of type-1 triples in
⋃r
z=1 ΠT

z . Consider an edge e∗ ∈ E(G). From
Observation 7.47, edge e∗ may appear on at most O(log34m) cycles inW. Consider now any such pair
W (e),W (e′) of cycles. Assume that span(e) = {i, . . . , j − 1}, and span(e′) = {i′, . . . , j′ − 1}. Recall

that a triple (e, e′, v) may only lie in a set ΠT
z if e ∈ Eright

z , so z = i must hold. Therefore, every
pair e, e′ ∈ Ê of edges, for which e∗ ∈ E(W (e)) ∩ E(W (e′)), contributes at most O(1) triples to set⋃r
z=1 ΠT

z . Overall, edge e∗ may be responsible for at most O(log68m) triples in
⋃r
z=1 ΠT

z , and the total
number of type-1 triples in

⋃r
z=1 ΠT

z is at most |E(G)| ·O(log68m).

Next, we consider a type-2 triple (e, e′, v) ∈ ΠT
z . Observe that v is the only vertex at which W (e) and

W (e′) have a transversal intersection, and cycles W (e),W (e′) do not share any edges. It is then easy
to see that, in the drawing ϕ∗ of graph G, there must be a crossing between an edge of W (e) and an
edge of W (e′). We say that this crossing is responsible for the triple (e, e′, v).

Consider now some crossing (e1, e2) ∈ χ∗. As before, from Observation 7.47 edge e1 lies on at most
O(log34m) cycles ofW, and the same bound holds for edge e2. Therefore, there are at most O(log68m)

317

pairs (e, e′) ∈ Ê of edges, with e1 ∈ W (e) and e2 ∈ W (e′). As before, there is at most one index z

for which e1 ∈ Eright
z , and at most one index z, for which e2 ∈ Eright

z . Therefore, crossing (e1, e2) may
be responsible for at most O(log68m) triples in

⋃r
z=1 ΠT

z , and the total number of type-2 triples in⋃r
z=1 ΠT

z is at most |χ∗| ·O(log68m).

G.25 Proof of Observation 7.68

From now on, we assume for contradiction that we assume that E(H(e1)) ∩ E(H(e2)) = ∅, and,
additionally, there is no pair of edges ẽ1 ∈ H(e1), ẽ2 ∈ H(e2)∪W ′′(e2), whose images cross in ϕ∗, and
similarly, there is no pair of edges ẽ′1 ∈ H(e1) ∪W ′′(e1), ẽ′2 ∈ H(e2), whose images cross in ϕ∗. From
Observation 7.61, edges â′e1 , â

′
e2 , a

′
e1 , a

′
e2 appear in this order in the rotation Ouz−1 ∈ Σ.

We now define two points in the drawing ϕ∗ of G: point p, that is an internal point on the image of
edge âe2 , that is very close to the image of the vertex x̂e2 , such that the segment of the image of edge
ae2 between p and the image of x̂e2 does not participate in any crossings. The second point, p′, is
defined similarly on the image of edge ae2 , very close to the image of vertex xe2 (see Figure 67).

Figure 67: Illustration for the proof of Observation 7.68. Edges âe1 and ae2 are shown in red, with
points p and p′ marked. Path W ′(e1) is the concatenation of the brown path and edges ae1 , âe1 . Path
W ′′(e1) is shown in pink.

Next, we consider three curves in the drawing ϕ∗ of G. The first curve, γ1, is the union of the images
of paths P̂ (e1) and P (e1) in ϕ∗. The second curve, γ2, is the image of the path W ′(e1), and the third
curve, γ3, is the image of the path W ′′(e1) in ϕ∗ (see Figure 68). Observe that the endpoints of each
of the three curves are the images of vertices ye1 and ŷe1 , and that points p and p′ may not lie on any
of these curves, as we have assumed that E(H(e1))∩E(H(e2)) = ∅. We will next show that the closed
curve obtained by the union of curves γ1 and γ2 may not separate points p and p′; the closed curve
obtained by the union of the curves γ1 and γ3 must separate points p and p′; and the closed curve
obtained by the union of the curves γ2 and γ3 may not separate points p and p′. We will then show
that this is impossible, reaching a contradiction.

Observation G.7 Let γ̃1 be the closed curve obtained by the union of the curves γ2 and γ3. The
points p and p′ are not separated by γ̃1. In other words, if we consider the open regions into which
curve γ̃1 partitions the sphere, then points p, p′ lie in the same region.

318

Figure 68: Curves γ1, γ2, and γ3.

Proof: Assume otherwise. Consider another curve γ∗, which is obtained from the image of the path
W ′(e2), by truncating it so it connects point p to point p′. Notice that path W ′(e2) may not share any
vertices with W ′′(e1) (except possibly for the endpoints of path W ′(e2), whose images do not appear
on curve γ∗). Moreover, cycles W (e1) and W (e2) may not have transversal intersections at a vertex of
V (Sz−1) (from Observation 7.48). Since we have assumed that no edge of W ′(e2) ⊆ H(e2) may cross
an edge of H(e1) ∪W ′′(e1), we get that curve γ∗ may not cross curve γ̃1, and so points p and p′ may
not be separated by curve γ̃1.

From Observation G.7, we can define a simple curve ζ, whose endpoints are p and p′, such that neither
of the curves γ2, γ3 crosses ζ.

Observation G.8 Let γ̃2 be the closed curve obtained by the union of the curves γ1 and γ2. Then
points p and p′ are not separated by γ̃2. In other words, if we consider the open regions into which
curve γ̃2 partitions the sphere, then points p, p′ lie in the same region.

Proof: Assume otherwise. Consider another curve γ∗, which is obtained from the image of the path
W ′′(e2), by appending to it the image of edge âe2 between the image of vertex ŷe2 and point p, and
the image of edge ae2 between the image of vertex ye2 and point p′.

Notice that path W ′′(e2) may not share any vertices with paths W ′(e1), P (e1), and P (e2) (except
for possibly the endpoints of W ′′(e2)). Observe also that paths W ′(e1), P (e1) both contain the edge
ae1 = (xe1 , ye1), so, even if vertex ye1 ∈W ′′(e2), curve γ∗ may not cross curve γ̃2 at the image of vertex
ye1 . Similarly, paths W ′(e1), P̂ (e1) both contain the edge âe1 = (x̂e1 , ŷe1). Therefore, even if vertex
ŷe1 ∈ W ′′(e2), curve γ∗ may not cross curve γ̃2 at the image of vertex ŷe1 . Since we have assumed
that no edge of W ′′(e2) may cross an edge of H(e1), we conclude that curve γ∗ may not cross curve
γ2. Therefore, points p and p′ must lie in the same region defined by γ̃2.

From Observation G.8, we can now define a simple curve ζ ′, whose endpoints are p and p′, such that
neither of the curves γ1, γ2 crosses ζ ′. Let ζ∗ be the curve obtained from the union of the curves ζ, ζ ′.
Recall that curve γ2, that connects the images of the vertices ye1 and ŷe1 , may not cross the curve ζ∗.
Therefore, if we denote by q and q′ the images of the vertices ye1 and ŷe1 , respectively, then points q
and q′ do not lie on curve ζ∗, and they are not separated by curve ζ∗. Lastly, we need the following
observation.

Observation G.9 Let γ̃3 be the closed curve obtained by the union of the curves γ1 and γ3. Then
points p and p′ are separated by γ̃3. In other words, if we consider the set F open regions into which
curve γ̃3 partitions the sphere, then points p, p′ lie in different regions.

319

Proof: Recall that we have assumed that E(H(e1))∩E(H(e2)) = ∅, and that no edge ofH(e1)∪W ′′(e1)
may cross an edge of P (e2) ∪ P̂ (e2) ⊆ H(e2). Additionally, path W ′′(e1) is internally disjoint from
paths P (e2) and P̂ (e2), and, since paths in Q(Sz−1) are non-transversal with respect to Σ, paths
P (e1), P̂ (e1), P (e2), P̂ (e2) do not have transversal intersections. Therefore, the image of path P (e2)
beween point p′ and the image of vertex uz−1 may not cross the curve γ̃3, and it must be contained
in a single region of F , that we denote by F . Similarly, the image of path P̂ (e2) beween point p and
the image of vertex uz−1 may not cross the curve γ̃3, and it must be contained in a single region of F ,
that we denote by F ′. Lastly, recall that we have established that the images of edges â′e1 , â

′
e2 , a

′
e1 , a

′
e2

enter the image of edge uz−1 in this circular order. Recall that edges â′e1 , a
′
e1 lie on paths P̂ (e1), P (e1),

respectively, while edges â′e2 , a
′
e2 lie on paths P̂ (e2), P (e2), respectively. Since curve γ̃3 is a closed

curve, it must be the case that F 6= F ′.

To summarize, so far we have defined two points p, p′, and two curves ζ, ζ ′ connecting them. We have
also denoted by ζ∗ the closed curve obtained by taking the union of these two curves. We also defined
two points q and q′, and two curves γ1, γ3 connecting them, and we denoted by γ̃3 the closed curve
obtained by taking the union of these two curves. We have established that curve ζ∗ may not separate
q and q′, while curve γ̃3 must separate p and p′. Lastly, from the definition, curve γ1 may not cross
ζ ′, while curve γ3 may not cross ζ. We now show that this is impossible to achieve. We denote by D
a disc in the plane, whose boundary lies on curve ζ∗, and whose interior contains the points q and q′,
and does not contain any point of ζ∗. Such a disc must exist, since points q and q′ are not separated
by ζ∗. Note that points p and p′ do not lie in the interior of the disc D, and yet they are separated
by curve γ̃3. this may only happen if curve γ̃3 intersects both ζ and ζ ′.

Consider curve γ̃ that is obtained from γ̃3 by deleting the point q from it. On this curve, we can mark
two points a and b, such that a lies on ζ, b lies on ζ ′, and no point of γ̃ that lies between a and b
belongs to ζ∗. Denote by γ̃′ the segment of γ̃ between a and b. Note that this segment is disjoint from
the interior of D, so it may not contain the point q′. Therefore, either γ̃ ⊆ γ1, or γ̃ ⊆ γ3. In the former
case, we get that γ1 crosses ζ ′, while in the latter case, we get that γ3 crosses ζ, a contradiction.

H Proofs Omitted from Section 9

H.1 Proof of Claim 9.11

Consider the J -contracted instance Î = (Ĝ, Σ̂). Since it is a wide instance, there is a high-degree
vertex v∗ ∈ V (Ĝ), a partition (E1, E2) of the edges of δĜ(v∗), such that the edges of E1 appear

consequently in the rotation Ov∗ ∈ Σ̂, and a collection R of at least
⌊
|E(Ĝ)|/µ50

⌋
=
⌊
m̂(I)/µ50

⌋
simple edge-disjoint cycles in Ĝ, such that every cycle P ∈ R contains one edge of E1 and one edge
of E2. Note that we can compute the vertex v∗, the partition (E1, E2) of the edges of δĜ(v∗), and the
set R of cycles with the above properties efficiently.

Assume first that v∗ = vJ . In this case, δĜ(v∗) = δG(J), so (E1, E2) is also a partition of the edges

of δG(J). From the definition of a J -contracted instance, the rotation Ov∗ ∈ Σ̂ is identical to the
ordering O(J) of the edges of δĜ(v∗) = δG(J). Therefore, edges of E1 appear consecutively in the

ordering O(J). The set R of cycles in graph Ĝ then naturally defines a set P of simple paths in graph
G, where every path P ′ ∈ P has an edge of E1 as its first edge, an edge of E2 as its last edge, and it

is internally disjoint from J . We discard arbitrary paths from P until |P| =
⌊
m̂(I)
µ50

⌋
holds, obtaining

the desired set of promising paths.

From now on we assume that v∗ 6= vJ , that is, v∗ is a vertex of G. From the definition of a high-degree

vertex, degG(v) ≥ m̂(I)
µ4

. Therefore, there is a collection Q of at least
⌈

2m̂(I)
µ50

⌉
edge-disjoint paths in G

320

connecting v∗ to vertices of J , and we can compute such a collection of paths efficiently using standard
Maximum s-t Flow. We can assume w.l.o.g. that every path in Q is internally disjoint from J , and
we view the paths in Q as being directed away from v∗. We can then compute a partition (E′1, E

′
2) of

the edges of δG(J), such that the edges of E′1 appear consecutively in the ordering O(J), and there

are two subsets Q1,Q2 ⊆ Q of paths of cardinality
⌊
m̂(I)
µ50

⌋
each, such that the last edge of every path

in Q1 lies in E′1, and the last edge of every path in Q2 lies in E′2. By arbitrarily matching the paths
in Q1 to the paths in Q2 and concatenating the pairs of matched paths, we obtain a collection P of
edge-disjoint paths, each of which has an edge of E′1 as its first edge, an edge of E′2 as its last edge,

and is internally disjoint from J . We discard paths from Q until |Q| =
⌊
m̂(I)
µ50

⌋
holds, obtaining the

desired promising set of paths.

H.2 Proof of Observation 9.13

We denote the input instances by I = (G,Σ), I1 = (G1,Σ1), and I2 = (G2,Σ2). We denote
the core structure by J = (J, {bu}u∈V (J) , ρJ , F

∗(ρJ)), and the J -enhancement structure by A ={
P, {bu}u∈V (J ′) , ρ

′
}

, where J ′ = J ∪P . We let (J1,J2) be the split of the core structure J via the en-

hancement structureA, and we denote J1 = (J1, {bu}u∈V (J1) , ρJ1 , F1) and J2 = (J2, {bu}u∈V (J2) , ρJ2 , F2).

Let Edel = E(G) \ (E(G1) ∪ E(G2)), let G′ = G \ Edel, and let Σ′ be the rotation system for G′ that
is induced by Σ. We first compute a J -clean solution ϕ′ to instance I ′ = (G′,Σ′) of MCNwRS with
cr(ϕ′) ≤ cr(ϕ1)+cr(ϕ2), and then insert the edges of Edel into this drawing, to obtain the final solution
ϕ to instance I.

We now describe the construction of the solution ϕ′ to instance I ′. Consider the drawing ρ′ of graph
J ′, and the faces F1, F2 of this drawing that were used to define the split (J1,J2) of the core structure
J . Recall that the drawing of graph J1 induced by ρ′ is precisely ρJ1 , and the drawing of graph J2

induced by ρ′ is precisely ρJ2 .

Consider now the J1-clean drawing ϕ1 of graph G1 on the sphere. The drawing of J1 induced by ϕ1

is identical to ρJ1 , and the images of all edges and vertices of G1 are contained in region F1 of this
drawing. We plant the drawing ϕ1 of G1 into the face F1 of drawing ρ′, so that the images of the
edges and the vertices of J1 in both drawings coincide, and the images of all vertices and edges of G1

appear in face F1. We similarly plant drawing ϕ2 of G2 inside face F2 of ρ′, obtaining a solution ϕ′

to instance I ′, whose cost is bounded by cr(ϕ1) + cr(ϕ2). Since the images of all edges and vertices of
G′ are contained in region F ∗ρJ = F1 ∪ F2, this drawing is J -clean.

In order to complete the construction of the solution ϕ to instance I, it remains to “insert” the images
of the edges of Edel into ϕ′. We do so using Lemma 2.9. There is, however, one subtlety in using
this lemma directly in order to insert the edges of Edel into the drawing ϕ′: we need to ensure that
the drawing remains J -clean, so the images of the newly inserted edges may not cross the images of
the edges of J . This is easy to achieve, for example, by first contracting core J into a supernode and
modifying the drawing ϕ to obtain a drawing of the resulting graph in a natural way. We then insert
the edges of Edel into this drawing of the contracted instance using the algorithm from Lemma 2.9,
and then un-contract the supernode vJ . We obtain a J -clean solution ϕ to instance I, whose number
of crossings is bounded by cr(ϕ1) + cr(ϕ2) + |Edel| · |E(G)|.

H.3 Proof of Claim 9.14

The proof of Claim 9.14 is similar to the proof of Claim 9.9 in [CMT20]. For all 1 ≤ i ≤ 4k + 2, we
denote by γi the image of path Pi in ϕ, that is, γi is the concatenation of the images of the edges of
Pi. Clearly, all curves in the resulting set Γ = {γ1, . . . , γ4k+2} connect ϕ(u) to ϕ(v), and they enter

321

the image of u in ϕ in the order of their indices. Notice that the curves γi ∈ Γ are not necessarily
simple: if a pair of edges lying on path Pi cross at some point p, then curve γi crosses itself at point
p. In such a case, point p may not lie on any other curve in Γ.

Next, we will slightly modify the curves in Γ by “nudging” them in the vicinity of their common
vertices. In order to do so, we consider every vertex x ∈ V (G) \ {u, v} that belongs to at least two
paths of P one by one.

We now describe an iteration when a vertex x ∈ V (G) \ {u, v} is processed. Let Px ⊆ P be the set of
all paths containing vertex x. Note that x must be an inner vertex on each such path. For convenience,
we denote Qx = {Pi1 , . . . , Piz}. Consider the tiny x-disc D(x) = Dϕ(x). For all 1 ≤ j ≤ z, denote by
sj and tj the two points on the curve γij that lie on the boundary of disc D(x). We use the algorithm
from Claim 4.34 to compute a collection {σ1, . . . , σz} of curves, such that, for all 1 ≤ j ≤ z, curve
σj connects sj to tj , and the interior of the curve is contained in the interior of D(x). Recall that
every pair of resulting curves crosses at most once, and every point in the interior of D(x) may be
contained in at most two curves. Moreover, a pair σr, σq of such curves may only cross if the two
pairs (sr, tr), (sq, tq) of points on the boundary of D(x) cross. This, in turn, may only happen if
paths Pir , Piq have a transversal intersection at vertex x, which is impossible. Therefore, the curves
σ1, . . . , σz do not cross each other. For all 1 ≤ j ≤ z, we modify the curve γij , by replacing the segment
of the curve that is contained in disc D(x) with σj .

Once every vertex x ∈ V (G) \ {u, v} is processed, we obtain the final set Γ′ =
{
γ′1, . . . , γ

′
4k+2

}
of

curves. Notice that for any pair 1 ≤ j < j′ ≤ 4k + 2 of indices, curves γ′j , γ
′
j′ cross if and only if there

is a crossing (e, e′)p in ϕ with e ∈ E(Pj) and e′ ∈ E(Pj′).

It is now enough to prove that curves γ′1 and γ′2k+1 do not cross. Assume for contradiction that the two
curves cross. Among all crossing points between these two curves, let p′ be the point that is closest to
ϕ(u) on γ′1. Let λ be the segment of γ′1 from ϕ(u) to p′, and let λ′ be defined similarly for γ′2k+1. We
modify curves λ and λ′ to remove all their self-loops, so the curves become simple. Note that curves
λ and λ′ both originate at ϕ(u) and terminate at p′, and they do not cross. Let λ∗ be the simple
closed curve obtained from the union of λ and λ′. Curve λ∗ partitions the sphere into two internally
disjoint discs, that we denote by D and D′. Since the curves γ′1, . . . , γ

′
4k+2 enter the image of u in ϕ

in the order of their indices, either (i) for all 1 < i < 2k+ 1, the intersection of γ′i with the tiny u-disc
Dϕ(u) lies in D, and for all 2k+ 1 < i ≤ 4k+ 2, the intersection of γ′i with Dϕ(u) lies in D′, or (ii) the
opposite is true. We assumme without loss of generality that it is the former. Note that point ϕ(v)
must lie in the interior of one of these discs – we assume without loss of generality that it is D′.

Consider now some index 1 < i < 2k + 1. Recall that the segment of γ′i that is contained in Dϕ(u)
is contained in D, while point ϕ(v), that is an endpoint of γ′i, lies in the interior of D′. Therefore,
there must be some point r that lies on γi and on λ∗, such that the two curves have a transversal
intersection at r. This point may not be p′, since curves γ′1 and γ′2k+1 have a crossing at p′, and this
crossing corresponds to a crossing between an edge of P1 and an edge of P2k+1 in ϕ. Therefore, γ′i
has a transversal crossing with either λ or λ′. In the former case, there is a crossing between an edge
of P1 and an edge of Pi, while in the latter case there is a crossing between an edge of P2k+1 and an
edge of Pi. We conclude that for all 1 < i < 2k + 1, some edge of Pi must cross an image of an edge
of P1 or of P2k+1 in ϕ. Since the edges of P1 participate in at most k crossings, and so do the edges
of P2k+1, and since we have assumed that an edge of P1 crosses an edge of P2k+1, this is impossible.

H.4 Proof of Claim 9.21

Assume for contradiction that there is a vertex x ∈ V (G) \ V (J), and a set Q ⊆ P∗ of
⌈

512µ13bcr(ϕ)
m

⌉
good paths that are unlucky with respect to x. We denote Q = {Q1, . . . , Qλ}, where λ =

⌈
512µ13bcr(ϕ)

m

⌉
.

322

Let λ′ = 4 ·
⌈

4µ13bcr(ϕ)
m

⌉
, so λ/λ′ ≥ 16. For all 1 ≤ i ≤ λ, we denote by êi the first edge on path Qi

that is incident to vertex x, and by ê′i the edge following êi on path Qi. We assume that the paths in
Q are indexed so that the edges ê1, . . . , êλ appear in the rotation Ox ∈ Σ in the order of their indices.

Recall that we are given a partition (E1, E2) of the edges of δG(J), such that the edges of E1 appear
consecutively in the ordering O(J), and every path in P has an edge of E1 as its first edge, and an
edge of E2 as its last edge. From our construction, every path in P∗, and hence in Q, has an edge of
E1 as its first edge, and an edge of E2 as its last edge. Consider the solution ϕ to instance I, that
is J -valid. Let ϕ′ be the drawing that is obtained from ϕ after we delete all edges and vertices from
it, except for those lying in J , and on the paths of Q. Since all paths in Q are good, there are no
crossings in ϕ′ in which the edges of J are involved. Let D(J) be the disc associated with core J in ϕ.
This disc contains the image of J in ϕ′ in its interior, and its boundary follows closely the drawing of
J . Notice that the image of every path Q ∈ Q in ϕ must intersect the interior of the region F ∗, from
the definition of a valid core structure (see Definition 9.3), and since each such path contains edges
incident to vertices of J . Therefore, the image of every path Q ∈ Q in ϕ′ is contained in the region
F ∗. We can then ensure that no crossing points of ϕ′ are contained in disc D(J); the only vertices and
edges whose images in ϕ′ are contained in D(J) are the vertices and edges of J ; and the only other
edges whose images intersect D(J) in ϕ′ are the edges of δG(J) that lie on the paths of Q. Moreover,
for each such edge e, the intersection of ϕ′(e) and D(J) is a simple curve.

We partition the boundary of disc D(J) into two segment σ and σ′, such that σ contains all intersection
points of the boundary of D(J) with the images of the edges in E1 in ϕ, while σ′ contains all intersection
points of the boundary of D(J) with the images of the edges in E2 in ϕ (see Figure 69).

Figure 69: Partitioning the boundary of disc D(J) into segments σ (black) and σ′ (red). Edges of E1

are shown in light blue and edges of E2 are shown in green.

Let ϕ′′ be the drawing that is obtained from ϕ′ by deleting the images of the vertices and the edges of J
from it, and deleting the segment of the image of every edge e ∈ δG(J) that is contained in the interior
of D(J). We then contract segment σ into a point p, and segment σ′ into a point q, so that the image
of every path Q ∈ Q in the resulting drawing connects p to q, and for every edge e ∈

⋃
Q∈QE(Q), the

number of crossings in which e participates in ϕ′′ is bounded by the number of crossings in which e
participates in ϕ′.

For all 1 ≤ i ≤ λ, we let Ri be the subpath of Qi from its first vertex to x, so Ri contains an edge of
E1, and let R = {Ri | 1 ≤ i ≤ λ}. We also denote Q′ = {Qi·λ′ | 1 ≤ i ≤ 16}, and, for all 1 ≤ i ≤ 16, we

323

let R̃i = Ri·λ′ – the subpath of path Qiλ′ , from its first endpoint to vertex x. Let R̃ =
{
R̃1, . . . , R̃16

}
.

Recall that all paths in Q are good, and so each such path participates in at most cr(ϕ)·µ12b
m crossings.

Since for every pair P, P ′ ∈ P∗ of paths, for every vertex v ∈ V (P) ∩ V (P ′) with v 6∈ V (J), the
intersection of P and P ′ at v is non-transversal with respect to Σ, the paths in set R are non-
transversal with respect to Σ, so are the paths in R̃. Therefore, from Claim 9.14, for any pair

2 ·
⌈
cr(ϕ)·µ12b

m

⌉
< i < j ≤ λ of indices with j − i > 2 ·

⌈
cr(ϕ)·µ12b

m

⌉
, there is no crossing in ϕ′′ between

an edge of Ri and an edge of Rj . In particular, since λ′ = 4 ·
⌈

4µ13bcr(ϕ)
m

⌉
, there are no crossings in ϕ′′

between pairs of edges lying in distinct paths of R̃.

For 1 ≤ i ≤ 16, we let γi be the curve that is obtained from the image of path R̃i in ϕ′′, after removing
all self-loops. Consider the resulting collection Γ = {γ1, . . . , γ16} of curves. All curves in Γ originate
at point p and terminate at the image of x in ϕ′′. The curves do not cross themselves or each other,
and they enter the image of x in the order of their indices. The curves in Γ partition the sphere into
16 regions, that we denote by F̃1, . . . , F̃16. Region F̃1 has curves γ1 and γ16 as its boundaries, and for
1 < i ≤ 16, region F̃i has curves γi−1 and γi as its boundaries. Note that point q must be contained
in the interior of one of these regions. We assume without loss of generality that it is F̃1 (as otherwise
we could re-index the paths of Q accordingly).

Next, we consider the path Q∗ = Q8λ′+1, and we prove that path Q∗ is not unlucky for vertex x,
reaching a contradiction.

Observation H.1 Path Q∗ is not unlucky for vertex x.

Proof: Let e∗, e∗∗ be the edges of Q∗ that are incident to x, with e∗ lying before e∗∗ on the path. Let
Ê1(x) ⊆ δG(x) be the set of edges ê ∈ δG(x), such that ê lies between e∗ and e∗∗ in the rotation Ox ∈ Σ
(in clock-wise orientation), and ê lies on some good path of P∗. Let Ê2(x) ⊆ δG(x) be the set of edges
ê ∈ δG(x), such that ê lies between e∗∗ and e∗ in the rotation Ox ∈ Σ (in clock-wise orientation), and

ê lies on some good path of P∗. It is enough to prove that |Ê1(x)|, |Ê2(x)| ≥ cr(ϕ)µ13b

m .

For all 2 ≤ i ≤ 16, let Qi = {Qj | (i− 1)λ′ < j < iλ′}. Recall that λ′ = 4 ·
⌈

4µ13bcr(ϕ)
m

⌉
, and every path

R̃i ∈ R̃ participates in at most cr(ϕ)·µ12b
m crossings in ϕ′′, since the paths in Q are good. Therefore,

there must be a subset Q′i ⊆ Qi of at least 2 ·
⌈

4µ13bcr(ϕ)
m

⌉
paths, such that for every path Qj ∈ Q′i, the

image of Qj in ϕ does not cross the curves γi−1 and γi. In particular, the image of every path in set
{Rj | Qj ∈ Q′i} is contained in region F̃i in ϕ′′.

Recall that we have defined a set Q′4 ⊆ Q4 of at least 2·
⌈

4µ13bcr(ϕ)
m

⌉
paths, where for each path Qj ∈ Q′4,

the image of the corresponding path Rj is contained in F̃4. Recall that, for every path Qj ∈ Q, we
denoted by êj the first edge on path Qj that is incident to x. We denote by EL = {êj | Qj ∈ Q′4}.
Clearly, for every edge êj ∈ EL, the image of êj in ϕ′′ lies in region F̃4.

Similarly, we have defined a set Q′14 ⊆ Q14 of at least 2 ·
⌈

4µ13bcr(ϕ)
m

⌉
paths, where for each path Qj ∈

Q′14, the image of the corresponding path Rj is contained in F̃14. We denote by ER = {êj | Qj ∈ Q′14}.
Clearly, for every edge êj ∈ ER, the image of êj in ϕ′′ lies in region F̃14.

It is also easy to see that the imgage of edge e∗ must be contained in F̃7 ∪ F̃8 ∪ F̃9 ∪ F̃10 (as otherwise

path Q∗ would need to cross more than cr(ϕ)·µ12b
m other paths in Q, for example, the paths of Q′7, or

the paths of Q′10).

Lastly, we show that the intersection of the image of edge e∗∗ and the tiny x-disc Dϕ′′(x), that we
denote by σ(e∗∗), must be contained in F̃2 ∪ F̃1 ∪ F̃16. Note that, if this is the case, then either

324

(i) EL ⊆ Ê1(x) and ER ⊆ Ê2(x); or (ii) ER ⊆ Ê1(x) and EL ⊆ Ê2(x) hold. In either case, since

|ER|, |EL| ≥ 2 ·
⌈

4µ13bcr(ϕ)
m

⌉
, path Q∗ is not unlucky for x.

It now remains to prove that σ(e∗∗) is contained in F̃2 ∪ F̃1 ∪ F̃16. Assume otherwise. From the
definition of tiny x-disc, σ(e∗∗) must be contained in some region F̃i, for 3 ≤ i ≤ 15. Recall that we

have defined a subset Q′2 ⊆ Q2 of at least 2 ·
⌈

4µ13bcr(ϕ)
m

⌉
paths, such that, for every path Qj ∈ Q′2, the

image of the corresponding path Rj ∈ R is contained in region F̃2. We have also defined a collection

Q′16 ⊆ Q16 of at least 2 ·
⌈

4µ13bcr(ϕ)
m

⌉
paths, such that, for every path Qj ∈ Q′16, the image of the

corresponding path Rj ∈ R is contained in region F̃16.

Consider now the segment γ∗ of the image of path Q∗ in ϕ′′ from vertex x to point q. Since σ(e∗∗)
is contained in

⋃
3≤i≤15 F̃i, while point q is contained in F̃1, curve γ∗ has to either cross the image of

every path in {Rj | Qj ∈ Q′2}, or it has to cross the image of every path in {Rj | Qj ∈ Q′16}. In either
case, since the paths of Q are non-transversal with respect to Σ, the edges of path Q∗ must participate

in at least 2 ·
⌈

4µ13bcr(ϕ)
m

⌉
crossings, contradicting the fact that Q∗ is a good path.

H.5 Proof of Claim 9.23

We start with ϕ′ being the drawing of graph G′ that is induced by ϕ. Since bad event E1 did not
happen, drawing ϕ′ does not contain crossings between edges of E(P ∗) and edges of E(J), but it may
contain crossings between pairs of edges in E(P ∗). We next show how to modify this drawing in order
to eliminate all such crossings. Let γ be the image of the path P ∗ in ϕ′. Notice that γ is either a
closed or an open curve, that may cross itself in a number of points. Recall that path P ∗ is internally
disjont from J , and there are no crossings in ϕ′ between edges of P ∗ and edges of J . Moreover, from
the definition of valid core structure (see Definition 9.3), and since ϕ is a J -valid drawing of G, γ
must intersect the interior of the region F ∗. Therefore, γ ⊆ F ∗ must hold. In order to obtain the
desired final drawing of graph G′, we will only modify the images of the edges and vertices that lie on
P ∗, with the new images contained in F ∗, so that the resulting drawing of G′ is ϕ-compatible.

We can partition the curve γ into a collection Γ of curves, for which the following hold. First, there
is a single special curve γ∗ ∈ Γ, which is either a simple closed or a simple open curve. In the former
case, γ∗ contains the image of exactly one vertex of J , and in the latter case, the endpoints of γ∗ are
images of two distinct vertices of J . All other curves in Γ are simple closed curves. For every pair
γ1, γ2 ∈ Γ of distinct curves, γ1 and γ2 may share at most one point, and that point must be a crossing
point between a pair of edges of E(P ∗) in ϕ′. We ensure that every point of γ lies on at least one
curve of Γ. Since all curves in Γ are simple, no curve in Γ may cross itself. We need the following
observation.

Observation H.2 If neither of the Events E1, E3 happenned, then for every curve γ′ ∈ Γ\{γ∗}, every
vertex x with ϕ′(x) ∈ γ′ is a light vertex.

Proof: Assume otherwise. Let γ′ ∈ Γ \ {γ∗} be a curve, and x a vertex with ϕ′(x) ∈ γ′, such that x is
a heavy vertex. Denote ϕ′(x) by p, and notice that point p may not lie on any other curves in Γ (since
every point shared by a pair of curves in Γ is a crossing point between a pair of edges from E(P ∗).)

Let D = Dϕ′(x) be a tiny x-disc. For every edge ê that is incident to x, we denote by σ(ê) the
intersection of ϕ′(ê) with D. Let e, e′ be the two edges of P ∗ that are incident to x. Denote by
Ê1(x) ⊆ δG(x) the set of edges ê ∈ δG(x), such that ê lies strictly between e and e′ in the rotation
Ox ∈ Σ (in clock-wise orientation), and ê lies on some good path of P∗. Let Ê2(x) ⊆ δG(x) be the
set of edges ê ∈ δG(x), such that ê lies strictly between e′ and e in the rotation Ox ∈ Σ (in clock-wise

325

orientation), and ê lies on some good path of P∗. Since Event E3 did not happen, path P may not be

unlucky with respect to x, so |Ê1(x)|, |Ê2(x)| ≥ cr(ϕ)µ13b

m holds.

Curve γ′ partitions the sphere into two regions, that we denote by F̃ and F̃ ′. Since the curves σ(e), σ(e′)
are contained in γ′, it must be the case that either (i) for every edge ê ∈ Ê1(x), σ(ê) ⊆ F̃ , and for
every edge ê ∈ Ê2(x), σ(ê) ⊆ F̃ ′, or (ii) the opposite is true. We assume w.l.o.g. that it is the former.
Note that, since γ is disjoint from the image of the core J in ϕ′ (except for its endpoints), the image
of J in ϕ′ must be contained either in the interior of F̃ , or in the interior of F̃ ′; we assume w.l.o.g.
that it is the former. Consider now some edge ê ∈ Ê2(x), and let P̂ ∈ P∗ be a path that contains ê.
Observe that σ(ê) ⊆ F̃ ′, while both endpoints of P̂ belong to J , whose image lies in the interior of F̃ .
Therefore, the image of path P̂ in ϕ′ must cross the curve γ′. Let q be a point of γ′ that lies on the
image of P̂ , such that the image of P̂ and γ′ have a transversal intersection at q. Note that q may not
be the image of a vertex of G, since for every vertex v ∈ V (G) \ V (J), for every pair P, P ′ ∈ P∗ of
paths containing v, the intersection of P and P ′ at v is non-transversal with respect to Σ. Therefore,
q is a crossing point between an edge of P̂ and an edge of P ∗. We conclude that the edges of P ∗

participate in at least |Ê2(x)| ≥ cr(ϕ)µ13b

m crossings. But since we have assumed that Event E1 did not
happen, path P ∗ must be good, a contradiction. (Note that it is possible that, for some good path
P̂ ∈ P∗, both edges of P̂ that are incident to x lie in Ê2(x). But in that case, the image of P̂ must
cross γ twice, since both endpoints of P̂ lie in J).

Let p1, . . . , pz denote the points on the curve γ∗ that correspond to crossing points between pairs of
edges of P ∗, and assume that these points appear on γ∗ in this order. For all 1 ≤ i ≤ z, let ei, e

′
i be

the pair of edges of P ∗ that cross at point pi, with edge ei appearing before edge e′i on path P ∗. For
all 1 ≤ i ≤ z, let Qi be the subpath of path P ∗ from edge ei to edge e′i, and we denote by yi, y

′
i the

second and the penultimate vertices of Qi, respectively. Let Q′i be the subpath of Qi connecting yi to
y′i. From Observation H.2, if Events E1, E3 did not happen, the every vertex of Q′i is a light vertex.
Since we have deleted all edges of E′ from G to obtain graph G′, every vertex of Q′i is incident to
exactly two edges in G′, and these edges lie on path P ∗.

We let Di be a tiny pi-disc in the drawing ϕ′. Let si be the point on the image of edge ei lying on
the boundary of Di, and let ti be the point on the image of edge e′i lying on the boundary of Di. We
modify the drawing ϕ′ in order to “straighten” the loop corresponding to the image of the path Q′i, as
follows. First, we truncate the images of the edges ei and e′i, by deleting the segment of ϕ′(ei) between
si and ϕ′(yi), and similarly deleting the segment of ϕ′(e′i) between ti and ϕ′(y′i). We then delete the
images of all vertices and edges of Q′i from ϕ′. We place the new image of yi at point si, and the new
image of y′i at point ti. We then add an image of the path Q′i as a simple curve with endpoints si and
ti, that is contained in Di, so that the image of Q′i is contained in γ∗ ∩Di (see Figure 70).

Clearly, this modification does not increase the number of crossings, and it is local to region F ∗. Once
every point p1, . . . , pz is processed, we obtain the final solution ϕ′ to instance I ′ that is compatible
with ϕ, with cr(ϕ′) ≤ cr(ϕ). Note that our transformation step does not introduce any new crossings.
Therefore, if (e1, e2)p is a crossing in drawing ϕ′, then there is a crossing between edges e1 and e2 at
point p in drawing ϕ.

H.6 Proof of Claim 9.27

Assume for contradiction that Event E did not happen, but |E′′| > 2cr(ϕ)·µ12b
m + |χdirty(ϕ)|. From the

Maximum Flow - Minimum Cut Theorem, there is a collection Q of
⌈

2cr(ϕ)·µ12b
m

⌉
+ |χdirty(ϕ)| edge-

disjont paths connecting s to t in H. Note that every edge in H corresponds to some distinct edge in
graph G. We do not distinguish between these edges. We show that, for every path Q ∈ Q, there is
a crossing between an edge of Q and an edge of E(P ∗) ∪ E(J) in ϕ′. From Claim 9.23, and since the

326

(a) Before: tiny pi-disc Di is shown in gray, and the
original image of path Qi is shown in blue.

(b) After: the new images of vertices yi, y
′
i are shown

in brown, and the new image of path Qi is shown in
blue.

Figure 70: Modifying the image of path Qi.

number of crossings in which the edges of J may participate is bounded by |χdirty(ϕ)|, it then follows

that the edges of P ∗ participate in at least
⌈

2cr(ϕ)·µ12b
m

⌉
crossings in ϕ. But, since we have assumed that

Event E1 did not happen, path P ∗ is good, so its edges may particpate in at most cr(ϕ)·µ12b
m crossings,

a contradiction. It now remains to prove that, for every path Q ∈ Q, there is a crossing between an
edge of Q and an edge of E(P ∗) ∪ E(J) in ϕ′.

Consider any path Q ∈ Q. This path naturally defines a path Q′ in graph G, whose first edge, denoted
by e(Q), lies in Ẽ1, and last edge, denoted by e′(Q), lies in Ẽ2. Then the image of edge e(Q) in ϕ′

must intersect the interior of region F1, while the image of edge e′(Q) in ϕ′ must intersect the interior
of region F2. Therefore, the image of the path Q′ in ϕ′ must cross the boundary of the face F1. Since
path Q′ is internally disjoint from V (J ′), the image of some edge on path Q′ must cross the image of
some edge of E(J ′) = E(P ∗) ∪ E(J) in ϕ′.

H.7 Proof of Observation 9.28

We start by recalling how the enhancement path P ∗ was selected. Recall that initial set P∗ of paths
had cardinality k ≥ 15m

16µb
. We denoted by E∗1 = {e1, . . . , ek} ⊆ E1 the subset of edges that belong

to the paths of P∗, where the edges are indexed so that e1, . . . , ek appear consecutively, in the order
of their indices in the ordering O(J). For all 1 ≤ j ≤ k, we denote by Pj ∈ P∗ the unique path
originating at the edge ej . We then selected an index bk/3c < j∗ < d2k/3e uniformly at random, and
we let P ∗ = Pj∗ . Let e′ ∈ E2 be the edge of P ∗ lying in E2. Let Ẽ1 be the set of edges lying between
ej∗ and e′ in O(J), and let Ẽ2 be the set of edges lying between e′ and ej∗ in O(J). Then one of
the sets Ẽ1, Ẽ2 of edges must contain all edges in

{
e1, . . . , ebk/3c−1

}
, while the other must contain all

edges in
{
ed2k/3e+1, . . . , ek

}
. Therefore, |Ẽ1|, |Ẽ2| ≥ k

6 ≥
m

12µb
.

Notice that graph G1 may only contain edges from one of the sets Ẽ1, Ẽ2, and so |E(G1)| ≤ m− m
32µb

.

Using similar reasoning, |E(G2)| ≤ m− m
32µb

.

H.8 Proof of Theorem 9.48

Our algorithm consists of a number of phases. For all j ≥ 1, the input to phase j consists of a collection
Rj of disjoint clusters of S, and, for every cluster R ∈ Rj , two sets P1(R),P2(R) of paths in graph G.
We require that P1(R) = {P1(e) | e ∈ δG(R)}, where for every edge e ∈ δG(R), path P (e) has e as its
first edge and some edge of δG(S) as its last edge, and all inner vertices of P (e) lie in V (S) \ V (R).

327

Additionally, congG(P1(R)) ≤ 400/α. We also require that there is a subset ÊR ⊆ δG(R) of at least

b|δG(R)|/64c edges, such that P2(R) =
{
P2(e) | e ∈ ÊR

}
, where for every edge e ∈ ÊR, path P (e)

has e as its first edge and some edge of δG(S) as its last edge, and all inner vertices of P (e) lie in

V (S)\V (R). We denote by Sj the subgraph of G induced by the set V (S)\
(⋃

R∈Rj V (R)
)

of vertices.

We will ensure that the following ivariants hold:

P1. for every cluster R ∈ Rj , |δG(R)| ≤ |δG(S)|;

P2. every cluster R ∈ Rj has the α-bandwidth property in graph G;

P3.
∑

R∈Rj |δG(R)| ≤ 2|δG(S)| ·
∑j−1

j′=0
1

2j′
;

P4. the congestion caused by the set
⋃
R∈Rj P2(R) of paths is at most 400j/α;

P5. |δG(Sj)| ≤ |δG(S)|/16j−1, and there is a set Qj of paths in graph G, routing the edges of δG(Sj)
to edges of δG(S), such that for every path in Qj , all inner vertices on the path lie in V (S)\V (Sj),
and the paths in Qj cause congestion at most 2/α.

The algorithm terminates once
⋃
R∈Rj V (R) = V (S). Notice that, if we ensure that the above prop-

erties hold after each phase, the number of phases of the algorithm is z ≤ dlogme (since |δG(Sz)| ≥ 1
must hold). Once the algorithm terminates, we return the final set Rz of clusters. It is then easy to
verify that this set of clusters has all required properties.

The input to the first phase is R1 = ∅, so S1 = S. The set Q1 of paths contains, for every edge
e ∈ δG(S), a path Q(e) consisting of the edge e only. It is easy to verify that all invariants hold for
this input.

We now assume that we are given an input Rj to phase j, for which Properties P1 – P5 hold. We
now describe the algorithm for executing the jth phase.

The algorithm consists of two steps. In the first step, we apply the algorithm from Theorem 4.19 to
graphs G and Sj (if Sj is not connected, then we apply the algorithm to every connected component
of Sj). We let R′ be the set of clusters that the algorithm returns. We start by setting Rj+1 = Rj∪R′
(but eventually we will discard some clusters from Rj+1 in the second step). Before we continue to
the second step, we verify that Invariants P1 – P3 hold for the current set Rj+1 of clusters.

Recall that, from Invariant P5, |δG(Sj)| ≤ δG(S)/16j−1. The algorithm from Theorem 4.19 ensures
that, for every cluster R ∈ R′, |δG(R)| ≤ |δG(Sj)| ≤ |δG(S)|. It also ensures that every cluster R ∈ R′
has the α-bandwidth property in G, and that:∑

R∈R′
|δG(R)| ≤ |δG(Sj)| ·

(
1 +O(α · log1.5m)

)
≤ 2|δG(Sj)| ≤ 2|δG(S)|/16j−1.

(we have used the fact that α < 1
c log2m

for a large enough constant c). Therefore, Invariants P1 – P3

hold for the current set Rj+1 of clusters. Notice that currently V (S) =
⋃
R∈Rj+1

V (R) holds.

We now describe the second step of the algorithm. Our goal is to discard some clusters from Rj+1,
and to define the sets P1(R), P2(R) of paths for each cluster that remains in Rj+1, so that Invariants
P4 and P5 hold.

In order to do so, we construct a flow network H, as follows. We start from graph G, and contract all
vertices of V (G) \ V (S) into a destination vertex t. We also contract every cluster R ∈ Rj+1 into a
vertex u(R). Additionally, we add a source vertex s. For every cluster R ∈ R′, we connect s to vertex
u(R) with an edge of capacity |δG(R)|. All remaining edges of H have capacity 64. This completes
the definition of the flow network H.

328

Next, we compute a minimum s-t cut (X,Y) in H. We partition the edges of EH(X,Y) into two
subsets: set E′ containing all edges incident to s, and set E′′ containing all remaining edges. Recall
that the capacity of every edge in E′′ is 64. Clearly, the value of the minimum s-t cut in H is at most:∑

R∈R′
|δG(R)| ≤ 2|δG(S)|/16j−1,

as we could set X = {s} and Y = V (G) \ X. Therefore, the total capacity of all edges in E′′ is at

most 2|δG(S)|/16j−1, and |E′′| ≤ 2|δG(S)|
16j−1·64

≤ |δG(S)|
16j

.

We discard from set Rj+1 all clusters R with u(R) ∈ X, obtaining the final set Rj+1 of clusters.
Clearly, Invariants P1 – P3 continue to hold for this final set of clusters. Let Sj+1 the subgraph of S

induced by V (S) \
(⋃

R∈Rj+1
V (R)

)
. Then δG(Sj+1) = E′′, and so |δG(Sj+1)| ≤ |δG(S)|/16j .

We now show that there exists a set Qj+1 of paths in graph G, routing the edges of δG(Sj+1) to edges
of δG(S), such that all inner vertices on every path lie in V (S) \V (Sj+1), and the paths of Qj+1 cause
congestion at most 2/α. In order to do so, we first consider the flow network H. Let P∗ be the set
of all paths P in H, such that the first edge on P lies in E′′, the last vertex of P is t, and all inner
vertices of P lie in Y . From the maximum flow / minimum cut theorem, there is a flow f in H, defined
over the set P∗ of paths, where every edge of E′′ sends 64 flow units. Note that the edges of E′ (and
in particular, all edges incident to s) do not carry any flow in f . Let H ′ be the graph obtained from
H after we contract all vertices of X into a supernode s∗, and delete all edges incident to the orginal
source s from this graph. From the above discussion, there is an s∗-t flow in the resulting graph, in
which every edge of E′′ carries one flow unit, and all other edges of H ′ carry at most one flow unit
each (the flow is obtained by scaling flow f by factor 64). Therefore, there is a collection Q of |E′′|
edge-disjoint paths in graph H ′, routing the edges of E′′ to vertex t. Let R∗ be the set of all clusters R
whose corresponding supernode u(R) lies in Y . Since every cluster in R∗ has α-bandwidth property,
from Claim 4.41, there is a collection Qj+1 of paths in graph G, routing the edges of E′′ = δG(Sj+1)
to edges of δG(S), with congestion at most 2/α, such that all inner vertices on every path in Qj+1 lie
in V (S) \ V (Sj+1). This establishes Property P5.

For every cluster R ∈ Rj+1∩Rj , we leave the sets P1(R) and P2(R) of paths unchanged. This ensures
that the congestion caused by the set P1(R) of paths is at most 400/α, and that the total congestion
caused by the set

⋃
R∈Rj+1∩Rj P2(R) of paths is at most 400j/α. Next, we define the sets P1(R) and

P2(R) of paths for clusters R ∈ Rj+1 \ Rj .
Consider some cluster R ∈ Rj+1 \Rj , and recal that Rj+1 \Rj ⊆ R′. Recall that the algorithm from
Theorem 4.19 returned a set P ′(R) = {P ′(e) | e ∈ δG(R)} of paths in graph G with congG(P ′(R)) ≤
100, such that, for every edge e ∈ δG(R), path P ′(e) has e as its first edge and some edge of δG(Sj) as
its last edge, and all inner vertices of P ′(e) lie in V (Sj)\V (R). We combine these paths with the set Qj
of paths given by Invariant P5 to obtain the desired set P1(R) = {P1(e) | e ∈ δG(R)} of paths, where
for every edge e ∈ δG(R), path P (e) has e as its first edge and some edge of δG(S) as its last edge,
and all inner vertices of P (e) lie in V (S) \ V (R). Since congG(P ′(R)) ≤ 100, while congG(Qj) ≤ 2/α,
it is easy to verify that congG(P1(R)) ≤ 400/α.

It now remains to define the sets P2(R) of paths for all clusters R ∈ Rj+1 \ Rj . In order to do so,
we consider again the flow network H. Recall that for every cluster R ∈ Rj+1 \ Rj , u(R) ∈ Y holds,
and moreover, there is an edge (s, u(R)) of capacity |δG(R)|, that belongs to E′ ⊆ EH(X,Y). Let P∗∗
be the set of all paths P that connect s to t in H, such that the first edge on P lies in E′. From the
maximum flow/minimum cut theorem, there is a flow f in H over the set P∗∗ of paths, in which every
edge e = (s, u(R)) ∈ E′ sends |δG(R)| flow units (the capacity of the edge e). Scaling this flow down
by factor 64, using the integrality of flow, and deleting the first edge from every flow-path, we obtain
a collection Q′ of edge-disjoint paths in graph H, such that, for every cluster R ∈ Rj+1 \ Rj , at least

329

b|δG(R)|/64c paths in Q′ originate at edges of δH(u(R)), and all paths in Q′ terminate at vertex t. As
before, we use the algorithm from Claim 4.41 in order to obtain a collection Q′′ of paths in graph G,
such that, for every cluster R ∈ Rj+1\Rj , there is a subset Q′′(R) ⊆ Q′′ of at least b|δG(R)|/64c paths
that originate at edges of δG(R), and all paths in Q′′(R) terminate at edges of δG(S). The algorithm
ensures that, for every edge e ∈

⋃
R∈Rj+1\Rj δG(R), at most one path of Q′′ uses e, and the total

congestion caused by the paths of Q′′ is at most 2/α. Consider now a cluster R ∈ Rj+1 \Rj , and the
corresponding set Q′′(R) of paths. Let Q ∈ Q′′(R) be any such path. Observe that path Q may not
be internally disjoint from R. We let e be the last edge on Q that belongs to δG(R), and we truncate
path Q, so that it now originates at edge e and terminates at some edge of δG(S). This ensures that
path Q is internally disjoint from R. We let P2(R) be the resulting set of paths, obtained after every
path of Q′′(R) was processed. From the above discussion, the set P2(R) routes a subset ÊR ⊆ δG(R)
of at least b|δG(R)|/64c edges to edges of δG(S); all paths in P2(R) are internally disjoint from R; and
the total congestion caused by the paths in

⋃
R∈Rj+1\Rj P2(R) is at most 2/α. Altogether, the paths

in
⋃
R∈Rj+1

P2(R) cause congestion at most 400(j + 1)/α, establising Property P4.

H.9 Proof of Claim 9.54

Consider a pair of indices 0 ≤ j ≤ r and 0 ≤ a < 2r−j , and recall that there is a level-j curve λj,a ∈ Λj
connecting point pa·2j to point p(a+1)·2j . Recall that we have defined a segment σj,a of the boundary
of disc D, whose endpoints are pa·2j and p(a+1)·2j , where σj,a does not contain the point p(a+1)·2j+1.
It will be convenient for us to view the segment σj,a as closed on one side and open on another side,

that is, pa·2j ∈ σj,a, and p(a+1)·2j 6∈ σj,a. We let T ja be the set of all anchor vertices whose images lie
on the curve σj,a.

Notice that, for each level j, the collections
{
T ja | 0 ≤ a < 2r−j

}
of vertices are disjoint from each

other. For every pair 0 ≤ j < j′ ≤ r of levels and indices 0 ≤ a < 2r−j and 0 ≤ a′ < 2r−j
′
, either

σj,a ∩ σj′,a′ = ∅, or σj,a ⊆ σj′,a′ . In the former case, T ja ∩ T j
′

a′ = ∅, while in the latter case, T ja ⊆ T j
′

a′ .

For all 0 ≤ j ≤ r and 0 ≤ a < 2r−j , we let Xj
a be the subset of vertices of G′ with the following

properties:

• Xj
a ∩A = T ja ;

• |δG′(Xj
a)| is minimized among all sets Xj

a with the above property; and

• |Xj
a| is minimized among all sets Xj

a with the above two properties.

In other words, we let (Xj
a, V (G′) \Xj

a) be a minimum cut separating vertices of T ja from the remain-
ing vertices of A, that minimizes the number of vertices in Xj

a. Note that, from Observation 9.52,
|δG′(Xj

a)| ≤ 4m̌′/µ2b.

The following simple observation follows immediately from submodularity of cuts.

Observation H.3 For every pair 0 ≤ j ≤ j′ ≤ r of levels and indices 0 ≤ a < 2r−j and 0 ≤ a′ < 2r−j
′
,

if T ja ∩ T j
′

a′ = ∅ then Xj
a ∩Xj′

a′ = ∅, and if T ja ⊆ T j
′

a′ , then Xj
a ⊆ Xj′

a′ .

Proof: Consider a pair 0 ≤ j ≤ j′ ≤ r of levels, and indices 0 ≤ a < 2r−j and 0 ≤ a′ < 2r−j
′
. Assume

first that T ja ∩ T j
′

a′ = ∅, but Xj
a ∩Xj′

a′ 6= ∅. Let Y = Xj
a \Xj′

a′ and Y ′ = Xj′

a′ \X
j
a. Since Xj

a ∩ A = T ja

and Xj′

a′ ∩ A = T j
′

a′ , we get that Y ∩ A = T ja and Y ′ ∩ A = T j
′

a′ . Since Xj
a ∩Xj′

a′ 6= ∅, |Y | < |X
j
a| and

|Y ′| < |Xj′

a′ | holds. Lastly, from submodularity of cuts:

|δG′(Y)|+ |δG′(Y ′)| ≤ |δG′(Xj
a)|+ |δG′(Xj′

a′)|.

330

Since |δG′(Xj
a)|minimizes the number of edges in a cut separating the vertices of T ja from the remaining

vertices of A, and similarly |δG′(Xj′

a′)| minimizes the number of edges in a cut separating the vertices

of T j
′

a′ from the remaining vertices of A, |δG′(Y)| = |δG′(Xj
a)| and |δG′(Y ′)| ≤ |δG′(Xj′

a′)| must hold, a
contradiction.

Assume now that T ja ⊆ T j
′

a′ , but Xj
a 6⊆ Xj′

a′ . Let Y = Xj
a ∩Xj′

a′ , and let Y ′ = Xj′

a′ ∪X
j
a. It is immediate

to verify that Y ∩A = T ja , Y ′ ∩A = T j
′

a′ , and |Y | < |Xj
a|. From submodularity of cuts:

|δG′(Y)|+ |δG′(Y ′)| ≤ |δG′(Xj
a)|+ |δG′(Xj′

a′)|.

Using the same argument as before, |δG′(Y)| = |δG′(Xj
a)| and |δG′(Y ′)| = |δG′(Xj′

a′)| must hold. This

contradicts the minimality of the cut Xj
a, as |Y | < |Xj

a|.

We denote, for all 0 ≤ j ≤ r, X j =
{
Xj
a | 0 ≤ a < 2r−j

}
, and X =

⋃r
j=0X j . For simplicity, we will

refer to the sets of vertices in X as clusters (each such vertex set Xj
a indeed naturally defines a cluster

G′[Xj
a] of graph G′). Note that the set X of clusters is laminar.

We can naturally associate a partitioning tree τ with the set X of clusters. The set of vertices of the
tree τ is {u(X) | X ∈ X ∪ {V (G′)}}. The root of the tree is vertex u(X) where X = V (G′). This
vertex has one child vertex – u(Xr

0), corresponding to the unique cluster in X r. For every non-root
vertex u(Xj

a), there are exactly two level-(j − 1) clusters that are contained in Xj
a: clusters Xj−1

a′ and

Xj−1
a′′ , where a′ = 2a and a′′ = 2a+ 1. Vertices u(Xj−1

a′) and u(Xj−1
a′′) become child-vertices of u(Xj

a)

in the tree; we refer to clusters Xj−1
a′ and Xj−1

a′′ as child-clusters of Xj
a, where Xj−1

a′ is the left child

and Xj−1
a′′ is the right child. We also say that Xj

a is a parent-cluster of Xj−1
a′ and Xj−1

a′′ . The leaves of
the tree τ are vertices in set

{
u(X) | X ∈ X 0

}
.

It will be convenient for us to subdivide some of the edges of G′, in order to ensure the following two
properties:

P1. for every cluster X ∈ X , if e = (x, y) ∈ δG′(X), with x ∈ X, then vertex y lies in the parent-
cluster of X, and neither x nor y are anchor vertices;

P2. for every cluster X ∈ X , if X ′ and X ′′ are the two child-clusters of X, and we denote Y =
X \ (X ′ ∪ X ′′), then for every pair e, e′ ∈ δG′(Y) of edges, the two edges e, e′ do not share
endpoints.

In order to achieve the above properties, we will subdivide some edges of G′, and we will update the
clusters in X accordingly. We will ensure that the clusters remain laminar, and that, for all 0 ≤ j ≤ r
and 0 ≤ a < 2r−j , Xj

a remains the smallest cut separating the vertices of T ja from the remaining
vertices of A, with |δG′(Xj

a)| remaining unchanged.

In order to perform this transformation, we process the clusters of X in sets X 0,X 1, . . . ,X r in this
order of the sets.

Consider an iteration when some cluster Xj
a is processed, for 0 ≤ j ≤ r and 0 ≤ a < 2r−j . Consider

any edge e = (x, y) ∈ δG′(Xj
a), and assume that x ∈ Xj

a. We subdivide edge e with two new vertices,
replacing it with a path (x, te, t

′
e, y). We add vertex te to both Xj

a and all its ancestor clusters, and we
add vertex t′e to all ancestor clusters of Xj

a (but not to Xj
a). Notice that, after this subdivision step,

the updated set X of clusters remains laminar, and for every cluster X ∈ X , |δG′(X)| does not grow.
Once we process every edge e ∈ δG′(Xj

a), we complete the processing of cluster Xj
a. Once every cluster

in X is processed, we obtain an updated graph G′, with the updated family X of clusters, for which
properties P1 and P2 hold. We update the input drawing ϕ of graph G′ by subdiving the images of its
edges appropriately, to obtain a drawing of the current graph G′, that we also denote by ϕ. Note that

331

for all 0 ≤ j ≤ r and 0 ≤ a < 2r−j , every edge e in the current set δG′(X
j
a) is obtained by subdiving

some edge in the original graph G′, and both endpoints of e are new vertices that were used for the
subdivision. We can then place the images of the endpoints of e close enough to each other, so that
the image of the edge e does not participate in any crossings in the new drawing ϕ. We will assume
from now on that for all 0 ≤ j ≤ r and 0 ≤ a < 2r−j , the edges of δG′(X

j
a) do not participate in

crossings in ψ.

For all 0 ≤ j ≤ r and 0 ≤ a < 2r−j , we define a graph Hj,a associated with cluster Xj
a, as follows. If j =

0, then Hj,a = G′[Xj
a]. Otherwise, let Xj−1

a′ , Xj−1
a′′ be the two child clusters of cluster Xj

a, where Xj−1
a′

is the left child cluster. We let Hj,a be the subgraph of G′ induced by vertex set Xj
a \
(
Xj−1
a′ ∪X

j−1
a′′

)
.

We also define three subsets of vertices of Hj,a: set T parent
j,a contains all vertices of Hj,a that serve as

endpoints of the edges of δG′(X
j
a); set T lchild

j,a contains all vertices of Hj,a that serve as endpoints of the

edges of δG′(X
j−1
a′); and set T rchild

j,a contains all vertices of Hj,a that serve as endpoints of the edges

of δG′(X
j−1
a′′). From Property P2, these three sets of vertices are mutually disjoint. We denote by

T (Hj,a) = T parent
j,a ∪ T lchild

j,a ∪ T rchild
j,a .

For j = 0, for all 0 ≤ a < 2r, we define the set T parent
j,a of vertices of graph Hj,a similarly. We do not

define the sets T lchild
j,a , T rchild

j,a of vertices, but instead we use the set T ja of anchor vertices that we defined

already. From Property P1, vertex sets T parent
j,a and T ja are disjoint. We denote T (Hj,a) = T parent

j,a ∪ T ja .

Lastly, we define a graph H∗ – a subgraph of G′ induced by vertex set V (G′) \ Xr
0 . We let T ∗ be

the set of all anchor vertices in A \ T r0 , and we let T ∗∗ be the set of all vertices of H∗ that serve as
endpoints of the edges of δG′(X

r
0). We denote T (H∗) = T ∗ ∪ T ∗∗.

Let H = {H∗} ∪
{
Hj,a | 0 ≤ j ≤ r, 0 ≤ a < 2r−j

}
be the resulting collection of subgraphs of G′. Note

that the graphs in H are mutually disjoint from each other and
⋃
H∈H V (H) = V (G′).

Next, for every graph H ∈ H, we will define a disc D(H), and we will also define an ordering of the
vertices in T (H). We will then modify the current drawing ϕ of graph G′, so that, for every graph
H ∈ H, the image of H lies in disc D(H), with the vertices of T (H) lying on the disc boundary, in
the pre-specified order. We will ensure that, for all 0 ≤ j ≤ r and 0 ≤ a < 2r−j , the only edges whose
images cross the curve λja are the edges of δG′(X

j
a). Since, as observed above, |δG′(Xj

a)| ≤ 4m̌′/µ2b,
this will ensure that at most 4m̌′/µ2b edges cross each curve λ ∈ Λ in the final drawing. We now
consider every graph H ∈ H in turn, define the corresponding disc D(H), and the ordering of the
vertices of T (H).

Consider some pair of indices 0 ≤ j < r and 0 ≤ a < 2r−j . Recall that (Xj
a, V (G′) \Xj

a) is a minimum
cut in the current graph G′ separating vertices of T ja from the remaining vertices of A. Therefore,

there is a set Qj,a =
{
Qj,a(e) | e ∈ δG′(Xj

a)
}

of edge-disjoint paths, that are internally disjoint from

Xj
a, such that, for every edge e ∈ δG′(Xj

a), path Qj,a(e) originates at edge e, and terminates at some

vertex of A \ T ja . Similarly, there is a set Q′j,a =
{
Q′j,a(e) | e ∈ δG′(X

j
a)
}

of edge-disjoint paths, whose

inner vertices are contained in Xj
a, such that, for every edge e ∈ δG′(Xj

a), path Q′j,a(e) originates at

edge e, and terminates at some vertex of T ja . From Lemma 4.7, we can assume w.l.o.g. that the paths
in set Qj,a are non-transversal with respect to the rotation system Σ′, and the same is true regarding

the paths in Q′j,a. We define an oriented ordering Oj,a of the edges in set δG′(X
j
a), as follows. For every

edge e ∈ δG′(Xj
a), let ve be the last vertex on path Q′j,a(e), that must lie in T ja . From our construction,

it is easy to verify that every vertex of A has degree 1 in G′, so all vertices in set
{
ve | e ∈ δG′(Xj

a)
}

are distinct. We define the oriented ordering Oj,a of the edges of δG′(X
j
a) to be the order in which

their corresponding vertices ve are encountered along the boundary of the disc D, as we traverse it in
counter-clock-wise direction. We use this ordering in order to define an oriented ordering O(T parent

j,a) of

332

the set T parent
j,a of vertices of graph Hj

a: recall that the vertices of T parent
j,a are the endpoints of the edges

of δG′(X
j
a) that lie in Xj

a, and every edge in δG′(X
j
a) is incident to a distinct vertex of T parent

j,a . We let

the oriented ordering O(T parent
j,a) of the vertices of T parent

j,a be identical to the oriented ordering Oj,a of

the edges of δG′(X
j
a), except that we reverse the orientation. In other words, in order to obtain the

ordering O(T parent
j,a), we replace, in ordering Oj,a every edge e ∈ δG′(Xj

a) with its endpoint that lies in

T parent
j,a , and then reverse the orientation of the resulting ordering.

Assume now that cluster Xj
a is the child cluster of some other cluster Xj′

a′ . We assume w.l.o.g. that
it is the left child cluster; the other case is dealt with similarly. Recall that the set T lchild

j′,a′ of vertices

contains all endpoints of the edges of δG′(X
j
a) that lie in Hj′,a′ . We define an ordering O(T lchild

j′,a′) of the

vertices of T lchild
j′,a′ to be identical to the oriented ordering Oj,a of the edges of δG′(X

j
a). In other words,

in order to obtain the ordering O(T lchild
j′,a′), we replace, in ordering Oj,a every edge e ∈ δG′(Xj

a) with its

endpoint that lies in T lchild
j′,a′ . If j = r and a = 0, then cluster Xr

0 is the child cluster of V (G′). The
latter cluster, in turn, corresponds to graph H∗. In this case, the set T ∗∗ of vertices of H∗ contains
all endpoints of the edges of δG′(Hr,0) that lie in V (H∗). We define an ordering O(T ∗∗) of the vertices
of T ∗∗ similarly: it is identical to the ordering Or,0 of the edges of δG′(X

r
0).

Next, we define, for every graph H ∈ H, a corresponding disc D(H). Consider first the graph H∗.
Let λ′r,0 be a curve that has the same endpoints as λr,0, is internally disjoint from λr,0, and follows the
curve λr,0 closely outside the disc Dr

0. Let σ′ be the segment of the boundary of disc D that connects
the two endpoints of λr,0, and is internally disjoint from the boundary of disc Dr

0. We let D(H∗) be
the disc that is contained in D, whose boundary is the concatenation of the curves λ′r,0 and σ′ (see
Figure 71(a)).

Consider now indices 0 < j ≤ r and 0 ≤ a < 2r−j , and the graph Hj,a. Let Xj−1,a′ and Xj−1,a′′ be
the left and the right child clusters of Xj,a, respectively. We let λ′′j,a be a curve whose endpoints are

the same as those of λj,a, so that λ′′j,a follows the curve λj,a closely inside disc Dj
a. We let λ′j−1,a′

be a curve whose endpoints are the same as those of λj−1,a′ , so that λ′j−1,a′ follows the curve λj−1,a′

closely, and is internally disjoint from disc Dj−1
a′ . Similarly, we let λ′j−1,a′′ be a curve whose endpoints

are the same as those of λj−1,a′′ , so that λ′j−1,a′′ follows the curve λj−1,a′′ closely, and is internally

disjoint from disc Dj−1
a′′ . The concatenation of the curves λ′′j,a, λ

′
j−1,a′ and λ′j−1,a′′ is a simple closed

curve that is contained in disc Dj
a. We let D(Hj

a) be the disc that is contained in D, whose boundary
is the concatenation of λ′′j,a, λ

′
j−1,a′ and λ′j−1,a′′ . (see Figure 71(b)).

(a) Disc D(H∗). (b) Disc D(Hj,a) for 0 < j ≤ r. (c) Disc D(H0,a).

Figure 71: Discs D(H) for graphs H ∈ H

Lastly, we consider the index j = 0, and any index 0 ≤ a < 2r. We let λ′′0,a be a curve whose endpoints

are the same as those of λ0,a, so that λ′′0,a follows the curve λ0,a closely inside disc D0
a. Recall that

333

σ0
a is a segment of the boundary of disc D, whose endpoints are the same as those of λ0,a, with point
pa+1 not lying on σ0

a. We let D(H0,a) be the disc that is contained in D, whose boundary is the
concatenation of λ′′0,a and σ0

a (see Figure 71(c)).

We note that every anchor vertex in A must belong to one of the graphs in {H∗}∪{H0,a | 0 ≤ a < 2r}.
For every graph H ∈ H, we define a set χ(H) of crossings as follows. For H = H∗, χ(H) contains all
crossings in the drawing ϕ. For a pair of indices 0 ≤ j ≤ r and 0 ≤ a < 2r−j , χ(Hj,a) is the set of all

crossings in ϕ in which the edges of G′[Xj
a] participate. The following claim is central to the proof of

Claim 9.54.

Claim H.4 Consider any graph H ∈ H, let ΣH be the rotation system for H induced by Σ′, and let
IH = (H,ΣH) be the resulting instance of MCNwRS. There is a solution ψ(H) to instance IH with
cr(ψ(H)) ≤ O(|χ(H)|), where the image of the graph H is contained in disc D(H). Moreover, the
following hold:

• If H = H∗, then the images of the vertices of T ∗ = V (H∗) ∩ A appear on segment σ′ of the
boundary of D(H∗), in the same locations as in ϕ, and the images of the vertices of T ∗∗ appear on
segment λ′r,0 of the boundary of D(H∗), in the same order as in O(T ∗∗), incuding the orientation
(that is defined with respect to disc D(H∗)).

• If H = Hj,a for j = 0, then the images of the vertices of T ja = V (Hj,a)∩A appear on the segment

σja of the boundary of disc D(Hj,a), in the same locations as in ϕ, and the images of the vertices
of T parent

j,a appear on the segment λ′′j,a of the boundary of disc D(Hj,a), in the same order as in

O(T parent
j,a), including the orientation (that is defined with respect disc D(Hj,a)).

• If H = Hj,a for j > 0, then the images of the vertices of T parent
j,a appear on the segment λ′′j,a of

the boundary of disc D(Hj,a), in the same order as in O(T parent
j,a), including the orientation, and

similarly, the images of the vertices in sets T lchild
j,a and T rchild

j,a appear on the segments λ′j−1,a′ and

λ′j−1,a′′ of the boundary of the disc D(Hj,a), respectively, where Xj−1
a′ is the left child of Xj

a and

Xj−1
a′′ is its right child. The ordering of the images of the vertices of T lchild

j,a on λ′j−1,a′ is identical

to O(T lchild
j,a), including orientation, and the ordering of the images of the vertices of T rchild

j,a on

λ′j−1,a′′ is identical to O(T rchild
j,a), including orientation. The orientations of all orderings are

with respect to disc D(Hj,a).

We provide the proof of Claim H.4 in the following subsection, after we complete the proof of Claim 9.54
using it.

In order to construct the solution ψ′ to instance I ′ we start by planting, for every graph H ∈ H, the
image ψ(H) of H into the disc D(H). From Claim H.4, and since every vertex of A lies in either T ∗ or
in
⋃2r−1
a=0 T 0

a , the images of the vertices of A remain the same as in ϕ. In order to complete the drawing

of graph G′, we need to insert the edges of δG′(X
j
a) for all 0 ≤ j ≤ r and 0 ≤ a < 2r−j into the current

drawing. Observe that the endpoints of all such edges have degree 2 in G′ from our construction of
graph G′.

We now fix an index 0 ≤ j < r and 0 ≤ a < 2r−j . Assume that cluster Xj
a is a child cluster of some

cluster Xj+1
a′ , and assume w.l.o.g. that it is a left child cluster (the other case is dealt with similarly).

Consider the set E′ = δG′(X
j
a) of edges. Recall that these edges define a perfect matching between

the sets T lchild
j+1,a′ and T parent

j,a of vertices. The images of the vertices of T lchild
j+1,a′ appear on curve λ′j,a,

while the images of the vertices of T parent
j,a appear on curve λ′′j,a. Let D∗j,a be the disc that is contained

in D, whose boundary is the concatenation of the curves λ′j,a and λ′′j,a. Denote E′ = {e1, e2, . . . , eq},
where the edges are indexed according to the ordering Oj,a. For all 1 ≤ i ≤ q, let ei = (xi, yi), where

334

xi ∈ T lchild
j+1,a′ and yi ∈ T parent

j,a . Then the images of vertices x1, . . . , xq appear on curve λ′j,a in the order of
their indices, and the images of vertices y1, . . . , yq appear on curve λ′′j,a in the order of their indices, but
the orientations of the two orderings are different (the orientation of the first ordering is with respect
to D(Hj+1,a′), while the orientation of the second ordering is with respect to D(Hj,a)). Therefore, the
images of vertices x1, x2, . . . , xq, yq, . . . , y1 appear on the boundary of disc D∗j,a in this circular order.
We can then define, for all 1 ≤ i ≤ q, a curve γi that is contained in disc D∗j,a connecting the image of
xi to the image of yi. We can ensure that no two such curves cross each other, and each curve crosses
λj,a exactly once. We then let, for all 1 ≤ i ≤ q, curve γi be the image of edge ei. Since, as observed

above, |E′| = |δG′(Xj
a)| ≤ 4m̌′/µ2b, we introduce at most 4m̌′/µ2b crossings between images of edges

of G′ and curve λj,a. It now only remains to take care of edge set δG′(X
r
0). We insert these edges

exactly as before. The only difference is that vertex set T lchild
j+1,a is replaced with T ∗∗.

We have now obtained a solution ψ′ to instance I ′, in which the images of all vertices and edges of G′

lie in disc D, and the images of all anchor vertices remain the same as in ϕ. For every curve λ ∈ Λ,
for every vertex v ∈ V (G′), the image of v in ψ′ does not lie on an inner point of λ, and for every edge
e ∈ E(G′), the image of e in ψ′ may intersect λ in at most one point. For every curve λ ∈ Λ, the total
number of edges in E(G′) whose images intersect λ is at most 4m̌′/µ2b.

It now remains to bound the number of crossings in ψ′. Since the insertion of the edges of δG′(X
j
a)

for all 0 ≤ j ≤ r and 0 ≤ a < 2r−j did not introduce any crossings, from Claim H.4, cr(ψ′) ≤∑
H∈HO(|χ(H)|). Recall |χ(H∗)| = cr(ϕ), and, for all 0 ≤ j ≤ r and 0 ≤ a < 2r−j , |χ(Hj

a)|
is number of crossings in ϕ in which the edges of G′[Xj

a] participate. Observe that vertex sets in{
Xj
a | 0 ≤ j ≤ r, 0 ≤ a < 2r−j

}
define a laminar family of depth O(log m̌′). Therefore, every edge e

may belong to at most O(log m̌′) graphs in set
{
G′[Xj

a] | 0 ≤ j ≤ r, 0 ≤ a < 2r−j
}

. We conclude that

every crossing (e, e′)p of ϕ may belong to at most O(log m̌′) sets {χ(H) | H ∈ H}. Therefore, overall,
cr(ψ′) ≤

∑
H∈HO(|χ(H)|) ≤ cr(ϕ) ·O(log m̌′). In order to complete the proof of Claim 9.54, it remains

to prove Claim H.4, which we do next.

H.10 Proof of Claim H.4

Fix a pair of indices 0 ≤ j ≤ r and 0 ≤ a < 2r−j . Recall that we have defined two sets of paths

associated with the edges of δG′(X
j
a). The first set of paths is a set Qj,a =

{
Qj,a(e) | e ∈ δG′(Xj

a)
}

of edge-disjoint paths, that are internally disjoint from Xj
a, such that, for every edge e ∈ δG′(X

j
a),

path Qj,a(e) originates at edge e, and terminates at some vertex of A \ T ja . The second set of paths is

a set Q′j,a =
{
Q′j,a(e) | e ∈ δG′(X

j
a)
}

of edge-disjoint paths, that are contained in G′[Xj
a], such that,

for every edge e ∈ δG′(Xj
a), path Q′j,a(e) originates at edge e, and terminates at some vertex of T ja .

Both sets of paths are non-transversal with respect to Σ′. We now define two sets of curves: Γj,a
(corresponding to the paths in Qj,a), and Γ′j,a (corresponding to the paths in Q′j,a) that will be used
in constructing the new drawings for graphs in H. We denote by σ′j,a the segment of the boundary
of disc D that is the complement of σj,a. In other words, if the boundary of D is denoted by β, then

σ′j,a = β \ σj,a. For every edge e ∈ δG′(Xj
a), we denote e = (xe, ye), where xe ∈ Xj

a.

We start with the set Γ′j,a of curves. Initially, for every edge e ∈ δG′(X
j
a), we let γ′j,a(e) be the

image of the path Q′j,a(e). Note that curve γ′j,a(e) connects the image of ye to some point on σj,a,

and it contains ϕ(e). Let Γ′j,a =
{
γ′j,a(e) | e ∈ δG′(X

j
a)
}

. From the definition of the ordering Oj,a,

the oriented ordering Oj,a of the edges in δG′(X
j
a) is identical to the order of the endpoints of their

corresponding curves γ′j,a(e) along the boundary of the disc D. We assume w.l.o.g. that the orientation
of the ordering Oj,a is counter-clock-wise. The curves of Γ′j,a may not be in general position: if a vertex

335

of V (G′) \Xj
a lies on more than two paths in Q′j,a, then its image belongs to more than two curves of

Γ′j,a. We perform a nudging procedure by modifying the curves in Γ′j,a locally within tiny discs Dϕ(v)

of vertices v ∈ Xj
a that belong to at least two paths of Q′j,a, using the algorithm from Claim 4.34 (see

also Section 4.4.3 for the definition of a nuding procedure). Since that paths in Q′j,a are non-transversal
with respect to Σ′, this nudging procedure does not introduce any new crossings between the curves
in Γ′j,a. We summarize the properties of the resulting set Γ′j,a of curves, that are immediate form our
definitions and construction, and the fact that the vertices of A have degree 1 in G′, in the following
observation.

Observation H.5 Consider the final set Γ′j,a =
{
γ′j,a(e) | e ∈ δG′(X

j
a)
}

of curves. For every edge

e ∈ δG′(Xj
a), curve γ′j,a(e) connects the image of vertex ye in ϕ to some point on σj,a, and it contains

ϕ(e). The number of crossings between the curves in Γ′j,a is at most |χ(Hj,a)|, and the number of

crossings between the curves in Γ′j,a and the edges of G′ \ Xj
a is at most |χ(Hj,a)|. The oriented

ordering Oj,a of the edges of δG′(X
j
a) is identical to the oriented ordering of the endpoints of the

corresponding curves γ′j,a(e) on the boundary of disc D; we assume that the orientation of the ordering
is counter-clock-wise.

The construction of the set Γj,a of curves is very similar, except that we also perform a type-2 uncrossing
for them. In order to obtain the set Γj,a of curves, we simply apply the algorithm from Theorem 4.37
to perform a type-2 uncrossing of the set Qj,a of paths. We denote the resulting set of curves by

Γj,a =
{
γj,a(e) | e ∈ δG′(Xj

a)
}

. We summarize the properties of the resulting set of curves in the

following observation, that follows immediately from the discussion so far and Theorem 4.37.

Observation H.6 Consider the set Γj,a =
{
γj,a(e) | e ∈ δG′(Xj

a)
}

of curves. For every edge e ∈

δG′(X
j
a), curve γj,a(e) connects the image of vertex ye in ϕ to some point on σ′j,a. There are no

crossings between the curves in Γ′j,a, and the number of crossings between the curves in Γj,a and the

edges of G′[Xj
a] is at most |χ(Hj,a)|. The number of crossings between the curves in Γj,a and the curves

in Γ′j,a is bounded by |χ(Hj,a)|.

(The last assertion follows from Observation H.5 and the fact that the curves in Γj,a are aligned with
the graph

⋃
Q∈Qj,a Q.)

We let O′j,a be the oriented ordering of the edges in δG′(X
j
a) defined by the oriented ordering of the

endpoints of the corresponding curves in
{
γj,a(e) | e ∈ δG′(Xj

a)
}

on the boundary of disc D. We

assume w.l.o.g. that the orientation of the ordering is counter-clock-wise. We need the following
obervation:

Observation H.7 dist(Oj,a,O′j,a) ≤ O(|χ(Hj,a)|).

Note that the above observation bounds the distance between two oriented orderings.

Proof: For every edge e ∈ δG′(Xj
a), let γ∗(e) be the curve obtained by concatenating curves γj,a(e)

and γ′j,a(e). Let Γ∗ =
{
γ∗(e) | e ∈ δG′(Xj

a)
}

be the resulting set of curves. It is immediate to verify

that Γ∗ is a valid reordering set of curves for the oriented orderings Oj,a,O′j,a. From Observations H.5
and H.6, the number of crossings between the curves of Γ is at most O(|χ(Hj,a)|).
We are now ready to define a solution ψ(H) for every instance IH with H ∈ H. We start with a graph
H = Hj,a, where 0 < j ≤ r and 0 ≤ a < 2r−j . Assume that Xj−1

a′ and Xj−1
a′′ are the left and the right

child clusters of Xj
a respectively. Recall that the boundary of the disc D(Hj,a) is the concatenation

336

of the curves λ′′j,a, λ
′
j−1,a′ and λ′j−1,a′′ . We let λ∗j,a be a curve with the same endpoints as λ′′j,a, that

is internally disjoint from λ′′j,a, and is contained in disc D(Hj,a). We let D′(Hj,a) be the disc that is
contained in D(Hj,a), whose boundary is the concatenation of the curves λ∗j,a, λ

′
j−1,a′ and λ′j−1,a′′ .

We obtain an initial drawing ψ(Hj,a) of graph Hj,a as follows. We start with the drawing of the graph
Hj,a that is induced by ϕ. Conside now some vertex t ∈ T parent

j,a , and let et be the unique edge of
Hj,a incident to t. We replace the current image of et with the concatenation of ϕ(et) and the curve
γj,a(et) ∈ Γj,a, and we move the image of t to the endpoint of this curve that lies on segment σ′j,a of

the boundary of disc D. Consider now some vertex t ∈ T lchild
j,a , and let et be the unique edge of Hj,a

incident to t. We replace the current image of et with the curve γ′j−1,a′(et) ∈ Γ′j−1,a′ , and we place
the image of t on the endpoint of the curve that lies in the segment σ′j−1,a′ of the boundary of D.

Lastly, we consider vertices t ∈ T rchild
j,a , and for each such vertex, we let et be the unique edge of Hj,a

incident to t. We replace the current image of et with the curve γ′j−1,a′′(et) ∈ Γ′j−1,a′′ , and we place
the image of t on the endpoint of the curve that lies in the segment σ′j−1,a′ of the boundary of D.
We plant the resulting drawing of graph Hj,a into the disc D′(Hj,a), so that the segments σ′j,a, σj−1,a′

and σj−1,a′′ of the boundary of D coincide with segments λ∗j,a, λ
′
j−1,a′ and λ′j−1,a′′ of the boundary of

D′(Hj,a), respectively. We denote the resulting drawing of Hj,a by ψ′j,a. It is easy to verify that it is
a valid solution to instance IHj,a . Observe that, from our construction, the images of the vertices of

T parent
j,a appear on curve λ∗j,a in drawing ψ′j,a, and their (oriented) ordering on this curve (with respect

to disc D′(Hj,a)) is identical to the ordering O′j,a of their corresponding edges in δG′(Xj,a) that we have

defined above. The vertices of T lchild(j, a) appear on curve λ′j−1,a′ , and their (oriented) ordering on

this curve (with respect to disc D′(Hj,a)) is identical to O(T lchild
j,a). Similarly, the vertices of T rchild(j, a)

appear on curve λ′j−1,a′′ , and their (oriented) ordering on this curve (with respect to disc D′(Hj,a)) is

identical to O(T rchild
j,a).

We now bound the number of crossings in drawing ψ′j,i. For convenience, denote H ′ = Hj,a \(
T parent
j,a ∪ T lchild

j,a ∪ T rchild
j,a

)
. Recall that χ(Hj,a) is the set of all crossings in drawing ψ′ of G′ in which

the edges of G′[Xj
a] participate. First, the total number of crossings between the edges of E(H ′) is

clearly bounded by |χ(Hj,a)|. There are no crossings between the curves in Γj,a. The number of
crossings between the curves in Γj,a and the edges of E(H ′) is bounded by |χ(Hj,a)| from Observa-
tion H.6. The number of crossings between the curves in Γ′j−1,a′ and the edges of E(H ′) is bounded by
|χ(Hj,a)|, and the number of crossings between the curves in Γ′j−1,a′ is also bounded by |χ(Hj,a)| from
Observation H.5. Similarly, the number of crossings between the curves in Γ′j−1,a′′ , and the number
of crossings between the curves in Γ′j−1,a′′ and the edges of E(H ′) is bounded by |χ(Hj,a)|. It now
remains to bound the number of crossings between the curves of Γ′j−1,a′ and the curves of Γ′j−1,a′′ .

Notice that each such crossing corresponds to a unique crossing between an edge of G′[Xj−1
a′] and an

edge of G′[Xj−1
a′′]. Since G′[Xj−1

a′], G′[Xj−1
a′′] ⊆ G′[Xj

a], the number of crossings between the curves of
Γ′j−1,a′ and the curves of Γ′j−1,a′′ is also bounded by |χ(Hj,a)|. Overall, the total number of crossings
in ϕj,a is bounded by O(|χ(Hj,a)|).
Finally, we need to “fix” the current drawing of graph Hj,a by reordering the images of the vertices

of T parent
j,a . Recall that every vertex t ∈ T parent

j,a is an endpoint of a distinct edge in δG′(X
j
a). We have

defined two oriented orderings of the edges of δG′(X
j
a): ordering Oj,a and ordering O′j,a. Each of

these orderings naturally defines an oriented ordering of the vertices of T parent
j,a : we have denoted by

O(T parent
j,a) the ordering of the vertices of T parent

j,a defined by Oj,a, after we reverse the ordering. We

denote the oriented ordering of the vertices of T parent
j,a corresponding to O′j,a by O′(T parent

j,a). Note that

the images of the vertices of T parent
j,a appear on the curve λ∗j,a in the ordering O′(T parent

j,a), as we traverse
the boundary of the disc D′(Hj,a) in the clockwise direction. But we are required to ensure that the
imges of the vertices of T parent

j,a appear on the curve λ′′j,a in the ordering O(T parent
j,a), as we traverse

337

the boundary of the disc D′(Hj,a) in the clockwise direction. Let D∗ be the disc that is contained in
D(Hj,a), whose boundary is the concatenation of the curves λ′′j,a and λ∗j,a.

We place the images of the vertices of T parent
j,a on curve λ′′j,a, so that they are encountered in the order

O(T parent
j,a), as we traverse the boundary of D∗ in the clockwise direction. Notice that the previous

images of the vertices of T parent
j,a appeared on curve λ∗j,a, and they are encountered on that curve in

the order O′(T parent
j,a), as we traverse the boundary of D∗ in the counter-clockwise direction. Recall

that, from Observation H.7, the distance between the oriented orderings O(T parent
j,a) and O′(T parent

j,a) is

dist(Oj,a,O′j,a) ≤ O(|χ(Hj,a)|). Therefore, we can define, for every vertex t ∈ T parent
j,a a curve γ∗t , that

is contained in disc D∗, and connects the original image of t to the new image of t. The total number

of crossings between the curves in
{
γ∗t | t ∈ T

parent
j,a

}
is bounded by O(|χ(Hj,a)|). In order to obtain

the final solution ψ(Hj,a) to instance IHj,a , we start with solution ψ′j,a to the same instance. For every

vertex t ∈ T parent
j,a , we consider the unique edge et of Hj,a that is incident to t. We extend the image

of et by appending the curve γ∗t to it, and we move the image of t to its new location on curve λ′′j,a.
This completes the construction of solution ψ(Hj,a) to instance IHj,a , for j > 0.

Next, we consider a graph Hj,a ∈ H with j = 0. We first define a curve λ∗j,a exactly as before. We
then let D′(Hj,a) be the disc that is contained in D(Hj,a), whose boundary is the concatenation of
the curves λ∗j,a and σj,a. In order to construct the initial solution ψ′j,a to instance Hj,a, we start with

the drawing of graph Hj,a that is induced by ϕ. We then process every vertex t ∈ T parent
j,a exactly as

before, replacing the image of the unique edge et incident to t with the curve γj,a(et), and moving
the image of t to segment σ′j,a of the boundary of D. We plant the resulting drawing of graph Hj,a

inside disc D′(Hj,a), so that the segments σj,a in disc D and D′(Hj,a) coincide, and the images of the
anchor vertices in set Tj,a remain unchanged. We also ensure that segment σ′j,a on the bondary of disc
D coincides with segment λ∗j,a on the boundary of D′(Hj,a). We then modify the images of the edges

incident to the vertices T parent
j,a , and update the images of the vertices of T parent

j,a exactly as before.

The solution ψ(H∗) to the instance IH∗ associated with graph H∗ is computed very similarly. The
main difference is that this time we do not need to define the curve λ∗j,a, and instead we can plant the
initial image of H∗ directly into the disc D(H∗), making sure that the images of the anchor vertices
that belong to H∗ (the vertices of T ∗) remain unchanged. We no longer need to take care of the set
T parent
j,a of vertices, and the vertices of T ∗∗ are treated like the vertices of T lchild

j,a or T rchild
j,a in the case

where j > 0.

H.11 Proof of Observation 9.55

We start with the following simple observation.

Observation H.8 Let pi, pi′ be a pair of distinct points of Π, and assume that, for some integers
0 ≤ j ≤ r and 0 ≤ a ≤ 2r−j, i′ = a · 2j. Assume further that |i′ − i| ≤ 2j. Then there is a tunnel of
length at most j + 1 connecting pi to pi′.

Proof: We assume w.l.o.g. that i′ < i; the other case is symmetric. The proof is by induction on j.
If j = 0, then i = i′ + 1, and we can let tunnel L consist of a single level-0 curve λ0,i′ , that connects
pi′ to pi.

Consider now some integer j > 0, and assume that the claim holds for all integers 0 ≤ j̃ < j. We
prove that the claim holds for j. If i′ − i = 2j , then there is a single level-j curve λj,a that connects
pi′ to pi, and we let the tunnel L consist of this one curve. We assume from now on that i′ − i < 2j .
Let j′ be the largest integer so that 2j

′ ≤ i′ − i, so 0 ≤ j′ < j holds. Then there must be a level-j′

curve λj′,a′ , whose endpoints are pi′ and pi′′ , where i′′ = i′ + 2j
′
. Notice that i′ < i′′ ≤ i must hold,

338

and moreover, |i− i′′| ≤ 2j
′
< 2j must hold. If pi′′ = pi, then we let the tunnel L consist of the curve

λj′,a′ . Otherwise, from the induction hypothesis, there is a tunnel L′, of length at most j′ < j, that
connects pi′′ to pi. We let L be a tunnel that is obtained by appending curve λj′,a′ at the beginning
of tunnel L′.

We are now ready to complete the proof of Observation 9.55. Consider a pair pi, pi′ of distinct points
of Π, and assume w.l.o.g. that i′ < i. Let j be the largest integer, so that at least two points
lie in

{
pa·2j | 0 ≤ a < 2r−j

}
∩ {pi′′ | i′ ≤ i′′ ≤ i}. Then there must be a pair of points px, py, with

i′ ≤ x < y ≤ i, such that x = 2j · a for some integer a, and y = 2j · (a+ 1). Note that there is a level-j
curve λj,a in Λ connecting px and py. Moreover, i − y ≤ 2j and x − i′ ≤ 2j . From Observation H.8,
there is a tunnel L1 of length at most j connecting pi′ to px, and a tunnel L2 of length at most j
connecting py to pi. We then let L be a tunnel obtained by concatenating tunnel L1, curve λj,a, and
tunnel L2. Note that tunnel L connects pi′ to pi, and its length is at most 2j+3 ≤ 2r+3 ≤ O(log m̌′).

I Proofs Omitted from Section 10

I.1 Proof of Lemma 10.6

We use a parameter τ ′ = cτ log3/2m log2m, were c is a large enough constant, whose value we set
later.

The algorithm maintains a collection C of disjoint clusters of H \T , with
⋃
C∈C V (C) = V (H) \T . Set

C of clusters is partitioned into two subsets: set CA of active clusters and set CI of inactive clusters.
We will ensure that every cluster C ∈ CI has the α′-bandwidth property, and |E(C)| ≤ m/τ . We start
with CI = ∅, and CA containing all connected components of H \ T . The algorithm terminates once
CA = ∅, and, when this happens, we return CI as the algorithm’s outcome.

In order to bound the number of edges in |
⋃
C∈C δH(C)|, we use edge budgets and vertex budgets,

that we define next.

Edge budgets. Consider a cluster C ∈ C and an edge e ∈ δH(C). If C ∈ CI , we set the budget
BC(e) = 1, and otherwise we set it to be BC(e) = log3/2(2|δH(C)|). If cluster C is the unique
cluster with e ∈ δH(C), then we set the budget of the edge e to be B(e) = BC(e). If there are two
clusters C 6= C ′ ∈ C with e ∈ δH(C) and e ∈ δH(C ′), then we set the budget of the edge e to be
B(e) = BC(e) +BC′(e). Lastly, if no cluster C ∈ C with e ∈ δH(C) exists, then we set B(e) = 0.

Vertex budgets. Vertex budgets are defined as follows. For every cluster C ∈ CA, for every vertex

v ∈ V (C), we set the budget B(v) =
cdegC(v) log3/2m·log2(|E(C)|)

8τ ′ , where c is the constant used in the
definition of τ ′. The budgets of all other vertices are set to 0.

Cluster budgets and total budget. For a cluster C ∈ C, we define its edge-budget BE(C) =∑
e∈δH(C)BC(e), and its vertex-budget BV (C) =

∑
v∈V (C)B(v). The total budget of a cluster C ∈ C is

B(C) = BE(C)+BV (C), and the total budget in the system is B∗ =
∑

C∈C B(C) = 2·
∑

e∈E(G)B(e)+∑
v∈V (G)B(v).

Initial budget. At the beginning of the algorithm, the budget of every vertex v ∈ V (H) \ T is at
most:

cdegH\T (v) log3/2m log2 |E(H)|
8τ ′

≤ degH(v)

8τ
,

339

the budget of every edge incident to a vertex in T is at most log3/2(2|T |) ≤ 16 logm, while the budget
of every other edge is 0. Therefore, the total budget B∗ in the system at the beginning of the algorithm
is at most:

m

4τ
+ 2 · 16k logm ≤ m

τ
,

since k ≤ m/(64τ logm).

We will ensure that, throughout the algorithm, the total budget B∗ never increases. Since, from the
definition, B∗ ≥

∑
C∈C |δH(C)|, this ensures that, when the algorithm terminates,

∑
C∈C |δH(C)| ≤

m/τ , so the set CI of clusters is a valid output of the algorithm.

Algorithm execution. As mentioned above, the algorithm starts with CI = ∅, and CA containing
all connected components of H \T , with C = CA∪CI . As long as CA 6= ∅, we perform iterations, where
in each iteration we select an arbitrary cluster C ∈ CA to process. We now describe the execution of
an iteration in which a cluster C ∈ CA is processed. The algorithm for processing cluster C consists
of two parts, that we describe next.

Part 1: bandwidth property. In this step we either establish that C has the α′-bandwidth prop-
erty, or we partition it into smaller clusters that will replace C in set CA. Recall that an augmentation
C+ of cluster C is a graph that is obtained from graph H, by subdividing every edge e ∈ δH(C) with
a vertex te, letting T (C) = {te | e ∈ δH(C)} be this new set of vertices, and then letting C+ be the
subgraph of the resulting graph induced by V (C)∪T (C). Recall that cluster C has the α′-bandwidth
property iff the set T (C) of vertices is α′-well-linked in C+. We apply the algorithm AARV to graph
C+ and terminal set T (C), to obtain an βARV(m)-approximate sparsest cut (X,Y) in graph C+ with
respect to the set T (C) of terminals. We assume w.l.o.g. that |X ∩ T (C)| ≤ |Y ∩ T (C)|.
We consider two cases. First, if |E(X,Y)| ≥ α′ ·βARV(m) · |X ∩T (C)|, then we are guaranteed that the
set T (C) of vertices is α′-well-linked in C+, and therefore cluster C has the α′-bandwidth property. In
this case, we continue to Part 2 of the algorithm. Assume now that |E(X,Y)| < α′·βARV(m)·|X∩T (C)|.
We can assume without loss of generality that, for every vertex te ∈ T (C), if te ∈ X, and e′ = (te, v) is
the unique edge that is incident to te in C+, then v ∈ X as well (since otherwise we can move vertex
te to Y , only making the cut sparser). Similarly, if te ∈ Y , then v ∈ Y as well.

Let X ′ = X \ T (C) and Y ′ = Y \ T (C), so (X ′, Y ′) is a partition of C. Note that |T (C) ∩ X| =
|δH(C) ∩ δH(X ′)| and similarly |T (C) ∩ Y | = |δH(C) ∩ δH(Y ′)|.
We remove cluster C from CA and from C, and we all connected components of C[X ′] and C[Y ′] to
CA and to C instead. Observe that we are still guaranteed that

⋃
C′∈C V (C ′) = V (H) \ T . We now

show that the total budget in the system does not increase as the result of this step.

Since every cluster that was newly added to CA is contained in C, it is immediate to verify that, for
every vertex v of C, its budget may only decrease. The only edges whose budget may increase are the
edges of EC(X ′, Y ′). The number of such edges is bounded by α′ ·βARV(m) · |X ∩T (C)| = α′ ·βARV(m) ·
|δH(C)∩ δH(X ′)|, and the budget of each such edge increases by at most log3/2(2m) ≤ 4 logm, so the
total increase in the budget of all edges due to this step is bounded by:

4α′ · βARV(m) · |δH(C) ∩ δH(X ′)| · logm ≤ |δH(C) ∩ δH(X ′)|,

since α′ = 1
16βARV(m)·logm .

Consider now some edge e ∈ δH(C) ∩ δH(X ′). Since we have assumed that |X ∩ T (C)| ≤ |Y ∩ T (C)|,
it is easy to verify that |δH(X ′)| ≤ 2|δH(C)|/3. Therefore, for every edge e ∈ δH(X ′) ∩ δH(C), if
C ′ ⊆ H[X ′] is the new cluster with e ∈ δ(C ′), then:

BC′(e) = log3/2(2|δH(C ′)|) ≤ log3/2(2|δH(X ′)|) ≤ log3/2(2|δH(C)|)− 1.

340

Therefore, the total decrease in the global budget due to the edges of δH(X ′) ∩ δH(C) is at least
|δH(C) ∩ δH(X ′)|. We conclude that overall the budget B∗ does not increase.

We assume from now on that algorithm AARV returned a cut (X,Y) of C+ with |E(X,Y)| ≥ α′ ·
βARV(m) · |X ∩ T (C)|, and so cluster C has the α′-bandwidth property.

If |E(C)| ≤ m/τ , then we remove cluster C from CA, and add it to the set CI of inactive clusters. It is
easy to verify that total budget B∗ may not increase as the result of this step. Therefore, we assume
from now on that |E(C)| > m/τ .

Part 2: sparse balanced cut. In this step, we apply the algorithm from Theorem 4.11 to graph
C with parameter ĉ = 3/4, to obtain a ĉ′-edge-balanced cut (Z,Z ′) of C (where 1/2 < ĉ′ < 1), whose
size is at most O(βARV(m)) times the size of a minimum 3/4-edge-balanced cut of C. We say that
this step is successful if |EH(Z,Z ′)| < |E(C)|/τ ′. Assume first that the step was successful. Then we
remove cluster C from CA and from C, and add all connected components of C[Z], C[Z ′] to CA and
to C instead. We now show that the total budget in the system does not increase as the result of this
step. Observe that the budget of every vertex may only decrease, and the same is true for the budget
of every edge, except for the edges in set δH(Z) ∪ δH(Z ′).

We first bound the increase in the budgets of the edges of δH(Z) ∪ δH(Z ′). We consider two cases.

The first case happens if |δH(C)| ≤ 8|E(C)|
τ ′ . Since the budget of every edge is always bounded by

log3/2(2m), and since |EH(Z,Z ′)| ≤ |E(C)|
τ ′ , so the total increase in the budgets of all edges is bounded

by
10|E(C)|·log3/2(2m)

τ ′ .

Consider now the second case, where |δH(C)| > 8|E(C)|
τ ′ , and assume without loss of generality that

|δH(Z)| ≤ |δH(Z ′)|. In this case, since |EH(Z,Z ′)| ≤ |E(C)|
τ ′ , |δH(Z)| ≤ |δH(C)|, so the budgets of the

edges in δH(Z) ∩ δH(C) may not grow. As before, the budgets of the edges of EH(Z,Z ′) may grow

by at most |EH(Z,Z ′)| · log3/2(2m) ≤ |E(C)|·log3/2(2m)

τ ′ . Lastly, for every edge e ∈ δH(Z ′) ∩ δH(C), the
original budget BC(e) is log3/2(2|δH(C)|), and, if C ′ ⊆ H[Z ′] is the new cluster with e ∈ δH(C ′), then
the new budget BC′(e) = log3/2(2|δH(C ′)|). Since |δH(C ′)| ≤ |δH(C)| + |EH(Z,Z ′)|, we get that the

increase in the budget of e is bounded by log3/2

(
|δH(C)|+|EH(Z,Z′)|

|δH(C)|

)
= log3/2

(
1 + |EH(Z,Z′)|

|δH(C)|

)
.

Since we have assumed that |δH(C)| > 8|E(C)|
τ ′ , while |EH(Z,Z ′)| < |E(C)|

τ ′ , we get that |EH(Z,Z′)|
|δH(C)| < 1/2.

Since for all ε ∈ (0, 1/2), ln(1 + ε) ≤ ε, we get that the increase in the budget of e is bounded by
|EH(Z,Z′)|
|δH(C)|·ln(3/2) ≤

4|EH(Z,Z′)|
|δH(C)| . Overall, we get that the budget of the edges of δH(Z ′) ∩ δH(C) increases

by at most:

|δH(Z ′) ∩ δH(C)| · 4|EH(Z,Z ′)|
|δH(C)|

≤ 4|EH(Z,Z ′)| ≤ 4|E(C)|
τ ′

.

To summarize, regardless of which of the above two cases happened, the total increase in the budgets

of all edges is bounded by
10|E(C)|·log3/2(2m)

τ ′ . Next, we show that the total decrease in the budgets of
the vertices is high enough to compensate for this increase.

Assume without loss of generality that |E(Z)| ≤ |E(Z ′)|. From the definition of edge-balanced cut,
|E(Z ′)| ≤ ĉ′|E(C)|, for some universal constant ĉ′. In particular:∑

v∈Z
degZ(v) ≥ 2(|E(C)| − |E(Z ′)| − |E(Z,Z ′)|) ≥ 2(1− ĉ′ − 1/τ ′) · |E(C)|. (32)

On the other hand, from our assumption that |E(Z)| ≤ |E(Z ′)|, log2(|E(Z)|) ≤ log2(|E(C)|) − 1.

Recall that for every vertex v ∈ Z, its original vertex budget is: B(v) =
cdegC(v) log3/2m·log2(|E(C)|)

8τ ′ ,

341

and its new budget is:

B′(v) =
cdegZ(v) log3/2m · log2(|E(Z)|)

8τ ′
≤
cdegZ(v) log3/2m · (log2(|E(C)|)− 1)

8τ ′
.

Therefore, for every vertex v ∈ Z, its budget decreases by at least
c degZ(v) log3/2m

8τ ′ . Overall, the budget
of the vertices in Z decreases by at least:

c log3/2m

8τ ′
·
∑
v∈Z

degZ(v) ≥
c log3/2m

4τ ′
· (1− ĉ′ − 1/τ ′) · |E(C)|

(from Equation 32.) Since τ ′ = cτ log3/2m log2m, and since we can set c to be a large enough

constant, we can ensure that this is at least
16|E(C)|·log3/2(2m)

τ ′ , so the overall budget in the system does
not increase.

We assume from now on that the current step was not successful. In other words, the algorithm
from Theorem 4.11 returned a cut (Z,Z ′) with |EH(Z,Z ′)| ≥ |E(C)|/τ ′. Since the size of this cut is
within factor O(βARV(m)) from the minimum 3/4-edge-balanced cut, we conclude that the value of the

minimum 3/4-edge-balanced cut in C is at least ρ = Ω
(
|E(C)|

τ ′·βARV(m)

)
.

Recall that, from Lemma 4.12, if the maximum vertex degree ∆ in graph C is at most |E(C)|/240,
and OPTcr(C) ≤ |E(C)|2/240, then graph C must contain a (3/4)-edge-balanced cut of value at most
c̃ ·
√

OPTcr(C) + ∆ · |E(C)| where c̃ is some universal constant. As the size of the minimum 3/4-
balanced cut in C is at least ρ, we conclude that either ∆ ≥ |E(C)|/240, or OPTcr(C) > |E(C)|2/240,

or
√

OPTcr(C) + ∆ · |E(C)| ≥ ρ/c̃ must hold. The latter can only happen if either OPTcr(C) ≥ ρ2

2c̃2
, or

∆ ≥ ρ2

2c̃2·|E(C)| . Substituting the value of ρ = Ω
(
|E(C)|

τ ′·βARV(m)

)
, and recalling that |E(C)| > m/τ , while

τ ′ = cτ log3/2m log2m, we conclude that either (i) OPTcr(C) ≥ Ω
(

|E(C)|2
2(c̃τ ′βARV(m))2

)
≥ Ω

(
|E(C)|2
τ2 log5m

)
≥

Ω
(

m2

τ4 log5m

)
; or (ii) ∆ ≥ Ω

(
|E(C)|

2(c̃τ ′βARV(m))2

)
≥ Ω

(
m

τ3 log5m

)
; or (iii) ∆ ≥ |E(C)|

240
≥ m

240τ
. However, since

we are guaranteed that ∆ ≤ m
c∗τ3 log5m

for a large enough constant c∗, we can rule out the latter two

options, and conclude that OPTcr(H) ≥ OPTcr(C) ≥ Ω
(

m2

τ4 log5m

)
.

If Phase 2 is unsuccessful, then we terminate the algorithm and declare that OPTcr(H) ≥ Ω
(
|E(H)|2
τ4 log5m

)
.

I.2 Proof of Lemma 10.14

Let ϕ′ be a solution to instance I ′. Throughout the proof, we denote by D = Dϕ′(u
∗) the tiny u∗-disc

in drawing ϕ′. Recall that δG′(u
∗) =

{
a′1,1, . . . , a

′
1,q̂1

, a′2,1, . . . , a
′
2,q̂2

, . . . , a′k,1, . . . , a
′
k,q̂k

}
. Moreover, the

edges of δG′(u
∗) appear in this circular order in the rotation O′u∗ ∈ Σ′. We assume w.l.o.g. that the

orientation of this ordering in ϕ′ is positive. In other words, the edges are encountered in this order as
we traverse the boundary of D so that the interior of D always lies to our left (see, e.g. Figure 72(a),
in which the orientation of the ordering O′u∗ is positive).

Consider now vertex ui, for some 1 ≤ i ≤ k. Recall that the set δG′(ui) of edges is the union of two

subsets: set A′i =
{
a′i,1, . . . , a

′
i,q̂i

}
of parallel edges connecting ui to u∗, and set Ai = {ai,1, . . . , ai,qi} of

edges corresponding to the edge set Ei ⊆ E(G). Recall that the ordering of the edges in δG′(ui) in the
rotation system Σ′ is: (a′i,1, a

′
i,2, . . . , a

′
i,q̂i
, ai,qi , ai,qi−1, . . . , ai,1). We say that vertex ui is synchronized

with u∗, if the orientation of the above ordering in ϕ′ is negative (see Figure 72(b)). In other words, if
we traverse the boundary of the tiny ui-disc Dϕ′(ui) so that its interior always lies to our right, then
we will encounter the edges of δG′(ui) in the order (a′i,1, a

′
i,2, . . . , a

′
i,q̂i
, ai,qi , ai,qi−1, . . . , ai,1). We need

the following simple observation.

342

Observation I.1 If, for some index 1 ≤ i ≤ k, vertex ui is not synchronized with u∗, then there are
at least q̂2

i /8 crossings (e, e′) in ϕ′ with e, e′ ∈ A′i.

Proof: We delete from drawing ϕ′ all vertices and edges except for vertices u∗, ui and edges of A′i.
For all 1 ≤ j ≤ q̂i, let sj be the point on the boundary of D that lies on the image of edge ei,j , let tj
be the point on the boundary of Dϕ′(ui) that lies on the image of ei,j , and let γj be the segment of
the image of edge ei,j between sj and tj . We assume without loss of generality that γj does not cross
itself; if it does, then we remove self loops until γj does not cross itself. Denote Γ =

{
γ1, . . . , γq̂j

}
the

resulting set of curves.

(a) The ordering O′u∗ with positive orientation. (b) Vertex ui is synchronized with u∗. Note that edges of
A′i may cross each other but they intersect the boundaries
of the discs Dϕ′(u

∗) and Dϕ′(ui) in the order indicated
above.

Figure 72: An illustration of the positive orientation of O′u∗ and the oriented rotation of the synchro-
nized vertex ui.

From our assumptions, points s1, . . . , sq̂i appear in this order on the boundary of D, when we traverse
it so that the interior of D lies to our left, while points t1, . . . , tq̂i appear in this order on the boundary
of ηi, when we traverse it so that the interior of the disc is to our left (see Figure 73(a)).

(a) Points {sk, tk}1≤k≤q̂i and curves γ1, γ
′, γ′′. (b) Curves σ, γ′′, σ′, γ′ and disc D̃.

Figure 73: Illustrations for the proof of Observation I.1.

Assume for contradiction that there are fewer than q̂2
i /8 crossings (e, e′) in ϕ′ with e, e′ ∈ A′i. Then

343

there is some curve γj ∈ Γ, whose image crosses fewer than q̂i/8 curves in Γ. Assume w.l.o.g. that
this curve is γ1.

Let Γ′ ⊆ Γ \ {γ1} be the set of curves that do not cross γ1, so |Γ′| ≥ |Γ|/2. We next show that every
pair distinct of curves in Γ′ must cross, leading to a conradiction. Indeed, consider any pair γx, γy ∈ Γ′

of distinct curves in Γ′, and assume without loss of generality that x < y. Let γ′ and γ′′ be two
curves that follow curve γ1 immediately to the left and immediately to the right, respectively. Let
s′, s′′ be the endpoints of curves γ′ and γ′′ lying on the boundary of D, respectively, and let t′, t′′ be be
the endpoints of curves γ′ and γ′′ lying on the boundary of Dϕ′(ui), respectively. Notice that points
s′, s′′ partition the boundary of D into two segments, whose endpoints are s′ and s′′; we let σ be the
segment that does not contain s1. Similarly, points t′, t′′ partition the boundary of Dϕ′(ui) into two
segments, whose endpoints are t′ and t′′; we let σ′ be the segment that does not contain t1. Let λ be
the closed curve obtained by concatenating curves σ, γ′′, σ′, and γ′ (see Figure 73(b)), and let D̃ be the
disc whose boundary is λ, that contains the images of the curves γx and γy. Then points sx, sy, tx, ty
appear on the boundary of η∗ in this order. Therefore, curves γx, γy must cross. We conclude that
every pair of curves in Γ′ must cross, a contradiction.

In order to transform the drawing ϕ′ of G′ into a drawing ϕ of G, we start by considering the tiny
u∗-disc D in the drawing ϕ′. For each edge a′i,j ∈ δG′(u

∗), the image of the edge in ϕ′ intersects
the boundary of D at exactly one point, that we denote by pi,j . Recall that, from our assumptions,
points p1,1, . . . , p1,q̂1 , p2,1, . . . , p2,q̂2 , . . . , pk,1, . . . , pk,q̂k appear in this order on the boundary of D, if we
traverse it so that the interior of D lies to our left.

For all 1 ≤ i ≤ k, we define a segment σi of the boundary of D, that contains all points pi,1, . . . , pi,q̂i .
Observe that these segments can be defined so that they are mutually disjoint, and they appear on the
boundary of D in their natural order σ1, . . . , σk, as we traverse the boundary of D so that its interior
lies to our left. Next, for each 1 ≤ i ≤ k, we define a disc Di, that is contained in D, such that the
intersection of the boundary of D and the boundary of Di is precisely σi, the image of u∗ lies outside
Di, and all discs D1, . . . , Dk are mutually disjoint. From the above discussion, for all 1 ≤ i ≤ k, the
points pi,1, . . . , pi,q̂i appear in this order on segment σi of the boundary of Di, as we traverse this
boundary so that the interior of the disc Di lies to our left (see Figure 74).

Consider now some index 1 ≤ i ≤ k. Let σ′i be any segment of non-zero length on the boundary of disc
Di, that is disjoint from segment σi. Let p′i,1, . . . , p

′
i,qi

be an arbitrary collection of distinct points on σ′i,
that appear on σ′i in this order, as we traverse the boundary of Di so that its interior lies to our right
(see Figure 74). We can then define, for each 1 ≤ i ≤ k and 1 ≤ j ≤ qi, a curve ζi,j , that originates at
the image of u∗ and terminates at point p′i,j , such that all curves in set {ζi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ qi} are
mutually internally disjoint. From our definitions so far, the circular order in which these curves enter
the image of u∗ is: (ζ1,1, . . . , ζ1,q1 , ζ2,1, . . . , ζ2,q2 , . . . , ζk,1, . . . , ζk,qk) (see Figure 74). For all 1 ≤ i ≤ k
and 1 ≤ j ≤ qi, we will use the curve ζi,j in order to draw the edge ei,j ∈ Ei; in fact we will refer
to ζi,j as the first segment of the drawing of edge ei,j . We will later define a second segment of the
drawing of this edge, and then eventually stitch the two segments together to complete the drawing
of the edge.

Notice that so far, for all 1 ≤ i ≤ k, we have defined a collection
{
p′i,1, p

′
i,2, . . . , p

′
i,qi
, pi,q̂i , pi,q̂i−1, . . . , pi,1

}
of points on the boundary of Di, that appear on it in this order, as we traverse the boundary so that
the interior of Di lies to our right (see Figure 75). Lastly, for all 1 ≤ i ≤ k, we define another disc
D′i ⊆ Di, whose boundary is disjoint from the boundary of Di (see Figure 75).

In the remainder of the algorithm, we process each index 1 ≤ i ≤ k one by one. We let G0 = G′,
and for all 1 ≤ i ≤ k, we let Gi be the graph obtained from G′ by contracting vertices u1, . . . , ui
into the vertex u∗; we delete self-loops but keep parallel edges. Note that graph Gk is identical to
graph G, except that some of the edges of G are subdivided in Gk. Therefore, a drawing of graph

344

Figure 74: The interior of the disc D. Segments σ′1, . . . , σ
′
k are shown in purple.

Gk immediately gives a drawing of graph G. For each 1 ≤ i ≤ k, the input to the ith iteration is a
drawing ϕi−1 of graph Gi−1, in which, for all 1 ≤ i′ ≤ i − 1, all vertices and edges of Xi′ are drawn
inside the disc D′i′ . The goal of the ith iteration is to produce a drawing ϕi of graph Gi, in which, for
all 1 ≤ i′ ≤ i, all vertices and edges of Xi′ are drawn inside the disc D′i. The final drawing ϕk of graph
Gk, obtained at the end of the last iteration immediately provides a drawing of graph G. Let ϕ0 = ϕ′

be the given drawing of graph G0, that is a solution to instance I ′ of MCNwRS. For all 1 ≤ i ≤ k,
we denote by cri the total number of crossings in ϕ0, in which edges of E(X ′i) ∪ A′i ∪ Âi participate.

Clearly,
∑k

i=1 cri ≤ 2cr(ϕ). We will ensure that the following invariants hold, for all 1 ≤ i ≤ k:

Inv1. over the course of iteration i, we may only change the images of the vertices and edges of X ′i,
and the images of the edges of δG(Xi)∪ δG′(X ′i); the images of the remaining edges and vertices
of the graph remain unchanged;

Inv2. for every edge e ∈ E(Gi−1)\(E(X ′i)∪A′i∪Âi), the number of crossings in which edge e participates
in ϕi is bounded by the number of crossings in which edge e participated in ϕi−1; and

Inv3. cr(ϕi) ≤ cr(ϕ) +O(cri).

From the above invariants, it is immediate to see that the final drawing ϕk of graph Gk has at most
O(cr(ϕ)) crossings.

In order to execute the ith iterations, we use the two sets Qi,Q′i of paths that we have defined, in
order to define two sets Γi,Γ

′
i of curves, that will serve as “guiding curves” for the transformation of

the drawing ϕi−1. We also use the current drawing ϕi−1 in order to compute a “nice” drawing ψi of
graph Xi, together with a partial drawing of edges incident to vertices of Xi in G. We then “plant”
this drawing inside the disc D′i, and then complete the drawings of the edges of δG(Xi).

The input to the first iteration is the initial drawing ϕ0 = ϕ′ of graph G0 = G′ on the sphere. We
now fix a single index 1 ≤ i ≤ k, and describe the iteration in which index i is processed. Our starting

345

Figure 75: Discs Di and D′i. Segments σi and σ′i on the boundary of Di are shown in red and purple,
respectively.

point is a drawing ϕi−1 of graph Gi−1. Note that, from Invariant Inv2, the total number of crossings
in which the edges of E(X ′i)∪A′i ∪ Âi participate in drawing ϕi−1 is at most cri. We will use this fact
later.

The algorithm for processing index i consists of three stages. In the first stage, we use the set Qi
of paths in order to define the first set Γi, of “guiding” curves. In the second stage, we use the set
Q′i of paths in order to define the second set Γ′i of “guiding” curves, and we compute a drawing ψi
of Xi, together with a partial drawing of edges of δG(Xi). In the third and the final stage stage, we
“plant” this drawing inside the disc D′i, and complete the drawing ϕi. We now describe each of the
three stages in turn.

I.2.1 Stage 1: First Set of Guiding Curves, and Partial Drawing of Edges of Êi

Recall that we have defined a collection Qi =
{
Q(e) | e ∈ Êi

}
of edge-disjoint paths in graph G,

where for each edge e ∈ Êi, path Q(e) has e as its first edge and u∗ as its last vertex, and all its
inner vertices are contained in Xi. From the definition of graph X ′i, and from the fact that there are
|Êi| = q̂i edges connecting ui to u∗ in G′ (the edges of A′i), it is immediate to see that there must be

a set Q̂i =
{
Q̂(â) | â ∈ Âi

}
of edge-disjoint paths in graph G′i−1, where for each edge â ∈ Âi, path

Q̂(â) contains â as its first edge and terminates at vertex u∗, such that all inner vertices of Q̂(â) are
contained in X ′i.

We apply the algorithm from Theorem 4.37 to perform a type-2 uncrossing of the paths in Q̂i. The
input to this algorithm is graph Gi−1 and its drawing ϕi−1 on the sphere, and the set Q̂i of paths,

which we view as being directed away from u∗. Let Γi =
{
γ(â) | â ∈ Âi

}
denote the set of curves that

the algorithm outputs, that are aligned with the graph
⋃
Q∈Q̂i Q. For each edge â ∈ Âi, if y(â) is the

endpoint of â that does not lie in X ′i, then curve γ(â) originates at the image of u∗ and terminates at
the image of y(â). Moreover, the curves in set Γi do not cross each other.

Recall that, for every path Q̂ ∈ Q̂i, the first edge of Q̂ (the edge incident to u∗) must be an edge
of A′i. From the definition of aligned curves, the theorem guarantees that, for every edge a′i ∈ A′i,
there is a unique curve γ(â) ∈ Γi that contains the segment of the image of a′i that lies inside disc D.
In particular, for all 1 ≤ j ≤ q̂i, there is a unique curve γ(â) ∈ Γi containing the point pi,j on the
boundary of Di. We denote Âi = {âi,1, . . . , âi,q̂i}, where for all 1 ≤ j ≤ q̂i, edge âi,j is the unique edge

346

whose corresponding curve γ(âi,j) contains the point pi,j . From the definition of aligned curves, each
such curve γ(êi,j) intersects the boundary of D at a unique point - point pi,j . For all 1 ≤ j ≤ q̂i, we

denote âi,j = (x̂i,j , ŷi,j), where xi,j ∈ X ′i. For all 1 ≤ j ≤ q̂j , we let ζ̂i,j be the segment of curve γ(âi,j)
from the image of yi,j to point pi,j on the boundary of disc D. We denote the resulting set of curves

by Ẑi =
{
ζ̂i,j | 1 ≤ j ≤ q̂i

}
.

Consider now the drawing ϕi−1 of graph Gi−1. We slightly modify this drawing, as follows. First,
we delete from ϕi−1 the images of all vertices of X ′i and all edges of E(X ′i) ∪ Âi ∪ A′i. Next, we add
to this drawing the set Zi = {ζi,j | 1 ≤ j ≤ q} of curves; recall that for all 1 ≤ j ≤ q, curve ζi,j is
contained in disc D, is internally disjoint from disc Di, and connects the image of u∗ to point p′i,j
on the boundary of disc Di (see Figure 74). Recall that we called curve ζi,j the first segment in the

drawing of edge ei,j . Additionally, we add to the current drawing the set Ẑi =
{
ζ̂i,j | 1 ≤ j ≤ q̂i

}
of

curves. Recall that, for all 1 ≤ j ≤ q̂i, curve ζ̂i,j is internally disjoint from disc D, and it connects the
image of vertex yi,j (the endpoint of edge âi,j ∈ Âi lying outside X ′i) to point pi,j on the boundary of

disc Di (see also Figure 75). We refer to curve ζ̂i,j as the first segment in the drawing of edge âi,j . We
denote the resulting drawing by ϕ′i−1. Note that, since the curves in Γi are aligned with the graph⋃
Q∈Q̂i Q, and, since the paths in set Q̂i are edge-disjoint, the total number of crossings in drawing

ϕ′i−1 (including crossings between curves representing edges that were not erased and curves in sets

Zi and Ẑi) is bounded by cr(ϕi−1). Moreover, for every edge e ∈ E(Gi−1) \ (E(X ′i) ∪ A′i ∪ Âi), the
number of crossings in which e participates in ϕ′i−1 is bounded by the number of crossings in which e
participates in ϕi−1, and the image of e is disjoint from disc Di. This completes the first stage of the
algorithm.

I.2.2 Stage 2: Second Set of Guiding Curves and Drawing of Xi

In this stage we consider again drawing ϕi−1 of graph Gi−1. We will start by defining another set Γ′i of
guiding curves in this graph (which we will eventually use in order to draw a second segment of each
edge in Âi). We then exploit the drawing ϕi−1 and the curves in Γ′i in order to compute a drawing ψi
of graph Xi, and, for each edge e ∈ δG(Xi), a drawing of a segment of e that is incident to its endpoint
that lies in Xi. We will also define a new collection Γ∗i of curves, that will be useful for us in Stage 3.

Set Γ′i of guiding curves. We start by defining a set Γ′i of guiding curves. Consider the drawing
ϕi−1 of Gi−1.

Recall that petal Xi is routable in graph G. Therefore, there is a set Q′i of paths routing the edges
of Êi to vertex u∗ in graph G, such that the paths in Q′i are internally disjoint from Xi, and cause
congestion at most 3000. Consider any path Q = Q(ê) ∈ Q′i, whose first edge is ê ∈ Êi. Recall that
we have subdivided each such edge ê ∈ Êi with a vertex in graph G′. Let e′, e′′ denote the two edges
that we obtained from subdividing edge ê, and assume that e′ ∈ Âi. We then replace edge ê with ê′′

on path Q. Assume now that the last edge of Q is ei′,j ∈ Ei′ . Since path Q is internally disjoint from
Xi, i

′ 6= i must hold. If i′ > i, then, by replacing edge ei′,j with the corresponding edge ai′,j , we obtain

a new path Q′ in graph Gi−1, whose first vertex is an endpoint of an edge of Âi, and last vertex is ui′ .
If i′ < i, then we set Q′ = Q. Let Q′′i = {Q′ | Q ∈ Q′i} be the resulting set of paths in graph Gi−1.

Consider now any vertex ui′ , for i < i′ ≤ k. Every path Q′ ∈ Q′′i that terminates at ui′ must contain
an edge of Âi′ . Therefore, the number of paths in Q′′i terminating at ui′ is bounded by 3000q̂i′ . Since,
for all 1 ≤ i′′ ≤ k, |A′i′′ | = q̂i′′ , we can then extend all such paths, using the edges of A′i′ , to ensure
that they terminate at vertex u∗, such that all such paths cause congestion at most 3000 in Gi−1.

Therefore, we have established that there is a set Q′′′i =
{
Q′′′i,j | 1 ≤ j ≤ q̂i

}
of paths in graph Gi−1

347

that cause congestion at most 3000, such that, for all 1 ≤ j ≤ q̂i, path Q′′′i,j originates at vertex ŷi,j

(the endpoint of the edge âi,j ∈ Âi that does not lie in X ′i), terminates at vertex u∗, and is internally
disjoint from X ′i.

In order to construct the set Γ′i of curves, we consider a graph H, that is obtained as follows. We
start with H = Gi−1. We delete from this graph all edges e ∈ E(Gi−1) \ (E(X ′i)∪ Âi ∪A′i) that do not
participate in the paths of Q′′′i . For all remaining edges e ∈ E(Gi−1) \ (E(X ′i)∪ Âi ∪A′i), we replace e
with congGi−1

(Q′′′i , e) parallel copies. Lastly, we delete all isolated vertices from the resulting graph.
Note that drawing ϕi−1 of graph Gi−1 naturally defines a drawing ϕ′ of graph H: after deleting all
edges of E(Gi−1)\E(H) and all vertices of V (Gi−1)\V (H) from the drawing, for every remaining edge
e ∈ E(H)\(E(X ′i)∪Âi∪A′i), we draw the parallel copies of e along the original image of edge e in ϕi−1.

We can now use the set Q′′′i paths in graph Gi−1 in order to define a set Q̂′i =
{
Q̂′i,j | 1 ≤ j ≤ q̂i

}
of

edge-disjoint paths in graph H, where for all 1 ≤ j ≤ q̂i, path Q̂i,j originates at vertex ŷi,j , terminates
at vertex u∗, and is disjoint from X ′i.

We use the algorithm from Theorem 4.37 in order to compute a type-2 uncrossing of the paths in
Q̂′i. Specifically, the algorithm is applied to graph H, its drawing ϕ′, and the set Q̂′i of edge-disjoint
paths. The algorithm returns a set Γ̂ = {γ̂i,j | 1 ≤ j ≤ q̂i} of internally disjoint curves, where, for all
1 ≤ j ≤ q̂i, curve γ̂i,j connects the image of ŷj to the image of vertex u∗ in drawing ϕ′, and all curves
in Γ̂ are aligned with the graph

⋃
Q̂∈Q̂′i

Q. We will also consider the curves in set Γ̂ in the drawing

ϕi−1 of Gi−1. As before, each curve γ̂i,j connects the image of ŷi,j to the image of vertex u∗ in drawing
ϕi−1. Since the paths in the original set Q′ caused congestion at most 3000, it is immediate to verify
that the number of crossings between the images of the edges of E(X ′i)∪A′i∪Âi in ϕi−1 and the curves
of Γ̂ is at most 3000 · cri.
Since the curves in Γ̂ are aligned with the graph

⋃
Q̂∈Q̂′i

Q, each curve γ̂i,j ∈ Γ̂ intersects the boundary

of the tiny u∗-disc D in a single point, that we denote by zj . Sine the paths in Q̂′ may not use the
edges of A′i, we are guaranteed that each such point zj may not lie on the segment σi (the segment
containing the points pi,1, . . . , pi,q̂i ; point pi,j′ is the intersection point of the image of edge a′i,j′ and
the boundary of D, see Figure 74). For convenience, we re-index the points in set {zj}1≤j≤q̂i , so that
points z1, z2, . . . , zq̂i , pi,q̂i , . . . , pi,1 appear on the boundary of D in this order. For each 1 ≤ j ≤ q̂i,
we denote by `(j) the unique index such that curve γ̂i,j contains the point z`(j). For all 1 ≤ j ≤ q̂i,
we let γ′i,j be the segment of curve γ̂i,j from the image of vertex ŷi,j to point z`(j). We then set

Γ′i =
{
γ′i,j | 1 ≤ j ≤ q̂i

}
. From the above discussion, the total number of crossings between the images

of the edges of E(X ′i) ∪A′i ∪ Âi in ϕi−1 and the curves of Γ′i is at most 3000 · cri.

Set Γ∗i of Auxiliary curves. We need to define another set of curves, that we will use in Stage 3.
Recall that we have defined a set of points z1, z2, . . . , zq̂i , pi,q̂i , . . . , pi,1 that appear on the boundary
of disc D in this order. We can consider two orderings of elements of {1, . . . , q̂i}: the first ordering is
their natural ordering, while the second ordering is `(1), `(2), . . . , `(q̂i) – ordering that is defined by
the curves in Γ′i. In Stage 3 of our algorithm, we will need to show that the distance between these
two orderings is small, in order to combine different segments of the drawings of the edges of Ai to
complete their drawing. The set Γ∗i of curves, that we define in the next observation, will be used in
order to do so.

Observation I.2 There is an efficient algorithm to construct a collection Γ∗i =
{
γ∗i,j | 1 ≤ j ≤ q̂i

}
of

curves, such that, for all 1 ≤ j ≤ q̂i, curve γ∗i,j connects point pi,j on the boundary of disc D to point
z`(j), and it is internally disjoint from disc D. Moreover, the total number of crossings between the
curves of Γ∗i is O(cri).

348

Proof: Consider an index 1 ≤ j ≤ q̂i. Recall that we have defined a curve ζ̂i,j , which is a sub-curve of
some curve of Γi, connecting point pi,j to the image of vertex ŷi,j in ϕi−1. We concatenate this curve
with curve γ′i,j ∈ Γ′i, connecting the image of vertex ŷi,j to point z`(j), obtaining the curve γ∗i,j , that
connects pi,j to z`(j). From the construction of curves in Γi and Γ′i, and the alignemnt properties of
each such curve, we are guaranteed that each resulting curve is internally disjoint from disc D.

In order to bound the number of crossings between the curves of Γ∗, recall that the total number of
crossings between the images of the edges of E(X ′i) ∪ A′i ∪ Âi in ϕi−1 and the curves of Γ′i is at most
3000cri. Since the curves of Γi are aligned with graph

⋃
Q∈Q̂i Q, and the paths of Qi are edge-disjoint

and contained in X ′i ∪ A′i ∪ Âi, we get that the total number of crossings between the curves of Γ∗i is
O(cri).

Partial drawing of edges of Âi. Next, we define a collection Ẑ ′i =
{
ζ̂ ′i,j | 1 ≤ j ≤ q̂i

}
, of curves,

that we will use in order to obtain partial drawing of the edges of Âi. For all 1 ≤ j ≤ q̂i, curve ζ̂ ′i,j
will connect the image of vertex x̂i,j (the endpoint of edge âi,j lying in X ′i) to a point on the boundary

of the tiny ui-disc in ϕi−1. We will then view curve ζ̂ ′i,j as the second segment in the drawing of edge
âi,j , and we will add all such curves to the drawing ψi that we compute in this stage.

In order to compute the set Ẑ ′i of curves, we will utilize the cuves of Γ′i, the images of the edges of
Âi ∪A′i in drawing ϕi−1, and another set of curves that we define next.

Recall that we have defined a set z1, z2, . . . , zq̂i , pi,q̂i , . . . , pi,1 of points on the boundary of disc D, that
appear on the boundary of D in this order. We define, for all 1 ≤ j ≤ q̂i a curve ρj , connecting zj to
pi,j , such that all curves in {ρ1, . . . , ρq̂i} are contained in disc D and are disjoint from each other (see
Figure 76).

Figure 76: An illustration of curves ρ1, . . . , ρq̂i in disc D.

We denote by D̃i = Dϕi−1(ui) the tiny ui-disc in ϕi−1. Consider the images of the edges in set

A′i =
{
a′i,j | 1 ≤ j ≤ q̂i

}
in drawing ϕi−1 (these are the parallel edges connecting u∗ to ui). From our

definition, for all 1 ≤ j ≤ q̂i, point pi,j is the unique point on the boundary of disc D that lies on the
image of edge a′i,j . We denote the unique point of the image of a′i,j lying on the boundary of disc D̃i

by z′j . Recall that, from our assumptions, points pi,1, . . . , pi,q̂i , zq̂i , . . . , z1 appear in this order on the
boundary of D, as we traverse it so that the interior of the disc lies to our left (see Figure 77). If ui
is synchronized with u∗, then, from the definition of the rotation O′ui ∈ Σ′, points z′1, . . . , z

′
q̂i

appear

in this order on the boundary of disc D̃i, as we traverse it so that the interior of the disc lies to our
right; if ui is not synchronized with u∗, then this order is reversed (see Figure 77).

We are now ready to define the curves of Ẑ ′i. Consider some index 1 ≤ j ≤ q̂i. Curve ζ̂ ′i,j is the

349

Figure 77: Schematic view of images of edges of A′i and Ai and relevant points on the boundary of D
and D̃i. Images of edges of Ai are shown in red. Image of each edge ai,j ∈ Ai is shown in purple, with
segments ζi,j dotted.

concatenation of four curves: (i) the image of the edge âi = (x̂i,j , ŷi,j) in ϕi−1; (ii) curve γ′i,j ∈ Γ′i (that
connects the image of ŷi,j to point z`(j) on the boundary of D); (iii) curve ρj (that connects z`(j) to
pi,j and is contained in D); and (iv) a segment of the image of the edge a′i,j in ϕi−1, from point pi,j

on the boundary of disc D, to point z′`′(j) on the boundary of disc D̃i, where 1 ≤ `′(j) ≤ q̂i. Note

that, if ui is synchronized with u∗, then `′(j) = `(j) must hold, while otherwise `′(j) = q̂i − `(j) + 1.
We refer to the resulting curve ζ̂ ′i,j as the second segment in the drawing of edge âi,j , and we denote

Ẑ ′i =
{
ζ̂ ′i,j | 1 ≤ j ≤ q̂i

}
.

Computing the drawing ψi. Consider the current drawing ϕi−1 of graph Gi−1. We slightly modify
this drawing in order to obtain a drawing ψi of graph Xi, and, for each edge e ∈ δGi(Xi) \ δGi(u∗), a
drawing of a segment of e that is incident to its endpoint that lies in Xi.

In order to do so, we start with the drawing ϕi−1 of graph Gi−1, and we delete from it the images
of all edges and vertices, except for those lying in X ′i. We will also make use of the disc D̃i−1 that
we have defined. Next, for all 1 ≤ j ≤ qi, we consider the image of edge ai,j in the current drawing.
Recall that this image intersects the boundary of D̃i at a single point, that we denote by p′′i,j . From
the definition of the rotation O′ui ∈ Σ′, points z′1, . . . , z

′
q̂i
, p′′i,qi , . . . , p

′′
i,2, p

′′
i,1 appear on the boundary of

disc D̃i in this order, and, if ui is synchronized with u∗, then they are encountered in this order as we
traverse the boundary of D̃i so its interior lies on our right; see Figure 77.

Consider now some edge ai,j ∈ Ai, for 1 ≤ j ≤ qi, and assume that ai,j = (ui, xi,j), where xi,j ∈ V (Xi).
We denote by ζ ′i,j the segment of the image of edge ai,j from the image of xi,j to point p′′i,j (see
Figure 77), and we refer to ζ ′i,j the second segment in the drawing of edge ei,j . We delete, from the

current drawing, the portion of the image of ai,j lying in the interior of the disc D̃i; in other words,
we replace the image of ai,j with the curve ζ ′i,j .

Lastly, we add the curves in set Ẑ ′i =
{
ζ̂ ′i,j | 1 ≤ j ≤ q̂i

}
to the current drawing. Recall that, for each

1 ≤ j ≤ q̂, curve ζ̂ ′i,j connects the image of vertex x̂i,j (the endpoint of edge âi,j ∈ Êi that lies in Xi)

350

to point z′`′(j) on the boundary of D̃i, where 1 ≤ `′(j) ≤ q̂i.
This completes the drawing ψi. We now bound the number of crossings in this drawing. In order to
bound the number of crossings, recall that every curve ζ ′i,j ∈ Z ′i,j is a segment of the image of edge

ai,j ∈ Ai,j , and every curve ζ̂ ′i,j ∈ Ẑ ′i is a concatenation of four curves: the image of the edge âi,j ∈ Âi;
the curve γ′i,j ∈ Γ′i; the curve ρj , and the image of the edge a′i,`(j) ∈ A

′
i. Since the curves in Γ′i are

disjoint from each other, and the curves ρ1, . . . , ρq̂i are disjoint from each other and are contained in
disc D, the total number of crossings in ψi is bounded by (i) the number of crossings between pairs
of edges in E(X ′i) ∪ Âi ∪ A′i (which is bounded by cri by definition); and (ii) the number of crossings
between edges of E(X ′i) ∪ Âi ∪ A′i and curves of Γ′i (which is bounded by O(cri) from the discussion
above. We conclude that drawing ψi has O(cri) crossings.

We will view the interior of the disc D̃i as the “outer face” of the drawing ψi. If we denote by D̃′i the
disc in the sphere whose boundary is the same as the boundary of D̃i, but its interior is disjoint from
the interior of D̃i, then the current drawing ψi is contained in D̃′i. To summarize, drawing ψi consists
of: (i) the drawing of all edges and vertices of Xi \ {u∗}; (ii) for every edge ai,j = (xi,j , u

∗) ∈ Ei, a
curve ζ ′i,j , connecting the image of xi,j to point p′′i,j on the boundary of D̃′i; and (iii) for every edge

âi,j = (x̂i,j , ŷi,j) ∈ Âi with x̂i,j ∈ Xi, a curve ζ̂ ′i,j , connecting the image of x̂i,j to point z′`′(j) on the

boundary of D̃′i, where 1 ≤ `′(j) ≤ q̂i. Note that the points p′′i,1, . . . , p
′′
i,qi
, z′q̂i , . . . , z

′
2, z
′
1 appear on the

bounary of disc D̃′i in this order, and, if ui is synchronized with u∗, then they are encountered in this
order as we traverse the boundary of D̃′i so its interior lies to our right.

I.2.3 Stage 3: Computing the Drawing ϕi of Gi

We start with the drawing ϕ′i−1 that we computed in Stage 1. We consider two cases. The first case is
when vertex ui is synchronized with vertex u∗. In this case, we place the drawing ψi that we computed
in Stage 2 of the algorithm inside the disc D′i, so that the discs D′i and D̃′i coincide. In the second case,
vertex ui is not synchronized with vertex u∗. In this case, we place a mirror image of the drawing ϕi
inside the disc D′i, so that the boundaries of the discs D′i and (the mirror image of) disc D̃′i coincide
(see Figure 78). In either case, we obtain two disjoint segments on the boundary of D′i: segment σ̃i,
containing the points p′′i,1, . . . , p

′′
i,qi

, and segment σ̃′i, containing the points z′1, . . . , z
′
q̂i

. Moreover, we are
now guaranteed that points p′′i,1, . . . , p

′′
i,qi
, z′q̂i , . . . , z

′
2, z
′
1 are encountered in this order as we traverse the

boundary of D′i, so that the interior of D′i lies to our right (see Figure 78). Recall that we have defined

a collection of points
{
p′i,1, p

′
i,2, . . . , p

′
i,qi
, pi,q̂i , pi,q̂i−1, . . . , pi,1

}
on the boundary of Di, that appear in

this order on the boundary of Di, as we traverse it so that the interior of Di lies to our right (see
Figures 74 and 77). Consider now some edge ei,j = (u∗, xi,j) ∈ Ei, for 1 ≤ i ≤ qi. Recall that we have
already defined a curve ζi,j , that serves as the first segment of the drawing of ei,j , and connects the
image of u∗ to point p′i,j on the boundary of Di, such that curve ζi,j is internally disjoint from Di. We
have also defined a curve ζ ′i,j inside the disc D′i, that connects the image of vertex xi,j to point p′′i,j on
the boundary of D′i,j .

Recall that we have also defined another segment σ′i on the boundary of Di, that contains points
p′i,1, . . . , p

′
i,qi

, and a segment σ̂′i on the boundary of D′i, containing the points in z′1, . . . , z
′
q̂i

. We can

then define two disjoint discs that are both contained in Di \D′i: one disc, D1
i , with segments σi and

σ̃i on its boundary, and another disc, D2
i , with segments σ̃′i, σ

′
i on its boundary (see Figure 79).

Observe that points
{
p′i,1, p

′
i,2, . . . , p

′
i,qi
, p′′i,qi , . . . , p

′′
i,1

}
appear in this circular order on the boundary

of disc D1
i . Therefore, we can define, for all 1 ≤ j ≤ qi, a curve ζ ′′i,j , connecting point p′i,j to point

p′′i,j , such that the interior of the curve is contained in disc D1
i , and all curves in

{
ζ ′′i,j | 1 ≤ j ≤ qi

}
are mutually disjoint (see Figure 80(a)). For all 1 ≤ j ≤ qi, we then let the image of the edge ei,j be

351

Figure 78: Planting disc D̃′i inside D′i.

Figure 79: An illustration of discs D1
i and D2

i .

the concatenation of the curves ζi,j , ζ
′′
i,j , and ζ ′i,j .

Lastly, it remains to complete the drawing of the edges of Âi. Recall that for every edge âi,j = (x̂i,j , ŷi,j)

(where x̂i,j ∈ Xi), we have already defined two segments of the drawing of âi,j . The first segment, ζ̂i,j ,
is internally disjoint from disc D, and connects the image of ŷi,j to point pi,j on the boundary of Di.

The second segment, ζ̂ ′i,j , is contained in disc D′i, and connect the image of x̂i,j to point z′`′(j) on the

boundary of disc D′i. In order to complete the drawing of edge âi,j , we will define a third curve, ζ̂ ′′i,j ,

that is contained in disc D2
i , and connects points pi,j and z′`′(j) to each other. See Figure 80(b) for an

illustration.

We will use the following observation in order to complete the drawing.

Observation I.3 There is an efficient algorithm to compute a collection
{
ζ̂ ′′i,j | 1 ≤ j ≤ q̂i

}
of curves

that are contained in disc D2
i , such that, for all 1 ≤ j ≤ q̂i, curve ζ ′′i,j connects points pi,j and z′j, and

the number of crossings between the curves in
{
ζ̂ ′′i,j | 1 ≤ j ≤ q̂i

}
is at most O(cri).

Proof: We consider two cases. The first case is when u∗ and ui are not synchonized. In this case, we

352

(a) An illustration of curves ζi,1. . . . , ζi,qi . (b) An illustration of discD2
i and points on its boundary.

Figure 80: Stitching the images of the edgs of Ei and Êi.

let
{
ζ̂ ′′i,j | 1 ≤ j ≤ q̂i

}
of curves that are contained in disc D2

i , such that, for all 1 ≤ j ≤ q̂i, curve ζ ′′i,j
connects points pi,j and z′j , and every pair of curves cross at most once. In this case, the number of

crossings between the curves in
{
ζ̂ ′′i,j | 1 ≤ j ≤ q̂i

}
is at most q̂2

i . Since, from Observation I.1, there

were at least q̂2
i /8 crossings (e, e′) in ϕ′ with e, e′ ∈ A′i, we get that cri ≥ Ω(q̂2

i), and so the the number

of crossings between the curves in
{
ζ̂ ′′i,j | 1 ≤ j ≤ q̂i

}
is at most O(cri) as required.

In the second case, u∗ and ui are synchronized. Recall that in Stage 2 of the algorithm, in Ob-

servation I.2, we have constructed a collection Γ∗i =
{
γ∗i,j | 1 ≤ j ≤ q̂i

}
of curves, such that, for all

1 ≤ j ≤ q̂i, curve γ∗i,j connects point pi,j on the boundary of disc D to point z`(j), and it is internally
disjoint from disc D; the total number of crossings between the curves of Γ∗i is O(cri). Recall that
points z1, z2, . . . , zq̂i , pi,q̂i , . . . , pi,1 that appear on the boundary of disc D in this order, while points
z′1, z

′
2, . . . , z

′
q̂i
, pi,q̂i , . . . , pi,1 appear on the boundary of disc D2

i in this order. The key point is that, as
observed in Stage 2 of the algorithm, if vertex ui is synchronized with vertex u∗, then for all 1 ≤ j ≤ q̂i,
`(j) = `(j′). Therefore, we can copy the collection Γ∗i of curves to the interior of the disc D2

i , such
that, for all 1 ≤ j ≤ q̂i, one of the resulting curves, that we denote by ζ̂ ′′i,j connects pi,j to z′`′(j) = z′`(j).

I.2.4 Analysis

We now show that, assuming that Invariants Inv1–Inv3 hold at the beginning of the ith iteration, they
continue to hold at the end of the iteration. Indeed, it is immediate to see that we only change the
images of vertices and edges of X ′i, and A′i ∪ Âi, which establishes Invariant Inv1. Consider now some
edge e ∈ E(Gi−1) \ (E(X ′i) ∪ A′i ∪ Âi), and some other edge e′ that crosses e in ϕi. If e′ is not an
edge of E(Xi) ∪ Âi, then the image of e′ was not changed in the current iteration, and the crossing
lies in ϕi−1 as well. Notice that e may not cross edges of E(Xi), as for each such edge e′, either e′

is drawn inside disc D′i, or e′ ∈ Ei, so the first segemnt of e′ is some curve ζi,j (that is contained in
D), and the remainder of the image of e′ is contained in D′i. Assume now that e′ ∈ Âi. In this case,
only the first segment of the drawing e′, which is a segment of some curve in Γi, may cross edge e,
as the remainder of the image of e′ lies in disc D. Overall, the number of crossings in which edge
e participates in drawing ϕi is bounded by the number of crossings in which edge e participates in
drawing ϕ′i−1 (that was defined in Stage 1), which is in turn bounded by the number of crossings in
which e participates in ϕi−1. We conclude that Invariant Inv2 continues to hold. Lastly, it remains to

353

establish Invariant Inv3. From the above discussion, for each edge e ∈ E(Gi−1) \ (E(X ′i) ∪ A′i ∪ Âi),
the number of crossings in which e participates in drawing ϕi is bounded by the number of crossings
in which e participates in drawing ϕi−1. From our analysis of Stage 2, the number of crossings in ψi
is bounded by O(cri). Recall that the curves of Γi cannot cross each other, and they are internally
disjoint from disc D. The only additional crossings that we introduced are the crossings between the

curves of
{
ζ̂ ′′i,j | 1 ≤ j ≤ q̂i

}
that were computed in Observation I.3; from the observation, the number

of such crossings is at most O(cri). This establishes Invariant Inv3.

Overall, after k iterations, we obtain a drawing ϕk of graph Gk with O(cr(ϕ′) +
∑k

i=1 cri) ≤ O(cr(ϕ′))
crossings. Since graph Gk can be obtained from graph G by subdividing some of its edges, this
immediately provides a drawing of graph G with O(cr(ϕ′)) crossings. From our construction it is
immediate to verify that the resulting drawing obeys the rotation system Σ, so we obtain a feasible
solution to instance I of MCNwRS.

J Proofs Omitted from Section 11

J.1 Proof of Lemma 11.1

Denote z =
⌈
|T |
|T ′|

⌉
. We arbitrarily partition the vertices of T \ T ′ into (z − 1) subsets T1, . . . , Tz−1 of

cardinality at most |T ′| each. Consider some index 1 ≤ i ≤ z− 1. Since vertices of T are α-well-linked
in G, using the algorithm from Theorem 4.17, we can compute a collection Q′i of paths in graph G,
routing vertices of Ti to vertices of T ′, such that congG(Q′i) ≤ d1/αe, and each vertex of T ′ ∪ Ti is the
endpoint of at most one path in Q′i. By concatenating the paths in Q′i with paths in P, we obtain
a collection Qi of paths in graph G routing vertices of Ti to vertex x. For every edge e ∈ E(G),
congG(Qi, e) ≤ d1/αe+congG(P, e). Lastly, we set P ′ =

⋃z−1
i=1 Qi. It is clear that the paths in P route

the vertices of T to x. Moreover, for every edge e ∈ E(G),

congG(P ′, e) ≤
z∑
i=1

congG(Qi, e) ≤
⌈
|T |
|T ′|

⌉(
congG(P, e) + d1/αe

)
.

J.2 Proof of Lemma 11.5

We denote α̃′ = α̃
c log2m

, where c is a large enough constant whose value we set later. Throughout

the algorithm, we will maintain a collection W of disjoint clusters of G \ T . We will ensure that this
collection W of clusters has some useful properties, that are summarized in the following definition.

Definition J.1 A collection W of disjoint clusters of G \ T is a legal clustering of G if the following
hold:

•
⋃
W∈W V (W) = V (G) \ T ;

• every cluster W ∈ W has the α̃′-bandwidth property; and

• for every cluster W ∈ W, |δG(W)| ≤ α̃k/64.

Given a legal clustering W of G, we associate with it a contracted graph Ĝ = G|W ; recall that Ĝ is
obtained from graph G by contracting every cluster W ∈ W into a supernode vW ; we keep parallel
edges but delete self loops. Observe that from the definition of a legal clustering, the only regular
(non-supernode) vertices of Ĝ are the vertices of T . Given a legal clustering W of G, we denote by

354

Êout(W) the set of all edges (u, v) of G, where u and v belong to different clusters of W; equivalently,
Êout(W) = E(Ĝ \ T). We will not distinguish between the edges of Êout(W) and the edges of Ĝ \ T .

We need the following simple claim, whose analogues were proved in [Chu12, CL12, CC16, Chu16].

Claim J.2 Let W be a legal clustering of G. If the set T of terminals is α̃-well-linked in G, then
|Êout(W)| ≥ α̃k/4.

Proof: For every cluster W ∈ W, let TW ⊆ T be the set containing every terminal t ∈ T , such
that, if e = (t, v) is the unique edge incident to t in G, then v ∈ W . Denote nW = |TW |. Since
we are guaranteed that for every cluster W ∈ W, |δG(W)| ≤ α̃k/64, nW ≤ α̃k/64 must hold. Note
that there is a partition W1,W2 of W, such that

∑
W∈W1

nW ,
∑

W∈W2
nW ≥ k/4. Indeed, we can

compute such a partition using a simple greedy algorithm: start with W1,W2 = ∅, and process the
clusters W ∈ W one by one. When cluster W ∈ W is processed, we add it to W1 if

∑
W∈W1

nW <∑
W∈W2

nW , and we add it to W2 otherwise. We are guaranteed that at the end of this procedure,∣∣∑
W∈W1

nW −
∑

W∈W2
nW
∣∣ ≤ maxW∈W {nW } ≤ α̃k/64 holds. It is then immediate to verify that∑

W∈W1
nW ,

∑
W∈W2

nW ≥ k/4.

We construct a partition (X,Y) of V (G), where X =
⋃
W∈W1

(V (W)∪TW), and Y =
⋃
W∈W2

(V (W)∪
TW). Then |X ∩ T |, |Y ∩ T | ≥ k/4, and, since we have assumed that the set T of terminals is α̃-well-
linked in G, |EG(X,Y)| ≥ α̃k/4. Notice that every edge in EG(X,Y) connects a pair of vertices lying
in different clusters of W, so |Êout(W)| ≥ |EG(X,Y)| ≥ α̃k/4.

The following lemma is key to the proof of Lemma 11.5.

Lemma J.3 There is an efficient algorithm, that, given a legal clustering W of G with |Êout(W)| ≥
α̃k/4, either produces another legal clustering W ′ of G with |Êout(W ′)| < |Êout(W)|, or it computes
two disjoint subgraphs C1, C2 of G, each of which has the α̃′-bandwidth property, such that, for all
i ∈ {1, 2}, there is a set Ri of at least Ω(α̃2k/ log2m) edge-disjoint paths in G, routing a subset Ti ⊆ T
of terminals to the edges of δG(Ci).

We prove Lemma J.3 in the following subsection, after we complete the proof of Lemma 11.5 using it.
Throughout the algorithm, we maintain a legal clustering W of G. If, at any point in the algorithm’s
execution, we obtain a legal clustering W with |Êout(W)| < α̃k/4, then, from Claim J.2, the set T of
terminals is not α̃-well-linked in G. We then terminate the algorithm and return FAIL. Therefore, from
now on we assume that every legal clustering W that the algorithm obtains has |Êout(W)| ≥ α̃k/4.

We start with an initial collection W of clusters of V (G) \ T , where for every vertex v ∈ V (G) \ T , we
add a cluster {v} to W. It is easy to verify that W is a legal clustering of G, since the degree of every
vertex in G is guaranteed to be at most α̃k/64. We then perform a number of iterations. In every
iteration, we apply the algorithm from Lemma J.3 to the current legal clustering W. If the outcome
of the algorithm is another legal clustering W ′ of G with |Êout(W ′)| < |Êout(W)|, then we replace
W with W ′ and continue to the next iteration. Assume now that the outcome of the algorithm from
Lemma J.3 is a pair C1, C2 of disjoint subgraphs of G, each of which has the α̃′-bandwidth property,
such that for all i ∈ {1, 2}, there is a set Ri of at least Ω(α̃2k/ log2m) edge-disjoint paths in G, routing
a subset Ti ⊆ T of terminals to the edges of δG(Ci). In this case, we let (X,Y) be a partition of V (G)
with V (C1) ⊆ X and V (C2) ⊆ Y , that minimizes |EG(X,Y)| among all such partitions. Notice that
such a partition (X,Y) can be computed via a standard minimum s-t cut computation. Moreover,
from the Maximum Flow / Minimum Cut theorem, we are guaranteed that there is a collection Q of
|EG(X,Y)| edge-disjoint paths, each of which connects a vertex of V (C1) to a vertex of V (C2); we can
assume w.l.o.g. that each path in Q is simple and it does not contain vertices of V (C1) ∪ V (C2) as
inner vertices. Notice that every path in Q must contain exactly one edge of the set E′ = EG(X,Y),
and every edge of E′ must lie on exactly one such path. For every path Q ∈ Q, we denote by Q1 the

355

subpath of Q from its endpoint that lies in C1 to an edge of E′, and we denote by Q2 the subpath of Q
from an edge of E′ to a vertex of C2. Let Q1 = {Q1 | Q ∈ Q} and Q2 = {Q2 | Q ∈ Q}. Then Q1 is a
set of edge-disjoint paths routing the edges of E′ to edges of δG(C1), in graph G[X]∪E′, and similarly,
Q2 is a set of edge-disjoint paths routing the edges of E′ to edges of δG(C2) in graph G[Y] ∪ E′. We
now show that the partition (X,Y) of V (G) has all required properties.

Assume w.l.o.g. that |X ∩ T | ≥ |Y ∩ T |. Recall that there is a set R2 of at least Ω(α̃2k/ log2m)
edge-disjoint paths in G, routing a subset T2 ⊆ T of terminals to the edges of δG(C2). Assume
first that |T2 ∩ X| ≥ |T2|/2. Let R′2 ⊆ R2 be the set of paths whose endpoint lies in T2 ∩ X, so
|R′2| ≥ |R2|/2 ≥ Ω(α̃2k/ log2m). Then each path R ∈ R′2 connects a vertex of T2 ∩X to a vertex of
Y , so it must contain an edge of EG(X,Y). By suitably truncating each such path R ∈ R′2, we obtain
a collection R of Ω(α̃2k/ log2m) edge-disjoint paths, routing the terminals of T2 ∩X to the edges of
EG(X,Y).

Assume now that |T2 ∩ X| < |T2|/2. Let h = d|T2|/2e. Then |X ∩ T |, |Y ∩ T | ≥ h must hold. We
apply the algorithm from Theorem 4.17 to graph G and two arbitrary subsets T ′1 ⊆ X ∩T, T ′2 ⊆ Y ∩T
of terminals, of cardinality h each. If the set T of terminals is α̃-well-linked in G, the algorithm must
return a collection R′ of paths in graph G, such that R′ is an one-to-one routing of vertices of T ′1
to vertices of T ′2, and congG(R′) ≤ d1/α̃e. If the algorithm fails to return such a collection of paths,
then we are guaranteed that the set T of terminals is not α̃-well-linked in G. We then terminate the
algorithm and return FAIL. Therefore, we assume from now on that the algorithm from Theorem 4.17
returned a collection R′ of paths with congG(R′) ≤ d1/α̃e, such that R′ is an one-to-one routing of
T ′1 to T ′2. From Claim 4.2, there is a collection R′′ of at least Ω(hα̃) = Ω(α̃3k/ log2m) edge-disjont
paths in graph G, routing a subset T ′′1 ⊆ T ′1 of terminals to a subset T ′′2 ⊆ T ′2 of terminals. Each
path R ∈ R′′ must then contain an edge of EG(X,Y). By suitably truncating each such path, we
obtain a collection R of Ω(α̃3k/ log2m) edge-disjoint paths, routing the terminals of T ′′1 to the edges
of EG(X,Y).

It is now enough to prove that each of the clusters G[X], G[Y] has the α̃′/2-bandwidth property, which
we do in the following claim.

Claim J.4 Each of the clusters G[X], G[Y] has the α̃′/2-bandwidth property.

Proof: We show this for G[X]; the proof for G[Y] is symmetric.

Assume for contradiction that G[X] does not have the α̃′/2-bandwidth property. Then there must be
a partition (A,B) of X, such that |EG(A,B)| < α̃′ ·min {|δG(X) ∩ δG(A)|, |δG(X) ∩ δG(B)|} /2. We
assume w.l.o.g. that |δG(X) ∩ δG(A)| ≤ |δG(X) ∩ δG(B)|, and we denote |δG(X) ∩ δG(A)| by r.

Note that partition (A,B) of X naturally defines a partition (A′, B′) of V (C1), with A′ = A∩V (C1) and
B′ = B ∩ V (C1). Since cluster C1 has the α̃′-bandwidth property, while |EC1(A′, B′)| ≤ |EG(A,B)| <
α̃′r/2, either |δG(A′) ∩ δG(C)| < r/2, or |δG(B′) ∩ δG(C1)| < r/2 must hold. Assume w.l.o.g. that it
is the former. Recall that |δG(X) ∩ δG(A)| = r, and there is a set Q1 is a set of edge-disjoint paths
routing the edges of E′ = δG(X) to edges of δG(C1). Let Q′ ⊆ Q1 be the paths that originate at
edges of |δG(X) ∩ δG(A)|, so |Q′| ≥ r. Recall that each path in Q′ terminates at an edge of δG(C1).
However, since |δG(A′) ∩ δG(C1)| < r/2, at least r/2 of the paths in Q′ must contain a vertex of B.
Therefore, at least r/2 of the paths in Q′ contain an edge of EG(A,B), and so |EG(A,B)| ≥ r/2, a
contradiction.

Proof of Lemma J.3

We need the following claim, which is a constructive version of Lemma 5.8 from [Chu16]; the proof is
almost identical to that in [Chu16] and is included here for completeness.

356

Claim J.5 There is an efficient algorithm that, given any graph G′ with maximum vertex degree at

most ∆, computes a partition (A,B) of V (G′), with |E(A)|, |E(B)| ≥ |E(G′)|
4 −∆.

Proof: For every vertex v ∈ V (G′), let d(v) denote its degree in G′. For a subset S ⊆ V (G′) of
vertices, let vol(S) =

∑
v∈S d(v). We start by computing an initial partition (A,B) of V (G′), with

| vol(A) − vol(B)| ≤ ∆, using a simple greedy algorithm: start with A = B = ∅, and process the
vertices of G′ one-by-one. When v is processed, add it to A if vol(A) < vol(B) currently holds, and
add it to B otherwise. It is easy to see that at the end of this procedure, we obtain a partition (A,B)
of V (G′) with | vol(A)− vol(B)| ≤ ∆.

We then iterate. The input to iteration i is a partition (Ai, Bi) of V (G′) with | vol(Ai)−vol(Bi)| ≤ 2∆,
where the input to the first iteration is the partition (A1, B1) = (A,B) that we have just computed.

We assume w.l.o.g. that vol(Ai) ≥ vol(Bi) holds, so |E(Ai)| ≥ |E(Bi)|. If |E(Bi)| < |E(G′)|
4 −∆, then

the outcome of the ith iteration is a partition (Ai+1, Bi+1) of V (G′) with | vol(Ai+1)−vol(Bi+1)| ≤ 2∆,
and |E(Ai+1, Bi+1)| < |E(Ai, Bi)|; otherwise, the algorithm terminates. In the latter case, we get that

|E(Ai)| ≥ |E(Bi)| ≥ |E(G′)|
4 −∆, as required.

We now describe the execution of the ith iteration, whose input is is a partition (Ai, Bi) of V (G′) with

| vol(Ai)− vol(Bi)| ≤ 2∆, such that vol(Ai) ≥ vol(Bi) and |E(Bi)| < |E(G′)|
4 −∆ hold.

For every vertex v ∈ Ai, let d1(v) be the number of edges incident to v whose other endpoint belongs
to Ai, and let d2(v) be the number of edges incident to v whose other endpoint belongs to Bi. As we
show later, there must exist a vertex v ∈ Ai with d1(v) < d2(v). Let v be any such vertex. We then
define a new partition (Ai+1, Bi+1) of V (G′) as follows: Ai+1 = Ai \ {v} and Bi+1 = Bi ∪ {v}. It is
easy to verify that |E(Ai+1, Bi+1)| < |E(Ai, Bi)|, while:

| vol(Ai+1)− vol(Bi+1)| ≤ max {| vol(Ai)− vol(Bi)|, 2d(v)} ≤ 2∆.

We then output the partition (Ai+1, Bi+1) of V (G′) and terminate the iteration.

It now remains to show that, if |E(Bi)| < |E(G′)|
4 −∆, there must exist a vertex v ∈ Ai with d1(v) <

d2(v). Indeed, assume for contradiction that for every vertex v ∈ Ai, d1(v) ≥ d2(v).

Then |E(Ai)| = 1
2

∑
v∈Ai d1(v) ≥ 1

2

∑
v∈Ai d2(v) = 1

2 |E(Ai, Bi)|. Altogether, |E(G′)| = |E(Ai)| +
|E(Bi)|+ |E(Ai, Bi)| ≤ 4|E(Ai)|, and so |E(Ai)| ≥ |E(G′)|/4.

On the other hand:

|E(Bi)| =
vol(Bi)− |E(Ai, Bi)|

2
≥ vol(Ai)− 2∆− |E(Ai, Bi)|

2
≥ 2|E(Ai)| − 2∆

2
≥ |E(G′)|

4
−∆,

a contradiction to our assumption that |E(Bi)| < |E(G′)|
4 −∆.

The algorithm terminates once we obtain a partition (Ai, Bi) of V (G′) with |E(Ai)|, |E(Bi)| ≥ |E(G′)|
4 −

∆. From the above discussion, this is guaranteed to happen after at most |E(G′)| iterations. Since
each iteration can be executed efficiently, the claim follows.

We apply the algorithm from Claim J.5 to graph Ĝ′ = Ĝ \ T . Recall that, since for every cluster
W ∈ W, |δG(W)| ≤ α̃k/64, every vertex in graph Ĝ′ has degree at most α̃k/64. Moreover, |E(Ĝ′)| =
|Êout(W)| ≥ α̃k/4. Therefore, we obtain a partition (A,B) of V (Ĝ′) with |EĜ′(A)|, |EĜ′(B)| ≥
|E(Ĝ′)|/4− α̃k/64 ≥ |E(Ĝ′)|/8 ≥ α̃k/32.

Let W1 be the set of all clusters W ∈ W with vW ∈ A, and let W2 be the set of all clusters W ∈ W
with vW ∈ B. Clearly, (W1,W2) is a partition of W. Our next step is summarized in the following
claim.

357

Claim J.6 There is an efficient algorithm, that, given any subset C ⊆ W of clusters, such that the
total number of edges e = (u, v) ∈ E(G) where u and v lie in distinct clusters of C is at least |E(Ĝ′)|/8,
outputs one of the following:

• either a legal clustering W ′ of G with |Êout(W ′)| < |Êout(W)|; or

• a cluster C with V (C) ⊆
⋃
C′∈C V (C ′), such that C has the α̃′-bandwidth property, and there

exists a collection R of at least α̃ · α̃′k/256 edge-disjoint paths in G routing a subset of terminals
to the edges of δG(C).

Observe that Claim J.6 finishes the proof of Lemma J.3, as follows. Let A′ =
⋃
W∈W1

V (W), and let
B′ =

⋃
W∈W2

V (W); clearly, A′ ∩ B′ = ∅. We aply the algorithm from Claim J.6 to the set W1 of
clusters, and then separately to the set W2 of clusters. If the outcome of any of the two algorithms
is a legal clustering W ′ of G with |Êout(W ′)| < |Êout(W)|, then we return this legal clustering W ′
and terminate the algorithm. Therefore, we assume from now on that the outcome of the algorithm
from Claim J.6 when applied to cluster set W1 is a cluster C1 with V (C1) ⊆ A′, such that C1 has
the α̃′-bandwidth property, and there exists a collection R1 of at least α̃ · α̃′k/256 = Ω(α̃2k/ log2m)
edge-disjoint paths in G routing some subset T1 ⊆ T of terminals to the edges of δG(C1). Similarly,
the outcome of the algorithm from Claim J.6 when applied to cluster set W2 is a cluster C2 with
V (C2) ⊆ B′, such that C2 has the α̃′-bandwidth property, and there exists a collection R2 of at least
α̃ · α̃′k/256 = Ω(α̃2k/ log2m) edge-disjoint paths routing some subset T2 ⊆ T of terminals to the edges
of δG(C2). We then return C1 and C2. From the above discussion, C1 and C2 are both disjoint and
have the required properties. In order to complete the proof of Lemma J.3, it is now enough to prove
Claim J.6, which we do next.

Proof of Claim J.6. Let S ⊆ V (G) be a set of vertices that contains, for every cluster W ∈ C, the
vertices of W . Since every edge that is incident to a vertex of S either has a terminal of T as its other
endpoint, or belongs to Êout(W), from Claim J.2, we get that |δG(S)| ≤ k + |E(Ĝ′)| ≤ 8|E(Ĝ′)|/α̃,
since, from Claim J.2, |E(Ĝ′)| = |Êout(W)| ≥ α̃k/4.

We apply the algorithm from Theorem 4.19 to graph G and its cluster G[S], with parameter α = α̃′ (re-

call that α̃′ = α̃
c log2m

for a large enough constant c, so the requirement that α̃′ < min
{

1
64βARV(m) logm ,

1
48 log2m

}
is satisfied), to obtain a collection C′ of disjoint clusters of G[S] (if grah G[S] is not connected, then
we apply the algorithm from Theorem 4.19 to each connected component of G[S] separately; this does
not affect the remainder of the analysis). Recall that {V (C ′) | C ′ ∈ C′} partitions S; every cluster
C ′ ∈ C′ has the α̃′-bandwidth property, and:

∑
C′∈C′

|δG(C ′)| ≤ |δG(S)| ·
(

1 +O(α̃′ · log3/2m)
)

≤ |δG(S)|+O

(
8|E(Ĝ′)|α̃′ log3/2m

α̃

)

≤ |δG(S)|+O

(
|E(Ĝ′)|
c log1/2m

)

≤ |δG(S)|+ |E(Ĝ′)|
64

,

since α̃′ = α̃/c log2m, and c is a large enough constant.

We consider now a new clustering W ′ of G, that is obtained as follows: start from W ′ = W \ C, and
then add the clusters of C′ to W ′. It is easy to verify that the clusters in W ′ are all mutually disjoint,

358

and that
⋃
W ′∈W V (W) = V (G) \ T . Moreover, every clsuter W ∈ W has the α̃′-bandwidth property.

Next, we show that |Êout(W ′)| < |Êout(W)|.
Indeed, we can partition the edge set Êout(W) into three subsets: set E1 contains all edges e = (u, v),
where u and v lie in different clusters of W \ C; set E2 contains all edges e = (u, v), where u lies in a
cluster of W \ C, and v lies in a cluster of C; lastly, E3 contains all edges e = (u, v), where u and v lie
in different clusters of C.
We can partition Êout(W ′) into three subsets E′1, E

′
2, E

′
3 similarly, using cluster set C′ instead of C.

Clearly, E1 = E′1, and E2 = E′2 = δG(S). From the statement of Claim J.6, |E3| ≥ |E(Ĝ′)|/8. On the

other hand, since we have established that
∑

C∈C′ |δG(C)| ≤ |δG(S)|+ |E(Ĝ′)|
64 , and since E2 = δG(S) ⊆⋃

C∈C′ δG(C), we get that |E′3| ≤
|E(Ĝ′)|

64 . We conclude that |E′3| < |E3|, and |Êout(W ′)| < |Êout(W)|.
Note however that W ′ may not be a legal clustering of G, since we do not guarantee that for every
cluster C ∈ C′, δG(C) ≤ α̃k/64 (this property is guaranteed to hold for every cluster of W \C′ though,
sinceW is a legal clustering). In the remainer of the algorithm, we will attempt to “fix” the clustering
W ′ so it becomes a legal clustering of G, and, if we fail to do so, we will produce the desired cluster
C.

In the remainder of the algorithm, we will maintain a set W∗ of clusters, starting with W∗ =W ′, and
we will ensure that the following invariants hold for W∗ at all times:

I1. all clusters in W∗ are disjoint from each other, and
⋃
W∈W∗ V (W) = V (G) \ T ;

I2. every cluster W ∈ W∗ has the α̃′-bandwidth property;

I3. |Êout(W∗)| < |Êout(W)|; and

I4. if |δG(W)| > α̃k/64 for some cluster W ∈ W∗, then V (W) ⊆ S.

Note that all these invariants hold for the initial setting W∗ =W ′. The algorithm performs a number
of iterations, as long as there is some cluster W ∈ W∗ with |δG(W)| > α̃k/64. We now describe the
execution of a single iteration.

Let W ∈ W∗ be any cluster with |δG(W)| > α̃k/64. Using the standard max-flow computation,
we compute a maximum-cardinality set R of edge-disjoint paths in graph G, where each path in R
connects a distinct terminal of T to a distinct edge of δG(W).

We now consider two cases. The first case happens if |R| ≥ α̃α̃′k/256. In this case, we terminate
the algorithm and return the cluster W . Notice that, from Invariant I4, we are guaranteed that
V (W) ⊆ S =

⋃
C′∈C V (C), and from Invariant I2, W has the α̃′-bandwidth property.

Assume now that the second case happens, that is, |R| < α̃α̃′k/256. From the maximum flow /
minimum cut theorem, there is a partition (A,B) of V (G), with V (W) ⊆ A, T ⊆ B, and |EG(A,B)| ≤
|R| < α̃α̃′k/256.

We slightly modify the cut (A,B) in graph G, to compute a new cut (A′, B′) with W ⊆ A′, T ⊆ V (B′),
such that for every cluster C ∈ W∗, either V (C) ⊆ A′, or V (C) ⊆ B′ holds. In order to do so, we
process every cluster C ∈ W∗ \ {W} one by one. Consider an iteration when cluster C is processed. If
V (C) ⊆ A, or V (C) ⊆ B, then no further updates for cluster C are necessary. Otherwise, we denote
by E′(C) = EG(A,B)∩E(C) – the set of edges that cluster C contributes to EG(A,B). We partition
the set δG(C) of edges into two subsets: set δA(C), δB(C), as follows. Let e = (u, v) ∈ δG(C) be
any such edge, and assume that v ∈ V (C). If v ∈ A, then we add e to δA(C), and otherwise we add
e to δB(C). If |δA(C)| < |δB(C)|, then we move all vertices of V (C) ∩ A to B. Notice that in this
case, since C has the α̃′-bandwidth property, |δA(C)| ≤ |E′(C)|/α̃′. Once the vertices of V (C) ∩ A
are moved to B, the edges of E′(C) no longer lie in the cut EG(A,B), and the only new edges that

359

may have been added to the cut EG(A,B) are the edges of δA(C). Since |δA(C)| ≤ |E′(C)|/α̃′, we
charge every edge of E′(C) 1/α̃′ units for the edges of δA(C). Note that the edges of E′(C) will never
be charged again by the algorithm. Otherwise, |δB(C)| ≤ |δA(C)| holds, and we move the vertices of
B ∩ V (C) to A. As before, |δB(C)| ≤ |E′(C)|/α̃′ must hold, and the edges of E′(C) no longer belong
to the cut EG(A,B). The only new edges that may have been added to the cut are the edges of δB(C).
As before, we charge every edge of E′(C) 1/α̃′ units for the edges of δB(C).

Once every cluster inW∗\{W} is processed, we obtain a new partition (A′, B′) of V (G), with W ⊆ A′,
and T ⊆ V (B′), such that for every cluster C ∈ W∗, either V (C) ⊆ A′, or V (C) ⊆ B′ holds. Moreover,
since every edge in EG(A′, B′) \EG(A,B) is charged to some edge of EG(A,B) \EG(A′, B′), and the
charge to each edge of EG(A,B) is at most 1/α̃′, we get that |EG(A′, B′)| ≤ |EG(A,B)|/α̃′ ≤ α̃k/256.

We modify the clustering W∗ in two steps. In the first step, we remove from W∗ all clusters W ′

with V (W ′) ⊆ A′, and we add to it cluster G[A′] (notice that we can assume w.l.o.g. that graph
G[A′] is connected, since otherwise, we can move the sets of vertices corresponding to all connected
components of G[A′] that are disjoint from W to B′). Let W∗∗ denote this new clustering. It is
immediate to verify that Invariants I1 and I4 continue to hold in W∗∗, since |δG(A′)| < α̃k/64.
Note also that the edges of δG(W) \ δG(A′) no longer belong to Êout(W∗∗), while no new edges were
added to Êout(W∗∗). Since |δG(W)| > α̃k/64, while |δG(A′)| = |EG(A′, B′)| ≤ α̃k/256, we get that
|Êout(W∗∗)| ≤ |Êout(W∗)| − α̃k/64.

Note that Invariant I2 is guaranteed to hold for every cluster of W∗∗ except for possibly G[A′]. In our
last step, we apply the algorithm from Theorem 4.19 to compute a well-linked decomposition of the
cluster G[A′] with parameter α̃′. Recall that the algorithm computes a collection C∗ of clusters, such
that vertex sets {V (C ′) | C ′ ∈ C∗} partition A′, each cluster C ′ ∈ C∗ has the α̃′-bandwidth property,
and δG(C ′) ≤ δG(A′) < α̃k/64 for all C ′ ∈ C∗. Moreover, we are guaranteed that:∑

C′∈C∗
|δG(C ′)| ≤ |δG(A′)| ·

(
1 +O(α̃′ · log3/2m)

)
≤ 2|δG(A′)| ≤ α̃k/128.

We let W∗∗∗ be obtained from W∗∗ by replacing G[A′] with the collection C∗ of clusters. From
the above discussion, it is immediate to verify that Invariants I1, I2 and I4 hold for W∗∗∗. Moreover,
Êout(W∗∗∗) ⊆ Êout(W∗∗)∪

(⋃
C′∈C∗ δG(C ′)

)
. Therefore, |Êout(W∗∗∗)| ≤ |Êout(W∗∗)|+

∑
C′∈C∗ |δG(C ′)| ≤

|Êout(W∗)|. This establishes Invariant I3 forW∗∗∗. We then setW∗ =W∗∗∗, and continue to the next
iteration.

If the algorithm never terminates with a cluster W and a collectionR of at least α̃α̃′k/256 edge-disjoint
paths routing a subset of terminals to the edges of δG(W), then the algorithm terminates once every
cluster W ′ ∈ W∗ has |δG(W ′)| ≤ α̃k/64. We are then guaranteed that W∗ is a legal clustering of G,
and moreover, |Êout(W∗)| < |Êout(W)|. We return the clustering W∗ as the output of the algorithm.

J.3 Proof of Lemma 11.9

We assume for contradiction that for every regular vertex x ∈ V (Ĥ1), |J (x)| < k̃′, and yet OPTcnwrs(I) <
(k̃α̃α′)2

c′η′ log20m
, where c′ is the constant from the definition of k̃′. The high-level idea of the proof is the

following. We use the algorithm from Claim 4.23 in order to embed an expander W over the set T̃ of
terminals into Ĥ1, which, from Observation 4.24 has a high crossing number. On the other hand, from
Claim 4.42, there is a drawing of the contracted graph Ĥ1 with relatively few crossings. We exploit
this latter drawing of Ĥ1, the embedding of the expander W into Ĥ1, and the fact that any set J ′(x)
of edge-disjoint paths routing a subset of terminals to a vertex x of Ĥ1 ∩ V (H1) must have a small
cardinality, in order to obtain a drawing of the expander W with relatively few crosings, reaching a

360

contradiction. We now proceed with a formal proof.

By applying Claim 4.23 to graph Ĥ1 and the set T̃ of terminals (that is α̃-well-linked in Ĥ1 from
Property P4), we conclude that there exist a graph W with V (W) = T̃ and maximum vertex degree

at most cCMG log2 k̃, and an embedding P̂ of W into Ĥ1 with congestion at most cCMG log2 k̃
α̃ , such

that W is a 1/4-expander. Moreover, from Observation 4.24, the crossing number of W is at least
k̃2/(c̃ log8 k̃) ≥ k̃2/(c̃ log8m), for some constant c̃. Recall that we have assumed for contradiction that

OPTcnwrs(I) <
(

(k̃α̃α′)2

c′η′ log20m

)
for some large enough constant c′. We will exploit this fact in order to show

that there exists a drawing of W with fewer than k̃2/(c̃ log8m) crossings, reaching a contradiction.

Recall that, from Claim 4.42, there is a drawing ϕ of the contracted graph Ĥ1, whose number of
crossings is bounded by:

O

(
OPTcnwrs(I) · log8m

(α′)2

)
≤ O

(
k̃2α̃2

c′η′ log12m

)
,

from our assumption that OPTcnwrs(I) <
(

(k̃α̃α′)2

c′η′ log20m

)
.

In the remainder of the proof, we gradually modify the drawing ϕ of Ĥ1, to transform it into a drawing
of the expander W with fewer than k̃2/(c̃ log8m) crossings, leading to a contradiction. The drawing
of W is obtained from the drawing ϕ of Ĥ1 by exploiting the embedding P̂ of W into Ĥ1. Intuitively,
we would like to use the images of the paths in P̂ in ϕ in order to draw the edges of the graph W .
Unfortunately, the curves representing the images of these paths are not in general position. This is
since that paths in P̂ may share edges, and they may also share vertices other than their endpoints.
We modify the drawing ϕ in three stages. In the first stage, we create a number of copies of every edge
in Ĥ1, so that the paths in P̂ no longer share edges, and in the second stage, we modify the drawing
of the curves corresponding to the images of the paths in P̂ in the vicinity of the vertices they share,
using a nudging operation. Then in the third and the last stage we define the final drawing of the
expander W .

Stage 1: shared edges. For every edge e ∈ E(Ĥ1), let Ne be the total number of paths in P̂
containing e; recall that Ne ≤ O((log2 k̃)/α̃) ≤ O((log2m)/α̃) must hold. Let Ĥ ′ be the graph
obtained from graph Ĥ1 by deleting from it all edges that do not participate in paths in P̂, and, for
each remaining edge e, creating Ne parallel copies of edge e. Drawing ϕ of graph Ĥ1 can be easily
extended to a drawing ϕ′ of graph Ĥ ′, by deleting the images of all edges e with Ne = 0, and, for
every edge e with Ne > 1, drawing the parallel copies of e in parallel to the original image of e, at
a very small distance from it, so that the images of the copies of e do not cross. Since, for every
edge e, Ne ≤ O((log2m)/α̃), every crossing in the drawing ϕ may give rise to at most O((log4m)/α̃2)
crossings in the drawing ϕ′, and so the number of crossings in ϕ′ is bounded by:

cr(ϕ) ·O
(

log4m

α̃2

)
≤ O

(
k̃2α̃2

c′η′ log12m

)
·O
(

log4m

α̃2

)
≤ O

(
k̃2

c′η′ log8m

)
.

Notice that the set P̂ of paths in graph Ĥ1 naturally defines a set P̂ ′ of edge-disjoint paths in graph
Ĥ ′, embedding the expander W into Ĥ ′ (where for every edge e ∈ E(Ĥ), every path in P̂ containing
e now uses a different copy of e).

Stage 2: shared vertices. We process every vertex x ∈ V (Ĥ ′) \ T̃ one by one. Let P̂ ′(x) =
{P1, . . . , Pr} be the set of all paths in P̂ ′ containing x. For each such path Pi(x), let e(Pi, x) and

361

e′(Pi, x) be the edges immediately preceding and immediately following x on path Pi. Let D(x) be
a very small disc containing the image x in the drawing ϕ′ in its interior. Consider now some path
Pi ∈ P̂ ′(x), and let qi, q

′
i be the points where the images of e(Pi, x) and e′(Pi, x) intersect the boundary

of D(x), respectively. We define a curve γ(Pi, x) inside disc D(x), connecting qi and q′i, such that,
for every pair Pi, Pj ∈ P̂ ′(x) of distinct paths, the two corresponding curves γ(Pi, x), γ(Pj , x) cross at
most once, and every point of D(X) lies on at most two such curves.

Stage 3: final drawing of W . We are now ready to define the final drawing ϕ′′ of the expander
W . Recall that V (W) = T̃ . For every terminal t ∈ T̃ , the image of t in ϕ′′ remains the same as the
image of t in ϕ′.

Consider now some edge ê = (t, t′) ∈ E(W), and let P (ê) ∈ P̂ ′ be its embedding path. Denote
P = (e1, e2, . . . , e`), and denote the vertices of P by t = x0, x1, x2, . . . , x`−1, x` = t′ in the order of
their appearance on P . For each edge ei, let γ(ei) be its image in the drawing ϕ′. If i > 1, then we
delete the portion of γ(ei) that lies inside the disc D(xi−1), and similarly, if i < `, then we delete the
portion of γ(ei) that lies inside the disc D(xi). The image of the edge ê is obtained by concatenating
the curves γ(e1), γ(P, x1), γ(e2), . . . , γ(P, x`−1), γ(e`).

This completes the definition of the drawing ϕ′′ of the expander W . Our last step is to show that this
drawing contains few crossings, leading to a contradiction. The following claim will then complete the
proof of Lemma 11.9.

Claim J.7 cr(ϕ′′) < k̃2/(c̃ log8m).

Proof: Recall that drawing ϕ′ of Ĥ ′ contained at most O
(

k̃2

c′η′ log8m

)
crossings. For every vertex

u ∈ V (Ĥ1), let Nu de note the number of paths in P̂ containing u. It is then easy to verify that the
total number of crossings in ϕ′′ is at most:

cr(ϕ′) +
∑

u∈V (Ĥ1)

N2
u ≤ O

(
k̃2

c′η′ log8m

)
+

∑
u∈V (Ĥ1)

N2
u .

Assuming that c′ is a large enough constant, the above expression is bounded by k̃2/(2c̃ log8m) +∑
u∈V (Ĥ1)N

2
u . Therefore, it is now enough to prove that

∑
u∈V (Ĥ1)N

2
u ≤ k̃2/(2c̃ log8m).

We partition the vertices of Ĥ1 into two subsets: the set U = {vC | C ∈ CX} of supernodes, and the
set U ′ = V (Ĥ1) \ U of regular vertices, that lie in H1.

Consider first a supernode v = vC . Since the paths in P̂ cause edge-congestion at most O(log2m/α̃)
in graph Ĥ1, Nv ≤ O(degĤ1

(v) log2m/α̃), and so N2
v ≤ O(|δH1(C)|2 log4m/α̃2). Recall that from

Property P6:

∑
C∈C
|δH(C)|2 ≤ (k̃α̃α′)2

c1 log20m
.

Therefore, we conclude that:

362

∑
v∈U

N2
v ≤

∑
C∈C
|δH(C)|2 ·O

(
log4m

α̃2

)

≤ (k̃α̃α′)2

c1 log20m
·O
(

log4m

α̃2

)
≤ k̃2

4c̃ log8m
,

since we have assumed that c1 is a large enough constant. Lastly, it remains to show that
∑

v∈U ′ N
2
v ≤

k̃2

4c̃ log8m
. We do so using the following claim.

Claim J.8 For every vertex v ∈ U ′, Nv <
8c2CMGk̃

′ log4m
α̃ .

Proof: Assume for contradiction that there is some vertex v ∈ U ′, with Nv ≥
8c2CMGk̃

′ log4m
α̃ . Then

there is a set P ⊆ P̂ of at least
8c2CMGk̃

′ log4m
α̃ paths in the embedding P̂ of W into Ĥ1, containing

v. Recall that for every path P ∈ P̂, both endpoints of P are terminals in T̃ , and that, since the
maximum vertex degree in W is at most cCMG log2 k̃ ≤ cCMG log2m, every terminal may serve as an
endpoint of at most cCMG log2m paths in P.

Consider any path P ∈ P, and let t, t′ be its two endpoints. Let P ′ be the subpath of P between t and
v. We then set P1 = {P ′ | P ∈ P}. Furthermore, since every terminal may serve as an endpoint of

at most cCMG log2m paths in P1, there is a subset P2 ⊆ P1 of at least |P|
cCMG log2m

paths, each of which

originates at a distinct terminal of T̃ , and terminates at v. Recall that the paths in P̂ cause edge-

congestion at most cCMG log2m
α̃ in Ĥ1. Lastly, from Claim 4.2, there is a collection P3 of edge-disjoint

paths in Ĥ1, routing a subset of terminals to v, such that:

|P3| ≥
α̃ · |P2|

2cCMG log2m
≥ α̃|P|

2c2
CMG log4m

> k̃′,

contradicting the fact that the largest number of edge-disjoint paths routing terminals of T̃ to v is
bounded by k̃′.

We group the vertices of U ′ into groups S1, . . . , Sq, where q =
⌈
log
(

8c2CMGk̃
′ log4m
α̃

)⌉
+1. Set Si contains

all vertices v ∈ U ′, with 2i−1 ≤ Nv < 2i.

Since paths in P̂ cause edge-congestion O((log2m)/α̃), for all 1 ≤ i ≤ q, for every vertex v ∈ Si,
degĤ(v) ≥ Ω(α̃Nv/ log2m) ≥ Ω(α̃ · 2i/ log2m). Since the total number of edges in graph Ĥ1 is

|E(Ĥ1)| ≤ O(k̃ · η log8m/α3) from Property P3, while α̃ = Ω(α/ log4m) from Property P4, we get
that, for all 1 ≤ i ≤ q,

∑
v∈Si

Nv ≤
∑
v∈Si

O

(
degĤ(v) log2m

α̃

)
≤ O

(
|E(Ĥ1)| log6m

α

)
≤ O

(
k̃η log14m

α4

)
.

Therefore:

∑
v∈Si

N2
v ≤ 2i+1 ·

∑
v∈Si

Nv ≤ O

(
2i · k̃η log14m

α4

)
.

363

Summing up over all sets S1, . . . , Sq, we get that:

∑
v∈U ′

N2
v ≤ O

(
2qk̃η log14m

α4

)

≤ O

(
c2
CMGk̃

′k̃η log18m

α4α̃

)

≤ O

(
c2
CMGk̃

2

c′ log8m

)
.

since q =
⌈
log
(

8c2CMGk̃
′ log4m
α̃

)⌉
+ 1, α̃ = Ω(α/ log4m), and k̃′ = k̃α5/(c′η log36m).

Lastly, since we can fix c′ to be a large enough constant, we get that
∑

v∈U ′ N
2
v <

k2

4c̃ log8m
.

To conclude, we have shown that cr(ϕ′′) ≤ k̃2

c̃ log8m
, a contradiction.

J.4 Proof of Lemma 11.10

We start by defining a new expanded graph H ′, whose construction is similar to that of H∗, except
that now we expand every vertex v ∈ V (H) \ (T̃ ∪{x}) into a grid. Specifically, we start with H ′ = ∅,
and then process every vertex u ∈ V (H) \ (T̃ ∪ {x}) one by one. We denote by d(u) the degree of the
vertex u in graph H. We now describe an iteration when a vertex u ∈ V (H) \ (T̃ ∪ {x}) is processed.
Let e1(u), . . . , ed(u)(u) be the edges that are incident to u in H, indexed according to their ordering
in Ou ∈ Σ. We let Π(u) be the (d(u)× d(u)) grid, and we denote the vertices on the first row of this
grid by s1(u), . . . , sd(u)(u) indexed in their natural left-to-right order. We add the vertices and the
edges of the grid Π(u) to graph H ′. As before, we refer to the edges in the resulting grids Π(u) as
inner edges. Once every vertex u ∈ V (H) \ (T̃ ∪ {x}) is processed, we add the vertices of T̃ to the
graph H ′. Recall that every terminal t ∈ T̃ has degree 2 in H. We denote s1(t) = s2(t) = t, and we
arbitrarily denote the two edges incident to t by e1(t) and e2(t). We also add vertex x to H ′. We
denote s1(x) = · · · = sd(x)(x) = x, and we denote the edges incident to x by e1(x), . . . , ed(x)(x), indexed
consistently with the circular ordering Ox ∈ Σ, where Σ is the rotation system for graph H. Next,
we add a collection of outer to graph H ′, exactly as before. Consider any edge e = (u, v) ∈ E(H).
Assume that e is the ith edge of u and the jth edge of v, that is, e = ei(u) = ej(v). Then we add an
edge e′ = (si(u), sj(v)) to graph H ′, and we view this edge as the copy of the edge e ∈ E(H). This
completes the definition of graph H ′.

The partition (X,Y) of the vertices of V (H) \ T̃ naturally defines a partition (X ′, Y ′) of the vertices

of V (H ′) \ T̃ , as follows: X ′ =
(⋃

u∈X\{x} V (Π(u))
)
∪ {x} and Y ′ =

⋃
u∈Y V (Π(u)). We denote

H ′1 = H ′[X ′ ∪ T̃] and H ′2 = H ′[Y ∪ T̃]. Let WX = {Π(u) | u ∈ X \ {x}}. Then WX is a collection
of disjoint clusters in graph H ′1. Moreover, since, for every vertex u ∈ X \ {x}, the set of vertices on
the first row of a grid Π(u) is 1-well-linked in Π(u) (from Observation 4.14), the corresponding cluster
Π(u) has the 1-bandwidth property.

Observation J.9 There is a collection J ′ of paths in graph H ′1, routing all terminals of T̃ to x, with

congH′1(J ′) ≤ O
(
η log36m
α6(α′)2

)
.

Proof: Recall that there exists a set J of edge-disjoint paths in graph Ĥ1, routing a subset T̃0 ⊆ T̃
of terminals to x, with |J | ≥ k̃′. Since every cluster in C has the α′-bandwidth property, from

364

Claim 4.41, there is a collection J0 of edge-disjoint paths in graph H1, routing a subset T̃ ′0 ⊆ T̃0 to x,
where |T̃ ′0| ≥ α′k̃′/2. Using the 1-bandwidth property of the clusters Π(u) in graph H ′1, it is easy to
verify that there is a collection J ′0 of edge-disjoint paths in graph H ′1, routing the terminals of T̃ ′0 to
vertex x. Recall that k̃′ = k̃α5/(c′η log36m), where c′ is a constant whose value was fixed in the proof
of Lemma 11.9.

From Property P4, the set T̃ of terminals is α̃-well-linked in Ĥ1, and so, from Claim 4.39, it is (α̃α′)-
well-linked in H1. Moreover, since H1 = (H ′1)|WX

, and since each cluster in WX has the 1-bandwidth

property, from Claim 4.39, the set T̃ of terminals is (α̃α′)-well-linked in H ′1.

From Lemma 11.1, there is a set J ′ of paths in graph H ′1, routing the terminals in T̃ to vertex x, with:

congH′1(J ′) ≤ O

(
|T̃ |
|T̃ ′0|
· 1

αα′

)
≤ O

(
k̃

k̃′α(α′)2

)
≤ O

(
η log36m

α6(α′)2

)
.

For convenience, we denote by ρ = O
(
η log36m
α6(α′)2

)
the bound on congH′1(J ′). Note that we can compute

such a collection J ′ of paths efficiently using standard maximum s-t flow computation. In order to
compute the ordering Õ of the terminals in T̃ , we need one additional property from the paths in
J ′: we need them to be confluent. In order to define confluent paths, we need to assign each path a
direction, so that one of its endpoint becomes the first vertex on the path. If P is a simple directed
path, whose first endpoint is s and last endpoint is t, a suffix of P is any subpath P ′ ⊆ P that contains
the vertex t.

Definition J.10 (Confluent Paths) Let P be a collection of directed paths. We say that the paths
in P are confluent iff for every pair P1, P2 ∈ P of paths, either P1 ∩ P2 = ∅, or P1 ∩ P2 is a suffix of
both P1 and P2.

The following claim, that easily follows from the work of [CKL+07], allows us to transform the set J ′
of paths into a confluent one.

Claim J.11 There is an efficient algorithm that computes a set J ′′ of confluent paths in graph H ′1,
routing the vertices of T̃ to x, (where every path is directed towards x), with congH′1(J ′′) ≤ O(ρ logm).

Proof: We use the notion of confluent flows from [CKL+07]. The following definitions are from
[CKL+07]. Let G = (V,E) be a directed graph, and let Dem : V → R+ be a demand function for
vertices v ∈ V . Let S ⊆ V denote a collection of sink vertices. We assume that every edge incident
to a sink vertex s ∈ S is directed towards s. A flow f : E → R+ is a valid flow if it satisfies, for every
vertex v ∈ V \ S: ∑

e=(v,w)∈E

f(e)−
∑

e=(u,v)∈E

f(e) = Dem(v).

In other words, the total amount of flow leaving v is equal to the demand on v plus the total amount
of flow entering v. The congestion on vertex v is defined to be as:∑

e=(u,v)∈E

f(e) + Dem(v),

the total amount of flow entering v plus the demand at v. The congestion of f is the maximum, over
all vertices v ∈ V , of the congestion of f at v.

365

We say that a flow f is confluent if for every vertex v ∈ V , there is at most one edge (v, u) with
f(v, u) > 0. A confluent flow therefore defines a subgraph of G (induced by edges carrying non-zero
flow), consisting of disjoint components {T1, . . . , Tk}, where each Ti is an arborescence directed towards
the root si ∈ S. In each such arborescence Ti, the maximum vertex congestion occurs at the sink si,
and is equal to the total demand of all vertices of Ti. The following result was proved in [CKL+07].

Theorem J.12 (Theorem 3 in [CKL+07]) There is an efficient algorithm, that, given a directed
n-vertex graph G with a collection S ⊆ V (G) of sinks, and demands Dem(v) ≥ 0 for vertices v ∈ V (G),
such that there exists a (regular, splittable) flow f with node congestion 1 satisfying the demands in
graph G, computes a confluent flow satisfying all demands, with congestion O(log n).

We construct a flow network from graph H ′1, as follows. First, we subdivide every edge e that is

incident to x with a new sink vertex se, setting S =
{
se | e ∈ δH′1(x)

}
, and delete the vertex x from

the graph. Next, we bi-direct every edge of the resulting graph (by replacing it with two anti-parallel
edges), except that for every sink vertex se ∈ S, the unique edge incident to se is directed towards
se. For every terminal t ∈ T̃ , we set its demand Dem(t) = 1/(4ρ), and we set the demands of all
other vertices to 0. Let G be the resulting flow network. Denote n = |V (G)|, and observe that

|V (G)| = O
(∑

u∈V (H1)(degH1
(u))2

)
≤ O(m2). Note that the collection J ′ of paths in graph H ′1

immediately defines a collection J̃ of paths, routing the set T̃ of terminals to the vertices of S, in
graph G, with edge-congestion at most ρ. Since the degree of every vertex in G is at most 4, by
sending 1/(4ρ) flow units on every path in J ′′, we obtain a valid flow from vertices of T̃ to vertices of
S, satisfying all demands, with vertex-congestion at most 1. From Theorem J.12, there is a confluent
flow f in graph G with vertex-congestion O(log n) ≤ O(logm), satisfying all demands. We can use
standard flow-decomposition of f to obtain a collection J̃ ′ of flow-paths, routing the terminals in T̃ to
vertices of S, such that the paths in J ′′ are confluent. Each such flow-paths carries 1/(4ρ) flow units in
the flow f , so the total edge-congestion caused by paths in J̃ ′ is at most O(ρ logm). Moreover, every
sink vertex se ∈ S is an endpoint of at most O(ρ logm) paths. The set J̃ ′ of paths naturally define a
set J ′′ of confluent paths in graph H ′1, routing the set T̃ of terminals to vertex x, with edge-congestion
O(ρ logm).

We will use the set J ′′ of confluent paths to both compute the desired ordering Õ of the terminals,
and to show that there exists the desired drawing ϕ of graph H∗.

For convenence, let d denote the degree of vertex x in H and the edges incident to x by e1(x), . . . , ed(x),
indexed consistently with the circular ordering Ox ∈ Σ, where Σ is the rotation system for graph H.
For all 1 ≤ i ≤ d let Pi ⊆ J ′′ be the subset of paths whose last edge is ei, so (P1, . . . ,Pd) is a partition
of J ′′. We define a circular ordering of the paths in J ′′ as follows: for each 1 ≤ i ≤ d, the paths
in Pi appear consecutively in this ordering, in an arbitrary order, and paths belonging to different
subsets appear in the natural ordering P1, . . . ,Pd of these subsets. Denote J ′′ =

{
P1, . . . , Pk̃

}
, where

the paths are indexed by the ordering that we have just defined. For all 1 ≤ j ≤ |T̃ |, let tj be the
terminal of T̃ that serves as an endpoint of path Pj . We have then defined an ordering t1, . . . , tk̃ of

the terminals in T̃ , that we denote by Õ. For all 1 ≤ i ≤ k̃, let ei denote the edge (x, ti) in graph H∗.

It is now enough to show that there is a drawing ϕ of graph H∗, in which the inner edges do not
participate in crossings, and the images of edges e1, . . . , ek̃ enter the image of x in this order, such

that cr(ϕ) ≤ O
(
OPTcnwrs(I) · η

2 log74m
α12(α′)4

)
+
(
k̃η log37m
α6(α′)2

)
. The following observation will then finish the

proof of Lemma 11.10.

Observation J.13 There is a drawing ϕ of graph H∗ with at most O
(
OPTcnwrs(I) · η

2 log74m
α12(α′)4

)
+

O
(
k̃η log37m
α6(α′)2

)
crossings, in which all crossings are between pairs of outer edges, and the images of

edges e1, . . . , ek̃ enter the image of x in this circular order.

366

Proof: Let ϕ1 be the optimal solution to instance I of MCNwRS, and denote by χ1 = OPTcnwrs(I)
its number of crossings. We can easily transform drawing ϕ1 to a drawing ϕ2 of graph H ′, with the
same number of crossings, such that every crossing in ϕ2 is between a pair of outer edges. In order to
do so, we consider, for every vertex v ∈ V (H) \ (T̃ ∪ {x}), the tiny v-disc Dϕ(v). We place a drawing
of the grid Π(v) inside the disc, using the natural layout of the grid (depending on the orientation of
vertex v in ϕ, we may need to flip the image of Π(v)).

Next, we slightly modify the graph H ′, as follows. First, for every edge ei that is incident to x, we
subdivide ei with a new vertex si, and then delete x from the graph. Let S = {s1, . . . , sd} be the
resulting set of new vertices. We modify the paths in J ′′ so that each path now connects a distinct
vertex of T̃ to some vertex of S, and the paths remain confluent. As before, we denote by Pi ⊆ J ′′
the set of paths that terminate at vertex si.

For every edge e of the resulting graph, we let Ne the number of paths in J ′′ in which edge e
participates; recall that Ne ≤ O(ρ logm) must hold. For every edge e ∈ E(H ′1), if Ne = 0, then we
delete edge e, and otherwise we replace e with Ne parallel copies. We denote the resulting graph by H ′′,
and we denote by H ′′1 the subgraph of H ′′ corresponding to H ′1, that is, if we let X ′′ = V (H ′1)∩V (H ′′),
then H ′′1 is the subgraph of H ′′ that is induced by vertices of X ′′ ∪ S. Observe that graph H ′′1 can
be viewed as consisting of disjoint trees τ1, . . . , τd (though some of the trees may consist of a single
vertex si), where for all 1 ≤ i ≤ d, the root of τi is the vertex si, but these trees may have parallel
edges. If v ∈ V (τi) \ {si}, and the subtree rooted at v contains nv terminal vertices, then the edge
connecting v to its parent has exactly nv parallel copies, and nv ≤ O(ρ logm). We further modify the
paths set J ′′, so that the paths become edge-disjoint in graph H ′′1 , that is, we ensure that for every
edge e ∈ E(H ′1), each path in J ′′ containing e uses a different copy of the edge e.

We can modify the drawing ϕ2 of graph H ′ to obtain a drawing ϕ3 of graph H ′′, as follows. First,
consider the tiny x-disc D = Dϕ2(x). Recall that, that for every edge ei, the intersection of the image
of ei in ϕ2 and the boundary of the disc D is a single point, that we denote by pi. We place the image
of the new vertex si on point pi, and we erase the portion of the image of ei that lies in disc D. We
also delete the image of x. We delete images of edges and vertices as needed, and then, for every edge
e ∈ E(H ′′1) with Ne > 0, we create Ne copies of e, all of which are drawn in parallel to the original
image of e, very close to it, so that the images of these copies of e do not cross each other. Let ϕ3

denote this resulting drawing of the graph H ′′. Since, for every edge e, Ne ≤ O(ρ logm), it is easy to
verify that cr(ϕ3) ≤ cr(ϕ2) ·O(ρ2 log2m) ≤ O(OPTcnwrs(I) · ρ2 log2m).

For every vertex v ∈ V (H ′′), this drawing ϕ3 of H ′′ naturally defines a circular ordering of the edges
of δH′′(v), that we denote by O3

v – the order in which the images of the edges of δH′′(v) enter the
image of v in this drawing. (Note that the drawing ϕ3 depends on the optimal solution to instance
I of MCNwRS, so we cannot compute the drawing or the resulting orderings O3(v) for v ∈ V (H ′′)
efficiently; we only use their existence here). Let Σ3 =

{
O3
v

}
v∈V (H′′)

be the resulting rotation system

for graph H ′′.

Recall that for all 1 ≤ i ≤ d, Pi ⊆ J ′′ is a set of paths routing a subset of the terminals of T̃ to si,
and for 1 ≤ i 6= j ≤ d, no vertex may belong to a path in Pi and to a path in Pj . For all 1 ≤ i ≤ d,
let T̃i ⊆ T̃ be the set of terminals that serve as endpoints of paths in Pi.
We apply Lemma 4.7 to each such path set Pi separately, to obtain a path set P ′i, that is non-transversal
with respect to the rotation system Σ3. The lemma ensures that the paths in P ′i route terminals of T̃i
to vertex si in H ′′; the paths are edge-disjoint, and moreover, an edge e ∈ E(H ′′) may only belong to
a path of P ′i if it belonged to a path of Pi. Let J ′′′ =

⋃d
i=1 P ′i.

We are now ready to define a drawing ϕ of the graph H∗. Notice that graph H ′′ can be viewed as
the union of graph H∗ \ {x}, and the paths in J ′′′. As discussed above, there is a drawing ϕ3 of H ′′

with at most O(OPTcnwrs(I) · ρ2 log2m) crossings. We have defined a rotation system Σ3 for graph

367

H ′′, such that the drawing ϕ3 is consistent with this rotation system. Moreover, from the definition
of the drawing ϕ3, there is a disc D (that originally contained the image of the vertex x), whose
interior is disjoint from the drawing ϕ3, with vertices s1, . . . , sd appearing on the boundary of D in
this circular order. Lastly, the paths in sets P ′1, . . . ,P ′d are all non-transversal with respect to Σ3, and
for all 1 ≤ i 6= j ≤ d, paths in Pi and paths in Pj cannot share vertices with each other.

In order to obtain the drawing ϕ of H∗, we slightly modify the drawing ϕ3, as follows. First, we place
an image of vertex x in the interior of the disc D. For every edge ej = (tj , x) of H∗, let Pj ∈ J ′′′ be
the path whose endpoint is tj , and let sij be its other endpoint. Let γj be the image of the path Pj
in the drawing ϕ3. Since all paths in set J ′′′ are non-transversal with respect to Σ3 we can apply the
nudging algorithm from Claim 4.34 to the image of every vertex of H ′′ that lies on some path in J ′′′,
in order to compute, for each 1 ≤ j ≤ k̃, a curve γ′j connecting the image of tj to the image of sij , so
that, if we delete from ϕ3 the images of all inner vertices and of all edges participating in the paths
in J ′′′, and add instead the curves γ′1, . . . , γ

′
k̃
, then the number of crossings does not increase. For all

1 ≤ j ≤ d, curve γ′j is obtained from γj by “nudging” it in the vicinity of every vertex v ∈ V (Pj) using
the algorithm from Claim 4.34.

Note that for all 1 ≤ i ≤ d, for every terminal tj ∈ T̃i, the curve γ′j terminates at the image of the
vertex si, and moreover, the images of the vertices s1, . . . , sd appear in this circular order on the

boundary of the disc D. However, the order in which the curves in Γ′i =
{
γ′j | tj ∈ T̃i

}
enter the image

of si may be different from the ordering of the corresponding terminals in T̃ . We need to reorder
the curves in Γ′i in the vicinity of si, so that they enter the image of si in the order consistent with
Õ. Since for all 1 ≤ j ≤ d, |Γj | ≤ O(ρ logm), we can perform these reorderings while introducing
crossings whose number is bounded by:

d∑
i=1

|Γ′i|2 ≤
d∑
i=1

|Γ′i| ·O(ρ logm) ≤ O(k̃ρ logm).

For all 1 ≤ j ≤ k̃, let γ′′j be the curve obtained form γ′j after the reordering, so that γ′′j connects
the image of tj to the image of sij . By slighty extending this curve inside the disc D, we can ensure

that it terminates at the image of x. This can be done for all 1 ≤ j ≤ k̃ without introducing any
new crossings, while ensuring that the resulting curves γ′′1 , . . . , γ

′′
k̃

enter the image of x in this order.

We then let, for all 1 ≤ j ≤ k̃, γ′′j be the image of the edge (tj , x), obtaining a drawing ϕ of H∗.
It is immediate to verify that every crossing in ϕ is between a pair of outer edges, and from our
construction, the edges (t1, x), . . . , (tk̃, x) enter the image of x in this circular order. From the above
discussion, the total number of crossings in ϕ is at most:

O(OPTcnwrs(I) · ρ2 log2m) +O(k̃ρ logm) ≤ O
(
OPTcnwrs(I) · η

2 log74m

α12(α′)4

)
+

(
k̃η log37m

α6(α′)2

)
.

J.5 Proof of Observation 11.11

Assume that OPTcnwrs(I) < (k̃α̃α′)2

c1η′ log20m
. Then, from Lemma 11.10:

368

cr(ϕ) ≤O

(
(k̃α̃α′)2η2 log54m

c1η′α12(α′)4

)
+O

(
k̃η log37m

α6(α′)2

)

≤ O

(
k̃2 log46m

c1η7α10(α′)2

)
+O

(
k̃η log37m

α6(α′)2

)
,

(33)

since α̃ = Θ(α/ log4m) and η′ ≥ η13 (from the statement of Theorem 6.4).

Recall that, since we have assumed that Special Case 4 did not happen, k ≥ η6, and from Property

P1, k̃ ≥ Ω(α3k/ log8m). Therefore, k̃ ≥ Ω(η6α3/ log8m), and η ≤ O
(
k̃ log8m
η5α3

)
. We can now bound

the second term in Equation 33 as follows:

O

(
k̃η log37m

α6(α′)2

)
≤ O

(
k̃2 log45m

η5α9(α′)2

)

Recall that we have assumed that logm > c′0, for some large enough constant c′0, whose value we can

set to be greater than c1. Therefore, cr(ϕ) ≤ O
(

k̃2 log46m
c1η6α10(α′)2

)
must hold.

Lastly, from the conditions of Theorem 6.4, η ≥ c∗ log46m/(α10(α′)2). Since we can assume that c1 is

a sufficiently large constant, we conclude that, if OPTcnwrs(I) < (k̃α̃α′)2

c1η′ log20m
, then cr(ϕ) ≤ k̃2

c2η5
holds,

where c2 is an arbitrarily large constant whose value we can set later.

J.6 Proof of Observation 11.12

In order to obtain the distribution D′, for every router Q ∈ Λ′, whose probability value in D is
p(Q) > 0, we construct a router Q′ ∈ Λ(H, T̃), as follows. Let y′ be the center vertex of Q, and
assume that y′ ∈ Π(y) for some vertex y ∈ V (H). For every terminal t ∈ T̃ , let Qt ∈ Q be the unique
path connecting t to y′ in H ′′. By suppressing all inner edges on path Qt, we obtain a path Q′t in graph

H, connecting t to y. We then set Q′ =
{
Q′t | t ∈ T̃

}
. It is easy to verify that paths in Q′ route T̃ to y

in graph H, so Q′ ∈ Λ(H, T̃). Moreover, for every edge e ∈ E(H), congH(Q′, e) ≤ congH′′(Q, e). We
assign to the router Q′ ∈ Λ(H, T̃) the same probability value p(Q). Let D′ be the resulting distribution
over the routers of Λ(H, T̃). Since every edge e ∈ E(H) is an outer edge of H ′′, it is immediate to
verify that EQ′∼D′

[
(congH(Q′, e))2

]
≤ β.

369

References

[ACNS82] M. Ajtai, V. Chvátal, M. Newborn, and E. Szemerédi. Crossing-free subgraphs. Theory
and Practice of Combinatorics, pages 9–12, 1982.

[AMS07] Christoph Ambuhl, Monaldo Mastrolilli, and Ola Svensson. Inapproximability results for
sparsest cut, optimal linear arrangement, and precedence constrained scheduling. In 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS’07), pages 329–337.
IEEE, 2007.

[And10] Matthew Andrews. Approximation algorithms for the edge-disjoint paths problem via
raecke decompositions. In 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science, pages 277–286. IEEE, 2010.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings
and graph partitioning. J. ACM, 56(2), 2009.

[Cab13] Sergio Cabello. Hardness of approximation for crossing number. Discrete & Computational
Geometry, 49(2):348–358, 2013.

[CC16] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem.
Journal of the ACM (JACM), 63(5):1–65, 2016.

[CH11] Markus Chimani and Petr Hliněnỳ. A tighter insertion-based approximation of the crossing
number. In International Colloquium on Automata, Languages, and Programming, pages
122–134. Springer, 2011.

[Chu11] Julia Chuzhoy. An algorithm for the graph crossing number problem. In Proceedings of the
forty-third annual ACM symposium on Theory of computing, pages 303–312. ACM, 2011.

[Chu12] Julia Chuzhoy. Routing in undirected graphs with constant congestion. In Proceedings of
the forty-fourth annual ACM symposium on Theory of computing, pages 855–874, 2012.

[Chu16] Julia Chuzhoy. Improved bounds for the excluded grid theorem. arXiv preprint
arXiv:1602.02629, 2016.

[CKL+07] Jiangzhuo Chen, Robert D Kleinberg, László Lovász, Rajmohan Rajaraman, Ravi Sun-
daram, and Adrian Vetta. (almost) tight bounds and existence theorems for single-
commodity confluent flows. Journal of the ACM (JACM), 54(4):16–es, 2007.

[CKS04] Chandra Chekuri, Sanjeev Khanna, and F Bruce Shepherd. Edge-disjoint paths in planar
graphs. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages
71–80. IEEE, 2004.

[CL12] Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint
paths with congestion 2. In 2012 IEEE 53rd Annual Symposium on Foundations of Com-
puter Science, pages 233–242. IEEE, 2012.

[CMM16] Julia Chuzhoy, Vivek Madan, and Sepideh Mahabadi. In Private Communication, 2016.

[CMS11] Julia Chuzhoy, Yury Makarychev, and Anastasios Sidiropoulos. On graph crossing number
and edge planarization. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete algorithms, pages 1050–1069. SIAM, 2011.

370

[CMT20] Julia Chuzhoy, Sepideh Mahabadi, and Zihan Tan. Towards better approximation of graph
crossing number. To appear at FOCS’20.

[CS13] Chandra Chekuri and Anastasios Sidiropoulos. Approximation algorithms for euler genus
and related problems. In 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, pages 167–176. IEEE, 2013.

[CT19] Julia Chuzhoy and Zihan Tan. Towards tight (er) bounds for the excluded grid theorem. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1445–1464. SIAM, 2019.

[EGS02] Guy Even, Sudipto Guha, and Baruch Schieber. Improved approximations of crossings in
graph drawings and vlsi layout areas. SIAM Journal on Computing, 32(1):231–252, 2002.

[GH61] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the Society
for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[GJ83] M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods, 4(3):312–316, 1983.

[Hli06] P. Hlinený. Crossing number is hard for cubic graphs. J. Comb. Theory, Ser. B, 96(4):455–
471, 2006.

[HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. Journal of the ACM (JACM),
21(4):549–568, 1974.

[KRV09] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single com-
modity flows. Journal of the ACM (JACM), 56(4):1–15, 2009.

[KS17] Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for
minimum planarization (almost). In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 779–788,
2017.

[KS19] Ken-ichi Kawarabayashi and Anastasios Sidiropoulos. Polylogarithmic approximation for
euler genus on bounded degree graphs. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, pages 164–175. ACM, 2019.

[Lei83] F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange graph
and other networks. MIT Press, 1983.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut theorems and their use
in designing approximation algorithms. Journal of the ACM (JACM), 46(6):787–832, 1999.

[LT79] Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

[Mat02] J. Matoušek. Lectures on discrete geometry. Springer-Verlag, 2002.

[PSS96] János Pach, Farhad Shahrokhi, and Mario Szegedy. Applications of the crossing number.
Algorithmica, 16(1):111–117, 1996.

[PSŠ09] Michael J Pelsmajer, Marcus Schaefer, and Daniel Štefankovic. Odd crossing number and
crossing number are not the same. In Twentieth Anniversary Volume:, pages 1–13. Springer,
2009.

371

[PSŠ11] Michael J Pelsmajer, Marcus Schaefer, and Daniel Štefankovič. Crossing numbers of graphs
with rotation systems. Algorithmica, 60(3):679–702, 2011.

[PT00] J. Pach and G. Tóth. Thirteen problems on crossing numbers. Geombinatorics, 9(4):194–
207, 2000.

[Rac02] Harald Racke. Minimizing congestion in general networks. In The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002. Proceedings., pages 43–52. IEEE,
2002.

[RS86] Neil Robertson and Paul D Seymour. Graph minors. v. excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41(1):92–114, 1986.

[RS09] R. B. Richter and G. Salazar. Crossing numbers. In L. W. Beineke and R. J. Wilson, editors,
Topics in Topological Graph Theory, chapter 7, pages 133–150. Cambridge University Press,
2009.

[RST94] Neil Robertson, Paul Seymour, and Robin Thomas. Quickly excluding a planar graph.
Journal of Combinatorial Theory, Series B, 62(2):323–348, 1994.

[Sch12] Marcus Schaefer. The graph crossing number and its variants: A survey. The electronic
journal of combinatorics, pages DS21–Sep, 2012.

[Sid10] Anastasios Sidiropoulos. Personal communication, 2010.

[Tur77] P. Turán. A note of welcome. J. Graph Theory, 1:1–5, 1977.

[Vrt] Imrich Vrto. Crossing numbers of graphs: A bibliography. http://www.ifi.savba.sk/

~imrich.

[Whi92] Hassler Whitney. Congruent graphs and the connectivity of graphs. In Hassler Whitney
Collected Papers, pages 61–79. Springer, 1992.

372

http://www.ifi.savba.sk/~imrich
http://www.ifi.savba.sk/~imrich

	Introduction
	Our Results
	Our Techniques
	Organization

	Preliminaries
	Graph-Theoretic Notation
	Curves in General Position, Graph Drawings, Faces, and Crossings
	Grids and Their Standard Drawings
	Circular Orderings, Orientations, and Rotation Systems
	Tiny v-Discs and Drawings that Obey Rotations
	Problem Definitions and Trivial Algorithms
	A -Decomposition of an Instance
	Subinstances

	An Algorithm for MCNwRS– Proof of thm: mainrotationsystem
	Proof of thm: mainrotationsystem
	Proof of Theorem 3.1 – Main Definitions and Theorems

	Definitions, Notation, Known Results, and their Easy Extensions
	Clusters, Paths, Flows, and Routers
	Clusters and Augmentations of Clusters
	Paths and Flows
	Routing Paths, Internal Routers and External Routers
	Non-Transversal Paths and Path Splicing

	Cuts, Well-Linkedness, and Related Notions
	Minimum Cuts
	Gomory-Hu Trees
	Balanced Cut and Sparsest Cut
	Well-Linkedness, Bandwidth Property, and Routing Well-Linked Vertex Sets
	Basic Well-Linked Decomposition
	Layered Well-Linked Decomposition

	Expanders, Graph Embeddings, and Routing Well-Linked Sets
	Constructing Internal Routers

	Curves in the Plane or on a Sphere
	Reordering Curves
	Type-1 Uncrossing of Curves
	Curves in a Disc and Nudging of Curves
	Type-2 Uncrossing of Curves

	Contracted Graphs

	First Set of Tools: Light Clusters, Bad Clusters, Path-Guided Orderings, and Basic Cluster Disengagement
	Laminar Family-Based Disengagment
	Laminar Family of Clusters and Partitioning Tree
	Definition of Laminar Family-Based Disengagement
	Analysis

	Light Clusters, Bad Clusters, and Path-Guided Orderings
	Basic Cluster Disengagement

	Second Main Tool: Cluster Classification
	Main Parameters
	Algorithm Execution
	Step 1: Partition
	Step 2: Concise Clusters

	Third Main Tool - Advanced Disengagement
	Nice Witness Structure, Nice Subinstances, and Statements of Main Theorems
	Decomposition into Nice Instances – Proof of thm: advanced disengagement get nice instances
	Proof of thm: construct one level of laminar family
	Proof of lemma: better clustering
	Proof of lemma: better clustering 2
	Proof of lem: no bad indices

	Disengagement of Nice Instances – Proof of thm: advanced disengagement - disengage nice instances
	Step 1. Constructing the Paths of Pout
	Step 2: Constructing the Paths of Pin and the Auxiliary Cycles
	Step 3: Laminar Family L of Clusters, and Internal and External Routers for Clusters of L
	Step 4: Constructing the Collection of Subinstances

	Proof of claim: existence of good solutions special
	Step 1: Computing Auxiliary Graph Hz and Its Drawing
	Step 2: Initial Drawing of Gz
	Step 3: Modified Drawing of Gz
	Step 4: the Final Drawing of Graph Gz

	Proof of claim: bound distance between rotations
	Proof of claim: bound on Pi

	Proof of thm: not well connected
	An Algorithm for Wide and Well-Connected Instances – Proof of lem: many paths
	Main Definitions
	Cores and Core Structures
	Drawings of Graphs
	A J-Contracted Instance
	Core Enhancement and Promising Sets of Paths
	Splitting a Core Structure and an Instance via an Enhancement Structure
	Auxiliary Claim

	Splitting a Subinstance: Procedure ProcSplit
	Step 1: Computing an Enhancement
	Step 2: Computing the Enhancement Structure and the Split

	Phase 1 of the Algorithm
	Phase 2 of the Algorithm
	Completing the Proof of lem: many paths
	Proof of thm: phase 2 – Intuition
	Proof of thm: phase 2 – Main Definitions and Notation
	Proof of lem: compute phase 2 decomposition
	Proof of lem: computed decomposition is good enough
	Proof of claim: rearrange drawing in disc

	An Algorithm for Narrow Instances – Proof of lem: not many paths
	Phase 1: Flower Clusters, Small Clusters, and Initial Disengagement
	Step 1: Carving out Flower Clusters
	Step 2: Small Clusters
	Step 3: Initial Disengagement

	Phase 2: Layered Well-Linked Decomposition, Further Disengagement, and Fixing the Flower Cluster
	Step 1: Layered Well-Linked Decomposition and Second Disengagement
	Step 2: Fixing Petals for Routability

	Phase 3: Petal-Based Disengagement and the Final Family of Instances
	Step 1: the Split Instance
	Step 2: Disengagement of the Petals
	Step 3: Final Decomposition

	Constructing Internal Routers - Proof of thm: find guiding paths
	Step 1: Splitting the Contracted Graph
	Step 2: Routing the Terminals to a Single Vertex, and an Expanded Graph
	Routing the Terminals to a Single Vertex in 1
	The Expanded Graph
	Summary of Step 2

	Step 3: Constructing a Grid Skeleton
	Step 4: Constructing a Grid-Like Structure
	In-Order Intersection
	Definining Paths Associated with Grid Cells
	Completing the Construction of the Grid-Like Structure

	Step 5: the Routing
	Good Cells
	Square Subgrids and Corresponding Sets of Paths
	Routing the Terminals to Good Cells

	Proof of thm: mainresult
	Proofs Omitted from sec: shortprelim
	Proof of Theorem 2.7
	Proof of Theorem 2.8
	Proof of claim: compose algs

	Proofs Omitted from sec: high level
	Proof of claim: bound by level
	Proof of claim: combine drawings
	Proof of obs: bound sum of opts

	Proofs Omitted from Section 4
	Proof of claim: remove congestion
	Proof of obs: splicing
	Proof of Lemma 4.7
	Proof of Lemma 4.8
	Proof of cor: approxbalancedcut
	Proof of Theorem 4.12
	Proof of obs: grid 1st row well-linked
	Proof of Theorem 4.17
	Proof of Theorem 4.19
	Proof of thm: layered well linked decomposition
	Proof of Claim 4.23
	Proof of Observation 4.24
	Proof of Corollary 4.25
	Proof of Corollary 4.26
	Proof of lem: find reordering
	Proof of lem: ordering modification
	Proof of Theorem 4.33
	Proof of claim: curves in a disc
	Proof of Theorem 4.37
	Proof of cor: new type 2 uncrossing
	Proof of Claim 4.39
	Proof of cor: contractedgraphwelllinkedness
	Proof of claim: routing in contracted graph
	Proof of lem: crossings in contr graph

	Proofs Omitted from sec: guiding paths orderings basic disengagement
	Proof of lem: basic disengagement combining solutions
	Proof of lem: disengagement final cost
	Step 1: Graph H
	Step 2: Initial Drawing of Graph GC
	Step 3: the Final Drawing

	Proof of claim: bounding distance between rotations

	Proofs Omitted from sec: routing within a cluster
	Proof of thm: basic decomposition of a graph
	Proof of obs: opt is small

	Proofs Omitted from sec: main disengagement
	Proof of claim: path length in decomposition tree
	Proof of claim: compose distributions
	Proof of claim: few edges
	Proof of obs: subtree to cluster
	Proof of obs:J wl
	Proof of claim: simplifying cluster is enough
	Proof of obs: left and right down-edges
	Proof of obs: left and right mappings
	Constructing the Monotone Paths – proof of lem: prefix and suffix path
	Proof of obs: bad inded structure
	Proof of claim: bound S' to S'' edges
	Proof of claim: bound left and right for S''
	Proof of claim left edges for S' and S''
	Proof of claim left edges for S' only
	Proof of claim: non-J-node-boundary size
	Proof of claim: many edges left right large
	Proof of claim: simplifying cluster case 1
	Proof of claim: simplifying cluster case 2
	Proof of claim: simplifying cluster case 3
	Proof of claim: simplifying cluster last case
	Proof of claim: computing out-paths
	Proof of claim: enough segments
	Proof of obs: bound N' values
	Proof of obs: bound Pi triples
	Proof of obs: bound transversal pairs

	Proofs Omitted from sec: many paths
	Proof of claim: find potential augmentors
	Proof of obs: combine solutions for split
	Proof of claim: curves orderings crossings
	Proof of claim: bound unlucky paths
	Proof of claim: new drawing
	Proof of claim: cut set small case2
	Proof of obs: few edges in split graphs case2
	Proof of thm: wld all paths congestion
	Proof of claim: avoid guiding curves
	Proof of claim: move to discs2
	Proof of obs: tunnels

	Proofs Omitted from sec: computing the decomposition
	Proof of lem: decomposition into small clusters
	Proof of lem: solution to split to solution to original
	Stage 1: First Set of Guiding Curves, and Partial Drawing of Edges of i
	Stage 2: Second Set of Guiding Curves and Drawing of Xi
	Stage 3: Computing the Drawing i of Gi
	Analysis

	Proofs Omitted from sec: guiding paths
	Proof of lem: routing path extension
	Proof of lem: splitting
	Proof of lem: high opt or lots of paths
	Proof of lem: find ordering of terminals
	Proof of obs: bounds on opt
	Proof of obs: transform paths 2

