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Abstract

We consider the classical Minimum Crossing Number problem: given an n-vertex graph G,
compute a drawing of G in the plane, while minimizing the number of crossings between the images
of its edges. This is a fundamental and extensively studied problem, whose approximability status
is widely open. In all currently known approximation algorithms, the approximation factor depends
polynomially on A — the maximum vertex degree in G. The best current approximation algorithm
achieves an O(n'/?~¢ - poly(A - log n))-approximation, for a small fixed constant e, while the best
negative result is APX-hardness, leaving a large gap in our understanding of this basic problem.
In this paper we design a randomized O (20((1°g n)"/" loglog n) poly(A))—approximation algorithm
for Minimum Crossing Number. This is the first approximation algorithm for the problem that
achieves a subpolynomial in n approximation factor (albeit only in graphs whose maximum vertex
degree is subpolynomial in n).

In order to achieve this approximation factor, we design a new algorithm for a closely related
problem called Crossing Number with Rotation System, in which, for every vertex v € V(G), the
circular ordering, in which the images of the edges incident to v must enter the image of v in the
drawing is fixed as part of input. Combining this result with the recent reduction of [Chuzhoy, Ma-~
habadi, Tan '20] immediately yields the improved approximation algorithm for Minimum Crossing
Number. We introduce several new technical tools, that we hope will be helpful in obtaining better
algorithms for the problem in the future.
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1 Introduction

We study the classical Minimum Crossing Number (MCN) problem: given an n-vertex graph G,
compute a drawing of G in the plane while minimizing the number of its crossings. Here, a drawing
¢ of a graph G is a mapping, that maps every vertex v € V(G) to some point ¢(v) in the plane, and
every edge e = (u,v) € E(G) to a continuous simple curve ¢(e), whose endpoints are ¢(u) and ¢(v).
For a vertex v € V(G) and an edge e € E(G), we refer to ¢(v) and to ¢(e) as the images of v and of
e, respectively. We require that, for every vertex v and edge e, ¢(v) € ¢(e) only if v is an endpoint of
e. We also require that, if some point p belongs to the images of three or more edges, then it must be
the image of a shared endpoint of these edges. A crossing in a drawing ¢ of GG is a point that belongs
to the images of two edges of GG, and is not their common endpoint. The crossing number of a graph
G, denoted by OPT(G), is the minimum number of crossings in any drawing of G in the plane.

The MCN problem was initially introduced by Turan [Tur77] in 1944, and has been extensively studied
since then (see, e.g., [Chulll, [CMS11l [CH11l [CS13, [KS17, [KS19, [CMT20], and also [RS09, [PT00,
Mat02, [Vrtl [Sch12] for excellent surveys). The problem is of interest to several communities, including,
for example, graph theory and algorithms, and graph drawing. As such, much effort was invested into
studying it from different angles. But despite all this work, most aspects of the problem are still poorly
understood.

In this paper we focus on the algorithmic aspect of MCN. Since the problem is NP-hard [GJ83],
and it remains NP-hard even in cubic graphs [HIi06) [(Cab13], it is natural to consider approximation
algorithms for it. Unfortunately, the approximation ratios of all currently known algorithms depend
polynomially on A, the maximum vertex degree of the input graph. To the best of our knowledge, no
non-trivial approximation algorithms are known for the general setting, where A may be arbitrarily
large. One of the most famous results in this area, the Crossing Number Inequality, by Ajtai, Chvéatal,
Newborn and Szemerédi [ACNS82] and by Leighton [Lei83], shows that, for every graph G with
|E(G)| > 4|V(G)|, the crossing number of G is Q(|E(G)>/|V(G)|?). Since the problem is most
interesting when the crossing number of the input graph is low, it is reasonable to focus on low-degree
graphs, where the maximum vertex degree A is bounded by either a constant, or a slowly-growing
(e.g. subpolynomial) function of n. While we do not make such an assumption explicitly, like in all
previous work, the approximation factor that we achieve also depends polynomially on A.

Even in this setting, there is still a large gap in our understanding of the problem’s approximabil-
ity, and the progress in closing this gap has been slow. On the negative side, only APX-hardness is
known [Cabl13l [AMSOT7], that holds even in cubic graphs. On the positive side, the first non-trivial
approximation algorithm for MCN was obtained by Leighton and Rao in their seminal paper [LR99].
Given as input an n-vertex graph G, the algorithm computes a drawing of G with at most O((n +
OPT.(@))-A%M log* n) crossings. This bound was later improved to O((n+OPT¢(G))- A% log? n)
by [EGS02], and then to O((n + OPT4(G)) - AW log? n) following the improved approximation algo-
rithm of [ARV09] for Sparsest Cut. Note that all these algorithms only achieve an O(n poly(Alogn)))-
approximation factor. However, their performance improves significantly when the crossing number of
the input graph is large. A sequence of papers [CMS11, [Chull] provided an improved O(no'g . Ao(l))—
approximation algorithm for MCN, followed by a more recent sequence of papers by Kawarabayashi
and Sidiropoulos [KS17, [KS19], who obtained an O (\/ﬁ . AO(I))—approximation algorithm. All of the
above results follow the same high-level algorithmic framework, and it was shown by Chuzhoy, Madan
and Mahabadi [CMM16] (see [Chul6] for an exposition) that this framework is unlikely to yield a bet-
ter than O(y/n)-approximation. The most recent result, by Chuzhoy, Mahabadi and Tan [CMT20],
obtained an O(n!/2=¢ . poly(A))-approximation algorithm for some small fixed constant ¢ > 0. This
result was achieved by proposing a new algorithmic framework for the problem, that departs from
the previous approach. Specifically, [CMT20] reduced the MCN problem to another problem, called



Minimum Crossing Number with Rotation System (MCNwRS) that we discuss below, which appears
somewhat easier than the MCN problem, and then provided an algorithm for approximately solving
the MCNwRS problem.

Our main result is a randomized O (20((logn)"/®loglogn) . AO(1) -approximation algorithm for MCN.

In order to achieve this result, we design a new algorithm for the MCNwRS problem that achieves
significantly stronger guarantees than those of [CMT20]. This algorithm, combined with the reduction
of [CMT20], immediately implies the improved approximation for the MCN problem. We also design
several new technical tools that we hope will eventually lead to further improvements. We now turn
to discuss the MCNwRS problem.

In the Minimun Crossing Number with Rotation System (MCNwRS) problem, the input consists of
a multigraph G, and, for every vertex v € V(G), a circular ordering O, of edges that are incident
to v, that we call a rotation for vertex v. The set ¥ = {Ov}veV(G) of all such rotations is called a
rotation system for graph G. We say that a drawing ¢ of G obeys the rotation system 3, if, for every
vertex v € V(G), the images of the edges in dg(v) enter the image of v in the order O, (but the
orientation of the ordering can be either clock-wise or counter-clock-wise). In the MCNwRS problem,
given a graph G and a rotation system X for G, the goal is to compute a drawing ¢ of G that obeys
the rotation system ¥ and minimizes the number of edge crossings. For an instance I = (G,X) of
the MCNwRS problem, we denote by OPTcnwes(I) the value of the optimal solution for I, that is,
the smallest number of crossings in any drawing of G that obeys X. The results of [CMT20] show
the following reduction from MCN to MCNwRS: suppose there is an efficient (possibly randomized)
algorithm for the MCNwRS problem, that, for every instance I = (G, ), produces a solution whose
expected cost is at most a(m) - (OPTcnwrs(L) + m), where m = |E(G)|. Then there is a randomized
O(a(n) - poly(A - log n))-approximation algorithm for the MCN problem. Our main technical result
is a randomized algorithm, that, given an instance I = (G,X) of MCNwRS, with high probability
produces a solution to instance I with at most 920((logm)™/® loglogm) (OPTcnwrs (G, X) + m) crossings,
where m = |E(G)|. Combining this with the result of [CMT20], we immediately obtain a randomized

(@) (QO(Uog n)"/% loglogn) . poly(A))—approximation algorithm for the MCN problem.

The best previous algorithm for the MCNwRS problem, due to [CMT20], is a randomized algorithm,
that, given an instance I = (G, X) of the problem, with high probability produces a solution with at
most O ((OPTcnwrs(G, ¥) +m)*7¢) crossings, where e = 1/20. A variant of MCNwRS was previously
studied by Pelsmajer et al. [PSS11], where for each vertex v of the input graph G, both the rotation
O, of its incident edges, and the orientation of this rotation (say clock-wise) are fixed. They showed
that this variant of the problem is also NP-hard, and provided an O(n*)-approximation algorithm with
running time O(m™logm), where n = |V(G)| and m = |E(G)|. They also obtained approximation
algorithms with improved guarantees for some special families of graphs.

We introduce a number of new technical tools, that we discuss in more detail in Section Some
of these tools require long and technically involved proofs, which resulted in the large length of the
paper. We view these tools as laying a pathway towards obtaining better algorithms for the Minimum
Crossing Number problem, and it is our hope that these tools will eventually be streamlined and
that their proofs will be simplified, leading to a better understanding of the problem and cleaner and
simpler algorithms. We believe that some of these tools are interesting in their own right.

1.1 Our Results

Throughout this paper, we allow graphs to have parallel edges (but not self-loops); graphs with no
parallel edges are explicitly called simple graphs. For convenience, we will assume that the input to
the MCN problem is a simple graph, while graphs serving as inputs to the MCNwRS problem may



have parallel edges. The latter is necessary in order to use the reduction of [CMT20] between the two
problems. Note that the number of edges in a graph with parallel edges may be much higher than the
number of vertices. Our main technical contribution is an algorithm for the MCNwRS problem, that
is summarized in the following theorem.

Theorem 1.1 There is an efficient randomized algorithm, that, given an instance I = (G,%) of
MCNwRS with |E(G)| = m, computes a drawing of G that obeys the rotation system 3. The number

of crossings in the drawing is w.h.p. bounded by 20((logm)"/® loglogm) . (OPTenwrs(I) +m).

We rely on the following theorem from [CMT20] in order to obtain an approximation algorithm for
the MCN problem.

Theorem 1.2 (Theorem 1.3 in [CMT20]) There is an efficient algorithm, that, given an n-vertex
graph G with maximum vertex degree A, computes an instance I = (G',X) of the MCNwRS prob-
lem, with |E(G")] < O (OPT¢(G) - poly(A -logn)), and OPTcqus(I) < O (OPT¢(G) - poly(A -logn)).
Moreover, there is an efficient algorithm that, given any solution of value X to instance I of MCNwRS,
computes a drawing of G with the number of crossings bounded by O ((X + OPT(G)) - poly(A - logn)).

Combining Theorem [I.1]and Theorem we immediately obtain the following corollary, whose proof
appears in Section [A] of Appendix.

Corollary 1.3 There is an efficient randomized algorithm, that, given a simple n-vertex graph G with
mazimum vertex degree /A, computes a drawing of G, such that, w.h.p., the number of crossings in the

drawing is at most O (20((1°g")7/8 loglogn) . poly(A) - OPTcr(G)>.

1.2 Our Techniques

In this subsection we provide an overview of the techniques used in the proof of our main technical
result, Theorem For the sake of clarity of exposition, some of the discussion here is somewhat
imprecise. Our algorithm relies on the divide-and-conquer technique. Given an instance I = (G, X) of
the MCNwRS problem, we compute a collection Z of new instances, whose corresponding graphs are
significantly smaller than G, and then solve each of the resulting new instances separately. Collection
T of instances is called a decomposition of I. We require that the decomposition has several useful
properties that will allow us to use it in order to obtain the guarantees from Theorem by solving
the instances in Z recursively. Before we define the notion of decomposition of an instance, we need
the notion of a contracted graph, that we use throughout the paper. Suppose G is a graph, and let
R = {Ri,..., Ry} be a collection of disjoint subsets of vertices of G. The contracted graph of G
with respect to R, that we denote by G|r, is a graph that is obtained from G, by contracting, for
all 1 <4 < g, the vertices of R; into a supernode u;. Note that every edge of the resulting graph
G|r corresponds to some edge of GG, and we do not distinguish between them. The vertices in set
V(Gir) \ {u1,...,uq} are called regular vertices. Each such vertex v also lies in G, and moreover,
0Gx (v) = dc(v). Abusing the notation, given a collection C = {C1, ..., C; } of disjoint subgraphs of
G, we denote by G|c the contracted graph of G with respect to the collection {V(C1),...,V(Cy)}
of subsets of vertices of G. Given a graph G and its drawing ¢, we denote by cr(¢) the number of
crossings in .

Decomposition of an Instance. Given an instance I = (G, X) of the MCNwRS problem, we will
informally refer to |E(G)| as the size of the instance. Assume that we are given an instance I = (G, )
of MCNwRS with |E(G)| = m, and some parameter n (we will generally use n = 20((logm)*/* log logm)y,
Assume further that we are given another collection Z of instances of MCNwRS. We say that
Z is an n-decomposition of I, if 371 _(q sner [E(G')| < mpolylogm, and 37 OPTenwrs(I) <

3



(OPTenwrs(I) + |E(G)|) - n. Additionally, we require that there is an efficient algorithm Alg(l), that,
given a feasible solution ¢(I’) to every instance I’ € Z, computes a feasible solution ¢ for instance I,
with at most O (3 ez cr(¢(I’))) crossings.

At a high level, our algorithm starts with the input instance I* = (G*, £*) of the MCNwRS problem.
Throughout the algorithm, we denote m* = |E(G*)|, and we use a parameter p = 20((log m*)7/% loglogm*),
Over the course of the algorithm, we consider various other instances I of MCNwRS, but parameters
m* and p remain unchanged, and they are defined with respect to the original input instance I*.
The main subroutine of the algorithm, that we call AlgDecompose, receives as input an instance
I = (G,%) of MCNwRS, and computes an n-decomposition Z of I, for n = 90((logm)®/* log logm) where
m = |E(G)|. The subroutine additionally ensures that every instance in the decomposition is suffi-
ciently small compared to I, that is, for each instance I' = (G',¥') € Z, |E(G")| < |E(G)|/u. We
note that this subroutine is in fact randomized, and, instead of ensuring that >~ ;.7 OPTcqwrs(I’) <
(OPTcnwrs(I) + |E(G)|) - m, it only ensures this in expectation. We will ignore this minor technicality
in this high-level exposition.

It is now easy to complete the proof of Theorem using Algorithm AlgDecompose: we simply apply
Algorithm AlgDecompose to the input instance I*, obtaining a collection Z of new instances. We
recursively solve each instance in Z, and then combine the resulting solutions using Algorithm Alg(I*),
in order to obtain the final solution to instance I*. Since the sizes of the instances decrease by the
factor of at least u with each application of the algorithm, the depth of the recursion is bounded by
O ((log m*)l/ 8). At each recursive level, the sum of the optimal solution costs and of the number of

edges in all instances at that recursive level increases by at most factor 20((log m*)3/*log log ") leading
to the final bound of 20((logm™)/*loglogm™) . (OPTcnwrs(I*) +m*) on the solution cost.

From now on we focus on the description of Algorithm AlgDecompose. We start by describing several
technical tools that this algorithm builds on. Throughout, given a graph G, we refer to connected
vertex-induced subgraphs of G as clusters. Given a collection C of disjoint clusters of G, we denote by
E2™(C) the set of all edges e € E(G), such that the endpoints of e do not lie in the same cluster of C.
We will also use the notion of subinstances that we define next.

Subinstances. Suppose we are given two instances I = (G,X) and I’ = (G',¥’) of MCNwRS. We
say that I’ is a subinstance of instance I, if the following hold. First, graph G’ must be a graph that is
obtained from a subgraph of G by contracting some subsets of its vertices into supernodes. Formallyﬂ
there must be a graph G” C G, and a collection R = {Ry, ..., Ry} of disjoint subsets of vertices of G”,
such that G’ = Gﬁz For every regular vertex v of G’, the rotation O, € ¥’ must be consistent with
the rotation O, € ¥ (recall that dg(v) C dg(v)). For every supernode u; of G, its rotation O,, € ¥’
can be chosen arbitrarily. Note that the notion of subinstances is transitive: if I’ is a subinstance of
I and I" is a subinstance of I’, then I"” is a subinstance of I.

The main tool that we use is disengagement of clusters. Intuitively, given an instance I = (G,3)
of MCNwRS, and a collection C of disjoint clusters of G, the goal is to compute an n-decomposition
T of I, such that every instance I’ = (G',Y’) € T is a subinstance of I, and moreover, there is
at most one cluster C' € C that is contained in G’, and all edges of G’ that do not lie in C' must
belong to E(C). Assume for now that we can design an efficient algorithm for computing such
a decomposition. In this case, the high-level plan for implementing Algorithm AlgDecompose would
be as follows. First, we compute a collection C of disjoint clusters of graph G, such that, for each
cluster C' € C, |E(C)| < |E(G)|/(2p), and |EZ"(C)| < |E(G)|/(21). Then we perform disengagement
of clusters in C, obtaining an n-decomposition of the input instance I. We are then guaranteed that

"'We note that this definition closely resembles the notion of graph minors, but, in contrast to the definition of minors,
we do not require that the induced subgraphs {G[R:]}, ., are connected.



each resulting instance in 7 is sufficiently small. We note that it is not immediately clear how to
compute the desired collection C of disjoint clusters of G; we discuss this later. For now we focus
on algorithms for computing disengagement of clusters. We do not currently have an algorithm to
compute the disengagement of clusters in the most general setting described above. In this paper, we
design a number of algorithms for computing disengagement of clusters, under some conditions. We
start with the simplest algorithm that only works in some restricted settings, and then generalize it
to more advanced algorithms that work in more and more general settings. In order to describe the
disengagement algorithm for the most basic setting, we need the notion of congestion, and of internal
and external routers, that we use throughout the paper, and describe next.

Congestion, Internal Routers, and External Routers. Given a graph G and a set P of paths in
G, the congestion that the set P of paths causes on an edge e € F(G), that we denote by congq (P, e),
is the number of paths in P containing e. The total congestion caused by the set P of paths in G is
cong(P) = maxeecp () {congq(P, e)}.

Consider now a graph G and a cluster C C G. We denote by d(C') the set of all edges e € E(G), such
that exactly one endpoint of e lies in C. An internal C-router is a collection Q(C) = {Q(e) | e € d¢(C)}
of paths, such that, for each edge e € i (C), path Q(e) has e as its first edge, and all its inner vertices lie
in C. We additionally require that all paths in Q(C') terminate at a single vertex of C, that we call the
center vertex of the router. Similarly, an external C-router is a collection Q'(C) = {Q'(e) | e € d¢(C)}
of paths, such that, for each edge e € d¢(C), path Q’'(e) has e as its first edge, and all its inner vertices
lie in V(G) \ V(C). We additionally require that all paths in Q'(C) terminate at a single vertex of
V(G)\ V(C), that we call the center vertex of the router. For a cluster C' C G, we denote by Ag(C)
and Ay (C) the sets of all internal and all external C-routers, respectively.

Basic Cluster Disengagement. In the most basic setting for cluster disengagement, we are given an
instance I = (G, X) of the MCNwRS problem, and a collection C of disjoint clusters of G. Additionally,
for each cluster C' € C, we are given an internal C-router Q(C'), whose center vertex we denote by
u(C), and an external C-router Q'(C'), whose center vertex we denote by u'(C). The output of the
dlsengagement procedure is a collection Z of subinstances of I, that consists of a single global instance

= (G, ), and, for every cluster C' € C, an instance Ic = (G¢, X¢) associated with it. Graph G is
the contracted graph of G with respect to C; that is, it is obtained from G by contracting every cluster
C € C into a supernode veo. For each cluster C' € C, graph G¢ is obtained from G by contracting
the vertices of V(G) \ V(C) into a supernode vf,. For every cluster C' € C, the rotation O, € 5 of
the supernode v¢ in instance I and the rotation ng € X¢ of the supernode vy, in instance I¢ need
to be defined carefully, in order to ensure that the sum of the optimal solution costs of all resulting
instances is low, and that we can combine the solutions to these instances to obtain a solution to I.
Observe that the set of edges incident to vertex ve in G and the set of edges incident to vertex v, in
G¢ are both equal to 6¢(C). We define a single ordering O of the edge set dg(C), that will serve
both as the rotation O, € E and as the rotation O, : € Yc. The ordering OF is defined via the
internal C-router Q(C'), and the order in which the i 1mages of the paths of Q(C) enter the image of
vertex u(C). On the one hand, letting O,,, = Ovy, for every cluster C' € C allows us to easily combine
solutions ¢(I’) to instances I’ € Z, in order to obtain a solution to instance I, whose cost is at most
O (X pep cr(p(I)). On the other hand, defining OY via the set Q(C) of paths, for each cluster
C € C, allows us to bound » /o7 OPTeqwrs(I”).

We now briefly describe how this latter bound is established, since it will motivate the remainder of
the algorithm and clarify the bottlenecks of this approach. We consider an optimal solution ¢* to
instance I, and we use it in order to construct, for each instance I’ € Z, a solution ¢ (I"), such that
Y rercr(i(I”)) is relatively small compared to cr(p*) 4+ |E(G)|. In order to construct a solution (1)
to the global instance I, we start with solution ©* to instance I. We erase from this solution all edges
and vertices that lie in the clusters of C. For each cluster C' € C, we let the image of the supernode



ve coincide with the original image of the vertex u(C') — the center of the internal C-router Q(C).
In order to draw the edges that are incident to the supernode vo in G (that is, the edges of 6¢(C)),
we utilize the images of the paths of the internal C-router Q(C') in ¢*, that connect, for each edge
e € 6g(C), the original image of edge e to the original image of vertex u(C).

Consider now some cluster C' € C. In order to construct a solution 1 (I¢) to instance I, we start
again with the solution ¢* to instance I. We erase from it all edges and vertices except for those lying
in C. We let the image of the supernode v{, be the original image of vertex u/(C') — the center of the
external C-router Q'(C). In order to draw the edges that are incident to the supernode v in G¢
(that is, the edges of d¢(C)), we utilize the images of the paths of the external C-router Q'(C), that
connect, for each edge e € d;(C), the original image of edge e to the original image of vertex u/(C).

Observe that the only increase in ), 7 cr(y(I')), relatively to cr(¢*), is due to the crossings incurred
by drawing the edges incident to the supernodes in {vc} e in instance I, and for each subinstance
I, drawing the edges incident to supernode vg,. All such edges are drawn along the images of the
paths in (Joeo(Q(C) U Q'(C)) in ¢*. However, an edge may belong to a number of such paths. With
careful accounting we can bound this number of new crossings as follows. Assume that, for every
cluster C € C, cong,(Q'(C)) < . Assume further that, for each cluster C' € C, and for each edge
e € E(C), (congq(Q(C),e))* < B. Then Y- perer(v(I’) < O(B%- (OPTenwrs(I) 4+ |E(G)|)). Therefore,
in order to ensure that the collection Z of subinstances of I that we have obtained via the cluster
disengagement procedure is an n-decomposition of I, we need to ensure that, for every cluster C € C,
cong,(Q'(C)) < B, and, for every edge e € E(C), (congg(Q(C),e))? < B, for § = O(n'/?). This
requirement seems impossible to achieve. For example, if maximum vertex degree in graph G is small
(say a constant), then some edges incident to the center vertices {u(C),u'(C)}oce must incur very
high congestion. In order to overcome this obstacle, we slightly weaken our requirements. Instead of
providing, for every cluster C' € C, a single internal C-router Q(C), and a single external C-router
Q'(C), it is sufficient for us to obtain, for each cluster C' € C, a distribution D(C) over the collection
A¢(C) of internal C-routers, such that, for every edge e € E(C), Eg(c)wp(c) [(congq(Q(C),€))?] < 5,
and a distribution D’(C) over the collection Ay, (C) of external C-routers, such that for every edge e,
Eg (o)~pr(0) [congg(Q'(0), €)] < 6.

To recap, in order to use the Basic Cluster Disengagement procedure described above to compute an
n-decomposition of the input instance I of MCNwRS into sufficiently small instances, it is now enough
to design a procedure that, given an instance I = (G,X) of MCNwRS, computes a collection C of
disjoint clusters of G, and, for every cluster C' € C, a distribution D(C') over the collection Ag(C) of
internal C-routers, such that, for every edge e € E(C), Eg(cy~p(c) [(congg(Q(C),€))?] < B, together
with a distribution D’(C) over the collection Ay, (C) of external C-routers, such that, for every edge
e, Egiioy~prc) [conga(Q'(0), e)] < B, for = O(/n). Additionally, we need to ensure that, for every
cluster C € C, |[E(C)| < |E(G)|/(2p), and that |EQ*(C)| < |E(G)|/(2p). While computing a collection
C of clusters with the latter two properties seems possible (at least when the maximum vertex degree
in G is small), computing the distributions over the internal and the external routers for each cluster
C with the required properties seems quite challenging. As a first step towards this goal, we employ
the standard notions of well-linkedness and bandwidth property of clusters as a proxy to constructing
internal C-routers with the required properties. Before we turn to discuss these notions, we note that
the Basic Cluster Disengagement procedure that we have just described can be easily generalized to
the more general setting, where the set C of clusters is laminar (instead of only containing disjoint
clusters). This generalization will be useful for us later.

Assume that we are given a laminar family C of clusters (that is, for every pair C,C’ € C of clusters,
either C C C’, or C' C C, or CNC’ = ) holds), with G € C. Assume further that we are given, for each
cluster C' € C, a distribution D(C') over the collection Ag(C) of internal C-routers, in which, for every
edge e € E(C), Egc)up(c) [(congq(Q(C),e))?] < B, together with a distribution D'(C) over the



collection Ay (C) of external C-routers, where for every edge e, Eg/(c)p/(c) [congg(Q'(C),e)] < B,
for some parameter 3. The Basic Cluster Disengagement procedure, when applied to C, produces a
collection Z = {Ic = (G¢,X¢) | C € C} of instances. For every cluster C' € C, graph G¢ associated
with instance I¢ is obtained from graph G, by first contracting all vertices of V(G) \ V(C) into a
supernode v}, and then contracting, for each child-cluster C’ € C of C, the vertices of V(C") into a
supernode ver. We define, for every cluster C, an ordering of the set g (C) of edges via an internal C-
router that is selected from the distribution D(C'), and we let the rotation Oy, in the rotation system
Yc, and the rotation O, in the rotation system Xcv, where C’ is the parent-cluster of C, to be
identical to this ordering. Using the same reasoning as in the case where C is a set of disjoint clusters,
we show that E [>° /o7 OPTcnwrs(I’)] < O (8% - dep(C) - (OPTcnwrs(1) + |E(G)])), where dep(C) is the
depth of the laminar family C of clusters. We then show that Z’ is an 7/-decomposition of instance I,
where 1’ = O(B? - dep(C)).

As noted already, one of the difficulties in exploiting the Basic Cluster Disengagement procedure in
order to compute an n-decomposition of the input instance Z is the need to compute distributions over
the sets of internal and the external C-routers for every cluster C' € C, with the required properties.
We turn instead to the notions of well-linkedness and bandwidth properties of clusters. These notions
are extensively studied, and there are many known algorithms for computing a collection C of clusters
that have bandwidth property in a graph. We will use this property as a proxy, that will eventually
allow us to construct a distribution over the sets of internal C-routers for each cluster C' € C, with the
required properties.

Well-Linkedness, Bandwidth Property, and Cluster Classification. We use the standard
graph-theoretic notion of well-linkedness. Let G be a graph, let T be a subset of the vertices of G,
and let 0 < o < 1 be a parameter. We say that the set T" of vertices is a-well-linked in G if for every
partition (A, B) of vertices of G into two subsets, |Eq(A4, B)| > a-min{|ANT|,|BNT|}.

We also use a closely related notion of bandwidth property of clusters. Suppose we are given a graph G
and a cluster C' C G. Intuitively, cluster C' has the a-bandwidth property (for a parameter 0 < o < 1),
if the edges of 6¢(C) are a-well-linked in C. More formally, we consider the augmentation C* of cluster
C, that is defined as follows. We start with the graph G, and subdivide every edge e € dg(C) with a
vertex t., denoting by 7' = {t. | e € 6¢(C)} this new set of vertices. The augmentation C* of C' is the
subgraph of the resulting graph induced by V(C)UT. We say that cluster C' has the a-bandwidth
property if set T of vertices is a-well-linked in C'T.

We note that, if a cluster C' has the a-bandwidth property, then, using known techniques, we can
efficiently construct a distribution D over the set Ag(C) of internal C-routers, such that, for every
edge e € E(C), Egc)~p(c)[cong(Q(C),e)] < O(1/a). However, in order to use the Basic Cluster
Disengagement procedure, we need a stronger property: namely, for every edge e € E(C), we require
that Eg(c)~p() [(cong(Q(C),€))?] < B, for some parameter 3. If we are given a distribution D(C)
over the set Ag(C) of internal C-routers with this latter property, then we say that cluster C' is n-light
with respect to D(C). Computing a distribution D(C') for which cluster C' is n-light is a much more
challenging task. We come close to achieving it in our Cluster Classification Theorem. Before we
describe the theorem, we need one more definition. Let C' be a cluster of a graph G, and let 1’ be
some parameter. Assume that we are given some rotation system 3 for graph G, and let £¢ be the
rotation system for cluster C' that is induced by X. Let I¢ = (C, %) be the resulting instance of
MCNwRS. We say that cluster C is 7/-bad if OPTcqwrs(I€) > [66(C)|? /7.

In the Cluster Classification Theorem, we provide an efficient algorithm, that, given an instance I =

(G,X) of MCNwRS with |E(G)| = m, and a cluster C' C G that has the a-bandwidth property (where

o = Q(1/ poly logm)), either correctly establishes that cluster C' is i’-bad, for 5/ = 20((log m)*/*loglogm)

or produces a distribution D(C') over the set Ag(C) of internal C-routers, such that cluster C is 8-light
with respect to D(C), for g = 20(Vlegmloglogm) ~ Ip fact, the algorithm is randomized, and, with a



small probability, it may erroneously classify cluster C' as being n/-bad, when this is not the case. This
small technicality is immaterial to this high-level exposition, and we will ignore it here. The proof of
the Cluster Classification Theorem is long and technically involved, and is partially responsible for the
high approximation factor that we eventually obtain. It is our hope that a simpler and a cleaner proof
of the theorem with better parameters will be discovered in the future. We believe that the theorem
is a graph-theoretic result that is interesting in its own right. We now provide a high-level summary
of the main challenges in its proof.

At the heart of the proof is an algorithm that we called AlgFindGuiding. Suppose we are given an
instance I = (H,Y) of MCNwRS, and a set T" of k vertices of H called terminals, that are a-well-linked
in H, for some parameter 0 < o < 1. Denote C' = H\ T and |V (H)| = n. The goal of the algorithm is
to either establish that OPTenwes(H) + |E(H)| > k? poly(a/logn); or to compute a distribution D(C)
over internal C-routers, such that cluster C' is ' = poly(logn/«)-light with respect to D(C).

Consider first a much simpler setting, where H is a grid graph, and 7T is the set of vertices on the first
row of the grid. For this special case, the algorithm of [Sid10] (see also Lemma D.10 in the full version
of [Chull]) provides the construction of a distribution D(C) over internal C-routers with the required
properties. This result can be easily generalized to the case where H is a bounded-degree planar
graph, since such a graph must contain a large grid minor. If H is a planar graph, but its maximum
vertex degree is no longer bounded, we can still compute a grid-like structure in it, and apply the same
arguments as in [Sid10] in order to compute the desired distribution D(C'). The difficulty in our case
is that the graph H may be far from being planar, and, even though, from the Excluded Grid theorem
of Robertson and Seymour [RS86, [RST94], it must contain a large grid-like structure, without having
a drawing of H in the plane with a small number of crossings, we do not know how to compute such
a structureﬂ We provide an algorithm that either establishes that OPTcnwrs(H) is large compared to
k2, or computes a grid-like structure in graph H, even if it is not a planar graph. Unfortunately, this
algorithm only works in the setting where |E(H)| is not too large comparable to k. Specifically, if we
ensure that |[E(H)| < k-7 for some parameter 7, then the algorithm either computes a distribution
D(C) over internal C-routers that is n’-light (with " = poly(logn/a) as before), or it establishes that
OPTenwirs(H) + | E(H)| > k? poly(a/ (7 log n)).

Typically, this algorithm would be used in the following setting: we are given a cluster C of a graph
G, that has the a-bandwidth property. We then let H = C* be the augmentation of C, and we let
T be the set of vertices of CT corresponding to the edges of 6z (C). In order for this result to be
meaningful, we need to ensure that |E(C)| is not too large compared to |0z (C)|. Unfortunately, we
may need to apply the classification theorem to clusters C' for which |E(C)| > |6y (C)| holds. In order
to overcome this difficulty, given such a cluster C, we construct a recursive decomposition of C' into
smaller and smaller clusters. Let £ denote the resulting family of clusters, which is a laminar family of
subgraphs of C'. We ensure that every cluster C’ € £ has o = Q(1/ poly logm)-bandwidth property,
and, additionally, if we let C’ be the graph obtained from C’ by contracting every child-cluster of C’
into a supernode, then the number of edges in ¢’ is comparable to [65(C”)|. We consider the clusters
of £ from smallest to largest. For each such cluster C’, we carefully apply Algomthm AlgFindGuiding
to the corresponding contracted graph C’, in order to either classify cluster C’ as n(C")-bad, or to
compute a distribution D(C’) over internal C’-routers, such that C' is 3(C’)-light with respect to
D(C"). Parameters n(C") and 3(C") depend on the height of the cluster C’ in the decomposition tree
that is associated with the laminar family £ of clusters. This recursive algorithm is eventually used to
either establish that cluster C' is n(C)-bad, or to compute a distribution D(C') over the set Ag(C) of
internal C-routers, such that cluster C' is B(C)-light with respect to D(C). The final parameters n(C')

2We note that we need the grid-like structure to have dimensions (k' x k'), where k' is almost linear in k. Therefore,
we cannot use the known bounds for the Excluded Minor Theorem (e.g. from [CT19]) for general graphs, and instead
we need to use an analogue of the stronger version of the theorem for planar graphs.



and S(C) depend exponentially on the height of the decomposition tree associated with the laminar
family £. This strong dependence on dep(L) is one of the reasons for the high approximation factor
that our algorithm eventually achieves.

Obstacles to Using Basic Cluster Disengagement. Let us now revisit the Basic Cluster Disengage-
ment routine. We start with an instance I = (G, ) of MCNwRS, and denote |E(G)| = m. Throughout,
we use a parameter n = 20((log m)*/*log log ™) and 3 = n'/8. Recall that the input to the procedure is a
collection C of disjoint clusters of G. For every cluster C' € C, we are also given a distribution D’'(C')
over the set of external C-routers, such that, for every edge e, Eg/(c)~p/(c) [congs(Q'(C), e)] < 3, and
a distribution D(C') over the set of internal C-routers, such that cluster C' is 8-light with respect to
D(C). We are then guaranteed that the collection Z of subinstances of I that is constructed via Basic
Cluster Disengagement is an n-decomposition of I. We can slightly generalize this procedure to handle
bad clusters as well. Specifically, suppose we are given a partition (C'8", CP2d) of the clusters in C, and,
for each cluster C' € C'8ht, a distribution D(C) over internal C-routers, such that cluster C is 3-light
with respect to D(C). Assume further that each cluster C' € C* is f-bad. Additionally, assume that
we are given, for every cluster C' € C, a distribution D’(C) over external C-routers, such that, for
every edge e, Eg/(cypr(c) [congs(Q'(C), e)] < B, and that every cluster C' € C has the a-bandwidth
property, for some o = Q(1/polylogm). We can then generalize the Basic Cluster Disengagement
procedure to provide the same guarantees as before in this setting, to obtain an n-decomposition of
instance I.

Assume now that we are given an instance I = (G, X) of MCNwRS, with |E(G)| = m. For simplicity,
assume for now that the maximum vertex degree in G is quite small (it is sufficient, for example, that it
is significantly smaller than m.) Using known techniques, we can compute a collection C of disjoint clus-
ters of G, such that, for every cluster C € C, |E(C)| < m/(2u); |ES*(C)| < m/(2p); and every cluster
C € C has a-bandwidth property. If we could, additionally, compute, for each cluster C € C, a distri-
bution D'(C) over external C-routers, such that, for every edge e, Eg/(c)p/(c) [congq(Q'(C), e)] < 5,
then we could use the Cluster Classification Theorem to partition the set C of clusters into subsets
Clieht and CP2d) and to compute, for every cluster C' € C'8" a distribution D(C) over the set of
its internal routers, such that every cluster in CP®d is /-bad, and every cluster C' € C"8"* is 7/-light
with respect to D(C), for some parameter 77’. We could then apply the Basic Cluster Disengagement
procedure in order to compute the desired n-decomposition of the input instance I. Unfortunately, we
currently do not have an algorithm that computes both the collection C of clusters of G with the above
properties, and the required distributions over the external C-routers for each such cluster C'. In order
to overcome this difficulty, we design Advanced Cluster Disengagement procedure, that generalizes Basic
Cluster Disengagement, and no longer requires the distribution over external C-routers for each cluster
C el

Advanced Cluster Disengagement. The input to the Advanced Cluster Disengagement procedure is
an instance I = (G, %) of MCNwRS, and a set C of disjoint clusters of G, that we refer to as basic
clusters. Let m = |E(G)|, and n = 20((log m)*/*loglogm) 4 hefore. The output is an 7-decomposition 7
of I, such that every instance I’ = (G',Y’) € T is a subinstance of I, and moreover, there is at most
one basic cluster C' € C with E(C') C E(G’), with all other edges of G’ lying in EZ"*(C). The algorithm
for the Advanced Cluster Disengagement and its analysis are significantly more involved than those of
Basic Cluster Disengagement. We start with some intuition.

Consider the contracted graph H = G|¢, and its Gomory-Hu tree T'. This tree naturally defines a
laminar family £ of clusters of H: for every vertex v € V(H), we add to £ the cluster U,, that is
the subgraph of H induced by vertex set V(T), where T, is the subtree of T rooted at v. From
the properties of Gomory-Hu trees, if v’ is the parent-vertex of vertex v in T, there is an external
U,-router Q'(U,) in graph H with congy(Q'(U,)) = 1. Laminar family £ of clusters of H naturally
defines a laminar family £’ of clusters of the original graph G, where for each cluster U, € L, set L’



contains a corresponding cluster U,, that is obtained from U, by un-contracting all supernodes that
correspond to clusters of C. For each such cluster U] € L', we can use the external U,-router Q'(U,)
in graph H in order to construct a distribution D’(U]) over external U,-routers in graph G, where
for every edge e, Eg r)~p () [congs(Q'(Uy),e)] < O(1/a). We can then apply the Basic Cluster
Disengagement procedure to the laminar family £ and the distributions {D'(U})} ¢ in order to
compute an n*-decomposition Z of instance I, where every instance in Z is a subinstance of I. Recall
that the parameter n* depends on the depth of the laminar family £’, which is equal to the depth of the
laminar family £. Therefore, if dep(L£) is not too large (for example, it is at most 20((logm)*/*loglog m)),
then we will obtain the desired 7-decomposition of I. But unfortunately we have no control over the
depth of the laminar family £, and in particular the tools described so far do not work when the
Gomory-Hu tree T is a path.

Roughly speaking, we would like to design a different disengagement procedure for the case where the
tree T' is a path, and then reduce the general problem (by exploiting Basic Cluster Disengagement) to
this special case. In fact we follow a similar plan. We define a special type of instances (that we call
nice instances), that resemble the case where the Gomory-Hu tree of the contracted graph H = Gie
is a path. While the motivation behind the definition of nice instances is indeed this special case, the
specifics of the definition are somewhat different, in that it is more general in some of its aspects, and
more restrictive and well-structured in others. We provide an algorithm for Cluster Disengagment of
nice instances, that ensures that, for each resulting subinstance I’ = (G’,Y’), there is at most one
cluster C' € C with C' C G’, and all other edges of G’ lie in EZ'(C). We also provide another algorithm,
that, given an instance I = (G,X) of MCNwRS and a collection C of disjoint basic clusters of graph
G, computes a decomposition Z’ of instance I, such that each resulting instance I’ = (G',Y') € 7' is
a subinstance of I and a nice instance, with respect to the subset C(I") C C of clusters, that contains
every cluster C' € C with C C G’. Combining these two algorithms allows us to compute Advanced
Cluster Disengagement.

Algorithm AlgDecompose. Recall that Algorithm AlgDecompose, given an instance I = (G, %) of
MCNwRS, needs to compute an 7-decomposition Z of I, where n = 90((logm)*/*loglogm) and =
|E(G)|, such that, for each instance I’ = (G',¥') € Z, |[E(G")| < |E(G)|/n. We say that a vertex v

log m*)7/8 log log m*)
)

of G is a high-degree vertez if |5g(v)| > m/poly(u) (here, p = 20 and m* is the

number of edges in the original input instance I'* of MCNwRS).

Consider first the special case where no vertex of G is a high-degree vertex. For this case, it is not
hard to generalize known well-linked decomposition techniques to obtain a collection C of disjoint
clusters of G, such that each cluster C € C has a = (1/polylog m)-bandwidth property, with
|E(C)| < O(m/p), and, additionally, [EZ"(C)| < O(m/p). We can now apply the Advanced Cluster
Disengagement procedure to the set C of clusters, in order to obtain the desired n-decomposition of
I. Recall that we are guaranteed that each resulting instance I’ = (G',X’) € 7 is a subinstance of I,
and there is at most one cluster C' € C with C' C G’, with all other edges of G’ lying in EZ'*(C). This
ensures that |[E(G")| < m/pu, as required.

In general, however, it is possible that the input instance I = (G, ) contains high-degree vertices.
We then consider two cases. We say that instance I is wide if there is a vertex v € V(G), a partition
(E1, E2) of the edges of d¢(v), such that the edges of E appear consecutively in the rotation O, € X,
and so do the edges of Es, and a collection P of at least m/ poly(u) simple edge-disjoint cycles in G,
such that every cycle P € P contains one edge of E; and one edge of Es. An instance that is not wide
is called narrow. We provide separate algorithms for dealing with narrow and wide instances.

Narrow Instances. The algorithm for decomposing narrow instances relies on and generalizes the
algorithm for the special case where GG has no high-degree vertices. As a first step, we compute a
collection C of disjoint clusters of G, such that each cluster C' € C has a = (1/ poly log m)-bandwidth
property, and |EQ"(C)| < O(E(G)/p). The set C of clusters is partitioned into two subsets: set C* of

10



small clusters, and set C/ of flower clusters. For each cluster C' € C*, |E(C)| < O(|E(G)|/u) holds.
If C is a cluster of C/, then we no longer guarantee that |F(C)| is small. Instead, we guarantee
that cluster C' has a special structure. Specifically, C' must contain a single high-degree vertex u(C),
that we call the flower center, and all other vertices of C' must be low-degree vertices. Additionally,
there must be a set X(C) = {X1,..., X} of subgraphs of C, that we call petals, such that, for all
1<i<j <k V(X;)NV(X;) = {u(C)}. We also require that, for all 1 < i < k, there is a set E;
of ©(m/ poly(u)) edges of dg(u(C)) that are contiguous in the rotation Oy € ¥, and lie in X; (see
Figure . Lastly, we require that, for all 1 < i < k, there is a set Q; of edge-disjoint paths, connecting
every edge of dg(X;) \ 0g(u(C)) to vertex u(C'), with all inner vertices on the paths lying in Xj.

Figure 1: An illustration of a 4-petal flower cluster.

We apply Advanced Cluster Disengagement to the set C of clusters, in order to compute an initial
decomposition Z; of the input instance I, such that every instance in Z; is a subinstance of I. Un-
fortunately, it is possible that, for some instances I' = (G',¥') € 7y, |E(G’)| > m/u. For each such
instance I’, there must be some flower cluster C' € Cf that is contained in G’, and all other edges of
G’ must lie in EZ*(C).

We now consider each instance I’ = (G',¥) € I; with |E(G’)| > m/p one by one. Assume that
C € C7 is the flower cluster that is contained in G’, and X(C) = {X1,...,X}} is the set of its petals.
We further decompose instance I’ into a collection Z(C) of subinstances, that consists of a single
global instance I(C), and k additional instances I1(C), ..., I;(C). We ensure that the graph G(C)
associated with the global instance I(C)) only contains edges of E&(C), so |E(G(C))| < m/u holds.
For all 1 < j < k, graph G;(C) associated with instance I;(C) € Z(C) contains the petal X, and
all other edges of G;(C) lie in EX™(C). We note that unfortunately it is still possible that, for some
1 < j <k, graph G;(C) contains too many edges (this can only happen if |[E(X})| is large). However,
our construction ensures that, for each such instance I;(C'), no high-degree vertices lie in graph G;(C).
We can then further decompose instance I;(C') into subinstances using the algorithm that we designed
for the case where no vertex of the input graph is a high-degree vertex. After this final decomposition,
we are guaranteed that each of the final subinstances of instance I that we obtain contains fewer than
m/u edges, as required.

Wide Instances. Suppose we are given a wide instance I = (G,X) of MCNwRS. In this case, we
compute an n-decomposition Z of instance I, such that, for each resulting instance I' = (G',¥) € Z,
either |E(G")| < m/u (in which case we say that I’ is a small instance), or I' is a narrow instance.
We will then further decompose each resulting narrow instance using the algorithm described above.

In order to obtain the decomposition Z of I, we start with Z = {I}. As long as set Z contains at least
one wide instance I' = (G', %) with |E(G")| > m/u, we perform a procedure that “splits” instance I’
into two smaller subinstances. We now turn to describe this procedure at a high level.

Let I' = (G',Y') € T be a wide instance with |E(G")| > m/u. Recall that from the definition of a wide
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instance, there is a vertex v € V(G'), a partition (F1, F2) of the edges of d¢/(v), such that the edges
of E; appear consecutively in the rotation O, € X', and a collection P of at least m/ poly(u) simple
edge-disjoint cycles in G’, such that every cycle in P contains one edge of F; and one edge of Es.
Consider the experiment, in which we choose a cycle W € P uniformly at random. Since |P] is very
large, with reasonably high probability, the edges of the cycle W participate in relatively few crossings
in the optimal solution to instance I’ of MCNwRS. We show that with high enough probability, there
is a near-optimal solution to I’, in which cycle W is drawn in the natural way. We use the cycle W
in order to partition instance I’ into two subinstances I, Iy (intuitively, one subinstance corresponds
to edges and vertices of G’ that are drawn “inside” the cycle W in the near-optimal solution to I’,
and the other subinstance contains all edges and vertices that are drawn “outside” W). Each of the
resulting two instances contains the cycle W, and, in order to be able to combine the solutions to the
two subinstances to obtain a solution to I’, we contract all vertices and edges of W, in each of the
two instances, into a supernode. Let I{, I} denote these two resulting instances. The main difficulty
in the analysis is to show that there is a solution to each resulting instance of MCNwRS, such that the
sum of the costs of two solutions is close to OPTcpwrs(I’). The difficulty arises from the fact that we
do not know what the optimal solution to instance I’ looks like, and so our partition of G’ into two
subgraphs that are drawn on different sides of the cycle W in that solution may be imprecise. Instead,
we need to “fix” the solutions to instances Iy, I (that are induced by the optimal solution to I’) in
order to move all edges and vertices of each subinstance to lie on one side of the cycle W. In fact we
are unable to do so directly. Instead, we show that we can compute a relatively small collection E’
of edges, such that, if we remove the edges of E’ from the graphs corresponding to instances I, I,
then each of the resulting subinstances has the desired structure: namely, it can be drawn completely
inside or completely outside the cycle W with relatively few crossings compared to OPTcquwrs(I’). After
we solve the two resulting subinstances recursively, we combine the resulting solutions, and add the
images of the edges of E’ back, in order to obtain a solution to instance I’.

1.3 Organization

We start with preliminaries in Section[2] We then provide, in Section 3] the definitions of several main
concepts that we use (such as wide and narrow instances), and state three main technical theorems that
allow us to decompose wide and narrow instances. We then provide the proof of Theorem [I.1] using
these three theorems. In Section [ we provide additional definitions, notation and summary of known
results that we use, together with some easy extensions. This section can be thought of as an expanded
version of preliminaries. We then develop our main technical tools: Basic Cluster Disengagement in
Section |5, Cluster Classification Theorem in Section |§| (with parts of the proof delayed to Section ,
and Advanced Cluster Disengagement in Section [7] In Sections [§] [9] and [I0] we provide the proofs of the
three main theorems. Sections [§ and [9] deal with decomposing wide instances, and Section [9] provides
an algorithm for decomposing a narrow instance.

2 Preliminaries

By default, all logarithms in this paper are to the base of 2. All graphs are undirected and finite.
Graphs may contain parallel edges but they may not contain self loops. Graphs without parallel edges
are explicitly referred to as simple graphs.
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2.1 Graph-Theoretic Notation

We follow standard graph-theoretic notation. Let G = (V, E) be a graph. For a vertex v € V, we
denote by dg(v) the set of all edges of G that are incident to v, and we denote degq(v) = |dg(v)].
For two disjoint subsets A, B of vertices of G, we denote by Eq(A, B) the set of all edges with one
endpoint in A and the other in B. For a subset S C V of vertices, we denote by G[S] the subgraph of
G induced by S, by Eg(S) the set of all edges with both endpoints in S, and by d(S) the set of all
edges with exactly one endpoint in S. Abusing the notation, for a subgraph C of G, we use g (C) to
denote 6 (V (C)).

Definition 2.1 (Congestion) Let G be a graph, let e be an edge of G, and let Q be a set of paths in
G. The congestion that the set Q of paths causes on edge e, denoted by cong(Q,e), is the number of
paths in Q that contain e. The total congestion of Q in G is cong(Q) = max.cp () {conge(Q, )}

2.2 Curves in General Position, Graph Drawings, Faces, and Crossings

Let v be an open curve in the plane, and let P be a set of points in the plane. We say that ~ is
internally disjoint from P if no inner point of v lies in P. In other words, P N+ may only contain the
endpoints of v. Given a set I' of open curves in the plane, we say that the curves in I' are internally
disjoint if, for every pair v,+" € T' of distinct curves, every point p € v N~/ is an endpoint of both
curves. We use the following definition of curves in general position.

Definition 2.2 (Curves in general position) Let T be a finite set of open curves in the plane. We
say that the curves of I' are in general position, if the following conditions hold:

e for every pair v,y € T' of distinct curves, there is a finite number of points p with p € yN~';

e for every pair v,y € T of distinct curves, an endpoint of v may not serve as an inner point of
~' or of v; and

e for every triple v, ,7" € T of distinct curves, if some point p lies on all three curves, then it
must be an endpoint of each of these three curves.

Let T" be a set of curves in general position, and let v,7" € I" be a pair of curves. Let p be any point
that lies on both + and ~/, but is not an endpoint of either curve. We then say that point p is a
crossing between v and v/, or that curves v and 7/ cross at point p. We are now ready to formally
define graph drawings.

Definition 2.3 (Graph Drawings) A drawing ¢ of a graph G in the plane is a map ¢, that maps
every vertex v of G to a point o(v) in the plane (called the image of v), and every edge e = (u,v)
of G to a simple curve ¢(e) in the plane whose endpoints are p(u) and @(v) (called the image of e),
such that all points in set {p(v) |v e V(G)} are distinct, and the set {p(e) | e € E(G)} of curves is
in general position. Additionally, for every vertex v € V(G) and edge e € E(G), ¢(v) € p(e) only if v
is an endpoint of e.

Assume now that we are given some drawing ¢ of graph G in the plane, and assume that for some
pair e, €’ of edges, their images ¢(e), p(e’) cross at point p. Then we say that (e, €e’), is a crossing in
the drawing ¢ (we may sometimes omit the subscript p if the images of the two edges only cross at
one point). We also say that p is a crossing point of drawing ¢. We denote by cr(p) the total number
of crossings in the drawing .

Note that a drawing of a graph G in the plane naturally defines a drawing of G on the sphere and
vice versa; we use both types of drawings.
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For convenience, given a drawing ¢ of a graph G, we sometimes will not distinguish between the
edges of G and their images. For example, we may say that edges e, ¢’ cross in drawing ¢ to indicate
that their images cross. Similarly, we may not distinguish between vertices and their images. For
example, we may talk about the order in which edges of dg(v) enter vertex v in drawing ¢, to
mean the order in which the images of the edges of dg(v) enter the image of v. We denote by

#(G) = (Ueesic #(0)) ULe(v) v € V(G)}.

Images of Paths. Assume that we are given a graph G, its drawing ¢, and a path P in G. The
image of path P in ¢, denoted by ¢(P), is the curve that is obtained by concatenating the images of all
edges e € E(P). Equivalently, ¢(P) = U.cpp) ¢(e). If P = {v} for some vertex v, then p(P) = ¢(v).

Planar Graphs and Planar Drawings. A graph G is planar if there is a drawing of G in the
plane with no crossings. A drawing ¢ of a graph G in the plane with cr(¢) = 0 is called a planar
drawing of G. We use the following result by Hopcroft and Tarjan.

Theorem 2.4 ([HT74]) There is an algorithm, that, given a graph G, correctly establishes whether G
is planar, and if so, computes a planar drawing of G. The running time of the algorithm in O(|V (G)]).

Faces of a Drawing. Suppose we are given a graph G and a drawing ¢ of GG in the plane or on
the sphere. The set of faces of ¢ is the set of all connected regions of R? \ (G). If G is drawn in the
plane, then we designate a single face of ¢ as the “outer”, or the “infinite” face.

Identical Drawings and Orientations. Assume that we are given some planar drawing ¢ of a
graph G. We can associate, with every face F' of this drawing, a subgraph 9(F) of G, containing all
vertices and edges of G whose images are contained in the boundary of F. Drawing ¢ of G can be
uniquely defined by the list F of all its faces, and, for every face I’ € F, the corresponding subgraph
d(F) of G. In particular, if ¢, ¢’ are two planar drawings of the graph G, and there is an one-to-one
mapping between the set F of the faces of ¢ and the set F’ of the faces of ¢/, and, for every face F,
the graph O(F) is identical in both drawings, then we say that drawings ¢ and ¢’ are identical.

Assume now that we are given a (possibly non-planar) drawing ¢ of a graph G. Let G’ be the graph
obtained from G by placing a vertex on every crossing of ¢. We then obtain a planar drawing 1 of
the resulting graph G’, where every vertex v € V(G') \ V(G) corresponds to a unique crossing point
of ¢. For every edge e € E(G), let L(e) be the list of all vertices of G’ that correspond to crossings
in which edge e participates in ¢, ordered in the order in which these crossings appear on the image
of edge e in @, as we traverse it from one endpoint to another. Graph G, its planar drawing v, and
the lists {L(e)},c B(c) uniquely define the drawing ¢ of G. In other words, if ¢, ¢ are two drawings
of the graph G, for which (i) the corresponding graphs G’ are the same (up to renaming the vertices
of V(G')\ V(G)); (ii) the induced planar drawings ¢ of G’ are identical; and (iii) the vertex lists
{L(e)}eeE(G) are identical, then ¢ and ¢ are identical drawings of G.

Assume now that ¢ is a drawing of a graph G in the plane, and let ¢’ be the drawing of G that is the
mirror image of ¢. We say that ¢ and ¢’ are identical drawings of G, and that their orientations are
different, or opposite. We sometime say that ¢’ is obtained by flipping the drawing .

We say that a graph G is 3-connected, if for every pair u,v € V(G) of its vertices, G \ {u,v} is a
connected graph. We use the following well known result.

Theorem 2.5 ([Whi92]) Every 3-connected planar graph has a unique planar drawing.

14



2.3 Grids and Their Standard Drawings

The (r x r)-grid is a graph whose vertex set is {v; ; | 1 <i4,j < r}, and edge set is the union of the set
{(vij,vijg1) |1 <i <71 < j<r}of horizontal edges, and the set {(v; j,vit1;) |1 <i<r1<j5<r}
of wvertical edges. For 1 < i < r, the ith row of the grid is the subgraph of the grid graph induced
by vertex set {v;; | 1 < j <r}. Similarly, for 1 < j < r, the jth column of the grid is the subgraph
of the grid graph induced by vertex set {v;; | 1 <i <r}. Given an (r x r)-grid, we refer to vertices
V1,1, V1,r, U1, and v, as the corners of the grid. We also refer to the graph that is obtained from the
union of row 1, row 7, column 1, and column r, as the boundary of the grid.

It is not hard to see that the (r x r)-grid has a unique planar drawing (this is since the (1x1)-grid and
the (2x2)-grid have unique planar drawings, and for all > 3, if we suppress the corner vertices of the
grid, we obtain a planar 3-connected graph, that has a unique planar drawing). We refer to this unique
planar drawing of the grid as its standard drawing (see Figure . Forall 1 <i,7 <r—1, welet Cell; ;
be the face of the standard drawing, that contains the images of the vertices v; j, v; j1, Vit1,j, Vit1,j+1
on its boundary.

i

Figure 2: The standard drawing of the (r x r)-grid with Celly > shown in green.

nr

2.4 Circular Orderings, Orientations, and Rotation Systems

Suppose we are given a collection U = {uy,...,u,} of elements. Let D be any disc in the plane.
Assume further that we are given, for every element u; € U, a point p; on the boundary of D, so
that all resulting points in {p1,...,p,} are distinct. As we traverse the boundary of the disc D in the
clock-wise direction, the order in which we encounter the points p1,...,p, defines a circular ordering
O of the elements of U. If we traverse the boundary of the disc D in the counter-clock-wise direction,
we obtain a circular ordering O’ of the elements of U, which is the mirror image of the ordering O.
We say that the orderings O and O are identical but their orientations are different, or opposite: O
has a negative and O’ has a positive orientation. Whenever we refer to an ordering O of elements, we
view it as unoriented (that is, the orientation can be chosen arbitrarily). When the orientation of the
ordering is fixed, we call it an oriented ordering, and denote it by (O,b), where O is the associated
(unoriented) ordering of elements of U, and b € {—1,1} is the orientation, with b = —1 indicating a
negative (that is, clock-wise), orientation.

We will also consider graph drawings on the sphere. In this case, when we say we traverse the boundary
of a disc D in the clock-wise direction, we mean that we traverse the boundary of D so that the interior
of D lies to our right. Similarly, we traverse the boundary of D in the counter-clock-wise direction, if
the interior of D lies to our left. Circular orderings and orientations are then defined similarly.
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Given a graph G and a vertex v € V(G), a circular ordering O, of the edges of dg(v) is called a
rotation. A collection of circular orderings O, for all vertices v € V(G) is called a rotation system for
graph G.

2.5 Tiny v-Discs and Drawings that Obey Rotations

Given a graph G, its drawing ¢, and a vertex v € V(G), we will sometimes utilize the notion of a tiny
v-disc, that we define next.

Definition 2.6 (Tiny v-Disc) Let G be a graph and let ¢ be a drawing of G on the sphere or in the
plane. For each vertex v € V(G), we denote by D,(v) a very small disc containing the image of v in
its interior, and we refer to Dy(v) as tiny v-disc. Disc Dy (v) must be small enough to ensure that,
for every edge e € 6g(v), the image p(e) of e intersects the boundary of D,(v) at a single point, and
w(e) N Dy(v) is a contiguous curve. Additionally, we require that for every vertex u € V(G) \ {v},
o(u) & Dy(v); for every edge € € E(G) \ ég(v), ¢(¢') N Dy(v) = 0; and that no crossing point of
drawing ¢ is contained in Dy (v). Lastly, we require that all discs in {D,(v) | v € V(G)} are mutually
disjoint.

Consider now a graph G, a vertex v € V(G), and a drawing ¢ of G. Consider the tiny v-disc
D = D,(v). For every edge e € dg(v), let p. be the (unique) intersection of the image ¢(e) of e
and the boundary of the disc D. Let O be the (unoriented) circular ordering in which the points of
{Petec 5 (v) Abpear on the boundary of D. Then O naturally defines a circular ordering O} of the
edges of dg(v): ordering O} is obtained from O by replacing, for each edge e € dg(v), point p. with
the edge e. We say that the images of the edges of dg(v) enter the image of v in the order O in the
drawing ¢. For brevity, we may sometimes say that the edges of d(v) enter v in the order O} in .
While we view the ordering O} as unoriented, drawing ¢ also defines an orientation for this ordering.
If the points in set {pe | € € dg(v)} are encountered in the order O} when traversing the boundary of
D in the counter-clock-wise direction, then the orientation is 1, and otherwise it is —1.

Assume now that we are given a graph G and a rotation system X for G. Let ¢ be a drawing of G.
Consider any vertex v € V(G), and its rotation O, € ¥.. We say that the drawing ¢ obeys the rotation
O, € 3, if the order in which the edges of g (v) enter v in ¢ is precisely O, (note that both orderings
are unoriented). We say that the orientation of v is —1, or negative, in the drawing ¢ if the orientation
of the ordering O, of the edges of dz(v) as they enter v is —1, and otherwise, the orientation of v in
@ is 1, or positive. We say that drawing ¢ of G obeys the rotation system X, if it obeys the rotation
O, € X for every vertex v € V(G).

Assume now that we are given a set I' of curves in general position, where each curve v € I' is an open
curve. Let p be any point that serves as an endpoint of at least one curve in I', and let IV C T" be the
set of curves for which p serves as an endpoint. We then define a tiny p-disc D(p) to be a small disc
that contains the point p in its interior; does not contain any other point that serves as an endpoint of
a curve in I'; and does not contain any crossing point of curves in I'. Additionally, we ensure that, for
every curve v € I, if v € TV, then v N D(p) is a simple curve, and otherwise v N D(p) = (. For every
curve v € I, let g(7) be the unique point of v lying on the boundary of the disc D(p). Note that all
points in {g(vy) | v € I'"} are distinct. Let O be the circular order in which these points are encountered
when we traverse the boundary of D(p). As before, this ordering naturally defines a circular ordering
O’ of the curves in I". We then say that the curves of IV enter the point p in the order O'.

2.6 Problem Definitions and Trivial Algorithms

In the Minimum Crossing Number problem, the input is an n-vertex graph G, and the goal is to compute
a drawing of G in the plane with minimum number of crossings. The value of the optimal solution,
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also called the crossing number of G, is denoted by OPT(G).

We also consider a closely related problem called Minimum Crossing Number with Rotation System
(MCNwRS). In this problem, the input is a graph G, and a rotation system ¥ for G. Given an instance
I = (G,%) of the MCNwRS problem, we say that a drawing ¢ of G is a feasible solution for I if ¢
obeys the rotation system 3. The cost of the solution is the number of crossings in ¢. The goal in the
MCNwRS problem is to compute a feasible solution to the given input instance I of smallest possible
cost. We denote the cost of the optimal solution of the MCNwRS instance I by OPT cyuwrs(1).

We use the following two simple theorems about the MCNwRS problem, whose proofs are deferred to

Appendix and Appendix respectively.

Theorem 2.7 There is an efficient algorithm, that, given an instance I = (G, %) of MCNwRS, cor-
rectly determines whether OPTeques(I) = 0, and, if so, computes a feasible solution to instance I of
cost 0.

Theorem 2.8 There is an efficient algorithm, that given an instance I = (G,%) of MCNwRS, com-
putes a feasible solution to I, of cost at most |E(G)|?.

We refer to the solution computed by the algorithm from Theorem as a trivial solution. We will
also use the following lemma from [CMT20], that allows us to insert edges into a partial solution to
MCNwRS problem instance.

Lemma 2.9 (Lemma 9.2 of [CMT20]) There is an efficient algorithm, that, given an instance
I = (G,X) of the MCNwRS problem, a subset E' C E(G) of edges of G, and a drawing ¢ of graph
G\ E' that obeys X, computes a solution ¢’ to instance I, with cr(¢') < cr(p) + |E'| - |[E(G)].

2.7 A v-Decomposition of an Instance

A central tool that we use in our divide-and-conquer algorithm is a v-decomposition of instances.

Definition 2.10 (v-Decomposition of Instances) Let I = (G, X) be an instance of MCNwRS with
|E(G)| = m, and let v > 1 be a parameter. We say that a collection T of instances of MCNwRS is a
v-decomposition of I, if the following hold:

D1. EI’Z(G’,E/)EZ |E(G/)’ <m- (log m)O(l)’.
Dz. ZI’GZOPTCnWrs(II) < (OPTcnwrs(I) + m) -v; and

D3. there is an efficient algorithm Alg(Z), that, given, a feasible solution o(I') to every instance
I' € I, computes a feasible solution ¢ to instance I, of cost cr(p) < O (3 perer(e(I)).

We say that a randomized algorithm Alg is a v-decomposition algorithm for a family Z* of instances
of MCNwRS if Alg is an efficient algorithm, that, given an instance I = (G,X) € Z*, produces a
collection T of instances that has properties and[D3, and ensures the following additional property
(that replaces Property @)

D2. E[31cr OPTenwrs(I')] < (OPTenwrs(I) + |E(G)]) - v.

In the following claim, whose proof appears in Appendix we show that algorithms for computing
v-decompositions can be naturally composed together.
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Claim 2.11 Let Alg; be a randomized v'-decomposition algorithm for some family T* of instances
of MCNwRS. Assume that, given an instance I € T*, algorithm Alg, produces a collection I' of
instances, all of which belong to some family T** of instances of MCNwRS. Let Algy be a randomized
V" -decomposition algorithm for family T** of instances of MCNwRS. Lastly, let Alg be a randomized
algorithm, that, given an instance I € IT* of MCNwRS, applies Algorithm Alg, to I, to obtain a
collection T' of instances, and then, for every instance I' € T', applies Algorithm Alg, to I', obtaining
a collection I"(I") of instances. The output of algorithm Alg is the collection T = Jpep I"(I') of
instances of MCNwRS. Then Alg is a randomized v-decomposition algorithm for family T* of instances
of MCNWRS, for v =" - max {21/, (log m)o(l)}, where m is the number of edges in instance I.

2.8 Subinstances

We use the following definition of subinstances.

Definition 2.12 (Subinstances) Let I = (G,X) and I' = (G',%') be two instances of MCNwRS.
We say that instance I' is a subinstance of instance I, if there is a subgraph G C G, and a collection
Si,..., S, of mutually disjoint subsets of vertices of G, such that graph G' can be obtained from G
by contracting, for all 1 < i < r, every vertex set S; into a supernode u;; we keep parallel edges but
remove self—loopf]. We do not distinguish between the edges incident to the supernodes in graph G’
and their counterparts in graph G. For every vertex v € V(G') NV (QG), its rotation Ol in ¥’ must be
consistent with the rotation O, € X, while for every supernode u;, its rotation O;u m Y can be defined
arbitrarily.

Observe that, if instance I’ = (G',Y’) is a subinstance of I = (G,X), then |E(G’)| < |E(G)|. Also
notice that the subinstance relation is transitive: if instance I; is a subinstance of instance I, and
instance I is a subinstance of Iy, then I is a subinstance of Ij.

3 An Algorithm for MCNwRS— Proof of Theorem [1.1

In this section we provide the proof of Theorem with some of the details deferred to subsequent
sections. Throughout the paper, we denote by I* = (G*,¥*) the input instance of the MCNwRS
problem, and we denote m* = |E(G*)|. We also use the following parameter that is central to our

* *\7/8 * .
= 9¢"(logm™)"Floglogm™ "where ¢* is a large enough constant.

algorithm: p
As mentioned already, our algorithm for solving the MCNwRS problem is recursive, and, over the course
of the recursion, we will consider various other instances I of MCNwRS. Throughout the algorithm,
parameters m* and p remain unchanged, and are defined with respect to the original input instance

I*. The main technical ingredient of the proof is the following theorem.

Theorem 3.1 There is a constant ¢, and an efficient randomized algorithm, that, given an instance
I =(G,%) of MCNWRS with m = |E(G)|, such that p<" < m < m*, either returns FAIL, or computes
a collection T of instances of MCNwRS with the following properties:

e for every instance I' = (G',¥') € Z, |E(G")| < m/u;

* Z[’Z(G’,E/)EZ |E(G/)’ <m- (log m)O(l)’.

e there is an efficient algorithm called AlgCombineDrawings, that, given a solution o(I') to every
instance I' € T, computes a solution ¢ to instance I; and

3Note that this definition is similar to the definition of a minor, except that we do not require that the induced
subgraphs G[S;] of G are connected.
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o if OPTenwrs(I) < |E(G)|?/uc”, then with probability at least 15/16, all of the following hold:

— the algorithm does not return FAIL;
-7 7& @,’
o Z[’eI OPTcnwrs(I/) < (OPTcnwrs(I) + m) . 20((logm)3/4 loglogm); and

— if algorithm AlgCombineDrawings is given as input a solution o(I') to every instance I' € T,
then the resulting solution ¢ to instance I that it computes has cost at most:

o< > cr(go(I’))) + (OPTenwrs(I) +m) - uOW.

ez

The remainder of this paper is dedicated to the proof of Theorem In the following subsection, we
complete the proof of Theorem using Theorem

3.1 Proof of Theorem [1.1]

Throughout the proof, we assume that m™* is larger than a sufficiently large constant, since otherwise
we can return a trivial solution to instance I*, from Theorem [2.8

We let ¢, > 100 be a large enough constant, so that, for example, when the algorithm from Theorern
is applied to an instance I = (G, ) with m = |E(G)|, such that x¢" < m < m* holds, it is guaranteed
to return a family 7 of instances of MCNwWRS, with > _ ¢ syez |E(G")| < m-(logm)®. We say that
the algorithm from Theorem is successful if all of the following hold:

e the algorithm does not return FAIL;
e if 7 is the collection of instances returned by the algorithm, then Z # ;
¢ > 1er OPTenurs(I') < (OPTenurs(I) + m) - 2¢9((logm)?/ loglogm). g

e if algorithm AlgCombineDrawings is given a solution ¢(I’') to every instance I’ € Z, then it
computes a solution ¢ to instance I, of cost at most ¢y (3= ez cr(w(I”)) + (OPTenwrs (1) +m) - 1.

By letting ¢, be a large enough constant, Theorem [3.1] guarantees that, if OPTeawrs(I) < |E(G)[2/u",
then with probability at least 15/16 the algorithm is successful. We assume that the parameter ¢* in
the definition of y is sufficiently large, so that, e.g., ¢* > 2¢,.

We use a simple recursive algorithm called AlgRecursiveCNwRS, that appears in Figure

In order to analyze the algorithm, it is convenient to associate a partitioning tree 1" with it, whose
vertices correspond to all instances of MCNwRS considered over the course of the algorithm. Let
L = [logm™*]. We start with the tree T' containing a single root vertex v([*), representing the input
instance I*. Consider now some vertex v(I) of the tree, representing some instance I = (G,Y%). When
Algorithm AlgRecursiveCNwRS was applied to instance I, if it did not terminate after the first three
steps, it constructed L collections Zy (1), ..., Z5(I) of instances (some of which may be empty, in case
the algorithm from Theorem returned FAIL in the corresponding iteration). For each such instance
I' € Ule Z;(I), we add a vertex v(I") representing instance I’ to T, that becomes a child vertex of
v(I). This concludes the description of the partitioning tree 7.

We denote by Z* = {I | v(I) € V(T')} the set of all instances of MCNwRS, whose corresponding vertex
appears in the tree 1. For each such instance I € Z*, its recursive level is the distance from vertex
v(I) to the root vertex v(I*) in the tree T (so the recursive level of v(I*) is 0). For j > 0, we denote

N

by Z; C I* the set of all instances I € Z*, whose recursive level is j. Lastly, the depth of the tree
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AlgRecursiveCNwRS

Input: an instance I = (G, X) of the MCNwRS problem, with |E(G)| < m*.
Output: a feasible solution to instance I.

1. Use the algorithm from Theorem to determine whether OPTcqurs(I) = 0. If so, use the
algorithm from Theorem to compute a solution to I of cost 0. Return this solution, and
terminate the algorithm.

2. Use the algorithm from Theorem to compute a trivial solution ¢’ to instance I.
3. If |[E(G)| < p<”, return the trivial solution ¢’ and terminate the algorithm.
4. For 1 < j < [logm*]:

(a) Apply the algorithm from Theorem to instance I.
(b) If the algorithm returns FAIL, let ¢; = ¢ be the trivial solution to instance I, and set
Z;(I) = 0.
(c) Otherwise:
i. Let Z;(I) be the collection of instances computed by the algorithm.

ii. For every instance I’ € Z;(I), apply Algorithm AlgRecursiveCNwRS to instance I’,
to obtain a solution ¢(I") to this instance.

iii. Apply Algorithm AlgCombineDrawings from Theoremto solutions {‘P(I/)}I’elj(l)’
to obtain a solution ¢; to instance 1.

Return a solution to instance I from among {(p' QL Pllog mﬂ} that has fewest crossings.

Figure 3: AlgRecursiveCNwRS
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T, denoted by dep(T), is the largest recursive level of any instance in Z*. In order to analyze the
algorithm, we start with the following two simple observations.

Observation 3.2 dep(T') < M_

— c*loglogm*

Proof: Consider any non-root vertex v(I) in the tree T', and let v(I’) be the parent-vertex of v(I).
Denote I = (G,¥) and I' = (G',¥'). From the construction of tree T, instance I belongs to some
collection of instances obtained by applying the algorithm from Theorem-to instance I’. Therefore,
from Theorem 3.1 |E(G)| < |E(G’)|/p must hold. Therefore, for all j > 0, for every instance

I=(G,%) €T, |E(G) <m* /. Since p = 2¢"(logm” )/¥loglogm” o oot that dep(T) < Ho8™ L

— c*loglogm* " u

1/8

Observation 3.3 ZI:(G,Z)EI* |E(G)| < m* . 2(loem”)

Proof: Consider any non-leaf vertex v(I) of the tree T, and denote I = (G, X). Recall that, when
Algorithm AlgRecursiveCNwRS is applied to instance I, it uses the algorithm from Theorem to
compute L collections Z;(I),...,Z5(I) of instances, such that, if we denote |E(G)| = m, then, for all
1<j< L
S IB(@) < m- (logm) < m - (logm*)°s
I'=(G",x")eZ; (I)

(since m < m* must hold). Since L < 2logm™*, and m™* is sufficiently large, we get that:

Z S B <m- (logm?)t,

I'=(G',3)eZ; (I)

For all j > 0, we denote by N; the total number of edges in all instances in set Z;, N; = ZI:(G,Z)eij |E(G)].
Clearly, No = m*, and, from the above discussion, for all j > 0, N; < N;_; - (log m*)cat2,

(10gm*)1/8

W, we conclude that:

Since dep(7T) <

Z |E(G)| <m*- (logm*)2cg~(logm*)1/8/(c* loglog m*) <m*- 2(logm*)1/8’
I1=(G.,2)eT*

since ¢4 < ¢*/2. O
We use the following corollary, that follows immediately from Observation

Corollary 3.4 The number of instances I = (G, %) € T* with |E(G)| > u" is at most m*.

We say that an instance I € Z* is a leaf instance, if vertex v(I) is a leaf vertex of the tree T, and
we say that it is a non-leaf instance otherwise. Consider now a non-leaf instance I = (G,X) € Z*.
We say that a bad event £(I) happens, if 0 < OPTeqws(I) < |E(G)|?/uc”, and, for all 1 < j < L,
the jth application of the algorithm from Theorem to instance I was unsuccessful. Clearly, from
Theorem 3.1] . Pr[E(I)] < (1/16)% < 1/(m*)*. Let € be the bad event that event £(I) happened for
any instance I € I* From the Union Bound and Corollary |3.4] . we get that Pr[£] < 1/(m*)2. We
use the following immediate observation.

Observation 3.5 If Event £ does not happen, then for every leaf vertex v(I) of T with I = (G,%),
either |E(G)| < u" ; or OPTeqwrs(I) = 0; or OPT (1) > |E(G)[?/uc”

We use the following lemma to complete the proof of Theorem
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Lemma 3.6 If Event £ does not happen, then Algorithm AlgRecursiveCNwRS computes a solution for
instance I* = (G*,X*) of cost at most 20((logm*)"/® log logm™) . (OPTenwrs(I*) + |E(G™)]).

Proof: Consider a non-leaf instance I = (G, ), and let Z;(I),...,Z5(I) be families of instances of
MCNwRS that Algorithm AlgRecursiveCNwRS computed, when applied to instance I. Recall that, for
each 1 < j < L with Z;(I) # 0, the algorithm computes a solution ¢; to instance I, by first solving
each of the instances in Z;(I) recursively, and then combining the resulting solutions using Algorithm
AlgCombineDrawings. Eventually, the algorithm returns the best solution of {¢’, ¢1,..., ¢}, where
¢’ is the trivial solution, whose cost is at most |E(G)|?>. We fix an arbitrary index 1 < j < L, such
that the jth application of the algorithm from Theorem to instance I was successful. Note that
the cost of the solution to instance I that the algorithm returns is at most cr(¢;). We then mark the

vertices of {v(I") | I’ € Z;(I)} in the tree T. We also mark the root vertex of the tree.

Let T* be the subgraph of T induced by all marked vertices. It is easy to verify that 7™ is a tree,
and moreover, if £ did not happen, every leaf vertex of T is also a leaf vertex of T. For a vertex
v(I) € V(T*), we denote by h(I) the length of the longest path in tree 7™, connecting vertex v([)
to any of its descendants in the tree. We use the following claim, whose proof is straightforward
conceptually but somewhat technical; we defer the proof to Appendix

Claim 3.7 Assume that Event £ did not happen. Then there is a fixed constant ¢ > max{c”, ¢4, c*},
such that, for every vertex v(I) € V(T™*), whose corresponding instance is denoted by I = (G,X), the
cost of the solution that the algorithm computes for I is at most:

2E-h(l)-(logm*)3/4 log logm* 'uc”-cg . OPTcnwrs(I) + (log m*)4cgh(l)u20”-6 . |E(G)|

We are now ready to complete the proof of Lemma Recall that h(I*) = dep(T™) < dep(T') <
% from Observation Therefore, from Claim the cost of the solution that the algorithm

computes for instance I* is bounded by:
2O(dep(T))~(logm*)3/4 log log m* ,u,O(l) . OPTcnwrs(I*) + (log m*)O(dep(T)) _MO(l) .m*

< 20(ogm*)™/%) 1 0M) . OPT s (I*) + (logm*)O(ogm™)!/#/loglogm™) | OQ1)  py+

< 9Oorm ) RIoB Lo ™) (OP T s (I7) + | E(G)])

since = 20((10gm*)7/8 loglogm*). )

In order to complete the proof of Theorem it is now enough to prove Theorem The remainder
of the paper is dedicated to the proof of Theorem

3.2 Proof of Theorem [3.1] — Main Definitions and Theorems

We classify instances of MCNwRS into wide and narrow. Wide instances are, in turn, classified into
well-connected and not well-connected instances. We then provide different algorithms for decomposing
instances of each of the resulting three kinds. We use the following notion of a high-degree vertex.

Definition 3.8 (High-degree vertex) Let G be any graph. A vertex v € V(G) is a high-degree
vertex, if deg(v) > |E(G)|/ut.

We are now ready to define wide and narrow instances.

Definition 3.9 (Wide and Narrow Instances) Let I = (G,X) be an instance of MCNwRS with
|E(G)| = m. We say that I is a wide instance, if there is a high-degree vertex v € V(G), a partition
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(E1, E2) of the edges of dc(v), such that the edges of E1 appear consecutively in the rotation O, € X,
and so do the edges of Eo, and there is a collection P of at least Lm/,umJ simple edge-disjoint cycles
in G, such that every cycle P € P contains one edge of E1 and one edge of Eo. An instance that is
not wide is called narrow.

Note that there is an efficient algorithm to check whether a given instance I of MCNwRS is wide, and,
if so, to compute the corresponding set P of cycles, via standard algorithms for maximum flow. (For
every vertex v € V(G), we try all possible partitions (E1, Ea) of d¢(v) with the required properties, as
the number of such partitions is bounded by |dg(v)|?.) We will use the following simple observation
regarding narrow instances.

Observation 3.10 If an instance I = (G,X) of MCNwRS is narrow, then for every pair u,v of
distinct high-degree vertices of G, and any set P of edge-disjoint paths connecting u to v in G, |P| <
2 [|E(G)|/p°] must hold.

Proof: Assume for contradiction that I = (G, X) is a narrow instance of MCNwRS, with |E(G)| = m,
and that there are two high-degree vertices u, v of G, and a set P of more than 2 (m / M50w edge-disjoint
paths in G connecting u to v. We denote |P| = k. Let E' C dg(v) be the set of all edges e € dg(v),
such that e is the first edge on some path in P. We denote E' = {ey,...,er}, where the edges are
indexed according to their ordering in the rotation O, € 3. We also denote P = {P(e;) | 1 <i < k},
where path P(e;) contains the edge e; as its first edge. We can then compute a partition (F1, E2) of
dc(v), such that the edges of Fy appear consecutively in the rotation O, € X, and so do the edges of
E5. Additionally, we can ensure that ei,..., e, /o7 € E1, while the remaining edges of E' lie in Es.
For each 1 < i < {m/ ,u501, we let @; be the cycle obtained by concatenating the paths P(e;) and
P(ek—;+1). We turn Q); into a simple cycle, by removing from it all cycles that are disjoint from vertex
v. It is then immediate to verify that the set {Qi |1<i< {m/ ;ﬁo]} of cycles has all the required
properties to establish that instance I is wide, a contradiction. O

Next, we define well-connected wide instances.

Definition 3.11 (Well-Connected Wide Instances) Let I = (G, X) be a wide instance of MCNwRS

with |E(G)| = m. We say that it is a well-connected instance iff for every pair u,v of distinct vertices
m
5

of G with deg;(v), dege(u) > m/ud, there is a collection of at least % edge-disjoint paths connecting
u tov in G.

The proof of Theorem relies on the following three theorems. The first theorem deals with wide
instances that are not necessarily well-connected. Its proof is deferred to Section

Theorem 3.12 There is an efficient randomized algorithm, whose input is a wide instance I = (G, %)
of MCNwRS, with m = |E(G)|, such that p** < m < m* holds. The algorithm computes a v-

decomposition T of I, for v = 920((logm)*/* loglog™) = sych that every instance I' = (G',Y) € T is a
subinstance of I, and one of the following holds for it:

o cither |E(G")| < m/u;
e or I' is a narrow instance;

o orI' is a wide and well-connected instance.

The second theorem deals with wide well-connected instances. Its proof appears in Section [9}
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Theorem 3.13 There is an efficient randomized algorithm, whose input is a wide and well-connected
instance I = (G,¥) of MCNWRS, with m = |E(G)|, such that u¢ < m < m* holds, for some large
enough constant ¢’. The algorithm either returns FAIL, or computes a non-empty collection T of
instances of MCNwRS, such that the following hold:

* Zl’:(G’,E’)eI |E(G")| < 2|E(G)|;
e for every instance I' = (G',¥') € Z, either |E(G")| < m/u, or instance I' narrow;

e there is an efficient algorithm called AlgCombineDrawings’, that, given a solution ¢o(I') to every
instance I' € T, computes a solution ¢ to instance I; and

o if OPTenwrs(I) < m?/uc then, with probability at least 1 — 1/pu?, all of the following hold:

— the algorithm does not return FAIL;
= > rer OPTenms(I') < OPTenwrs(1) - (logm)©W); and

— if algorithm AlgCombineDrawings’ is given as input a solution ¢(I') to every instance I' € I,
then the resulting solution ¢ to instance I that it computes has cost at most: cr(p) <

E[’EZ CI’(SO(I/)) + OPTcnwrs(I) : Mo(l).

The third theorem deals with narrow instances, and its proof appears in Section

Theorem 3.14 There is an efficient randomized algorithm, whose input is a narrow instance I =
(G,%) of MCNWRS, with m = |E(G)|, such that i°° < |E(G)| < 2m*. The algorithm either returns
FAIL, or computes a v-decomposition L of I, for v = 90((logm)*/4 loglog™) *gych that, for every instance
I' = (G".Y) € Z, |[E(G")| < m/(2n). Moreover, if OPTeaws(I) < m?/u?, then the probability that
the algorithm returns FAIL is at most O(1/u?).

The majority of the remainder of this paper is dedicated to the proofs of the above three theorems.
Before we provide these proofs, we develop central technical tools that they use, in Sections [5|—[7} In
the remainder of this section, we complete the proof of Theorem using Theorems and
B.14

Recall that we are given an instance I = (G, %) of MCNwRS, with p¢" < |E(G)| < m*, for some large
enough constant ¢’. We assume that ¢’ > 100¢/, where ¢’ is the constant in Theorem We use
another large constant c;, and we assume that ¢* > ¢ > ¢”, where c¢* is the constant in the definition
of the parameter . Throughout, we denote m = |E(G)|. We compute the desired collection Z* of
instances in three steps.

Step 1

Assume first that the input instance [ is a wide instance. We apply the algorithm from Theorem [3.12
to I. Let Z be the resulting collection of instances. We partition the set Z of instances into three
subsets. The first set, denoted by Zgmay, contains all instances I' = (G, Y') € Z with |E(G')| < m/pu.

The second set, denoted by 7

large’ contains all narrow instances in Z \fsma”. The third set, denoted by

fgfg)e, contains all remaining instances of 7. From ThAeorem 3.12| every instance in i]gqu)e
well-connected. Since every instance I’ = (G',¥') € Z is a subinstance of I, |E(G’)| < |E(G)| < m*
must hold. Recall that, from Theorem Tisa v1-decomposition for I, for vy = 20((eg m)*/*loglogm)

Therefore:

is wide and
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S E(G)] < m - (logm), (1)
I'=(a' xNel

and

E | ) OPTenurs(I') | < (OPTenurs(I) + m) - v
et

Bad Event £;. We say that a bad event £ happens if Zlfei OPTcnwrs(I") > 100+ (OPT cnurs(I) + m)-
vi. From the Markov Bound, Pr [€1] < 1/100. Note that, if event & did not happen, then for each
instance I’ € Z, OPTcqwrs(I’') < 100- (OPTcqwrs(I) + m) - 1. We need the following simple observation.

Observation 3.15 Assume that OPTcpwrs(1) < mQ/MCH, and that FEvent & did not happen. Then for
every instance I' = (G',Y') € 7™y OPTenwrs(I') < |E(G))|?/ 1.

large large’

Proof: If OPTnus(I) < m?/ ,uC”, and Event & did not happen, then for every instance I’ € 7™

large
T
m? m?
OPTemurs(I’) < 100 - (OPTemars(I) 4+ 1) - 1 < 1 - (OPTemurs(I) +m) < s ( ; m> <2
(since ¢ > 100¢ is a large enough constant and m > u¢"). O
Assume now that instance I is a narrow instance. Then we simply set 7= fl(;;e = {I} and Tamall =

7w = (). This completes the description of the first step.

large

Step 2

In the second step, we apply the algorithm from Theorem [3.13| to every instance I’ € fl(;fg)e If the
algorithm returns FAIL, then we terminate our algorithm and return FAIL as well. Assume now that
the algorithm from Theorem when applied to instance I’, did not return FAIL. We let Z (I') be
the collection of instances that the algorithm computes. Recall that we are guaranteed that, for each
instance I = (G,%) € Z(I'), either I is a narrow instance, or |E(G)| < @ < % (we have used the

fact that |[E(G")| < m, since I’ = (G',Y) is a subinstance of ). Additionally, we are guaranteed that:

Y IB(G) <2B(@)]. (2)
I=(G,2)eZ(I)
In particular, for every instance I = (G, %) € Z(I'), |E(G)| < 2|E(G")| < 2m < 2m*.
. . . B = (w)
We say that the application of the algorithm from Theorem |3.13|to an instance I’ = (G',Y’) € Ilalfge

is successful, if (i) the algorithm does not return FAIL; (ii) Zief(l’) OPTcnwrs(f) < OPTenwrs(I) -

(log m)clg; and (iii) there is an efficient algorithm AlgCombineDrawings’, that, given a solution (1) to

every instance I € Z(I'), computes a solution ¢(I’) to instance I’ with cr(p(I')) < Y iezan crle)) +
OPTcnwrs(I,) : ,UJCIg-
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Bad Event &. For an instance I' = (G',Y) € Il(arg)e’ we say that a bad event &(I’) happens if the
algorithm from Theorem when applied to instance I’, was not successful. From Theorem
and Observation if OPTenwrs(I) < m?/puc”, then Pr [Eo(I') | =&] < 1/p? (since we can assume

that ¢ is a large enough constant).

large

We let & be the bad event that at least of the events in {52([’) | I' € 7w } happened.

Recall that, from the definition of the set I( ) of instances, for every instance I' = (G',¥') € Il(;fg)e,
|E(G] > 2 " holds. On the other hand, from Equatlon l

Y B@)I< Y |B(G) <m-(logm)

I'=(G", Z’)E Iarge I/:(G/’Z/)ei

Therefore |I|arge| < u- (log m) From the Union Bound, if OPTcqurs(1) < 2 L then Pr [&; | &) <

w(log m) < 1

1?2 = 100"
Let Z = UFEZ w Z(I'). Note that, from Inequalities and we get that:
large
S IB(G) < 2m - (logm)*h. 3)
I=(G2)el

We partition the instances in set 7 into two subsets: set fsma”, containing all instances I= (@, i) in
7 with |E(G)| < m/u, and set 7

large’
F(n)
instance I € Ilar .

containing all remaining instances. From Theorem [3.13] every

is narrow. This completes the description of the second step.

Step 3

We focus on four sets of instances that we have constructed so far: isma'“j-l(a?;yisma”?:zl(ar;e Recall

that, if instance I’ = (G, %) belongs t0 set Zgman UZsmall, then |E(G')| < m/p. If instance I’ = (G, %)
belongs to set Il(ar;e, UII(ar;e,
simple observation.

then m/u < |E(G")| < 2m, and instance I’ is narrow. We use the following

Observation 3.16 If OPTpws(f) < m2/,ucu, and neither of the events £1,& happened, then for
every instance I' = (G',Y') € I,(;;e UI,(;;e, OPTenwrs(I') < |E(G") 2/ 2.

Proof: From Observation |3.15| if OPTcnwrs(I ) <m?/uc < and the bad event &1 did not happen, then
for every instance I’ = (G’, ) ez i OPTcnwrs(I’) < |E(G"]*/uc".

Iarge Iarge’

Consider now some instance I' = (G',Y') € Il(;fg)e

If, additionally, event £ did not happen, then:

Z OPTcnwrs < OPTcnwrs(I,) ’ (log m)C/g
fez ()
Therefore, for every instance I € Z(I'):

|E(G)]> o m’
e e

OPT eurs (1) < OPT equrs (I') - (log m)“ <
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m2

We conclude that for every instance I = (G, %) € Il( n) OPTenwrs(I) <

arge’ e 77— . Since, from the definition

of the set Il(ar;e of instances, |E(G)| > o, we get that:

assuming that ¢’ is a large enough constant. O

Next, we process every instance I’ E Il(ar;e U Il(ar;e one by one. Notice that for each such instance

= (G, |E(G")| > m/u > 15 must hold, since m > p¢’. Additionally, as observed already,
\E(G/)| < 2m < 2m*. When instance I’ = (G',Y') is processed, we apply the algorithm from
Theorem to it. If the algorithm returns FAIL, then we terminate the algorithm and return FAIL
as well. Otherwise, we obtain a collection Z(I") of instances of MCNwRS. From Theorem for

every instance I"” = (G",¥") € Z(I'), |E(G")| < @ < 7. Moreover, from the definition of a
v-decomposition of an instance, and from the fact that |E(G")| < 2m, we get that:

> [B(G")] < |B(G")| - (log m)‘s. (4)

I”:(G”,E”)Gj([’)

Bad Events & and £. For an instance I' = (G',Y') € II(;:)e U I(ar;y we say that the bad
event £3(I’) happens if the algorithm from Theorem When applied to instance I’, returns
FAIL. From Theorem if OPTenwrs(I’) < |E(G")|?/p!, then the probability that the algorithm
returns FAIL is at most O(1/p?). Therefore, from Observation if OPTenws(1) < m?/puc”,
then Pr[&3(I') | =& A=) < O(1/u?). We let &3 to be the bad event that &3(I’) happened for

any instance I' € 70 U™ | Recall that, for every instance I' = (G',Y') € 7 U 7m

large large* large large’

|E(G)| > “4t. On the other hand, from Inequahtyl E _(ar et |E(G/)’ < m - (logm), and

r=(Gr 3z, |E(G")| < 2m- (logm)%. Therefore, |II | < 3u-(logm)
From the Union Bound, assuming that the constant ¢* in the definition of the parameter y is large

enough, if OPTcqurs(I) < m2/,ucﬁ, then Pr[E3 | =& A &) < O (’W) < WIO' Lastly, we de-

fine bad event £ to be the event that at least one of the events &;, &, 3 happened. Note that
Pr [£] < Pr [£1]+Pr [& | =&+ Pr [E3 | ~€1 A —&;]. Therefore, altogether, if OPTepurs(I) < m2/uc”,
then Pr[€] < % < 3—10. Note that, if bad event £ does not happen, then the algorithm does not
return FAIL.

If the third step of the algorithm did not terminate with a FAIL, we let Zgman = UI'eI(”) LF) ().

large large
By combining Equations and [ we get that:

from Inequality 3] >°

arge Iarge

S IB(G")] < 3m- (logm)*%. (5)

I”:(Gﬁazu)ejsmall

The output of the algorithm is the collection Z* = fsma” Ufsma” UZgman of instances of MCNwRS. From
the above discussion, for every instance I” = (G",X") € Z*, |E(G")| < m/u. As discussed already, if
bad event £ does not happen, then the algorithm does not return FAIL.

From now on we assume that the algorithm did not return FAIL. From Inequalities [}, 3] and [5] we get
that:
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S B(G")] < 6m - (logm)*.
I”:(G”,Z”)GI*

Next, we provide Algorithm AlgCombineDrawings in the following claim, whose proof is conceptually
straightforward but somewhat technical, and is deferred to Section of Appendix.

Claim 3.17 There is an efficient algorithm, called AlgCombineDrawings, that, given a solution o(I")
to every instance I" € T*, computes a solution p(I) to instance I. Moreover, if OPTenwrs(I) < m2/uc”,
and event € did not happen, then cr(p(I)) < O(X e cr(e(I")) + (OPT cnwrs (1) +m) - @),

The following observation, whose proof is deferred to Section of Appendix, will complete the proof
of Theorem [B.11

Observation 3.18 If OPTcnus(I) < |E(G)2/uc and bad event £ did not happen, then for some
constant ¢, with probability at least 99/100:

S OPTenurs(I”) < (OPTepurs(1) + m) - 2008/ loglozrm,
I// GI*

Let £ be the bad event that 3~ ;7. OPTenurs(I”) > (OPTenwrs(I) + m) - 9c(logm)®/*loglogm Clearly,
if OPTenurs(I) < m?/u”, then the probability that either of the events £ or £ happens is at most
Pr[€] + Pr [’ | =] < 1/16. Therefore, we conclude that, if OPTeqwrs(I) < m2/u¢’, then with
probability at least 15/16, all of the following hold: (i) the algorithm does not return FAIL; (ii)
T # 0; (iii) 3 reze OPTenwrs(I”) < (OPTenwrs(I) + m) . 90((logm)*/* loglogm). and (iv) if algorithm
AlgCombineDrawings is given as input a solution ¢(I”) to every instance I” € Z*, then the resulting

solution ¢ to instance I that it computes has cost at most: O ( dorrers cr(gp([”))) + (OPTcnwrs (1) +

m) - nOM). This concludes the proof of Theorem from Theorems [3.12} [3.13} and [3.14]

4 Definitions, Notation, Known Results, and their Easy Extensions

In this section we provide additional definitions and notation, together with known results and their
easy extensions that we use throughout the paper.

4.1 Clusters, Paths, Flows, and Routers
4.1.1 Clusters and Augmentations of Clusters

Let G be a graph. A cluster of G is a vertex-induced connected subgraph of GG. For a set C of mutually
disjoint clusters of G, we denote by EZ'(C) the set of all edges e = (u, v) of G, with endpoints u and
v lying in distinct clusters of C. We sometimes omit the subscript G when clear from the context.

Next, we define the notion of augmentation of a cluster.

Definition 4.1 (Augmentation of Clusters) Let C be a cluster of a graph G. The augmentation
of cluster C, denoted by C, is a graph that is obtained from G as follows. First, we subdivide every
edge e € dq(C) with a vertez t., and let T(C) = {te | e € 0q(C)} be the resulting set of newly added
vertices. We then let CT be the subgraph of the resulting graph induced by the set V(C) U T(C) of
vertices.
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4.1.2 Paths and Flows

As mentioned already, all graphs that we consider in this paper are undirected. However, sometimes
it will be convenient for us to assign direction to paths in such graphs. We do so by designating one
endpoint of the path as its first endpoint, and another endpoint as its last endpoint. We will then
view the path as being directed from its first endpoint towards its last endpoint. We will sometimes
refer to a path with an assigned direction as a directed path, even though the underlying graph is an
undirected graph.

Let G be a graph, and let P be a collection of paths in G. We say that the paths of P are edge-disjoint
if every edge of G belongs to at most one path of P. We say that the paths in P are vertez-disjoint if
every vertex of G belongs to at most one path of P. We say that the paths in P are internally disjoint
if every vertex v € V(G) that serves as an inner vertex of some path in P only belongs to one path of
P. Given a subset S of vertices of GG, we say that the paths in P are internally disjoint from S if no
vertex of S serves as an inner vertex of any path in P. Abusing the notation, for a subgraph C' of G,
we sometimes say that a set P of paths is internally disjoint from C' to indicate that it is internally
disjoint from V(C).

Flows. Let G be a graph, and let P be a collection of directed paths in graph G. A flow over the set
P of paths is an assignment of non-negative values f(P) > 0, called flow-values, to every path P € P.
We sometimes refer to paths in P as flow-paths for flow f. For each edge e € E(G), let P(e) C P be
the set of all paths whose first edge is e, and let P’(e) C P be the set of all paths whose last edge is e.
We say that edge e sends z flow units in f if Zpep(e) f(e) = z, and we say that edge e receives z flow
units in f if ZPGP,(E) f(P) = z. Similarly, for a vertex v € V(G), we say that v sends z flow units in f
if the sum of flow-values of all paths P € P that originate at v is z. We say that v receives z flow units
in f if the sum of the flow-values of all paths P € P that terminate at v is z. The congestion that
flow f causes on an edge e is > Pep: f(P), and the total congestion of the flow f is the maximum
ec

congestion that it causes on any edg(e 13 € E(G).

An s-t flow network consists of a graph G, non-negative capacities c(e) > 0 for each edge e € E(G),
and two special vertices: source s and destination t. Let P be the set of all paths in graph G originating
at s and terminating at t. An s-t flow in G is a flow f that is defined over the set P of paths, such
that for every edge e € E(G), the congestion that f causes on edge e is at most c(e). The value of the
flow is Y pep f(P). Maximum s-t flow is an s-t flow of largest possible value. We say that a flow f
is integral if, for every path P, value f(P) is an integer. It is a well known fact (called integrality of
flow) that, if all edge capacities in a flow network are integral, then there is a maximum s-t flow that
is integral, and such a flow can be found efficiently. In case where the capacity of every edge is unit,
such a flow defines a maximum-cardinality collection of edge-disjoint s-t paths.

Congestion Reduction. We repeatedly use the following simple claim, whose proof follows from
integrality of flow, and appears in Appendix

Claim 4.2 Let G be a graph and let P be a set of directed paths in G. For each vertex v € V(G),
let ng(v) and np(v) denote the numbers of paths in P originating and terminating at v, respectively.
Then there is a set P’ of at least |P|/ cong(P) edge-disjoint directed paths in G, such that, for every
vertex v, at most ng(v) paths of P’ originate at v, and at most ny(v) paths of P’ terminate at v.
Moreover, there is an efficient algorithm, that, given G and P, computes a set P’ of paths with these
properties.
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4.1.3 Routing Paths, Internal Routers and External Routers

Routing Paths. Suppose we are given a graph G, two sets S,T C V(G) of its vertices, and a set Q
of paths. We say that Q is a routing of vertices of S to vertices of T, or that Q routes vertices of S to
vertices of T if @ = {Q, | v € S}, and, for every vertex v € S, path ), originates at v and terminates
at a vertex of T'. If, additionally, for every vertex ¢t € T', exactly one path in Q terminates at t, then
we say that Q is a one-to-one routing of vertices of S to vertices of T

Similarly, given two sets E1, Ey of edges of G, we say that aset Q@ = {Q. | e € E1} of paths is a routing
of edges of E1 to edges of Es, or that O routes edges of Eq to edges of Es, if, for every edge e € E,
path Q. has e as its first edge, and some edge of Es as its last edge. If, additionally, every edge of Es
serves as the last edge of exactly one path in O, then we say that Q is a one-to-one routing of edges
of F1 to edges of Fo.

Next, we define the notions of internal and external routers for clusters, which are central notions that
are used throughout our algorithms.

Definition 4.3 (Internal and External Routers for Clusters) Let G be a graph, let C be a clus-
ter of G, and let Q(C) be a set of paths in G. We say that Q(C) is an internal router for C, or an
internal C-router, if there is some vertex u € V(C), such that Q(C) = {Q. | e € 6q(C)}, and, for each
edge e € 0g(C), path Q. has e as its first edge, u as its last vertex, and all edges of E(Q.) \ {e} lie
in C. We refer to vertex u as the center of the router. Similarly, we say that a set Q'(C) of paths
in G is an external router for C, or an external C-router, if there is some vertex v’ € V(G) \ V(C),
such that Q'(C) ={Q. | e € 0¢(C)}, and, for each edge e € d¢(C), path Q. has e as its first edge, u’
as its last vertex, is internally disjoint from C. We refer to v’ as the center of the router. We denote
by Aq(C) the set of all internal C-routers, and by A(C) the set of all external C-routers in G. We
may omit the subscript G when clear from the context.

Throughout the paper, we will be working with distributions over the set Ag(C) of internal C-routers
and distributions over the set Ay (C) of external C-routers for various clusters C' of a given graph G.
We say that a distribution D over a set U of elements is given explicitly, if we are given a list U’ C U
of elements, whose probability in D is non-zero, together with their associated probability values. We
say that distribution D is given implicitly if we are given an efficient randomized algorithm that draws
an element from U according to the distribution. When the distribution D is over a set of routers in
a graph G, the running time of the algorithm should be bounded by poly(|E(G)|).

4.1.4 Non-Transversal Paths and Path Splicing

We start by defining the notions of transversal and non-transversal intersections of paths and cycles,
which we then use to define non-transversal paths.

Definition 4.4 (Non-transversal Intersection of Paths and Cycles) Let I = (G,%) be an in-
tance of MCNwRS, let Pi, Py be two simple paths in G, and let u be a vertex in V(P1)NV (Py). Denote
by Ey the set of (one or two) edges of Py that are incident to u, and similarly denote by Esy the set
of (one or two) edges of Py that are incident to u. We say that the intersection of the paths Py, Ps at
verter u is non-transversal with respect to X if one of the following holds:

o cither the set 1 U Ey contains fewer than 4 distinct edges; or

o £ = {e1,e} and Ey = {ea, ey}, all edges in set {e1,€),ea, e} are distinct, and they appear
in the ordering O, € X in one of the following circular orders: (e1,€},ea,€ey), or (e1,€),€h,e2)
(recall that the orderings are unoriented, so the reversals of the above two orderings are also
included in this definition).
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Otherwise, we say that the intersection of the paths Py, Py at vertex u is transversal (see Figure . If
R1, Ry are simple cycles in G, and u is a vertex in V(R1) NV (R3), then we classify the intersection
of R1 and Re and u as transversal or non-transversal with respect to ¥ similarly.

(a) The intersection of paths P; (red)  (b) The intersection of path P; (red) and path P, (purple) is non-transversal
and P, (purple) is transversal at v. at v.

Figure 4: Transversal and non-transversal intersections of paths.

Definition 4.5 (Non-transversal Set of Paths) Let I = (G,X) be an intance of MCNwRS, and
let P be a collection of simple paths in G. We say that the set P of paths is non-transversal with
respect to X if, for every pair Py, P» € P of paths, for every vertexuw € V(Py) NV (Py), the intersection
of Py and Py at u is non-transversal with respect to 3.

Assume now that we are given some instance I = (G, ) of MCNwRS, and a collection Q of simple
paths in G. We let II7(Q) denote the set of all triples (Q,Q’,v), such that Q,Q’ € Q, v is an inner
vertex of both @ and Q’, and the intersection of Q and Q' at v is transversal with respect to .

We need to design a subroutine, that, given a set Q of simple directed paths in a graph G, transforms
it into a set @' of paths that is non-transversal with respect to the given rotation system ¥ for G. We
need to ensure that the multisets containing the first vertex of every path in Q and in Q’, respectively,
remain unchanged, and the same holds for multisets containing the last vertex of every path in both
path sets. We also need to ensure that for each edge e € F(G), cong(Q') < cong,(Q). Below we
provide a procedure for performing such a transformation. The procedure uses a simple subroutine
that we call path splicing and describe next.

Path Splicing. Suppose we are given an instance I = (G, X) of MCNwRS, two simple paths P, P’ in
G, and a vertex v, that serves as an inner vertex of both P and P’, such that the intersection of P and
P’ at vertex v is transversal with respect to . We assume that each of the paths P, P’ is assigned a
direction, and we denote by s and ¢ the first and the last endpoints of P, respectively, and by s’ and ¢/
the first and the last endpoints of P’, respectively. The splicing of P and P’ at vertex v produces two
new paths: path P, that is a concatenation of the subpath of P from s to v, and the subpath of P’
from v to ¢'; and path P’, that is a concatenation of the subpath of P’ from s’ to v, and the subpath
of P from v to t. See Figure [j] for an illustration.

For a set P of directed paths in a graph G, we denote by S(P) and T'(P) the multisets containing
the first vertex on every path in P, and the last vertex on every path in P, respectively. We use the
following simple observation regarding the splicing procedure, whose proof is deferred to Section
of Appendix.
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t t

(a) Before: Path P is shown in red and path (b) After: Path P is shown in red and path P’
P’ is shown in purple. is shown in purple.

Figure 5: An illustration of path splicing at vertex v.

Observation 4.6 Let I = (G,X) be an instance of MCNwRS, let P be a set of simple directed paths
in G, and let (P, P',v) be a triple in IIT (P). Let P, P’ be the pair of paths obtained by splicing P and
P’ atw, and let P' = (P\{P,P'}) U {13, 15'}. Then S(P') = S(P) and T(P') = T(P). Additionally,
either (i) at least one of the paths P, P’ is a non-simple path; or (ii) [T (P")| < [T (P)).

Using Observation [4.6] we can prove the following lemma that allows us to transform an arbitrary
set R of paths into a set R’ of non-transversal paths, while preserving the multisets containing the
first endpoint and the last endpoint of every path, and without increasing the congestion on any edge.
The proof of the lemma below is similar to the proof of Lemma 9.5 in [CMT20], and is provided in
Appendix for completeness.

Lemma 4.7 There is an efficient algorithm, that, given an instance (G, %) of MCNwRS and a set R
of directed paths in G, computes another set R’ of simple directed paths in G, such that S(R') = S(R),
T(R') = T(R), and the paths in R' are non-transversal with respect to X. Moreover, for every edge
e € E(G), congg(R',e) < cong(R,e).

4.2 Cuts, Well-Linkedness, and Related Notions
4.2.1 Minimum Cuts

A cut in a graph G is a bipartition (A, B) of its vertices into non-empty subsets. The value of the cut
is |F(A, B)|. We sometimes consider cuts in edge-capacitated graphs. Given a graph G with capacities
c(e) = 0 on edges e € E(G) and a cut (A, B) in G, the value of the cut is 3 c g, (4 p)c(€). When edge
capacities are not specified, we assume that they are unit.

Given two disjoint subsets S,T" of vertices of GG, an S-T cut, or a cut separating S from T is a cut
(A,B) with S C A, T C B. A minimum S-T cut is an S-T cut (A, B) of minimum value. When
S = {s} and T = {t}, we refer to S-T cuts as s-t cuts. We will use the following lemma, whose proof
is provided in Section [D.4] of Appendix.

Lemma 4.8 There is an efficient algorithm, that, given a graph G and a collection S = {s1,..., Sk}
of its vertices, computes, for all 1 < i < k, a set A; of vertices of G, and a collection Q; of paths in
G, such that the following hold:
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o foralll <i<k, SNA; ={si}, and moreover, (A;,V(G)\ 4;) is a minimum cut separating s;
from the vertices of S\ {s;} in G;

o foralll<i<i <k, AiNnAy=0; and

o foralll <i<k, Qi={Qile)|ecdq(Ai)}, where for each e € dc(A;), path Q;i(e) has e as its
first edge, s; as its last vertex, and all internal vertices of Q;(e) lie in A;. Moreover, the paths
in set Q; are edge-disjoint.

4.2.2 Gomory-Hu Trees

Gomory-Hu tree is a convenient structure that represents all minimum s-¢ cuts in a given graph G.
We summarize its properties in the following theorem.

Theorem 4.9 (|[GH61]) There is an efficient algorithm, that, given a graph G = (V, E) with capac-
ities c(e) > 0 on its edges e € E, computes a tree 7 = (V, E') with capacities ¢/(e) > 0 on its edges
e € E’, such that the following hold:

o for every pair s,t of distinct vertices of V', the value of the minimum s-t cut in G is equal to
mineep(p, ;) {c(e)}, where Psy is the unique path connecting s to t in 7; and

e for every pair s,t of distinct vertices of V', if (A, B) is a minimum s-t cut in graph G, then
(A, B) is a minimum s-t cut in graph T, and vice versa.

We obtain the following immediate corollary of Theorem

Corollary 4.10 Let G be an edge-capacitated graph, and let T be a Gomory-Hu tree of graph G. Then
for every edge e = (u,u’) € E(7), if we denote by U, U’ the vertex sets of the two connected components
of T\ {e}, with u € U, then (U,U’) is a minimum u-u' cut in graph G.

4.2.3 Balanced Cut and Sparsest Cut

Suppose we are given a graph G = (V, E), and a subset T C V of its vertices. We say that a cut
(X,Y) in G is a valid T-cut iff X NT,Y NT # (. The sparsity of a valid T-cut (X,Y’) with respect

: |E(X,Y)|
to T'is LT AT

the goal is to compute a valid T-cut of minimum sparsity. Arora, Rao and Vazirani [ARV09] designed
an O(y/logn)-approximation algorithm for the sparsest cut problenﬂ where n = |V(G)|. We denote
this algorithm by Aagry, and its approximation factor by Barv(n) = O(y/logn).

We say that a cut (A, B) in a graph G is n-edge-balanced, or just n-balanced, for a parameter 0 < n < 1,
if |[E(A)|,|E(B)| <n-|E(G)|. We say that a cut (A4, B) is a minimum n-balanced cut in G if (A, B) is
an n-balanced cut of minimum value |E(A, B)|. We will use the following theorem that follows from
the work of [ARV(9]. The proof is provided in Section of Appendix.

In the Sparsest Cut problem, given a graph G and a subset T of its vertices,

Theorem 4.11 For every constant 1/2 < 17 < 1, there is another constant 1 < 7' < 1 and an
efficient algorithm, that, given a connected (not necessarily simple) graph G with m edges, computes
a 1'-balanced cut (A, B) in G, whose value is at most O(Barv(m)) times the value of the minimum
f-balanced cut in G.

4The algorithm was originally designed for simple graphs, but it can be easily generalized to graphs with parallel
edges by exploiting edge capacities.
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The following lemma is a simple consequence of the Planar Separator Theorem of Lipton and Tarjan
ILT79]. A version of the lemma for vertex-balanced cuts was proved in [PSS96]. For completeness, we
provide the proof of the lemma in Section of Appendix.

Lemma 4.12 Let G be a connected (not necessarily simple) graph with m edges and mazimum vertex
degree A < m /20, If OPT(G) < m?/2%0, then the value of a minimum (3/4)-edge-balanced cut in
G is at most O(/OPT(G) + A -m).

4.2.4 Well-Linkedness, Bandwidth Property, and Routing Well-Linked Vertex Sets

The notion of well-linkedness plays a central role in graph theory and graph algorithms (see e.g. [Rac02,
CKS04, [And10, [CL12, [Chul2, [CC16, [Chul6l [CT19]). We use the following standard definitions, which
are equivalent to those used in much of previous work.

Definition 4.13 (Well-Linkedness) We say that a set T of vertices in a graph G is a-well-linked,
for a parameter 0 < a < 1, if the sparsity of every valid T-cut in graph G is at least a. Equivalently,
for every partition (A, B) of V(G) with ANT,BNT # 0, |Eq(A,B)| > a-min{|ANT|,|BNT|} must
hold.

The next simple observation, that has been used extensively in previous work, shows that the set of
vertices lying on the first row of the (r x r)-grid is 1-well-linked. For completeness, we provide its
proof in Section of Appendix.

Observation 4.14 Let r > 1 be an integer, and let H be the (r x r)-grid graph. Let S be the set of
vertices lying on the first row of the grid. Then vertex set S is 1-well-linked in H.

Next, we define the notion of bandwidth property, that was also used extensively in graph algorithms.

Definition 4.15 (a-Bandwidth Property) We say that a cluster C of a graph G has the a-
bandwidth property in G, for some parameter 0 < o < 1, if, for every partition (A, B) of vertices of
C, |Ec(A, B)| = a- min {|d¢(A) N 66 (C)|, [6¢(B) Nda(C)]}

The following immediate observation provides an equivalent definition of the bandwidth property that
is helpful to keep in mind. Recall that, for a cluster C of a graph G, its augmentation C* is a graph
that is obtained from graph G as follows. We subdivide every edge e € d5(C) with a vertex t., and let
T(C) = {t. | e € 5c(C)} be the resulting set of newly added vertices. We then let C* be the subgraph
of the resulting graph induced by vertex set V(C) U T(C).

Observation 4.16 Let G be a graph, let C C G a cluster of G, and let 0 < o < 1 be a parameter.
Cluster C' has the a-bandwidth property iff the set T(C) = {t. | e € q(C)} of vertices is a-well-linked
in graph CT, which is the augmentation of cluster C in G.

One useful property of well-linked sets of vertices is that routing is easy between vertices of such sets.
We summarize this property, that has been used extensively in past work, in the following theorem,
and we provide its proof in Appendix [D.8|for completeness. The theorem uses the notion of one-to-one
routing that was defined in Section [4.1.3]

Theorem 4.17 There is an efficient algorithm, that, given a graph G, a set T of vertices of G that
1s a-well-linked, and a pair T1, Ty of disjoint equal-cardinality subsets of T', computes a one-to-one
routing Q of vertices of Th to vertices of Ta, with congs(Q) < [1/a].

The next corollary follows immediately from Observation and Theorem [4.17}
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Corollary 4.18 There is an efficient algorithm, that, given a graph G, a cluster S of G that has the
a-bandwidth property for some 0 < a < 1, and a pair E1, Eo of disjoint equal-cardinality subsets of the
edge set 6(S), computes a one-to-one routing Q of edges of E1 to edges of Es, with cong,(Q) < [1/a],
such that, for every path QQ € Q, all inner vertices of @ lie in S.

4.2.5 Basic Well-Linked Decomposition

Typically, in a well-linked decomposition, we are given a graph G together with a cluster .S of GG, and
our goal is to compute a partition of S into clusters, each of which has the a-bandwidth property in
graph G, for some given parameter 0 < o < 1. Algorithms for computing well-linked decompositions
were used extensively in prior work on graph-based problems (see e.g. [Rac02), [CKS04l [And10, [(CT.12,
Chul2, [CC16, [Chul6l [CT19]). We use a variation of this technique, that, in addition to ensuring
that each cluster R in the decomposition has the a-bandwidth property, provides a collection P(R) of
paths routing the edges of d¢(R) to edges of d¢(.S), such that the paths in P(R) are internally disjoint
from R and cause low congestion. The proof uses standard techniques and is deferred to Section
of Appendix.

Theorem 4.19 There is an efficient algorithm, whose input is a graph G, a connected cluster S of

G, and parameters m and «, for which |E(G)| < m and 0 < o < min {64ﬁARV(1n)~logm’ 48101ng} hold.

The algorithm computes a collection R of vertex-disjoint clusters of S, such that:

o Uner V(B) = V(8);

o for every cluster R € R, |da(R)| < [6c(9)|;

o cvery cluster R € R has the a-bandwidth property in graph G; and
o Sher lS6(R)| < [66(9)] - (1+ O(a -log"m)).

Additionally, the algorithm computes, for every cluster R € R, a set P(R) = {P(e) | e € 0g(R)} of
paths in graph G with congs(P(R)) < 100, such that, for every edge e € 0c(R), path P(e) has e as its
first edge and some edge of 6¢(S) as its last edge, and all inner vertices of P(e) lie in V(S)\ V(R).

We note that, while the above theorem requires that cluster S is connected, it can also be used when
this is not the case, by simply applying the algorithm to every connected component of S and then

taking the union of all resulting sets of clusters; all properties that the theorem guarantees will continue
to hold.

4.2.6 Layered Well-Linked Decomposition

To the best of our knowledge, layered well-linked decomposition was first introduced by Andrews
[And10]. It is similar to the basic well-linked decomposition, except that it has some additional useful
properties. We start by defining a layered well-linked decomposition formally. Our definition is very
similar to that of [And10], except that we require some additional properties.

Let H be a graph with |[E(H)| = m and C' C H a cluster of H. Let W be a collection of disjoint
clusters of H \ C with Uyye)y VIW) = V(H \ C), and let (L1, Ls,...,L;) be a partition of W into
subsets that we call layers. We denote Lo = {C'}, and, for all 1 < i < r, for every cluster W € L;,
we partition the set 65 (W) of edges into two subsets: set 09°"" (W) containing all edges (u,v) with
u € V(W) and v lying in a cluster of LoU---UL;_1, and set §"P(W) containing all remaining edges of
§(W), namely: all edges (u,v) with u € V(W) and v lying in a cluster of £; U---U L, (see Figure|6).

35



We say that the collection W of clusters, together with its partition (Li, Lo, ..., L;) into layers is a
valid layered a-well-linked decomposition of H with respect to C, for some parameter 0 < o < 1, iff
the following conditions hold:

L1. For every pair W, W’ of distinct clusters in W, V(W) N V(W’') = 0, and Uy V(IW) =
V(H)\V(C);

L2. each cluster W € W has the a-bandwidth property in H;

L3. for every cluster W e W, |6 (W)| < |6g(C)|, and |Exg(W)| > |6z (W)|/(641og m);
L4. for every cluster W € W, [§"P(W)| < [§9°"™(W)|/ log m;

L5. > wew [0 (W)] < 4]6m(C)|; and

L6. for every cluster W € W, there is a collection P(W) = {P(e) | e € 6z (W)} of paths in H, that
cause congestion at most 200/, and for all e € 55 (W), path P(e) contains e as its first edge,
some edge €’ € 6y (C) as its last edge, and all inner vertices of P(e) are disjoint from W.

°

Figure 6: An illustration of a layered well-linked decomposition of H with respect to C'. For cluster
W € Lo, the edges of §"P(W) are shown in red, and the edges of §4°"*(TW) are shown in blue.

Recall that, given a graph H and two sets E’, E” of its edges, we say that a set P of paths in H routes
edges of E’ to edges of E” if P = {P(e) | e € E'}, and, for each edge e € E’, path P(e) has e as its
first edge and some edge of E” as its last edge. Given a cluster W of H, we say that the set P of
paths avoids W if, for every path P € P, no inner vertex of P lies in W. Therefore, Condition [L6]|
equivalently requires that for every cluster W € W, there is a collection P(W) of paths in H routing
the edges of 0 (W) to the edges of 07 (C), such that the paths in P(W) avoid W. This property is
the main difference between our definition of a layered well-linked decomposition and that of [And10],
which did not require this property.

The following theorem allows us to compute a layered well-linked decomposition in any graph. Its

proof is practically identical to the algorithm of [And10]. The main difference is that we need to prove
that the resulting decomposition has property [L6l The proof of the theorem is deferred to Section

[D-10] of Appendix.

Theorem 4.20 There is a large enough constant ¢, and an efficient algorithm, that given a connected
graph H with |E(H)| = m > ¢ and a cluster C' of H, computes a valid layered a-well-linked decom-
position (W, (L1,..., L)) of H with respect to C, for a = The number of layers in the

decomposition is r < logm.

clog®®m’
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4.3 Expanders, Graph Embeddings, and Routing Well-Linked Sets

We will use the notion of expanders, that we define next.

Definition 4.21 (Expanders) We say that a graph W is an a-ezpander, for some 0 < a < 1, if, for
every partition (A, B) of V(W) into non-empty subsets, |Ew (A, B)| > o -min{|A|, |B|}; equivalently,
the set V(W) of vertices is a-well-linked in W .

We will also use a standard notion of graph embeddings.

Definition 4.22 (Embedding of Graphs) Let H, G be a pair of graphs with V(H) C V(G). An
embedding of H into G is a collection P = {P(e) | e € E(H)} of paths in graph G, where for each edge
e = (u,v) € E(H), path P(e) has endpoints u and v. The congestion of the embedding is congq(P).

The following well known claim shows a connection between well-linked sets of vertices and embeddings
of expanders. The proof is standard and deferred to Section [D.11] of Appendix.

Claim 4.23 There is a universal constant ccyg, and an efficient randomized algorithm that, given a
graph G together with a subset T of its vertices of cardinality k, such that T is a-well-linked in G, for
some 0 < a < 1, constructs another graph W with V(W) = T and maximum vertex degree at most
conc log? k, together with an embedding P of W into G with congestion at most M, such that
with high probability graph W is an (1/4)-expander.

We show in the following observation that, if W is the outcome expander of the algorithm from
Claim then it has a high crossing number. The proof is provided in Section of Appendix.

Observation 4.24 There is some constant ¢, such that, if W is an (1/4)-expander, with |V (W)| =
k > ¢ and mazimum vertex degree O(log? k), then OPTo (W) > k2/(clog® k).

We obtain the following useful corollary of Claim that allows us to route specific pairs of vertices
of a well-linked vertex set T. We provide its proof in Appendix

Corollary 4.25 There is an efficient randomized algorithm that, given a graph G, a subset T of its
vertices of cardinality k, that is a-well-linked in G, for some 0 < « < 1, together with a partial
matching M over the vertices of T, computes a set R(M) = {R(u,v) | (u,v) € M} of paths in graph
G, such that for every pair (u,v) € M of vertices, path R(u,v) connects u to v. Moreover, with high
probability, the congestion caused by the paths in R(M) in G is O((log" k)/a).

Let K, be a complete graph, whose vertex set has cardinality z. We obtain the following immediate
corollary of Corollary whose proof appears in Section of Appendix.

Corollary 4.26 There is an efficient randomized algorithm that, given a graph G and a subset T of
its vertices of cardinality z, such that T is a-well-linked in G, for some 0 < a < 1, computes an
embedding P of the complete graph K, with V(K,) =T into G, such that, with high probability, the
congestion of the embedding is O((zlog* 2)/a).

4.3.1 Constructing Internal Routers

We now provide an efficient algorithm, that, given a graph G and a cluster C of G that has the a-
bandwidth property, constructs a distribution D(C') over the internal C-routers, such that the expected
congestion on every edge of C' is small. We start with the following lemma, that provides a similar
result for a graph G and a set T' of vertices of G that is well-linked.
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Lemma 4.27 There is an efficient randomized algorithm, whose input is a graph G and set T' of its
vertices called terminals, such that |T| = z, and T is a-well-linked in G, for some 0 < a < 1. The
algorithm computes, for every terminalt € T, a set Qp = {Q(t') |t/ € T'\ {t}} of paths, where, for all
t' e T\ {t}, path Q,(t') connects t' to t. Moreover, if we select a vertex t € T uniformly at random,
then, for every edge e € E(G), E [cong(Qy, )] < O(log? z/a).

Proof: We use the algorithm from Corollary in order to compute an embedding P the complete
graph K, with V(K,) = T into G. Recall that the algorithm ensures that, with high probability, the
congestion of the embedding is at most (czlog? z) /a, for some constant c. If the congestion caused by
the paths in P is greater than this bound, then we say that the algorithm from Corollary failed. We
repeat the algorithm from Corollary O(log |E(G)|) times. Let £ be the event that the algorithm
failed in each of these applications. Then Pr [£;] < 1/ poly(z). In this case, for every terminal ¢t € T,
we return a set Q; = {Q¢(t') | t' € T'\ {t}} of paths, where for every terminal t' € T'\ {t}, Q:(t’) is an
arbitrary path connecting ¢ to ¢ in G. Clearly, for all t € T, for every edge e € E(G), cong(Qs, €) < z.

We assume from now on that, in some application of the algorithm from Corollary it returned a
set P of paths with cong(P) < O((zlog* 2)/a).

We now fix a terminal ¢ € T, and define the corresponding set Q; = {Q¢(t') [#' € T'\ {t}} of paths.
For every terminal ¢’ € T\ {t}, we let Q;(t') be the unique path in set P that serves as the embedding
of the edge (t,t') € E(K.). Clearly, path Q:(t') connects t' to ¢ as required.

Consider now an edge e, and let 7, = conga(P,e) < O((zlog*z)/a). Since every path of P may
lie in at most two path sets of {Q;},.p, we get that ), congq(Qy,e) < 2n.. Therefore, if Event
&1 did not happen, and a terminal ¢ € T is selected uniformly at random, then E [cong(Q,e)] <
2ne/z < O(log? z/a). Overall, for every edge e € E(G), E[cong(Qs,e)] < E [cong(Qy,e) | ~&1] +
E [cong(Qs, ) | &1 - Pr[&1] < O(log 2/a) + O(1/z) < O(log z/a). O
The following corollary allows us to compute a distribution over internal C-routers for a cluster C
of a graph G, such that the expected congestion on every edge of C is small. The corollary follows
immediately by applying the algorithm from Lemma to the augmentation CT of the cluster C in
graph G. The proof of the corollary is omitted.

Corollary 4.28 There is an efficient randomized algorithm, whose input is a graph G and a cluster
C of G that has the a-bandwidth property for some 0 < « < 1. The algorithm returns (explic-
itly) a distribution D over the set A(C) of internal C-routers, such that, for every edge e € E(C),

Eo.p [cong(Q, e)] < O((log |0 (C)|)"/ev).

4.4 Curves in the Plane or on a Sphere
4.4.1 Reordering Curves

Assume that we are given two oriented orderings (O,b), (O',b') on a set U = {uq,...,u,} of elements.
Assume for simplicity that b = b = 1 (otherwise the corresponding ordering can be flipped). Consider
a disc D, with a collection {pi,...,p,} of distinct points appearing on the boundary of D (we will
view each point p; as representing element u; of U), such that the order in which these points are
encountered, as we traverse the boundary of D in the counter-clock-wise direction, is precisely O. Let
D’ C D be another disc that is contained in D, whose boundary is disjont from the boundary of D.
Assume that a collection {p],...,p.} of points appear on the boundary of D', and that the order
in which these points are encountered as we traverse the boundary of D’ in the counter-clock-wise
direction is precisely (’. As before, for each 1 < i < r, we view point p} as representing element
u; € U. We now define reordering curves between the oriented orderings (O,b) and (O’, '), which are
then used in order to define the distance between the two orderings.

38



Definition 4.29 (Reordering curves) We say that a collection T' = {v1,...,v} of curves is a set
of reordering curves for oriented orderings (O,b) and (O, V) iff (i) the curves in T' are in general
position; (ii) each curve v; € T is simple and its interior is contained in D \ D'; and (iii) for all
1 < i <, curve 7; has p;,p; as its endpoints. The cost of the collection T is the total number of
crossings between its curves.

Definition 4.30 (Distance between orderings) Let (O,b) and (O',b') be two oriented orderings
on a set U of elements. The distance between the two oriented orderings, denoted by dist((O,b), (O, V'),

is the smallest cost of any collection T' of reordering curves for (O,b) and (O,V'). For two unoriented
orderings O, 0" on U, we define dist(O, 0") = miny <1 1 {dist((O,b), (O, b'))}.

The following lemma, that follows from Section 4 of [PSS09] and Section 5.2 of [PSS11], provides an
efficient algorithm to compute a collection of reordering curves of near-optimal cost for a given pair of
oriented orderings. The proof is deferred to Section of Appendix.

Lemma 4.31 There is an efficient algorithm, that, given a pair (O,b), (O',V') of oriented orderings
on a set U of elements, computes a collection T' of reordering curves for (O,b) and (O', V'), of cost at
most 2 - dist((O,b), (O, 1)).

We will use the following simple corollary of the lemma, whose proof is provided Appendix

Corollary 4.32 There is an efficient algorithm, whose input is a graph G, a drawing ¢ of G in the
plane, a vertex v € V(G), and a circular ordering O, of the edges of éc(v). Let O. be the circular
order in which the edges of 0q(v) enter the image of v in ¢, and let D = Dy(v) be a tiny v-disc.
The algorithm produces a new drawing ¢’ of G, with cr(¢’) < cr(p) + 2 - dist(O,, O)), such that the
following hold:

e the images of the edges of 0c(v) enter the image of v in the order O, in ¢'; and

e the drawings ¢ and ¢' are identical, except that, for each edge e € dg(v), the segment of the
image of e lying inside the disc D may be different in the two drawings.

4.4.2 Type-1 Uncrossing of Curves

In this subsection we consider a set I' of curves in the plane (or on a sphere) that are in general
position, and provide a simple operation, called type-1 uncrossing, whose goal is to “simplify” this
collection of curves by eliminating some of the crossings between them. Specifically, we modify the
curves in I', without changing their endpoints, to ensure that every pair of curves cross at most once.
We now describe the type-1 uncrossing operation formally.

Let I' be a set of simple curves in the plane that are in general position. For a pair I'1, 'y of disjoint
subsets of ', we denote by x(I'1,I'2) the total number of crossings between the curves in I'y and the
curves in I'y. In other words, x(I'1,I'2) is the number of points p, such that p lies on a curve in I'; and
on a curve in I'g, and p is not an endpoint of these curves. If I'y = {~}, then we use the shorthand

x(7.T2) instead of x({7},T):

The type-1 uncrossing operation iteratively considers pairs v, € T' of distinct curves that cross more
than once, and then locally modifies them, as shown in Figure [7] to eliminate two crossings. This
operation ensures that no new crossings are created, and preserves the endpoints of both curves. The
following theorem summarizes this operation. The proof of the theorem is standard and is deferred to
Section of Appendix for completeness.
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(a) Before: Curves v and ~' cross twice, at (b) After: Each of the new curves vy and 4’ has

points p and g. The crossing points of both same endpoints as before. The two curves no

curves with the third curve are circled as well. longer cross each other, and the pink curve still
participates in two crossings with v and +’.

Figure 7: Type-1 uncrossing operation.

Theorem 4.33 (Type-1 Uncrossing) There is an algorithm, that, given a set I' of simple curves in
general position, that are partitioned into two disjoint subsets I'y, 'y, computes, for each curve v € 'y,
a simple curve 4 that has same endpoints as v, such that, if we denote by Ty = {~' |y € T'1}, then
the following hold:

e the curves in set Iy UTy are in general position;
e cvery pair of distinct curves in I} cross at most once;
e for every curve v € I'y, x(7,T)) < x(v,T1); and

e the total number of crossings between the curves of I') UTy is bounded by the total number of
crossings between the curves of T'.

The running time of the algorithm is bounded by poly(n - N), where n is the number of bits in the
representation of the set I' of curves, and N is the number of crossing points between the curves of I

4.4.3 Curves in a Disc and Nudging of Curves

Suppose we are given a disc D, and a collection {s1,¢1,..., sk, tx} of distinct points on its boundary.
For all 1 < i < j < k, we say that the two pairs (s;,%;), (sj,t;) of points cross iff the unoriented
circular ordering of the points s;, s;,t;,t; on the boundary of D is (s;, s;,t;,t;). We use the following
simple claim, whose proof is deferred to Appendix

Claim 4.34 There is an efficient algorithm that, given a disc D, and a collection {s1,t1,..., Sk, tx}
of distinct points on the boundary of D, computes a collection T' = {v1,...,v} of curves, such that,
for all 1 < i <k, curve ~; has s; and t; as its endpoints, and its interior is contained in the interior
of D. Moreover, for every pair 1 <i < j <k of indices, if the two pairs (si,t;),(s,t;) of points cross
then curves v;,; intersect at exactly one point; otherwise, curves 7;,; do not intersect. Lastly, every
point in the interior of D may be contained in at most two curves of I.
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Nudging Procedure. In a nudging procedure, we are given an instance I = (G, X) of MCNwRS, a
subset U of vertices of G, and a collection P of edge-disjoint paths, such that, for every path P € P,
all inner vertices of P lie in U, and the endpoints of P do not lie in U. Additionally, we are given
some solution ¢ to instance I. For every path P € P, we denote by v(P) the image of path P in ¢,
that is, v(P) is the concatenation of the images of all edges of P. Notice that the resulting collection
I' ={y(P) | P € P} may not be in general position. This is since some vertices v € U may lie on more
than 2 paths in P, and in such a case more than 2 curves in I' contain the point ¢(u). The purpose
of the nudging procedure is to slightly modify the curves in I in the viccinity of the images of such
vertices to ensure that the resulting collection of curves IV = {+/(P) | P € P} is in general position,
while introducing relatively few crossings. Additionally, the procedure ensures that, for every path
P € P, the endpoints of the new curve +/(P) are identical to those of the original curve v(P).

We start by letting, for every path P, curve +/(P) be the original curve v(P), and we set IV =
{v'(P) | P € P}. We then process every vertex u € U one by one. Consider an iteration when any
such vertex u is processed. Let P(u) C P be a set of all paths P € P with u € V(P). We denote
P(u) = {P1,...,P}. Consider the tiny u-disc D(u) = Dy(u) in the drawing ¢ of graph G. For all
1 <i <k, welet s;,t; be the two points at which curve 7/(P;) intersects the boundary of the disc D(u).
Note that all points s1,%1,..., Sk, tx must be distinct, as the paths in P are edge-disjoint. We use the
algorithm from Claim in order to construct a collection {o1,...,0x} of curves, such that, for all
1 <i <k, curve o; has s; and ¢; as its endpoints, and is completely contained in D(u). Recall that
the claim ensures that, for every pair 1 < ¢ < j < k of indices, if the two pairs (s;,t;), (s5,t;) of points
cross, then curves o;,0; intersect at exactly one point; otherwise, curves o;,0; do not intersect. The
former may only happen if paths P;, P; have a transversal intersection at vertex u. For all 1 <¢ <k,
we modify the curve 7/(P;) as follows: we replace the segment of the curve between points s;,t; with
the curve o;. Once every vertex of U is processed, we obtain the final collection IV = {+/(P) | P € P}
of curves. From the above discussion, we get the following observation.

Observation 4.35 The setI' = {7/ (P) | P € P} of curves is in general position, and, for every path
P € P, the endpoints of curve v'(P) are identical to the endpoints of curve ~(P). Moreover, if x
denotes the set of all crossings (e,€’), in ¢, where e and €' are edges of | Jpep E(P), then the number
of crossings between the curves of I' is bounded by |x| + |IIT(P)|. Lastly, if the paths in P are non-
transversal with respect to 3, then for every path P € P, the number of crossings between ' (P) and
"'\ {+(P)} is bounded by the number of crossings (e,€'), in ¢ where exactly one of the edges e, €’
belongs to P.

4.4.4 Type-2 Uncrossing of Curves

In this subsection we provide another subroutine, called type-2 uncrossing of curves, that allows us to
simplify a given set I' of curves by removing some of the crossings between them. Unlike the type-1
uncrossing operation, we no longer preserve the endpoints of every curve, but we ensure that the
multisets containing the endpoints of the curves are preserved under this operation.

It will sometimes be useful for us to assign a direction to a curve -y, by designating one of its endpoints,
that we denote by s(v), as its first endpoint, and the other endpoint, denoted by ¢(), as its last
endpoint. If I' is a collection of curves, and each curve in I is assigned a direction, then we say that
I' is a collection of directed curves. In such a case, we let S(I') be the multiset of points containing
the first endpoint of every curve in I', and we let T'(T") be the multiset of points containing the last
endpoint of every curve in I'.

For the type-2 uncrossing operation, we will consider curves that arise from some drawing ¢ of a graph
(. We first need to define curves that are aligned with a graph drawing. For intuition, consider first
some planar graph G, and its planar drawing . In this case, curve + is aligned with the drawing ¢
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of G, if there is some path P in G, such that v can be obtained by first concatenating the images of
all edges if P, and then possibly modifying the resulting curve within tiny discs Dy (v) for vertices
v € V(P) (typically via a nudging operation). If ¢ is a non-planar drawing of some graph G, then
the definition of a curve v being aligned with the drawing is similar, but now we allow the curve -y to
“switch” from the image of one edge to another, at a crossing point between the two edges. Therefore,
we can define a sequence e, eo, ..., e,_1 of edges of GG, such that the curve “follows” segments of these
edges. The curve 7 itself can then be partitioned into segments oy, 0}, 09,0%,...,0._4,0,, where for
all 1 <4 < r—1, g; is a contiguous segment of the image of edge e;. For a pair oj,0;,; of such
segments, either the last endpoint of o} and the first endpoint of o7, ; are identical (and it is a crossing
point between the images of e; and e;11); or segment ;1 is contained in disc Dy (v;41), where v;41 is
a common endpoint of e; and e;41. With this intuition in mind, we now define the notion of alignment
of a curve with a drawing of a graph.

Definition 4.36 (Curve aligned with a drawing of a graph) Let G be a graph and ¢ a drawing
of G in the plane. We say that a curve ~ is aligned with the drawing @ of G if there is a sequence
(e1,€2,...,e,—1) of edges of G, and a partition (01,0, 02,05, ...,0._1,0.) of v into consecutive seg-
ments, such that, if we denote, for all 1 <i <r, e; = (v;,vi1+1), then the following hold:

o foralll <i<r—1, o} is a contiguous segment of non-zero length of ¢(e;), and it is disjoint
from all discs in {Dw(u)}uev(G), except that its first endpoint may lie on the boundary of D, (v;),
and its last endpoint may lie on the boundary of Dy(vit1);

o foralll <i <r, segment o; is either contained in disc Dy(v;), or it is contained in a tiny p-disc
D(p), where p is a crossing point of p(ei—1) and v(e;);

e 01 =p(e1) N Dy(v1); and
o 0, = p(er—1) N Dy(vy).

In order to perform a type-2 uncrossing operation, we consider a graph G, a drawing ¢ of G, and a
set Q of simple directed paths in G. We assume that no vertex of G may serve simultaneously as
an endpoint of a path of @ and an inner vertex of some other path of @. We can then define a set
I'={~(Q) | Q € Q} of curves, where, for every path @ € Q, curve v(Q) is obtained by concatenating
the images of the edges of (). Note however that the curves in the resulting set I' are not necessarily
in general position. Type-2 uncrossing allows us to fix this, and moreover to eliminate all crossings
between the resulting set I'” of curves. Unlike type-1 uncrossing, we only guarantee that the multisets
containing the first and last endpoints of the curves in IV remain identical to those corresponding to
I', but we no longer guarantee that they are matched in the same way to each other. For technical
reasons, we need to consider two different settings for the type-2 uncrossing: one where the paths in set
Q are edge-disjoint, in which case we can provide somewhat stronger guarantees, and another where
this is not the case. These two settings for type-2 uncrossing are provided in the following theorem
and its corollary, whose proofs are simple and are deferred to Sections [D.19] and [D.20] of Appendix,
respectively. We start with the setting where the paths in set Q are edge-disjoint.

Theorem 4.37 There is an efficient algorithm, whose input consists of a graph G, a drawing ¢ of G on
the sphere, and a collection Q of edge-disjoint paths in G, such that no verter of G may simultaneously
serve as an endpoint of some path in Q and an inner vertex of some path in Q. Additionally, for each
path Q € Q, one of its endpoints is designated as its first endpoint and is denoted by s(Q), and the
other endpoint is designated as its last endpoint and denoted by t(Q). The algorithm computes a set
I'={~(Q) | Q € Q} of directed simple curves on the sphere with the following properties:

o cvery curve ¥(Q) € I' is aligned with the drawing of the graph Jg o @' induced by p;
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e for each path Q € Q, s(v(Q)) = ¢(s(Q)); moreover, if e1(Q) is the first edge of Q, then curve
Y(Q) contains the segment p(e1(Q)) N Dy(s(Q));

o the multiset T(I'), containing the last endpoint of every curve in I, is precisely the multiset
{e(t(Q)) | Q € Q}, containing the image of the last vertex on every path of Q in ¢; and

e the curves in I' do not cross each other.

We emphasize that the curves in I' may match the mutisets {¢(s(Q)) | @ € Q} and {p(t(Q)) | @ € Q}
differently from the paths in Q.

We will sometimes use Theorem in a setting where we are additionally given a subgraph C' C G,
and the paths of Q are internally disjoint from C. In such a case, from the definition of aligned curves,
and from the fact that the curves of I" do not cross each other, for every edge e € E(C), the number
of crossings between ¢(e) and the curves in I' is bounded by the number of crossings between ¢(e)

and the curves of {cp(e’) | e € Ugeo E(Q)}

We use the following corollary of Theorem that deals with the setting where paths in set Q may
share edges. The proof is deferred to Section of Appendix.

Corollary 4.38 There is an efficient algorithm, whose input consists of a graph G, a drawing ¢ of G
on the sphere, a subgraph C of G, and a collection Q of paths in G, that are internally disjoint from
C, such that no vertex of G may simultaneously serve as an endpoint of some path in Q and an inner
vertex of some path in Q. Additionally, for each path Q € Q, one of its endpoints is designated as its
first endpoint and is denoted by s(Q), and the other endpoint is designated as its last endpoint and is
denoted by t(Q). The algorithm computes a set T' = {~(Q) | Q € Q} of directed simple curves on the
sphere with the following properties:

o for every path Q € Q, s(v(Q)) = ¢(s(Q));

o the multiset T(I'), containing the last endpoint of every curve in T, is precisely the multiset
{p(t(Q)) | Q € Q}, containing the image of the last vertex on every path of Q;

e the curves in I' do not cross each other; and

e for each edge e € E(C), the number of crossings between p(e) and the curves in T is bounded by
Peere\ec) X(€ ') - cong(Q, €'), where x(e, ') is the number of crossings between p(e) and
p(e’).

4.5 Contracted Graphs

Let G be a graph and let C be a collection of disjoint clusters of G. We define the contracted graph
G)c to be the graph obtained from G by contracting each cluster C' € C into a supernode vc; we
remove self-loops but keep parallel edges. Note that every edge of graph G|c corresponds to some
edge of graph G. We do not distinguish between such edges, so E(G|¢) € E(G). We refer to vertices
of G|¢ that are not supernodes as regular vertices. In the following claim, we derive well-linkedness
properties of a set T" of vertices in a graph G from well-linkedness of T" in a contracted graph G|¢ and
bandwidth properties of the clusters of C in G. The proof is deferred to Section of Appendix.

Claim 4.39 Let G = (V, E) be a graph, T CV a subset of its vertices, and C a collection of disjoint
clusters of G, such that T N (Ugee V(C)) = 0. Assume that each cluster C € C has the ai-bandwidth
property in G, and that the set T' of vertices is ag-well-linked in the contracted graph G|c, for some
parameters 0 < aj,as < 1. Then T is (v - ag)-well-linked in G.
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The following corollary of Claim essentially replaces the well-linkedness property of the set T' of
vertices with the equivalent bandwidth property of a cluster of a given graph G. The proof is deferred

to Section of Appendix.

Corollary 4.40 Let G be a graph, and let R be a cluster of G. Let C be a collection of disjoint clusters
of R, such that every cluster C € C has the ai-bandwidth property in graph G, for some parameter
0 <ay <1. Denote R = Rjc and G = G\¢c, and assume further that R has the az-bandwidth property

in graph G, for some 0 < ag < 1. Then cluster R has the (a1 - ag)-bandwidth property in graph G.

The following simple claim allows us to transform a routing in a contracted graph G|¢ into a routing
in the original graph G. The proof appears in Section of Appendix.

Claim 4.41 There is an efficient algorithm, that takes as input a graph G, a set C of disjoint clusters of
G, such that each cluster C' € C has the a-bandwidth property in G for some 0 < a < 1, and a collection
P of edge-disjoint paths in the contracted graph G\c, routing some set T C V(G) NV (G|c) of vertices
to some verter x € V(G)NV(G|¢). The algorithm produces a collection P' of paths in graph G, routing
the vertices of T to vertex x, such that, for each edge e € E(G)\ (Upee E(C)), congg(P',e) < 1, and
for each edge e € Upce E(C), congg(P',e) < [1/a]. Additionally, the algorithm produces another
set P" of edge-disjoint paths in graph G, of cardinality at least o - |T|/2, routing a subset T' C T of
vertices to x.

The following claim allows us to bound the crossing number of a contracted graph. The proof is
provided in Section of the Appendix.

Claim 4.42 Let I = (G,X) be an instance of the MCNwRS problem, and let C be a collection of
disjoint clusters of G, such that each cluster in C has the a-bandwidth property, for some 0 < a < 1.
Then there is a drawing ¢ of the contracted graph G\c, with cr(¢) < O(OPTcpwrs(1) log®m/a?), where
m = |E(G)|. Moreover, for every regular vertex x € V(G|c) NV (G), the ordering of the edges of 6c(w)
as they enter x in ¢ is consistent with the rotation O, € X.

5 First Set of Tools: Light Clusters, Bad Clusters, Path-Guided
Orderings, and Basic Cluster Disengagement

The main goal of this section is to define and analyze the Basic Cluster Disengagement procedure.
Along the way we will define several other central tools that we use throughout the paper, such as
light clusters, bad clusters, and path-guided orderings.

We start by defining and analyzing laminar family-based disengagement procedure, which will serve
as the basis of the basic disengagement procedure.

5.1 Laminar Family-Based Disengagment

We start by defining a laminar family of clusters and its associated partitioning tree.

5.1.1 Laminar Family of Clusters and Partitioning Tree

Definition 5.1 (Laminar family of clusters) Let G be a graph, and let L be a family of clusters of
G. We say that L is a laminar family, +f G € L, and additionally, for all S, S’ € L, either SNS" =0,
orSCS’, orS"CS holds.
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Given a laminar family £ of clusters of G, we associate a paritioning tree 7(L£) with it, that is defined
as follows. The vertex set of the tree is {v(S) | S € L}; for every cluster S € L, we view vertex v(S) as
representing the cluster S. The root of the tree is v(G) — the vertex associated with the graph G itself.
In order to define the edge set, consider a pair S, S’ € L of clusters. If S C S’, and there is no other
cluster S” € £ with S C S” C ', then we add an edge (v(S),v(S")) to the tree 7(L); vertex v(S)
becomes a child vertex of v(S’) in the tree. We also say that cluster S is a child cluster of cluster S,
and cluster S’ is the parent cluster of S. Similarly, we define an ancestor-descendant relation between
clusters in a natural way: cluster S € £ is a descendant-cluster of a cluster S” € L if vertex v(S’) lies
on the unique path connecting v(.S) to v(G) in the tree 7(£). If S is a descendant-cluster of S’, then
S’ is an ancestor-cluster of S. Notice that every cluster is its own ancestor and its own descendant.

The depth of the laminar family £ of clusters, denoted by dep(L), is the length of the longest root-to-
leaf path in tree 7(£). We also say that cluster S lies at level i of the laminar family L iff the distance
from v(S) to the root of the tree 7(L) is exactly 7.

5.1.2 Definition of Laminar Family-Based Disengagement

The input to the Laminar Family-Based Disengegement is an instance I = (G,Y) of MCNwRS, a
laminar family £ of clusters of G, and, for every cluster C' € L, a circular ordering O(C) of the edges
of 6¢(C) (for C = G, 6¢(C) = 0 and the ordering O(C) is trivial). The output of the procedure is a
collection Z = {Ic = (G¢,X¢) | C € L} of subinstances of I, that are defined as follows.

Consider a cluster C' € L, and denote by W(C) C L the set of all child-clusters of C. In order to
construct the graph G¢, we start with Go = G. For every cluster C’ € W(C'), we contract the vertices
of C’ into a supernode ver. Additionally, if C' # G, then we contract all vertices of V/(G) \ V(C) into
a supernode v*. This completes the definition of the graph G¢ (see Figure . We now define the
rotation system Yo for Go. If C' # G, then the set of edges incident to v* in G¢ is exactly 0 (C). We
set the rotation Oy« € ¢ to be O(C). For every cluster C’ € W(C'), the set of edges incident to ver in
Gc is 6¢(C"). We set the rotation O,_, € X¢ to be O(C”). For every regular vertex z € V(G¢)NV(G),
dco (v) = ég(v) holds, and its rotation O, € ¥ remains the same as in 3.

(a) Layout of graph G with respect to C. (b) Graph Ge¢.

Figure 8: Construction of graph G¢, where C' € L is a cluster with two child-clusters 57, S5.

We refer to the resulting collection Z of clusters as disengagement of instance I via the laminar family
L and the collection {O(C)} ., of orderings.
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5.1.3 Analysis

We start by showing that the total number of edges in all instances that we obtain via the laminar
family-based disengagement procedure is small compared to |E(G)|.

Lemma 5.2 Let I = (G, X) be an instance of MCNwRS, let L be a laminar family of clusters of G, and
let {O(C)}oep be a collection of orderings of the edges of 0q(C), for every cluster C € L. Consider
the collection T = {Ic = (Gc,X¢) | C € L} of subinstances of I obtained by applying the laminar
family-based decomposition to instance I via the laminar family L and the orderings in {O(C)}oep-
Then Yoz |E(Ge)| < O(dep(£) - |[E(G)]).

Proof: Fix an integer 1 < i < dep(£) and denote by £; C L the set of all clusters of £ that lie at
level ¢ of the partitioning tree. From the definition of the laminar family £ and the partitioning tree,
all clusters in set £; are mutually disjoint. Consider now some cluster C' € L;, and its corresponding
graph G¢. Note that every edge of G¢ corresponds to some distinct edge of cluster C, except for the
edges incident to the supernode v*. However, the number of edges incident to v* is at most |0G(C)].
Therefore, overall, |E(G¢)| < |Eq(C)|+ |0c(C)|. Since all clusters in £; are mutually disjoint, we get
that:
ST EGO £ Y (1BalC)] + 3a(C))) < O(E@G)).

Ceﬁi CE[,Z‘
Summing over all indices 1 <14 < dep(L), we get that >, [E(Gc)| = O(dep(L) - |E(G)). O
Next, we show that solutions to the instances in Z can be efficiently combined in order to obtain a

solution to instance I of relatively low cost. The proof is conceptually simple but somewhat technical,
and is deferred to Section of Appendix.

Lemma 5.3 There is an efficient algorithm, that takes as input an instance I = (G,%) of MCNwRS,
a laminar family L of clusters of G, a collection {O(C)}qcp containing an ordering of the edges of
dc(C) for every cluster C € L, and, for every cluster C € L, a solution p(I¢) to the instance Ic € T of
MCNwRS, where T = {Ic | C € L} is the collection of subinstances of I obtained via laminar family-
based disengagement of I via (L,{O(C)}qcp). The output of the algorithm is a solution to instance I
with cost at most 31 _crcr(p(lc)).

So far we have shown that, if Z is the collection of instances that is constructed via a laminar family-
based disengagement of instance I, then the total number of edges in all resulting instances is at
most O(|E(G)| - dep(L)), and that there is an efficient algorithm for combining the solutions to the
resulting instances, in order to obtain a low-cost solution to the original instance I. Another highly
desirable property of the family £ of clusters would be for }~ ;7 OPTenurs(I’) to be small compared
to OPTcnwrs(I) + |E(G)|. Unfortunately, we cannot show that this property holds, except for some
special cases. The Basic Cluster Disengagement procedure essentially considers one such special case,
in which } ;o7 OPTenwrs (1 ') can be appropriately bounded. In order to define this procedure formally,
we first need to define several central notions that are used throughout our algorithm, namely: light
clusters, bad clusters, and path-guided orderings.

5.2 Light Clusters, Bad Clusters, and Path-Guided Orderings

Definition 5.4 (Light Cluster) Let I = (G,X) be an instance of MCNwRS, and let C' be a cluster
of G. Assume further that we are given a distribution D(C) over the set A(C) of internal C-routers.
We say that cluster C is (-light with respect to D(C) if, for every edge e € E(C):

Eo-p(c) [(congg(Q,€))?] < B.
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Definition 5.5 (Bad Cluster) Let I = (G,X) be an instance of MCNwRS, let C' be a cluster of G,
and let X(C) be the rotation system for C induced by 3. We say that C is a p-bad cluster, if:

5c(C)?
OPT s (C, B(C)) + | E(C)| > G(ﬂ)’
Path-Guided Orderings. Let I = (G,X) be an instance of MCNwRS, and let C' be a cluster of
G. Consider an internal C-router @ = {Q(e) | e € dg(C)}. Recall that there is some vertex u € V(C')
(the center of the router), such that, for all e € §5(C), path Q(e) has edge e as its first edge, vertex
u as its last vertex, and all inner vertices of Q(e) lie in C.

We will use the internal C-router Q, and the rotation system X for GG, in order to define a circular
ordering O of the edges of dg(C). We refer to the ordering O as an ordering guided by Q and X.
Ordering O of the edges of 6¢(C) is constructed as follows. Denote dg(u) = {a1,...,a,}, where the
edges are indexed according to their circular ordering O, € . For all 1 < < r, let Q; C Q be the
set of paths whose last edge is a;. We first define an ordering O of the paths in Q, where the paths in
sets Q1,...,Q, appear in the natural order of their indices, and for all 1 <4 < r, the ordering of the
paths in Q; is arbitrary. Ordering O of the paths in Q naturally defines the ordering O of the edges
of 0¢(C): we obtain the ordering O from O by replacing, for every path Q(e) € Q, the path Q(e) in
O with the edge e (the first edge of Q(e)). We refer to O as the ordering of the edges of dg(C) that
is guided by Q and ¥, and we denote it by ©8"ded(Q ¥). A convenient way to think of the ordering
Oeuided(9 ) of the edges of d¢(C) is that this order is determined by the order in which the paths
of Q enter the vertex u, which in turn is determined by the rotation O, € ¥ (as the last edge on each
path in Q lies in dg(u)).

5.3 Basic Cluster Disengagement

The input to the Basic Cluster Disengagement procedure consists of an instance I = (G, X) of MCNwRS
and a laminar family £ of clusters of GG. Recall that, by the definition, G € £ must hold. We further
assume that we are given a partition (£ £Pad) of the clusters of £\ {G}, and, for every cluster
C ¢ Llight 3 distribution D(C') over its internal C-routers (that may be given implicitly). The output
of the procedure is a collection Z = {I | C' € L} of subinstances of I. In order to define the instances
of Z, we will define, for every cluster C' € L, an ordering O(C) of the edges of dg(C). Family 7
of subinstances of [ is then constructed by disengaging instance I via the laminar family £ and the
collection {O(C)} ¢, of orderings.

In order to describe the algorithm for computing the collection Z of subinstances of I, it is now enough
to describe an algorithm that computes, for every cluster C' € £, an ordering O(C) of the edges of
dc(C). Consider any such cluster C' € L. If C' = G, then §¢(C) = 0, and the ordering O(C) is trivial.
If C € £P24, then we let O(C) be an arbitrary ordering of the edges of dg(C). Lastly, consider a
cluster C' € £'8", We select an internal router Q(C) € Ag(C) from the given distribution D(C) at
random. We view the paths in Q(C) as being directed towards the center vertex u(C) of the router.
We use the algorithm from Lemma to compute a non-transversal path set Q(C), routing all edges
of 0¢(C) to vertex u(C), so Q(C) is also an internal C-router. The algorithm ensures that, for every
edge e € E(G), congs(Q(C),e) < congg(Q(C),e). We then let the ordering O(C) of the edges of
6c(C) be an ordering guided by the set Q(C) of paths in graph G, and the rotation system X, so
O(C) = o#ided(9(C), B).

This completes the description of the algorithm for selecting an ordering O(C') of the edges in dg(C)
for each cluster C' € L; note that this algorithm is randomized. This also completes the description of
the algorithm for performing Basic Cluster Disengagement, that we refer to as AlgBasicDisengagement
in the remainder of the paper. Since this algorithm essentially performs disengagement via a laminar
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family of clusters of G, Lemma and Lemma [5.3| continue to hold for the resulting collection Z of
instances. But we can now show that, under some conditions, we can bound the expected value of
21z OPTenwrs(17).

When using the algorithm AlgBasicDisengagement for performing Basic Cluster Disengagement of an
instance I of MCNwRS via a laminar family £, we will typically require that the following properties
hold, for some parameter 3:

P1. every cluster C € £Pd is B-bad, and has the ap-bandwidth property in G, for some oy >
Q(1/ log*? m);

P2. every cluster C' € L8 is B-light with respect to the given distribution D(C) over the set A(C)
of its internal routers; and

P3. for every cluster C' € L, there is a distribution D’'(C) over the set A’(C) of external C-routers,
such that for every edge e € E(G \ C), Eg/(c)~p/(c) [congs(Q'(C), e)] < B.

Observe that the algorithm for computing the family Z of clusters is randomized. We show in the
following lemma that, if all the above conditions hold, then the expected value of »~ 7 OPTeqwrs(I')
is suitably bounded. The proof is somewhat technical, and is deferred to Section of Appendix.

Lemma 5.6 Let [ = (G,X) be an instance of the MCNwRS problem, L a laminar family of clusters of
G, (cheht g£bady o partition of cluster set L\{GY}, and, for every cluster C € £ D(C) a distribution
over internal C-routers. Let T be the collection of subinstances of I obtained by applying Algorithm
AlgBasicDisengagement to instance I, with laminar family £, cluster sets £t £52d = and distributions
{D(C)} ceprign . Assume further that Properties — hold for some parameter B > c(log |E(G)])'8,
where ¢ is a large enough constant. Then:

E | Y OPTeus(I')| < O(dep(L) - B2 - (OPTenues(I) + |E(G)])).

I'eT

We note that the distributions {D'(C)} ., over external routers of the clusters play no role in con-
structing the collection Z of subinstances of I, but they are essential in order to ensure that the expecta-
tion of )7 OPT(I') is suitably bounded. Since this property is essential to us, we will only use Basic
Cluster Disengagement when such distributions are given. Therefore, abusing the notation, we refer to
the family Z of subinstances of I computed via Basic Cluster Disengagement of instance I as described
above, as a Basic Cluster Disengagement of I via the tuple (£, £P*d, £11€h* {D/(C)} oo, {D(C)} cc prisne)-

6 Second Main Tool: Cluster Classification

In this section we introduce our second main tool, the algorithm AlgClassifyCluster, that is summarized
in the following theorem.

Theorem 6.1 There is a randomized algorithm, that, given an instance I = (G,¥%) of MCNwRS prob-
lem with |E(G)| = m, a cluster J C G that has the ag-bandwidth property in G, for ag = 1/1log™ m,
and a parameter 0 < p < 1, either returns FAIL, or computes a distribution D(J) over the set A(J) of
internal J-routers, such that cluster J is B*-light with respect to D(J), where * = 20(Vlogmloglogm)
Moreover, if cluster J is not n*-bad, for n* = 20((logm)?/* loglog™) then the probability that the algo-
rithm returns FAIL is at most p. The running time of the algorithm is poly(m -log(1/p)).
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We will sometimes say that the algorithm AlgClassifyCluster errs if it returns FAIL and yet cluster J is
not n*-bad. Clearly, the probability that the algorithm errs is at most p. We note that the distribution
D(J) over the set A(J) of internal J-routers that the algorithm computes may be returned by the
algorithm implicitly, by providing another efficient algorithm to draw a router from the distribution.

In order to prove Theorem it is sufficient to prove the following theorem.

Theorem 6.2 There is an efficient randomized algorithm, that, given an instance I = (G,%) of
MCNwRS with |E(G)| = m, a cluster J C G that has the ag-bandwidth property in G, for ag =
Q(1/10g>° m), either returns FAIL, or computes a distribution D(J) over the set of internal J-routers,
such that cluster J is *-light with respect to D(J), where * = 90 (Vlegm-loglogm) = N oreoper, if cluster
J is not n*-bad, for n* = 90((logm)*/* log logm) then the probability that the algorithm returns FAIL is
at most 1/2.

Indeed, given a graph G, a cluster J of G and a parameter 0 < p < 1, as in the statement of
Theorem we simply run the algorithm from Theorem [log(1/p)] times on the input instance
(G,Y) and cluster J of G. If the algorithm returns FAIL in every of these iterations, then we also
return FAIL. Otherwise, in at least one of the iterations, the algorithm from Theorem [6.2] returns a
distribution D(J) over the set A(J) of internal J-routers, such that cluster J is §*-light with respect to
D(J). We then return the distribution D(J) as the algorithm’s outcome. It is immediate to verify that
the probability that the algorithm errs is at most p, and that its running time is poly(m - log(1/p)),
as required.

In the remainder of this section, we focus on the proof of Theorem It will be convenient for us
to consider the augmentation J* of cluster J. Recall that this is the graph that is obtained from G
by subdiving every edge e € dg(J) with a vertex t., letting T' = {t. | e € 0g(J)} be the set of the new
vertices, and then letting J* be the subgraph of the resulting graph induced by T'U V' (J). We refer
to vertices of T as terminals, and we denote |T| = k. Recall that, from the ap-bandwidth property
of cluster J, the set T of terminals is ag-well-linked in J*. Since the degree of every terminal in J*
is 1, the rotation system ¥ for graph G naturally defines a unique rotation system % (JT) for J*.
Moreover, cluster J is n*-bad iff OPTcawrs(J 7, X(J 1)) + |E(J T\ T)| > k2/n*.

Let A(JT,T) denote the collection of all sets Q of paths, such that paths in Q route all vertices of T
to some vertex x € V(JT)\ T, in graph J*. We sometimes also call Q a router, and refer to x as the
center vertex of the router. Notice that, if we are given a distribution D over sets of paths in A(J1,T),
such that, for every edge e € E(J), Egup [(congJ+(Q, e))z] < B*, then we can immediately obtain a
distribution D(J) over the set A(J) of internal J-routers, such that cluster J is f*-light with respect
to D(J).

From now on we will only focus on graph J* and the corresponding rotation system X (JT), so it
will be convenient for us to denote graph J* by G and X(J*1) by X. We denote by I = (G,X) the
resulting instance of MCNwRS. From now on our goal is to design a randomized algorithm, that either
computes a distribution D over the set A(G,T') of internal routers, such that, for every edge e € E(G),
Eg.p [(congq(Q,€))?] < %, or returns FAIL. We need to ensure that, if OPTeqwrs(I) + [E(G\ T)| <
k% /n*, then the probability that the algorithm returns FAIL is at most 1/2.

We now provide some intuition. We first show below an algorithm called AlgFindGuiding that “almost”
provides the required guarantees. Specifically, if we are guaranteed that |E(G)| < k- n for some small
parameter 7, then the algorithm either computes a distribution D over sets of paths in A(G,T), such

that, for every edge e € E(G), Egp [(congq(Q,€))?] < poly(logm)/ poly(ag), or it returns FAIL,
with the guarantee that, if OPTcnwis(G,X) + [E(G\ T)| < %, then the probability that the
algorithm returns FAIL is at most 1/2. We could use this theorem directly if |E(G)| < k- n holds for

some 1 < (n*)¢ where € is a constant, but unfortunately this is not guaranteed in the statement of
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Theorem and |E(G)| may be arbitrarily large compared to k. In order to overcome this difficulty,
we use another algorithm, that, given a graph G and a set T of its terminals as above, computes
a collection C of disjoint clusters of G \ T', such that, for each cluster C' € C, either (i) there is an
internal C-router Q(C) € A(C) such that the paths in Q(C') are edge-disjoint; or (ii) C' is n-bad for
some parameter n < n*; or (iii) |[E(C)| < [dg(C)| - O(poly(nlogm)). In the latter case, we say that
C is a concise cluster. We then apply the algorithm AlgFindGuiding to each concise cluster. As a
result, for each such concise cluster C' € C, we will either establish, with high probability, that it is
a 1’-bad cluster, for some parameter n’, or we will compute a distribution D(C) over the set A(C) of
internal C-routers, such that cluster C' is §’-light with respect to D(C), for some parameter 3. The
algorithm for computing the collection C of clusters of G also guarantees that each cluster C' € C has
the o/-bandwidth property, for o/ = Q(1/log!®m), and that the corresponding contracted graph Gc
contains significantly fewer edges: |E(G|c)| < |[E(G)|/n. Intuitively, we would then like to continue
with the contracted graph G|c, applying exactly the same algorithm to this graph. We could continue
this process, obtaining a clustering C’ of this new contracted graph, and so on, until we reach a final
contracted graph G, with |E(G)| < O(kn). At this point we can apply the algorithm AlgFindGuiding to
graph G directly, and as a result, we either obtain the desired distribution D over path sets in A(G,T),
or establish, with high probability, that OPTcqwrs(G, %) + |E(G \ T)| is sufficiently high. A problem
with this approach is that the algorithm AlgFindGuiding requires a rotation system Y’ for its input
graph H. Recall that the algorithm guarantees that, if OPTcnwrs(H,X') + |E(H)| is sufficiently low,
then it only returns FAIL with probability at most 1/2. The difficulty is that, if H is the contracted
graph G|c, then it is not immediately clear how to define the rotation system Y/ for H, such that
OPTcnwrs(H, ¥') is not much higher than OPT us(G, X).

In order to overcome this difficulty, we design the algorithm AlgFindGuiding for a more general setting.
In this setting, the input is a graph H, a rotation system X’ for H, and a set T” of terminals of H,
such that the terminals of 7" are a-well-linked in H. Additionally, we are given some collection C’
of disjoint '-bad clusters in H. We also require that |E(Hc/)| < |T"|r, for some parameter 7. The
algorithm either returns FAIL, or computes a distribution D" over the set A(H,T") of routers, such
that, for every edge e € E(H), Eg.p [(cong(Q, €))?] is sufficiently low. We are also guaranteed that,
if |OPT cnwrs(H, T")| + | E(H \ T")] is sufficiently small compared to |T”|?, then the probability that the
algorithm returns FAIL is at most 1/2. This stronger version of algorithm AlgFindGuiding will allow
us to carry out the algorithm outlined above.

We now provide formal descriptions of the two main tools that our algorithm uses. The first tool allows
us to compute a decomposition of an input graph G into a collection of clusters, each of which is either
light, bad, or concise. The proof of the theorem uses rather standard techniques and is deferred to
Section of Appendix.

Theorem 6.3 There is an efficient algorithm, that we refer to as AlglnitPartition, whose input consists
of a connected m-edge graph G, a set T C V(G) of k vertices called terminals, such that each vertex
of T has degree 1 in G, and a parameter n > logm, such that k < lo —. The algorithm computes a
collection C of vertex-disjoint clusters of G\'T, a partition ( Cl,Cg,CB of C into three subsets, and, for
every cluster C € Cs, an internal C-router Q(C) € A(C), where the paths of Q(C) are edge-disjoint,
such that the following additional properties hold:

e cvery cluster C € C has the o' -bandwidth property, where o/ = m = (m)’.

o for every cluster C € Cy, |E(C)| < O(n*log®m) - [65(C)|;
e for every cluster C' € Ca, OPT(C) > Q(|E(C)|2/(n? polylogm)), and |E(C)| > Q(n*|6g(C)|log® m);
o Uoee V(C)=V(G)\T; and
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o |E(Gio)l < [E(G)|/n.

Note that, from the theorem statement, for every cluster C' € Ca, OPT(C) > Q(|6¢(C)[*n°/ poly log m).
We will informally refer to clusters in C; as concise clusters.

Let H be a graph and let T be a set of vertices of H called terminals. We say that a set Q =
{Q(t) | t € T'} of paths in graph H is a router for H and T if there is a vertex = € V(H), such that,
for every terminal ¢t € T, path Q(t) originates at ¢ and temrinates at z. We denote by A(H,T) the set
of all routers for H and T'. Our second tool is algorithm AlgFindGuiding, summarized in the following
theorem.

Theorem 6.4 There are universal constants cog and c*, and an efficient randomized algorithm, called
AlgFindGuiding, that receives as input an instance I = (H,X) of MCNwRS, where |[E(H)| = m, a
set T C V(H) of k vertices of H called terminals, and a collection C of disjoint clusters of H \ T.
Additionally, the algorithm receives as input parameters 0 < a,a’ < 1 and n,n > 1, such that the
following conditions hold:

c*log*®m

o> aT0(an? and ' > n'3;

k> |E(H|c)|/n;

e cvery terminal t € T' has degree 1 in H;

the set T' of terminals is a-well-linked in the contracted graph Hc; and
o cvery cluster C € C is n/'-bad and has the o/ -bandwidth property in H.

The algorithm either returns FAIL or (explicitly) returns a distribution D over the routers in A(H,T),
such that, for every edge e € E(H), Eg.p [(cong(Q,¢€))?] <O <@> Moreover, if OPT cnwrs(I) +

a12(a/)8
|[E(H\T)| < %, then the probability that the algorithm returns FAIL is at most 1/2.
The proof of Theorem [6.4] is quite technical, and is deferred to Section We note that the algorithm
returns the distribution D explicitly, that is, it lists all routers Q@ € A(H,T) that have a non-zero
probability, together with their probability values in D. In the remainder of this section, we complete
the proof of Theorem using the algorithms AlglnitPartition and AlgFindGuiding.

Note that we can assume, throughout the proof, that m is sufficiently large (larger than some large
enough constant). Otherwise, since the vertices of T" are a-well-linked in G, we get that & < m < O(1).
We can then let D be a distribution that gives a probability 1 to an internal router Q with target
vertex u, where v is an arbitrary vertex of V(G) \ T, and Q is an arbitrary collection of simple paths
routing the vertices of T to u. Clearly, for every edge e € E(G), (congs(Q,e))? < k? < O(1).

6.1 Main Parameters

We now introduce some parameters that our algorithm uses. The main parameter is = 2(1°8 m)*/1,

Our algorithm will consist of (¢ — 1) phases, for £ < O (logm> = O((logm)'/*). At the beginning of

logn
the i-th phase, we will be given a collection C; of disjoint clusters of G \ T'.

Parameters for bandwidth property. We will use the following parameters for bandwidth prop-
erty of the clusters. Recall that ag = 0 =5 is the parameter from the statement of Theorem

1
' logm)
For1 <i</{, a;=(ap)" = We will ensure that for all 1 < i < £, every cluster in C; has the

1
(Tog m)50% *

a;-bandwidth property. Note that oy = 1/(logm)°%* = 1/20((1‘%7’1)1/4 loglogm)
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Parameters for light clusters. Weset 8o =1, and for 1 <i </, 3; = 7(0%%277(55)8 - Bi_1. Tt is easy
to Verify that 56 < (log m)O(ﬁ) < 20((logm)1/2 log log m) < 5*

Parameters for bad clusters. We define the following parameters: 19 = n*-log? m = 20((og m)3/4);
7 = max {(2770)13, no - (log m)so} _ 20((10gm)3/4)7 and foreach 1 < ¢ </, n; = 1;_1-max {(log m)80+50.i’ 1371}.
Clearly, i < (B)® - mi—1, and 1y < iy - (83 < 20(losm)¥ loglogm) < .

6.2 Algorithm Execution

As already mentioned, the algorithm consists of (£ — 1) phases, where £ = O((logm)'/4). At the
beginning of the ith phase, we will be given a collection C; of disjoint clusters of G \ T', which is
partitioned into two subsets: C;ight and CP*. For each cluster C' € C,}ight, we will also be given a
distribution D(C') over the set A(C') of internal C-routers. For all 1 <14 < ¢, we will also define a bad
event &, and we will ensure that it happens with probability at most i/m!?. We will ensure that the

following properties hold for all 1 <4 < £:

R1. each cluster C' € C; has the «a;-bandwidth property;

R2. the number of edges in the contracted graph G\c, is at most m/ ni=1

R3. each cluster C € C;ight is B;-light with respect to the distribution D(C'); and

R4. if the bad event & does not happen, then each cluster C' € C}’ad is m;-bad.

The input to the first phase, C; = (). Clearly, all properties hold for this set of clusters. We
now describe the execution of the ith phase. We assume that we are given as input a collection C; of

disjoint clusters of G \ T', which is partitioned into two subsets, C;ight and Czbad. We are also given,

for each cluster C' € Ciight, a distribution D(C) over the set A(C) of internal C-routers, and we are

guaranteed that Properties hold.

We consider the contracted graph G’ = G)c,- The execution of the ith phase consists of two steps: in
the first step, we apply the algorithm AlglnitPartition to the contracted graph G’, obtaining a collection
C of clusters of G’, which we then convert into clusters of G. The set C of clusters is partitioned into
three subsets. Informally, the clusters in the first subset are concise, the clusters in the second subset
are n;41-bad if event &; did not happen, and the clusters in the third set are (,;41-light with respect to
a distribution over the internal routers that we construct. In the second step we further process each
concise cluster, using the algorithm AlgFindGuiding, in order to determine whether it is a 3;+1-light or
an 7;41-bad cluster, and in the former case, to compute the corresponding distribution D(C') over the
set A(C) of internal C-routers.

6.3 Step 1: Partition

We assume first that |E(G’)| > 16nk logm, where n = 2(°8 m)*/* is the parameter that we have defined
above. If the inequality does not hold, then the current phase is the last phase of the algorithm, and
we show how to execute this phase at the end of this subsection.

We apply the algorithm AlglnitPartition from Theorem to graph G’, the set T of terminals, and
the parameter 7 that we have defined. Notice that, since n = 208 m)3/4, and since we have assumed
that m is greater than some large enough constant, n > logm > log(|E(G’)|) must hold. We now
consider the output of the algorithm, that consists of a collection C of disjoint clusters of G' \ T', a
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partition (C1,C5,C5) of C into three subsets, and, for every cluster C' € C, a vertex u(C) € V(C),
and an internal C-router Q(C'), consisting of edge-disjoint paths routing the edges of d5(C) to u(C).
Recall that we are also guaranteed that every cluster C' € C has the o/-bandwidth property, where
I __ 1

@ = T (m)Togm =
Consider any cluster C' € C. Recall that C is a cluster of the contracted graph G’, and it has the
ap-bandwidth property. Let W(C') be the set of all clusters W € C;, whose corresponding supernode
v € V(C). Recall that every cluster of C; has the a;-bandwidth property from Property Let
Uc be the set of vertices of G, that contains every regular (non-supernode) vertex of C, and every
vertex lying in clusters of W(C'). In other words, Uc = (V(G) N V(C)) U (UWGW(C) V(W)) We
then let C' = G[Ug¢]. Since cluster C' has the ag-bandwidth property, and every cluster in W(C') has
the ay-bandwidth property, from Claim and Observation cluster C' has the a; - ag = @41~
bandwidth property. We let C;11 = {é’ |CeC } Notice that we have just established Property
for clusters in C;1. It is immediate to verify that G, , = GTC. Since Theorem guarantees
that [E(Gle)| < |E(G)|/n, and, from Property |E(G")| = |E(Ge,)| < m/n'~', we get that
|E(Ge,.,)| < |E(G")|/n < m/n', establishing Property [R2| for the set C;11 of clusters.

We now construct the partition (C;’f‘ll,(?ll-if?t) of the set C;11 of clusters. We start by letting Clbf‘f =

{C’ | C e Cé} and C;if}ft = (). We then consider every cluster C' € C; one by one. Recall that for each
such cluster C, the algorithm from Theorem provides an internal router Q(C), routing the edges
of 0¢/(C) to u(C), such that the paths in Q(C') are edge-disjoint. If vertex u(C) is a supernode, whose
corresponding cluster W € C; lies in set Czbad, then we add C to C?j‘f; otherwise, we add C' to Ciif}ft.
Lastly, we set C{59%¢ = {C’ | C e C{}, and we refer to clusters in C{?1° as concise clusters. In Step

Qag.

141

2, we will further process clusters in fi‘{dse, and we will eventually add each such cluster to either

C}’fil or to C;if}ft. Before we do so, we establish Property for clusters that are currently in C}’fi‘,
and we define a distribution D(C) over the set Ag(C) of internal C-routers for every cluster C' that is

currently in C;if?t, such that C is ,@’i+1—light with respect to D(C) (that is, we establish Property
for clusters that are currently in C;f?t).
Bad Clusters. Recall that Theorem guaranteed that, for every cluster C' € C), OPT(C) >
QE(C)|?/(n? polylogm)), and |E(C)| > Q(1n*|6g(C)|log® m). Therefore:

2 2,6
OPT.(C) > Q M >0 M > ’50(0)‘2'
1n* poly logm poly logm

From the definition of cluster C, graph C is a contracted graph of C with respect to clusters in wW(C),
that is, C' = Cjy (). As each cluster in W(C) C C; has the a;-bandwidth property (from Property

, from Claim there is a drawing of C' containing at most O(OPT curs(C, 2a) - log¥m/(c;)?)

crossings, where ¥~ is the rotation system for C' induced by . Since we have established that
OPT(C) > [6g(C)|?, we get that:

OPTanrs(é, Se) >0 <|5G(C’)|2 ) (ai)2> N 15c(O) 2

log®m T Mg

since, by the definition, 7;41 > 1 > 2(l°gm)3/4, while o; > ap > 1/20((1‘)g’")1/4 loglogm) ~and since we
have assume that m is large enough. We conclude that every cluster in {C’ | C e Cé} is n;41-bad.

Consider now some cluster C' € Cj, such that vertex u(C') that serves as the center of the router
Q(C) provided by the algorithm from Theorem is a supernode, whose corresponding cluster
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W e C})ad. From Property if Event &; did not happen, cluster W is an n;-bad cluster, that is,
OPTcnwrs W, EZw) + |[E(W)| > %7?/)‘2, where Yy is the rotation system for W induced by X. Since
W C C, we get that OPTcpurs(C, Ye) + |E(C)| > |5G(77712V)|2 Lastly, since there is a set ~Q(C’) of edge-
disjoint paths routing the edges of i/ (C') to vertex u(C') inside C', we conclude that [0 (C)| < |0g(W)].

Altogether, from the fact that n;41 > 1;, we get that OPTcnwrs(é, X&)+ |E(C )\ > |5f](+1)| )

We conclude that, if event &; did not happen, then every cluster that we have added to set ijil so far

is an n;1-bad cluster.

Light Clusters. Consider now some cluster C' € Czlfkllt, and let C € C be its corresponding cluster

in graph G’. Recall that the algorithm from Theorem [6.3] provides a collection Q(C') of edge-disjoint
paths routing the edges of d¢/(C) to u(C'), such that, for every path in Q(C'), all inner vertices of the
path lie in C. We will now define a distribution D(C) over the set Ag(C) of internal C-routers, so
that C is B;11-light with respect to D(C).

Assume first that vertex u(C') is a regular vertex in cluster C, that is, it is not a supernode. Since
every cluster W € W(C') has the a;-bandwidth property, we can use the algorithm from Claim |4.41| to
compute a collection Q( C) of paths, routing the edges of 6c(C) to u(C), such that, for every path of
Q(C), all its inner vertices lie in C, and the largest congestion on an edge of C i is bounded by [1/a;].
The resulting distribution D(C) then consists of a single internal C-router Q(C'), that is chosen with
probability 1. Clearly, for every edge e € (C’)

Egcyp(ey |(conga(Q(C),e)*| < [1/ai]? < Bit,

since by definition 8;11 = mo()logimaﬂ B;.

Assume now that u(C') is a supernode, corresponding to some cluster W* € W(C), such that W* €
Ciight. Let C’ be the cluster obtained from C, after we contract cluster W* into a supernode vy =
u(C). Using the same reasoning as in the previous case, we can compute a set Q(C’) of paths in
graph C’, routing the edges of 6g(C) to u(C), such that, for every path in Q(C"), every inner vertex
on the path lies in C’, and the largest congestion on an edge of C’ is bounded by [1/c;]. Moreover,
the algorithm from Claim m guarantees that every edge in d5, (u(C)) belongs to at most one path

in Q(C") (and it is the last edge on that path).

Recall that cluster W* is §;-light with respect to the distribution D(W*) over the set Ag(W*) of
internal W*-routers. We choose an internal W*-router Q(W*) € A(W*) from the distribution D(W*),
routing the edges of dg(W*) to a vertex u(W*) of W*. We now consider every path Q € Q(C") one
by one. Let e € d(C) be the first edge on @, and let €’ € dg(W*) be the last edge on Q. Let Q* be
the unique path in Q(W*) whose first edge is ¢/, and let Q' be obtained by first deleting the edge €’
from @), and then concatenating the resulting path with path Q*. Notice that path @’ connects the
edge e to the vertex u(W*), in graph C' U dg(C). We then set Q(C) = {Q’ | Q€ Q(é”)}, so that

Q(C) is an internal C-router in Ag(C). This finishes the definition of the distribution D(C) over the
set A(C~') of internal C-routers. Note that the distribution is given implicitly, that is, we provide an
efficient algorithm to draw a router from the distribution.

Consider now some edge e € E(C). If e ¢ E(W™), then w1th probability 1 (over the choices of internal
C-routers Q(C) from D(C)), cong(Q(C),e) < [1/a;]?, and so (cong(Q(C),e))? < Biy1 as argued
before. If e € E(W*), then congs(Q(C),e) = congn(Q(W*), e), and so:

Eg(é)wp(é) (congG(Q(é’),e)Q] = Eqw+)~pw~) [(congG(Q(W*),e)2] < Bi < Biva-
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We conclude that cluster C' is Biy1-light with respect to the distribution D(C) over the set Ag(C) of
intenral C-routers that we have computed.

Recall that so far we assumed that |E(G’)| > 16nklogm held, where G’ = G|¢,. Assume now that

|E(G")| < 16nklogm. In this case, we let C}’jﬁl = Czl-if}ft = () and we let C§?1°¢ contain a single cluster,

C =G\ T. We also let C] contain a single cluster, C = G’ \ T, and we set C; = C; = (). We denote
W(C') = C;. The current phase will become the final phase of the algorithm.

6.4 Step 2: Concise Clusters

Observe that every cluster C' € C] has the ap-bandwidth property in G’, and |E(C)| < no - |0 (C)]
holds. Indeed, if |[E(G")| < 16nklogm holds, then set C| contains a single cluster C' = G’ \ T, and
|E(C)| < 16nklogm < no|de(C)| holds. Since the set T' of terminals is ap-well-linked in G (from the
statement of Theorem , cluster C = G \ T has the ap-bandwidth property in G, and cluster C' has
the agp-bandwidth property in G’.

Otherwise, Theorem guarantees that every cluster C' € C} has the ag-bandwidth property, and
moreover, |E(C)| < O(n*log®m) - |6c(C)| < no - |6c(C)| (since ng = n* - log? m, and we have assumed
that m is large enough). Recall that for every cluster C' € C}, we have defined a collection W(C) C C;
of clusters, such that for each cluster W € W(C), its corresponding supernode vy lies in C'. We have
also defined a cluster C' € ijf{dse, that is a subgraph of G correpsonding to C. In other words, we
can think of C as being obtained from C' by un-contracting every cluster W € wW(C).

We would now like to apply the algorithm AlgFindGuiding to each such cluster C' € Cf, in order to
classify the corresponding cluster C' of G as either an ni+1-bad or a fB;1-light cluster. Notice however
that the algorithm requires that we define a rotation system for C, and, if the algorithm classifies C' as
an 7;+1-bad cluster (by returning “FAIL”), then we are only guaranteed that it is likely that the value
of the optimal solution of the resulting instance is high. Therefore, ideally we would like to define
a rotation system 3(C) for cluster C' of G’, such that OPTeuwrs(C,%(C)) is not much higher than
OPTcnwrs(é , Eé). Unfortunately, it is not immediately clear how to define such a rotation system,
mainly because it is unclear how to define the orderings on edges incident to supernodes. In order
to overcome this difficulty, we consider a different graph, that can be thought of as an intermediate
graph between C' and C. This new graph, that we denote by H (C’), is obtained as follows. We
start from graph CT. Recall that C* is obtained from graph G by first subdividing every edge
e &E 5@(6’) with a vertex t., and then letting C* be the subgraph of the resulting graph induced by

V(C’)U{te e € 5@(0)}. We denote T = {te |e€ 5@(0)}. We partition the set W(C') of clusters into

two subsets: set whieht(0) = V\/(C')ﬁcyght and W"2d(C) = w(C)ncP*d. Graph H(C) is then obtained
from graph C’t, by contracting every cluster W & Whieht(C) into a supernode vy. Additionally, we

denote by H'(C') the graph obtained from C* by contracting every cluster W € W(C') into a supernode

vy. Notice that graph H'(C) is precisely the augmentation C* of the cluster C' in G'.

In the remainder of this step, we focus on one specific cluster C' € €}, so for convenience, we will denote
H(C) by H, H(C) by H', W(C) by W, and Wheht(C), Whad(C) by Wheht and Wbad | respectively.
From our construction, H' = H, [ybad -

Recall that we have already established that cluster C' has the ap-bandwidth property in G’. Therefore,
the set T” of vertices is ag-well-linked in graph H’. Additionally, from Property every cluster
W € WPad has the o;-bandwidth property, and, if event & did not happen, each such cluster is 7;-
bad. Recall also that we are guaranteed that |E(C)| < ng - |0¢/(C)| = no - |T'|. Therefore, |E(H')| =
[E(C)] + |T"] < 2n0|T"].

Intuitively, we would now like to apply the algorithm AlgFindGuiding from Theorem [6.4] to graph
H, the set T’ of terminals, and the correpsonding collection W24 of clusters. In order to do so,
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we need to define a rotation system 3 for graph H. We do so using a randomized algorithm that
exploits the distributions D(W') over the set Ag(W) of internal W-routers for clusters W € Whght;
We would like to use the algorithm AlgFindGuiding in order to decide whether to add cluster C

to the set C;f?t of light clusters or to the set C}’jl of bad clusters. Specifically, if the algorithm

returns FAIL, we would like to add it to ij(f, and otherwise we would like to add it to set Ciiﬂlt,
together with the distribution D(C) over the set Ag(C) of internal C-routers that we can compute
using the distribution over internal routers in A(H,T") that the algorithm AlgFindGuiding computes.
Notice however, that, even if OPT cqurs(H, f)) is small, the algorithm may return FAIL with a constant
probability. Additionally, the random choices that we make in defining the rotation system S for
graph H may also result in an instance whose solution value is too high (though this can only happen
with relatively small probability). In order to ensure that our algorithm classifies cluster C as a light
or a bad cluster correctly with high probalA)ility, we will perform m identical iterations (but in each

iteration we construct the rotation system X for H from scratch). We now describe a single iteration.

Execution of a single iteration. In order to perform a single iteration of the algorithm, we
construct a rotation system 3 for graph H, as follows. Consider any vertex v € V(H). If v € T”, then
the degree of v in H is 1, and the corresponding ordering of its incident edges is trivial. Assume now
that v € V(H) \ T”, and that v is not a supernode. In this case, there is a one-to-one correpsondence
between the edges in set dp(v) and the edges in set dg(v). We use the ordering O, € ¥ of the edges
in dg(v) in order to define an ordering of the edges in dy(v), for the rotation system 3. Lastly, we
assume that vertex v € V(H) \ T' is a supernode. In other words, v = vy, where W € Wheht ig
light cluster. Recall that we are given a distribution D(W) over the set Ag(W) of internal W-routers,
such that W is B;-light with respect to this distribution. We randomly select an internal W-router
QW) € Ag(W) from the distribution D(W). Let u(W) be the center vertex of Q(W), so that Q(W)
is a set of paths routing the edges of dg(W) to vertex u(W). Also recall that, from the definition of
light clusters, for every edge e € E(W), Egupw) [(congg(Q(W),e))?] < .

Observe that the edges of 0 (vy) are precisely the edges of 6¢(W). Next, we transform the set Q(W)
of paths into a set of non-transversal paths, by applying the algorithm from Lemma to the set
Q(W) of paths. We denote the resulting set of paths by Q(W); note that Q(W) is an internal W-
router. Recall that we have defined an ordering of edges of dc (W) guided by the internal W-router
Q(W) (see Section . We let the ordering OUW € 3 be the ordering of the edges of dc (W) guided
by the paths in Q( ) We need the following observation, whose proof follows arguments that are
similar to those used in the proof of Lemma and is deferred to Section of Appendix.

Observation 6.5 E [OPTan,S(H, i)] <0 (ﬁi : (OPTan,S(C, Se) + |E(é)y)).

A single iteration of our algorithm consists of computing a rotation system 3 for graph H from
scratch, and then applying the algorithm AlgFindGuiding from Theorem to instance I = (H, f])
of MCNwWRS, with the set 7" of terminals, and the collection C = WP of clusters. We set the
parameters for the algorithm from Theorem as follows: a = g, & = «;, 1 = 219, and 7’ = n;.

Recall that the set 7" of terminals is ag-well-linked in the contracted graph H' = Hjyybaa, and [1"] >
|E(H'(C))|/(2n0). Moreover, each cluster in WP*d(C) has the o;-bandwidth property, and, if event
&; did not happen, then each such cluster is n;-bad (note that, if i = 1 then WP*d(C) = ). Notice
that ' > 01 > (2n9)*® > n'3, from the definition of the parameter n;. It remains to verify that
n =z 6«1110%7 or, equivalently, that 7y > 211%% Recall that we set g = n* - log” m = 20((10gm)3/4),

and we ensure that o, ag > ap = 1/(logm)?%¢ = 1/20( (logm)!/*loglogm) - Gince we assume that m is

large enough, the inequality clearly holds. Therefore, all conditions of Theorem hold, and we can
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apply the algorithm AlgFindGuiding to instance I = (H, i]) of MCNwRS, with the set T” of terminals,
the collection C = WP"? of clusters, and the parameters defined above.

Recall that we perform m such iterations. If, in every iteration, algorithm AlgFindGuiding returns
FAIL, then we add cluster C to set C})j(li We next show that, if Event & did not happen, and C is
not an 7;41-bad cluster in G, then the probability that C is added to Clof is small.

Claim 6.6 Let &, 1(C) denote the bad event that C is not an n;11-bad cluster, but our algorithm adds
C' to C*. Then Pr [5Z-+1(é) | ﬁgi] < (3/4)™

Proof: Consider a single iteration of the algorithm. Recall that, from Observation
E [OPTenurs(H,5)| < 0 (87 (OPTenwrs(€, 36) + [E(C)]) )
If cluster C' is not n;41-bad, then |E(C)| + OPTenwrs(C, S) < |T712/nit1. So for some constant ¢’:
B [[B(H\T')| + OPTenus(H(C). 9)| < 87 - [T miga.

Let £ denote the event that [E(H \T")| + OPTenws(H, %) > 4¢ 82 - |T'|? /ni11. From Markov’s bound,
Pr[£] < 1/4. Denote k = |T’|, and recall that we have set ' = n;, @« = ap, and &/ = «a;. Since

M1 > 5, and B = (BB 5 we get that:

(a0)1?-(a)8
/22 / 12 | 8
4¢ j3; < 4c¢ < () goal) .
Niv1 ~ Bimi — comilog®™ m

We conclude that, if event £ did not happen, and C is not an 7, 1-bad cluster, then |E(H \ T")| +
A~ 4 1\2

OPTenwrs(H, 3) < (7’;0;7“) Let £ be the bad event that the algorithm AlgFindGuiding returned
FAIL. From Theorem (6.4} if cluster C' is not 7, 1-bad, then Pr [E” | =& A =] < 1/2.

Overall, assuming that the event &; did not happen and cluster C is not n;-bad, then the algorithm
AlgFindGuiding may only return FAIL if either £ or £” happen, which, from the above discussion,
happens with probability at most (3/4). Overall, since we repeat the above algorithm m times, the
probability that in every iteration the algorithm AlgFindGuiding returns FAIL is at most (3/4)™. 0O

Assume now that, in any one of the iterations, the algorithm AlgFindGuiding did not return FAIL, and
instead returned a distribution D over the routers of A(H,T”), such that for every edge e € E(H),

Eg~p [(cong(Q,¢))?] <O (log12 ?) We now provide a distribution D(C) over the set Ag(C) of inter-

nal C-routers, such that C' is 3;,-light with respect to D(C). The distribution is provided implicitly:
that is, we provide an efficient algorithm for drawing an internal C-router from the distribution.

In order to draw an internal C-router from distribution D(C’), we start by choosing a router Q €
A(H,T") from the distribution D. Let x be the center vertex of Q, so z is a vertex of V(H \T"), and Q
is a collection of paths in H, routing all terminals in 7" to x. Equivalently, we can view Q as a collection
of paths that route the edges of 6g(C) to the vertex x, in the contracted graph C'|anht(c) U da(C).
Additionally, for every cluster W € WYeht(C), we select an internal W-router Q(W) € Ag(W) from
the distribution D(W), and we denote by (W) € V(W) its center vertex.

Assume first that x is a regular vertex in graph H, that is, it is not a supernode representing a cluster
of Whght(C). In this case, we set u(C) = z, and we will use u(C) as the center vertex for internal
router Q(C) € Ag(C) that we construct. Otherwise, if z = vy for some cluster W € W'eht(C), then
we set u(C') = u(W), where u(WW) is the center vertex of the internal router Q(W) € Ag(W) that we
have selected for cluster W.

o7



Next, we consider every path @ € Q one by one. Let Q be any such path, and assume that the first
edge on Q is e € 0g(C). We transform Q into a path Q' connecting e to u(C) in G, as follows. We
consider supernodes vy that lie on () one by one. For any such supernode vy that is an inner vertex
of Q, we let €/, e” be the two edges that appear immediately before and immediately after vy on Q.
Observe that €', ¢” € 6g(W’). Therefore, there is a path P(e’) € Q(W’) connecting €’ to u(W'), whose
inner vertices lie in W/, and a path P(e”) € Q(W’) connecting €¢” to u(W'), whose inner vertices lie
in W’. By concatenating these two paths, we obtain a path P*(Q,W'), whose first edge is ¢/, last
edge is €’ and all remaining edges lie in W’. We then replace the segment of path @ consisting of
the edges ¢, e” with the path P*(Q,W’). Lastly, if vy is the last vertex on path @ (in which case
x = vy ), then we let ¢’ be the last edge on Q. Notice that ¢’ € dg(W) must hold. Then there must
be a path P(e/) € Q(W), whose first edge is ¢’ and last vertex is u(W) = u(C). We then replace the
edge ¢’ on path @ with the path P(e’). Let Q" be the final path that is otbained from @ after this

transformation. Then @' is a path in graph G, whose first edge is e, last vertex is u(C'), and all inner
edges and vertices are contained in C'.

Lastly, we let Q(C) = {Q'| Q € Q} be the resulting router in Ag(C). This finishes the definition
of the distribution D(C) over the set A(C) of internal C-routers. Notice that we do not provide the
distribution explicitly, and instead we have described an algorithm that, given access to distribution
D computed by the algorithm AlgFindGuiding, and distributions {D(W)} for clusters W € Wheht(()
(that may also be given implicitly), samples an internal C-router from the distribution D(C). We add
cluster C' to set C;Elft, together with the distribution D(C). It now remains to show that cluster C is

Bi+1-light with respect to the distribution D(C'), which we do in the following claim.

Claim 6.7 Cluster C is f;11-light with respect to the distribution D(C).

Proof: Consider some edge e € E(C). Assume first that edge e does not lie in any cluster W €
Whsht (), In this case:

) 0232 m,
Eoéyn(@) [(congG(Q(C),e))2] = Eg.p [(congp(Q, e))2] <0 (;(1)5(%)8> ’

56
from Theorem Since Biy1 = (log m) " Bi, and a1 < «;, we get that:

EQ(6)~D(0) [(Congc(g(é),e))z} < Bit1-

Next, we assume that e lies in some cluster W € Wbt (). In order to analyze E [(congG(Q(C’ ), e))z} ,

we consider the following two-step process. In the first step, we select an internal W-router Q(W) €
A(W) from the distribution D(W), and denote its center vertex by u(W). Then, in the second step,
we select a router @ € A(H,T") from distribution D. Lastly, composing the paths in Q with the paths
in Q(W), similarly to our construction of the final set Q(C) of paths, will establish the final congestion
on edge e.

Let Q(W) € A(W) be the internal W-router that was chosen from distribution D(W), and assume
that the paths in Q(W) cause congestion z on edge e. We denote Q(W) = {Q(€') | ¢/ € éq(W)},
where for every edge ¢’ € §q(W), path Q(e’) originates at edge €’ and terminates at vertex u(W). Let
E' C 0g(W) be the set of edges ¢ whose corresponding path Q(¢’) contains the edge e, so |E’'| = z.

o8



Denoting F’ = {e1,...,e.}, and assuming that the set Q(W) of paths is fixed, we can now write:

2 2
Eo-p |(conge(Q(C), ¢))?| = Egup (Z cong(Q, >>

i=1

<Egp | Y 22 (congp(Q, 62’))1

Li=1

1 32
§22'0<O%2 ?)

[N

Recall that z is the congestion caused by the set Q(W) of paths on edge e. Therefore, overall:

S 2 9 10g32m
Eq¢)mp(e) |(conga(Q(C), €)) } < Equw)~pw) [(congg(Q(W), €))?] - O s

log32 m

<Bi-0 (128) < ﬂz‘+1~

Oy~ Qg

(here we have used the fact that cluster W is f;-light with respect to distribution D(W), that 8,41 =

1
m()(ﬁ# Bi), and that a1 < «. 0

We now summarlze the second step of the algorithm. First, from Claim . every cluster C' that we
have added to set C. +1 over the course of Step 2 is a f3;11-light cluster with respect to the distribution
D(C) over the set Ag(C) of internal C-routers that we have defined. Let &1 be the bad event that
any cluster C' that was added to set Cba1 over the course of the current phase is not 7;4i-bad. From
the discussion above, event &1 may only happen if either event & happened, or there is some cluster
C € (), for which event (C/‘i+1(é) happened. From Claim and Property the probability of &1
is bounded by Pr [] +m - (3/4)™ < i/m!Y +m - (3/4)™ < (i + 1)/m!?, since we have assumed that
m is large enough.

Lastly, if the current phase is the last phase, that is, |E(G")| < 16nklogm holds, then set C{ contains
a single cluster C' = G’ \ T. If our algorithm added the corresponding cluster C=G \ T to set C}’j{l,
then we return FAIL. Notice that, if OPTenuws(G,3) + |E(G) \ T| < k?/n* < k%/ne < k?/ni41, then
the algorithm may only return FAIL if event &1 happened, with may only happen with probability

at most f;ﬁ . Otherwise, our algorithm added cluster C' to set Chf}ft, and constructed a distribu-

tion D(C) over the set A(C) of internal C-routers, such that cluster C' is $;41-light with respect to
D(C). Notice that D(C') can also be viewed as a distribution over the routers of A(G,T'), and we are
guaranteed that, for every edge e € E(G), Eg pe) [(cong;(Q, €))?] < B¢ < B*. From Property

after (¢ — 1) phases the algorithm terminates, for £ = O <1ﬁ’)gg C;L)

7 Third Main Tool - Advanced Disengagement
The goal of this section is to prove the following theorem that allows us to perform disengagement in
a more general setting than that from basic disengagement.

Theorem 7.1 There is an efficient randomized algorithm, called AlgAdvancedDisengagement, whose
input consists of an instance I = (G, %) of MCNwRS, parameters m and p > 9¢" (logm)™/® log log m for
some large enough constant c*, and a collection C of disjoint clusters of G, for which the following

hold:

o |V(G)|,|E(G)| <m, and m is greater than a sufficiently large constant;
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e cvery cluster C € C has the ag-bandwidth property, for oy = 1/ log® m;
* Ucee V(C) =V(G); and

* Yceclda(O)] < |E(G)|/ut.

The algorithm computes a 20((og m)*/* loglog m) -decomposition T of instance I, such that every instance
I' € T is a subinstance of 1. Moreover, for each resulting instance I' = (G',X') € Z, there is at most

one cluster C' € C with E(C) C E(G"). If such a cluster exists, then E(G") C E(C)U E°"(C), and
otherwise E(G') C E°"(C).

The remainder of this section is dedicated to the proof of Theorem [7.1]

Over the course of the proof, we will consider subinstances of the input instance I. Recall that an
instance I’ = (G',X’) of MCNwRS is a subinstance of instance I = (G,X) (see Definition 2.12)), if
there is a subgraph G C G, and a collection R of mutually disjoint subsets of vertices of G, such that
graph G’ can be obtained from G by contracting, for all R € R, vertex set R into a supernode vg;
we keep parallel edges but remove self-loops. We do not distiguish between edges of G’ incident to
supernodes and their corresponding edges in the original graph G. We call the non-supernode vertices
of G’ regular vertices. We also require that, for every regular vertex v € V(G') N V(G), its rotation
O, in ¥’ is the same as the rotation O, € X. For each supernode vg, its rotation O, , can be defined
arbitrarily. We will consider special types of subinstances of a given instance, that we call canonical
subinstances.

Definition 7.2 (Canonical Subinstances) Let I’ = (G',Y') be an instance of MCNwRS, and let C’
be a collection of disjoint clusters G'. We say that instance I" = (G, ¥") is a canonical subinstance
of I' with respect to C' if I" is a subinstance of I', and moreover, if G C G', and R is a collection
of disjoint subsets of vertices of G, such that G" is obtained from G by contracting every vertex set
R € R into a supernode vg, then the following holds: For every cluster C € C’, either (i) there is some
vertex set R € R with V(C) C R (in which case we say that C' is contracted in graph G"); or (ii)
C C G, and for every vertex set R € R, RN V(C) =0 (in which case we say that C' is not contracted

in G"); or (iii) V(C)NV(G) = 0.

We will consider canonical subinstances of instance I with additional useful properties. We call such
subinstances nice subinstances. For each such subinstance, we will use a specific witness structure to
certify that it is indeed a nice subinstance. We will provide two theorems: the first theorem will be
used to decompose the input instance I into a collection of nice subinstances, and the second theorem
will further decompose each resulting nice subinstance into a collection of subinstances that have the
properties required by Theorem In the next subsection, we define the witness structure and the
nice subinstances, and then provide the statements of the two theorems that will allow us to complete
the proof of Theorem

7.1 Nice Witness Structure, Nice Subinstances, and Statements of Main Theo-
rems

Let G’ be a graph, let m > 0 be an integer with |E(G’)| < m, and let C’' be a collection of disjoint
clusters of G'. A nice witness structure for G' with respect to C’ consists of the following three main
ingredients (see Figure E[):

1. The first ingredient is a sequence S = {5’1, .. .,5}} of disjoint vertex-induced subgraphs of
G', such that J,_, V(S;) = V(G"), and, for all 1 < i < 7, a cluster S! C S; that has the
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o* = Q(1/log!'? m)-bandwidth property in G’. We require that, for all 1 < i < r, there is at most
one cluster C € €’ with C C S!. Moreover, if such cluster C' exists then E(S;) € F(C)U E( IC’)

must hold, and otherwise E(S;) C E( | 'cr)- We also require that for each cluster C' € C’, there
is an index 1 < i < r, such that C' C 5’2{. We refer to the sequence & = {Sl, e ,5}} as the

backbone of the nice witness structure, and to the clusters in S = { ~i, el 57’,} as its verterbrae.

2. The second ingredient is a partition of the edges of E(G’) into two disjoint subsets, E' and E".
Set £’ contains all edges of Ul  E (S ), and, additionally, for all 1 <14 < r, it contains every edge
e = (u,v) with u € 5}, v € S’ . Set E” contains all remaining edges of E(G'). Additionally,

we let E C E” be the set of all edges (u,v) € E”, where u and v lie in different clusters of
{815}

3. The third ingerdient is a set P = { (e) | ee E} of paths, that cause congestion at most

O(log m) in G’ that we call nice guiding paths. For each edge e = (v,u) € E, if we assume that
veS,ue S], and ¢ < j, then path P(e) connects vertex v to vertex u, does not contain the edge
e, and consists of three subpaths P!(e), P?(e) and P3(e), that have the following properties:

e There is an index i’ < i, such that path P!(e) originates at vertex v and terminates at
some vertex v/ € S!,. Path P'(e) must be simple, and no vertex of P'(e) \ {v'} may lie
in J_, V(S;) Moreover, if we denote the sequence of vertices on path Pl(e) by v =
V0, V1,...,0g =, and, for all 0 < z < ¢, we assume that v, € S;_, then i =iy > i > --- >
ig=1. In other words, the path visits the sets S, in the non-increasing order of mdex a,
possibly skipping over some of the indices.

e Similarly, there is an index j’ > j, such that path P3(e) originates at vertex u and terminates
at some vertex u’ € 5;, Path P3(e) must be simple, and no vertex of P3(e) \ {u'} may
lie in | J_, V(S.). Moreover, if we denote the sequence of vertices on path P3(e) by u =
ug, U1, . .., uy =o', and, for all 0 < 2’ < ¢/, we assume that u, € sz,, then j = jg < 71 <

- < jg = j'. In other words, the path visits the sets S, in the non-decreasing order of
index a, possibly skipping over some of the indices.

e Lastly, path P%(e) connects v to «/. It may only use edges of E', and it can be partitioned
into disjoint subpaths Qy(e), Qi41(e),...,Qj (e), where for all / < z < j/, Qu(e) C S,

Note that, by definition, for every edge e € E, the - paths Pl(e) and P?(e) only use edges of E", while
path P2(e) only uses edges of E'. If e = (v,u) € E is an edge for which v € §/ holds, then i’ =i and
Pl(e) = {v} must hold. Similarly, if u € SJ, then j' = j and P%(e) = {u}.

Clearly, the edge sets E’, E", E in the nice witness structure are completely determined by the se-
quences S = {5‘1, e S’T} and &' = { A S;} of clusters. Therefore, the nice witness structure

is completely determined by S,8’, and the set P = {P(e) lec E } of nice guiding paths. We will

use the shorthand (S,S’,P) for a nice witness structure. For a path P(e) € P, we sometimes refer
to Pl(e), P3(e) and P?(e) as the prefiz, the suffiz, and the mid-part of path P(e), respectively. This
completes the definition of a nice witness structure. Next, we define nice subinstances of instance I.

Consider a subinsance I’ = (G',%’) of the input instance I, and assume that I’ is a canonical subin-
stance of I with respect to the set C of clusters. Recall that, from the definition of canonical subin-
stances, we are guaranteed that for every cluster C' € C, either C C G’, or V(C) NV (G") = 0.
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Figure 9: An illustration of a nice witness structure and a nice guiding path. An edge e € E is shown
in red. The prefix P!(e) and the suffix P3(e) of the nice guiding path P(e) are shown in green, and
the mid-part P2(e) is shown in blue.

We denote by C(G’) the set of all clusters C' € C with C C G’. Lastly, we say that a subinstance
I' = (G',Y) of I is a nice subinstance of I with respect to C, if it is a canonical subinstance with
respect to C, and there is a nice witness structure for graph G’ with respect to the set C' = C(G’) of
its clusters. The remainder of the proof of Theorem uses the following two theorems. The first
theorem allows us to decompose a given instance I into a collection of nice subinstances.

Theorem 7.3 There is an efficient randomized algorithm, whose input consists of an instance I =
(G,%) of MCNwRS, parameters m and p > 9¢" (logm)™/® log log m for some large enough constant c¢*, and
a collection C of disjoint clusters of G, for which the following hold:

o |V(G)],|E(G)| <m, and m is greater than a sufficiently large constant;
o cvery cluster C € C has the ag-bandwidth property, for ay =1/ log® m;
e Ucee V(C) =V(G); and

o Ycecl0a(O) < |E(G)|/u®.

The algorithm either returns FAIL, or it computes a 920((logm)*/* loglogm) _decomposition Iy of instance
I, such that each resulting instance I' = (G',X') € I; is a nice subinstance of I with respect to C. In
the latter case, the algorithm also computes, for each instance (G',%') € Iy, a nice witness structure
for graph G’ with respect to the set C(G') of clusters. The probability that the algorithm returns FAIL
is at most 1/m5.

The second theorem allows us to further decompose nice subinstances of instance I into subinstances
that have the desired properties.

Theorem 7.4 There is an efficient randomized algorithm, whose input consists of:

e an instance I' = (G',X') of MCNwRS;

e a parameter m, such that |E(G")| < m;
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e a collection C' of disjont clusters of G'; and

e a nice witness structure (S,S",?s) for graph G’ with respect to the set C' of clusters.

The algorithm either returns FAIL, or computes a 20(108 m)*/* loglog ™) _decomposition Zo(I') of instance
I', such that each resulting instance I" = (G",X") € Iy(I') is a subinstance of I', and moreover, there
is at most one cluster C' € C' with E(C) C E(G"); if such a cluster exists then E(G") C E(C’)UE(G’TC,)

holds, and otherwise E(G") C E(G"C/). The probability that the algorithm returns FAIL is 1/mS.

Note that Theorem immediately follows from Theorem and Theorem Indeed, we start by
applying the algorithm from Theorem to the input instance I and the collection C of its clusters.
Assume for now that the algorithm did not return FAIL. Then we obtain a collection Z; of nice
subinstances of I, and, for each instance I’ = (G',Y) € Z;, a nice witness structure for G’ with
respect to cluster set C(G’). From the definition of a nice subinstance, for every cluster C' € C(G'),

C C @, and for every cluster C € C\C(G'), V(C)NV(G') =0, s0 E(G') C (UCec(G/) E(C)) UE°"(C).

We then apply the algorithm from Theorem to each such instance I' = (G',Y') € Z; and the
corresponding nice witness structure. Assume for now that this algorithm did not return FAIL.
Then we obtain a collection Z(I") of subinstances of I’. We are guaranteed that, for each resulting
instance 1" = (G",%") € IZy(I'), there is at most one cluster C € C(G') with E(C) C E(G").
If such a cluster exists, then E(G") C E(C) U E(GTC(G,)) C E(C) U E°"*(C) holds, and otherwise

E(G") C E( TC(G,)) C E°Y((), since E(G') C (UC,GC(G,) E(C’)) U E°U(C). If the algorithm from
Theorem [7.3]did not return FAIL, and neither application of the algorithm from Theorem [7.4] returned
FAIL, then we return the collection of instances Z = (Jpcz, Z2(I'). From Claim we obtain a

randomized algorithm that computes a 90((logm)*/* loglog m)_decomposition Z of the input instance I.

It now remains to consider a case where the algorithm from Theorem or any of the applications
of the algorithm from Theorem returned FAIL (which may only happen with probability at most
1/m*). In this case, we construct the collection Z of subinstances of I directly, as follows. For every
cluster C € C, we let O(C) be an arbitrary circular ordering of the edges of 6¢(C). Set Z will contain
one global instance I = (G, i), and, for each cluster C' € C, a cluster-based instance Io = (G¢, X¢).
Consider first a cluster C' € C. We let G¢ be the graph obtained from G by contracting all vertices of
V(G)\V(C) into a supernode uc. We define the rotation system ¢ for graph G as follows: for every
vertex v € V(C), its rotation O, in ¥ remains the same as that in X. Observe that g (uc) = 0¢(C).
The rotation O, of vertex uc in X is defined to be O(C). This completes the definition of the cluster-
based instance Io = (G¢,S¢). We now define the global instance I = (G, ). Graph G is obtained
from graph G by contracting, for every cluster C' € C, the set V(C') of vertices into a supernode uy.
Notice that the set of edges incident to ug in G is precisely 6¢(C). We then define a rotation of U
in 3 to be O(C). This completes the definition of the global instance I. Consider now the resulting
collection 7 of subinstances of I. It is immediate to verify that > o vz [E(G')] < O(|E(G)]).
Assume now that we are given, for each instance I’ € Z, a feasible solution ¢(I"). We can combine
these solutions together to obtain a solution ¢ to instance I, of cost at most O (3 ez cr(e(I))),
by employing an algorithm similar to that from Lemma (the algorithm that was used for basic
disengagement). Lastly, from Theorem it is easy to verify that Y ;.7 OPTcaws(I)) < O(m?).
Since the probability that the algorithm from Theorem [7.3] or any of the applications of the algorithm
from Theorem return FAIL is at most 1/m?*, overall we have obtained a randomized algorithm
that computes a 20((log m)*/*log log m)_decomposition Z of the input instance I with required properties.

In order to complete the proof of Theorem 7.1} it is now enough to prove Theorem [7.3]and Theorem [7.4]
which we do in Sections [7.2] and respectively.
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7.2 Decomposition into Nice Instances — Proof of Theorem

This subsection is dedicated to the proof of Theorem The main idea of the proof is to carefully
construct a laminar family £ of clusters of G, whose depth is 20((log m)*/* loglog ™) and then apply
Algorithm AlgBasicDisengagement from Section to compute a 20((og m)*/*log log ™)-decomposition
71 of instance I via basic disengagement, using the laminar family £. The main challenge is to
construct the laminar family £ in such a way that each resulting instance I’ = (G',X’) € Z; is a nice
subinstance of I with respect to C, and to compute a nice witness structure for each such graph G’.
We will construct the laminar family gradually, in the top-bottom fashion, using the notion of legal
clustering.

In order to define the legal clustering, we consider a graph G’, together with a special vertex v* € V(G).
Intuitively, graph G’ represents some cluster S € £ that we have constructed already, and it is a graph
that is obtained from G by contracting all vertices of G \ S into the special vertex v*. We will also
consider the subset C' C C of all clusters C' € C with C' C S. Intuitively, our goal is to construct a
collection R of disjoint clusters of G’, each of which must be a subgraph of S, that will then be added
to L. Recall that, if £ is a laminar family of clusters of graph G, and Z; is a collection of subinstances
of I obtained by decomposing I via basic disengagement, then every cluster S € £ has a subinstance
I(S) = (G(95),%(S)) € Z; associated with it. Graph G(S) is obtained from graph G as follows. First,
we contract the vertices of V(G) \ V(S) into a supernode v*, obtaining graph G’. Next, for every
child-cluster R € L of S, we contract R into a supernode vg. Therefore, if R is the set of child-clusters
of S, then G(S) = G"R. Recall that we need to ensure that instance I(S) is a nice instance. Given a
graph G’, a special vertex v* in G’, and a collection C’ of disjoint basic clusters of G’, the notion of
legal clustering of G’ with respect to v* and C’ is designed to ensure that every instance in our final
decomposition Z; of I, created via the process described above, is a nice instance.

Consider a graph G’ with a special vertex v* € G'. We will consider clusters R C G\ {u*}. Recall
we have defined a collection Ay, (R) of external routers for R, where each router Q'(R) € Ai,/(R) is a
collection of paths routing all edges of d¢(R) to a single vertex of G'\ R, such that all paths in Q'(R)
are internally disjoint from R. We start by defining the notion of helpful clustering, which will be used
in the definition of legal clustering. We fix two parameters that will be used throughout this section:
a1 = (ap)? = 1/log® m and § = log'®m.

Definition 7.5 (Helpful Clustering) Let G’ be a graph with a special vertex v* € V(G'), and let
C' be a collection of disjoint vertez-induced subgraphs of G' \ {v*}, that we call basic clusters. Let R
be another collection of disjoint clusters of G', and assume that for every cluster R € R, we are given
a distribution D'(R) over the external routers in Ay (R). We say that (R, {D'(R)}pcr) is a helpful
clustering of G" with respect to v* and C', iff the following conditions hold:

o vertex v* does not belong to any of the clusters in R;

e for every basic cluster C' € C, and for every cluster R € R, either C' C R, or V(C")NV(R) = 0;

e cvery cluster R € R has the aq-bandwidth property in G'; and

e for every cluster R € R, for every edge e € E(G') \ E(R), Eg/(r)~p/(r) [conge (Q'(R),e)] < 5.
Consider again a graph G’ with a special vertex v* € V(G’), and some cluster R C G'. We say that
an external R-router Q'(R) € Al,(R) is careful with respect to the special vertex v*, if each edge
of d¢r(v*) belongs to at most one path in Q'(R) (note that in general paths in Q'(R) may cause an

arbitrarily large congestion in G’). We denote by Af,(R) C Al (R) the collection of all external R-
routers Q'(R) that are careful with respect to v*. We say that a distribution D’(R) over the collection
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Ay (R) of external R-routers is careful with respect to v*, if every router Q'(R) € Ay, (R) to which
D'(R) assigns a non-zero probability lies in A, (R).

We will consider two different types of legal clustering. We start by defining the first, and the simpler
type of legal clusterings.

Definition 7.6 (Type-1 Legal Clustering) Let G’ be a graph with a special vertex v* € V(G'),
and let C' be a collection of disjoint vertez-induced subgraphs of G' \ {v*}, that we call basic clusters.
Let R be another collection of disjoint clusters of G', and assume that for every cluster R € R, we
are given a distribution D'(R) over the external routers in Ay, (R). We say that (R,{D'(R)}pcr) is
a type-1 legal clustering of G’ with respect to v* and C’, if the following conditions hold:

o (RAD'(R)}per) is a helpful clustering of G" with respect to v* and C';
e there is at most one cluster C € C’, that is contained in G'\ (UReR R) ; and

o for every cluster R € R, distribution D'(R) over external routers is careful with respect to v*.

While type-1 legal clustering would be ideal in order to construct the laminar family £ and to perform
a basic disengagement of instance I via £, we may not always succeed in computing a type-1 legal
clustering of a given graph G’, and we may need to employ type-2 legal clustering, that is defined
below, instead. Before we define the type-2 legal clustering formally, we provide some intuition. Type-
2 legal clustering is defined somewhat similarly to type-1 legal clustering, except that we no longer
require that, for every cluster R € R, the distribution D/(R) is careful with respect to v*. We also
no longer require that at most one cluster of C’ is contained in G’ \ [Jper R. However, we require
that, additionally, the decomposition provides a nice witness structure for the graph G"R with respect
to the set C’( \/R) of clusters (all clusers of C’' that are contained in graph GiR) Unfortunately, the
relaxation of the requirement that the distributions D’(R) for clusters R € R is careful with respect
to v* creates some major difficulties. For intuition, recall that we will construct the laminar family £
of clusters of G gradually, in the top-bottom fashion. Assume that S is some cluster of the current
laminar family £, such that no cluster of £ is strictly contained in S. Let G’ be the graph obtained
from G by contracting all vertices of V(G)\ V(S) into the special vertex v*, and let C’ be the set of all
clusters of C that are contained in S. The idea of our algorithm is to compute a type-1 or a type-2 legal
clustering R in graph G’; assume that we compute a type-2 legal clustering. We then add the clusters
of R to the laminar family £, and continue to the next iteration. From the discussion so far, for each
such cluster R € R, the type-2 legal clustering provides a distribution D’(R) over the collection Ay, (R)
of external routers in graph G’. However, in order to execute the basic disengagement via the laminar
family £ (see Section [5.3), we need the distribution D’(R) to be supported over the collection Af,(R)
of external routers in graph G. In other words, the problem is that paths in sets Q'(R) € AL, (R) that
are assigned non-zero probability by D’(R) may contain the special vertex v*, which is not a vertex
of G. Recall however that special vertex v* represents the cluster G \ S, and so edges incident to v*
in G’ are precisely the edges of dc(S). Therefore, we could exploit the distribution D’(S) over the
external routers for cluster S in G, in order to get rid of the special vertex v* on the paths of Q'(R),
where Q'(R) € Al,,(R). In other words, by composing the distributions D'(R) and D'(S), we could
obtain the desired distribution over the set A (R) of external routers for cluster R in the original
graph G. Unfortunately, this kind of recursive composition of distributions may lead to an explosion
in the congestion of the resulting sets of paths. Even if the depth of the laminar family £ is quite
modest (say O(logm)), we may obtain distributions D”(R) over the routers in Ay (R), for which the
maximum expected congestion on an edge of G may be as large as |dg(R)|, which is unacceptable.
If we could ensure that the distributions D’(R) obtained in type-2 legal clustering are careful with
respect to v*, then this accumulation of congestion could be avoided, but unfortunately we do not
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know how to ensure that. In order to overcome this difficulty, we will carefully alternate between
type-1 and type-2 legal clusterings. Specifically, we will require that a type-2 legal clustering contains
a single distinguished cluster R*, whose corresponding distribution D’(R*) is careful with respect to
v*, and that R* contains a very large fraction of clusters of C'. We will also require that a type-1 legal
clustering R’ of the graph associated with cluster R* is provided, and that for each cluster R’ € R/, the
number of clusters of C’ contained in R’ is relatively small. This carefull alternation between type-1
and type-2 legal clusterings will allow us to compute distributions D’(S) over the routers of Al (.S)
for each cluster S € L of the laminar family that we construct, such that the expected congestion
on every edge of G due to the router drawn from the distribution is not too large. We now formally
define a type-2 legal clustering.

Definition 7.7 (Type-2 Legal Clustering) Let G’ be a graph with a special vertex v* € V(G'),
and let C' be a collection of disjoint vertez-induced subgraphs of G' \ {v*}, that we call basic clusters.
A type-2 legal clustering of G' with respect to v* and C' consists of the following four ingredients:

1. a helpful clustering (R, {D'(R)} ger) of G’ with respect to v* and C';

2. a nice witness structure for the graph GTR with respect to the set C" of clusters, where C" contains

every cluster C € C' with C C G’ \ (Uper V(R));

3. a distinguished cluster R* € R, that contains at least L(l - 1/2(1°gm)3/4> |C’|J clusters of C',
such that the distribution D'(R*) is careful with respect to v*; and

4. a type-1 legal clustering (R',{D'(R)} ger/) of graph G*, with respect to special vertex v**, and
cluster set C*, where G* is the graph that is obtained from graph G’ by contracting all vertices
of G’ \ R* into the special vertex v**, and C* contains all clusters C € C' with C C R*. We also

require that every cluster R € R’ contain at most Kl - 1/2(1°gm)3/4) ]C’]J clusters of C'.

The key ingerdient of the proof of Theorem is the following theorem, that will allow us to gradually
construct the desired laminar family £ of clusters.

Theorem 7.8 There is an efficient randomized algorithm, whose input consists of:

e a graph G', and a parameter m that is greater than a sufficiently large constant, such that

V(G IE(G)] < m;

e a special vertex v* € V(G'), such that the cluster G'\ {v*} has the ay-bandwidth property in G';
and

e a collection C' of disjoint vertez-induced subgraphs of G' \ {v*} called basic clusters, such that
every cluster C € C' has the ap-bandwidth property, and |C'| > 2.

The algorithm either returns FAIL, or computes a type-1 or a type-2 legal clustering of G' with re-
spect to v* and C'. The probability that the algorithm returns FAIL is 1/m®. Moreover, if the algo-
rithm computes a type-1 legal clustering (R,{D'(R)}prcr), then every cluster R € R contains at most

[(1 — 1/2(logm)3/4> \C’\J clusters of C'.

We prove Theorem [7.§]in the remainder of this subsection, after we complete the proof of Theorem
using it. We will construct a laminar family £ of clusters of graph G, in a top-down manner. For
every cluster R € L, we will define a distribution D”(R) over external routers in Ay, such that, for
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every edge e € FE(G) \ E(R), Eg/(ry~p(r) [congg(Q'(R),e)] < BO(ogm)**)  We will also define a
partition (£leht £light) of the clusters of £, and we will define, for each cluster R € £8P a distribution
D(R) over the internal routers in Ag(R), such that cluster R is S-light with respect to D(R), for
B = 20((log m)*/*loglogm) - We will ensure that, with high probability, every cluser in £P*d is B-bad.
Once we complete consructing the laminar family £, we will apply algorithm AlgBasicDisengagement
from Section to the resulting tuple (£, £, £light LD (R)} ., {D(R)} g piiene) to obtain the final
collection 7; of instances. We will also provide a nice witness structure for each such resulting instance.
We now proceed to describe tha algorithm for constructing the laminar family £ of clusters.

Initially, we start with the laminar family £ containing a single cluster — graph G. Since AL(G) = 0
(as 0g(G) = 0), the distribution D’(G) is defined in a trivial way (e.g. it selects () with probability
1). We also let £!8" contain a single cluster — the cluster G, whose distribution D(G) over internal
routers is defined in a similar trivial way. Lastly, we set £P2d = (.

We simultaneously consider the partitioning tree 7(L£) associated with the laminar family £ (see
Section for a definition). Initially, tree 7(£) consists of a single vertex v(G), associated with
the cluster G. The algorithm then performs iterations, as long as there is some cluster R € £, whose
corresponding vertex v(R) is a leaf vertex in the tree 7(L£), and there are at least two clusters of C
that are contained in R. We will ensure that every cluster R' € £ has the a;-bandwidth property in
G. Notice that this trivially holds for the initial cluster G.

We now describe an interation for processing a cluster R € £. We assume that v(R) is a leaf vertex
in the current partitioning tree 7(£), and that there are at least two clusters of C that are contained
in R.

In order to process cluster R, we construct a graph G’, with a special vertex v*, as follows. If R = G,
then we let G’ be a graph that is obtained from G, by adding a new special vertex v* to it, that
connects with an edge to an arbitrary fixed vertex vg € V(G). Otherwise, if R C G, then we let G’ be
the graph that is obtained from G by contracting all vertices of V(G) \ V(R) into the special vertex
v*. Note that, since we are guaranteed that cluster R has the aj-bandwidth property in G, cluster
G’ \ {v*} of G’ must have the a;-bandwidth property in G’ (in case where R = G this property holds
trivially, as d;;(G) contains a single edge). We let C' C C be the set of all basic clusters C' € C with
C C R. We then apply the algorithm from Theorem to graph G’, special vertex v*, and set C’
of clusters; parameter m remains the same as in the input to Theorem If the algorithm returns
FAIL, then we terminate our algorithm with a FAIL. Otherwise, consider the legal clustering that the
algorithm produces (which may be a type-1 or a type-2 legal clustering), and let R be the resulting
set of clusters.

We add every cluster R’ € R to the laminar family £, where it becomes a child cluster of cluster R.
Recall that, from the properties of a helpful clustering, vertex v* may not lie in R, so R’ C R must hold.
Moreover, R’ must have the a;-bandwidth property in G’, and hence in G. Recall that we also obtain
a distribution D'(R’) over external routers in Ay, (R'), such that, for every edge e € E(G') \ E(R),
Eo/(r)~p(r) [conge (Q'(R'),e)] < 8. Unfortunately, this distribution is not sufficiently good for us,
since we need the distribution D’'(R’) to be over the collection Ay (R') of external routers in graph G,
and not in graph G’. We show how to modify this distribution later.

Next, we process each cluster R € R one by one. Consider any such cluster R'. We apply Algorithm
AlgClassifyCluster from Theorem to instance I = (G,X) of MCNwRS, and cluster R, that has the
a1-bandwidth property in G, together with parameter p = 1/m!%. Recall that the running time of
the algorithm is O(poly(mlogm)). If the algorithm returns FAIL, then we add R’ to the set £Pad
of clusters. Otherwise, the algorithm computes a distribution D(R’) over internal routers in Ag(R’),
such that cluster R’ is $*-light with respect to D(R'), where f* = 90(Vlogmloglogm) = e then add

cluster R’ to set £, Recall that, if cluster R’ is not n*-bad, for n* = 20((logm)?/ loglogm) “then the
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probability that the algorithm returns FAIL (that is, the algorithm errs), is at most 1/m!%. If the
clustering R is a type-1 legal clustering, then we also mark the vertex v(R’) in the decomposition tree
7(L), to indicate that the distribution D’(R’) is careful with respect to v*. Otherwise, R’ is a type-2
legal clustering, and we only mark vertex v(R') if R’ = R*, where R* is the distinguished cluster.
Recall that in this case, the distribution D’'(R*) over external routers of R* is also careful with respect
to v*.

If the algorithm from Theorem returned a type-2 legal clustering, then we also consider the type-1
legal clustering R’ of R*, that is given as part of the type-2 legal clustering of R. We process every
cluster R” € R’ one by one. When cluster R” is processed, we add it to the laminar family £ and we
add vertex v(R") to the partitioning tree 7(£) as a child of vertex v(R*); we also mark vertex v(R") in
the tree, to indicate that the distribution D’'(R") over the external routers of R” is careful with respect
to v**. As before, we apply the Algorithm AlgClassifyCluster from Theorem to instance I = (G, %)
of MCNwRS, and cluster R”, that has the «j-bandwidth property in G, together with parameter
p = 1/m'°, As before, if the algorithm returns FAIL, then we add R" to £P*d, and otherwise we add
it to £8ht together with the distribution D(R”) over internal routers in Ag(R”), such that cluster
R" is B*-light with respect to D(R"). This completes the description of the algorithm for constructing
the laminar family £ of clusters. We now establish some of its useful properties. The following claim,
whose proof appears in Appendix will be used to bound the height of the tree 7, and the number
of marked vertices on any root-to-leaf path.

Claim 7.9 Consider any root-to-leaf path P in the decomposition tree T(L). Then P contains at most
20((ogm)**) 1 4rked vertices, and at most O(log?’/4 m) unmarked vertices. In particular, the depth of

the tree T(L) is at most 20((logm)®/%)

Next, we provide an algorithm for computing, for each cluster R € L, the desired distribution D”(R)
over the external routers in Ay (R). The proof of the following claim is somewhat technical, and is

deferred to Appendix

Claim 7.10 There is an efficient algorithm that, given a cluster R € L, computes a distribution
D"(R) over the external R-routers in Ay (R), such that, for every edge e € E(G) \ E(R)

Eo (r)~p(r) [congg(Q'(R),e)] < 7,

where i is the total number of unmarked vertices on the unique path in tree 7(L), connecting v(R) to
the root of the tree.

To summarize, if our algorithm did not return FAIL, we have now obtained a laminar family £ of
clusters of graph G, with G € L, so that the depth of the family £ is at most 20((ogm)*/) e
have also computed a partition (£80t, £Pad) of clusters in £, and, for each cluster R € L8 a
distribution D(R) over internal routers in Ag(R), such that cluster R is f*-light with respect to
D(R), for p* = 90(Viogm-loglogm) - We are also guaranteed that, with probability at least 1 — 1 Jm?,
every cluster R € £P* is n*-bad, for n* = 20((logm)*/*loglogm)_ Lastly, we have computed, for every
cluster R € L, a distribution D”(R) over external routers in Ay, (R), such that, for every edge e €
E(G)\E(R), Eg/(r)~p~(r) [congg(Q'(R),e)] < "1, where i is the total number of unmarked vertices
on the unique path in tree 7(L£), connecting v(R) to the root of the tree. Since, from Claim the
number of such vertices is bounded by O(log®*m), we get that, for every edge e € E(G) \ E(R),
Eq(r)~p(r) [congg(Q(R), e)] < gOosm?*H) < 90((logm)*Hloglogm) since f = log!® m.

We apply algorithm AlgBasicDisengagement from Section to the resulting tuple (£ = Lbafl U
£ {D"(R)} per » {D(R)} geptient), to obtain the final collection Z; of subinstances of I. Let 8 =
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gclogm)*/*loglogm {6 gome large enough constant c. We are then guaranteed that every cluster R €
Llight jg B—light with respect to the distribution D(R), and that, for every cluster R € L and every
edge e € E(G)\ E(R), Eg/(r)~pr(r) [congs(Q'(R),e)] < 3. We can set ¢ to be large enough so
that n* < B holds. We say that a bad event & happens if some cluster R € £P*d is not S-bad.
From the above discussion, the probability of & happening is at most 1/m?. If Event £ does not
happen, then, from Lemma 5.6, B [ ez, OPTenwrs(I')] < O(dep(L) - 52 - (OPTenwrs(1) + [E(G)])) <
20((logm)*/*loglogm) . (OPT (1) + |E(G)|)). If Event € happens (which happens with probability
at most 1/m?), then clearly E [ c7, OPTenuws(1’)] < DG et |E(G")|? < m3. Therefore,

overall, E [21/611 OPTcnwrs(I’)] < 20((logm)*/*loglogm) . (OPTenwrs(I) + [E(G)]))

Additionally, from Lemma there is an efficient algorithm, that, given, for each instance I’ € Z,
a solution ¢(I’), computes a solution for instance I of value at most > 7 cr(p(I’)). In order to
prove that the algorithm computes a valid 20((log m)*/* loglog ™)_decomposition of instance I, it is now
sufficient to prove that }-_ qr siyez, [E(G")| < O(|E(G)]). We do so in the next claim, whose proof

is deferred to Appendix
Claim 7.11 ZI’Z(G",E”)GIl ’E(G//)’ S O(‘E(G)D

From the above discussion, if our algorithm did not return FAIL, it computed a valid 20((logm)*/* log log m) _

decomposition of instance I. Consider now any resulting instance I = (G, %) € Z;. From the definition
of basic disengagment, this instance must correspond to some cluster R € £. Assume first that R # G,
and let R be the set of all child clusters of R in £ (if R corresponds to a leaf vertex of 7(£), then
R = 0). Recall that graph G is obtained from graph G by first contracting all vertices of G \ R into
a supernode v*; denote the resulting graph by G’. We then contract every cluster R’ € R into a
supernode, obtalmng graph G. In other words, G= G"R

We now consider three cases. The first case is when R is a type-1 legal clustering for cluster R. In
this case, there is at most one cluster C' € C that is contained in G’ \ Jp/cx R', from the definition of
type-1 legal clustering. Therefore, at most one cluster C of C is contained in G. We define the nice
witness structure for graph G, with respect to the set C’ of basic clusters, where ¢/ = {C} if there

is a cluster C' € C that is contained in G, and ¢’ = () otherwise. We let S = {gl}, where S; = é,
and we let S’ = {gi} where S| = C if ¢’ = {C}, and S} = {v}, where v is an arbitrary vertex of G

otherwise. Note that, under these definitions, £ = (), and so we can set P = (. It is easy to verify
that (S,8’,P) is a nice witness structure for G.

The second case is when cluster R corresponds to a leaf vertex of tree 7(£). From our algorithm, this
means that there is at most one cluster C' € C with C' C R. In this case, we define the nice witness
structure for graph G similarly to the first case.

Lastly, in the third case, when the algorithm from Theorem was applied to cluster R, it returned

a type-2 legal clustering, with the corresponding cluster set R. In this case, the algorithm also must
produce a nice witness structure for the graph GIR = @, with respect to the set C” of clusters, that

contains every cluster C' € C with C C G'\ (Uprer V(R')). In other words, C” = C(G).

It remains to consider the case where R = (G. As before, we let R denote the set of all child-clusters
of cluster R. Recall that in this case, graph G is obtained from graph G by contracting every cluster
R’ € R into a supernode. Graph G’ was obtained from graph G by adding a special vertex v* that
connects to some vertex vg € V(G) with an edge. Therefore, graph GTR is a graph that is obtained
from G by adding a special vertex v* to it and connecting it to some vertex of G. Recall that vertex v*
may not lie in any cluster of R. We start by defining a nice structure for graph GTR’ with respect to

the collection C” of clusters, that contains every cluster C' € C with C' C G"R exactly as before (when
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we assumed that R # G). Since vertex v* has degree 1, we can assume that no path in P contains
v*. Moreover, if v* € S/, for some S/ € S/, then cluster S/ \ {v*} still has the a*-bandwidth property.
By deleting vertex v* from the cluster of S to which it belongs, and also from a cluster of &' to
which it belongs (if such a cluster exists), we obtain a nice witness structure for graph G, with respect
to cluster set C”, as required. The algorithm may return FAIL if any application of the algorithm
from Theorem returned FAIL. Since |£| < m, and the probability that a singel application of the
algorithm from Theoremreturns FAIL is at most 1/m®, overall, the probability that the algorithm
returns FAIL is at most 1/m®.

In order to complete the proof of Theorem it is now enough to prove Theorem (7.8 which we do
next.

7.2.1 Proof of Theorem [T.8

Throughout the proof, we will consider various graphs, sets of disjoint clusters in these graphs, and the
corresponding contracted graphs. Let H be any graph, and let R be any set of disjoint vertex-induced
subgraphs (clusters) of graph H. Let H = Hr be the contracted graph corresponding to H and
R, that is obtained from H by contracting every cluster R € R into a supernode vr. Observe that
every subset UC V(f[ ) of vertices of H naturally defines a vertex-induced subgraph of H, which is a

subgraph o Induced by vertex set U = U NU ; in other words, contains
b h of H induced b U V(R V(H)NU h ds, U

all regular vertices of U, and the vertices of every cluster R € R with vp € U. We will refer to H[U]
as the subgraph of H (or cluster of H) defined by the set U of vertices of H. Similarly, if S is a cluster
of H induced by vertex set U, we will refer to H[U] as the cluster of H defined by S.

Assume now that we are given any graph H, a special vertex v* in H, and a collection R of disjoint
clusters of H, such that vertex v* does not lie in any cluster of R, and every cluster R € R has
a-bandwidth property, for some parameter 0 < o < 1. As before, we denote H = H r- Next, we
consider a Gomory-Hu tree 7 of the graph H (see Section for a definition). We root the tree 7
at the special vertex v*. For every vertex u € V(7), we let 7, be the subtree of 7 rooted at w.

UREU

We will use the following useful observation multiple times. The proof is deferred to Appendix [G.4]

Observation 7.12 Let u € V(1) \ {v*} be any non-root vertex of the tree T, and let S be the cluster of
H that is defined by the set V(1,) of vertices offI. Then cluster S has the a-bandwidth property in H.
Moreover, there is an efficient algorithm to compute a distribution D'(S) over the external routers in
N (S), such that distribution D'(S) is careful with respect to v*, and, for every edge e € E(H)\ E(S),

Eq/(s)~p/(s) [cong(Q'(5), €)] < O(log* m/a).

For convenience, in the remainder of the proof, we denote graph G’ by G, and the set C’ of clusters by
C. We start with the graph G and the set C of basic clusters, and we let H = G|¢ be the corresponding
contracted graph. We consider the Gomory-Hu tree 7 of the graph H. We root the tree 7 at the
special vertex v*. For every vertex u € V (1), we let 7, be the subtree of 7 rooted at u, and we let the
weight w(u) be the number of supernodes (vertices corresponding to clusters in C) in the tree 7,. Let
u* be the vertex of 7 that is furthest from the root v*, such that w(u*) > Kl — 1/2(1°gm)3/4> |C\J
We now consider two cases.

The first case happens if u* = v*. In this case, we will compute a type-1 legal clustering of G. Let
Ui, ..., uq denote all child vertices of v*. For all 1 <17 < g, let R; be the cluster of the graph G defined
by the vertex set V(7). Denote R = {Ry,..., Ry}. Since every cluster C' € C has the op-bandwidth
property, and H = G|¢, from Observation each cluster R; € R has the ag > aj-bandwidth

property. From the construction, vertex v* may not lie in any of the clusters of R, and, for each
cluster R € R, and for every basic cluster C' € C, either C C R or V(C)NV(R) = 0. We use the
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algorithm from Observation to construct, for every cluster R € R, a distribution D’(R) over the
external S-routers in A (S), such that the distribution is careful with respect to v*, and, for every
edge e € E(G) \ E(R), Eg(r)~p/(r) [congg(Q'(R), €)] < O(log" m/ag) < 5.

Note that G'\ |Jpcr R consists of only one vertex — vertex v*. Therefore, R is a legal type-1 clustering
of graph GG. We terminate the algorithm, and return this clustering.

We assume from now on that u* # v*. We will provide an algorithm for computing a type-2 legal
clustering of G. Let R* be the subgraph of G defined by vertex set V(7,+) of graph H. As before, from
Observation cluster R* has the ag > aj-bandwidth property, it does not contain the verex v*,
and, for every basic cluster C' € C, either C C R* or V(C)NV(R*) = ). From the definition of vertex

u*, the total number of basic clusters of C that are contained in R* is at least Ml — 12008 m)3/4> IC |J .

We also use the algorithm from Observation to construct a distribution D'(R*) over the external
R*-routers in Ay (S), such that the distribution is careful with respect to v*, and, for every edge
e € E(G) \ E(R*), Eg/(p+)~p/(r+) [congg(Q (R*),e)] < O(log* m/ag) < . In the final type-2 legal
clustering R for graph G that our algorithm will return, cluster R* will play the role of the distinguished
cluster, and the distribution D’(R*) over the set of its external routers will remain unchanged. Let G*
be the graph associated with the cluster R*: that is, graph G* is obtained from graph G by contracting
all vertices of G\ R* into a special vertex, that we denote by v**. We also denote by C* C C the set of
all basic clusters C' € C with C' C R*. We now construct a type-1 legal clustering R’ of G*, which is
required as part of definition of type-2 legal clustering of G. Denote the child vertices of vertex u* in
the tree 7 by ui,...,uq. For all 1 <i < g, let R; be the cluster of the graph G defined by the vertex
set V(7y,). Denote R' = {Ry,...,R,}. Since every cluster C' € C has the ag-bandwidth property, and
H = G¢, from Observation each cluster R; € R has the ag > ai-bandwidth property. From the
construction, vertex v** may not lie in any of the clusters of R, and, for each cluster R € R’, and
for every basic cluster C' € C*, either C' C R or V(C) NV (R) = () holds. Consider now some cluster
R; € R/, and denote 6¢(R;) = E;. From the properties of the Gomory-Hu tree (see Theorem [4.9)),
there is a collection Q) of edge-disjoint paths in graph H, routing the edges of E; to vertex u*, that
are internally disjoint from V' (7,,). Let H* be the graph obtained from H, by contracting all vertices
of V(H)\ V(7,+) into a supernode ¢*. A simple transformation of the paths in Q) shows that there is
a collection QY of edge-disjoint paths in graph H*, routing the edges of E; to u*. Observe that graph
H* is precisely the contracted graph of G* with respect to the set C* of clusters, that is, H* = GTC*’
and recall that each cluster C' € C* has the ag-bandwidth property.

If vertex u* is not a supernode, then we apply the algorithm from Claim to graph H*, the
set C* of clusters, and the set Q of paths, to obtain a set QF of paths in graph G*, routing the
edges of E; to vertex u*, such that every path in QY is internally disjoint from R;. Moreover, for
every edge e € (Joce- £(C), the paths of QF cause congestion at most [1/ag], while for every edge
e € E(G*)\ (Ugee- E(C)), the paths of QF cause congestion at most 1. In particular, the set Q} of
paths is careful with respect to vertex v**. We then define a distribution D’(R;) over the set A (R;)
of external R;-routers to choose the set Q7 of paths with probability 1.

Assume now that vertex u* is a supernode, and that it represents some cluster C' € C*. We apply the
algorithm from Claim to graph H*, the set C*\ {C'} of clusters, and the set Q7 of paths, to obtain
a set QF of paths in graph G*, routing the edges of E; to edges of dg+(C), such that every path in
Qf is internally disjoint from R;. As before, for every edge e € (oo« E(C'), the paths of QF cause
congestion at most [1/ag], while for every edge e € E(G*) \ (Ugeer E(C”)), the paths of Qf cause
congestion at most 1. As before, the set Q of paths is careful with respect to vertex v**. We use the
algorithm from Lemma [4.27] to compute a distribution D(C) over internal C-routers in Ag-(C), such
that, for every edge e € E(C), Eg(c)~p(c) [cong(Q(C), e)] < log® m/ag. We now define a distribution
D'(R;) over the set Al.(R;) of external R;-routers. In order to draw a router from the distribution,
we first choose an internal C-router Q(C) from the distribution D(C'). Let x be the vertex that serves
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the center of the router. For every edge e € E;, we let Q(e) be the path obtained as follows. First, we
let Q*(e) be the unique path of Q that originates from edge e. We let e’ be the last edge on path Q,
that must belong to dg«(C). We then let Q(e) be the path obtained by concatenating path Q*(e) with

the unique path of Q(C) that originates at edge e. We let Q'(R;) = {Q(e) e e El} be the resulting
external R;-router, that routes the edges of F; to x. Since every edge of dg+(C') may lie on at most one
path of QF, it is immediate to verify that, for every edge e € E(C), cong(Q'(R;),e) < cong(Q(C),e),
and so overall, for every edge €', Eg/(g,)~p/(r,) [congg: (Q'(R;), €)] < % < B, since ag = 1/log®m
and B = log'® m. As before, distribution D’(R;) is careful with respect to v**.

Lastly, observe that at most one cluster C' € C may be contained in graph R*\ (Jpcr/ R — the cluster
associated with vertex u*, if u* is a supernode. Therefore, (R', {D'(R)} pcr/) is a type-1 legal clustering
of graph G*, with cluster set C* and special vertex v**. Moreover, from the choice of vertex u*, we are

guaranteed that every cluster R’ € R’ contain at most Kl — 1/200z m)3/4) |’ |J clusters of C.

The remainder of the algorithm is iterative. We start with a helpful clustering (R = {R*},{D/(R*)})
of G, and we view R* as the distinguished cluster of R. We then iterate. In every iteration, we
either establish that the current helpful clustering (R,{D'(R)} ) is a type-2 legal clustering, by
computing a nice witness structure for graph G|z, with respect to the set C" of clusters, containing
every cluster C € C with C C G\ (Uger V(R)); or we will compute another helpful clustering of G
that is “better” in some sense, and use it to replace the current helpful clustering (R, {D'(R)} per)-
We will ensure that the helpful clustering R that the algorithm maintains always contains the cluster
R* that we defined above, which will always remain the distinguished cluster of R. The distribution
D'(R*) over the external R*-routers in Ay (R*), and the type-1 legal clustering (R, {D'(R)} ger/) of
the graph G* associated with cluster R* will remain unchanged throughout the algorithm. We will
use the following definition in order to compare different helpful clusterings of G.

Definition 7.13 (Comparing clusterings) Let Ri, Ro be two helpful clusterings of graph G, with
respect to special vertex v* and set C of basic clusters, such that R* € Rq1 NRo. Denote by C1 C C the
set of all clusters C' € C with C C G\ (UReR1 R), and define a subset Co C C of basic clusters for Ra
similarly. We say that clustering Ro is better than clustering Ry if one of the following hold:

e cither |Ca| < |Ci]; or

o [Ci] =Cal, and |[E(Gr,)| < [E(GR,)I-

The following lemma is key in the proof of Theorem

Lemma 7.14 There is an efficient randomized algorithm, that, given a helpful clustering (R, {D'(R)} per)
of graph G with respect to vertex v* and set C of basic clusters, such that R* € R, either (i) establishes
that R is a type-2 legal clustering by providing a nice witness structure for graph G\r, with respect to
the set C" of clusters, containing every cluster C € C with C C G\ (Ugrer V(R)), or (ii) computes
another helpful clustering (R, {D'(R)} pep) of graph G with respect to v* and C with R* € R, such
that R is a better clustering than R; or (iii) returns FAIL. The latter may only happen with probability

at most 1/m1°.

It is immediate to complete the proof of Theorem using Lemma Our algorithm starts with
the helpful custering (R = {R*},{D'(R*)}) of G, where D'(R*) is the distribution over external R*-
routers that we have computed above, and then iterates. In every iteration, we apply the algorithm
from Lemma to the current helpful clustering (R, {D'(R)} per)- If the algorithm establishes that
R is a type-2 legal clustering by providing a nice witness structure for graph for graph Gg, with
respect to the set C” of clusters, containing every cluster C' € C with C' C G\ (Uger V(R)), then
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we terminate the algorithm with the resulting type-2 legal clustering (R, {D'(R)} ger); We view R*
as the distinguished cluster of R, and the type-1 legal clustering (R', {D'(R)} gcr/) of the graph G*
corresponding to R* remains unchanged. Otherwise, if the algorithm returns another helpful clustering
(R, {D'(R)} ), then we replace (R, {D'(R)}pcr) With (R, {D'(R)} pep) and continue to the next
iteration. Lastly, if the algorithm from Lemma returns FAIL, then we terminate the algorithm
and return FAIL as well. Let C’ be the set of all clusters C' € C with C C G\ (Uger V(R)), where
R is the current helpful clustering. Since, in every iteration, either |C’| decreases, or |C’| remains the
same but the number of edges in graph G| decreases, the algorithm is guaranteed to terminate after
at most m? iterations. Since the probability of the algorithm to return FAIL in each iteration is at
most 1/m!%, the total probability that the algorithm returns FAIL is at most 1/m®. If the algorithm
does not return FAIL, then it returns a type-2 clustering of G as required. In order to complete the
proof of Theorem it is now enough to prove Lemma [7.14] which we do next.

7.2.2 Proof of Lemma [7.14]

Recall that we are given a graph G and a special vertex v* of G. We are also given a collection C of
disjoint vertex-induced subgraphs of G\ {v*} called basic clusters, such that every basic cluster C' € C
has the ag-bandwidth property. Lastly, we are given a helpful clustering (R, {D'(R)} gcr) of G with
respect to v* and C. Recall that vertex v* may not lie in any cluster of R, and every cluster R € R
has the aj-bandwidth property. For every cluster R € R, D/(R) is a distribution over the external
R-routers in Ag(R), and, for every edge e € E(G) \ E(R), Eg/(r)y~p/(r) [conge (Q'(R),e)] < B.
Additionally, there is a distingiushed cluster R* € R, whose corresponding distribution D’(R*) is
careful with respect to v*, and R* contains at least [(1 - 1/2(logm)3/4) \C|J clusters of C.

We denote by C’ the set of all clusters C € C, such that C C G\ (Uger V(R)). Observe that RUC' is
a set of mutually disjoint clusters of graph G (see Figure . It will be convenient for us to work
with a slightly different contracted graph, that we denote by H = G|(rucry- Note that every vertex
u € V(I:I ) that is different from a special vertex v*, is either a regular vertex (that is, it is a vertex
of G), or a supernode corresponding to a cluster of C' UR. If supernode u represents a cluster of C’,
then we call it a C-node, and otherwise we call it an R-node (see Figure . In order to prove
Lemma we will mostly work with graph H. Note that v* € V(f] ). We denote by u* the R-node
representing the distinguished cluster R* € R. We will maintain a collection W of clusters in graph
H , that we call W-clusters, and define next.

Definition 7.15 (Valid set of W-clusters) A set W of disjoint clusters of graph H is a valid set
of W-clusters if:

o for every cluster W € W, every vertex of W is an R-node or a regular vertex, and W does not
contain the special vertex v* or the R-node u* representing cluster R*;

o for every cluster W € W, |[Eg(W)| > [04(W)|/(641logm); and

e cvery cluster W € W has the o -bandwidth property in graph IEI, where o = 1/(clog2'5 m), for
some large enough constant c.

We will use the following lemma in order to prove Lemma

Lemma 7.16 There is an efficient randomized algorithm, that, given a valid W -clustering W of
graph H, either (i) establishes that (R,{D'(R)} per) s a type-2 legal clustering of G, by providing a
nice witness structure for graph G\r, with respect to the set C" of clusters, containing every cluster
C € C with C C G\ (Urer V(R)); or (i) computes another helpful clustering (R, {D'(R)}pep) of
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(a) A schematic view of graph G. Clusters of R are (b) A schematic view of graph H. Regular vertices are
shown in red, clusters of C are shown in blue, clusters shown in black, C-nodes are shown in blue and R-nodes
of C' are the blue clusters that are disjoint from the are shown in red.

red clusters, and vertices of V(G) \ (Ugee V(C)) are
shown in black.

Figure 10: Graphs G and H.

graph G with respect to vertex v* and set C of basic clusters, such that R* € R and R is a better
clustering than R; or (iii) computes a new valid set W' of W -clusters in the current graph H, such
that |E(Hpwy)| < [E(Hpw)|; or (iv) returns FAIL. The latter may only happen with probability at most
1/m't.

Lemma easily follows from Lemma We start with W = (), which is a valid set of W-clusters
for H , and then iterate. In every iteration, we apply the algorithm from Lemma to the current
valid set W of W-clusters. If the algorithm establishes that R is a type-2 legal clustering of G, then we
terminate the algorithm and return the correpsonding witness structure for graph G| . If the algorithm
computes another helpful clustering (R, {D'(R)} rer) of graph G with respect to vertex v* and set C of
basic clusters with R* € R, such that R is a better clustering than R, then we terminate the algorithm
and return the clustering (R, {D'(R)} rer)- If the algorithm from Lemma returns FAIL, then
we terminate and algorithm and return FAIL as well. Otherwise, the algorithm from Lemma [7.16]
computes a valid set W of W-clusers in the current graph H, such that |E(ﬁ|wr)| < |E(H, w)|- We
then replace W with W and continue to the next iteration. Since the number of edges in graph H W
decreases in every iteration, we are guaranteed that, after at most m iterations the above algorithm
terminates. Since the algorithm from Lemma only returns FAIL with probability at most 1/m!!,
the total probability that our algorithm returns FAIL is at most 1/m!?. From now on we focus on the
proof of Lemma [7.16

7.2.3 Proof of Lemma [7.16|

Observe that so far, we have constructed a 3-level hierarchical clustering of the graph G. The first
level consists of the set C of basic clusters of graph GG. At the second level, there is a set R of clusters
of graph G. Recall that, for every basic cluster C' € C, either C C G\ (Uger V(R)), or there is
some cluster R € R, with C C R. As before, we denote by C’ C C the set of all basic clusters C
with C C G\ (Uper V(R)). We can use the valid set W of W-clusters in graph H, in order to
construct another set W’ of clusters in the original graph G, as follows. Recall that every cluster
W € W may only contain R-nodes or regular vertices of H. For each such cluster W, let RW)CR
be the set of all clusters R € R with vg € V(W). We then let W’ be a subgraph of G induced by
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vertex set (UReR(W) V(R)) U (V(G)NV(W)). In other words, V(W’) contains all regular vertices

of W, and all vertices lying in clusters of R(W). We will refer to W’ as the cluster of G defined by
W. Finally, let W = {W' | W € W}. Note that every basic cluster C' € ¢’ must be disjoint from
clusters of W. We denote by R’ = R\ (Uy ey R(W)). Note that each cluster R € R’ is contained in
G\ (Uwrew V(W)), while for each cluster R € R\ R, there is some cluster W’ € W’ with R C W'
Therefore, C' UR' UW' is a collection of disjoint clusters of graph G (see Figure [11(a))). Recall that
we are guaranteed that every cluster C' € C’' has the ap-bandwidth property, where ag = 1/ log® m,
and every cluster R € R’ has the a;-bandwidth property, where ay =1/ log® m. Lastly, every cluster
W € W has the o/-bandwidth property (for o/ = 1/(clog®®m), where c is a large enough constant)
in graph H. From Corollary every cluster W’ € W' has the a; - o = 1/(clog®® m)-bandwidth
property in graph G.

i‘il
(a) A schematic view of graph G. Clusters of W' are (b) A schematic view of graph H’. Regular vertices are
shown in green. Clusters of R are shown in red (with shown in black, C-nodes are shown in blue, R-nodes are

clusters of R’ shaded). Clusters of C are shown in blue shown in red, and W-nodes are shown in green.
(with clusters of C’ shaded). Regular vertices lying out-

side of clusters of C are shown in black. Note that, if

there exist clusters C € C and W’ € W’ with C C W',

then there exists a cluster R € R with C C R C W'.

Also, for every cluster W' € W/, R* € W’ and v* ¢ W’

hold.

Figure 11: Graphs G and H’.

In order to prove Lemmam7 it will be convenient for us to work with graph H that is a contracted
graph of H, with respect to set W of clusters, that is, H = H jw- Since graph H is itself a contracted

graph of G with respect to R U, it is easy to verify that H' = Gierurrun (see Figure [11(b))). The

vertices of graph H' are partitioned into four types. The first type is regular vertices, which are also
the vertices of the original graph G; note that the special vertex v* belongs to graph H as a regular
vertex. The second type is supernodes corresponding to clusters of C’, that we refer to as C-nodes.
The third type is supernodes corresponding to clusters of R’, that we call R-nodes, and it includes the
vertex u*, representing the cluster R*. The fourth type is supernodes corresponding to clusters of W',
that we call W-nodes. We denote the set of all regular vertices of H' , excluding the special vertex v*,
by U*. We denote the set of all R-nodes, excluding the vertex u*, by UF.

The remainder of the proof of Lemma [7.14] consists of three steps. In the first step, we perform some
manipulations that will allow us to either compute a new valid set W of W-clusters in the current
graph H, such that ]E(H‘W)| < |E(H)y)l, or to organize the vertices of U* U U® into a nice layered

structure. We also define a collection J of clusters of the graph H' in this step. In the second step,
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we will define another contracted graph H with respect to the clustering 7, and explore some of its
properties. In particular, we define the notion of a “simplifying cluster” in H, and show an algorithm
that, given a simplifying cluster in H, produces a helpful clustering R of G that is better than the
current clustering R. Lastly, in the third setp, we either compute a nice witness structure in graph
G|r as required, or compute a simplifying cluster in graph H, which in turn allows us to produce a

helpful clustering R in graph G that is better than R. We now describe these steps one by one.

Step 1: Layering the Vertices of U* UU" and Clustering J

Consider the graph H’, and let Cy be the subgraph of H’, induced by vertex set V(H') \ (U* U
UR). We use the algorithm from Theorem to compute a layered o/-well-linked decomposition
(S,(L1,...,Ly)) of H' with respect to Cy, where o = ©(1/log?® m) is the parameter that was used
in the definition of a valid set of W-clusters, such that h < logm. We say that a cluster S € S is
a singleton cluster, if it contains a single vertex of H’. Assume first that S contains a non-singleton
cluster S. Recall that S has the o/-bandwidth property in H’ (from Property [L2|of layered well-linked
decomposition; see Section , and it only contains verices of U* U U®. Therefore, S is also a
cluster of graph H, and it has the o/-bandwidth property in H. Moreover, from Property of the
layered well-linked decomposition, |E;(S)| = |E5 (S)| > |64,(S)|/(64logm) = [64(S)|/(64logm)
holds. Since S is disjoint from clusters in set W, we get that W = WU{S} is a valid set of W-clusters
in graph H, with ]E(I:I‘W)\ < \E(I:I|W)| We terminate the algorithm and return the new valid set

W of W-clusters. Therfore, we will assume from now on that every cluster in set S is a singleton
cluster. The partition (Lq,..., L) of the clusters of S into layers then immediately defines a partition
L1, ..., Ly, of vertices of U* UUZ® into layers, where vertex u lies in layer U; iff cluster {u} € S lies in
L;. For convenience, we denote by Lo = V(H')\ (U* UUR). For every vertex u € U* UUZ® that lies in
some layer L;, for 1 < i < h, we partition the edges of §z,(u) into two subsets: set §4°""(u) contains
all edges (u,u’) with ' € Lo U L1 U---U L;_1, and set 0"P(u) contains all remaining edges of ¢, (u).
Note that, from Property of the layered well-linked decomposition, for every vertex v € U* U UF,
6% (w)] < 69 ()| Tog m.

In the remainder of the proof of Lemma we will attempt to construct a nice witness structure
for graph G|z, with respect to the set C' of clusters, containing every cluster C' € C with C' C
G\ (U RER V(R)). If we fail to do so, then we will compute another helpful clustering R of graph G

with respect to vertex v* and set C of basic clusters, such that R* € R and R is a better clustering
than R.

In order to do so, we construct a collection J of clusters in graph H. Every cluster J € J will contain
exactly one vertex that is either a C-node or W-node, that we refer to as the center of the cluster,
and possibly a number of additional vertices from U* U UZ. Initially, for every vertex u of H’ that
is either a C-node or a W-node, we construct a cluster J(u) € J, that only contains the vertex u as
its center node. We then iterate. As long as there exists a vertex «/ € U* UUR®, such that at least
04(u')]/128 edges connect u’ to the vertices of some cluster J € 7, we add vertex u/, together with
all edges connecting u’ to V(.J), to cluster J. We also delete v/ from vertex set U* or U in which it
lies. If w’ € L;, for some 1 < i < h, then we delete v/ from L; and add it to Lg.

Consider the set J of clusters in graph H', that is obtained at the end of this procedure. It is
immediate to verify that all clusters in J are mutually disjoint; every cluster J € J contains a single
center node that is a C-node or a W-node, and each remaining vertex of J lies in U U U*. We need
the following observation, whose proof is deferred to Section of Appendix.

Observation 7.17 Every cluster J € J, has the Q(1/log m)-bandwidth property in graph H'.

76



Step 2: New Contracted Graph and Simplifying Clusters

We start by revisiting the current hierarchical (4-level) clustering of G and defining a new contracted
graph. Recall that our starting point is a graph G, with a special vertex v*, and a collection C of
disjoint basic clusters in GG, such that v* does not lie in any cluster of C. Recall that every cluster in
C has the ap-bandwidth property, where ag = 1/log® m. This is the first-level clustering.

The second level of clustering is the helpful clustering R, which is also a collection of disjoint clusters,
each of which has the aj-bandwidth property, where a; = 1/ log® m. Recall that v* may not lie in
any cluster of R, and, for every cluster C' € C, either C C G \ (U RER R); or there is some cluster
R € R with C C R. Recall that we have denoted by C’ C C the set of all clusters C € C with
C C G\ (Uger R)- Recall also that we have defined a distinguished cluster R* € R.

The third level of clustering is a W-clustering W, that is defined with respect to the contracted graph
H= G|erur- Recall that for every cluster W € W, every vertex of W' is either a regular vertex or an
R-node, and W may not contain the special vertex v* or the R-node u* representing the distinguished
cluster R*. We have defined, for every cluster W € W, the corresponding cluster W’ C @G, that is,
intuitively, obtained from W by un-contracting every cluster R € R with vg € V(). We have then
set W = {W' | W € W}, and we have established that every cluster W’ € W' has the Q(1/1og®® m)-
bandwidth property in graph G. Observe that for every pair C' € C', W’ € W' of clusters, CNW' = ()
must hold. For every pair R € R, W/ € W of clusters, either R C W’ or RN W' must hold. We
denote by R’ the set of all custers R € R with R C G\ (Uprepy W'). Observe that R* € R’ must

hold, and that ¢’ U R’ UW is a collection of disjoint clusters in graph G. Graph H' = H w that we
used in Step 1 is precisely the graph Gcrurun:-

The fourth and the last level of clustering is defined by the collection J of clusters in graph H’ that
we have defined in Step 1. Recall that, for every cluster J € J (that is a subgraph of H' ), there is a
unique center vertex, that is either a C'-node or a W-node, and the remaining vertices of J are regular
vertices or R-nodes; however, J may not contain the special vertex v* or the R-node u* representing
the distinguished cluster R*. Moreover, every C-node and every W-node is a center of some cluster
in J.

As before, we will define, for every cluster J € 7, a corresponding cluster .JJ’ in graph G, in a natural
way. We first define the vertex set V(J'), and then let J’ be the subgraph of G induced by V(J').
First, we add to V(J') every regular vertex that lies in J — each such vertex is a vertex of G. Next,
for every R-node vg € J, we add all vertices of cluster R to V' (J'); observe that R € R\ {R*} must
hold. Lastly, we consider the unique center vertex of J. If that vertex is a C-node, corresponding to a
cluster C' € C', then we add all vertices of C to V(J’). Otherwise, the vertex is a W-node, representing
some cluster W/ € W. We then add to V(J') all vertices of V(W'). Lastly, we set J' = G[V(J')].
We denote by J' = {J’ | J € J} the set of clusters in graph G corresponding to the cluster set J
in H'. Observe that for every cluster C' € C’, there is a unique cluster J'(C') € J’ containing C'; we
call C' the center-cluster of J'(C). Similarly, for every cluster W/ € W', there is a unique cluster
J' (W) € J' containing W’; we similarly call W’ the center-cluster of J'(W). Lastly, for every pair
of clusters R € R/, J € J/, either R C J or RN J" = () holds. We denote by R” C R’ the set of
all custers R € R/, with R C G\ (UjicsJ') (see Figure [12)). Note that R* € R”. Observe also that
R" U J" defines a collection of disjoint clusters in graph G. Note that the special vertex v* does not
lie in any cluster of R” UJ’, and that every cluster of C, R, and W' is contained in exactly one cluster
of R"TUJ'.

Since every cluster in C has the ag = 1/ log® m-bandwidth property; every cluster W € W' has the
Q(1/ log®? m)-bandwidth property; and every cluster R € R has the 1/ log® m-bandwidth property in
graph G, while, from Observation every cluster J € 7, has the Q(1/log m)-bandwidth property in
graph H' = Gieruruw, from Corollary we get that every cluster J’ € J' has the Q(1/1log%5 m)-
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Figure 12: An illustration of a J-clustering. Clusters of C are shown in blue (with clusters of C’
shaded). Clusters of R are shown in red (with clusters of R’ shaded). Clusters of W' are shown in
green. Each cluster of YW may contain clusters of R, but if a cluster C' € C is contained in W', then
there exists R € R with C C R C W'. Vertices of G that do not lie in clusters of C are shown in black.
Clusters of J' are shown in brown. Each cluster of J’ contains a cluster of W’ or C’ as its center
cluster (indicated by *). Each cluster of W/ UC’ is a center-cluster of some cluster of J'. In addition
to the center-cluster, a cluster of 7/ may contain clusters of R and regular vertices. Some clusters of
R’ and some regular vertices may not lie in any cluster of 7.

bandwidth property. This property will be useful for us later, so we summarize it in the following
observation.

Observation 7.18 Every cluster J' € J' has the Q(1/log®® m)-bandwidth property in graph G.

In the remainder of the proof of Lemma we consider the contracted graph H = G| gurr, Which
is exactly the contracted graph of H' with respect to cluster set 7, that is, H = H " 7- The set of
vertices of H consists of three subsets: the set V(G) NV (H) of regular vertices; the set {vgr | R € R"}
of supernodes corresponding to clusters of R” that we call R-nodes; and the set {vy | J € J'} of
supernodes corresponding to clusters of 7’ that we call J-nodes. For convenience, we denote by U*
the set of all regular vertices of H excluding the special vertex v*, and we denote by U% the set of all
R-nodes of H excluding the node u* that represents the distinguished cluster R*. The algorithm from
Step 1 ensures the following property of graph H:

H1. for every vertex u € U*UU"R and J-node vy, the number of edges connecting u to vy in H is
at most [0 (u)|/128.

Indeed, if the above property does not hold for a vertex u € U*UU® and a J-node v J’, then vertex
u should have been added to the cluster J € J that corresponds to cluster J' € J’ by the algorithm
that constructed the clusters in J.

Additionally, the algorithm from Step 1 defines a partition (Ly, Lo,..., L) of the set U*UUR of
vertices, with h < logm. Let Lg be the set of vertices of H containing all J-nodes and the special
vertices v*, u*; equivalently, Lo = V(H) \ (U* U UF). Recall that for all 1 < i < h, for every vertex
u € L;, we have partitioned the edge set d;(u) into two subsets: set §9°“"(u) contains all edges

78



connecting u to vertices of Lo U --- U L;_1, while set 6"P(u) contains all remaining edges of 0 (u).
Recall that we have also ensured that the following property holds:

H2. for every vertex u € U* UUR, |§"(u)| < 6997 (u)|/ log m.

Next, we define the notion of a simplifying cluster in graph H. We will then show that, given a
simplifying cluster in H, we can efficiently compute a helpful clustering R of graph G with respect to
vertex v* and set C of basic clusters, such that R* € R and R is a better clustering than R.

Definition 7.19 (Simplifying Cluster) Let S be a vertexz-induced subgraph of H. We say that S
1s o simplifying cluster if:

e vertices v*,u* do not lie in S;

o there is a set P(S) of paths in graph H (external S-router), routing the edges of 07(S) to a
single vertex of H\ S, such that all paths in P(S) are internally disjoint from S, and they cause
congestion at most ' = O(logm); and

e cither S contains at least one J-node, or |Ez(S)| > [0;4(5)|/logm.

We will use the following simple observation.

Observation 7.20 There is an efficient algorithm, that, given a cluster S C H, establishes whether
S is a simplifying cluster.

Proof: In order to establish whether S is a simplifying cluster, we need to check whether S contains
a J-node, or [E;(S)| > [6;(5)|/logm holds, which can be done efficiently. Additionally, we need to
check whether there is a set of paths in graph H, routing the edges of & 17(5) to a single vertex of H\S,
such that the paths are internally disjoint from S and cause congestion at most 3. The latter can be
done efficiently by computing maximum flow between the vertices of S and each vertex of H \ S in
turn. O

In the next claim we show that, if we are given a simplifying cluster S in H, then we can efficiently
compute a helpful clustering R of graph G with respect to v* and C, such that R* € R and R is a better
clustering than R. The proof of the claim is somewhat technical and is deferred to Appendix [G.6|

Claim 7.21 There is an efficient algorithm, that, given a simplifying cluster S of H, computes a
helpful clustering (R,{D'(R)} ger) of graph G with respect to the special vertex v* and the set C of

basic clusters, such that R* € R, and R s a better clustering than R.

Let 7 be the Gomory-Hu tree of the graph H. We root the tree at the special vertex v*, and, for every
vertex u € V(7), we denote by 7, the subtree of 7 rooted at vertex wu.

Assume first that there is some vertex u € V(7), such that the special R-node u* corresponding to
the distinguished cluster R* does not lie in 7,, but some J-node vy lies in 7,. In this case, we let
S be a subgraph of H that is induced by V(7,). We claim that S is a simplifying cluster. Indeed,
from the construction, neither of v*,u* may lie in S, and at least one J-node lies in S. Let v’ be the
parent-vertex of u in the tree 7. Then from the properties of Gomory-Hu tree (see Corollary ,
(V(S),V(H) \ V(S) is a minimum cut separating u from u' in H. From the max-flow / min-cut
theorem, there is a collection P of |6,(S)| edge-disjoint paths connecting v to v’ in H. Clearly, each
edge e € 0;7(S) is contained in exactly one path of P, that we denote by P(e). Let P’(e) be the
subpath of P(e) that starts at edge e and terminates at u/. Then P’(e) must be internally disjoint
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from S. Therefore, P(S) = {P'(e) | e € ;;(S)} is a set of edge-disjoint paths in graph H, routing
the edges of §;(S) to vertex u' € H \ S, and the paths in P(S) are internally disjoint from S. We
conclude that S is a simplifying cluster. We can now use the algorithm from Claim to compute
a helpful clustering (R, {DR} ger) of graph G with respect to the special vertex v* and the set C of

basic clusters, such that R* € R, and R is a better clustering than R.

Therefore, we assume from now on that, for every vertex u € V (1), if u* does not lie in 7, then 7,
does not contain any J-node, and so V(7,) C U* UU¥. Let P* denote the path connecting v* to u*

in the tree 7. We denote the sequence of vertices on the path by v* = wui,us,...,u, = u*. For all
1 <1 < r, we define a cluster S; of H, associated with vertex u;, as follows. We let S, be the subgraph
of H induced by the vertices of 7,,. Consider now some index 1 < i < r. Let {x?,x},x?, . ,:L‘;“}

be the set of all child-vertices of u; in the tree 7, and assume that a:? = u;4+1. We then let S; be the
subgraph of H induced by the set {u;} U V(ng) U V(Tx?) U---UV(r,a) of vertices. In other words,
we include in vertex set V(S;) the vertices lying in all subtrees of the children of u;, except for the
vertices lying in the subtree of w;y1. From our assumption, for all 1 < ¢ < r, the only vertex of S;
that may be a J-node is the vertex u;; all other vertices of S; are R-nodes or regular vertices (and it
is also possible that u; is an R-node or a regular vertex).

For all 1 < i < r, we also define a subgraph S/ C S;, that is constructed as follows. We start by
constructing the set V(S) of vertices. Initially, we let V(S!) = {w;}. While there is any vertex
u € S;\ S}, such that at the number of edges connecting u to vertices of V' (S}) is at least |6, (u)|/128,
then we add u to V/(S7). Once this algorithm terminates, we let S; be the subgraph of H induced by
the set V(S!) of vertices. Recall that we have established that, if v is a vertex of S; \ S/, for some
1<i¢<r, thenv e U*UUR must hold. The following observation easily follows from the construction
of J-clusters.

Observation 7.22 Consider any index 1 < i < r, for which u; is a J-node. Then S} = {u;}.

Proof: Let J € J be the cluster of H’ that node u; represents (recall that we can think of graph H as
a contracted graph of H' with respect to cluster set J). Assume for contradiction that S contains at
least one vertex in addition to u;, and let v be the first vertex that was added to cluster S,. Then the
number of edges connecting v to u; is at least [0, (v)|/128. But then v is also a vertex of graph H', in
which it serves as either an R-node distinct from u*, or a regular vertex distinct from v*. Moreover,
the number of edges connecting v to vertices of J is at least |§4,(v)|/128. Therefore, v should have
been added to cluster J when it was constructed, a contradiction. O

Additionally, we get the following observation, whose proof is identical to the proof of Observation [7.17]
and is omitted here.

Observation 7.23 For all 1 <i <r, cluster S| has the Q(1/logm)-bandwidth property in graph H.

For all 1 < ¢ < r, we employ the algorithm from Observation in order to establish whether S/ is a
simplifying cluster. Additionally, for all 1 <4 < r, we use the algorithm from Observation [7.20]in order
to establish whether the subgraph of H induced by vertex set V' (S;)UV (S 1) is a simplifying cluster. If
the algorithm from Observation [7.20] establishes that any of the above clusters is a simplifying cluster,
then we can use the algorithm from Claim to compute a helpful clustering (R, {D'(R)} e of
graph G with respect to the special vertex v* and the set C of basic clusters, such that R* € R, and
R is a better clustering than R. Therefore, we assume from now on that, for all 1 < < r, cluster S!
is not a simplifying cluster, and for all 1 < i < r, the subgraph of H induced by V(S;) UV (S;41) is
not a simplifying cluster.

We will show, in Step 3, an efficient algorithm that constructs a nice witness structure for graph G\,
with respect to the set C’ of clusters, that contains every cluster C' € C with C C G\ (Uper V(R)S
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Step 3: Constructing the Nice Witness Structure

The goal of this step is to construct a nice witness structure for graph Gz, with respect to the set c”
of clusters, that contains every cluster C' € C with C C G\ (Uger V(R)).

Intuitively, we will use the clusters Si,...,S, that we just defined in order to define the spine S =
{gl, ey S’T} of the nice witness structure in the natural way: cluster 5”1 will be obtained from S; by

first replacing every R-node and every .J-node of S; with the corresponding cluster R € R” or J' € J’,
and then contracting the R-clusters back. Similarly, we will use the clusters Si,..., S in order to
define the verterbrae S7,..., S, of the nice witness structure.

We partition the set E(H) of edges into two disjoint subsets, £’ and E”, as follows. Set E’ contains
all edges of (J;_; E(S}), and, additionally, for all 1 < ¢ < r, it contains every edge e = (u,v) with
ue S, ve S, Set E” contains all remaining edges of E(H). Additionally, we let £ C E” be the

set of all edges (u,v) € E”, where u and v lie in different sets of {Si,...,S;}.

Next, we develop some tools that will allow us to define the set P = {P(e) lec E } of nice guiding

paths for the nice witness structure that we construct. Recall that in Step 1 of the algorithm, we have
partitioned the set U* U U® of vertices of graph H' into layers Li,..., Ly, where h < logm. Recall
that U* is the set of all regular vertices (excluding v*), and U* is the set of all R-nodes (excluding

u*) of graph H'. Recall that H = H/_, that is, graph H can be obtained from H’ by contracting all

|7
clusters of 7. Therefore, if we denote by U* the set of all regular vertices of H (excluding v*), and
by U® the set of all R-nodes of H (excluding u*), then U* C U*, and U C UE. Therefore, partition
(L1,...,Lp) of U* UU® naturally defines a partition (L},...,L}) of UR U U*. Recall that, for all
1 <i <, all vertices of S; \ S! lie in U* U UR. We denote by L) = V(H) \ (U?Zl L;) As before,
for all 1 < 5 < r, for every vertex v € L;, we partition the set ¢ (v) of edges into two subsets: set
5993 () containing all edges that connect v to vertices of L) U---U L. |, and set §"P(v) containing

J
all remaining edges incident to v. From Property of graph H, for every vertex v € U* U U,

6P (v)] < 89" ()] / log m.

For all1 <i<rand 1 <j <h, we denote by U; ; = L;- N V(S;) — the set of all vertices of S; that lie
in layer L.

Consider some pair 1 <i <r, 1 < j < h of indices, and some vertex v € U; ; \ {u;}. We partition the
edges of 5d0wn(v) into four subsets, 5down,1eft(v)’5d0wn,right(v)’ 5d0wn,straight;(,u)’ and 5d0wn,straight”(v)’
as follows. Let e = (u,v) be an edge of §9°"1(v), and assume that u € Uy . Since e € §4°V%(v),
4 < j must hold. If, additionally, i < i holds, then we add e to §%°V™1eft(y)) Similarly, if i’ > i, then
we add e to §4ovnrieht () If i = 4, and u € S, then e is added to §4oWmstaieht™ () “and otherwise

it is added to gdownstraight’(v)  We will use the following simple observation, whose proof appears in

Appendix
Observation 7.24 S| = Sy, and S = S,. Additionally, for every vertex v € V(H)\ (U_, S!):

° |6d0wn,right (v)‘ + Mdown,left (v)‘ + Mdown,straight’(v)‘ > 63|5(7})’/64;
* |5d0wn,left(,u)| < 2(’5down,right(v)| + |6d0wn,straight'(,u)|); and
° |5down,right (U)‘ < 2(|5d0wn,left(v)| + |6down,straight’(v)|)‘

We will also use the following simple observation, whose proof appears in Appendix

Observation 7.25 There is an efficient algorithm that defines, for every vertez v € V(H)\ (Ui_, S},
two mappings: mapping &M (v), that maps every edge of 5down73traight”(v)U5“p(v) to a distinct edge of
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gdown.right () gdownstraight’ () * 4 d another mapping f'(v), that maps every edge of §Ovn-straight” ()
5" (v) to a distinct edge of §9OW™Ieft(y) U gdownstraight’ ;)

Next, we define the notion of a left-monotone and a right-monotone path.

Definition 7.26 (Left-Monotone and Right-Monotone Paths) Let P = (x1,22,...,24) be a
path in graph H. For all 1 < a < q, assume that z, € Ui..ja- We say that path P is left-monotone if
either ¢ =1 (that is, P consists of a single vertex), or all of the following conditions holds:

M1. j1 > jgo> > jg;
M2. for all 1 < a < q, verter xq € S;, \ S , and x4 € S,fq; and

MS. ilzigz-“Ziq, andiq<i1.

Similarly, we say P is right-monotone if either ¢ = 1, or properties and [M2 hold for it, together
with the following property:

M’3. iy <ig < -+ <ig, and iy > i

Observe that the vertices on a left-monotone path must appear in the decreasing order of their layers,
and in the non-increasing order of the sets .S; to which they belong. Similarly, vertices on a right-
monotone path appear in the decreasing order of their layers, and in the non-decreasing order of the
sets S; to which they belong. The following lemma will allow us to construct prefix- and suffix-paths
for each edge e € E, by constructing a left-monotone and a right-monotone path for each such edge
in graph H; the proof is deferred to Appendix

Lemma 7.27 There is an efficient algorithm that constructs, for every edge e = (u,v) € E two paths
P(e,u) and P(e,v) in graph H, such that, if w € S;, v € Sy, and i < i, then path P(e,u) is left-
monotone and path P(e,v) is right-monotone. Moreover, the set {P(e, v), P(e,u) | e = (u,v) € E} of

paths causes congestion O(logm).

Consider now some index 1 < i < r. We let F; C E contain all edges e = (u,v) € E, such that, if
u € Sy, v € Sy, and i’ < i”, then ¢/ < 7 and ¢/ > 7 + 1 must hold. We also denote by E; C E’ the
set of all edges e = (u,v) with v € Sj and v € Sj | (see Figure . Note that E; N E; = (). The next
lemma is crucial to the algorithm for constructing a nice witness structure in graph G|r.

Lemma 7.28 For all 1 < i <r, vertex u; is a J-node, and for all 1 < i <r, \Ez\ < 1000 - | E4.

The proof of Lemma is deferred to Section

From now on, we denote H = G\, and we denote by C" C C the set of all basic clusters C' € C with
C C G\ (Uger V(R)); equivalently, C' contains every cluster C' € C that is contained in H. It now
remains to construct a nice witness structure in graph H with respect to the set C’ of clusters. We
start by constructing the backbone and the vertebrae of the witness structure, and by defining the
partition (E’, E”) of the edges of H. We then construct the prefix and the suffix of path P(e) for each

A

edge e € E. Lastly, we construct the mid-segment of each such path.

The Backbone and the Vertebrae of the Witness Structure. We use the clusters in set
S ={5,...,5}, and in set S’ = {S],...,S.} in order to define the backbone and the vertebrae of
the nice witness structure, respectively. Recall that every vertex of graph H is either a regular vertex
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Figure 13: An illustration of edge sets E; and E;.

(that is, it lies in both G and H); or it is an R-node vp representing some cluster R € R (in which
case it lies in H = G| ); or it is a J-node v+ for some cluster .J "€ J'. As we have established, for all
1 < i < r, vertex u; is a J-node, and all other vertices of H are either regular vertices of R-nodes.

Consider now any such J-node vy, and the corresponding cluster J' € J’. Recall that for every
cluster R € R, either R C J', or RN J’ = () holds. Denote by R(J’) C R the set of all clusters R € R
with R C J'. Let J’ = J|’R(J,) be the graph obtained from J’ by contracting every cluster R € R(J')
into a supernode. Then J” C H, and we will think of J” as the cluster of H that vertex vy € V(H)
represents. We denote by J” = {J" | J' € J'} the resulting set of clusters in graph H. Note that
equivalently we could define the graph H as a graph that is obtained from H by contracting every
cluster in J”, that is, H = H |77 Recall that we have established, in Observation that every
cluster J' € J’ has the Q(1/log”® m)-bandwidth property in graph G. It then immediately follows
that every cluster J” € J” has the Q(1/log”® m)-bandwidth property in graph H.

We start by defining the sequence S = { Ni, e S’;} of the vertebrae of the nice witness structure.

Consider an index 1 <4 < r. If i = 1, then uy = v*, and so every vertex of set S} is a vertex of H.
We then set S’{ = S1. If i = r, then u, = u*. As before, every vertex of S). is then a vertex of H,
and we set S = S!.. Lastly, assume that 1 < i < r. From Lemma u; is a J-node, and, from
Observation S! = {u;}. Assume that u; = vy, where J' € J’. We then let S/ be the cluster J” of

H that corresponds to vertex vy. This completes the definition of the sequence S’ = { St 5’;} of

the vertebrae of the nice witness structure. Consider again some index 1 < i < r. If i € {1,r}, then,
from the construction, for every cluster C € C’, C'N S’; = (). This is because every cluster of C' must be
contained in some cluster of J’. Otherwise, assume that u; = v, where J' € J’. If the center-cluster
of J' is a basic cluster C' € C’, then C' C §!, and for every other cluster ¢’ € ', CNS! = ). Otherwise,
the center-cluster of J' is a cluster W’ € W'. In this case, no cluster of C’ may be contained in S!.

Consider again some index 1 < ¢ < r. Recall that we have established, in Observation that
cluster S} has the ©(1/logm)-bandwidth property in graph H. We have also established above that
every cluster in J” € J” has the Q(1/log”® m)-bandwidth property. From Corollary cluster S/
of H has the Q(1/1og!%®m) > a*-bandwidth property, since a* = Q(1/log!?m). To conclude, we
have shown that, for all 1 < ¢ < r, cluster 5’{ of H has the a*-bandwidth property. We have also
shown that, for all 1 < ¢ < r, there is at most one cluster C € C’ with C C S'z/ It is easy to verify
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that, if such cluster C' exists, then E(S]) C E(C) U E(G\¢r), and otherwise E(S)) C E(G)er). This is
because for every cluster C' € €, and for all 1 < i < r, either C C S, or C'N S! =  holds.

We now define the backbone S = {5’1, R S'T} of the nice witness structure. Fix an index 1 <7 < r.

If i € {1,r}, then, from Observation S/ = S;. We then set S; = S!. Assume now that 1 < i < r.
Recall that in this case, S; = {u;} holds, and v; is a J-node, from Lemma Note that every vertex
of S; \ {w;} is either a regular vertex or an R-node, and so it must lie in graph H. We define the set
V(S’Z) of vertices to contain all regular vertices and all R-nodes that lie in S; \ {u;}, and all vertices
of S” We then let S; be the subgraph of H induced by the set V(SZ-) of vertices. In other words, we
can think of cluster S; as being obtained from cluster S; of H, by un-contracting the J-node u; (into
the corresponding cluster of J”). This completes the definition of the backbone of the nice witness
structure. Since every vertex of S; \ S/ is either a regular vertex or an R-node, either there is a single
cluster C' € ¢’ with C' C §!, in which case then E(S;) C E(C)U E(G|¢r); or no such cluster exists, in
which case E(S;) C E(G\er). Since vertex sets V(S1),...,V(S;) partition V(H), it is easy to verify
that vertex sets V(S1),...,V(S,) partition V(H).

Recall that the second ingredient of the nice witness structure is a partition of the edges of E(H) into
two disjoint subsets, £’ and E”, that are defined as follows. Set E’ contains all edges of (J;_; E(S]),
and, additionally, for all 1 <4 < 7, it contains every edge e = (u,v) with u € S}, v € S, ;. Since, as
observed already, H = H, gu, it is easy to verify that E' C E'. Recall that we have denoted, for all
1 <i<r, by E; C E' the set of all edges e = (u,v) of H with u € Siand v € Sj ;. It is easy to verify
that F; C E(H), and moreover, it is precisely the set of all edges (u,v) in H with v € S} and v € Sz—i—l'
In particular, E; C E’. The second edge set in the partition of E(H) contains all remaining edges,
E" = E(H) \ E'. From the fact that H = H|j// and since, for all 1 <i <r, S;\ S/ may only contain
regular vertices or R-nodes, we get that E” = E” holds. Lastly, we defined the set £ C E” of all edges
e = (u,v) € E" of graph H, where u and v lie in different clusters of {S,...,S,}. It is immediate to
verify that this is exactly the set of edges in graph H, containing all edges e = (u,v) € E" where u

and v lie in different clusters of {5’1, ceey Sr} Recall that we have defined, for all 1 < i < r, the set

E; C F of edges in graph H, that contains all edges e = (u,v) € E, such that, if u € Sy and v € Sy
with i < 4", then i < i and 7" >4 + 1 hold. It is easy to verify that F; is also precisely the set of
all edges e = (u,v) € E in graph H, such that, if u € Sy and v € S with i’ < 4, then i/ < i and
" > i+ 1 hold. As before, E; N E; —(7i

In order to complete the construction of the nice witness structure, it now remains to define the paths
in set P = {P(e) e € E‘} Recall that each such path P(e) consists of three subpaths, prefix P!(e),

suffix P3(e), and mid-segment P2(e). We first construct the prefixes and the suffixes of the paths in
P, and then construct the mid-segment of each such path.

Prefixes and Suffixes of Paths in P. Consider an edge e = (u,v) € E in graph H. Assume that
uwe S;,ve Sy, and i <i'. We now define vertices v/, v’ of graph H that correspond to u and v. If u
is also a vertex of cluster S; in H, then we set «/ = u. Otherwise, u; must be a J-node corresponding
to some cluster J' € J’, with vertex u lying in the corresponding cluster J” € J”. In this case, we
set v/ = u;. We define vertex v’ in graph H, that corresponds to vertex v in graph H similarly, so
v € Sy. Observe that (u/,v") is an edge of H, that lies in the edge set E, and it corresponds to edge e
in H; we do not distinguish between the two edges. Consider now the left-monotone path P(e,u’) in
graph H given by Lemma and denote P(e,u’) = (v = x1,x2,...,24). For all 1 <a < g, assume
that z, € U, j,. Recall that, from the definition of the left-monotone path, i; > iy > --- > 4,4, and,
if P(e,u) contains more than one vertex, then ¢, < i1 = 4 holds. Additionally, for all 1 < a < g,
vertex z, ¢ S; , while x, € S{q. In particular, every inner vertex on path P(e,u’) is an R-node or a
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regular vertex of H, and hence it lies in graph H. Clearly, every edge of path P(e,u’) is an edge of
H that lies in edge set E”. Therefore, path P(e, /) is contained in graph H. We set the prefix P (e)
of the path P(e) to be P(e,u’). We also denote by i'%(e) = i,, and we denote by €' the last edge
on path P!(e). Observe that e'*ft ¢ 5H(Sileft(e)). We define the suffix P3(e) using the right-monotone

path P(e,v) similarly. We denote by e8P the last edge on that path, and by i"8"(e) the index i*
such that the last vertex of path P3(e) belongs to 5’;* From the definition of monotone paths, if
u ¢ S, then i'*(e) < i, and, if v ¢ S’Z{,, then "8 (¢) > /. Lastly, we define the span of edge e to
be span(e) = {i'"(e), (i (e) + 1),..., (i"8"(e) — 1)}. Recall that the congestion caused by the set

{P(e,v),P(e,u) | e = (u,v) € E‘} of paths in graph H is O(logm), so the congestion caused by the
set {Pl(e), P3(e)|ec E} of paths in graph H is also O(logm).

Mid-Segments of Paths in P. We now focus on constructing the mid-segment P?(e) of the nice
guiding path P(e) for every edge e € E. In order to do so, fix some index 1 < i < r, and let E’ be
the set of all edges e € F, such that i € span(e). Note that edge e may only lie in E’ if e1ther (i)
e € E;; or (ii) some edge ¢ € E; belongs to path Pl(e); or (iii) some edge ¢” € E; belongs to path

P3(e). Since the paths in set {Pl( ), P3(e) | e € E} cause congestion at most O(logm) in graph H,

from Lemma. 7.28, |E| < O(logm) - | E;|. Therefore, we can define an arbitrary mapping f; : B, — Ej,
such that, for every edge e € E;, at most O(logm) edges of E are mapped to e.

In order to define the mid-segment of every path in { (e) | e€ E }, we proceed as follows. For all

1 < i < r, we will define a collection M; of pairs of edges in (5H(§{), so that every edge of § H(S’{)
participates in at most O(logm) such pairs. We will later exploit the bandwidth property of cluster
5'{ in order to connect every pair of edges in M; with a path. We start with M; =0 forall 1 <¢ <,
and then gradually add edge pairs to the sets M;.

Consider again some edge e € E, and recall that span(e) = {i'*"(e), (i*M(e) + 1),..., (8" (e) — 1)}.
For convenience, denote i*®(e) by i’ and 8% (e) by " Recall that the last edge on path Pl(e), that
we denoted by eIEft is an edge that is incident to cluster Sy in H. Let €’ " be the edge of E; to which
edge e is mapped by f;. We then add the pair (e'*ft, e') to M.

Consider now any index i’ < i < i’ — 1. Let ¢! € E;_; be the edge to which e is mapped by fi_1,
and let e’ € E; be the edge to which e is mapped by f;. We then add the pair (e?~1, e?) to M;. Lastly,
we add the edge pair (e~ e"ght) to M.

We will define a path Qi/(e) in graph H, whose first edge is ¢!t and last edge is e’’, such that all inner
vertices of Q7 (e) lie in S'Z/, Additionally, for all i' < i < i” — 1, we will define a path Q’(e) in graph
H, whose first edge is e'~! and last edge is €', such that all inner vertices of Q*(e) lie in 5’{ . Laslty, we
will define a path Qi"(e), whose first edge is e’ 1, last edge is €8, and all inner vertices lie in gé,,.
The final path P2(e) is then obtained by concatenating the paths Qi/(e), . Qi”(e), and omitting the

first and the last edge from the resulting path.
In order to define the paths of {Qi(e) lee E;ifte) <i< iright(e)}, we consider the clusters S/ € &’

one by one. Consider any such cluster 5’; . Recall that we have defined a collection M; of pairs of edges
from 5H(§{), such that every edge of § H(SZ/) appears in at most O(logm) pairs. Using a standard
greedy algorithm, we can compute z = O(logm) collections M}, ..., MZ of pairs of edges, such that
U;zl MZJ = M;, and, for all 1 < j < z, every edge of (SH(S{) participates in at most one pair of
sz . By applying the algorithm from Corollary to the augmented cluster (5/)*, we obtain, for
each 1 < j < 2, a collection Q{ = {Q(e, e)| (e, e) e MZJ} of paths, where each path Q(e,e’) has e

as its first edge, €' as its last edge, and all internal vertices of the path lie in S’Z’ Moreover, since

85



cluster 5’2' has a*-bandwidth property, with high probability, the paths in Q{ cause edge-congestion
at most O(log?* m/a*) < O(log!®m), since a* = Q(1/log'?m). By letting Q; = Uj=1 @], we obtain a

collection Q; = {Q(e, €) | (e €) e MZ} of paths, where for every edge pair (e, e’) € M;, path Q(e, €’)

has e as its first edge, €' as its last edge, and every inner vertex on the path lies in S{ The total
edge-congestion caused by paths in Q; is then bounded by O(log17 m) with high probability. This

completes the definition of the nice routing paths P = {P(e) |ee E } in graph H. From the above

discussion, the paths in P cause edge-congestion O(log'®m) with high probability. If the congestion
caused by the paths in P is greater than (9(10g18 m), we return FAIL. Otherwise, we have established
that (R, {D'(R)} ger) is a type-2 legal clustering in G with respect to v* and C’, by providing a nice
witness structure in graph H = G with respect to set C' of basic clusters. In order to complete the
proof of Lemma and Theorem it now remains to prove Lemma which we do next.

7.2.4 Proof of Lemma [7.28]

Throughout the proof, we will only consider the graph H, so we will omit subscript H from various
notations, such as, for example, 6 (v) for vertices v € H. We start by considering the edges connecting
different clusters in {S1,...,S,}, and by establishing some useful relationships between them.

Edges Connecting Clusters in {S1,...,S,}

Fix an index 1 < i < 7. We denote by E! = E(S;, Siy1), and by E? the set of all edges e = (u,v),
such that, if u € Sj,v € Sj, then j <i and j' > i+ 1 holds. For all 1 < ¢ <r, we denote by Elleft the
set of all edges e = (u,v) with u € S;, such that, if v € S;, then j < ¢ — 1. Similarly, for all 1 <i <,
we denote by Efight the set of all edges e = (u,v) with u € S;, such that, if v € S;, then j > i+ 1 holds
(see Figure . Notice that 6(S;) = E|_, U E, U E** U E'. Notice also that, by the definition, if
i € {1,2}, then Elf = (: if i € {1,r — 1,7}, then E** = (), and, if i € {r — 1,7}, then E;ight = 0.
We prove the following observation that helps us relate the sizes of all these edge sets. The proof is
deferred to Appendix

~left ~right
i l

Figure 14: Edge sets E%eft, Elleft and Ef"er.

Observation 7.29 For all 1 < i <7, the following hold:

o |EP| < |El.
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I rright
o [ES| < |Bj + | B

_— _
o [EF*Y| < |E]|+IESS]

For all 1 <i <r, we denote S/ = S;\S.. Observation allows us to bound the cardinality of the set
Ef"er C E; of edges in terms of the cardinality of the set E! of edges. Note that the set E! of edges can
be thought of as the union of four subsets: set E;, and sets E(S;, S}, ), E(S{,S;, ), and E(S{, S} )
(see Figure . The latter three sets are all contained in E;. We will bound the cardinalities of these

subsets in terms of |F;| in turn. We start by considering edge sets incident to clusters of {S;'},_,_, .

Figure 15: Edges in set E] are shown in black.

Edges Incident to Clusters of {S]'},_,_,.

Consider an index 1 < i < r (recall that Sf = S = ) from Observation [7.24). We partition the edges
of §(S!) into three subsets: set §9°V*(SY) = E(S!, S!); set §'°%(S!) containing all edges (u,v) with
u € S and v € V(S1)U---UV(S;_1); and set 6"8(S”) containing the remaining edges (all edges
(u,v) with w € S/ and v € V(Sj41) U---UV(S,)) (see Figure [16)).

Figure 16: Edge sets 6'°*(S7), 6188t (S”) and §9°(SY) (shown in black).

We next show that for all 1 < i < r, |§9°"2(S”)| < 0.1min {|5782(S})|, [§'°%(S7)|}, and that the sizes
of the edge sets 0188t (S!), 5% (S!) are close to each other, in the following two claims, whose proofs

are deferred to Appendix and Appendix respectively.
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Claim 7.30 For all 1 < i < r, [09°""(SY)] < 0.1 - min {|6"&"(SY)|, |61 (S/)|} holds. Additionally,
there is a set Pt = {Pleft(e) e e 5d0wn(51{’)} of edge-disjoint paths in H, where, for each edge
e € 8990 (S") path P (e) has e as its first edge, some edge of 6'%(S") as its last edge, and all inner
vertices of P''(e) are contained in SY. Similarly, there is a set P1&h* = {Prishi(e) | ¢ € gdown(S7)}
of edge-disjoint paths in H, where, for each edge e € §9°"(SY), path P (e) has e as its first edge,
some edge of 6"8M(SY) as its last edge, and all inner vertices of PTe"(e) are contained in S!.

Claim 7.31 For all 1 <i < r, |§"80(S1)| < 1.1|6"%(S)|, and similarly, [5%(S!)| < 1.1]6%188¢(SY)].

Next, we consider edges incident to the clusters of {S],...,S.}.

Edges Incident to the Clusters of {S7,...,5.}

Consider some index 1 < ¢ < r, and consider the edges incident to the cluster S; in graph H (see
Figure . Recall that we have denoted by E;_1 = E(S/_,S!), and by E; = E(S;, Si+1). We have
also denoted by §9°"1(SY) = E(S!, S!). The remaining edges that are incident to S/ can be partitioned
into two subsets: set §'°(S!), containing all edges (u,v), with u € S} and v € (S U---US;_2) US/ |;
and set set 0"8M(S!), containing all edges (u,v), with u € S/ and v € S/, U (Siy2 U---US,). Next,
for all 1 < i < r, we bound the cardinality of edge set 6'°®*(S”) in terms of the cardinality of §'(S!),

and similarly we bound [6781(S”)| in terms of [§181(S!)|, in the following claim whose proof appears

in Appendix [G.13]

Si—1 Si Si+1

Figure 17: Edges in set 6'°®*(S!) are shown in green, edges of §"#%(S!) are shown in brown, and edges
of 69°¥n () in black.

Claim 7.32 Foralll <1 <r:

o |51iEht (S| < 1.3|E;| + 1.3]0"18M(SY)|; and

o |01f(SY )] < 1.3|Ey| + 1.3[8%% (S, ).

Accounting So Far

We now summarize what we have shown so far. Fix some index 1 <1 < r. Recall that set Ei of edges
contains every edge e = (u,v) € E(H), such that, if u € Sj and v € Sj/, then j < i and j' > i+ 1
holds, but it excludes the edges in the set E; = E(S}, S;, ;). Therefore, E; is the union of the following
subsets (see Figure [L§):
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e edge set E9", connecting vertices of V(S1),...,V(Si—1) to vertices of V(Si12),...,V(S,) (see

Figure ;
e edges that lie in §"8M(SY) U §°%(S7, ) (see Figure ;
e edges that lie in 678" (S7) U §'°(S7, ) (see Figure .

Figure 18: The set E; of edges, with the edges of Ef"’er shown in red; the edges of éright(S;’ ) and
§°f(S7 ;) in pink and brown respectively; and the edges of §"#"*(S!) and §°%(S/ ;) in green and
blue, respectively. Note that the edges of E(S/, S/, ;) belong to both §"8"*(S/) and §'°(S!). Also,
the edges of E(S/, S/ ;) belong to both §'°®(S”, ) and §"8"*(S). Similarly, the edges of E(S!,S., )
belong to both 678" (57) and §'°%(SL, ).

In Observation we have established that |E?¥®"| < |EY|, where E! = FE(S;, Siy1). Notice that all
edges of E/ are contained in F; U§"8M(S) Ut (S” ) (see Figure , so we get that |[EV"| < |E;| +
|6t (S| + |8 (SY,;)|. From Claim [7.32] |67 (SY)| < 1.3|E;| + 1.3|6"€(S7)|, and [6'(S7, )| <
1.3|E;| 4 1.3|6'°% (S ,)|. Therefore, altogether, we have shown so far that:

B < |EPr] + |87 (S])] + |01 (S741)| + (07 (S)] + [0 (S7 1)
< |Bi] + 2|67 (S])] + 216 (ST )|+ |07 (S]] + |6 (ST )] (6)
< T|Ei| + 7|0 (S))| + 7|6 (ST ) -

Therefore, it now remains to bound [6"8M(S))| and |6%°f(S/, )| in terms of |E;|. We start with the
following claim that allows us to establish some useful connection between the cardinalities of the
three edge sets. The proof appears in Appendix

Claim 7.33 For all 1 < i < r: |0M8h%(S])| < 2.5|E;| + 2.5[6"1(S1, )|, and [6"(S], )| < 2.5|E;] +
2.5|6vieht (57,

Next, we show that for all 1 < i < r, vertex u; must be a J-node.

Proving that us,...,u,_; are J-nodes.

We start with the following simple claim, whose proof appears in Appendix
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Claim 7.34 Consider an indexr 1 < i < r, and assume that vertex u; is not a J-node. Then
|Upegr 6(v)] < (l—f— 130 ) 0(u;)|.  Moreover, if u; € L., for some 1 < j < h, then every vertex

logm

of Si\ {u;} lies in L} 1 U---U L.

We are now ready to prove that, for all 1 < 7 < r, vertex u; must be a .JJ-node.

Lemma 7.35 For all1 < j <7, vertex u; is a J-node.

Proof: Assume for contradiction that the lemma is false. We fix an index 1 < i* < r, such that w;,
is not a J-node, and subject to this, |0(u;+)| is maximized, breaking ties arbitrarily.

We first assume that there is some index a, such that at least |0(u;+)|/16 edges connect u;+ to edges of
S”. We show that in this case, [6'°!*(S”)], |0"18"*(S”)| are both large, and u, must be a J-node. (Note
that it is impossible that a € {1,7}, since Sf = S} = 0, as we have established in Observation [7.24])
The proof of the following claim is deferred to Appendix

Claim 7.36 Suppose there is an index 1 < a < r (where possibly a = i*), such that at least |6(u;+)|/16
edges connect u;« to vertices of S”. Then, |51 (S")|, |18 (S")| > |5 (us)| - 1‘;%?, and moreover, ug is
a J-node.

Consider again the vertex wu;+, and assume that u; € L;, for some 1 < j < h. Recall that, from
Claim every vertex of V(Sj.) \ {u;+} lies in L ; U---ULj. Therefore, all edges connecting u;+ to
vertices of V(S/.) \ {u;+} lie in 6"P(u;+), and their number is bounded by [§"P(u;+)| < [0(u;+)|/ log m.
From Claim [7.36] the number of edges connecting u;+ to vertices of 5% must be bounded by |6(u;)|/16
(as u;« is not a J-node). The remaining edges of §(u;-) must connect u;» to vertices of (J, ;- V(Sa).
Denote by E* the set of all edges connecting u;+ to vertices of | J,~;« V' (Sa), and denote by E** the set of
all edges connecting u;« to vertices of | J,_;« V' (Sa). From the above discusison, |E*UE**| > 7|0 (u;+)|/8,
and so either |E*| > |§(u;+)|/4 or |[E**| > |6(u;+)|/4 must hold. We assume w.l.0.g. that it is the former.
Next we consider three cases. The first case is when neither u;«41 or w492 are J-nodes; the second
case is when w;=41 is a J-node; and the third case is when u;«12 is a J-node. We show that neither
of these cases is possible, by showing a simplifying cluster that should have been considered by our
algorithm. For simplicity of notation, in the remainder of the proof, we denote i* by 1.

Case 1: neither of u;y1, u;y2 is a J-node. Consider the set E* of edges; recall that these are all
edges connecting u; to vertices of (J,-; S.. We need the following observation:

Observation 7.37 At least |0(u;)|/16 edges connect u; to vertices of |J,~;, 0V (Sa).

(Note that in particular it follows from the observation that r > i + 3 must hold).
Proof: We partition the edges of E* into five subsets. The first subset, £, contains all edges of

E* connecting u; to vertices of 57, |, and the second subset, E3, contains all edges of E* connecting
u; to vertices of Sz”—i—?' Notice that, from Claim since we have assumed that neither of w41,
uit2 is a J-node, |EY|,|E5| < |0(u;)|/16. We let E5 be the set of all edges of E* connecting u; to
vertices of (J,-;40 V(Sa). Lastly, we let E} and Ej be the sets of all edges of E* connecting u; to
vertices of Sj ; and of S} ,, respectively. Assume for contradiction that |E3| < |6(u;)|/16. Then,
since |E*| > |6(u;)|/4, either |Ef| > |0(u;)|/32 or |EE| > |0(u;)|/32 must hold. We assume first
that |E}| > |6(u;)|/32. Since |6"P(u;) < |6(u;)|/logm, |Ef N6 (u;)] > [6(u;)|/64. Notice that, if
e = (u;,v) is an edge of Ej N §9°(y;), then v € S/, and e € §"P(v). Since, for every vertex v,
|0"P(v)| < |0(v)|/ logm, we get that:
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|0(u;)| - logm

| U )| = [Bf n 6% (uy)] - logm > =

!
’UESH_I

On the other hand, from Claim |7.34 |Uv€S’-+1 (v)| < (1 + 230 ) |0(wit1)] < 2]0(wiy1)]. Therefore,

logm

M > |6(u;)|, contradicting the choice of index 1.

we get that [6(ujp1)] >
In the case where |EZ| > |5(u2)|/32, the analysis is identical. |
Consider a cluster S*, which is a subgraph of H induced by V(S;11) U V(Si12). In the following
claim, whose proof is deferred to Appendix we prove that S* is a simplifying cluster, reaching a

contradiction.

Claim 7.38 Cluster S* is a simplifying cluster.

Case 2: u;q; is a J-node. Recall that in this case, from Observation Si = {uis1}. We
show that cluster S* = {u;4+1} is a simplifying cluster in the following claim, whose proof is similar to
but slightly more involved than the proof of Claim and is deferred to Appendix

Claim 7.39 Cluster S* is a simplifying cluster.

This is a constradiction, since our algorithm must have identified that S* = S, ; is a simplifying
cluster.

Case 3: Neither Case 1 nor Case 2 happened. Since Cases 1 and 2 did not happen, vertex
u;+1 is not a J-node. We start with the following simple observation.

Observation 7.40 The number of edges connecting u; to vertices of Si+1 is at most |6(u;)|/8.

Proof: Assume otherwise. Since Case 3 happened, ;41 is not a J-node, and so, from Claim at
most |6(u;)|/16 edges may connect u; to vertices of S; ;. Therefore, the number of edges connectmg

; to SI., must be at least [0(u;)|/16. But then at least |§(u;)|/32 edges of 69" (u;) connect u; to
Vertlces of Sj ;. For each such vertex ¢ = (u,v), € € §"P(v) must hold. Since, for every vertex v,

v) < ogm, we get that L v)| > 5222 must hold. However, from Claim 7.
5 (v) < [8(v)|/1 hat |Ueg: , 6(v)| > leiosm hold. H from Claim [7.34

[Uvest, | 9
[0(wit1)| > €Siy |5(uz)|1Ogm > |d(u;)|, contradicting the choice of the index i* = i. o

Recall that we have assumed that |E*| > [6(u;)|/4, where E* is the set of all edges connecting u; to
vertices of (J,~,; V(Sa). Since, from Observation at most |d(u;)|/8 edges connect u; to vertices
of Siy1, it must be the case that i + 2 < r, and at least |0(u;)|/8 edges connect u; to vertices of
Uasis1 V(Sa). Since we have assumed that Case 1 did not happen, vertex u;;2 must be a J-node,
and so, from Observation (7.22) u o = {uire}. We let S* = {u;42}, and we show, in the next claim,
that cluster S* is a simplifying cluster. The proof of the claim is deferred to Appendix |G

Claim 7.41 Cluster S* is a simplifying cluster.

This is a constradiction, since our algorithm must have identified that S* = S 4o is a simplifying

cluster. O

In order to complete the proof of Lemma . it is enough to prove that for all 1 < ¢ < 7, ]E | <
1000/ E;|. Assume for contradiction that there is some index 1 < i < r, for which |E;| > 1000|E;|
holds. Recall that we have shown already, in Equation (@, that:
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| Bl < T|Eq| + 7|67 (S7)| + 767 (S740) -

If |E;| > 1000|E;|, then either |678h¢(S7)| > 64|E;|, or |§'f( 1) > 64|E;]. We assume without loss
of generality that it is the former; the other case is symmetric. Recall that, since u; is a J-node,
S! = {u;}. From the definition, set 6"&"(S!) contains all edges (u;,v) with v € S, U (Sj42U---US,).
Note that, from Observation S! = S,, and so 6"8M(S’_ ) = (). Therefore, we can assume that
i < r—1. We now prove that S* = S; | = {u;;1} is a simplifying cluster, in the following claim,
whose proof is very similar to the analysis of Case 2 in the proof of Lemma [7.35] and is deferred to

Appendix [G.20

Claim 7.42 Cluster S* is a simplifying cluster.

We reach a contradiction, since our algorithm must have established that cluster S* = Sj ; is a
simplifying cluster.

7.3 Disengagement of Nice Instances — Proof of Theorem

In this section we provide the proof of Theorem [7.4l Recall that we are given as input an instance
I' = (G',Y) of the MCNwRS problem, that we will denote by I = (G,X), in order to simplify the
notation. Additionally, we are given a set C’ of disjoint clusters of G’; in order to simplify the notation,
we will denote C’ by C. Lastly, we are given a nice witness structure (5 .S, 75) for graph G with respect

to the set C of clusters, where S = {5’1, AU S'T} is the backbone of the witness structure, with vertex
sets in {V(SZ-)}1<‘< partitioning V(G). For convenience, we will denote the set &' = { T ,5'{“}
<i<r

of the vertebrae of the nice witness structure by S = {S1,...,S,}. Recall that each cluster S; € S has
the o*-bandwidth property, for o* = Q(1/log? m).

Recall that we are given a partition of the edges of G into two subsets: set E' containing all edges
of Uj<i<, £(S:), and all edges of U<, E(Si,Si+1); and set B = E(G) \ E'. Recall that set
E C E” contains all edges (v,u) € EN’A’ , where v and u lie in different clusters of S, and the set P

of paths contains, for each edge e € E, a path P(e) that consists of three subpaths: Pl(e), P?(e),
and P3(e), that are called the prefix, the mid-part and the suffix of P(e), respectively. We denote by
Pl = {Pl(e) |ee€ E}, P2 = {P2(e) e e E}, and P? = {P3(e) |ee€ E}, the sets of paths containing
all prefixes, all mid-parts, and all suffixes of the paths in 75, respectively. Throughout, we will use a
parameter 7 = 90((logm)*/*loglogm)

In order to compute a decomposition of instance I into subinstances, we need to define, for every edge
e € E, a cycle W(e), called an auziliary cycle that has some useful properties. As an intuition, we
could obtain a cycle W (e) by taking the union of the nice guiding path P(e) € P with the edge e.
The structure of the nice guiding paths ensures that the cycle W (e) has a single contiguous segment
P2(e) that visits a contiguous subset of the vertebrae in the order of their indices. The resulting set

{W(e) |e e E } of cycles is close to having the properties that we need, except that we would like
to ensure that these cycles are non-transeversal (or close to being non-transversal) with respect to
Y. We discuss the construction of the family {W(e) e e E } of cycles with these properties below.

Next, we define a laminar family £ = {Uj,...,U,} of clusters of graph G, where for all 1 < i < r,
U; is the subgraph of G induced by vertex set V(S1) U--- UV (S;). We define, for every vertebra
S; € S, an internal S;-router Q(S;), and use these routers, together with the auxiliary cycles in

{W(e) |ee E } in order to define an internal U;-router and an external Uj-router for every cluster

U; € L. The final decomposition Zy of instance I into subinstances is simply a decomposition via the
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laminar family £ defined in Section Recall that for each cluster U, € Zy, there is a unique instance
I, = (G,,X,) € Iy, where graph G, is obtained from G by contracting all vertices of Sy U---US,_1
into a special vertex v}, and all vertices of S,4; U---U S, into a special vertex vi* (for z = 1, G is
obtained from G by contracting all vertices of S U --- U S, into a special vertex v, and for z = r,
graph G, is obtained from G by contracting all vertices of S; U---U S,_; into a special vertex v).
For each 1 < z < r, we use the internal U,-router that we computed, in order to define a circular
ordering of the edges of dg(U,), that will in turn be used in order to define the rotation systems
{X.}._, associated with each subinstance. The techniques developed in Section prove that there is
an efficient algorithm that combines solutions to the resulting subinstances into a solution to instance
I that has a relatively low cost. However, since the depth of the laminar family £ may be quite
high, we cannot use the tools from Section [5|in order to bound > . _, |E(G.)| and Y. _; OPTcnwrs(Z2).
Instead, we show a simple direct bound on ) __, |E(G.)|, and a more involved proof for bounding
> 1 OPTcnwrs(12). The latter proof exploits the internal and external Uj-routers that we construct,

for 1 < ¢ < r, which in turn are based on the auxiliary cycles {W(e) |e€ E}, in order to show the
existence of a low-cost solution to each instance I, € Zy. In order to ensure that the costs of these
solutions is sufficiently low, it is crucial that the cycles in {W(e) |e € E } are almost non-transversal
with respect to X: that is, for every pair W(e), W(e') of cycles, there is at most one vertex v, such
that W(e) and W (e') intersect transversally at v. In order to define the set W = {W(e) |ee E} of

cycles, we define two collections of paths: path set P°Ut = {P"“t(e) |e e E }, which is obtained by

modifying the paths of P UP3, and path set P'" = {Pi”(e) e e E} For every edge e € F, the first

and the last edges on paths P°*(e) and P"(e) are identical. Path P°“*(e) contains the edge e, and all
its edges lie in E”. All inner edges of path P"(e) lie in E’, and the path visits a consequtive subset of
clusters of S in their natural order. The auxiliary cycle W (e) is obtained by taking the union of the
paths P°Ut(e) and P™(e).

The remainder of the proof of Theorem [7.4] consists of four steps. In the first step, we construct the set
pout = {P°“t(e) |e€ E} of paths. In the second step, we construct the set P™" = {Pi”(e) |e€ E}

of paths and the collection W = {W(e) e e E } of auxiliary cycles. In the third step, we construct
the laminar family £ = {Uy,...,U,} of clusters, and, for all 1 < z < r, an internal U,-router Q(U,)

and an external U,-router Q'(U,). In the fourth and the final step, we compute the collection Zy of
subinstances of I and analyze its properties. We now describe each of the steps in turn.

7.3.1 Step 1. Constructing the Paths of P°ut

In this step, we construct the set PoUt = {P°“t(e) lec E } of paths, by slightly modifying the prefixes

and the suffixes of the paths in P to make them non-transversal.

Throughout, we denote V' = (Jgcs V(S) and V" = V(G) \ V'. Consider an edge e = (u,v) € E, and
assume that v € S;,v € §j, and ¢ < j. For convenience, we will call u the left endpoint of edge e, and
v the right endpoint of edge e. We also define two sets of indices associated with edge e. The first set
of indices is span(e) = {i,i+ 1,...,7 — 1}. In order to define the second set of indices, assume that
the last vertex on path P!(e) (vertex that lies in V') belongs to cluster Sy, while the last vertex on
path P3(e) belongs to cluster Sj. From the definition of nice guiding paths, i’ < i < j < j” must hold.
We then let span’(e) = {i',7 +1,...,5' — 1}.

It will be convenient for us to define the notion of left-monotone and right-monotone paths. The
definition is similar to the one used in Section but not identical.
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Definition 7.43 Let R be a (directed) path in graph G that contains at least one edge, let (v1, ..., v;)
be the sequence of vertices appearing on R, and, for all 1 < a < z, assume that ve € S;,. We say that
R is a left-monotone path if:

e v, cV/;
e forl<a<z,v,€V"; and

® iy >y > >y
Similarly, we say that R is a right-monotone path, if:

e v, cV/;
o forl<a<z, v,€V”; and

e ip <ig <<y

For each edge ¢ € E, we view the paths P'(e) € P!, P3(e) € P? as directed paths that originate
at an endpoint of edge e and terminate at a vertex of V' (notice that it is possible that one or even
both endpoints of e lie in V'). For every vertex v € V', we denote by ni(v) the total number of paths
in P! that terminate at v, and by n3(v) the total number of paths in P3 that terminate at v. Let
n = O(log'® m) be such that the set P of paths causes congestion at most 7 in G. We use the following
claim in order to construct the paths of P°Ut; the proof of the claim uses standard techniques and is

deferred to Appendix [G.21]
Claim 7.44 There is an efficient algorithm to compute two sets POUbIeft = {P"“t’left(e) |e e E} and

poutright — {P"”t’right(e) |ee E} of simple paths in graph G, each of which causes congestion at most

n, such that the paths in set POUbT are non-transversal with respect to ¥, and so are the paths in
set Poutrieht  Additionally, for every edge e € E, path POUSIeft(e) has e as its first edge, and it is
left-monotone, while path P°UtT8h(e) has e as its first edge, and is right-monotone. Moreover, for
every vertex v € V', exactly ni(v) paths of POUbt terminate at v, and exactly n3(v) paths of PoUtright
terminate at v.

Consider now some edge e = (u,v) € E, and assume that v € S;, v € S’j, and ¢ < j holds. Consider the
paths Poutleft(e) poutright(e)  Agsume that the last vertex on path PoUbleft is 4/ and the last vertex
on path PoUtrisht ig o/ We let P°"t(e) be the path obtained by concatenating path PoUbleft(e) with
the reversed path P°Utr8It () after deleting the extra copy of edge e. We view path P°“t(e) as being
directed rom v’ to v'. Therefore, path P°"*(e) originates at vertex «’ and termiantes at vertex v/, and
it contains the edge e. All inner vertices on P°“*(e) belong to V. We will sometimes refer to v’ and to
v as the first and the last endpoints of path P°"*(e). We will also refer to the edge of P°“*(e) that is
incident to u’ as the first edge of path P°"*(e), and to the edge of P°*(e) that is incident to v’ as the
last edge of path P°"*(e). Assume that v’ € V(S;) and v' € V(S;7). We define another set of indices
associated with edge e: span”(e) = {i"”,i" +1,...,j” — 1}. Notice that span(e) C span”(e) must hold
by the definition of left-monotone and right-monotone paths. Lastly, we set P°Ut = {P°“t(e) |ee E }

For an index 1 < i < r, let E; C E be the set of all edges e € E, with i € span(e). We need the
following simple claim.

Claim 7.45 For every index 1 < ¢ < r, the paths in set {P°“t(e) |ee EZ} are non-transversal with

respect to X.  Moreover, for each edge e = (u,v) € E; whose left endpoint is u, every verter of
poutleft(ey\ {v} lies in U.<i V(S:), and every vertex of poutright () \ Ly} lies in |J,o,; V(S-).
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Proof: The fact that, for every edge e € E;, every vertex of P°USeft(e) \ {v} lies in |, V(S.),
and every vertex of PoUtrieht(e) \ {u} lies in |J,.,; V(S.) follows immediately from the definition of
left-monotone and right-monotone paths and edge set E;. Consider now any pair e, e’ € E; of edges,
and a vertex v that is an inner vertex of both P°U(e) and P°Ut(¢). Assume that v € V(S;), for some
index 1 < j < r. From the definition of left-monotone and right-monotone paths, either j7 < ¢ and
v is an inner vertex of both P°Ubleft(¢) and Poutleft(¢’): or j > i, and v is an inner vertex of both
poutright (o) and poutrisht(¢/)  In either case, Claim ensures that the intersection of P°t(e) and

P°Ut(e’) at v is non-transversal. i

For every index 1 <t < r, we denote by N; the number of all edges e € B, with t € span’ (e)~, and we
denote by N/ be the number of all edges e € F, with ¢ € span”(e). We also denote by E; C E’ the set
of all edges with one endpoint in S; and another in S;11. We need the following claim, whose proof

appears in Appendix
Claim 7.46 For all1 <t <r, N} = Ny, and N; < O(log'®m) - |Ey|.

7.3.2 Step 2: Constructing the Paths of P" and the Auxiliary Cycles

Consider some edge e = (u,v) € E, and assume that u is the left endpoint of e. Assume that
span”(e) = {i",i" +1,...,5” — 1}, and denote by é;»_; the first edge on path P°"*(e), and by é;»
the last edge on path P°“(e). In this step we will construct another path P"(e), whose first edge is
é;»_1 and last edge is é;#. In order to do so, we will select, for all i < z < j”, some edge €, € E,
that we assign to the edge e, and we will compute a path R,(e) (that we call a segment), whose first
edge is €,_1, last edge is é,, and all inner vertices are contained in S,. The final path Pi”(e) will be
obtained by concatenating the segments R;»(e), ..., Rj»(e). Note that path P""(e) has é;»_1 and é;»
as its first and last edges. By concatenating the paths P™(e) and P°'t(e), we will then obtain the
auxiliary cycle W (e). Our goal in constructing the set P™" = {Pi”(e) |ee E} of paths is to ensure
that these paths cause low congestion, and that these paths are mostly non-transversal with respect to
Y. In fact, we will ensure that, for every pair P, P’ € P of such paths, there is at most one vertex v,
such that the intersection of P and P’ at v is transversal. Intuitively, the resulting auxiliary cycles in
{W(e) | e € E } will be exploited in order to show the existence of cheap solutions to the subinstances

of the input instance I that we compute. Each transversal intersection between a pair of such cycles
may give rise to a crossing in these solutions, which motivates the requirement that the paths in P
have few transversal intesrections is low.

Consider again an edge e € F, and assume that span”(e) = {i”,i" +1,...,5” —1}. Recall that we
have already defined edges é;,_; € §(Sy—1) and é;» € §(S;j»_1). We construct a collection 7~2(e) =
{Rin(e),...,Rju(e)} of paths, and define, for all i < z < j”, edge é, € E., such that, for all
i” < z < j”, path R,(e) connects edge é,_1 to edge é, and its inner vertices lie in S,. In order to
do so, we initially set 7@(6) = () for every edge e € E. We then process indices 1 < z < r one by one.
When index z is processed, we will define, for every edge e € E with z € span” (e) or z—1 € span”(e),
the segment R (e); if z € span”(e), we will also define the edge é, € E,, which is the last edge on path
R.(e). We will ensure that every edge € € E. is assigned to at most O(log'® m) edges of E. We now
describe an interation where index 1 < z < r is processed.

Iteration Description. We fix an index 1 < z < r, and describe an iteration for processing index
z. Let A, C E be the set of all edges e € E, with z € span”(e). Note that for every edge e € A, the
corresponding edge é,_1 € E,_1 is already fixed. Let A, C E \ A, be the set of all edges e € E, such
that z — 1 € span”(e) but z & span”(e). Notice that, if e € A, then both edges é._1,¢é, € d¢(S.) are
already fixed (in this case, edge é, is the last edge on path P°'(e)).
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Consider the augmentation S of the cluster S, that we denote for convenience by H. Recall that,
in order to obtain graph H, we start by subdividing every edge e’ € §5(S,) by vertex t./, and then
denote by T' = {to | ¢/ € 6c(S;)} the set of newly added vertices, that we call terminals. We then let
H be the subgraph of the resulting graph induced by V(S,) UT. Recall that, from the definition of
nice witness structure, cluster S, has the o* = Q(1/ log'? m)-bandwidth property in G, and so, from
Observation [4.16] vertex set T is a*-well-linked in H.

We now define a collection M of pairs of terminals, that we call demand pairs, that are associated
with the edges of A. Consider an edge e € A’, and recall that edges é,_1,¢é, € 0g(S.) are already
defined. The demand pair associated with edge e is (x¢,ye), where x. = ts__, (the terminal vertex
associated with edge é,_1), and y. = tz, (the terminal vertex associated with edge é,). We then set
M = {(ze,ye) | e € AL}. Recall that the edges of P! cause congestion at most 7 = O(log'® m), and
every edge of F,_; is assigned to at most 7 edges of E. Therefore, a terminal t,, may participate in at
most 7 pairs in M. Using a standard greedy algorithm, we can now compute 2n sets of terminal pairs
My, ..., My, such that M = U?L’Ll M,, and, for all 1 < a < 25, each terminal participates in at most
one pair in M,. For each 1 < a < 27, we use the algorithm from Corollary [£.25] to compute a collection
R(M,) ={R(x,y) | (x,y) € My} of paths in graph H, where for every pair (z,y) € M,, path R(x,y)
connects x to y. Since the vertices of T are a*-well-linked in G, with high probability, the paths in
R(M,) cause congestion O(log* m/a*) = O(log'® m). If the paths in R(M,) cause a higher congestion,
then we terminate the algorithm and return FAIL. Note that the set Uzll R(M,) of paths in graph H
naturally defines a set R” = {R(e) | e € AL} of paths in graph G, where, for every edge e € A, path
R(e) has é,_; as its first edge and ¢, as its last edge, while all inner vertices of R(e) lie in S,. From
the above discussion, the paths in R” cause congestion at most 1’ = 27 - O(log16 m) = O(log34 m).

Next, we consider the set A, C E, 1 of edges. Let X be a multiset of vertices of T' that contains, for
every edge €’ € A,, the corresponding vertex t.,. Since every edge of F,_1 may only be assigned to at
most 7 edges of F, a vertex may appear in set X at most 7 times. Recall that |A.| = N, and, from
Claim N. < n-|E,|. Therefore, we can define a multiset Y that contains |A| elements, each of
which is a vertex from {to | ¢’ € E.}, such that at most 1 copies of each such vertex t. appear in set
Y. We let M’ be an arbitrary matching between elements of X and elements of Y. Using the same
procedure as the one employed for the edges of A’,, we construct a set R' = {R(e) | e € A,} of paths
in graph G, where, for every edge e € A,, path R(e) has é,_; as its first edge and some edge of E, as
its last edge, while all inner vertices of R(e) lie in S,. Additionally, the paths in R” cause congestion
at most 1/, and every edge of F, appears on at most 7 edges of R. (As before, if the paths in set R”
cause a higher congestion, we terminate the algorithm and return FAIL.) Note that we can assume
without loss of generality that all paths in R’ UR” are simple paths.

To summarize, we have now constructed two sets R’ = {R(e) |e€ A}, R" = {R(e) | e € A} of
paths, with the following properties:

I1. Paths in each of the sets R/, R” cause congestion at most 1’ = O(log3* m);

I2. For every edge e € A, path R(e) € R has é,_1 as its first edge, some edge of E, as its last
edge, and all inner vertices of R(e) lie in S;;

I3. Every edge of E, participates in at most 7 paths of R/;

I4. For every edge e € A, path R(e) € R” has é,_; as its first edge, é, as its last edge, and all inner
vertices of R(e) lie in S,; and

I5. All paths in set R' UR" are simple.

Next, we will iteratively modify the paths in R’ U R”, while ensuring that Properties hold at
the end of each iteration. In every iteration, we will attempt to reduce the number of transversal
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intersections between the paths of R' UR”. In fact we will guarantee that, after each iteration, either
> rerury | E(R)| decreases, or ) popigr |E(R)| remains unchanged, and the number of triples in
set TI7(R' UR") strictly decreases (see definition immediately after Definition |4.5])

We now describe a single iteration. Assume first that there are two paths R(e), R(¢/) € R’, and some
vertex v that is an inner vertex of both R(e) and R(e’), such that the intersection of R(e) with R(e’) at
v is transversal. In this case, we splice paths R(e) and R(e’) at vertex v (see Section [£.1.4), obtaining
two new paths. The first path, that replaces R(e) in R’, originates at edge é,_1 and terminates at the
edge of E, that served as the last edge of R(e’). The second path, that replaces R(e’) in R’, originates
at edge €/,_, and terminates at the edge of E, that served as the last edge of the original path R(e).
Both paths only contain vertices of S, as inner vertices. From Observation either at least one of
the two new paths R(e), R(¢/) becomes a non-simple path; or both paths remain simple paths, but
IIIT(R' UR")| decreases. Notice that, in the latter case, > pers gz~ | E(R)| remains unchanged. If the
former case happens, then we remove cycles from paths R(e), R(¢'), until they become simple paths.
In this case, ) pop/ury |[E(R)| decreases. In either case, it is easy to verify that Invariants
continue to hold. We then proceed to the next iteration.

Assume now that there is a path R(e) € R'UR” and another path R(e’) € R”, and two distinct vertices
v,v’, both of which are inner vertices on both R(e) and R(e’), such that R(e) and R(e’) intersect
transversally at both v and v'. Let @ be the subpath of R(e) between v and v, and let @’ be the
subpath of R(e) between v and v'. We splice the paths R(e) and R(e’) at both v and v'. Equivalently,
we modify path R(e) by replacing its segment @ with @', and we modify path R(e’) by replacing its
segment @' with Q. Note that the first and the last edge on each path remains the same, and the
congestion caused by the set R'UR” of paths remains the same. If any of the resulting paths R(e), R(e’)
becomes a non-simple path, then we delete cycles from it, until it becomes a simple path. In this case,
> rerure [E(R)| decreases. Otherwise, we can use Observation to conclude that [IIT(R' U R")
has decreased. Indeed, it is easy to verify that, for any vertex v € V(S.) \ {v,v'}, the number of
triples (R, Ro,v"”) € IIT(R' UR") did not grow. The number of triples (R, Ro,v) € IIT (R’ UR"),
and the number of triples (R, R, v’) € IIT (R’ UR") have both decreased (as can be seen by applying
Observation to the set of paths that contains, for every path R* € R’ UR” with v € R*, a subpath
of R* consisting of the two edges of R* incident to v, and doing the same for vertex v’). This completes
the description of an iteration. It is easy to verify that Invariants continue to hold.

The algorithm for processing the index z terminates when the path set R’ becomes non-traversal with
respect to X, and, for every pair R € R' UR", R’ € R” of paths, there is at most one vertex v such
that the intersection of R and R’ at v is transversal. We then denote R, = R’ UR”. For every edge
ee€ A, UA,, weset R,(e) = R(e) (the unique path in R, that originates at edge é,_1). If e € A,

then path R(e) is guaranteed to terminate at edge é,, from Irlvariant If e € A,, then we let é, be
the last edge on path R.(e). We then add path R.(e) to set R(e).

Once all indices 1 < z < r are processed, we obtain, for every edge e € E, the desired set 7@(6) of
paths. If span(e) = {i",...,j” — 1}, then R(e) = {Rin(e),...,Rjn(e)}. We then let P""(e) be the
path obtained by concatenating the paths in R(e). Recall that the first edge on P™"(e) is é;»_1, which
is the first edge of P°“t(e), and similary, the last edge on P"(e) is é;, the last edge of P°U(e). We
obtain the auxiliary cycle W (e) by concatenating the paths P"(e) and P°Ut(e) (after deleting the extra
copies of edges é;#_1, ;). It is immediate to verify that cycle W(e) is a simple cycle. Lastly, we set
Pin = {Pi”(e) |e€ E} and W= W(e)|ee E} We refer to W as the set of auziliary cycles. From

the above discussion and Claim we obtain the following immediate observation:

Observation 7.47 Every edge e € |J,_, E(S.) appears on at most i = O(log** m) cycles of W.
Every edge e € E(G)\ (U._, E(S.)) appears on at most n = O(log'® m) cycles of W.

Recall that we denoted, for each index 1 < z < r, by E. C E the set of all edges e € E, with
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z € span(e). We need the following observation.

Observation 7.48 For every index 1 < z < r, for every pair e, e’ € E. of distinct edges, there is
at most one vertex v € V(W(e)) NV (W(€')), such that the intersection of cycles W(e) and W(e') is
transversal at v. If such a vertex v exists, then v € S; for some index z < j < r, and either j —1 is
the last index in both span”(e),span”(€’), or j —1 is the last index in one of these sets, while j belongs
to another.

Proof: Fix an index 1 < z < r and a pair e, e’ € E. of edges. Let v be any vertex that lies on both
W(e) and W(e'). We consider two cases. The first case is when v € V", that is, there is some index
1 < 2 < r, such that v € V(S,) \ V(S.). Since all inner vertices of paths P"(e), P"(¢’) lie in V',
vertex v must be an inner vertex of both P°!(e) and P°“f(¢/). From Claim [7.45] the intersection of
P°Ut(e) and P°"(e’) at vertex v is non-transversal. Therefore, the intersection of W(e) and W (e’) at

v is non-transversal.

The second case is when there is some index 1 < 2’ < r, such that v € V(S,/). Assume that the
intersection of W(e) and W (e') at v is transversal. From our construction of the path set R/, it must
be the case that at least one of the edges e, e’ lies in A’,. Assume without loss of generality that this
edge is e. Notice that, from the construction of set A’,, the last index of span”(e) must be 2z’ — 1.
Since ¢’ € A,y U A, either 2’ € span”(€’), or the last index in span”(e’) is 2’ — 1. Therefore, if we
denote by j the last index of span”(e’), then j > 2z’ — 1 must hold. From our construction, v is the
only vertex of S/, such that the intersection of P™"(e) and P™"(¢’) at v is transversal. Moreover, since
j >z —1,and 2/ — 1 is the last index in span”(e), for every index 2" # 2/, for every vertex v’ € S,»
that lies on both P™"(e) and P™"(¢’), the intersection of the two paths at v’ must be non-transversal. O

7.3.3 Step 3: Laminar Family £ of Clusters, and Internal and External Routers for
Clusters of £

We define a laminar family £ = {Uj,...,U,} of clusters of G, that will be later used in order to
compute a decomposition of the input instance I into subinstances.

For each 1 < ¢ < r, we define cluster U; to be the subgraph of G induced by UlgzgiV(SZ)' For

convenience, we also denote by U; the subgraph of G induced by |J; <2<r V(S.). We then define a
laminar family £ = {Uy,...,U,} of clusters of G. Notice that U, = G, and Uy C Uy C --- C U,.

We now fix an index 1 < i < r and consider the set g (U;) = E(U;, U;) of edges. We can partition this
edge set into two subsets: set E; = FE(S;, SZ+1) and set F;, containing all remaining edges. Notice
that E; is precisely the set of all edges e € E with i € span(e).

For all 1 <1 < r, we will define an internal router Q(U;), and an external router Q'(U;) for cluster U;.

The internal routers Q(U;) of the clusters U; € £ will be used in order to compute the decomposition
of I into subinstances. Both the internal and the external routers Q(U;), @'(U;) will be used in order
to argue that the resulting instances have a relatively cheap solution. In order to define these routers,
we first need to define, for all 1 < i < r, an internal router Q(S;) for cluster S; € S. The algorithm
for computing these routers is randomized, and is provided next.

Algorithm for Computing Internal Routers for the Vertebrae.

(log m)3/4loglog m)

Recall that we have defined a parameter 7 = 2°( We also use a new parameter

6* _ 20(\/log m-loglog m) )

We now provide a randomized algorithm that computes, for each cluster S; € S an internal S;-router
Q(S;). Additionally, we compute a partition (SP2d, SU8M) of the clusters in S. Initially, we set
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Shad — glight — () Recall that, from the definition of the nice witness structure, every cluster S; € S
has the o*-bandwidth property, for o = Q(1/log!? m).

For each 1 < ¢ < r in turn, we apply Algorithm AlgClassifyCluster from Theorem to instance
I = (G,%) of MCNwRS and cluster J = S;, with parameter p = 1/m!%. If the algorithm returns
a distribution D(S;) over internal S;-routers in A(S;), such that S; is f*-light with respect to D(S;),
then we sample an internal S;-router Q(S;) from the distribution D(.S;), and we let u; be the vertex of
S; that serves as the common endpoint of all paths in Q(S;). We refer to vertex u; as the center vertex
of S;. We also add cluster S; to set S8 in this case. Otherwise, Algorithm AlgClassifyCluster returns
FAIL. In this case, we add cluster S; to S”?d, and we apply the algorithm from Corollary to graph
G and cluster S;. Let D(S;) be the distribution over the set Ag(.S;) of internal Sj-routers that the
algorithm returns. We then let Q(S;) be an internal S;-router sampled from the distribution D(S;).
From Corollary for each edge e € E(S;), E [cong(Q(S;),e)] < O(log? m/a*) = O(log!® m).

Bad Event £. For an index 1 < ¢ < r, we say that bad event &; happens, if S; is not a 7-
bad cluster, but Algorithm AlgClassifyCluster returned FAIL when applied to it. From Theorem
Pr[&;] < 1/m!%. We also let £ be the bad event that event & happens for any index 1 <4 < r. From
the union bound, Pr[€] < 1/m%.

Consider again any index 1 < i < 7. We will now slightly modify the paths in set Q(S;), to ensure that
they are non-traversal with respect to the rotation system 3. In order to do so, we start by subdividing
every edge e € d(S;) with a vertex t(e), and we let X; = {t(e) | e € 0g(S;)} be the resulting set of
new vertices. We truncate the paths of Q(S;), so that each such path originates at a distinct vertex of
X, and terminates at vertex u;. We then let Y; be the multiset of vertices containing the last vertex
on every path of Q(S;) (so Y; contains |Q(S;)| copies of vertex u;). We apply the algorithm from
Lemma to the resulting instance of MCNwRS, set Q(S;) of paths and vertex multisets X;, Y, to
obtain another set Q(SZ) of paths that are non-transversal with respect to . Recall that for every
edge e € F(Q), congi(9(S;),e) < congi(Q(S;),e), so in particular all inner vertices of the paths in
Q(S;) lie in S;. The path set Q(S;) naturally defines a set of paths (internal S;-router) in graph G,
that route the edges of 6¢(S;) to vertex u;, and are non-transversal with respect to ¥. For convenience
of notation, we denote this internal S;-router by Q(S;) from now on. The following observation follows
immediately from the above discussion, Theorem and the definition of 5*-light and 7-bad clusters
(see Definition and Definition in Section , and from the fact that g* <.

IN

Observation 7.49 For every cluster S; € S"8M | for every edge e € E(S;): E [(congG(Q(Si), e))Q}
7. Additionally, for every cluster S; € SP*, for every edge e € E(S;): E [congs(Q(S;),e)]
O(log16 m). Moreover, if £ did not happen, then every cluster S; € S”*d is f-bad, that is:

12
OPTamrs(Si 2(S5)) + | E(S)| > '56“(5)’

N

where ¥.(S;) is the rotation system for graph S; induced by . Lastly, Pr [£] < 1/m?.

Internal and External Routers for Clusters of A

Fix an index 1 < i < r. We now define an internal router Q(U;) and an external router Q'(U;) for
cluster U; € A. We will ensure that all paths of Q(U;) terminate at the center vertex u; of S;, and
all paths of Q' (U;) terminate at the center vertex u; 1 of S;+1. In order to do so, we consider the
edges e € d¢(U;) one by one. For each such edge e, we define a path Q(e), whose first edge is e, last
vertex is u;, and all inner vertices lie in U;, and we define a path Q’(e), whose first edge is e, last
vertex is u;11, and all inner vertices lie in U;11. We will then set Q(U;) = {Q(e) | e € 6(U;)}, and
Q'(U) = {Q'(e) | e € 6(UH)}.

99



We now fix an edge e € d¢(U;), and define the two paths Q(e), Q'(e). Recall that 6¢(U;) = E; U E;.
Assume first that e € E;. In this case, e € 6¢(S;) and e € dg(S;+1) must hold. We let Q(e) be the
unique path of the internal S;-router Q(.S;) whose first edge is e, and we let ’'(e) be the unique path
of the internal S;i-router Q(S;+1), whose first edge is e. As required, path Q(e) connects e to u; and
only contains vertices of U; as inner vertices, while path @’(e) connects e to u;11, and only contains
vertices of U; as inner vertices.

Assume now that e € E;. We denote e = (u,v), and we assume that u is the left endpoint of e.
Since e € Ej, i € span(e), and, since span(e) C span”(e), we get that i € span”(e). From the
construction of the path Pi”(e), it must contain an edge é; € F;. Additionally, it must contain some
edge é;_1 € 0g(S;) \ {é} and some edge é;11 € 0g(Si+1) \ {é&} (if e € 6¢(S;), then é;_1 = e, and if
e € 6g(Si+1), then é;411 = e); see Figure . Let p(e) € P™"(e) be the subpath of P'"(e) that starts
at edge é;_1 and terminates at edge €;+1. Consider now the graph that is obtained from the auxiliary
cycle W(e) by deleting the edge e, and all edges of p(e) excluding é;_1 and é;41. Once we delete
all isolated vertices in the resulting graph, we obtain two contiguous paths. The first path, that we
denote by P, originates at u and has edge é;_1 € dc(S;) as its last edge; all edges and vertices of P
lie in U; (if e = é;_1, then P = {u}). The second path, that we denote by P’, originates at v and has
éir1 € 0G(Sit1) as its last edge; all edges and vertices of P’ lie in U; (if e = é;41, then P’ = {v}).
We let Q(e) be the path obtained by concatenating the edge e with the path P, and the unique path
of the internal Sj-router Q(S;) that originates at edge é;_1 (see Figure 20). Clearly, path Q(e) has
e as its first edge, u; as its last vertex, and all its inner vertices lie in U;. Similarly, we let Q’(e) be
the path obtained by concatenating the edge e with the path P’, and the unique path of the internal
Si+1-router Q(S;11) that originates at edge é;11. Clearly, path Q’(e) has e as its first edge, u; 41 as its

last vertex, and all its inner vertices lie in Uj;.
l+1 @

Figure 19: Construction of paths Q(e) and Q'(e) for an edge e € E;. Path p(e) is shown in green, and
the cut (U;, V' \ U;) is shown in a pink dashed line.

Once every edge of ¢(U;) is processed, we set Q(U;) = {Q(e) | e € 6(U;)} and Q'(U;) = {Q'(e) | e € 6(U;)}-
It is immediate to verify that Q(U;) is an internal U;-router, while Q'(U;) is an external U;-router.
Note that the construction of both routers is randomized, and the only randomized component in the
construction is the selection of the internal routers for the vertebrae. We need the following simple
observation.

Observation 7.50 For all 1 < i < r, the set Q(U;) of paths is non-transversal with respect to 3.
Additionally, for every pair Q'(e),Q'(¢') € Q'(U;) of paths, there is at most one vertex v, such that
Q'(e) and Q'(e') have a transversal intersection at v. If such a vertex v exists, then v is the unique
vertex, such that the auziliary cycles W(e), W (€') have a transversal intersection at v.
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Si Si+1

Figure 20: Paths Q(e) is the union of edge e and the green path; path @'(e) is the union of edge e
and the brown path.

Proof: We start by considering a pair of paths Q(e), Q(e’) € Q(U;). Let v be any vertex that serves
as an inner vertex on both paths. We consider three cases. First, if v € V", then e, ¢’ € E; must hold,
and, from Observation [7.48] the intersection of Q(e) and Q(e ') at v is non-transversal. The second
case is when v € V/(S;). In this case, there must be two paths Q1,Q2 € Q(S;), such that Q; € Q(e),
Q2 C Q(¢'), and v is an inner vertex on both Q1 and Qs (note that it is possible that Q; = Q). In
this case, from the construction of the internal S;-router Q(S;), the intersection of Q(e) and Q(e’) a

v is non-transversal. The third case is when v € V/\ V(S;). In this case, e, e’ € E; must hold. Assume
that v € V(S,) for some index z < i. Clearly, 2 may not be the last index of span”(e) or of span”(¢’).
Therefore, from Observation [7.48] the intersection of Q(e) and of Q(€’) at v is non-transversal. We
conclude that the set Q(U;) of paths is non-transversal with respect to X.

Consider now some pair @'(e),Q'(¢') € Q' (U;) of paths. Let v be any vertex that serves as an inner
vertex on both paths. We again consider three cases. First, if v € V”, then e, e’ € F; must hold, and,
from Observation [7.48] the intersection of Q'(e) and Q'(e’) at v is non-transversal. The second case
is when v € V(S;41). In this case, there must be two paths Q1,Q2 € Q(Si11), such that Q; C Q'(e),
Qs C Q'(¢’), and v is an inner vertex on both Q1 and Qo. In this case, from the construction of the
internal S;yi-router Q(S;11), the intersection of Q'(v) and @Q'(v') at v is non-transversal. The third
case is when v € V/\V/(S;). In this case, e, e’ € E; must hold, and v also lies on cycles W (e) and W (¢').
Moreover, the intersection of W(e) and W (e’) must be transversal at v. From Observation there
may be at most one vertex v/, such that the intersection of W (e) and W (e) at v’ is transversal. We
conclude that there is at most one vertex v € V(Q'(e)) NV (Q’(€’)), such that the intersection of Q’(e)
and @Q'(¢/) at v is transversal. If such a vertex v exists, then v is the unique vertex, such that the
auxiliary cycles W (e), W(¢e') have a transversal intersection at v. |

From Observation [7.47] and the construction of the internal and external U;-routers, we obtain the
following immediate observation.

Observation 7.51 For all 1 < i < r, an edge e € E(S;) may appear on at most O(log**m) -
cong(Q(S;), e) paths of Q(U;), and an edge e € E(U;) \ E(S;) may appear on at most O(log3* m)
paths of Q(U;). Similarly, an edge e € E(S;y1) may appear on at most O(log®* m) - congs(Q(Si+1), €)
paths of Q'(U;), and an edge e € E(U;) \ E(Siy1) may appear on at most O(log®* m) paths of Q'(U;).

We will also use the following simple corollary of the observation.

Corollary 7.52 For all 1 < z < 7, |6¢(U.)| < |6c(S.)| - O(log3* m), and |6¢(U.)| < 6¢(S.11)] -
O(log* m).

101



Proof: Recall that we have defined a collection Q(U,) of paths, routing the edges of 5@(Uz) to vertex
u,. Each such path must contain an edge of d;(S,). Moreover, from Observation an edge of
6c(S.) may lie on at most O(log®* m) paths of Q(U.). Therefore, |6q(U.)| < [05(S.)| - O(logg4 m).

Similarly, we have defined a collection Q'(U,) of paths, routing the edges of dg(U.) to vertex u,1.
Each such path must contain an edge of dg(S,+1). From Observation an edge of dg(S,+1) may
lie on at most O(log3* m) paths of Q'(U.). Therefore, |0(U.)| < [6c(S.11)| - O(log3* m). |

7.3.4 Step 4: Constructing the Collection of Subinstances

Consider again an index 1 < ¢ < r, and the internal U;-router Q(U;) = {Q(e) | e € 6¢(U;)}. Recall
that all paths in Q(U;) terminate at vertex u;. Denote dg(u;) = {eﬁ, . ,ef5(ui)|}, where the edges

are indexed according to their order in O, € X. For all 1 < j < |§(u;)], let Ai C 6¢(U;) be the set
of all edges e € d¢(U;), such that the uniue path Q(e) € Q(U;) that has e as 1ts first edge contains
edge eé» as its last edge. We now define an ordering O; of the edges of 0c(U;): the edges in sets
AL AL ’A|i6(ui)\ appear in the order of the indices of their sets, and, for each 1 < j < |d(w;)|, the
ordering of the edges in set A; is arbitrary. Notice that the resulting ordering O; of the edges of
0¢(U;) is precisely the ordering Oeuded(Q(1];), 3), that is guided by the internal Us-router Q(U;) (see
the definition in Section [5.2). For i = r, 6q(U;) = 0, and the ordering O, of the edges of dg(U;) is the
trivial one.

We let Zs be a collection of subinstances of I obtained by computing a laminar family-based decompo-
sition of I (defined in Section via the laminar family £ = {U;}, ., of clusters, and the orderings
O; of the edge sets d(U;) for all 1 < i <r. We denote Zy = {I4,..., I}, where, for 1 < z < r, instance
= (G,,X,) is the instance associated with the cluster U,. Recall that instance I, is defined as
follows. Assume first that 1 < z < r. Then graph G, is obtained from graph G by first contracting all
vertices of U,_; into vertex v}, and then contractlng all vertices of U,4; into vertex v3*. Notice that,
equivalently, graph G, con51sts of the cluster S, € S, the two special vertices v, v, and possibly
some additional edges that are incident to these two special vertices.
The rotation system X, is defined as follows. Observe first that, for every vertex v € V/(G,)\ {v}, vi*},
da,(v) = dg(v). The ordering O, € ¥, of the edges incident to v in ¥, remains the same as in X.
Notice that dq, (v3) = dg(U.—1). We let the ordering O,» € X, of the edges of dc, (vi) be the ordering
O, that we defined above. Lastly, observe that dg. (v:*) = 6q(U.). We let the ordering O, o € X,
of the edges of d¢. (v*) be the ordering O, that we defined above. For z = 1, instance I; = (Gl, 1)
is defined similarly, except that the instance does not contain vertex vj. Instance I, = (G, %,) is also
defined similarly, except that it does not contain vertex v;*
We now verify that the resulting collection Zs of instances has all required properties. Fix some index
1 < z < r. Recall that, from the definition of a nice witness structure, there is at most one cluster
C € C with C C S.. Recall also that, for each cluster C' € C, there is exactly one cluster S; € S that
contains C. If some cluster C' € C is contained in S, then E(S,) C E(C)U E(G)¢) must hold, and so
E(G.) C E(C)U E(G|¢) as well. Otherwise, E(S.) C E(Gc), and so E(G.) € E(G|c).
From Lemma there is an efficient algorithm, that, given, for each instance I, € Z, a solution ¢,,
computes a solution for instance I of value at most >, , cr(p.). Next, we bound the total number of
edges in all resulting instances.

Observation 7.53 E1§z§r |E(G,)| < O(|E(G)| -log*m).

Proof: Fix an indeX 1 < z < 7. From our construction, |E(G.)| < |E(S.)| + [6c(U._1)| + |0c(U-)|.
From Corollary [7.52 [06(U.-1)| < |0¢(S:-1)| - O(log** m), and [6(U.)| < [66(Ss+1)| - O(log* m).

102



Therefore, |E(G.)| < |E(S.)| + (|06(S2—1)| + [6c(S.+1)]) - O(log®* m). Summing up over all indices z,
we get that:

,

SIB(G.)| < Z|E )|+ Oflog® m) - 3" i(52)] < O(E(G)] - log" m).

z=1 z=1

0

Recall that we have used a randomized algorithm to compute, for all 1 < ¢ < r, an internal U;-
router Q(U;) and an external Us-router Q'(U;). In order to complete the proof of Theorem it is
now enough to show that the expected total optimal solution costs of all instances in Zy (over the
random choices performed by the algorithm that computed the internal and the external U;-routers)
is bounded by 20((logm)*/*loglogm) . (OPTcnwrs(I) + |E(G)|). The following claim, whose proof appears
in Section [7.4] will finish the proof of Theorem

Claim 7.54 E [3_; OPT s (L.)] < 20((egm)* loglogm) . (OPT o (1) + |E(G)]).

7.4 Proof of Claim [7.54]

Notice that graphs G, G, have a somewhat different structure than graphs of {G.},_,_,: specifically,
graph (G1 does not contain vertex v}, and graph G, does not contain vertex v;*. It would be convenient
for us to modify these two graphs so that we can treat all resulting graphs uniformly. In order to
do so, we add a new dummy vertex v} to graph G, and connect it with an edge to an arbitrary
vertex v; € S1. We modify the rotation O,, € X; to include the new edge (vi,v]) at an arbitrary
position in the rotation. Notice that any solution to the resulting new instance I; = (Gp,%1) of
MCNwRS immediately provides a solution to the original instance I = (G1, %), of the same cost. We
similarly modify graph G,, by adding a new dummy vertex v;*, which is connected with an edge to
an arbitrary vertex v, € S,. We modify the rotation O,, € %, as before. In order to be consistent,
we also add the vertices v}, v}*, and edges (vj,v1) and (v}*,v,) to the original graph G, and modify
the rotations O,,, 0, € O, so that they remain consistent with the rotations O,,, € ¥; and O,, € %,,
respectively. Notice that this modification does not increase OPTcqurs(1). We also modify the nice
witness structure, by adding two new clusters Sy = {vf} and S, = {v*} to S, and their subclusters
So ={vj} and S,+1 = {v;*}. We note that all the above modifications are only performed for ease of
exposition and are not strictly necessary.

Let ¢* be an optimal solution to instance I of MCNwRS. We can assume that no pair of edges cross
twice, and that the image of each edge does not cross itself in ¢*. We denote by x* the set of all
unordered pairs (e, €’) of edges of G, such that the images of e and €’ cross in p*. For all 1 <z <r,
we denote by x% C x* the set of all unordered pairs (e, €’) of edges of G whose images cross, such that
either e € E(5.) Udg(S.), or ¢ € E(S.)Udg(S.), or both. We will use the drawing ¢* in order to
construct, for each 1 < z < r, a solution ¢, to instance I, = (G, %)

For each 1 < z < r, we construct a solution ¢, to instance I, and then argue that the total expected
costs of all these solutions is relatively small. We now fix an index 1 < z < r; and focus on constructing
solution ¢, to instance I,. The construction of the solution consists of four steps. In the first step,
we construct an auxiliary graph H, and its drawing .. This graph and its drawing are used in the
second step, in order to construct an initial drawing ¢’ of graph G,. The number of crossings in
drawing ¢/, may be quite large, and we modify the drawing in order to lower the number of crossings
in the third step. The resulting drawing, ¢”, will have a sufficiently low expected number of crossings,
but unfortunately it may not obey the rotation Oyx« € X,. In the fourth and the last step, we modify
this drawing in order to obtain a feasible solution ¢, to instance I, of MCNwRS, while only slightly
increasing the number of crossings. We now fix an index 1 < z < r, and describe a construction of a
solution ¢, for instance I, of MCNwRS step by step.
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7.4.1 Step 1: Computing Auxiliary Graph H, and Its Drawing

Recall that graph G is obtained from graph G by contracting all vertices of (J; ;. V(S;) into the
special vertex v}, and then contracting all vertices of | J,_,., into the special vertex vi*. Clearly,
every edge of G, corresponds to some edge of GG, and we do not distinguish between these edges. In
order to simplify the notation, when the index z is fixed, we denote vertices v} and v:* by v* and v**,
respectively. Notice that 0. (v*) = 6g(U._1) = E._1 U E,_1, while dg, (v**) = 6g(U.) = E, UE,. In
order to obtain the drawing ¢, of graph G, we will exploit the internal U,_j-router Q(U,_1), that
routes the edges of 0¢(U,—1) to vertex u._1, and the external U,-router Q'(U,), that routes the edges
of 6¢(U>) to vertex u,41. For each edge e € §¢(U,—1), we denote by @Q(e) the unique path of Q(U,_1)
whose first edge is e, and for each edge e € d5(U.), we denote by @Q'(e) the unique path of Q'(U,)
whose first edge is e.

Denote QF = Q(U,_1) U Q(U.). For every edge e € E(G), we define a value N,(e), as follows. If
e € E(G)\ E(G;), then N,(e) = cong(Q%, e) — the number of paths in Q} that contain the edge e.

For each edge e € d¢(U,—1)Udq(U,)UE(S;), we set N,(e) = 1. The will use the following observation.

Observation 7.55 Let e be an edge of E(G) \ E(G,). If e & E(S,-1) U E(S.+1), then N,(e) <
O(log** m); otherwise, E [N (e)] < 7). Moreover, ife € E(S.—1) and S.—1 € S, then E [(N.(e))?] <
f). Similarly, if e € E(S.11) and S.41 € S8, then E [(N.(e))?] < 7. (All expectations here are
over the selections of the internal routers Q(S,—1) and Q(S,+1)).

Proof: Consider an edge e € E(G) \ E(G). Notice that either e € E(U,_1), or e € E(U,) must hold.
We assume that it is the former; the other case is symmetric. In this case, N,(e) = congs(Q(U,-1), €),
and, from Observation N.(e) < O(log** m).

Assume now that e € E(U,_1). From Observation edge e may appear on at most cong(Q(S;-1),e)-
O(log3* m) paths of Q(U, 1), that is, N.(e) < congs(Q(S.—1),e) - Olog** m). From Observa-

tion [7.49] for 1 < i < r, if S; € Seht then E {(congG(Q(Si),e))z] < 7, while, if S; € SP*, then
E [cong(Q(S;),e)] < O(log*®m) < 7). The observation now follows immediately. O

We now construct an auxiliary graph H,., and its drawing %,. In order to do so, we start with
H. = G, and 1, = ¢*. We call the edges of E(S.)Udg(S,) primary edges, and the remaining edges of
G secondary edges. We now process every secondary edge e one by one. If edge e does not participate
in any path of Q} (that is, N,(e) = 0), then we delete e from H, and we delete its image from 1),.
Otherwise, we replace e with a set J(e) of N,(e) parallel copies of e in graph H,, and we replace
the image of e in ¥, with images of these copies, that follow the original image of e in parallel to it,
without crossing each other. For convenience, for each edge e € E(S,)Udq(U._1)Udg(U.), we define
J(e) = {e}, and we think of the graph H, as having a single copy of the edge e (the edge e itself).

This completes the definition of the graph H, and its drawing 1),.

For every edge e € E(G) \ E(G,), we can now assign, to every path of QF containing e, a distinct
copy of this edge from J(e). If edge e & dg(u.—1), we assign each copy of e in J(e) to a distinct path
of @ containing e arbitrarily. If edge e € dg(u,—1), then we perform the assignment more carefully.
Intuitively, this assignment is performed in a way that is consistent with the ordering O@,_; of the edges
of 6q(U,—1) that we have defined, and the ordering of the paths of set Q(U,_1) = {Q(e) | € € 0¢(U.—1)}
that it induces.

Assigning the copies of edges of dg(u,—1) to paths. Consider the set dg(U,—1) of edges. Re-

call that we have defined an ordering O,_; of the edges of dg(U,—1), which is precisely the order-
ing O&uded(Q(U, 1), %), that is guided by the internal U,_j-router QgUz_l). Denote dg(U,—1) =

{a1,a2,...,4,}, where the edges are indexed according to the ordering O,_;.
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Recall the procedure that we used in order to define the ordering @,_; of the edges of dc(U,—1) (for
convenience we omit the superscript z — 1): we have denoted dg(u,—1) = {el, e e|5(uzil)‘}, where
the edges are indexed according to their order in the rotation O, , € ¥. For all 1 < j < |6(uy—1)],
we denoted by A; C d¢(U,—1) the set of all edges €’ € d¢(U,—1), such that the unique path Q(e’) €
Q(U,_1) originating at edge ¢’ terminates at edge e;.

We have defined the ordering O, 1 = (a1, dz, ..., d,) of the edges of dg(U,_1) as follows: the edges
that lie in sets Ay, Ag,..., A5,,_,) appear in the order of the indices of their sets, and, for each
1<j<16(uz—1)|, the ordering of the edges within each set A; is arbitrary; denote this latter ordering

; ¢~ The current drawing v, of graph H, naturally defines a circular ordering

by (’) = {al,CLQ,.. ,ay }
of the edges of dp(u,—1), which is precisely the order in which the images these edges enter the
image of u,—1. In this circular ordering, the edges of each set J(e1),J(e2), .-, J(€|55(u._,)|) aPpPear
consecutively, in the order of the indices of their sets. For each index 1 < j < |0g(uy—1)|, the above

circular ordering defines an ordering @; of the edges of J(e;).

Consider now some edge e; € dg(u,—1), and assume that |J(e;)| = ¢;. On the one hand, we have
defined the ordering (’);- of the edges of J(ej) — the order in which the images of these edges in v,

enter the image of u,_1. On the other hand, we have defined an ordering @j = {a{, ag, .. aqj} of the

edges of A; — that is, the edges €’ € d¢(u.—1), whose corresponding path Q(e’) contains edge e;. For
all 1 < h < ¢;, we then assign the hth edge of J(e;) in the ordering @3 to path Q(a7 ). This completes
the assignment of edges of H, that are incident to vertex u,_; to the paths of Q(U,_1).

For every edge a; € d¢(U,—1), we can now obtain a path Q(az) in graph H,, that originates at edge a;
and terminates at vertex u,_1, with all inner vertices of Q(al) lying in V/(U,_1), by starting from the
path Q(a;) € Q(U,—1), and replacing every edge ¢’ € E(G)\ E(G) with the copy of ¢’ that is assigned

to path Q(a;). Denote the resulting set of paths in graph H, by 0, = {Q(dz) | a; € 5@(UZ,1)}. For

each edge a; € 0¢(U,—1), denote by @ the last edge on path Q(al) Then the paths of O, are mutually
edge-disjoint, and they route the edges of 0g(U,—1) to vertex u;—1 in H,. All inner vertices on the
paths of QZ lie in V(U,—1). Moreover, the images of edges a/, ... ,&; enter the image of u;_1 in the
drawing v, of H, in the circular order of their indices (and recall that edges a1, ..., aq are indexed in
the order of their appearance in O,_;).

Similarly, for every edge a € 0g(U,), we can now obtain a path Q (a) in graph H., that originates
at edge a and terminates at vertex u,y1, with all inner vertices of @’(a) lying in V(U,), by starting
from the path Q’(a) € Q'(U,), and replacing every edge ¢’ € E(G) \ E(G) with the copy of ¢’ that is

assigned to path Q(a). Denote the resulting set of paths in graph H, by Q. = {Q’(a) la € 5@(Uz)}.
Then the paths of Q’Z are mutually edge-disjoint, and they route the edges of dg(U,) to vertex ;.

All inner vertices on paths of Q; lie in V(U,). This completes the construction of graph H, and its
drawing 1,. We now analyze the number of crossings in this graph.

Bounding the Number of Crossings in ¢).. Recall that 0¢(U,—1) = E,_ LUE,_1, while da(U, ) =
E.UE.. We denote EYver = E._1NE.; note that every edge e € E{V®" has one endpomt in U<, V(Si),

and another endpoint in J,_;, V(S;) (see Figure [21). We also denote by E'*ft = F, ;1\ %' and by
ES8M — B\ Er. Notice that every edge e € Eieft has one endpoint in U<, V(S;), and another
right

endpoint in V(S.), while every edge e € EL®™ has one endpoint in V(S,) and another endpoint in
U.<i<r V(i) (see Figure . From the above definitions, dg, (v*) = 6¢(U._1) = E._1 U Elft y gover,
and ¢, (v**) = 6¢(U.) = E, U ES8" U Eover,

We now reorganize the paths in Q. U Q/, as follows. We let R} = {Q(e) le€e E,_1 U Eieft}, =
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Figure 21: Set E9"" of edges is shown in red, set EL®" in blue, and set E' in green. The left pink
dashed line shows the cut (U,_1,V \ U,_1), and the right pink dashed line shows the cut (U, V' \ U;).

{Q’(e) le€ E, U E?ght}, and Rgz) = Ry UR". For cach edge e € E,_ UE*®UEI®" U B, we denote

by R(e) € Rgz) the unique path that has edge e as its first edge. For every edge e € EJV", we let
R(e) be the concatenation of the paths Q(e) € Q, and Q’(e) € Q, so that path R(e) is a simple path
connecting vertices u, 1 and u,1, and it contains the edge e. We then set R;Z) ={R(e) | e € EJ""}.

For every secondary edge €’ in graph G, we denote by N.(e’) the number of paths in set Rgz) that
contain a copy of €/, and we denote by N (e’) the number of paths in set Rgz) that contain a copy of ¢’.
Note that, equivalently, N.(e’) is the total number of paths in Q(U,_1)UQ'(U,) that originate at edges
of B,_1UE*®UEY"™ U E, and contain ¢/, while N7 (¢') is the total number of paths in Q(U,_,)UQ(U)
that originate at edges of E9V*" and contain €’. For a primary edge €/, we set N.(e/) = 1 and N/ (¢') = 0.
Clearly, N,(¢/) = N.(¢/) + NZ(€’) holds for every edge €. Intuitively, for each edge €', the value
Yoy N.(¢) is relatively small, while the value ) __; N”(¢’) may be quite large. Indeed, recall that
the paths in set Q(U,_1) U Q' (U,) can be thought of as constructed by composing subpaths of cycles

of {W(e’) | € B, 1 U Ez} with the internal routers Q(S,_1) and Q(S.,1). Consider an edge e € E,

and the corresponding cycle W(e). Assume that span(e) = {4,...,7 —1}. Then there is only one
index z for which e € E'*!* — index » = j. Similarly, there is only one index z for which e € E"ght(z)

— index z = i. Therefore, cycle W (e) contributes its subpath to set Rgz) only for indices z = i and

z = j. On the other hand, cycle W (e) may contribute a subpath to set Rgz) for every index i < z < j.
Because of this, we will try to bound the number of crossings in the final drawing ¢, that we construct
for instance I, in terms of the values {N/(e')}./cp(q)- For convenience, when the index z is fixed, we

omit the superscript (z) in the notation Rgz) and Rgz).

Notice that, from our assumption about drawing ¢*, no pair of edges in drawing v, of H, may cross
more than once, and no edge has its image cross itself. Consider any crossing (e1, e2) in drawing ..
Assume that e; is a copy of edge €| € F(G), and that eg is a copy of edge ¢, € E(G). Then the images
of edges €], e, must cross in ¢*, and we say that crossing (e,e}) in ¢* is responsible for crossing
(61; 62) in wz

We classify the crossings in drawing 1, into several types, and we bound the number of crossings of
each of these types separately. Consider now a crossing (e1, e2) in drawing ¢, of graph H,. Let €], €,
be the edges of G, such that e; € J(e}) and ex € J(e}), so crossing (], €5) of ¢* is responsible for
crossing (eg, e2).
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Type-1 Crossings. We say that crossing (e, e2) in 1, is a type-1 crossing if at least one of the two
edges e/, ¢y lies in E(S,) Udg(S.). We assume w.l.o.g. that ¢] € E(S,)Udg(S.). Notice that crossing
(€],€h) of ¢* may be responsible for at most N,(e}) type-1 crossings in 1,. From Observation
E [N.(¢ey)] < 7. We note that random variable N, (ef) may only depend on the random selections of the
internal routers Q(S,_1) and Q(S.+1), and in particular it is independent of the random selection of
the internal router Q(S). The expected number of crossings for which crossing (€], €}) is responsible is
then bounded by 7). From our definition, crossing (e/, €,) must lie in x%. Therefore, the total expected
number of type-1 crossings is bounded by |x%| - 7. We note that the random variable corresponding
to the total number of type-1 crossings only depends on the random selections of the internal routers
Q(S.-1) and Q(S;+1), and it is independent of the random selection of the internal router Q(S5,). We

will use this fact later.

Type-2 Crossings. We say that a crossing (e, e2) in v, is a type-2 crossing if it is not a type-1
crossing, and, additionally, one of the two edges (say e1) lies on a path of R), while the other edge
(edge e3) lies on a path of RY. Notice that, in this case, e; € E(U._1) and ez € E(U,) must hold. A
crossing (€, €}) of ¥* may be responsible for at most N.(e})- N.(e}) type-2 crossings of 1,. Moreover,
the random variables N’ (¢e}), N.(¢e}) are independent from each other. From Observation we can
bound E [N.(e}) - N.(e})] < E [NL(€})]-7. Therefore, we get that the total expected number of type-2

crossings is bounded by:

ST (E[NUED] +E [NLe)]) - i

(e1.e5)Ex*

Type-3 Crossings. We say that a crossing (e, eq2) in v, is a type-3 crossing if it is not a type-1
or a type-2 crossing, and, additionally, one of the two edges (say e;) lies on a path of R}, while the
other edge (edge e2) lies on a path of R} URy. We denote by x,—1 the set of all crossings (e}, e5) of
©*, where €/, ¢}, € E(S,_1).

Consider any crossing (€], ¢e)) of ¢* that does not lie in x,—;. This crossing may be responsible
for at most N.(e}) - N,(e}) + N.(€}) - N.(e}) type-3 crossings in 1,. Notice that random variables
NL(€}), N.(e}) are independent from each other, as are random variables N,(e}), N.(e}). From
Observation we can bound the expected number of type-3 crossings for which crossing (e}, €}) of
©* is responsible by E [N.(¢})] -7+ E [N.(e})] - ). Therefore, the total number of type-3 crossings, for
which crossings of x* \ X.—1 are responsible is bounded by:

S (BN +E N
(6/1,6/2)6)(*\)22_1
A crossing (€}, €5) € X.—1 may be responsible for up to N.(e}) - N.(e}) + N.(e}) - NL(e,) < 2N, (e}) -
N, (€}) type-3 crossings of ¢,. But now the random variables N, (e}), N.(e}) are no longer indepden-
dent. We can, however, bound N,(e}) - N,(e5) < (N,(e}))? + (N.(€5))?. From Observation for
an edge e € E(S,_1), N,(e) < O(log® m) - cong;(Q(S._1),e). Therefore, the total expected number
of type-3 crossings is at most:

e Y (B[NI(e)] +E [N(e)])

(e1,e5)EX* \Xz—1

+ O(log%® m) - Z (E [(congg(Q(S:-1),€1)?] + E [(congg(Q(S:-1),€5)?]) .

(e ,e5)€EXz—1
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Type-4 Crossings. We say that a crossing (e1, e2) in 9, is a type-4 crossing if it is not a crossing of
one of the first three types, and, additionally, one of the two edges (say, edge e1) lies on a path of RY,
while the other edge (edge e3) lies on a path of R URy. We denote by X.4+1 the set of all crossings
(€], €h) of p*, where €/, e} € E(S,41).

Consider any crossing (€], €5) of ¢* that does not lie in x,+1. As before, this crossing may be responsible
for at most N.(e}) - N,(e}) + N.(e}) - NL(e}) type-4 crossings in ¢,. Using the same analysis as for
type-3 crossings, we can bound the expected number of type-4 crossings for which crossing (¢}, €) of
©* \ Xz+1 is responsible by E [N.(e})] - 7 + E[N.(e5)] - /). The total number of type-4 crossings, for
which crossings of x* \ X.+1 are responsible is bounded by:

S (BN +E[NU(E)]) i

(e],e5)EX \Xz+1

As before, a crossing (€], €}) € X.+1 may be responsible for up to N.(e}) - N,(e}) + N.(e}) - N.(e) <
2N, (e]) - N(eh) < 2(N.(e}))? + 2(N.(e}))? type-4 crossings of 1,. Using the same reasoning as in
type-3 crossings, the total expected number of type-4 crossings is bounded by:

i Y (E[NU)] +E[Nieh)])

(e1,€5)EX*\Xz+1

+0(og®m)- Y (E[(conga(Q(S:-1),¢1)’] + E [(conga(Q(S+1),¢)°]) -

(€1,€5)EX=+1

Type-5 Crossings All remaining crossings of ¢, are type-5 crossings. For each such crossing (ey, e2),
it must be the case that each of the edges e, ea belongs to a path of Ry. We do not bound the number
of type-5 crossings, as we will eventually eliminate all such crossings.

7.4.2 Step 2: Initial Drawing of G,

For every edge e € E,_1 U Eieft, we denote by I'(e) the curve corresponding to the image of path
R(e) € R} in the drawing ¢, of H,. Note that, if v is an endpoint of the path R(e) that lies in
V(S.), then curve I'(e) connects the image of v to the image of vertex u,_; in ¢,. For every edge
ec E,U E?ght, we denote by I'(e) the curve corresponding to the image of the path R(e) € RY in the
drawing ¢, of H,. Note that, if v is an endpoint of e that lies in V/(S;), then curve I'(e) connects the
image of v to the image of vertex u,41 in 1,. Lastly, for every edge e € E9V", we let I'(e) be the image
of the path R(e) € Ry in 1,. Notice that curve I'(e) connects the image of u,_1 to the image of w1
in 1p,. From the constructions of the paths in R} U Ry, if we denote dg(U,—1) = {a1,...,a4}, where
the edges are indexed in the order of their apperance in the ordering O,_1, the curves I'(é1), . . ., I'(aq)

enter the image of vertex u,_; in this circular order.

In order to obtain the initial drawing ¢, of G, we start with the drawing v, of graph H,, and we

delete from it the images of all vertices except those lying in V(S,) U {u,—1,u,+1}, and the images of
all edges except those lying in FE (5’2), we view the image of vertex u,_1 as the image of the special
vertex v*, and the image of vertex u,;; as the image of the secial vertex v**. We then add to this
drawing the curves in {I'(e) | e € 6q(U,—1) Udg(U,)}. Each such curve I'(e) becomes an image of the
corresponding edge e. Notice that the edges of é¢(U,—1) become incident to v* in graph G; the edges
of 0¢(U) become incident to v**, and the edges of EYV" connect v* to v**. From the above discussion,
the circular order in which the images of the edges in d¢, (v*) enter the image of v* in the current

drawing is exactly the ordering @,_;, which is precisely the ordering O, € ¥,. However, the images
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of the edges of d¢, (v**) may not enter the image of vertex v** in the correct order. We will fix this
in subsequent steps. There is one major problem with the current drawing of the graph G,: it is
possible that some point p lies on a large number of curves in set {I'(e) | e € d¢(U,—1) U dc(U>)}, and
it is an inner point on each such curve. This may only happen if p corresponds to an image of some
vertex v, where v € V(U,_1) \ {u,_1}, or v € V(U,) \ {u,11}. We will now “fix” the images of the
edges of dg, (v*) U dg, (v**) by slightly “nudging” them in the vicinity of each such vertex, to ensure

that all resulting curves are in general position. We do so by performing a nudging operation (see

Section 4.4.3)).

We process every vertex v € (V(U,—1) UV (U>))\{us—1,u.41} one by one. Consider an iteration when
any such vertex v is processed. Let A(v) be the set of all edges e € dg(U,—1) Udg(U.), such that curve
I'(e) contains the image of vertex v (in v,). We denote A(v) = {a1,...,ar}. Consider the tiny v-disc
D(v) = Dy_(v) in the drawing 1), of graph H,. For all 1 < i < k, we let s;,t; be the two points at
which curve I'(a;) intersects the boundary of the disc D(v). Note that all points s1,%1,. .., Sk, tx must
be distinct. We use the algorithm from Claim in order to construct a collection {71,...,v;} of
curves, such that, for all 1 < i < k, curve 7; has s; and t; as its endpoints, and is completely contained
in D(v). Recall that the claim ensures that, for every pair 1 < i < j < k of indices, if the two pairs
(si,ti), (s5,t5) of points cross, then curves ;,7; intersect at exactly one point; otherwise, curves v;,v;
do not intersect. For all 1 <1 < k, we modify the curve I'(a;) as follows: we replace the segment of
the curve between points s;, t; with the curve ~;.

Once every vertex v € (V(U,—1) UV (U.)) \ {uz—1,us41} is processed in this way, the curves in set
{T'(e) | e € 6¢(U,—1) Udc(U,)} are in general position, and we obtain a valid drawing of the graph
G, that we denote by ¢’. The modification of the curves in {I'(e) | e € 6¢(U,—1) Udg(U,)} do not
affect the endpoints of the curves, and so, for every vertex x € V(G,) \ {v**}, the images of the edges
of d¢, (x) enter the image of x in the order consistent with the rotation O, € ¥,. We now bound the
number of crossings in drawing ¢/,.

Consider some pair of edges e, e’ € E(G,) that cross at some point p in the drawing ¢/,. We say that
this crossing is primary iff point p does not belong to any of the discs in the set

(D) |ve (V(U,1) UV(U)) \ {ttamr1, uzs1}}

otherwise we say that the crossing is secondary.

Notice that every primary crossing in ¢/, corresponds to a unique crossing in the drawing 1, of the
graph H,. Recall that we have partitioned all such crossings into five types, and we have bounded
the number of crossings of each of the first four types. This partition naturally defines a partition of
all primary crossings in ¢, into five types. Specifically, primary crossings of type 1 are all crossings
(e,¢') where at least one of the edges e, ¢’ lies in E(S,) U dg(S,). Primary crossings of type 2 are
primary crossings between curves I'(e),I'(¢/), where e € E,_1 U E'* while ¢/ € E, U EY#". Primary
crossings of type 3 are primary crossings between curves I'(e),T'(¢’), where e € E, 1 U E*® and
e e E, 1U Eieft U E2Y", while primary crossings of type 4 are primary crossings between curves
I'(e),T(¢'), where e € E,UES®™ while ¢ € E,UELS8" U ESer. Lastly, primary crossings of type 5 are
primary crossings between curves I'(e),I'(¢/), where e, e’ € E2V". The number of primary crossings of
the first four types is bounded as before.

We now consider secondary crossings of .. Notice that each such crossing must be between a pair of
curves I'(e),['(e’), where e, ¢’ € d¢(U,—1) U dg(U,).

Consider a pair of curves I'(e),I'(¢’), where e, ¢’ € ¢(U,—1) U dg(U,), and some point p at which the
curves cross, such that the crossing is secondary. Let v € (V(U.—1) UV(U.)) \ {uz—1,u.11} be the
vertex such that p lies in the interior of disc D(v). Denote by s,t the points on the boundary of D
that lie on I'(e), and define ¢, ¢’ similary for I'(¢’). From Claim curves I'(e), '(¢/) may only cross
inside the disc D(v) if the pairs (s,t),(s’,t') of points on the boundary of D cross. Consider now
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the paths R(e) € R1 URy and R(e') € R1 U R2. Denote by ej, ey the two edges on path R(e) that
immediately precede and immediately follow vertex v, and define edges €], €}, similarly for path R(e’).
We now consider three cases.

First, if v € V(S,_1), then there must be two paths Q,Q" € Q(S,_1), such that @ C R(e) and
Q' C R(¢), where @, Q" both contain the vertex v. Since the paths of Q(S,_1) are non-transversal
with respect to X, the only way for the two pairs (s, t), (s, t') of points to cross is if the set {e1, e, €], €5}
contains copies of fewer than four distinct edges of dg(v). In other words, for some edge e* € dg(v),
both R(e) and R(e’) contain a copy of e*. In this case, we say that edge e* is responsible for this
secondary crossing between I'(e) and I'(¢/). The second case is when v € V(S,4+1). The analysis of
this case is similar to the previous case: there must be an edge e* € dg(v) such that both R(e) and
R(€’) contain a copy of e*. We say that e* is responsible for this crosisng.

We now consider the third case, when v & V(S,_1) UV (S,4+1). We consider the paths R(e), R(¢/) €
R1UTRg2, and we define the edges ey, e2, €], €, as before. Since v € V(S,_1) UV (S,41), it must be the
case that v € W(e) N W (e'). If there is an edge e* € d;(v), such that both R(e) and R(e’) contain a
copy of e*, then we designate e* to be responsible for this crossing as before. Otherwise, the edges in
set {e1, ea,€], €5} are copies of four distinct edges of d¢(V). In this case, the cycles W(e) and W (e')
must have a transversal intersection at vertex v, from Observation and e,¢’ € E, must hold.
In this case, we say that the transversal intersection of W(e) and W(e’) at v is responsible for the
crossing.

We now classify the secondary crossings into three types and bound the number of crossings of the
first two types. We will eventually eliminate all crossings of the third type.

Type-1 secondary crossing. Consider a secondary crossing between a pair I'(e),'(e’) of curves,
for e, e’ € 0¢(U,—1)Udc(Us), and a secondary crossing of the two curves at some point p. We say that
the crossing is of type 1 ife € F, 1 U E};’ft and e € E,_1 U E}fft U BV,

Type-2 secondary crossing. We say that a secondary crossing between a pair I'(e), I'(e’) of curves,
for e, e’ € 6q(U,—1) Udg(U,), is of type 2 if e € E, U BN and ¢ € B, U BNty Eover,

Type-3 secondary crossing. All remaining secondary crossings are of tye 3. Consider any such
crossing between a pair I'(e), I'(¢/) of curves, for e, e’ € §g(U.—1) Udg(U.). Notice that it is impossible
that one of the two edges e, ¢’ lies in F,_; U E'*| while the other lies in E, U ES88 gince, in such a
case, paths R(e), R(¢/) cannot share any edges. Therefore, e,e’ € ES¥® must hold.

We now bound the expected number of type-1 secondary crossing. Consider any such crossing between
a pair I'(e),T'(¢/) of curves, and assume that the crossing point p lies in disc D(v), for some vertex v.
From the definition of a type-1 crossing, v € V(U,_1) \ {u,—1} must hold. In this case, it is impossible
that a pair of auxiliary cycles W(e), W(e') with e, ¢’ € E, have a transversal intersection at vertex
v, from Observation Therefore, some edge of Eg(U,_1) must be responsible for this crossing.
It is immediate to verify that every edge e € Eq(U,—1) may be responsible for at most N.(e) - N,(e)
type-1 secondary crossings. If e ¢ E(S,_1), then, from Observation N.(e) < O(log**m). If
e € E(S,_1), then, from Observation N.(e) < O(log®* m) - cong(Q(S,_1),e). Therefore, the
total expected number of type-1 secondary crossings is bounded by:

O(log* m) - 3 Ni(e) + O(log®m)- Y E[(congG(Q(sz_l),e))z.
e€E(U.-1)\E(Sz-1) e€E(S:—_1)

Next, we bound the expected number of type-2 secondary crossings. This time some of the crossigns

are charged to individual edges (that is, some edge of E(U ) is responsible for the crossing), and some
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crossings are charged to transversal intersections of pairs of cycles W (e'), W ("), where ¢/, ¢” € E,.
The expected number of edges of the former type is bounded using the same reasoning as for type-1
crossings, and their expected number is at most:

O(log3* m) - Z N (e) + O(log® m) - Z E [(congG(Q(Sz), e))?|.
EEE(UZ)\E(SZ+1) eEE(SZ+1)

Let IT1" denote the set of triples (e, €, v), where e € Egight, e e E’Z, and v is a vertex that lies on both
W (e) and W (e'), such that cycles W (e) and W (e') have a transversal intersection at v. Clearly, the
number of type-2 secondary crossings that are charged to transversal intersections of pairs of cycles
is bounded by |II7|. Overall, we get that the total expected number of type-2 secondary crossings is

bounded by:

Oflog"m)- 3 N +O0(og®m)- > B [(cong(Q(S.), )’ + 1T,

e€E(U2)\E(Sz+1) e€L(Sz41)

This completes the analysis of the initial drawing ¢/, of graph G,. Notice that we did not analyze
the number of type-5 primary crossings and the number of type-3 secondary crossings. These are all
crossings between the images of the edges of E2V®". Unfortunately, a crossing of the original drawing
©* of G may give rise to many crossings between edges of E'®" in drawings ¢, of graphs G, for
1 < z < r. In the next step, we will slightly modify the drawing ¢/, in order to eliminate all such
crossings. Notice that our current bounds on the expected number of crossings in ¢/, contain terms

like > ceps, ) E |(congg(Q(S:-1), e))?|. If cluster S._; lies in set S"8M then this expression can be

bounded by |E(S._1)| - . However, if S,_; € S then this bound may no longer be valid. In such
a case we will perform an additional uncrossing operation of the images of edges of dG(U,—1) in order
to decrease this number of crossings. We also perform such an operation on the images of the edges
of 6q(U,) if S,41 € SPad,

7.4.3 Step 3: Modified Drawing of G,

In this step we modify the drawing ¢, of G, to obtain a new modified drawing ¢”, by performing one
or more uncrossing operations. We first consider the cases where S,_1 € Shad o S,11 € SPad hold,
and perform some initial uncrossings to decrease the number of type-3 primary and type-1 secondary
crossings (in case where S,_; € SP*1), and the number type-4 primary and type-2 secondary crossings
(in case where S, 1 € SP®d). After that we perform one more uncrossing operation that will eliminate
all type-5 primary and type-3 secondary crossings.

Recall that the expected number of type-3 primary crossings and type-1 secondary crossings (that is,
all crossings between images of edge pairs e, e/ where e € E,_; UE" and ¢/ € E,_; U E"® U Eovr) is
at most:
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i Y (E[NUe)] +E[Ni(e)])
(€l o) ExX"\X= 1

+ O(log* m) - Z N.(e)
6€E(Uz71)\E(SZ71)

+0(0g®m)- > (E [(congg(Q(S:-1),¢1)?] +E [(congg(Q(S:-1), ¢5)])
(e ,eb)Ex a1

+0(og®m)- 3 E[(congc(g(sz,l),e)ﬁ].

e€E(S>-1)

From Observation|7.49} if S, € S"8" then for every edge e € E(S.—1), E [(congg(Q(S.-1),€)?] < 9.
Recalling that ¥._1 C x*_;, we get that, if S,_; € S8 then the expected number of type-3 primary
and type-1 secondary crossings is bounded by:

i Y (E[NUe)] +E[Ni(e)])
(6'176/2)€X*\>2z71
+ O(log** m) - > N.(e) (7)
e€E(U,-1)\E(S:-1)
+ 0 - (IG—1| + [B(S:-1))-

Recall that the expected number of type-4 primary crossings and type-2 secondary crossings (that is,
all crossings between images of edge pairs e, e where e € E, U ENM and ¢ € E. U Ersht EQver) is
at most:

i Y. (E[NUe)] +E [Ni(eh)])

(e1,€5)EX*\Xz+1

+ O(log® m) - Z N.(e)
e€E(U:)\E(Sz11)
+0(log®m)- Y (E[(congg(Q(Sat1), €1)*] +E [(conga(Q(Sar1). ¢5)°])

(e1,€5)EX=+1

+0(log®m) - > E[(conga(Q(S.),€))] + 1|
eEE(S241)

Here, 17 is the set of triples (e, ¢, v), where e € EY$™, ¢/ € E,, and cycles W (e) and W(¢') have a
transversal intersection at vertex v.

From Observation|7.49} if S, € S8 then for every edge e € E(S.11), E [(congg(Q(S:11),€)?] < 9.
Recalling that x.41 C x7,,, we get that, if 5,11 € Stieht then the expected number of type-4 primary
and type-2 secondary crossings is bounded by:

i Y, (B[Ne)] +E [Ni(e)])
(eh,e5)EX™ \Xz+1
+ O(log3* m) - Z N.(e) (8)
e€E(U)\E(Sz41)
+ 0% - (Xl + [E(S-41)]) + [TL].
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We now consider four cases, depending on whether the clusters S._1, S, lie in Shight or Sbad,

Case 1: S, € 8" and S,,; € Sieh*, When S, ; € 8" we no longer have a bound on
E [(congs(Q(S:-1),e)?] for edges e € E(S,_1), and so the bound from Equation on the number
of type-3 primary and type-1 secondary crossings is no longer valid. Instead, we will perform a type-1
uncrossing of the images of the edges of E,_ 1 UE®UE". Let I'; denote the set of curves reprsenting
the images of these edges in ¢’,. Let I'y denote the set of curves reprsenting the images of all remaining
edges of G, in ¢,,. We apply the algorithm from Theorem to compute a new collection I} of
curves, where, for each edge e € E,_1 U E'* U E9V | there is a curve (e) € Ty connecting the images
of the endpoints of e. Intuitively, the algortihm for type-1 uncrossing proceeds in iterations, as long
as there is a pair =1,y € I'1 of curves that cross at least twice. Assume that p and ¢ are two points
lying on both 7; and «,. The algorithm then uncrosses the two curves, by “swapping” the segments
of these curves that connect p and ¢ (see Figure in Appendix for an illustration.) At the
end of this procedure, every pair of curves in I'j may cross each other at most once. For each curve
v € T'9, the number of crossings between v and the curves in I} is no higher than the number of
crossings between v and the curves in T'y. We modify the images of the edges in E,_; U Elft U Epover,
so that for each such edge e, its new image is the curve y(e) € I'j. Observe that the total number
of primary crossings of types 1,2, and 4 does not increase, and neither does the number of secondary
crossings of type 2. We note however that a primary crossing of type 2 (a crossing between images
of edges e,e’ where e € E, 1 U Eieft and ¢/ € E, U E;ight) may become a primary crossing of type
4 (a crossing between images of edges e, e’ where ¢/ € E, U ES®™ and e € E2¥er), and vice versa.
The total number of type-3 primary crossings and of type-1 secondary crossings is now bounded by:
(1Booa] + BSR4 |E2=r))” < [06(Us-1) 2

From Corollary 16c(U._1)| < 166(S._1)| - O(log®*m). Recall that, if S, ; € SP®d, and the
bad event £ does not happen, then, from Observation OPTenwrs(S2—1, X(S2-1)) + |E(S:—1)| >
w, where ¥(S,_1) is the rotation system for graph S, induced by 3. Therefore, |§¢(S,_1)|*> <
7+ (IXi_1] + [E(S2—1)]) must hold.

Overall, if S,_; € SP24 and event £ did not happen, then the total number of type-3 primary crossings
and of type-1 secondary crossings is now bounded by:

166 (U=—1)I> <7 - 16a(S:—1) [ < 7? - (Xl + [ E(S:-1)]) -

Combining this with the bound from Equation [7, we get that, regardless of whether Case 1 happened
or not, if event £ did not happen, then, after the current modification, the total expected number of
type-3 primary crossings and of type-1 secondary crossings is bounded by:

i Y (B[N +E[N(eh)])
(6/176/2)€X*\>22—1
+ O(log* m) - Z N.(e) (9)
e€E(U,-1)\E(5:-1)
+ 77 (X1 + [B(S.a)).

Case 2: S, ; € Shight and S,,; € 8", We now consider the case where S,_; € S and
S..1 € 8" The modification that we perform is almost identical to that performed in the case
where S, 1 € SP*| except that now we uncross the images of the edges in dg(U.).
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As before, when S.;1 € S we no longer have a bound on E [(cong;(Q(S.41),€)?] for edges
e € E(S,41), and so the bound from Equation on the number of type-4 primary and type-2
secondary crossings is no longer valid. Instead, we will perform a type-1 uncrossing of the images of
the edges of E, U EX&" U EovT similarly to the first case. Let I'; denote the set of curves reprsenting
the images of these edges in the current drawing ¢/,. Let I'y denote the set of curves reprsenting the
images of all remaining edges of G in ¢’. We apply the algorithm from Theorem to compute a
new collection I of curves, where, for each edge ¢ € E, U EX8™ U Eo¥T | there is a curve y(e) € I,
connecting the images of the endpoints of e. Recall that every pair of curves in I} may cross at
most once, and, for each curve v € I'y, the number of crossings between v and the curves in I'] is
no higher than the number of crossings between « and the curves in I';. We modify the images of
the edges in E, U ES8™ U E9¥T 5o that for each such edge e, its new image is the curve ~(e) € T,.
As before, the total number of primary crossings of types 1,2, and 3 does not increase, and neither
does the number of secondary crossings of type 1. As before, a primary crossing of type 2 (a crossing
between images of edges e, e’ where e € E, 1 UE"" and ¢/ € E, U E?ght) may become a primary
crossing of type 3 (a crossing between images of edges e, ¢’ where ¢’ € E,_1 U Eieft and e € E2V"), and

vice versa. The total number of type-4 primary crossings and of type-2 secondary crossings is now
. 2
bounded by: <|Ez\ + | Eoh) |E§"er|) < 16¢(U,)|?. Using the same arguments as in the first case,

and the second statement from Corollary we conclude that [6c(U.)| < [06(S.+1)| - O(log** m).
As before, if S,.1 € SP*d and the bad event £ does not happen, then, from Observation
OPTecnwrs(S2+41, 2(S241)) + |E(S241)| > M, where ¥(S,41) is the rotation system for graph
S.41 induced by . As before, we get that [6¢(S.41)[> <0+ (x| + [E(S241)]).

Overall, if S,,; € 8”4, and event £ did not happen, then the total number of type-4 primary type-2
secondary crossings is now bounded by:

06(Uz41)|” < O(log® m) - |66:(Sz41)1* < 9% - (IxEial + 1 E(Sa41)]) -

Combining this with the bound from Equation [§] we get that, regardless of whether Case 2 happened
or not, if event £ did not happen, then, after the current modification, the total expected number of
type-4 primary crossings and of type-2 secondary crossings is bounded by:

i Y (E[NU)] +E[N(ey)])
(e1,62) EX*\Rz+1
+ O(log* m) - Z N.(e) (10)

e€E(U.)\E(S:41)
7 (gl + [E(Sar)]) + [T

Case 3: 5,_1,5,41 € Slight " and accounting so far. If S, i, S.11 € Slight then we do not perform
any modifications for now. We now bound the total number of crossings in the current drawing ¢, of
graph G, for cases 1-3, excluding the crossings between pairs of edges in ESV". If Case 3 happened,
then the number of crossings did not increase in this step. If Case 1 happened, then the total number of
primary crossings of types 1,2 and 4, and secondary crossings of type 2 did not change, and the number
of primary crossings of type 3 and secondary crossings of type 1 is bounded by Equation @D Similarly,
If Case 2 happened, then the total number of primary crossings of types 1,2 and 3, and secondary
crossings of type 1 did not change, and the number of primary crossings of type 4 and secondary
crossings of type 2 is bounded by Equation . Therefore, if any of the cases 1-3 happened, and
event £ did not happen, then the total expected number of crossings in the current drawing ¢/, of
graph G, excluding the crossings between pairs of edges in ES¥®", is at most:
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2 (G| + DG+ X ] + [E(Sa—1)] + [E(Sz41)])

+ 7 Z N’ 61]+E[N;(6/2)])
(e,e’)ex* (11)
+1- > N (e) +1 - > N.(e) + ||,
e€E(Uz—1)\E(Sz-1) ecE(U)\E(S211)

Case 4: S, 1,5.41 € P, In this case, we will perform a type-1 uncrossing of the images of the
edges of £, 1 UE,IZeft U EQver U Erieht UE, = ¢(U,—1)Udg(U,). Let I'y denote the set curves reprsenting
the images of these edges in ¢’,. Let I'y denote the set of curves reprsenting the images of all remaining
edges of G, in ¢,,. We apply the algorithm from Theorem to compute a new collection I} of
curves, where, for each edge e € d¢(U,—1) U dg(U.,), there is a curve y(e) € I} connecting the images
of the endpoints of e. We are guaranteed that every pair of curves in I'} may cross each other at most
once, and, for each curve v € I'y, the number of crossings between ~ and the curves in I'} is no greater
than the number of crossings between v and the curves in I'y. We modify the images of the edges in
dc(Us—1) Udg(U,), so that for each such edge e, its new image is the curve y(e) € I'}. Note that the
total number of type-1 primary crossings does not change. The total number of all other crossings is
bounded by (|6¢(U.—1)| + [0 (U:)])? < O(|6G(U.—1)|*) + O(|6c(U,)|?). Using the same reasoning as
in Cases 1 and 2, if event £ did not happen, then:

b (Ua—)? <2 (il + [E(Sa-1)])

and

‘5G(Uz)‘2 < 772 ’ (’X;-i-l’ + ’E(SZ—H)D 5

Therefore, if event £ did not happen, the total expected number of crossings in the current drawing
is bounded by:

7+ (DGl + DEI+ X ]+ [B(Sa1)] + [E(Sz41)]) - (12)

Uncrossing the Edges of F2''.  So far we have constructed a drawing ¢/, of graph G, and bounded
the expected number of crossings in ¢/, excluding the crossings between the images of the edges in
E2Ve". In this step, we eliminate all crossings of the latter type, by performing a type-2 uncrossing of
the images of the edges in FV". Specifically, we let Q be the set of paths in graph G, that contains,
for each edge e € E2V", a path Q(e), that consists of the edge e only. Recall that each edge e € EJV"
connects the special vertices v*, v** to each other. We view each such path Q(e) as being directed
from v* to v**. We then apply the algorithm from Theorem that performs a type-2 uncrossing
on the images of the paths in Q. Let T’ be the resulting set of curves that it produces. Recall that,
for every edge e € EV", there must be a curve y(e) € I', that contains the segment of the image of
edge e that lies in the disc D(v*). We replace the current image of the edge e with the curve v(e).
Once the images of all edges e € E2V" are modified, we obtain the final modified drawing ¢ of graph
G. The algorithm from Theorem [4.37] ensures that the images of the edges in E2V*" do not cross each
other. Since the curves in I' are aligned with the graph that consists of the edges of EYV®", we are
guaranteed that, for each edge e € E(G,)\ ES"", the number of crossings in which edge e participates
does not increase. The algorithm from Theorem and the type-1 uncrossings that we performed
in Cases 1 — 3 ensure that the order in which the images of the edges of d¢, (v*) enter the image of v*
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does not change, and remain consistent with the rotation O,« € ¥,. To summarize, we have obtained
a drawing ¢’ of graph G, such that, for every vertex v € V(G,) \ {v**}, the images of the edges of
dc, (v) enter the image of v in the order consistent with the rotation O, € ¥, and the total expected
number of crossings in ¢’ is bounded by:

77 (Gl + DL+ X+ [B(S.—1)| + | E(S241)])
+i- > (E[N(e))] +E [Ni(eh)])
(e,e)Ex (13)
+ 17 - > N (e)+1- > Nl(e) + [TIZ].

e€E(Uz—1)\E(Sz-1) ecE(U)\E(S.11)

In the next and the final step, we obtain the final solution ¢, to instance I, = (G, %) of MCNwRS,
by modifying the current drawing ¢’ of graph G, inside the tiny v**-disc D(v**).

7.4.4 Step 4: the Final Drawing of Graph G,

In this step we slightly modify the current drawing ¢’ of graph G in order to obtain the final drawing
¢, of G, which is a valid solution to instance I, = (G, ¥z) of MCNwRS.

Consider the tiny v**-disc D = Dy (v**). Denote g, (v™*) = {e1,...,en}, and, for all 1 <i < h, let
p; be the point on the image of the edge e; in ¢ that lies on the boundary of the disc D. We assume
that the edges are indexed so that the points p1, ..., py are encountered in this order when traversing
the boundary of D in the clock-wise direction. We denote by O this ordering of the edges eq,...,ep.
Let O be the ordering O« € 3, of the edges of d¢, (v**). We use the algorithm from Corollary 4.32
to compute a collection I' = {y(e;) | 1 < i < h} of curves, such that, for each edge e;, curve v(e;) only
differs from the image of the edge e; in the current drawing ¢’ of G, inside the disc D, and the curves
of I' enter the image of v** in the order O’. We then replace, for each edge e; € d¢, (v**), the current
image of the edge e; with the curve v(e;). As the result, we obtain a valid solution ¢, to instance
I, = (G.,%,) of MCNwRS, as the images of the edges in d¢g, (v**) now enter the image of v** in the
correct order. Corollary guarantees that the number of crossings between the curves in I' within
the disc D is bounded by O(dist(O, 0')), and these are the only new crossings. Therefore, the number
of crossings grows by at most O(dist(O, 0')). In the next claim we bound dist(O, O’).

Claim 7.56 If event £ did not happen, then the expectation of dist(O, O') is bounded by:

APV T E[N(e)]+ Y (E[N(e)] +E[N()])

e€E(G) (e,e’)ex*
700 (ol + DL+ Xl + IB(Sa-0)| + B3]+ [B(S240)] + a(S:)] + 106(S2-1)1)
+) - er(l) + [T,

We prove Claim [7.56 below, after we complete the proof of Claim [7.54] using it. For convenience, we de-
note by EX = E(Sz+1)UE(SZ_l)UE(SZ)Uég(S’Z)U(Sg(SZ_l). Combining the bound from Equation
with the bound from Claim we get that, if Event £ did not happen, then E [OPTcqwrs(1,)] is
bounded by:

PP Dl I Dl B+ Y (B[N +E[NUe)]) + D B [Ni(e)] + 1T
(e,e’)ex* e€E(G)
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Note that an edge e € E(G) may belong to at most O(1) sets in {E}}._,. Also, a crossing (e, ¢’) € x*
may belong to at most two sets in {x%}._; Therefore, we get that:

E ZOPTcm(IZ)] <A?W(EG)] + X))

Cy Z )] + E [NL(eh)])

(e,e’ EX*Z 1

> ZE [N(e)]

e€E(Q) z=1

(14)

r

+7°W -y T

z=1

We use the following two observations, whose proofs appear in Appendix and Appendix
respectively, in order to complete the proof of Claim [7.54

Observation 7.57 For every edge e € E(G), Y. _ E[N/(e)] < O(7).

Observation 7.58 >_7_ |TIT| < (|E(G)| + |[x*|) - O(log®® m).

Combining Equation 1) with Observations and and recalling that 7 = 20((og m)*/*loglog m),
we get that, if event £ did not happen:

E ZOPTcnwrs(Iz)] < 20((10gm)3/410glogm) . (|E(G)’ + |X*’)

Recall that Pr[€] < 1/m%, and, if € happens, > ._; OPTcaws(:) < m?® must hold. Therefore,

overall, E[>"7_ OPTcnurs(12)] < 20((logm)?/* loglogm) . (IE(G)| + |x*]). In order to complete the proof
of Claim it is now enough to prove Claim which we do next.

7.5 Proof of Claim [7.56

Assume first that S,.1 € SP*d. Clearly, dist(O, 0) < |6 (v**)|? < [6¢(U,)|?>. From Corollary [7.52]
16c(U.)| < 166(S=4+1)| - O(log®* m). If the bad event £ does not happen, then, from Observation [7.49]
OPTcnwrs(Sz41, 2(S241)) + |E(S241)| > W, where Y(S,41) is the rotation system for graph
S.—1 induced by Y. Therefore:

dist(0, 0') < [66(U:)[* < O(log™ m) - [86(S+1)[* < 7% - (IxZaa| + |E(Sz+1)|) :

Assume now that S, € SP*d. As before, dist(O, 0’) < |6g(U,)|?. From Corollary 2 [0c(U,)| <
\5@(Sz)|-0(log34 m). If the bad event £ does not happen, then, from Observatlon OPTan,S(SZ, ¥(S2))+

|E(S,)| > W, where X(S,) is the rotation system for graph S, induced by 3. Therefore:

dist(0,0) < [6a(U2)* < O(log® m) - [66(S2)* < n? - (Ixz| + |E(S:)]) -

We assume from now on that S.,S.y1 € SU8". In order to complete the proof of Claim we
will define, for every edge e € d¢(U,), a curve ~y(e), such that all curves in the resulting set I'" =

117



{v(e) | e € 6¢(U,)} are in general position; each one of the curves originates at the image of vertex
v** in the drawing ¢ of G,; and each one of the curves terminates at the image of vertex u, in the
drawing ¢”/. We will ensure that the order in which the curves in set I'* enter the image of v** is
precisely the ordering O of their corresponding edges, while the order in which they enter the image
of u, is precisely the ordering O’ of their corresponding edges. We will then bound the number of
crossings between the curves in I'*, thereby bounding dist(O, O").

In order to define the set I'* of curves, we define, for every edge e € 6 (U,), a path R(e) in graph
G, that connects vertex v** to vertex u,, and originates at edge e. For each edge e € 0g(U,), the
curve 7(e) is then obtained by slightly altering the image of the path ﬁ(e) in the drawing ¢, in
order to ensure that all resulting curves in I'* are in general position. We start by defining the set

R = {R(e) |e€ 5@(Uz)} of paths.

Set R = {R(e) |ee 5@(Uz)} of paths. Consider an edge e € 6g(U,). Assume first that e € E,.

Denote e = (u,v), where u € S, and v € S,41 (see Figure . Note that edge e belongs to graph G,
where it connects vertex u to vertex v*™*. Let Q(e) be the unique path of the internal U,-router Q(U.)
that originates at edge e; recall that the path terminates at vertex u,, and, from the construction of
the path set Q(U.), path Q(e) is also the unique path of the internal S,-router Q(S.,) that originates
at edge e. Therefore, all internal vertices of path Q(e) lie in S,, and path Q(e) is contained in graph
G.. We then let R(e) be the path Q(e) in graph G, (that now connects vertex u, to vertex v**.)

@@

Sz Z+1

Figure 22: Definition of path R(e) when e € E..

Figure 23: Construction of path R(e) when e € E9"®". Path Q(e) is shown in green.

Next, we consider an edge e € E¥". Assume that e = (u,v), whereu € |J,_, V(S;) and v € U~ V(S;)
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(see Figure . Consider the unique path Q(e) € Q(U.) that originates at edge e. Recall that the
path terminates at vertex u,, and it must contain some edge a. € dg(S;) (in fact it may only contain
one such edge). Note that, in graph G, all vertices of U,_; were contracted into vertex v*, and so
both edges e and a, are incident to vertex v* in G,. The subpath of the path Q(e) from edge a, to
vertex u, is precisely the unique path of the internal router Q(S,) that originates at edge a., which
we denote by Q’(e). We then let ]~%(~e) be the path obtained by appending the edge e at the beginning

of the path Q’(e).NNote that path R(e) is contained in graph G, and it connects vertex v™* to vertex
uy. In fact, path R(e) is a concatenation of edge (v*,v**) and path Q'(e).

Lastly, we consider an edge e € EX®". Assume that e = (u,v), where u € V(8,), and v € U, V(S;).
Note that edge e is also present in graph G, where it now connects vertex u to vertex v**. Consider
the unique path Q(e) € Q(U.) that originates at edge e, and recall that this path terminates at vertex
u,. We now consider two cases. First, if path Q(e) is contained in cluster SZ, then it is contained in
the current graph G, except that now it connects vertex v** to vertex u,. We then set R(e) = Q(e)
(see Figure . We denote by a, the unique edge of R(e) that lies in dg(S,). Otherwise, let u” be
the first vertex on path Q(e) that does not belong to S., and let o be the vertex preceding u” on the
path (see Figure . Denote a} = (u’,u”). Note that edge a} also lies in graph G, where it connects
vertex u’ to vertex v*. Moreover, path Q(e) must now contain some edge a. € d¢(S.). Since, in graph
G, all vertices of U,_1 were contracted into the vertex v*, edge a. is now incident to vertex v*. The
subpath of the path Q(e) from edge a. to vertex u., that we denote by Q’ (e), is precisely the unique
path of the internal S,-router Q(S,) that originates at edge a.. We then let R(e) be the path obtained
by concatenating the subpath of Q(e) from edge e to edge a’ (that, in graph G, connects v** to v*),
and the path (’(e) (that originates at v* in G). Note that path R(e) is contained in graph G, and
it connects vertex v** to vertex u,. Since 6¢(U,) = E, U E" U E;ight, we have now constructed a
path R(e) for each edge e € 6g(U.).

~

Sz S~z+1

Figure 24: Construction of path R(e) when e € ES%" and Q(e) C S,. Path Q(e) is shown in green.

Consider the final set R = {R(e) |e e 5(;(Uz)} of paths that we have defined in graph G,. Notice

that, for each edge e € d¢(U.), there is some edge a. € dg(S.) that lies both on the path Q(e) € Q(U.),
and on path ];?(e) (in the case where e € E,, we set a. = e; for the other two cases, we have defined
the edge a. explicitly). Moreover, the unique path of the internal S,-router Q(S,) that originates at
edge a, is a subpath of R(e). Therefore, the last edge on path R(e) is identical to the last edge on
the unique path Q(e) € Q(U,) that originates at edge e. Recall that we have defined the ordering
O = O, of the edges of 6¢(U.) = da. (v*™*) to be ©4ded(Q(T],), %) — the ordering that is guided by
the internal U,-router Q(U;) (see definition in Section [5.2)). Since the rotation O,, in ¥ and 3, is
identical, equivalently, O’ = (’)g“ided(ﬁ, Y..), that is, ordering O’ can be defined as an ordering that is
guided by the set R of paths in graph G, with respect to the rotation system 3.
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S, 1 S, S

Z+1

Figure 25: Construction of path R(e) when e € ES8™ and Q(e) is not contained in S.. Path Q(e) is
shown in green.

Notice that for every edge e € dg(U.), an edge € may lie on path R(e) only if ¢’ lies on path
Q(e) € Q(U.). From our construction, if ¢ € dg. (U.), then ¢’ may lie on at most one path of R — the
path R(e'). From Observation an edge ¢ € F(G.,)\ E(S.) may participate in at most O(log>* m)
paths of R, and an edge ¢ € E(S,) may participate in at most O(log** m) - cong(Q(S.), ¢’) paths of

R.

Next, we construct an auxiliary graph HZ, by replicating some edges of G, and deleting some other
edges, similarly to our construction of graph H,. We will use the paths of R in order to define a
collection of edge-disjoint paths R’ in the resulting graph H 7, which will in turn be used in order to
construct the collection I'* of curves.

Graph H and its drawing ¢, For every edge e € E(G), we let N(e) be the number of paths in
R that contain the edge e. From the discussion so far, we obtain the following immediate observation.

Observation 7.59 For each edge e € E(S), N(e) < O(log** m)-cong(Q(S.), '), and for each edge
e € E(G.)\ E(S.), N(e) < O(log* m).

In order to construct the graph H’, we start with the set V(H.) = V(G.) of vertices. For every edge
e € E(G,) with N(e) > 0, we add a collection .J'(e) of N(e) parallel copies of the edge e to graph
H!. We also assign each copy of edge e in set J'(e) to a distinct path of R that contains the edge e,
arbitrarily. As in Step 1 of the algorithm for computing a drawing of graph G, we can now define

a collection R/ = {R’ (e) | ee€ 6@(Uz)} of edge-disjoint paths in graph H., as follows: for each edge

e € 0g(U,), path R'(e) is obtained from path R(e) by replacing each edge ¢’ € R(e) with the copy of
edge €’ that is assigned to path R(e).

Drawing ¢7 of graph G, naturally defines drawing 1, of graph H_: for each edge e € E(G,) with
N(e) > 0, we draw all copies of e to appear in parallel to the image of e, without crossing each other.

As in Step 1 of the algorithm for constructing a drawing for graph G, we can assign the copies of
the edges incident to vertex u, more carefully, to ensure that the images of the paths in R’ enter the
image of u, according to the ordering O, = @’. In other words, if we denote dg(U.) = {&,, b, . . . apt,
and the edges are indexed in the order of their appearance in the ordering @, = ¢, and if, for all
1 <i < h, we denote by @ the last edge on the path R'(@}), then the images of the edges @/, ... ,ay
enter the image of vertex w, in the natural order of their indices. Note that the images of edges
aj,...,a, enter the image of v** in the ordering O.

We now bound the number of crossings in the drawing 1., of graph H.. Consider any crossing in v,
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between a pair of edges €], €},. Assume that €] is a copy of edge e; € E(G,), and ¢} is a copy of edge
es € E(G,). Clearly, the images of the edges e; and e; must cross in drawing ¢”, and we say that this
crossing is responsible for the crossing (€], e5). It is easy to see that a crossing (ej, e2) in drawing ¢,
may be responsible for at most N(e1)- N (eg) crossings in 9. If neither of the edges ey, es lie in E(S.,),
then, from Observation N(e1), N(ez) < O(log® m). Therefore, the total number of crossings of
Y, for which crossings (e1, ea) of ¢ with e1, ea & E(S,) are responsible is at most: O(log® m)-cr(y”).
If exactly one of the two edges (say ej) lies in E(S;), then, from Observation N(e1) < O(log* m)-
cong(Q(S:),e1), while N(e2) < O(log* m). Moreover, crossing (e1, e2) must be a type-1 primary
crossing of ¢/, Recall that the expected number of type-1 crossings in ¢ is bounded by |x%|-7. Recall
also that the random variable corresponding to the total number of type-1 primary crossings only
depends on the random choices of the internal routers Q(S,—1) and Q(S,+1), and it is independent
of the random choice of the internal router Q(S,). For each edge e € E(S;), E [cong,(Q(S:),¢e)] <7
(from Observation and our assumption that S, € S'ht) and random variable congq(Q(S,),e)
only depends on the selection of the internal S,-router Q(S,). Since the random variable repre-
senting the number of type-1 primary crossings of ¢7 is independent from the random variables
{congq(Q(Sz), €)}eep(s. ), We get that the total expected number of crossings of ¢7, for which crossings

(e1,e2) of ¢, with exactly one of ey, es lying in E(S,) are responsible, is at most: |x%| - 7°M).
Lastly, assume that both edges e, e2 € E(S;). Then, from Observation N(e1) < O(log** m) -
cong(Q(S.),e1) and N(ey) < O(log* m) - cong(Q(S.), e2). The number of crossigns in drawing 1)/,
for which crossing (e1, e2) is responsible is then bounded by:

O(log®™ m) - cong(Q(S-), e1) - cong(Q(S:), e2)
< O(log® m) ((congg(Q(S:), e1))” + (congg(Q(S:), €2))?) -

From Observation and since we have assumed that S, € S'8" for every edge e € FE(S,),
E [(congG(Q(SZ),e))z} < 7). As before, random variable (congs(Q(S.),e))? only depends on the

random selection of the internal S,-router Q(S,). Clearly, the expected number of crossings of v, for

which crossing (e1, e2) is responsible is at most O(/?). Note also that crossing (ey, e2) must a type-1

primary crossing of 7, and the expected number of such crossings is bounded by |x%| - 7). As before,

the random variable corresponding to the number of type-1 primary crossings of ¢’ does not depend

on the selection of the internal S,-router Q(S,). Therefore, the total expected number of crossings of
" for which crossings (e1,es) of ¢/, with e, es € E(S,) are responsible is at most: |y*| - 7O,

Overall, the total expected number of crossings in drawing 1, of graph H. is bounded by:

cr(i) - O(log® m) + [xz| - 7).

Constructing the set I'* of curves. For every edge e € dg(U,), we initially let v(e) be the
image of the path R'(e) in the drawing Y., of graph H.. From our construction, the curves in set
I' = {v(e) | e € q(U)} all originate at the image of vertex v**, and terminate at the image of vertex
u, in 1,. Moreover, from our construction, the order in which the curves of I'* enter the image of v**
is according to the ordering O of the edges of d¢(U,), while the order in which the curves of I'* enter
the image of u, is according to the ordering O’ of the edges of d¢(U,). However, the curves of I'* are
not in general position, as a point p may serve as an inner point on more than 2 such curves; this,
however, may only happen if p is an image of some vertex v € V(G,) \ {u,,v**}. We will now “nudge”
the curves in the vicinity of each such vertex to ensure that the resulting set of curves is in general
position. The nudging procedure is identical to that we have employed in Step 2 (see Section .
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We process every vertex v € V(G,) \ {uz,v**} one by one. Consider an iteration when any such vertex
v is processed. Let A(v) C dg(U,) be the set of all edges e € d¢(U,), such that curve y(e) contains the
image of vertex v (in ¢}). We denote A(v) = {a1,...,ar}. Consider the tiny v-disc D(v) = Dy (v)
in the drawing v, of graph H.. For all 1 <1i < k, we let s;,¢; be the two points at which curve v(a;)
intersects the boundary of the disc D(v). Note that all points s1,t1,. .., Sk, tx must be distinct. We
use the algorithm from Claim in order to construct a collection {~],...,7;} of curves, such that,
for all 1 <4 <k, curve 7, has s; and ¢; as its endpoints, and is completely contained in D(v). Recall
that the claim ensures that, for every pair 1 < ¢ < j < k of indices, if the two pairs (s;,;), (s;,t;) of
points cross, then curves +;,v; intersect at exactly one point; otherwise, curves «;,~; do not intersect.
For all 1 <i <k, we modify the curve I'(a;) as follows: we replace the segment of the curve between
points s;,t; with the curve ~;.

Once every vertex v € V(G,)\{uz, v**} is processed, we obtain the final collection I'* = {vy(e) | e € d¢(U>)}
of curves, which are now in general position. The order in which these curves enter the images of ver-
tices u, and v** did not change, but we may have added some new crossings over the course of this
modification of the curves in I'*. For convenience, we say that a crossing between a pair of curves

in I'* is primary if this crossing existed before this last modification, and otherwise it is called sec-
ondary. For each point p corresponding to a secondary crossing, there must be a vertex v, with

p € D(v). The expected number of all primary crossings remains unchanged, and is bounded by
cr(”) - O(og®® m) + x| - 51°1). We now bound the expected number of all secondary crossings.

Consider a pair e1, ey € 0g(U,) of distinct edges, and assume that there is some vertex v € V(G,) \
{uz,v**}, such that the curves 7y(e1),y(e2) cross at some point p € D(v). Using the same arguments
as before, this may only happen in one of two cases: either (i) some edge e € d¢. (v) lies on both R(e;)
and R(ey); or (ii) paths R(e1), R(ez) have a transversal intersection at vertex v. In the former case,
we say that the crossing is a type-1 secondary crossing, and that edge e is responsible for it, while
in the second case we say that the crossing is a type-2 secondary crossing, and that the transversal
intersection of paths R(e1), R(es) at vertex v is responsible for it.

Clearly, for every edge e € E(G,), the total number of type-1 secondary intersections for which e
may be responsible is at most (N(e))2. If e € dg,(v*), then N(e) = 1, and e may not be re-
sponsible for any type-1 secondary crossings. If e € E(G.) \ (E(S.) U dg(v*™)), then, from Obser-
vation @, N(e) < O(log**m). Otherwise, if e € E(S.), then, from Observation N(e) <
O(log** m) - cong(Q(S.),e). Moreover, since we have assumed that S, € S8 from Observa-

tion [7.49) E [(congG(Q(Sz), e))Z} < 7. Overall, the total expected number of type-1 secondary cross-

ings is bounded by: 7 - [E(G:) \ éc. (v™)| < 7 - (|[E(S:)| + [6c(Uz-1]). Since, from Corollary |7.52
166(U.—1)| < 16¢(S.)] - O(log®* m), and 6¢(S.) C E(S.) U da(S.), we get that the total expected

number of type-1 secondary crossings is at most: 7 - (|E(5Z)| + |5g(5’2)]>

We now turn to bound the number of type-2 secondary crossings. Consider any such crossing between
a pair of curves 7y(e1),v(e2), and assume that this crossing is charged to transversal intersection of
the paths R(e;), R(ez) at vertex v with respect to ¥,. We claim that in this case, v = v* must hold.
Indeed, assume otherwise. As vertex v** may not serve as an inner vertex on any path of R , it must
be the case that v € V(S,). If v € V(S,), then there must be two paths Q,Q" € Q(S,), such that
Q C R(e1) and Q' C R(e3). From the construction of the internal router Q(S,), all paths in Q(S,) are
non-transversal with respect to X, so it is impossible that @ and Q' have a transversal intersection at
v, and the same is true for paths R(e;) and R(ez). Otherwise, v € V(5,)\ V(S.). In this case, v must
be a vertex that lies on each of the two paths Q(ey), Q(eg) of the internal router Q(U,), and moreover,
the two paths must have a transversal intersection at v. But that is impossible from Observation [7.50]

Therefore, v = v* must hold.
We denote by II the set of all pairs (e1,es) € dg(U.) of edges, such that paths R(e1), R(es) have
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a transversal intersection at vertex v*, with respect to ¥ z. Clearly, the number of type-2 secondary
crossings between the curves of I'* is bounded by |II|. We use the following claim, whose proof appears
in Section in order to bound E [|II|].

Claim 7.60

E [|I]] < 7% Z E [N.(e Z (E [N.(e)] +E [N.(€")])

ecE(G) (e,e’)EX*

i+ (B0l + B8] + 06(S2-0)] + Il + 121 ) + T

In order to complete the proof Claim [7.56] it now remains to bound the expected number of crossings
between the curves of I'*. Recall that the expected number of all primary crossings between the curves
of T'* is bounded by cr(¢”) - O(log®® m) + |x%| - (), while the expected number of type-1 secondary

crossings is at most 7 - (|E (5.)] +16¢(S.)]). The expected number of type-2 secondary crossings is

bounded by E [|TI|]. We conclude that, if S, S,.1 € S8 then the expected number of all crossings
between the curves in I'* is bounded by:

AU YT B[N+ DY (E[N(e)] +E[N()])

ecE(G) (e,e’)ex*
+n0<1>.(\xz,1\+yxzr+rE< )1+ B2+ B8] + 18(5-1)])

-+ - er(o?) + 11

In order to complete the proof of Claim [7.56] it now remains to prove Claim [7.60] which we do next.

7.6 Proof of Claim

Assume first that S,_; € SP*d. Since we have assumed that Event £ did not happen, from Obser-
vation [7.49, OPTcnwrs(Sz2—1,X(S2-1)) + |E(S:-1)| > w, where ¥(S,_1) is the rotation system
for graph S,_1 induced by ¥. We then get that |6c(S.—1)|*> <% (|x:_1| + |E(S.—1)]). On the other
hand, if (e, e2) € II, then paths Q(el), Q(e2) € Q(U.) must each contain an edge of 6¢(S,_1). Since,
from Observation each edge of dg(S._1) may appear on at most O(log3* m) paths of Q(U._1),
we get that |TI| < O(log® m) - [6¢(S.—1)1? < 7% - (|x*_;| + |E(S.—1)|). From now on we assume that
Sz—l c Slight‘

Consider a pair of edges (e1,ez) € II. Note that both R(e;) and R(ez) must contain the vertex v*,
and ey, e2 € 6g(U,) must hold. Recall that 6¢(U,) = E, U E?ght U B2V and that, for each edge

e € F,, path R( ) may not contain vertex v*. Therefore, e1,e9 € Ersht E2V" must hold. Note that,
right

for an edge e € E,°, it is possible that path R(e) does not contain the vertex v*. For convenience,

we denote by B the set of all edges e € ES#" for which v* € R(e). We denote by II' C II the

set of all pairs (ej,e2) where at least one of the two edges ej,es lies in Erlght , and we denote by

12 = 11\ IT'. Clearly, for every pair (e1,e2) € 112, e1,ea € ES® must hold. We will now define, for
each edge e € ENsh E?V°" three special edges ay, a., and a. associated with e, a new cycle W(e) in

graph G, and some additional structures.

Consider first an edge e € E2''. Denote e = (u,v), and assume that w is the left endpoint of the

edge. Then, from the definition of edge set E2¥", u € |J,_, V(S;) and v € |, V(S;) must hold (see

1<z 1>z
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Figure . In particular, e € 6g(U._1) N dg(U,). We denote af = e. Clearly, v* € R(e) must hold.
We let a. be the edge immediately following vertex v* on path R(e). Observe that a, is also an edge
of graph G, where it must belong to edge set E,_; (see Figure and Figure [23)). We denote the
endpoints of edge a. graph G by ae = (Z¢, Ye), With z. € V(S,—-1) and y. € V(S,). Since edge a. lies
on path Q(e), that path visits the cluster S,_;. We denote by . the first vertex on path Q(e) that
belongs to cluster S,_1, by a. the edge preceding vertex Z. on the path, and by ¢, the other endpoint
of edge a. (see Figure 26). From the construction of the set Q(U._1) of paths, and the auxiliary cycles
in W, edges a. and a. must lie on the cycle W(e). We denote by W'(e) the subpath of the auxiliary
cycle W(e) that connects vertex g to vertex y., such that all inner vertices of W’(e) lie in S,_1. We
denote by W' (e) the subpath of W (e) from g, to v, that is internally disjoint from W’(e), and by
Wright (¢) the subpath of W (e) from u to y, that is internally disjoint from W’(e). Observe that edge
e lies on both WM (e) and W't (e). Let P(e) be the path of the internal S,_j-router Q(S,_1) that
originates at edge ae, and let P(e) be the path of Q(S,_1) that originates at edge a.. We now define
a new cycle W(e) associated with the edge e to be the concatenation of the paths Wt P(e), P(e),
and V/right (after deleting the extra copy of the edge e, so that we obtain a cycle).

~

Sz—z SZ §z+1

i/

Figure 26: Definition of edges ae, d. and a when edge e € ES¥®. Path W/ is the concatenation of the
brown path and edges ae, Go. Paths W' (e) (connecting e to ) and W (e) (connecting e to )
are shown in pink; both these paths also contain edge e = a}.

Next, we consider an edge e € E?ght/. Denote e = (u,v), and assume that u is the left endpoint of
the edge. Then, from the definition of edge set EL®™ « € V(S,) and v € Ui~ V(S;) must hold (see
Figure . We let a} be the first edge on path R(e) that is not contained in E(S,). Note that a is

also an edge of graph G, where it connects a vertex of V(S,), that we denote by y?, to a vertex of
Ui, V(S:), that we denote by z¥. It is easy to see that edge a} must lie on the auxiliary cycle W (e),
and that it belongs to dg(U,_1), and more specifically to E'°f*. We will say that edge e owns edge
a?, and that edge a’ belongs to edge e. Note that an edge of E® may belong to a number of edges
of EX#™" . Since edge a’ lies on the auxiliary cycle W (e), it must be the case that z — 1 € span”(e),
and so cycle W (e) must contain an edge of E,_1, that we denote by a. (see Figure . As before, we
denote the endpoints of edge a. in graph G by ae = (x,, ye), with z, € V(S,_1) and y. € V(S,). We
also denote by P(e) the unique path of the internal S,_j-router Q(S,_1) that originates at edge ac.
We define the path Wright(e) to be the subpath of the auxiliary cycle W (e), between vertices x} and

Ye, that is disjoint from cluster S,_;. Notice that this path contains both edges a} and e. Path ]5(6)
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and edge é, are defined slightly differently. Recall again that a’ € 0(U,—1). We consider the unique
path Q(a}) of the internal U,_;-router Q(U,_;) that originates at edge a’. Recall that path Q(a})
terminates at vertex wu,_j, so it must contain some edge of d;(S,—1), and, from the definition of the
internal router Q(U,_1), exactly one edge of 6z (S,—1) lies on path Q(a}). We denote that edge by
Ge = (Ze, Ye), where &, is the endpoint of the edge that lies in S,_;. We let Wleft(e) be the subpath of
Q(a*(e)) from vertex y? to vertex g.. Observe that a € W'*f(e); and that path W'*ft(e) is a subpath
of both the auxiliary cycle W (a*(e)), and of path Woutleft (4*(¢)). We denote by P(e) the unique path
of the internal S, j-router Q(S, 1) that originates at edge d,. Lastly, we define a new cycle W (e)
associated with edge e, to be the union of paths W't (e), P(e), P(e), and W™ght(e), after we delete
the extra copy of edge a} (see Figure .

Sz+1

Figure 27: Definitions of edges ae, d. and a} when edge e € B path Weft (¢) is the concatenation
of the purple path and edge a’. Path WM (e) is the concatenation of edges a,e,a. and the two
brown paths.

For consistency of notation, for an edge e = (u,v) € E9V®", where u is the left endpoint of e, we will
also say that e owns the edge a; = e, and that edge a} belongs to e. We will also denote z} = u and
ys = .

For every edge e € B2V U EX8' | we have now defined two paths P(e), P(e) € Q(S._1). We denote
by a, the last edge on path P(e), and by a, the last edge on path P(e); both these edges are incident
to u,—1 (see Figure [26| and Figure . We now provide several observations that will be useful for us
later.

Observation 7.61 For every pair (e1,e2) € 11, either edge set {al ,a, ,al,,d.,} contains fewer than
/ ~! / /

four distinct edges, or edges ay,,ay,, g, , ay, appear in this order in the rotation O,, , € X.
Proof: Since (ey, es) € II, the paths R(e;), R(ez) (that lie in graph G.) have a transversal intersection
at vertex v*. Since vertex v* was obtained by contracting all vertices of U,_1 in graph G, it is easy
to verify that the edges of path R(el) that immediately precede and follow vertex v* on the path
are a}, and a.,, respectively (see Figure and Figure . Similarly, the edges of path R(eg) that
immediately precede and follow vertex v* on the path are a?, and a.,, respectively.

Since the paths R(e;), R(e2) have a transversal intersection at vertex v*, edges a’ , a’ , ae,, ae, appear

e1? Yegr
in this order in the circular ordering O« € 3, (up to reversing the ordering). We now recall how the

ordering O,+ € ¥, was constructed.
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Recall that dg, (v*) = dg(U.—1), and in particular, a} ,ae,, a},, de, € dG(U.—1). The ordering O« € X,
was defined to be identical to the ordering O,_; of the edges of 6 (U,—1), which, in turn, is the ordering
guided by the set Q(U,_1) of paths.

From our construction, it is immediate to verify that the last edge of the unique path in Q(U,_;) that
originates at edge a} is a , and the last edge of the unique path in Q(U,_1) that originates at edge
ae, is a,, (see Figure [26( and Figure . Similarly, the last edge of the unique path in Q(U._) that
originates at edge aj, is a,, and the last edge of the unique path in Q(U,_1) that originates at edge a,
is ar,. From the definition of the ordering O,_1, it must be the case that either set {ac,, Ge,, Ge,, e, }

/ ~/

contains fewer than four distinct edges, or edges ar, 1,a62,a’el,a’62 appear in this order in the rotation

Oy, , €% 0
We will use the following simple observation in order to bound the congestion that is caused by the
set W = {W(e) | e € EQYr U ELieht } of cycles.

Observation 7.62 FEach edge e € Eieft may belong to at most O(log34 m) edges of E?ght/. Ad-
ditionally, an edge e € E(G)\ E(S._1) may lie on at most O(log®m) cycles of W, while an
edge e € E(S,_1) may lie on at most O(log®® m) - cong;(Q(S._1),€) cycles of W. Lastly, an edge
e€ E(G)\ (E(gz) U E(Sz,l)) may lie on at most O(log® m) - N'(e) cycles of {W(e’) | e € Eﬁightl}.

Proof: In order to prove the first assertion, consider any edge e € Eieft. From our construction, e
may belong to an edge ¢’ € prish’ only if e € W(e’). From Observation edge e may lie on at
most O(log®* m) cycles of W, and so e may belong to at most O(log®* m) edges of Eﬁightl.

Consider now some edge e € E(G)\ E(S._1). Notice that, if e lies on a cycle W (e’) for some edge

e € By E2¥", then either e € W(e'), or e € W(a},) must hold. Since, from Observation
edge e may lie on at most O(log34 m) cycles of W, and, as we have shown, every edge ¢’ € E'*f* may
belong to at most O(log m) edges of EN e get that e may lie on at most O(log® m) cycles of
W.

Consider now an edge e € E(S, ;). Notice that, if e lies on a cycle W (e') for some edge ¢ €
ES#M U Eover then cither e € P(¢'), or e € P(e’) must hold. Consider some path P € Q(S._) that
contains the edge e, and let a be the first edge on path P. Consider any edge ¢’ € Egight/ U B9V, for
which P = P(e’) or P = P(€’) holds. Then a = ay or a = @ must hold, and in particular, edge a
must lie on W (¢'). As we have shown, every edge e € 8¢ (S._1) may lie on at most O(log® m) cycles

of W. Therefore, there are at most O(log®®m) edges ¢ € Bt E2¥er for which P = P(€’) or
P = P(¢) holds. We conclude that e may lie on at most O(log% m) - cong(Q(S._1),e) cycles of W.

It now remains to prove the last assertion. Consider an edge e € E(G) \ (E(S’Z) U E(Sz,l)). Assume
that e € W(e’ ) for some edge €' € E?ght/. From our construction, this may only happen if either e
lies on the unique path of Q(U,) that originates at €’; or e lies on the unique path of Q(U,_1) that

originates at a’,. Recall that, in the latter case, a}, € E'*f* must hold. Recall that N’(e) is the total
number of paths in Q(U,_1) U Q' (U,) that originate at edges of E,_; UE*t U EU8M B and contain
e. Since each edge a* € E’Left may belong to at most O(log34 m) edges of Erisht , we get that, overall,
edge e may lie on at most O(log3* m) - N’ (e) cycles of {W(e’) IS Eﬁightl}. 0
Recall that we have denoted by II' C II the set of all edge pairs (eq,es) € II, where at least one of

the two edges lies in Eiight/. We will always assume w.l.o.g. that e; € E?ght/ for each such pair. We
bound the expected cardinalities of sets II' and II? separately in the following two claims.

Claim 7.63 The expected cardinality of set II' is at most:
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P D BN(O]+ Y (B[N +E [NUN]) + [E(Sema| + [ES:)] + x| + ]| +mE .
e€E(G) (e,ef)ex*

Proof: We denote by I} C IT' the set of all pairs (e, e) € II', for which cycles W (ey), W (eg) share
at least one edge. We let e be any edge in E(W (e1)) N E(W (ez)), and we say that e is responsible for
the pair (e, ez). Consider now any pair of edges (e, ) € II' \ II1, and their two corresponding cycles
W (e1), W (es). Note that the two cycles do not share edges, and, from Observation they have a
transversal intersection at vertex u,_;. Therefore, either there is a pair of edges ¢/ € E(W (e1)) and
e, € E(W (ez)) that cross in the drawing ¢* of G; or there is a vertex v # u._1, such that W(e;), W (es)
have a transversal intersection at v. In the former case, we say that crossing (e}, €}) is responsible for
the edge pair (e1,e2). In the latter case, we say that the transversal intersection of W(ey), W (ep) at
v is responsible for the pair (e, ez). We denote by IIL C I \ II} the set of all pairs (e1, e2), such that
some crossing (e}, €}) is responsible for (e1, e2), and we denote by IT§ = TI' \ (I} UTL}). We now bound
the number of pairs in each one of the three sets one by one in the following three observations.

Observation 7.64 E [|II}|] < 7?- (ZeeE(G) E [N/ (e)] + |E(S:—1] + |E(§Z)|>

Proof: Consider an edge e € E(G). We will bound the expected number of pairs (e1,e2) € Hl of
edges, for which edge e is responsible. For each such pair, we assume w.l.o.g. that e; € Erlght We
distinguish between three cases.

The first case is when e € E(G) \ <E(5’Z) U E(Sz_1)>. From Observation [7.62, e may lie on at most

O(log** m) - N/(e) cycles of {W(e’) | e e E;ight,}, and on at most O(log® m) cycles of W. Therefore,
such an edge may be responsible for at most O(log'®?m) - N’(e) <7 - Né(e) edge pairs in TI1.

The second case is when e € F(S.). In this case, from Observation [7.62, edge e lies on at most
O(log®® m) cycles of W. Therefore, such an edge may be responsible for at most O(log136 m) < 7 edge
pairs in T}, and overall, the edges of S. may be responsible for at most 7 - |[Eg(S.)| edge pairs in I}
The third and the last case is when e € E(S,_1). From Observation such an edge may lie

on at most O(log® m) - cong;(Q(S,_1),e) cycles of W, and so it may be responsible for at most
O0@1og'*® m) - (cong(Q(S.-1),€))? < - (cong(Q(S._1),€))? edge pairs in IT}. Since we have assumed

that S, € S8 from Observation [7.49, E [(congG(Q(Sz,l),e))ﬂ < 7). Therefore, the expected

number of edge pairs in II} for which edge e is responsible is at most 7%, and the total expected
number of edge pairs in II1 for which edges of E(S,_1) are responsible is at most #? - |[E(S,_1)|. The
bound now follows. 0

Observation 7.65 E [[I]] < i+ (.0 (BINL(e)] + B[N + x| + [xz).

Proof: Consider a crossing (e,€’) € ¢*. We bound the number of pairs (e1, e) € 113 with e1 € Elisht

for which the crossing (e,e’) is responsible. Recall that, if crossing (e,e’) is resp0n51ble for a palr
(e1,e2) € I3, then e € W(e;) and €’ € W (ez) must hold.

We first consider the case where neither of the edges e, €’ lie in F (gz)AU E(S.-1). In this case, from
Observation edge ¢ may lie on at most O(log68 m) cycles of W, while edge e may lie on at

most O(log® m) - N/ (e) cycles of {W(e’ RS E;ight/}. Therefore, crossing (e, ¢’) may be responsible
for at most O(log'®m) - N.(e) < 7 - N.(e) edge pairs in TI5. Note that, if either of the edges e, ¢’
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lies in E(S,) U E(S,—1), then crossing (e, e’) belongs to xi_; U x3. We conclude overall, all crossings
(e,;e’) € X"\ (X1 U x%) may be responsible for at most 3=, e, 7 - (N2(e) + N;(€')) pairs in I13.

Next, we consider the case where at least one of the edges e, e’ lies in E(S,) U E(S,_1), so crossing
(e,€') belongs to x%_; U x%. We let N (e) be the random variable indicating the number of cycles in
W containing edge e, and we define random variable N (¢') for edge €’ similarly. Notice that random
variables N (e), N(¢’) may not be independent, if e,e’ € E(S,_1). The total number of edge pairs in
IT} for which crossing (e, ¢') is responsible is bounded by N(e) - N(¢/) < (N(e))? + (N(¢')). From
Observation combined with Observation and our assumption that S,_; € Sght we get that
E [(N(e))z} JE (N(e’))2)} < H2. We conclude that the expected number of pairs in I1} for which all

crossings (e, e’) € x:_; Ux} are responsible is at most 7% - (|x7_1| + [x%])- O

Observation 7.66 |II3| < |TIZ].

Proof: Consider an edge pair (e,e’) € ITI3. Recall that there must be a vertex v # u,_1, such that
cycles W (e), W(e') have a transversal intersection at v. Recall also that e € ESS™ C EUeM e

claim that v € V(U ) must hold, and moreover, auxiliary cycles W (e), W (e') must have a transversal
intersection at vertex v.

Indeed, assume first that v € V(S,_1) \ {u.—1}. In this case, vertex v must liec on P(e) U P(e), and
on P(¢/) U P(¢'). Since paths P(e), P(e), P(¢'), P(€') all belong to the internal S,_j-router Q(S,_1),
they cannot have a transversal intersection at any vertex.

Assume now that v € V(U,—1) \ V(S,-1). In this case, by our construction, v lies on the auxiliary
cycle W(a?) of the edge a® € EM® that belongs to e, and similarly, v lies on the auxiliary cycle
W(a?). Moreover, cycles W(a}),W(a}) must have a transversal intersection at vertex v. From
Observation this is only possible if v € S; for some index 1 < j < r, and either j — 1 is the last
index in both span”(a}),span”(a},), or j — 1 is the last index in one of these sets, while j belongs to
another. This is impossible, since v € V(U,_1), and a},a’, € 6q(U,—1).

We conclude that vertex v may not lie in U,_;. But then, from the construction of the cycles
W(e), W(e'), v must lie on both the auxiliary cycles W (e), W (e'), and the two cycles must have a
transversal intersection at v. From Observation this is only possible if v € S; for some index
1 < j < r, and either j — 1 is the last index in both span”(e),span”(e’), or j — 1 is the last index in
one of these sets, while j belongs to another. Since e, e’ € §¢(U,), we conclude that v € V(U ,) must
hold, and, from the above discusison, W (e), W(e’) must have a transversal intersection at vertex v.
Recall that TI7 is the set of triples (&, &, ), where é € EL®™ & € E,, and cycles W (&) and W (&) have
a transversal intersection at . We conclude that, if the transversal crossing of cycles W (e), W (€) at
vertex v is responsible for edge pair (e, ¢’), then triple (e,¢’,v) must lie in II7, and so |IT3| < [IIL]. O
Combining the bounds from Observations we get that the expected cardinality of set II* is
at most:

| D BN+ D) (BNU)] +E[NUN]) + [E(Sema| + [E(S:)] + X2 ] + X3+

e€E(Q) (e,e’)ex*

We use the following claim to bound the expected cardinality of I12.

Claim 7.67
E [[I]] <% (|E(S-1)| + 166(S--1)| + X5 1) -
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Proof: Recall that set IT1? contains all edge pairs (e, e’) € II, with e,e/ € E9'®". Consider any edge
e € BV, Recall that we denoted by W'(e) the subpath of the auxiliary cycle W (e) between vertices
ye and g, that intersects cluster S._;. We denote by W”(e) the subpath of W (e) between vertices
ye and g, that does not share edges with W'(e). Equivalently, W”(e) is the concatenation of the
paths Wt (e) and W"ight(e) (after the extra copy of edge e is deleted). We denote by H (e) the graph
obtained from the union of the paths W’(e), P(e) and P(e). The following observation, whose proof
is deferred to Appendix is central to the proof of Claim

Observation 7.68 Let (e1,e2) be a pair of edges in I12. Then one of the following must happen:
either (i) some edge lies in both H(e1) and H(eg2); or (ii) there is a pair of edges € € H(ey), €s €
H(ez) UW"(eq), whose images cross in the drawing ¢* of graph G; or (iii) there is a pair of edges
ey € H(er) UW"(e1), €5 € H(ea), whose images cross in the drawing ¢* of graph G.

As before, we partition the set 11> of edge pairs into two subsets. The first set, II?, containing all
pairs (e1,e2) € 112, such that there is an edge e € E(H;) N E(Hy). In this case, we say that edge
e is responsible for the pair (e1,e2). Set II3 contains all remaining edge pairs (61,62) € I12. From
Observation for each such pair (e1,e2) € H%, there must be a crossing in X between a pair of
edges €1 and é, such that either (i) é; € H(e1) and é3 € H(e2) UW"(e2); or (ii) €] € H(e1) UW" (e1)
and &, € H(ez). For convenience, we will always assume that it is the former. Since H(e;) C
S.—1Udq(S:-1), crossing (e, e2) must lie in x%_;, and we say that this crossing is responsible for the
pair (e1,ez) € II. We bound the expected cardinalities of the sets 117, I13 separately, as before.

In order to bound E [|II%|], consider some edge e € E(S._1) Udc(S.—1). Note that edge e may only
lie in graph H(e'), for an edge ¢/ € EO, if e € W (€'), or e € W(e’). From Observation edge e
may appear on at most O(log34 m) auxiliary cycles of W, and, from Observatlon _ e may he on at
most O(log® m) - cong(Q(S._1), €) cycles of W. From Observation since we have assumed that

S, 1 € Slight e get that E [(congG(Q(SZ,l), ))2} <. Therefore, the expected number of pairs in

H%, for which edge e is responsible is at most:

O(log"** m) - E [(congg(Q(S:-1,¢)))*] < 7.

We conclude that E [|TI3[] < 7% (|E(S.—1)| + |66(S2—1)])-

In order to bound the expected cardinality of the set II2, consider some edge pair (e1,e2) € 113, and
the crossing (€1,€2) that is responsible for it, where é; € H(ey) and é; € H(eg) U W"”(e2). Recall
that H(e;) C E(S,—1) Udg(S:—1), and that crossing (€;,€2) must lie in x¥_;. Consider now any
crossing (e, e’) € xi_;, and assume w.lo.g. that e € E(S,_1) Udg(S.—1). If ¢ € E(S,—1) U dc(S:-1)
as well, then for every pair (e1,ez) € II3 for which crossing (e,e’) is responsible, e € H(e;) and
¢/ € H(ez) must hold. As observed above, the total number of edges e; € dg(U,—1) with e € H(eq) is
O(1og% m)-cong(Q(S._1), e), and similarly, the total number of edges ey € §¢(U,_1) with e’ € H(es)
is at most O(log®® m) - cong;(Q(S._1),¢’). Therefore, the total number of edge pairs (e1, es) € I3 for
which crossing (e, €') is responsible is bounded by:

O(log"** m) - cong(Q(S:-1). €) - cong(Q(S:-1), €)
< O(log'**m) - ((cong(Q(S:-1),€))* + (cong(Q(S:-1),¢))?) .

As before, from Observation and the assumption that S, ; € Shsht:

E [(congg(g(sz,l),e)ﬂ E [(congc(g(sz,l),e'))z} <.
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Therefore, the expected number of edge pairs (e1, e2) € II3 for which crossing (e, €’) is responsible is
at most 7.

Lastly, we consider a crossing (e,e’) € xi_; with e € E(S,—1)Udg(S,—1) and ¢’ € E(S,_1)Udc(S,-1).
In this case, for every pair (e1,es) € I3 for which crossing (e,€’) is responsible, e € H(e;), and
e/ € W"(e3) € W{(ez) must hold. As before, the total number of edges €1 € dg(U,—1) with e € H(ey)
is at most O(log® m) - cong(Q(S._1),e), and, from Observation edge ¢ appears on at most
O(log® m) cycles of W. Therefore, the total expected number of edge pairs (e1,es) € I3 for which
crossing (e, e’) is responsible is bounded by:

O(log'” m) - E [cong(Q(S:-1), €)] < 7%,

from Observation [7.49, Overall, we get that E [|II3|] < n*- |x%_,|, and:

E [|IP[] < 7% (|E(Sa-1)| + [0G(Ss—1)] + [xE-1l) -

Combining the bounds from Claims and we get that:

E(Ui<a? | > E[N(]+ > (E[Ni(e)] +E[NI()])

e€E(G) (e,e’)ex*

+ 72+ (IB(Sa0)l + B(S:)| + 106(S=m0) + X + il ) + 1T,

completing the proof of Claim [7.60]

8 Proof of Theorem [3.12

We assume that we are given a wide instance I = (G, X) of MCNwRS, with m = |E(G)|, such that
12° < m < m*. The high-level idea of the proof is to compute a collection C of disjoint clusters in
graph G that have the ag-bandwidth property for oy = 1/log® m with |E (G\c)| sufficiently small, and
then to apply the algorithm for computing advanced disengagement from Theorem to C, to obtain
a v-decomposition of I into subinstances. In order to ensure that all subinstances have the required
properties, we need to ensure that, if C' is a cluster of C with |E(C)| > %, then for any pair u,v

of disctinct vertices of C' whose degree in C' is at least 7%, there are at least E% edge-disjoint paths

connecting u to v in C. We start with the following lemma that allows us to compute the desired
collection C of clusters.

Lemma 8.1 There is an efficient algorithm, that, given a wide instance I = (G,%) of MCNwRS, with
m = |E(G)|, such that p?° < m < m*, computes a collection C of disjoint clusters of G, that have the
following properties:

e Ucee V(C) =V(G);

o cvery cluster C' € C has the ag-bandwidth property, for ag = —

log® m’

o for every cluster C € C, for every pair u,v of distinct vertices of C with deg(v), degq(u) > %,

there is a collection of at least % edge-disjoint paths in C' connecting u to v; and
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o |Bo(C)] < .

Proof: The proof of the lemma uses somewhat standard techniques and is similar, for example, to the
proof of Theorem We denote by U the set of all vertices of G whose degree is at least 2. Clearly,
o

|U| < 2u8. Our algorithm maintains a collection R of clusters of G. Throughout the algorithm, we
ensure that the following invariants hold:

I1. all clusters in R are mutually disjoint; and
12. Uger V(R) = V(G).

For a given collection R of clusters with the above properties, we define a budget b(e) for every
edge e € E(G), as follows. If both endpoints of e lie in the same cluster of C, then we set the
budget b(e) = 0. Assume now that the endpoints of e lie in different clusters R, R’ € R. We
define br(e) = 1 + 8ag - Barv(m) - log3/2(|5g(R)]), bri(e) = 14 8ayg - Parv(m) - log3/2(|6g(R/)\), and
b(e) = bgr(e) + br/(e). Notice that b(e) < 3 always holds.

For every cluster R € R, we denote Ur = U NV (R). For every vertex u € U, we define a budget b(u)
of u as follows. Assume that u € V(R) for some cluster R € R. Then b(u) = 4|Ug| - i5- We denote
by B = ZeEE(G’) b(e) + > e b(u) the total budget in the system. Clearly, throughout the algorithm,
B >3 per 10c(R)| holds.

At the beginning of the algorithm, we set R = {G}. Clearly, both invariants hold for R. Moreover,
the budget of every vertex u € U is at most 4|U] - 40, so the total budget of all vertices in U is at

most 4|U|? - u 5 < 158 < 27 (since |U| < 2ub), Wh1le the budget of every edge of G is 0. Therefore,
at the beginning of the algorlthm B< JQ@ holds. We will ensure that, throughout the algorithm, the

total budget B never increases. Since B > ) p r [0g(R)| always holds, this will ensure that, at the
end of the algorithm, ) p r [6a(R)| < 27 will hold.

Throughout the algorithm, we maintain a partition of the set R of clusters into two subsets: set R4 of
active clusters, and set R! of inactive clusters. We will ensure that the following additional invariant
holds:

I3. every cluster R € R! has the ag-bandwidth property; and

I4. for every cluster R € R!, for every pair u,v of distinct vertices of Ug, there is a collection of at
least 8 L edge-disjoint paths in R connecting u to v.

At the beginning of the algorithm, we set R4 = R = {G} and R! = ). Clearly, all invariants hold
then. We then proceed in iterations, as long as R4 # 0.

In order to execute an iteration, we select an arbitrary cluster R € R? to process. We will either
establish that R has the agp-bandwidth property in graph G, and that for every pair u,v € Upg of

distinct vertices there is a collection of at least 8},’3 edge-disjoint paths in R connecting u to v (in

which case R is moved from R4 to R'); or we Wlll modify the set R of clusters in a way that ensures
that the total budget decreases by at least 1/m. An iteration that processes a cluster R € R4 consists
of two steps. The purpose of the first step is to either establish the ag-bandwidth property of cluster
R, or to replace it with a collection of smaller clusters in R, The purpose of the second step is to
either establish that, for every pair u,v € Ug of distinct vertices there is a collection of at least 3%
edge-disjoint paths in R connecting u to v, or to modify the set R of clusters in a way that decreases
the total budget by at least 1/m. We now describe each of the two steps in turn.
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Step 1: Ensuring the Bandwidth Property. Let R™ be the augmentation of the cluster R in
graph G. Recall that RT is a graph that is obtained from G through the following process. First, we
subdivide every edge e € dg(R) with a vertex t., and we let T'= {t. | e € d¢(R)} be the resulting set
of vertices. We then let RT be the subgraph of the resulting graph induced by vertex set V(R)UT. We
apply Algorithm ARy for computing approximate sparsest cut to graph R, with the set T of vertices,
to obtain a B.ry(m)-approximate sparsest cut (X,Y) in graph Rt with respect to vertex set T. We
now consider two cases. The first case happens if |Er(X,Y)| > ap - Barv(m) - min {|X NT|,|Y NT|}.
In this case, we are guaranteed that the minimum sparsity of any T-cut in graph R™ is at least ay,
or equivalently, set T of vertices is ag-well-linked in R*. From Observation cluster R has the
ag-bandwidth property in graph G. In this case, we proceed to the second step of the algorithm.

Assume now that |Eg(X,Y)| < ag - Barv(m) - min {|X NT|,|Y NT|}. Since g = 1/log®m, and m
is larger than a large enough constant (because m > 1?°), and since Bupy(m) = O(y/Iogm), we get
that the sparsity of the cut (X,Y) is less than 1. Consider now any vertex ¢ € T', and let v be the
unique neighbor of ¢ in R*. We can assume w.l.0.g. that either ¢,v both lie in X, or they both lie in
Y. Indeed, if t € X and v € Y, then moving vertex ¢t from X to Y does not increase the sparsity of
the cut (X,Y). This is because, for any two real numbers 1 < a < b, % < %. Similarly, if t € Y and
v € X, then moving ¢ from Y to X does not increase the sparsity of the cut (X,Y’). Therefore, we
assume from now on, that for every vertex t € T, if v is the unique neighbor of ¢ in R™, then either

both v,t € X, or both v,t €Y.

Consider now the partition (X', Y”) of V(R), where X' = X \ T and Y/ =Y \ T. It is easy to verify
that [dg(R) Ndg(X')| = |X NTJ, and |dg(R) Ndc(Y')| = |Y NT|. Let E' = Eg(X’',Y’), and assume
w.lo.g. that [0g(R) Ndc(X)| < [6g(R) Ndg(Y')|. Then |E'| < ag - Barv(m) - |dc(R) N da(X')| must
hold. We remove cluster R from sets R and R4, and we add instead every connected component of
graphs G[X’] and G[Y] to both sets. It is immediate to verify that R remains a collection of disjoint
clusters of G, and that (Jpcr V(R') = V(G). Therefore, all invariants continue to hold. We now
show that the total budget B decreases by at least 1/m as the result of this operation.

Note that the only edges whose budgets may change as the result of this operation are edges of
dc(R) U E'. Observe that, for each edge e € dg(R) Nda(Y’), its budget b(e) may not increase. Since
we have assumed that [dg(R) N dq(X')] < |0a(R) N dq(Y')|, and since |E'| < |0c(R)|/8, we get that
10c(X")] < 2|d¢(R)|/3. Therefore, for every edge e € dc(X’) Nda(R), its budget b(e) decreases by at
least 8 - Banv(m) - 1ogs5(|0G(R)[) — 8 - Banv(m) - logs5(|0c(X")[). Since |0a(X")| < 2|6a(R)|/3,
we get that logs 5 (|0c(R)|) > logs/2(3106(X')[/2) > 1 +logs5(|0c(X')|. We conclude that the budget
b(e) of each edge e € dg(X') N dg(R) decreases by at least 8ag - Sary(m). On the other hand, the
budget of every edge e € E’ increases by at most 3. Since |E'| < ag - Barv(m) - |da(R) N dg(X)|, we
get that the decrease in the budget B is at least:

8ay - BARV(m) . ‘5@(X/) N (5@(R)’ — 3‘El|
> 8ag - Barv(m) - [6¢(X") N (R)| = 3ao - Barv(m) - [6c(R) N (X))
> dag - BARV(m) : ‘5G(R) N 5G(X/)’
> 1/m,
since ag > 1/m. Therefore, the total budget of all edges decreases by at least 1/m. Since the clusters
only become smaller, it is easy to verify that the budgets of the vertices of U do not increase. To
conclude, if |Er(X,Y)| < ag - Barv(m) - min {|X N T|,|Y NT|}, then we have modified the set R of

clusters, so that all invariants continue to hold, and the total budget B decreases by at least 1/m. In
this case, we terminate the current iteration.

From now on we assume that |E(X,Y)| > ag - Sary(m) - min {|X N T, |Y NT|}, which, as observed
already, implies that cluster R has the ag-bandwidth property. We now proceed to describe the second
step of the algorithm.
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Step 2: Ensuring Connectivity of Vertices of U. If, for every pair u,v € Ug of distinct vertices,
there is a collection of at least Sm + edge-disjoint paths in R connecting u to v, then we move cluster R
from R4 to R! and terminate the current iteration. It is easy to verify that all invariants continue to
hold.

Assume now that there is a pair u,v € Ug of distinct vertices, such that the largest collection of
. From the max-flow /
min-cut theorem, there is a cut (X,Y) of R, with v € X, v € Y, and |Eg(X,Y)| < %. We assume
w.l.o.g. that [ X NUg| < |Y NUg|. We delete cluster R from R and from R*, and we add instead every

connected component of G[X] and G[Y] to both sets. We now show that the total budget decreases
by at least 1/m as the result of this procedure.

Notice that for every vertex x € U, the budget of z did not increase. Moreover, if = is a vertex of
X N Ug, then its original budget was 4|Ug| - 40, and its new budget is 4|U N X| - 40 < 2|Ug| - %5

Since UN X # 0, we get that >, b(z) decreased by at least im

Next, we consider the changes to the budgets of the edges. First, every edge in set E' = Fr(X,Y)
had budget 0 at the beginning of the iteration, and has budget at most 3 at the end of the iteration.
Since |Fr(X,Y)| < 823, the increase in the budget of the edges of E’ is bounded by 24m.

We now consider two cases. The first case happens if |dg(R)| < 3u4°‘ In this case, the increase in the
budget of every edge e € dg(R) is bounded by 3 (since edge budgets may not exceed 3), and so the
total increase in the budgets of edges e € dg(R) is bounded by 3|0g(R)| < u% The total increase

in all edge budgets is then bounded by - a0+ 2457(?, and, since the total budgets of all vertices in U

decreases by at least 240, we get that the total budget B decreases by at least I s < ;L
Lastly, we assume that [0g(R)| > 3.0 Consider some edge e € dc(R). Since |dg(X)|, |0c(Y)| <

|0c(R)| + | E’|, the increase in the budget of e is bounded by:

800 Buny (m) - (o (136 (R)| + | E']) — logs (156 (R)]) < 800 - Buay(m) - logy (1 T ) .

[0 (R)]
Since we have assumed that |0g(R)| > 3%, while |E'| < 3%, we get that % < 1/2. Since for all
e € (0,1/2), In(1 + €) < ¢, we get that the increase in the budget of e is bounded by 8ayg - Sarv(m) -

M% < 24ap - Bary(m)- | 5‘ 0 |)| The increase in the budget of all edges of d¢(R) is then bounded

by 24ag - Barv(m) - |E'| < mmﬁ—?{fm() < % Since the budget of all edges in E’ increases by at

most 245%1, and the budget of the vertices of U decreases by at least 2’}5, the total budget in the system

decreases by at least % > %

Since the initial budget B is bounded by % ik and in every iteration, either a new cluster is added to
set R!, or the budget B decreases by at least 1/m, the number of iterations is bounded by poly(m),
so the algorithm is efficient. Once the algorithm terminates, R/ = R holds. We then return the set
C = R of clusters as the outcome of the algorithm. From our invarinats, we are guaranteed that
Ucee V(C) = V(G), every cluster C' € C has the ap-bandwidth property, and for every cluster C' € C,
for every pair u, v of distinct vertices of C' with degq(v), degq(u) > %, there is a collection of at least

8m edge-disjoint paths in C' connecting u to v. Since the total budget B remains bounded by - 227
and ) ccc 10a(C)| < B, we get that Y0 [06(C)| < 2% 7 holds. o

We are now ready to complete the proof of Theorem We start by applying the algorithm
from Lemma [B] to instance I, to obtain a collection C of clusters. We then apply Algorithm
AlgAdvancedDisengagement from Theorem to instance I = (G,Y), cluster set C, parameter p
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that remains unchanged, and parameter m = |E(G)|. Let Z be the 20((og m)*/* loglog m)_decomposition
of instance I that the algorithm returns. Recall that every instance I’ € Z is a subinstance of I.
Consider any instance I’ = (G',¥) € Z, and assume that |E(G’)] > m/u, and that I’ is a wide
instance. It is enough to prove that instance I’ is well-connected. Indeed, the algorithm from Theo-
rem ensures that there is at most one cluster C € C with E(C) C E(G"). If no such cluster exists,
then E(G’) C E°*(C). Since |E°'*(C)| < il |E(G")] < -7 must hold in this case, contradicting our
assumption that |E(G’)| > m/u. Therefore, there must be a cluser C' € C with C C G'. The algorithm
from Theorem then guarantees that E(G’) C E(C) U E°“t(C). Consider some vertex v € V(G')
with degqy (v) > %@ Since |E(G')| = =, dege(v) = ‘E( SIS & must hold. In particular, since r
is a subinstance of I, and since |E°“*(C)| < 7, vertex v must he in cluster C' (as otherwise all edges
incident to v in G’ belong to E°'(C)), and so degq(v) > 4& must hold as well. The algorithm from
Lemma ensures that, for every pair u,v of vertices of C' with degg(u),degq(v) > %, there is a

¢ 8m S BLEG)]
S >

collection P of at leas edge-disjoint paths in C' connecting u to v. Since C' C G’, every

path in P is also contained in G’. We conclude that instance I’ must be well-connected.

9 An Algorithm for Wide and Well-Connected Instances — Proof of
Theorem

This section is dedicated to the proof of Theorem [3.13] Recall we are given a wide and a well-connected
instance I = (G, ) of the MCNwRS problem. For convenience, throughout this section, we refer to
instance I as I* = (G*,%*) and denote m = |E(G*)|. We let G be the graph that is obtained from
graph G* by subdividing every edge of G* with a vertex. Since every vertex in V(G )\ V(G*) has
degree 2, we can extend the rotation system * for graph G* to a rotation system 3 for graph G, in a
natural way. We denote by I = (G, ) the resulting instance of MCNwRS. We sometimes refer to I as
the subdivided instance corresponding to I*. Note that ]E(G)\ = 2rh and OPTcnwrs(f) = OPTcnwrs(f*).
Throughout this section, we will mostly be working with instance I. We will use notation I and m
when discussing various subinstances of I. Recall that m > ucl must hold, where ¢’ is a large enough
constant. Given a subgraph G C G, we let ¥ be the rotation system for G induced by ¥, and we will
refer to instance I = (G, X) as the subinstance of I defined by graph G.

We start with intuition. Fix an optimal solution ¢* to instance I, where ¢* is a drawing of graph
G on the sphere. In order to simplify the exposition, assume that cr(¢*) = OPTeqws() < m?/uc,
where ¢ is a large enough constant. Since instance I* is wide, there is a vertex v € V(G), a partition
(Eh, E») of the edges of 0(v), with the edges of Ey appearing consecutively in the rotation O, € X,
and a collection P of at least m /1" edge-disjoint cycles in graph G, where every cycle P € P contains
an edge of E; and an edge of E,. Informally, we say that a vertex u of G is heavy if it lies on a large
number of cycles of P, otherwise we say it is light.

Let P* € P be a cycle that we select uniformly at random. Since |P| > 1m/u°, the expected number of
crossings in which the edges of E(P*) participate in * is relatively small — at most OPTeprs(I) -0 /772
We can use this fact in order to show that, with a high enough probability, there is a near-optimal
solution ¢’ to instance I, in which the images of the edges of E(P*) do not cross each other, and they
participate in relatively few crossings. Let E’ denote the set of all edges e € E(G), such that e is
incident to a light vertex u € V(P*), and e ¢ E(P*). From the definition of light vertices and the
fact that |P] is large, we can show that with high enough probability, |E’| is quite small. Additionally,
using the cycles in P, we can compute, for every heavy vertex u € V(P*), an orientation b, € {—1,1}.
We show that with high probability, this orientation is consistent with the solution ¢’ to instance I.
In other words, if b, = —1, then the images of the edges of i (u) enter the image of u in ¢’ according
to the ordering O, € ¥ in clock-wise direction, and otherwise the direction is counter-clock-wise.
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Note that the image of the cycle P* in the near-optimal solution ¢’ to instance I partitions the sphere
into two internally disjoint discs D and D’. Let E” be the set of edges of G' whose images cross the
images of the edges of P*. From our construction, with reasonably high probability, |[E”] is relatively
small. We can view the image of cycle P* in ¢’ as splitting graph G\ (E’UE") into two subgraphs, G
and G9, where (G1 contains all edges and vertices that are drawn inside D, while G2 contains all edges
and vertices that are drawn inside D’. The only vertices and edges that the two graphs share are the
vertices and edges of P*. We can further ensure that each of the subinstances contains a significant
number of edges, so |E(G1)|,|E(G2)| are both significantly smaller than rh.

If we could compute the two graphs G, Gs efficiently, then we could construct two subinstances
I = (G}, %)), Iy = (G4, %)) of instance I, where graph G is obtained from G; by contracting the
vertices of V(P*) into a supernode v*, and letting the rotation of this supernode in ¥} be determined
by the rotations of the vertices of V(P*) in instance I, the orientations of the heavy vertices of P*
that we have computed, and the order of the vertices of P* on the cycle; instance Is is computed
similarly from Gy. Given solutions 1, 9 to the instances Iy, I2, respectively, we can combine them to
obtain a solution ¢ to instance I, as follows. First, we un-contract the supernode v* in each of the two
instances to obtain a cycle P*, and then we “glue” the two drawings together via this cycle. Next, we
insert the edges of E' U E"” into the resulting drawing, obtaining a drawing ¢ of G. Since |E’|, |E"| are
relatively small, so is the increase in the number of crossings relatively to cr(p;) + cr(y2). We could
then apply the same decomposition process recursively to instances I; and Iy (if these instances are
wide). We refer to I7 and Iy as the contracted instances corresponding to subgraphs G and Gy of G,
respectively.

The main difficulty with this approach is that we do not know the optimal solution ¢* to instance I,
or the near-optimal solution ¢’, and so we cannot compute the two graphs Gy, G2 with the required
properties. We also do not know the set E” of edges whose images cross the images of the edges
of E(P*) in ¢'. Instead, we compute a relatively small edge set E*, and two subgraphs G1,Gs of
G\ (E'U E*), for which the following hold. First, F(G1) U E(G)UE'UE* = E(G). Second, the only
vertices and edges that these two graphs share are the vertices and edges of P*. Third, the number of
edges in each of the graphs G1, G is significantly smaller than |E(G)|. Lastly, there is a near-optimal
drawing ¢’ of G\ (E' U E*), in which the edges of P* do not cross each other. Moreover, if we denote
by D and D’ the two discs of the sphere whose boundaries are the image of P* in ¢/, then, by slightly
modifying the drawing, we can ensure that all vertices of Gy are drawn inside D, all vertices of G
are drawn inside D’, and the number of crossings in which the edges of P* participate is quite small.
Unfortunately, we can no longer guarantee that every edge of Gy is drawn inside D and every edge
of @2 is drawn inside D’. We can then define the contracted instances I; and I associated with
the graphs G, and Gy exactly as before. As before, given solutions to instances I; and I», we can
efficiently combine them to obtain a solution to instance I. But unfortunately we can no longer claim
that OPTcnwrs(11) + OPTepwrs(I2) is small. This is since, in the near-optimal drawing of G\ (E' U E*),
some edges of G1 may be partially drawn inside the disc D', and it is not clear how to “move” them
to the interior of D without significantly increasing the number of crossings. The same is true for
edges of G5 that may be partially drawn inside the disc D. This is the main difficulty in designing
our algorithm using the framework outlined above.

Our algorithm consists of two phases. In the first phase, we follow the above framework to construct
an initial collection Z of subinstances of I, that have all required properties, except that we will not
be able to ensure that ) ;.7 OPTcqwrs(I) is suitably bounded, even if OPTcnwrs(I) is small. In the
second phase, we will try to “repair” each one of the instances I = (G, ) € Z, by removing a small
subset of edges from G. We will show that, after the removal of these edges, the expectation of
> 1e7 OPTenwrs(I) is suitably bounded. In both phases, we rely on the same algorithm outlined above,
that gradually decomposes an input instance I = (G,X) into smaller and smaller subinstances. The
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algorithms for both Phase 1 and Phase 2 follow this high-level framework, though the specifics are
somewhat different. We start with the main definitions that we use throughout this section.

9.1 Main Definitions

Throughout, given a graph H and a drawing ¢ of H on the sphere or in the plane, we denote by F ()
the set of all faces in drawing (.

We use the notion of a subdivided graph.

Definition 9.1 (Subdivided graph) We say that a graph G is a subdivided graph, if G does not
contain parallel edges, and additionally, for every edge e = (u,v), either degg(u) < 2 or degg(v) < 2
holds.

Note that, if G is any graph, and G’ is a graph obtained by suvdividing every edge of G, then G’ is a
subdivided graph, and so is every subgraph of G’. In particular, graph G associated with instance I
of MCNwRS is subdivided, and so is every subgraph of G.

9.1.1 Cores and Core Structures

The first central notion that we use is that of a core, and its associated core structure.

Definition 9.2 (Core and Core Structure) Let G be a subgraph of G, and let I = (G, %) be the
subinstance of I defined by G. A core structure for instance I consists of the following:

e a connected subgraph J of G called a core, such that, for every edge e € E(J), graph J\ {e} is
connected (but we also allow J to consist of a single vertex);

e an orientation b, € {—1,1} for every vertexr u € V(J);

e a drawing py of J on the sphere with no crossings, that is consistent with the rotation system %
and the orientations in {bu},cy () In other words, for every vertex u € V(J), the images of the
edges in 0 j(u) enter the image of u in py according to their order in the rotation O, € ¥ and
orientation by, (so, e.g. if by, =1 then the orientation is counter-clock-wise); and

e a distinguished face F*(py) € F(py), such that the image of every vertex u € V(J), and the
image of every edge e € E(J) is contained in the boundary of face F*(py) in drawing p;.

We denote a core structure by J = (J, {bu}ueV(J) ,p7, F*(ps)), and we refer to graph J as the core
associated with J. We denote F*(py) = F(ps) \{F*(ps)}, and we refer to the faces in F*(ps) as the
forbidden faces of the drawing p;.

The last two requirements in the above definition impose a certain structure on the core graph .J.
Specifically, there must be a collection W of edge-disjoint cycles, with (Jycyy E(W) = E(J), such
that every pair W, W’ € W of cycles share at most one vertex, which must be a separator vertex for

J (see Figure 28(a)| for an illustration).

Note that, since graph G is subdivided, for every edge e € E(G)\ E(J), at most one endpoint of e may
lie in J. Indeed, assume that e = (u,v). From the definition of subdivided graphs, either degq(u) < 2
or deg(v) < 2 holds. Assume w.l.o.g. that it is the former. If uw € V(J), then graph J contains
at most one edge incident to u, that we denote by e’. But then J \ {€'} is not a connected graph,
contradicting the definition of a core.
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(a) A core J and its drawing ps, with the separator (b) Disc D(J) associated with core J, and its
vertices of J shown in green. The distinguished face boundary (shown in pink).
F*(py) is the infinite face in this drawing.

Figure 28: An illustration of a core J and its disc D(J).

Consider now a core structure J = (J, {bu},ey sy - 275 F*(p)), and specifically the drawing p; of the
graph J on the sphere. We define a disc D(J), that contains the drawing of J in its interior, such
that the boundary of disc D(J) is contained in face F*(ps), and it is a simple closed curve that closely
follows the boundary of F*(py) (see Figure [28(b)]).

Consider some vertex u € V(J), and the tiny u-disc D(u) = D,,(u) in the drawing p;. Since vertex
u lies on the boundary of face F*(ps), we can define disc D(u) so that, for every maximal segment o
on the boundary of D(u) that is contained in F*(py), there is a contiguous curve ¢’ C o of non-zero
length, that is contained in the boundary of the disc D(J) (see Figure [29).

Denote d¢(u) = {et, ... ,egu}, where d,, = deg(u), so that the edges are indexed according to their
ordering in the rotation O, € 3. We can then define a collection {plf, e pgu} of distinct points on
the boundary of the disc D(u), such that the following hold:

e points py,...,py are encountered in this order when traversing the boundary of D(u) in the
direction of the orientation b;

e for every edge e} € E(J), point p! is the unique point on the image of e} in p; lying on the
boundary of D(u); and

e if a point p! lies in the interior of face F*(ps), then it lies on the boundary of the disc D(J).
For all 1 <1 <d,, we view point p}' as representing the edge e;'. There is one more property that we
require from a core structure.

Definition 9.3 (Valid Core Structure) We say that a core structure J = (J,{bu},cy (), ps: F*(p1))
is valid if, for every vertex uw € V(J), for every edge e} € dc(u) \ E(J), the corresponding point p
lies in the interior of face F*(py) (and hence on the boundary of the disc D(J)).

In the remainder of this section, whenever we use the term “core structure”, we assume that this core
structure is valid.
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Figure 29: Ilustration of disc D(u) for a core that contains u. Disc D(u) is shown in gray, and disc
D(J) is shown in pink. Note that both discs share portions of their boundaries that are contained in
face F*(py) — the infinite face in the current drawing. Edges of J incident to u are shown in blue, and
all other edges that are incident to u are shown in brown.

Ordering O(J) of the Edges of i (J). Consider a core structure J = (J, {bu},ev (s -7 F*(p1)),
the drawing p; of J, and its corresponding disc D(J). Recall that, for every vertex u € V(J) and
every edge e}’ € 6g(J), we have defined a point p* on the boundary of the disc D(J) representing the
edge ef. Recall that each edge e € dg(J) has exactly one endpoint in J. We define a circular oriented
ordering O(J) of the edges of d;(J) to be the circular order in which the points p}* corresponding to
the edges of dg(J) are encountered, as we traverse the boundary of the disc D(J) in the clock-wise
direction.

9.1.2 Drawings of Graphs

Next, we define a valid drawing of a graph G with respect to a core structure J.

Definition 9.4 (A J-Valid Solution) Let G be a subgraph of G, let I = (G, X) be the subinstance
of I defined by G, and let J = (J, {bU}UGV(J) o7, F*(py)) be a core structure for I. A solution ¢
of instance I is J-valid if we can define a disc D'(J) that contains the images of all vertices and
edges of the core J in its interior, and the image of the core J in ¢ is identical to py (including the
orientation), with disc D'(J) in ¢ playing the role of the disc D(J) in py. We sometimes refer to a
J-valid solution to instance I as a J-valid drawing of graph G.

Abusing the notation, we will not distinguish between disc D(J) in p; and disc D'(J) in ¢, denoting
both discs by D(J).

Consider now some solution ¢ to instance I, that is J-valid, with respect to some core structure 7.
The image of graph J in ¢ partitions the sphere into regions, each of which corresponds to a unique
face of F(ps). We do not distinguish between these regions and faces of F(py), so we view F(py) as
a collection of regions in the drawing ¢ of G.

Note that the edges of J may participate in crossings in ¢, but no two edges of J may cross each
other. Consider now a crossing (e, €’), in drawing ¢. We say that it is a dirty crossing if exactly one
of the two edges e, ¢’ lies in E(J). We denote by x4 () the set of all dirty crossings of drawing ¢.
We say that an edge e € E(G) \ E(J) is dirty in ¢ if it participates in some dirty crossing of ¢.
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Next, we define special types of J-valid drawings, called clean and semi-clean drawings.

Definition 9.5 (Clean and Semi-Clean Drawings) Let G be a subgraph of G, let I = (G, %) be
the subinstance of I defined by G, let J = (S Abutuev sy pa, F(ps)) be a core structure for I, and
let ¢ be a solution to instance I. We say that ¢ is a semi-clean solution to instance I, or a semi-clean
drawing of G, with respect to J, if it is a J -valid drawing, and, additionally, the image of every vertex
of V(G)\ V(J) lies outside of the disc D(J) (so in particular it must lie in the interior of the region
F*(ps) € Fps))-

If, additionally, the image of every edge of E(G) \ E(J) is entirely contained in region F*(py), then
we say that @ is a clean solution to I with respect to J, or that it is a J-clean solution.

Notice that, from the definition, if ¢ is a clean solution to instance I with respect to core structure
J, then the edges of J may not participate in any crossings in .

Drawings of Subgraphs and Compatible Drawings. Notice that, if G’ is a subgraph of G that
contains J, then a core structure J for instance I = (G, X) remains a valid core structure for the
subinstance I’ = (G’,%’) of I defined by G’. Therefore, J-valid drawings are well-defined for every
subgraph G’ C G.

Assume now that we are given a J-valid solution ¢ to instance I, and a subinstance I’ = (G',Y') of
I that is defined as above. Intuitively, we will often obtain a J-valid solution ¢’ to instance I’ by
slightly modifying the solution ¢ to instance I. We will, however, restrict the types of modifications
that we allow. In particular we do now allow adding any new images of edges (or their segments), or
new images of vertices to the forbidden regions in F*(ps). We now define these restrictions formally.

Definition 9.6 (Compatible Drawings.) Let G be a subgraph of G, let I = (G, %) be the subin-
stance of I defined by G, let J = (J, {butuev(sys P, F*(ps)) be a core structure for I, and let ¢ be
a J-valid solution to instance I. Let G' be a subgraph of G with J C G', and let I' = (G', %) be
the subinstance of I defined by G'. Finally, let ¢’ be a J-valid solution to instance I'. We say that
drawing ¢’ of G' is compatible with drawing ¢ of G with respect to J, if the following hold:

e the image of the core J and the correpsonding disc D(J) in ¢’ are identical to those in p;

e if a point p is an inner point of an image of an edge in ', then it is an inner point of an image
of an edge in p;

e if a point p is a crossing point between a pair of edges in @', then it is a crossing point between
a pair of edges in p;

e if a point p is an image of a vertex v in @', then either (i) point p is an image of vertex v in @;
or (ii) vertex v has degree 2 in G', and point p is an inner point on an image of an edge in @;

e if the image of a vertex v € V(G') lies outside the region F*(py) in ¢', then ¢'(v) = ¢(v); and
e if o is a mazimal segment of an image of an edge e € E(G') in ¢’ that is internally disjoint from

region F*(py), then o C p(e).

Note that, if we obtain drawing ¢’ from drawing , then the only changes that are allowed outside of
region F*(py) is the deletion of images of vertices or (segments of) images of edges. In other words,

(' (G \ F*(ps)) € ((G)\ F*(p.)).
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9.1.3 A J-Contracted Instance

Suppose we are given a subgraph G of G, together with a core structure J = (J, {butuev sy pa, F* (1))

for the subinstance I of I defined by G. We now define a J-contracted subinstance I = (G,3) of
instance I. Graph G is obtained from graph G, by contracting the vertices of the core J into a
supernode v;. In order to define the rotation system 3, for every vertex u € V(G) \ {vs}, we let the
rotation O, remain the same as in ¥, and for the supernode v, we set the corresponding rotation
O,, € ¥’ to be the ordering O(J) of the edges of d;(vs) = da(J) that we have defined above (recall
that this is the order in which points p}* appear on the boundary of disc D(J), for all u € V(J) and
1<i<dy).

Throughout our algorithm, we will consider subgraphs G C G. Each such subgraph will always be
associated with a core structure J = (J, {bu},ev (s Ps: F*(p.s)) for the subinstance I of I defined by

G. The J-contracted subgraph of I will always be denoted by I = (G, i) We denote by m(I) = |E(C¥)|
— the number of edges in the J-contracted subinstance of I. We need the following simple observation.

Observation 9.7 There is an efficient algorithm, whose input consists of a subgraph G of G, a core
structure J = (J,{bu}t,ev ()P0, F*(ps)) for the subinstance I = (G,X) of T defined by G, and a
J-clean solution ¢ to instance I. The output of the algorithm is a solution ¢ to the corresponding
J -contracted instance I = (G, %), with cr(¢) = cr(y).

Proof: Consider the solution ¢ to instance I. From the definition of a clean solution, there is a disc
D(J) that contains the drawing of J in ¢, which is in turn identical to drawing p;. For every vertex
u € V(G)\V(J), its image appears outside the disc D(J) in ¢. We are also guaranteed that, for every
edge e € E(G) \ E(J), its drawing ¢(e) is contained in region F*(py).

By slightly manipulating the boundary of the disc D(J), we can ensure that, for every edge e €
E(G) \ E(J), if e is not incident to any vertex of J, then ¢(e) does not intersect disc D(J), and
otherwise, p(e) N D(J) is a contiguous curve.

For every edge e € dg(J), denote by p. the unique intersection point between the boundary of D(J)
and the curve ¢(e). Since the drawing ¢ of G is J-valid, the circular ordering of the points of
{pe | € € 6c:(J)} on the boundary of disc D(J) is precisely O(J). For each edge e € dg(J), we erase
the segment of p(e) that is contained in D(.J). We then contract the disc D(J) into a single point, that
becomes the image of the supernode v;. We have now obtained a valid solution ¢ to the J-contracted
instance I, with cr(@) = cr(). O

We note that the converse of Observation is also true: given a solution ¢ to the [J-contracted
instance I, we can efficiently construct a clean solution ¢ to instance I, with cr(p) = cr(p), as follows.
First, we expand the image of the supernode v; so it becomes a disc, that we denote by D(J). We
then plant the drawing p; of the core J inside the disc. Note that the circular ordering in which
the edges of §4(vs) enter the boundary of the disc D(J) from the outside is identical to the circular
ordering in which the edges of dq(J) = d4(vs) enter the boundary of the disc D(J) from the inside,
and their orientations match. Therefore, we can “glue” the corresponding curves to obtain, for each
edge e € 0g(J), a valid drawing connecting the images of its endpoints.

9.1.4 Core Enhancement and Promising Sets of Paths

Our main subroutine, called ProcSplit, starts with a subinstance I = (G,3) of I that is defined by
a subgraph G of G, and a core structure J = (J, {bu}uev sy pa, F*(ps)) for it. We “enhance” the
corresponding core J by adding either one cycle, or one path to it, that we refer to as core enhancenemdt.
We also decompose instance I = (G, X) into two subinstances, I; = (G1,X1) and I» = (G2, X2), where
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G1,G2 C G. Using the enhancement for the core structure [J, we then construct two new core
structures: core structure J; for instance I7, and core structure J> for instance Is.
In order to avoid cumbersome notation, we will sometimes refer to simple cycles as paths. Given a
simple cycle W, we will designate one of the vertices v € V(W) to be the “endpoint” of the cycle.
When referring to two endpoints of W, we will think of both endpoints as being v.

We start by defining the notions of core enhancement and core enhancement structure.

Definition 9.8 (Core Enhancement) Given a subgraph G of G, and a core structure

T = (JAbu}tyev(sy>ps, F*(ps)) for the subinstance I = (G,X) of I defined by G, an enhancement of
the core structure J is a simple path P C G (that may be a simple cycle), whose both endpoints belong
to J, such that P is internally disjoint from J (see Figure @)

(a) When P is a simple path. (b) When P is a simple cycle.

Figure 30: An illustration of an enhancement of a core structure J. The core J is shown in blue, and
the enhancement in orange.

For simplicity of notation, we will sometimes refer to an enhancement of a core structure J as an
enhancement of the corresponding core J, or as a J-enhancement. Next, we define a core enhancement
structure.

Definition 9.9 (Core Enhancement Structure) Given a subgraph G of G, and a core structure
J = (J, {bu}ueV(J) 01, F*(py)) for the subinstance I = (G, %) of I defined by G, a J-enhancement
structure consists of:

e a J-enhancement P;

e an orientation b, € {—1,1} for every vertex u € V(P)\ V(J); and

e a drawing p' of the graph J' = JUP with no crossings, such that p' is consistent with the rotation
system X and the orientations by, for all vertices uw € V(J') (here, the orientations of vertices of
J are determined by J ), and moreover, p' is a clean drawing of J' with respect to J .

Intuitively, in the drawing p’ of graph J’, the drawing of graph .J should be identical to p, and the path
P should be drawn inside the region F*(ps). For convenience of notation, we denote a J-enhancement

by A = (P, {bU}uEV(J’) ,p’), where J' = JUP. We will always assume that, for every vertex u € V(J)
its orientation b, in A is identical to its orientation in J.
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Promising Set of Paths. We now define promising sets of paths, that will be used in order to
compute an enhancement of a given core structure.

Definition 9.10 (Promising Set of Paths) Let G be a subgraph of G, let I = (G,X) be the subin-
stance of I defined by G, let J = (J, {outuev iy P, F*(p1)) be a core structure for I, and let P be
a collection of simple edge-disjoint paths in G, that are internally disjoint from J. We say that P is
a promising set of paths, if there is a partition (E1, Es) of the edges of 0q(J), such that the edges of
Ey appear consecutively in the ordering O(J), and every path in P has an edge of Eq as its first edge,
and an edge of Eo as its last edge.

We note that some paths in a promising path set may be cycles. We show an efficient algorithm to
compute a large set of promising paths for an instance I whose corresponding contracted instance is
wide. The proof of the following claim is standard, and it is deferred to Section of Appendix.

Claim 9.11 There is an efficient algorithm that takes as input a subgraph G C G and a core structure
J = (J, {bU}uEV(J) .p1, F*(py)) for the subinstance I = (G,X) of I defined by graph G, such that the
following properties hold:

o for every vertex v € V(G) with degg(v) > %, there is a collection Q(v) of at least 27;70(01)

edge-disjoint paths in G connecting v to the vertices of J; and

e the J-contracted subinstance I of I is wide.

The algorithm computes a promising set of paths for I and J, of cardinality {T}QJ

9.1.5 Splitting a Core Structure and an Instance via an Enhancement Structure

Splitting the Core Structure. Suppose we are given a subgraph G of G, a core structure J =
(J, {butyev sy > ps, F*(ps)) for the subinstance I = (G, X) of I defined by G, and an enhancement

structure A = (P, {bU}uEV( 7 0 ) for J, where J' = J U P. We now show an efficient algorithm
that, given J and A, splits the core structure J into two new core structures, J1 and J2, using the
enhancement structure A. We refer to (J1, J2) as a split of the core structure [J via the enhancement
structure A.

We let p’ be the drawing of the graph J’ on the sphere given by the enhancement structure A. Recall
that there is a disc D(J) that contains the image of J in p’, whose drawing in D(J) is identical to
py. Additionally, all vertices and edges of P must be drawn in region F*(ps) of p’. Therefore, in the
drawing p’ of J’, there are two faces incident to the image of the path P, that we denote by F; and
F5, respectively, and Fy; U Fy = F*(py) holds. We let J; C J' be the graph containing all vertices and
edges, whose images lie on the boundary of face F} in p/, and we define graph Jo C J’ similarly for
face Fy.

We now define the core structure [J;, whose corresponding core graph is J;. For every vertex u € V(.J1),
its orientation b, is the same as in A. The drawing p, of J; is defined to be the drawing of .J; induced
by the drawing p’ of J’. Note that F} remains a face in the drawing ps,. We then let F*(py,) = F}.
The definition of the core structure Js is symmetric, except that we use core J, instead of J; and face
F instead of Fy (see Figure |31] for an illustration). This completes the description of the algorithm
for computing a split (J1, J2) of the core structure 7 via the enhancement structure A.

Next, we define a split of an instance I along a core enhancement structure A.

Definition 9.12 (Splitting an Instance along an Enhancement Structure) Let G be a sub-
graph of G, let J = (J, {butyev (> P, F*(ps)) be a core structure for the subinstance I = (G,X) of 1
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L > L >

(a) Before the split. Core J is (b) Face F*(pys) is split into faces (c) New cores Ji (top) and Jo (bot-
shown in blue and face F*(ps) is Fi and F> by the image of the en- tom).
shown in gray. hancement path P (shown in or-

ange).

Figure 31: Splitting a core structure via an enhancement structure.

defined by G, and let A = (P, {butuev ,p’) be an enhancement structure for J, where J = JUP.

Let (J1,J2) be the split of J via the enhancement structure A, and denote by Ji,Ja the cores of Ji
and [Ja, respectively. A split of instance I along A is a pair Iy = (G1,%1), Iy = (G2, X2) of instances
of MCNwRS, for which the following hold.

e V(G1)UV(Gy) =V(G) and E(G1) U E(G2) C E(G);
o cvery vertexr v € V(G1) NV (Ga) belongs to V(J1) NV (J2);

e instance I is the subinstance of I defined by G1, and instance I is the subinstance of I defined
by Go; and

e 71 s a valid core structure for I, and Jo is a valid core structure for Io.

Notice that some edges of graph G may not lie in E(G1) U E(G2). We informally refer to such edges
as deleted edges, and we will sometimes denote the set of such deleted edges by E9¢!. Typically we will
ensure that |EY| is quite small.

The following crucial observation shows that clean solutions to instances I; and I can be combined
to obtain a clean solution to instance I. The proof is deferred to Section [H.2] of Appendix.

Observation 9.13 There is an efficient algorithm, whose input consists of a subgraph G of G, a core
structure J for the subinstance I = (G,X) of I defined by G, a J-enhancement structure A, and a split
(I1,I2) of I along A, together with a clean solution 1 to instance Iy with respect to Ji, and a clean
solution @y to instance Iy with respect to Jo, where (Ji,J2) is the split of J along A. The algorithm
computes a clean solution ¢ to instance I with respect to J, with cr(p) < cr(p1)+cr(p2)+|EY - |B(G),
where B4 = E(G) \ (E(G1) U E(G5)).

9.1.6 Auxiliary Claim

We will use the following simple auxiliary claim several times. The proof is similar to the proof of
Claim 9.9 in [CMT20] and is deferred to Section of Appendix.
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Claim 9.14 Let I = (G,X) be an instance of MCNwRS, and let P = {Pi,..., Pi12} be a collection
of directed simple edge-disjoint paths in G, that are non-transversal with respect to X, For all 1 < i <
4k + 2, let e; be the first edge on path P;. Assume that there are two distinct vertices u,v € V(G),
such that all paths in P originate at u and terminate at v, and assume further that edges ey, ..., e4p42
appear in this order in the rotation O, € 3. Lastly, let ¢ be any solution to instance I, such that the
number of crossings (e, €'), in @ with e or €’ lying in E(Py) is at most k, and assume that the same is
true for E(Psky1). Then ¢ does not contain a crossing between an edge of Py and an edge of Poyy1.

9.2 Splitting a Subinstance: Procedure ProcSplit

In this subsection we describe the main subroutine that we use in our algorithm, called ProcSplit. The
goal of the subroutine is to split a given subinstance of the input instance I into two. In order to
simplify the statement of the main result of this subsection, we start by defining a valid input and a
valid output of the subroutine. Recall that I = (G, ) is the instance of MCNwRS that was obtained
by subdividing the instance that serves as input to Theorem

Valid Input for ProcSplit. A valid input to Procedure ProcSplit consists of a subgraph G of G, a
core structure J = (J, {bu},ev sy s 7, F*(ps)) for the subinstance I = (G, %) of I defined by G, and

a promising set P of paths for I and J of cardinality {'E( )‘J for some constant b, such that there

exists a solution ¢ to instance I that is J-valid, with cr(p) < % and x4 (p)| < %.

We emphasize that the solution ¢ to instance I is not given as part of input and it is not known to
the algorithm.

Valid Output for ProcSpIit A valid output for ProcSplit consists of a J-enhancement structure A,
and a split (I; = (G1,%1),I2 = (Ga,%2)) of I along A. Let P* be the enhancement path of A, and
let (J1,J2) be the split of the core structure J along A. Denote E%!(I) = E(G) \ (E(G1) U E(G2)).
Let G' = G\ E¥\(I), and let I’ = (G',X’) be the subinstance of I defined by graph G’. We require
that the following properties hold:

P1. |E%e(T)] < 20l )y diny (o)) where m = |E(G)];

P2. [B(GY)|, |E(Ga)| < |B(G)] - 55 and

P3. there is a J-valid solution ¢’ for instance I’ that has the following properties:

e drawing ¢’ is compatible with ¢;

e the images of the edges of E(J)U E(P*) do not cross each other in ¢';

o cr(y’) < cr(e);

e the number of crossings in which the edges of P* participate in ¢’ is at most w,

e if we let 1 be the solution to instance I; induced by ¢’, then drawing ¢y is J;-valid, and
similarly, if we let @9 be the solution to instance Iy induced by ¢’, then drawing s is
Jo-valid.

The main theorem of this subsection summarizes the properties of Procedure ProcSplit.

Theorem 9.15 There is an efficient mndomz'zed algom'thm that, given a valid input (G,J,P) to
procedure ProcSplit, with probability at least 1 — uwb computes a valid output for the procedure.
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We will refer to the algorithm from Theorem [0.15] as ProcSplit. The remainder of this subsection
is dedicated to the proof of Theorem Throughout the proof, we denote by I = (G, %) the
subinstance of I defined by graph G, by J = (J, {bu}ueV(J) ,p1, F*(py)) the given core structure
for I, and by m = |E(G)|. The algorithm consists of two steps. In the first step, we compute an
enhancement P* of the core structure J and analyze its properties. In the second step, we complete
the construction of the enhancement structure A and of the split (11, I2) of instance I along A. We
now describe each of the steps in turn. In order to simplify the exposition, throughout this subsection,
we use “enhancement” and “enhancement structure” when we refer to an enhancement of 7 and
enhancement structure for 7. For simplicity of notation, we also denote the drawing p; of the core J
by p, and the face F*(py) of this drawing by F™*.

9.2.1 Step 1: Computing an Enhancement

We start by discarding from P all paths that contain more than 32u® edges. Since the paths in P are
edge-disjoint, the number of the discarded path is bounded by ﬁ, and so |P| > 1127"; continues to
hold.

In order to compute an enhancement, we slightly modify the promising set P of paths, to ensure that,
for every pair P, P’ € P of distinct paths, for every vertex v € (V(P)NV(P"))\ V(J), the intersection
of P and P’ at vertex v is non-transversal. Throughout, we denote by (FE1, E3) the partition of the
edges of d¢(J), with the edges of F; appearing consecutively in the ordering O(J), suh that every
path P € P has an edge of F; as its first edge and an edge of Fs as its last edge.

In order to modify the set P of paths, we first subdivide every edge e € dg(J) with a new vertex t,
denoting T} = {te |e € E1} and Ty = {t. | e € E2}. Let H be a new graph obtained from G after
we delete the vertices and the edges of J from it, contract all vertices of 7T} into a new vertex s, and
contract all vertices of Th into a new vertex t. We define a rotation system X for graph H in a natural
way: For every vertex v € V(H)\ {s,t}, its rotation @, in ¥ remains the same as in ¥. For vertex s
its rotation O, € X is the circular ordering of the edges of E; induced by the ordering O(J). Similarly,
rotation Oy € ¥ is the circular ordering of the edges of Fy induced by the ordering Oo(J).

The set P of paths in graph G defines a set Q of |P| edge-disjoint paths in H that connect s to ¢, and
are internally disjoint from s and ¢. We apply the algorithm from Lemma [£.7) to graph H and the set
Q of paths to obtain another set Q' of |P| simple edge-disjoint paths in H, where every path connects
s to t and is internally disjoint from both s and ¢ as before, but now the paths are non-transversal
with respect to . Lastly, path set Q' naturally defines a collection P* of |P| simple edge-disjoint
paths in graph G, where every path in P* contains an edge of F as its first edge, and an edge of E»
as its last edge, and is internally disjoint from J. Moreover, for every vertex u € V(G) \ V(J), for
every pair P, P’ € P* of paths that contain u, the intersection of P and P’ at u is non-transversal.
Notice that P* remains a promising set of paths of cardinality |P|. We view the paths in P* as being

directed from the edges of E; towards the edges of Es. We denote by k = |P*|, so k = |P| > 1122})

Let Ef C E; be the subset of edges that belong to the paths of P*. We denote Ef = {ey,...,ex},
where the edges are indexed so that eq,..., e, appear in the order of their indices in the ordering
O(J). For all 1 < j <k, we denote by P; € P* the unique path originating at the edge e;. We select
an index |k/3] < j* < [2k/3] uniformly at random, and we let P* = Pj«. Notice that P* is a valid
enhancement for the core structure 7, and it is either a simple path or a simple cycle. We say that
path P* is chosen from set P*. Notice that the probability that a path of P* is chosen to be the

) 16.b b
enhancement path is at most % < 2160 < 1607
k 15m m

We will now define a number of bad events, and we will show that the probability that either of these
events happens is low.
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Good Paths and Bad Event £&. We need the following definition.

Definition 9.16 (Good path) We say that a path P € P* is good if the following hold:

126
o the number of crossings in which the edges of P participate in ¢ is at most %; and

e there are no crossings in o between edges of P and edges of J.
A path that is not good is called a bad path.

We now bound the number of bad paths in P*.

Observation 9.17 The number of bad paths in P* is at most 3{31,.

Proof: Since the paths in P* are edge-disjoint, and every crossing involves two edges, the number of

126
paths P € P* such that there are more than M crossings in ¢ in which the edges of P participate,
is at most u12b Additionally, we are guaranteed that Ixd ()] < 60b Therefore, the number of paths

P € P*, for which there is a crossing between an edge of P and an edge of J, is bounded by ﬁ
Overall, the number of bad paths in P* is bounded by 21”21 + GOb < j@b 0

We say that bad event £ happens if path P* is a bad path Smce the number of bad paths is bounded

by 2 m, and a path of P* is chosen to be the enhancement path with probability at most 1% we
1mmedlately get the following observation.

Claim 9.18 Pr [&] < 64/u!1.

b
Heavy and Light Vertices, and Bad Event &. We use a parameter h = %. We say

that a vertex z € V(G) is heavy if at least h paths of P* contain x; otherwise, we say that x is light.
Recall that in order to define an enhancement structure using the enhancement P*, we need to define
an orientation for every inner vertex of P*. Intuitively, we would like this orientation to be consistent
with that in the drawing ¢ (which is not known to us). If x is a heavy vertex lying on P*, then
computing such an orientation is not difficult, as we can exploit the paths of P* containing x to do
so. But if x is a light vertex, we do not have enough information in order to determine its orientation
in p. To get around this problem, we will simply delete all edges incident to the light vertices of P*,
except for the edges of P* U J, and then let the orientation of each such vertex be arbitrary. We show
below that with high probability, the number of edges that we delete is relatively small.

Specifically, we denote by E’ the set of all edges e, such that e is incident to some light vertex

x € V(P*), and e ¢ E(J) U E(P*). We say that bad event & happens if |E’| > )7 We bound
the probability of Event & in the next simple claim.

Claim 9.19 Pr [&] < 21/uM10.

Proof: Consider some light vertex € V(G). Since x lies on fewer than h = %W paths of P*,

and each such path is chosen to the enhancement with probability at most 1% the probability that
26b 13 27b
x lies in V(P*) is at most % . 167“ < L™
m
Consider now some edge e = (z,y) € E(G). Edge e may lie in E’ only if z is a light vertex lying in
14 27b
V(P*), or the same is true for y. Therefore, the probability that e € E’ is at most %, and
4 27b 38b
E[|F] < %. From Markov’s inequality, Pr [|E’\ > % < “21114,7 i
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Unlucky Paths and Bad Event &. If Event £ does not happen, then we are guaranteed that,
in drawing ¢, the edges lying on path P* do not cross the edges of J. However, it is still possible that
there are crossings between edges that lie on path P* (that is, the image of path P* crosses itself).
Intuitively, when the image of path P* crosses itself, then we obtain a loop. If we could show that all
vertices lying on this loop are light vertices, then we can “repair” the drawing by straightening the
loop. This is since we delete all edges incident to the light vertices lying on P*, except for the edges
of E(P*)U E(J). Unfortunately, it may happen that some of the vertices lying on these loops are
heavy vertices. This may only happen in some limited circumstances, in which case we say that path
P* is unlucky. We now define the notion of unlucky paths, and show that the probability that P* is
unlucky is small.

Definition 9.20 (Unlucky Paths) Let x € V(G)\ V(J) be a vertex, and let P € P* be a good path
that contains x. Let e, e’ be the two edges of P that are incident to x. Let Fy(x) C dq(x) be the set of
edges é € 0c(x), such that é lies between e and €' in the rotation O, € X (in clock-wise orientation),
and é lies on some good path of P*. Let Eo(z) C dg(z) be the set of edges é € dq(x), such that é lies

between €' and e in the rotation O, € ¥ (in clock-wise orientation), and é lies on some good path of P*
13b

(see Figure . We say that path P is unlucky with respect to vertex x if either |E'1(x)| < %

or |Ey(z)] < % holds. We say that a path P € P* is an unlucky path if there is at least one
heavy vertex x € V(G) \ V(J), such that P is unlucky with respect to x.

.

Figure 32: Definition of the sets Ej(x) and Ey(z) of edges. Path P and its edges e, e’ are shown in
red. Edges of §(x) are depicted according to the circular order O, € X, and the set 6(z) \ {e, e’} is
split into two subsets (green and blue). Set E, (z) contains every green edge that belongs to some
good path of P*, and set Es (z) contains every blue edge that belongs to some good path of P*.

We will now show that the total number of good paths in P* that are unlucky is small, and we will
conclude that the probability that an unlucky path was chosen to be the enhancement path P* is
also small. The proof of the following claim is somewhat technical and is defered to Section of
Appendix.

Claim 9.21 For every vertex x € V(G)\ V(J), the total number of good paths in P* that are unlucky

. 13b
with respect to x is at most %.
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We say that bad event £5 happens if P* is an unlucky path.

Claim 9.22 Pr [&3] < 64/p!%.

Proof: Recall that a heavy vertex must have degree at least h in G. Therefore, the total number of
heavy vertices is at most 2. From Claim for every heavy vertex = € V(G) \ V(J), there are

130 . . .;,26b
at most % paths in P* that are good and unlucky for z. Since h = %, the total

number of good paths in P* that are unlucky with respect to some heavy vertex is at most:

2m  512cr(yp) - put3t < 2m
h m = plsh’

Since the probability that a given path P € P* is selected is at most %, the probability that an

unlucky path is selected is at most :}%b. O

Recall that we have denoted by E’ the set of all edges e, such that e is incident to some light vertex
x € V(P*), and e ¢ E(J) U E(P*). Denote G' = G\ E’, and let ¥/ be the rotation system for graph
G’ induced by 3. Denote I’ = (G',Y’), and denote J' = J U P*. Solution ¢ to instance I naturally
defines a soluton ¢’ to instance I’, that is compatible with ¢, with cr(¢) < cr(¢’). Moreover, if Event
&1 did not happen, then there are no crossings in this drawing between the edges of E(P*) and the
edges of E(J). However, it is possible that this drawing contains crossings between pairs of edges in
E(P*). In the next claim we show that, if events £ and &3 did not happen, then drawing ¢ can be
modified to obtain a solution ¢’ to instance I’ that is compatible with ¢, in which the edges of J' do
not cross each other. The proof of the following claim is deferred to Section of Appendix.

Claim 9.23 Assume that neither of the events £ and Es happened. Then there is a solution ¢ to
instance I' = (G', ') that is compatible with o, with cr(¢’) < cr(y), such that the edges of E(J') do
not cross each other in ¢'. Moreover, if (e,€’), is a crossing in drawing ¢', then there is a crossing
between edges e and €' at point p in drawing .

We emphasize that drawing ¢’ is derived from drawing ¢ and neither are known to our algorithm.
From now on, we fix the solution ¢’ to instance I’ = (G', ¥’) given by Claim

Terrible Vertices and Bad Event &. For a vertex x € V(G), let N(x) denote the number of
paths in P* containing . We also denote by NP2d(z) the number of bad paths in P* containing ,
and by N&°°d(z) the number of good paths in P* containing =. Next, we define the notion of a terrible
vertex.

Definition 9.24 (Terrible Vertex) A vertex x € V(G) is terrible if it is a heavy vertex, and
Nbad(g) > Neood(z) /64,

We say that a bad event £4 happens if any vertex of P* is a terrible vertex. We bound the probability
of Event &4 in the following claim.
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Claim 9.25 Pr [&] < 105 -

Proof: Consider some terrible vertex z € V(G). Let P’ C P* be the set of all bad paths in P*
containing x, and let P’ C P* be the set of all good paths in P* containing x. From the definition of
a terrible vertex, |P”| < 64|P’|. Therefore, we can define a mapping f, : P’ — P’, that maps every
path in P” to some path in P’, such that, for every path P € P’, at most 64 paths of P” are mapped
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to P. If, for a pair P” € P"”, P’ € P’ of paths, f,(P") = P’, then we say that path P’ tags path P".
Every bad path also tags itself.

Notice that, if path P € P* is a bad path, then the total number of paths that it may tag is bounded
by 64|V (P)| < 2'2u° (as every path in P* contains at most 32u° 4 2 vertices). Every path of P* that
contains a terrible vertex is now tagged. Since, from Observation [9.17} the number of bad paths in
P* is at most 12b, we conclude that the total number of paths in P* that contain a terrible vertex is

bounded by 2. Lastly, since the probability that a given path P € P* is selected is at most 16”
o
the probability that a path containing a terrible vertex is selected is bounded by:
214m 16,U,b 218
L 110 T & (100
0

Bad Event £. Let £ be the bad event that either of the events &1, &9, &3, 4 happens. From the
Union Bound and Claims [9.18] [9.19] [0.22( and [9.25, Pr [£] < %;L

9.2.2 Step 2: Computing the Enhancement Structure and the Split

In this step, we compute an orientation b, for every vertex u € V/(P*) \ V(J), that is identical to the
orientation of u in drawing ¢’ (though drawing ¢’ itself is not known to the algorithm). We will then
complete the construction of the enhancement structure A, and compute the split of instance I along
A. Throughout, we denote J' = J U P*. Let p’ be the drawing of graph J’ that is induced by drawing
¢ of G'. If Event £ did not happen, then drawing p’ has no crossings, and the image of path P* is
drawn in the region F*. Let p; be the unique drawing of graph J’ that has the following properties:

drawing pj: contains no crossings;

drawing pjs obeys the rotation system X, and, for every vertex u € V(J), the orientation of u
in py is the orientation b, given by J;

the drawing of graph J induced by pj is precisely p;; and

the image of path P* is contained in region F™.

Note that there is a unique drawing py of J' with the above properties, and it can be computed
efficiently. Moreover, if event £ did not happen, then py = p’ must hold. The image of path P*
partitions the region F* of py into two faces, that we denote by Fy and F>. These two faces define
regions in drawing ¢’ of G’, that we denote by F; and F5, as well.

For every vertex u € V(J'), we consider the tiny u-disc D, (u). For every edge e € d¢c/(u), we denote
by o(e) the segment of ¢(e) that is drawn inside the disc Dy (u). Let E= (UUGV(J,) 5G/(u)) \ E(J").
Recall that, from the definiton of a valid core structure, and since the image of path P* is contained in
region I of ¢/, for every edge e € E, segment a( ) must be contained in region F*. We - partition edge
set F into a set E™ of inner edges and the set E°Ut of outer edges, as follows. Edge set E'" contains all
edges e € E with o(e) contained in region F; of ¢, and E°Ut contains all remaining edges (so for every
edge e € E°" g(e) is contained in F»). Let e; be the first edge of E; in the ordering O(J). We will
assume without loss of generality that e; € E™. We now show an algorithm that correctly computes
the orientation of every vertex u € V(P*)\ V(J) in the drawing ¢/, and the partition (E™, E°Ut) of
the edges of E.
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Before we describe the algorithm, we recall the definition of the oriented circular ordering O(J) of the
edges of 6 (J). In order to define the ordering, we considered the disc D(J) in the drawing ps of J. In
this drawing, the orientation of every vertex u € V(J) is the orientation b, given by the core structure
J. We have defined, for every edge e € dg(J), a point p(e) on the boundary of the disc D(J), and we
let O(J) be the circular ordering of the edges of ¢ (.J), in which the points p(e) corresponding to these
edges appear on the boundary of the disc D(J), as we traverse the boundary of the disc D(J) in the
clock-wise direction. From the definition of a J-valid drawing, the drawing of the core J induced by
¢ is identical to py, including its orientation. Additionally, for every vertex u € V(J), the orientation
of w in ¢’ is the orientation b, given by J.

Computing Vertex Orientations and the Partition (E™, E°t). Consider any vertex u €
V(P*)\ V(J). Let é(u), é¢'(u) be the two edges of P* that are incident to u, where we assume
that é(u) appears before ¢’ (u) on P* (we assume that P* is directed from an edge of F; to an edge
of E). Edges é(u), €'(u) partition the edge set dg(u) \ {é(u),é’'(u)} into two subsets, that we denote
by Fi(u) and Eg( ), each of which appears consecutively in the rotation O, € Y. Note that either
(i) E1(u) € E™ and Ey(u) C E°t holds, or (i) Fa(u) € E™ and Ej(u) € E°t holds. While we do
not know the orientation of vertex u in ¢’, once we fix this orientation, we can efficiently determine
which of the above two conditions holds. Therefore, we can assume w.l.o.g. that, if the orientation of
u in ¢ is 1 then E1(u) € E™ and Ey(u) C E°'t hold (as otherwise we can switch the names E1(u)
and Ea(u)).

We now construct edge sets Ey, Eg, and fix an orientation b, for every vertex u € V(P*)\ V(J). We
then show that Ey = E™, Ey = E°U and that the orientations of all vertices of V(P*)\ V(J) that we
compute are consistent Wlth the drawing ¢’.

Consider the drawing p; of graph J " that we have computed. Using this drawing, we can efficiently
determine, for every edge e € E that is incident to a vertex of J, whether e € E™ or e € E°t holds.
In the former case, we add e to El, and in the latter case we add it to E2 Notice that, for every path
P € P*, the first and the last edges of P are already added to either E1 or Eg, and so far El C Ein
and Ey C E°Ut holds.

Next, we process every inner vertex u on path P*. Consider any such vertex u. If u is a light vertex,
then there are exactly two edges that are incident to u in G’ — the edges of the path P*. We can then
set the orientation b, of u to be arbitrary, and we can trivially assume that this orientaiton is identical
to the orientation of u in ¢'.

Assume now that u is a heavy vertex. In order to establish the orientation of u, we let P(u) contain
all paths P € P*\ {P*} with u € P. We partition the set P(u) of paths into four subsets: set P;(u)
contains all paths P whose first edge lies in El, and the first edge of P that is incident to u lies in
E1(u). Set Py(u) contains all paths P whose first edge lies in Es, and the first edge of P that is incident
to u lies in Ey(u). Similarly, set P} (u) contains all paths P € P(u) whose first edge lies in E; and the
first edge that is incident to u lies in Ey(u), while set P (u) contains all paths P € P’(u), whose first
edge lies in EY and the first edge that is incident to u lies in Ej(u). We let w(u) = |P1| 4 |Pe|, and
w'(u) = |Pi| + [Ps]. If w(u) > w'(u), then we set b, = 1, add the edges of E1(u) to Ey, and add the
edges of Eg( ) to Es. Otherwise we set b, = —1, add the edges of El( ) to Fs,, and add the edges of
EQ(U) to El.

This completes the algorithm for computing the orientations of the inner vertices of P*, and of the
partition (El,Eg) of the edge set E. We use the following claim to show that both are computed
correctly.

Claim 9.26 Assume that Event £ did not happen. Then for every vertex u € V(P*)\ V(J), the
orientation of u in @' is by.
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Proof: It is now enough to show that, if u € V/(P*)\ V(J) is a heavy vertex, then the orientation of
win ¢’ is b,. We now consider any heavy vertex v € V(P*)\ V(J).

Recall that we denoted N (u) = |P(u)|, and we have denoted by NP*(u) and N&8°°d(x) the total number
of bad and good paths in P(u), respectively. Since we have assumed that bad event & did not happen,
vertex u is not a terrible vertex, that is, NP2 (u) < N8°°d(y)/64. Since N(u) = NP2 (u) + N&ood(y),
we get that NP3 (u) < N(u)/65.

Assume first that the orientation of vertex u in ¢ is 1, so Ey(u) C E™ and Ey(u) C E°t. We claim
that in this case w(u) > w’(u) must hold, and so our algorithm sets b, = 1 correctly. Indeed, assume
otherwise. Then w'(u) > N(u)/2. Let Q denote the set of all good paths in Pj(u) U Ps(u). Then
1Q| > w'(u) — NP2 (u) > N(u)/2— N(u)/65 > N(u)/4 > h/4, since u is a heavy vertex. We now show
that, for every path Q € Q, there must be a crossing between an edge of QQ and an edge of P* in .

Indeed, consider any path Q € Q. Since Q € P} (u) U Ph(u), cither the first edge of @ lies in E™ and
the last edge of @ lies in E°Ut_ or the opposite is true. Therefore, the image of the path @) must cross
the boundary of the region Fj. Since path @ is a good path, and it does not contain vertices of J as
inner vertices, no inner point of the image of @ in ¢’ may belong to the image of J in ¢’. Since, for
every pair P, P" € P* of paths, and for every vertex v € (V(P)NV(P’))\ V(J), the intersection of P
and P’ at v is non-transversal, there must be a crossing between an edge of @ and an edge of P* in
¢©'. But then the edges of P* participate in at least % > %@'“2% crossings in ¢’, and hence in .

However, since we have assumed that bad event £ did not happen, P* is a good path, and so its edges

120
may participate in at most % crossings in ¢, a contradiction. Therefore, when the orientation

of w in ¢’ is 1, our algorithm correctly sets b, = 1.

In the case where the orientation of u in ¢’ is —1, the analysis is symmetric. In this case, we consider
the set Q" C P1(u) UP>(u) containing all good paths. For each such path P € Q'; the image of P in ¢
must cross the image of P*. If we assume that w(u) > w’(u) in this case, then we reach a contradiction
using the same argument as before. Therefore, w(u) < w’(u) must hold, and our algorithm sets b, = 1
correctly. O

We have now obtained an enhancement structure A = (P*, {bu}ue\/( g+ P J). For every vertex u €
V(J"), if u € V(J), then its orientaiton b, remains the same as in J, and otherwise we let b, be the
orientation that we have computed above. From the above discussion, if Event £ did not happen, then
for every vertex u € V(J') the orientation b, is identical to its orientation in ¢’, and p is the drawing
of J" induced by ¢'. We denote by (71, J2) the split of J via the enhancement structure A, where 7,
is the core structure associated with the face F1. We denote J1 = (J1, {bu}yev(s,)+ P01 F(py)), and
J2 = (J27 {bU}UGV(JQ) 7pJ27F*(pJ2))7 where F*(pfl) = I and F*(sz) = Fh.

Computing the Split. We now construct a split of instance I along A. In order to do so, we
construct a flow network H as follows. We start with H = G/, and then subdivide every edge e € E
with a vertex t., denoting T} = {te e e El} and Tp = {te |e € Eg}. We delete all vertices of J’' and
their adjacent edges from the resulting graph, contract all vertices of T} into a source vertex s, and
contract all vertices of T5 into a destination vertex t. We then compute a minimum s-t cut (4, B) in
the resulting flow network H, and we denote by E” = Ey(A, B). We use the following claim, whose
proof is provided in Section of Appendix, in order to bound the cardinality of E”.

Claim 9.27 If Event £ did not happen, then |E"| < %)'“m + x4 ().

Let B9 = E'" U E”. If bad event £ did not happen, then |E’| < C'(“’Zni'“m, and, from Claim [9.27],
|E"| < %)'“m + [x4"(p)|. Therefore, overall, if bad event £ did not happen, then |E9!| <
Zerllu™ x4 (¢)|. Let G" = G'\ E" = G\ E! let X" be the rotation system for graph G”

m
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induced by ¥, and let I” = (G”,¥") be the resulting instance of MCNwRS. Solution ¢’ to instance I’
then naturally induces a solution to instance I”, that we denote by ¢”. From Claim this solution
is compatible with ¢, and cr(¢”) < cr(¢). Moreover, if Event £ did not happen, then the number of

126
crosings in which the edges of P* participate in ¢” is at most %

E(J) U E(P*) do not cross each other in ¢'.

We are now ready to define a split (I1 = (G1,%1), 2 = (G2, X2)) of instance I along the enhacement
structure A. In order to do so, we define two sets A’, B’ of vertices in graph G’, as follows. We
start with A’ = A\ {s} and B’ = B\ {t}, where (A, B) is the cut that we have computed in graph
H. We then add all vertices of the core J; to A’, and all vertices of the core Jy to B’. We let
G1 = G"[A'] and G2 = G"[B']. The rotation system %; for graph G; and the rotation system X
for graph Go are induced by X. Let I; = (G1,%1) and Is = (G2, %2) be the resulting two instances
of MCNwRS. Tt is immediate to verify that (I1,I2) is a valid split of instance I along A. Note that
E(G1) U E(Gy) = E(G").

Let 1 be the solution to instance I; induced by ¢”, and let 5 be the solution to instance Is induced
by ¢’. From our construction and Claim if bad event £ did not happen, then drawing ¢ of Gy
is Jy1-valid, and drawing oo of G is Jo-valid.

, and the images of edges of

Lastly, we need the following observation, whose proof appears in Section of Appendix.

Observation 9.28 If Event £ did not happen, then |E(G1)|, |E(G2)| < m — %
We conclude that, if bad event £ did not happen, then our algorithm computes a valid output for
Procedure ProcSplit. Since Pr [£] < 2%20/41% this completes the proof of Theorem

9.3 Phase 1 of the Algorithm

In Phase 1, we compute a collection Z of subinstances of the subdivided instance I that almost have
all required properties, except that we will not be able to guarantee that the sum of the optimal
solution costs of the resulting instances is suitably bounded. However, we will ensure that all resulting
instances have a convenient structure, that will be utilized in Phase 2, in order to produce the final
collection of subinstances of I. The algorithm that is used in Phase 1 is summarized in the following
theorem.

Theorem 9.29 There is an efficient randomized algorithm, whose input consists of a wide and well-
connected instance I* = (G*,%%), with m = |E(G*)| > u¢, for some large enough constant ¢'. Let
I =(G,X) be the coresponding subdivided instance. The algorithm either returns FAIL, or computes a
non-empty collection T of subinstances of I, such that, for every instance I = (G,X)eZ, GC G, and
I is the subinstance of I defined by G. Additionally, the algorithm computes, for every instance I € T,
a core structure J(I) for I, such that, if we denote, for every instance I € I, the J(I)-contracted

subinstance of I by I, and let 7= {f | I e Z}, then the following hold:
o for every instance I € L, if the corresponding contracted instance I= (G, f)) s a wide instance,
then |E(G)| < m/p;
o Yieser |E(G)] < 2m; and

A

e there is an efficient algorithm, called AlgCombineDrawings,, that, given a solution ¢(I) to every
instance I € I, computes a solution ¢ to instance I.

Moreover, if OPTenws(I) < m2/uc, then with probability at least (1 — 1/p2%0), all of the following
hold:
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1. the algorithm does not return FAIL;

2. for every instance I € I, there is a solution (1) to I, that is J (I)-valid, with ) ;. cr(¢(I)) <
900

OP Tenurs(1), and e X ((1)| < Tl and

3. if algorithm AlgCombineDrawings, is given as input a solution go(f) to every instance I €1, then
the solution ¢ to instance I that it computes has cost at most: Y ;5 cr(p(1 [))4+OPT cnurs(1)- M8000

If the algorithm from Theorem returns a collection Z of subinstances of I together with a core
structure J(I) for each such sublnstance such that properties (] . hold, then we say that the
algorithm is successful, and otherwise we say that it is unsuccessful Notice that, if OPTan,S(I ) <
m?/uc | then the probability that the algorithm is unsuccessful is bounded by 1/ M200.

The remainder of this subsection is dedicated to the proof of Theorem [0.29] The algorithm repeatedly
applies Procedure ProcSplit to subinstances of the input instance I. Throughout, we set the constant
b used in Procedure ProcSplit to b = 52. We may not always be able to ensure that the input to
Procedure ProcSplit is valid. We will always ensure that the input consists of a graph G C G, a core
structure J = (J, {bu},cv () - P7, F7*(ps)) for the subinstance I of I defined by G, and a promising set

P of paths for I and J of cardlnahty M (G”J But unfortunately we may not be able to ensure that

there exists a solution ¢ to instance I that is J-valid, with cr(y) < %702,‘2 and x4 (p)| < lig(’l’)"
since drawing ¢ is not given explicitly as part of input. If the input to Procedure ProcSplit is not
valid, then the procedure may fail during its execution. In this case, we will assume that the procedure
returned FAIL (we will also say that the procedure fails). It is also possible that the output (A, Iy, I2)
of the procedure is not a valid output. We can verify efficiently that A is a valid enhancement structure
for J, and that (I1, I2) is a valid split of I along A. We can also efficiently verify that Property
holds for the resulting output. If we establish that either of these properties does not hold, then we
will also assume that the procedure returned FAIL, or that it failed. However, it is possible that all
above properties hold for the procedure’s output, but properties or do not. As we are unable to
efficiently verify these latter two properties, we will say in such a case that the procedure did not fail,
but that it was unsuccessful. If the input to procedure ProcSplit is valid, it is still possible that, with
small probability (up to 2'°/u%20), its output is not valid. As before, if A is not a valid enhancement
structure for J, or (I, I2) is not a valid split of I along A, or Property does not hold (which
we can verify efficiently), we will say that the procedure returned FAIL, or that the procedure failed.
Otherwise, if all these properties hold but the output of the procedure is not valid, we will say that
the application of the procedure was unsuccessful. If the procedure returns a valid output, then we
say that its application was successful.

As before, we denote |E(G*)| by m. The algorithm for Phase 1 consists of a number of iterations.
The input to iteration j > 1 consists of a collection Z; of subinstances of instance I, where for every
instance I = (G,X) € Z;, G C G, and I is the subinstance of I defined by G. Additionally, for every
instance I € Z;, we are given a core structure J(I) for /. We will ensure that, with high probability,
the subinstances in Z; satisfy the following properties:

Al. for every instance I = (G,¥) € Z;, either the J(I)-contracted subinstance I = (G, ) of I is
narrow, or |E(G)| Smax{;@m (j—1) 32 }

#53

A2. if we denote by E;jel — E( ) \ (UI @ E)GI then Ede|| < J- OPTcanrrsL(I)-,uGOOo.

9 I

A3. for every instance I € Z;, there exists a solution (1) to instance I that is J(I)-valid, such that
[ i - 80OOPTcnwrs i
Yz, (D) < OPTenuis(D), and Yo peg, ™ (4(1)] < HOemes (D,
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A4. for every instance I = (G,Y) € Z;, whose corresponding J (I)-contracted instance I = (G,¥)
is wide with |E(G)| > m/pu, for every vertex v € V(G) with degg(v) > %, there is a collection

Q(v) of at least % - ]E;’e'| edge-disjoint paths in G connecting v to the vertices of the core J(I)
associated with the core structure J(I);

) the number of edges in the corresponding

A5. if we denote, for every instance I € Z;, by m(/
< 21n; and

J (I)-contracted instance I, then Zlezj m(I)

AG6. there is an efficient algorithm, that, given, for every instance I € Z;, a solution (/) that is clean
with respect to J(I), constructs a solution ¢(I) to instance I, of cost at most Zlezj cr(p(l)) +

j : OPTcnwrs(j) : NGOOO'

Specifically, for all j > 1, the input to iteration j consists of a collection Z; of subinstances of I, where
for every instance I = (G, %), G C G, and I is the subgraph of I defined by G. Additionally, for every
instance I € Z;, we are given a core structure J (I) for I. We denote, for each instance I = (G,X) € I,
the corresponding 7 (I)-contracted instance by I = (G, %), and we denote by m(I) = |E(G)|. We
will guarantee that, if Properties [A]] -—- A6 hold for input Z; to iteration j, then, with probablhty at
least 1 — 400, at the end of the iteration, we obtain a collectlon Z;+1 of subinstances of I, each

of which is defined by a subgraph of G, and, for every instance I € Zj+1, a core structure J(I),
for which Properties [ATHAG| hold. With the remaining probability, the algorithm may either return
FAIL, or produce an output for which some of the properties do not hold. In each of these
two cases, we say that the iteration was unsuccessful. If the input Z; to iteration j does not have
properties then it is possible that the algorithm returns FAIL, or it returns output Z;,; for
which some of the invariants do not hold. In both of these cases, we say that the iteration
was unsuccessful. If the iteration produces output Z;;, for which properties hold, then we say
that it was successful. For all j > 1, we denote by &£; the bad event that iteration j was unsuccessful.
The number of iterations in our algorithm is at most z = 128 ﬂu53]. Note that, from Invariant
for every instance I = (G,X) € I, either the corresponding J(I)-contracted instance I= (G, fl) is
narrow, or |E(G )] < m/u We will ensure that, for all 1 < j < z, if OPTcpus(I) < m2/uc’, then

Pr [5 ]—6’1 A - i— 1] < ﬁ. This will guarantee that, if OPTanrs(f) < mQ/u then with
probability at least 1 — 1/u2%, Properties hold for Z,.

The input to the first iteration is a set Z; of instances, consisting of a single instance I. Since
instance I* is wide, there is at least one vertex v* with degs(v*) > m/u. We define a core structure
J(I) = (J,{bs }uEV .07, F*(py)) associated with instance I as follows. The core J consists of a
single vertex v* and 1ts orientation b, is set to be arbitrary (say 1). Drawing p; is the unique trivial
drawing of J, and face F*(py) is the unique face of this drawing. It is easy to verify that Invariants
hold for Z;. The only invariant that is not immediate is [A4] This invariant follows from the
fact that the input instance I* is wide and well-connected. Therefore, for every vertex u of G with
degs(u) > m/pP, dege. (u) > m/ud also holds, and there is a collection of at least 850 edge-disjoint

paths connecting u to v* in G* and hence in G.

We now describe the execution of iteration j. Consider an instance I = (G,X) € Z;, and its cor-
responding core structure J(I). We say that instance I is inactive if either the J(I)-contracted
subinstance I = (G, %) of I is narrow, or |E(G)| < 1/u. Otherwise, we say that instance I is active.
We denote by IJA the set of all active instances in Z;, and by If the set of all inactive instances. We
start with the set 7,11 containing every instance in ZJI . We also maintain the set Ede'1 of deleted

edges, that is initialized to E}je'. We then process every active instance I € IJA one by one. We now
describe the algorithm for processing one such instance I = (G, X).
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Processing instance I = (G,X) € IJA. Assume that Invariants and hold for Z;. Denote
JU) = (JAbutyev sy, pa, F*(ps)), |E(G)| = m, and |E(G)| = m(I). Since instance I is active,
m(I) > m/p. Since G C G, m < 2m. Therefore, 3, < m(l) < m.

Consider any vertex v € V(G) with degg(v) > ﬁ:ff). Since m(l) > %, we get that degg(v) =
deges(v) > % From Invariant there is a collection Q(v) of at least % - |Efe'| > % -

j‘OPTcnwrs (j) 'MGOOO
m

edge-disjoint paths in GG connecting v to vertices of J. Since j < z = 128 ME’?’L if we
2m (I

T/;L5(O ) .
We apply the algorithm from Claim to instance I and core structure J(I), to obtain a promising

set of paths P, of cardinality mgﬁ)J > M—";QJ, since m(I) > % We use the following claim.

assume that OPTqurs(1) < m2/,ud for a large enough constant ¢, we get that |Q(v)| > % >

Claim 9.30 If OPTcnwrs(f) < m2/,ud for some large enough constant ¢/, and Invariants @ hold
for I;, then (G, J(I),P) is a valid input to Procedure ProcSplit.

Proof: From the invariants it is immediate to verify that J(I) is a valid core structure for the
subinstance I of I defined by G.

Consider the solution ¢(I) to instance I, that is given by Invariant This solution is guaranteed
to be J(I)-valid. It is enough to verify that cr(¢(1)) < MT—SO and |9 (¢ (1))] < %

Recall that Invariant guarantees that > ;7 cr((I')) < OPTenws(I). In particular, cr(y(I)) <

T m m

OPTcnwrs(I) < N—j must hold for a large enough constant ¢. Since m > m(I) > o, we get

that cr(¢(1)) < ugfio as required. Similarly, Invariant guarantees that ZI'te x4 (¢ (1)] <
20 Tens(D) 1y particular, [xm (p(I))] < L2500 Teames(D e OPT (1) < 2 for a large

m
enough constant ¢, while j < z = 128 [1*3], we get that IxdrY (yp(1))| < p Since m > m(I) > %,
we get that | x4 ((I))] < % H

_m__
/852"

In order to process instance I € IJA, we apply Procedure ProcSplit to input (G, J(I),P). If the
procedure returns FAIL, then we terminate the algorithm and return FAIL as well. In this case we
say that the current iteration failed. Otherwise, the procedure returns a 7 (I)-enhancement structure
A, and a split (I} = (G1,%1), I = (G2,32)) of T along A. Let P* be the enhancement path of A, and
let (J1, J2) be the split of the core structure J along A. Denote E%!(I) = E(G)\ (E(G1) U E(G2)).
Let G’ = G\ E¥!(I), let ¥’ be the rotation system for G’ induced by ¥, and let I’ = (G, %) be the
resulting instance of MCNwRS. We add the edges of E!(I) to set E;’_i'l, and we add instances I, I
to the collection Z;; of instances, letting J(I1) = J1 and J(I2) = J2. From the definition of a split
of an instance along an enhancement structure, G1,Go C G, J; is a valid core structure for I, and
Jo is a valid core structure for I». This completes the description of the algorithm for processing an

instance I € IjA, and of the jth iteration. We now analyze its properties.

We say that iteration j is good if, for every instance I € IJA, the algorithm from Claim [9.11{ when
applied to instance I and core structure J(I) returned a promising set of paths P of cardinality

[TZE?J , and additionally, the application of Procedure ProcSplit to input (G, J(I),P) was successful.
We use the following claim to show that iteration j is good with high probability.

Claim 9.31 If Invariants @ hold for Z; and OPTcnurs(l) < 7712/#0/, then the probability that
iteration j is good is at least 1 — 1/u?98.

Proof: From the discussion above, if Invariants hold for 7;, and OPTcnwrS(f ) < m2/ ,u,cl,
then for every instance I € IJA, the algorithm from Claim when applied to instance I and
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core structure J(I) returns a promising set of paths P(I) of cardinality [TZ%)J Additionally, from

Claim m if Invariants hold for Z;, and OPTenwis(I) < 1%/ ,ucl, then for every instance
Ie IJA, (G,J(I),P(I)) is a valid input to Procedure ProcSplit. In this case, from Theorem the
probability that Procedure ProcSplit is either unsuccessful or fails, when applied to (I, 7 (1), P(I)), is
at most 220/4520. Since, from Invariant > Iez; m(I) < 2, while for every active instance I € IJA,

m(I) > m/u, we get that |IJA\ < 2p. From the Union Bound, we conclude that, if Invariants
hold, and OPT ¢nurs(1) < 1?2 / ,ucl, then the probability that iteration j is good is at least 1 —1/u*%®. 0
Lastly, the next claim allows us to bound the probability of the bad event g,

Claim 9.32 Assume that Invariants @ hold for T;, OPTcnurs (1) < m%ﬁ’, and that iteration j
is good. Then the bad event £; does not happen.

Proof: Throughout the proof, we assume that Invariants hold for Z;, OPTenwrs (1) < 2/,
and iteration j is good. From the definition of a split of an instance (see Definition , for every
instance I = (G,X) € Zj 11, G C G, and [ is the subinstance of I defined by graph G. It is now enough
to show that Invariants A6 continue to hold for the collection Z; 1 of instances.

We first observe that, for each inactive instance I € I]I , invariant E continue to hold for I, and (1)
does not change.

Consider now some active instance [ = (G,X) € ZJA, and let (I} = (G1,%1), [2 = (G2, 32)) be the split
of I that was computed by Procedure ProcSplit. We also let A be the core enhancement structure
computed by the procedure, and we let (J1, J2) be the split of the core structure 7 (I) via A. Note that
Propertyof a valid output for Procedure ProcSplit ensures that |E(G1)|, |E(G2)| < |E(G)|— @ﬁ%‘
Since |E(G)| > m(I) > %, we get that |E(Gh)l, |E(G2)| < |E(G)| — ﬁ <2m-j- (from the
fact that Property holds for Z;). This establishes Property for Z; 1.

Recall that Propertyﬂof a valid output for Procedure ProcSplit ensures that |9 (I)| < T+
|x4"Y (1(I))|. Therefore, we get that:

or /2000 _
I S LGl

_m__
32N53

I=(G.x)ez [B(G)]
j + OPTanurs (1) - 5 cr((1)) - p202 )
< L OP el 2 5 BN S s ),
Iez Iez

(we have used the fact that Invariant holds for Z;, and that, for every instance I = (G,X) €
IJA, |E(G)| > m(I) > %) Recall that, from Invariant ZIte cr(v(I)) < OPTenwrs(l), and

Zlezj IxdrY ((1))] < j'“gooo::‘”w's(j) < ”854OP;°”W’S(D (since j < z = 128 [p*3]). Altogether, we get
: I 6000
that |Ejdj'1\ < (j+1)-OPTenurs (1)1 , establising Invariant for Zj41.

m
Next, we establish Invariant Mfor Zj+1. For every instance I = (G, X) € I]I , its solution v (I) remains
unchanged. Consider now some instance I = (G,X) € IJA, and the two subinstances (I, I) of I that
Procedure ProcSplit produced. Let G' = G\ EY!(I), let ¥’ be the rotation system for G’ induced by
¥, and let I’ = (G',Y’) be the resulting instance of MCNwRS. Consider the solution ¢ for instance
I’ that is guaranteed by Property of valid output of Procedure ProcSplit. Let 1 be the solution
to instance I; induced by ¢’, and let o be the solution to instance I induced by ¢’. Property
guarantees that ¢ is a Ji-valid solution to I;, and 9 is a Js-valid solution to Iy. We implicitly
set ¥(I1) = ¢1 and ¢(l2) = 2. From the definition of an instance split, (see Definition [9.12), the
only edges that may be shared by graphs G; and Gg are edges of E(J) U E(P*). Since no pair of
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edges in E(J) U E(P*) may cross each other in ¢’, we get that cr(¢1) + cr(p2) < cr(¢’). Moreover, if
(e,€")p € X9 (1), then either (e, e’), € x4 (¢'), or one of the edges e, ¢’ lies on P*. Since the edges

of P* participate in at most Cr(l‘pg(g)‘fm < @)t crossings (as |E(G)| > m(I) > m/u), we get

—_ m

i i i cr .,625
that [X (o1)] + [ (i02)] < [x ((1)] + EDLE—,

m

Overall, we get that:

S @) < 3 er(@(I)) < OPTenurs(D);

I€Tj I€T;

and:

- , r . ,,625
> @) < Y W)+ Y

IeT;y 1€Z; IGIJA m
< ] : ,USOOOPTcnwrs(I) + OPTcnwrs(j) : ,U’G25
- m m
< (j+1)- MSOOOPTcnwrS(I)
— m )

establishing Invariant [A3] for Z;, ;.

Next, we establish Invariant Consider some instance I = (G, %) € Z; 11 with () > m/u, whose
corresponding J (I)-contracted graph is wide. If I € Z;, then I is an inactive instance, and so Invariant
holds for it. Otherwise, there is some instance I € I]A, such that, if (I3, I2) is the split of instance

I that we have computed, I = I; or I = I, holds. We assume w.l.o.g. that it is the former. We denote
I=(G,%), 1 =(Gy,%1), and we let J, Jy, and Jo be the cores associated with the core structures
J(I), J(I), and J(I3), respectively. Consider now any vertex v € V(G1), whose degree in G is at
least % Then degg(v) > % must hold as well. From Invariant , there is a collection Q(v) of at
least % - \E;-je'\ edge-disjoint paths in G connecting v to the vertices of J. We assume w.l.o.g. that
the paths in Q(v) are internally disjoint from V(J). Let Q'(v) C Q(v) be the set of paths that do
not contain edges of £9!(I). Clearly, |Q'(v)| > % - !Efel| — |[E(D)| > ﬁ% - ’Eﬁlﬂ We direct the
paths in Q'(v) from v to the vertices of V' (J). Notice that every path @ € Q'(v) is contained in graph
G’. Consider now any such path Q € Q'(v). If path @ contains a vertex of P* as an inner vertex,
then we truncate it so it connects v to a vertex of P*, and is internally disjoint from V(J) UV (P*).
We claim that the resulting path @ must be contained in graph G;. This is since, from the definition
of a split of an instance, V(G1) UV (G2) = V(G), and every vertex u € V(G1) NV (G2) belongs to
V(J1) NV (J3), while Jy, Jo C JU P*. Since E(G') = E(G1) U E(G2), we get that every path @ in
the resulting set Q'(v) is contained in graph G1, and it connects v to a vertex of J;. This establishes
Invariant [A4] for Z; ;.

Invariant follows from the fact that, for every instance I € IJA, if (I1 = (G1,%1), 2 = (G2,%2))
is the split of instance I that we have computed, then E(G1) N E(G2) C E(Jy) N E(J2) (since, from
definition of a split, every vertex u € V(G1) NV (G2) belongs to V(J1) NV (Jz2), and since a subdivided
instance may not have parallel edges).

It now remains to establish Invariant Assume we are given, for every instance I’ € Z;11, a
solution (I’) that is clean with respect to J(I’). Consider any active instance I = (G, %) € I]A, and
let (I) = (G1,%2), I = (G2,%2)) be the split of I that we have constructed. We apply the algorithm
from Observation in order to obtain a solution ¢(I) to instance I that is clean with respect to
J(I), and cr(p(1)) < cr(o(ly)) + cr(e(lz)) + |E(I)| - |E(G)|. From Property [P1]of a valid output
for ProcSplit, |E9/(T)| < % + x4 (4 (I))|. Overall, we have now obtained a solution (1) for
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every instance I € 7;, that is clean with respect to J(I), such that:

. 2000 _
S Y e+ Y |E<G>|-(C(W))“+|xd"tyw(1>>|>

IGI]' I/EI]'+1 I:(G,E)EZJA |E(G)’
< > el + > a@D) P +2me Y (D).
I'eT; 1 I=(G,$)ez I=(G.x)ez}

From Invariant ZIte cr(y(I)) < OPTenwrs(I), and EIEI]- I\ (p ()| < J#SO()O'D%M There-
fore, altogether:

D erled) < > er(eI') + OPTenwrs(D) - 12 + 22 - 4% - OPT s (1)
IGI]' I’EZJ‘+1
< Z cr(e(I’) + QOPTcnwrS(f) . uQOOO,

]’EI]+1

since z = 128 ME’?’]. We then apply the algorithm that is guaranteed by Invariant to the collection
Z; of instances, to compute a solution ¢(I) to instance I, whose is at most:

Z Cr(‘%’([)) +7- OPTanrs j 6000 < Z CI’ + B OPTcnwrs(j) . MGOOO + 2OPTanrS(I) . Iu2000
IEIj I’ EIJ+1
< Z Cr(gp([’)) + (j + 1) ’ OPTcnwrs(j) ’ N6000.
I/EIj+1
|

From Claims|9.31{and[9.32, for all 1 < j < z, if OPTepwrs(I) < T?LQ/[LC,, then Pr [éj | —EL N A= Njfl} <
1/p*98. Therefore,

Pr [5 ] < Pr [5 | =& A A J,HhPr [éz,l | =LA A ﬂ~z,2]+. . 4Pr [5‘1} < z/pt%® <1/,

since z = 128 {,u‘r’ﬂ. If the algorithm did not return FAIL, then we return the set Z, of subinstances
of I, and, for every instance I € Z,, the corresponding core structure Z (I). Assume that Event . did
not happen.

From Invariant we are guaranteed that, for every instance I € Z, if the corresponding con-
tracted instance I = (G,Y) is a wide instance, then |E(G)| < m/p. Invariant ensures that
> i—(G5)et |E(G)| < 2m, and Invariant provides an efficient algorithm for combining clean solu-
tions ¢(I) to instances in I € Z, to obtain a solution ¢ to instance I. If Event &, does not happen,
then we are guaranteed that:

cr(@) < > er(o(I) + 2 - OPTenwrs(1) - %% <Y ™ er(o(1) + OPTenurs (1) - 154,
I€T, 1€Z,

(since z = 128 {,u&ﬂ). Since there is an efficient algorithm that, given, for every instance I € Z,, a

solution ¢(I) to the corresponding J (I)-contracted instance I, computes a solution (1) to instance T
that is clean with respect to J(I) with cr(o(I)) < cr(¢(I)), we obtain the desired efficient algorithm
for combining solutions to instances in Z to obtain a solution to instance I.

Lastly, Invariant ensures that, if Event £, did not happen, then, for every instance I € Z,,
there exists a solution ¥(I) to I that is J(I)-valid, such that } ;.7 cr(v(I)) < OPTenws(l), and

ez, XY ()] < OPTC"M:;(;)'WSOO < OPTenus(1)-u™ (since z = 128 [u®]). Notice also that, if

m

Event &, does not happen, then the algorithm does not return FAIL. This completes the proof of
Theorem [9.29
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9.4 Phase 2 of the Algorithm

The goal of this phase is to “repair” each one of the instances I € Z computed in the first phase in order
to ensure that each such instance has a cheap solution that is clean with respect to the core structure
J(I). This, in turn, will ensure that the corresponding contracted graph has a cheap solution as well.
In order to repair an instance I = (G, %) € Z, we will compute a collection E%!(I) of edges of G. We
will ensure that no edge of the core J(I) corresponding to the core structure J(I) lies in F9!(I). We
can then define a new instance I’ = (G, %), where G/ = G\ EY!(I), and ¥’ is the rotation system
for G’ that is induced by Y. Note that J(I) remains a valid core structure for I’. Our goal is to
ensure that, on the one hand, |E%!(I)| is not too large, and, on the other hand, there is a solution
(I') to instance I’ that is clean with respect to J(I’), and cr(¢(I’)) is not too large compared to
cr(p(I)) + x4 (¢ (1)) |2, where (1) is the J (I)-valid solution for instance I from Theorem We
now state the main result of this subsection, summarizing the algorithm for Phase 2.

Theorem 9.33 There is an efficient randomized algorithm, whose input consists of a large enough
constant b, a subinstance I = (G, %) of I with |E(G)| =m and G C G, and a core structure J(I) for I,
whose corresponding core is denoted by J(I). The algorithm computes a set E% (1) C E(G)\ E(J(I))
of edges, for which the following hold. Let G' = G\ E%!(I), and let I' = (G',%') be the subinstance
of I defined by G'. The algorithm ensures that, if there is a solution ¥(I) to instance I that is J(I)-
valid, with cr(yp(I)) < m?/p?4%, and |x3™ (H(I))| < m/u?4%, then with probability at least 1 —1/p?,

|E9e(1)] < (MWEI)) + ]Xdirty(w(l))\) - pP®) | and there is a solution ¥(I') to instance I' that is clean

with respect to J(1), with cr((I")) < (cr((D) + A (1)) + DCEPHEGNY (1o )00,

If there is a solution (1) to instance I that is 7 (I)-valid, with cr(y(I)) < m?/p?4% and |9 (¢(1))| <
m /4%, then we let (1) be this solution, and we say that ¢(I) is a good solution to instance I.
Otherwise, we let 1(I) be any solution to instance I that is J(I)-valid, and we say that ¢ (I) is a bad
solution to instance I. We say that an application of the algorithm from Theorem [9.33]is successful,
if (i) |Ee ()] < (W n |Xdirty(¢(1))\) - 1O®) | and (ii) there is a solution 4(I") to the resulting

instance I’ = (G', %), that is clean with respect to J(I), with:

dirt: i
DD BN g y00

er((I') < (crwu)) I ()2 +

From Theorem if there is a good solution ¢ (I) to instance I, then the algorithm is successful
with probability at least 1 —1/ 12, We provide the proof of the theorem below, after we complete the
proof of Theorem [3.13| using it.

9.4.1 Completing the Proof of Theorem [3.13

Given an input instance I* = (G*,3*), we first apply the algorithm from Theorem to this input.
If the algorithm from Theorem [0.29] fails, then we terminate the algorithm and return FAIL as well.
We denote by &] the bad event that the application of this algorithm is unsuccessful. Recall that, from

Theorem 9.29} if OPT cnurs(1*) < 12/p€’, then Pr [g’d < 1/p%%9 ) and, if bad event £] does not happen,

then the algorithm does not fail. We assume from now on that the algorithm from Theorem did
not fail. Let Z be the collection of subinstances of I computed by the algorithm from Theorem
Recall that, if Event £ did not happen, then for every instance I € Z, there is a solution ¢ (I) to I,

900

that is 7 (I)-valid, such that: 3 ;e cr((I)) < OPTenwrs(D), and Y- op [XI (1p(I))] < O Tenwrs (D2
We let b be a large enough constant, so that b > 4000. We assume that the parameter ¢’ from the
statement of Theorem is sufficiently large compared to b, for example, ¢’ > 400b.
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Recall that, for every instance I = (G, %) € Z, we have denoted by I = (G, %) the corresponding
J (I)-contracted instance, and by m(I) = E(G). We say that instance I is small if m(I) < %,
and otherwise it is large. We partition the set Z of instances into two subsets: set Z; containing all
small instances, and set Zy containing all large instances. We let il = {f | I Il} contain the set

of all contracted instances corresponding to the instances of Z;, and we define set 7, of instances
corresponding to the instances of Zy similarly. We need the following obsevation.

Observation 9.34 Assume that OPTcnwrs(f*) < mQ//f’, and that bad event £ did not happen. Then
for every instance I = (G,X) € Iy, there is a solution (1) to instance I that is J(I)-valid, with
cr(y (1)) <m?/u*%, and [ (1)) < m/p*®, where m = |E(G)].

Proof: Assume that OPTnurs(1) = OPTenrs(I*) < mz/m’, and that bad event £ did not happen.
Recall that the algorithm from Theorem [9.29| ensures that, for every instance I € Z, there is a
solution ¥ (I) to I, that is J(I)-valid, with >, 7 cr(¢(I)) < OPTcnwrs(I), and 3 ,c7 |Xd'rty(¢(l))| <
OPTcnwrs(1)-p99°

m
Consider now some instance I = (G,X) € Ty, and denote |F(G)| = m. From the above discussion,
cr(y(I)) < OPTenrs(I) < T—j must hold. Since, from definition of set Zy of instances, m > m(I) >

M{% holds, we get that cr(¢(1)) < #22000 < Mg’"b—fm,, since we can set ¢’ to be a large enough constant.

Similarly, |Xdirty( ( ))| < OPTCnW;%(_f).M%o

m > 1000, we get that:

since OPTcqwrs(I) < mz/;f’. Using the fact that

m
— Hc’—goo ’

m < m
MC/71900 - N24Ob’

X (y(I))] <

O

We process every instance I € 7y one by one. For each such instance I, we apply the algorithm from
Theorem to instance I, core structure J(I), and the constant parameter b defined above. Let
E4(I) be the bad event that this application of the algorithm was unsuccessful.

From Observation [9.34) and Theorem 9.33] if OPTenwrs(I*) < 102/, then Pr [5’5(1) | ﬁé‘{] < 1/,

We denote by I’ = (G',¥') the resulting instance of MCNwRS, and by I’ the corresponding J(I)-
contracted instance. We then denote 7} = {f "€ IQ}. The final output of our algorithm is the

collection Z' = Z; U Z} of subinstances of 1.

We now verify that the collection Z’ of instances has all required properties. First, the algorithm
from Theorem [9.29| ensures that, for every instance I € T, if the corresponding contracted instance
I = (G,%) is a wide instance, then |E(G)| < m/u. If instance I lies in I, and I' = (G',%) is the
J (I)-contracted instance corresponding to I’, then |E(G")| < |E(G)|, and, if I is not a wide instance,
then neither 1s I’ This is since graph G’ can be obtained from graph G by deleting the edges of
E%(T) from 1 Therefore, we are guaranteed that, for every instance I' = (G',¥') € 7/, if I is a
wide instance, then |E(G")| < m/p.

The algorithm from Theorem also guarantees that ) ;. ;m(I) < 2m. Since, for every in-
stance I € T, the corresponding instance I’ = (G/,%) € 4 has |E(G')| < m(I), we get that

This is slightly i imprecise, since it is possible that \E( )| < m(I). Therefore, a vertex v may be a high-degree vertex
for G but not for graph G. Tt is therefore possible that I is narrow but I’ is not, due to difference in the parameters
|E(G")| and |E(G)|. However, we can easily fix this issue by adding r(I) — |E(G")| new vertices to graph G’, and
connecting each of these vertices to a vertex whose degree in (' is smaller than in G, so that for every vertex v € V(CA?)7
degg (v) < degg(v) and |E(G')| = |E(G)| holds. This ensures that, if I is a narrow instance, then so is I’. Adding
degree-1 vertices to an instance of MCNwRS does not increase its optimal solution value.
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Yor—(c e [E(G)] < 2.
Let £, be the bad event that any of the events in { M) | T e Ig} happened. From the definition of

the set Zy of instances, for all I € Ty, m(I) > 5 fooo - Since, from Theorem [9.29) > ;. m(1) < 21, we
get that |Zp| < 2u'%%. Therefore, if OPT cnurs(1 ) Q/u , then:

Pr [ég\ﬁéﬂ 3 Pr [ |ﬂ51} <

I1€Zs

since b > 4000. Lastly, we let £ be the bad event that either of the events g{ or éé happened.
Then Pr [é’] < Pr [é{} + Pr [g’é | —é{] From the above discussion, if OPTcqwrs(I*) < m2/u0’, then

Pr |&] < 200 + #—14 < % We use the following two observations in order to complete the proof of
Theorem m

Observation 9.35 Assume that OPTcnwrs(f*) < mQ/ucl, and that event & did not happen. Then
there is an efficient algorithm, that, given a solution p(I') to every instance I' € T', computes a
solution @ to instance I*, with cr(¢) < 3" pegr cr(@(I’)) + OPTenwrs (1) - uCW.

Proof: We assume that OPTcnwrs(f *) < m?/ ,ucl, that Event & did not happen, and that we are given
a solution ¢(I") to every instance I’ € Z'. We show an efficient algorithm to compute a solution ¢ to
instance I. In order to do so, we consider every instance I € Z, one by one, and compute a solution
©(I) to instance I, from the solution ¢(I’) to instance I'.

Consider now some instance I = (G,%) € T,. Let I = (G, %) be the corresponding J(I)-contracted
instance, and let I’ = (G', %) be the J(I)-contracted instance corresponding to the instance I’. Note
that V(G) = V(G') and E(G') = E(G) \ E%'(I). We use the algorithm from Lemma in order to
insert the edges of E9€!(I) into the solution p(I”) to instance I’, obtaining a solution ¢(I) to instance
I, whose cost is at most cr(p(1')) + |EY(I)| - |[E(G)|. Recall that, from Theorem

del (1 W(I)) dirty o)
B0 < (Torgh + )] ) 00,

Therefore:

cr(p(D)) < er(p(I) + (cr((D) + K™ @(D)] - |E@G)]) - O
< cr(p(I) + (er(w(D) + X (D) - 1m) - uO0.

Lastly, using the algorithm from Theorem we obtain a solution ¢ to instance I, whose cost is
bounded by:

cr(@) < Z cr(o(I)) 4+ OPT s (1) - 8000
fez
< Y erleD) + Y (erteld) +erw@) - 10O + W @) 17 1O ) + OPTenus(1) - u
Iezy I€Z,
= 3" cr(p(I)) + OPTenurs(1) - 120 + 3 cr(w(D) - 1O + 3 ¥ ((1))] - 1 - O,
ez’ Iely IeZ,

From Theorem if OPTenwrs(1*) < m2/u, and Event £ did not happen, then Yorercr(@(I)) <
OPTepurs (1), and ZM ey (4 (1))| < QPTemeslD™ yerefore, we get that cr(@) < 3 veqr cr((I')+
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OPTcnwrs(f ) p°M . By suppressing the vertices that were used to subdivide the edges of graph G* to
obtain graph G, we obtain a solution to the original instanc I'* of the same cost. O

Lastly, the following observation will complete the proof of Theorem

Observation 9.36 Assume that OPTeppwes(I*) < mQ/Mc/, and that event &' did not happen.  Then
S ez OPTenurs(I) < OPTequrs(1¥) - (log i) 0.

Proof: We bound ZIGIQ OPTan,S(f) and ZIEIl OPTcnwrs(f’) separately.

From Theorem if Event £ did not happen, then, for every instance I = (G, %) € Ty, there is a
solution ¥ (I’) to the corresponding instance I’, that is clean with respect to ﬁ), with cr(y(I')) <

(cr(¢(1)) + x4 ((1))]? + |Xdirty(¢(ﬁ,)"|E(G)‘) - (logm)°M . From Observation there is a solution

to the corresponding contracted instance I’, of cost at most cr(¢(I")). Altogether, we get that:

dirt -
Z OPTcnwrs(j/) < Z <Cr('¢(I)) + ’Xdirty(q/}(l))‘Q ‘X Y(ME)I))‘ ) _(logm)O(l).

IeZy Iely

2

. 3 log ir
< Y er(u(m) - Qom0 + | 3 b (D) | - Qogmot) 4 TUEMTD (15~
1€y 1€y ,LL 1€Ty

From Theorem|9.29) >, 7 cr(¥(I)) < OPTenwrs({) and 3° ;o7 X4 (v (1))| < w. Addition-
ally, since we have assumed that OP'vI'Cm,\,,S(jz ) = OPTcnwrs(f ) < m2/ ,uc/ for a large enough constant
(ZIGIQ iy () ([))|)2 < (OPT“W';EQ)Q'“MO < OPTenwrs(1). Altogether, we get that:

OPTcnurs (1) - 11299 - (log ) O
b
il

> OPTenwrs(I') < OPTenurs(1) - (log 1)) +
1€ls

< OPTcnwrS(f) - (log m)O“),

since b > 4000.

Next, we bound » ;c7, OPTenwrs(1). Consider some instance I = (G, %) € Z; and the solution (1)
that is J(I)-valid. Let J(I) be the core associated with the core structure J(I). Let EY™(I) C
E(G)\ E(J(I)) be the set of all edges e, such that the image of e in 1 (I) crosses the image of some
edge of J(I). Let I = (G, %) be the J(I)-contracted instance corresponding to instance I.

Denote G’ = G\ EY™Y(I), and let ¥/ be the rotation system for graph G’ that is induced by . Observe
that J(I) is a valid core structure for the resulting instance I’ = (G,%’). Let I’ = (G',Y’) be the
J (I)-contracted instance associated with I'.

Observe that we can easily modify the solution ¢(I) to instance I to obtain a solution ¥ (I’) to
instance I’ that is clean with respect to J(I), with cr(¢(I')) < cr(¢(I)). Indeed, denote J(I) =
(4, {butyev (), ps, F*). Let ¢'(I') be the solution to instance I' induced by ¢(I). Since G' = G \
B4y (1), for every connected component C' of G’ either the images of all edges and vertices of C' in
Y'(I') are contained in the region F* of the drawing, or the images of all edges and vertices of C in
Y'(I') are disjoint from F* (note that, if E(C)Ndg(J) # 0, then the image of C' must be contained in
F*, since the image of C' must intersect the interior of F*, from the definition of a valid core structure
(see Definition [9.3))). If the images of all edges and vertices of C in ¢/(I’) are disjoint from F*, then
C N J = () must hold, and so we can simply move the image of C to lie in the interior of the region
F* without changing the drawing of C' itself, and without introducing any new crossings. Once we
move the image of each such connected component to lie inside region F*, we obtain a solution ¢ (I")
to instance I’ that is clean with respect to J(I), and cr(y(I")) < cr(y(1)).
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From Observation there is a solution (I') to the contracted instance I’ with cr(y(I')) <
cr(¢(I') < cr(¢p(I)). We use the algorithm from Lemma in order to insert the edges of E4Y(I)
into the drawing ¢(I") to obtain a solution v(I) of instance I, with the number of crossings bounded
by cr(w(I") + [ESY(I)] - |B(G)| < er(@(D)) + [BYY(I)] - |[E(G)|. Since I € Ty, |B(G)| < fiw, so
cr((I)) < cr(sp (1)) + [xd(I)] - % We then get that:

> OPTenurs(1) < > cr(w(D) + 3 "™ (1) /1000

e, ey 1€y

From Theorem [9.29, ;.7 cr(¥(I)) < OPTenwrs(1) and 3=, 7 x4 (¢ (1))] < OPTenwrs (D™ .

m
fore:

b 7\ . ,,900 .
Z OI:)Tcnwrs < OPTcnwrs(j) m : OPTCHWFS(I) ’u § O(OPTCHWFS(I))'

1000 5

1€y H m
Overall, we get that 3 ez OPTenwrs(I) = 3 ez, OPTenwrs(1) + 3 1e7, OPTenwrs(I) < OPT cnuurs (1) -
(log )P = OPT s (I*) - (log 1)), o

In the remainder of this section we focus on the proof of Theorem [9.33] Throughout the proof, we
denote the instance I = (G, X) that serves as the input to the algorithm by I’ = (G', %), with |E(G’)]
denoted by m’. We denote the core structure J(I) by J = (J, {bu}ueV(j) ,pj, F*). We can assume

that there is a J-valid solution v to instance I’ with cr()) < (12/)%/p240, and |4 ()| < 10’ /40P,
since otherwise we can set E9(I') = E(G') \ E(J), which trivially satisfies the requirements of the
theorem. From now on we fix a J-valid solution w to instance I’, with cr(v) < (1/)%/p?*% and
I ()| < 17! /p?%. We emphasize that solution ¢ is not known to the algorithm.

9.4.2 Proof of Theorem [9.33] — Intuition

For simplicity of exposition, assume that the core J corresponding to the core structure 7 is a simple
cycle. Generally it is not difficult to modify the solution ) to instance I’ so that it becomes semi-clean,
while only increasing the number of crossings by at most | Xd'rty( )|, In order to do so, we let E9irty
be the set of all dirty edges — that is, edges whose image in ¢ crosses the image of some edge of J. Let
C be the set of all connected components of G’ \ B9 Tt is easy to verify that for each component
C € C, either the images of all vertices and edges of C' in ¢ lie in the region F*; or the images of all
vertices and edges of C' in 1) are disjoint from F*. In the latter case, we move the image of C' to lie
in the interior of the face F*, without changing the image itself. We then need to modify the images
of the edges in set F4"™ so that they connect the new images of their endpoints. This can be easily
done while introducing at most |x4™(¢))|?> new crossings. We do not provide the details here, since
we do not use this algorithm eventually.

Let 1)’ denote this semi-clean solution to instance I’ with respect to J. Denote by v the image of the
cycle J in 1), which must be a simple closed curve. For convenience, we will now denote by E4™ the
set of all dirty edges of G’ — edges whose image in ¢/ crosses the image of some edge of J. Consider
now some dirty edge e € E4™. For simplicity of exposition, assume that e is not incident to any
vertex of J. Since ¢/ is a semi-clean drawing of G’ with respect to 7, the images of the endpoints of e
must lie in region F*. Therefore, there must be at least two points on 1 (e) that lie on v. We assign
the curve 1(e) an arbitrary direction, denote by p the first point on (e) that lies on -y, and by p’ the
last point on 1)’ (e) that lies on v. Points p and p’ partition the curve 7 into two disjoint simple open
curves, that we denote by «' and 7", respectively. A simple way to “repair” the drawing of the edge e
so that it no longer crosses the edges of J would be to replace the segment of 1[1(6) between p and p’
with a new segment o(e), that follows the curve 4 closely, in the interior of region F* (see Figure .
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A problem with this approach is that this may greatly increase the number of crossings, as the segment

o(e) may cross many edges in drawing ¢’. Intuitively, the requirements of Theorem allow us to

fn/(logrh’)o(l)
b

add up to new crossings to the drawing v for each dirty edge whose image we modify, but

unfortunately it is possible that, after the modification, o(e) crosses the images of many more edges.

(a) Before: the image of e (green) and its intersec- (b) After: the new image of e is shown in
tions p,p’ (red) with the image of J (blue). Region green.
F™ is shown in gray.

Figure 33: Repairing the image of an edge e € B4,

Let S denote the set of all vertices of J whose images lie on 4/, and let T be defined similary for ~v”.
Consider the minimun cut (X,Y’) separating vertices of S from vertices of T in graph G’ \ EY, so
S C X and T CY. Assume first that |Ep (X, Y)| < 77//ub. In this case, we can rearrange the drawing
Y/, so that all vertices and edges of G[X]\ EY™ are drawn very close to the segment 4/ (but in the
interior of region F*), and similarly all vertices and edges of G[Y]\ E4"™ are drawn very close to the
segment 7. We can then define a curve o(e) connecting points p and p’, so that o(e) is contained
in F*, and it only crosses the images of the edges in Ex (X,Y). Therefore, we can ensure that o(e)
participates in few crossings. We can then modify the image of edge e to follow the segment o(e) as
before, without increasing the number of crossings by too much.

Note that each dirty edge e € E4™ may define a different partition (S, 7)) of the vertices of .J, and
a different cut (X,Y). However, if we can ensure that the number of edges crossing each such cut is
sufficiently low, then we can still rearrange the drawing ¢/, and modify the drawings of all edges in
EYY 50 that they become contained in region F*, while ensuring that the total number of crossings
only increases moderately.

It is however possible that, for some edge e € E4™, and its corresponding partition (S,7T) of V(.J),
the minimum cut separating S from 7 in G’ contains more than 1/ /ub edges. In this case, there must
be at least [m’ / ,ulﬂ edge-disjoint paths in G’ connecting vertices of S to vertices of T. We can treat
this set of paths as a promising set of paths, that can be used in order to define an enhancement P of
the core structure 7, using Procedure ProcSplit. We can also use the procedure in order to compute
an enhancement structure A, and a split (I = (G1,%1), I» = (G2, X2)) of instance I’ along A. Unlike
the algorithm from Phase 1, we will not view the resulting two instances I, > as separate instances.
Instead, we will initialize the set E9°'(I") of deleted edges to edge set E(G')\ (E(G1) U E(Gs)). We
then consider the graph K = J U P, that we call a skeleton , and fix a planar drawing px of it (which
is uniquely defined). From Property of valid output to Procedure ProcSplit, there is a drawing 1)
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of graph G’ \ EY!(I"), that obeys the rotation system ', such that drawing v is J-valid, and the
edges of JU P do not cross each other in v, with cr()) < cr(¢/). If we consider the drawing pj of
the core J, then the image of path P partitions face F* into two new faces, that we denote by F; and
F,. Consider the split (71, J2) of the core structure J along A. The cores Ji, Jo associated with the
core structures J1 and Ja, respectively, serve as the boundaries of the faces Fi, Fb, respectively, in
the drawing pg of graph K.

We note that the drawing of instance I; induced by ¢ is not necessarily semi-clean with respect to
Ji, and the same is true regarding instance I and core structure J». But we could modify ¥ to
ensure this property, obtaining a new drawing ¢’ of graph G’ \ E%!(I’) (though this process would
increase the number of crossings by factor poly log7h/; we ignore this technicality for now). If we now
consider some edge e, whose image in 1’ crosses the image of some edge in J, then edge e must either
lie in graph G1, or in graph G5. Assume w.l.0.g. that it is the former. In the modified drawing v’ of
G'\ E4!(I"), both endpoints of edge e are drawn inside the region Fj. The image of e must then cross
the boundary of region F; in at least two points (recall that the boundary of region Fj in ¢’ is the
image of the core J;). We can again use these two points to define a partition (S,7) of the vertices
of Ji, and compute a minimum cut (X,Y") separating S from 7 in G. As before, if the value of this
minimum cut is small, then we can modify the current drawing v’ locally inside region F; and modify
the image of the edge e, so that it is contained in F;, and no longer crosses the edges of J. If the
value of this minimum cut is large, then we can again define a promising set of paths for instance I
and core structure [J1, and then invoke Procedure ProcSplit in order to further split core structure J;
and instance I, thereby adding new edges to set E9!(I").

At a high level, our algorithm can be thought of as maintaining a single skeleton graph K — a planar
subgraph of G’ with J C K, such that, for every edge e € E(K), graph K \ {e} is connected. We
also maintain a skeleton structure KC, that, in addition to the skeleton K, specifies the orientation b,
of every vertex u € V(K), and a planar drawing px of graph K on the sphere. We require that,
for every vertex u € V(.J), its orientations in K and J are identical, and that drawing pg of K is
clean with respect to core structure 7, and is consistent with rotation system ¥ and orientations by,
of the vertices u € V(K). Let F(px) be the set of all faces of the drawing px. Since drawing px
is clean with respect to J, every forbidden face F' € F*(p;) is also a face of F(px). We denote by
F*(pr) = F*(pj) the set of all such faces of F(px), that we refer to as forbidden faces of drawing
pr. For every face F' € F(pk), the set of vertices and edges of K lying on its boundary define a core
Jr. Using the skeleton structure K, we can define a core structure Jr associated with the core Jp.
We also maintain, for every face F' € F(px), a subgraph G of G'. We let ¥ be the rotation system
for Gr induced by ¥, and we let Zp = (Gp,XF) be the resulting instance of MCNwRS. We require
that Jr is a valid core structure for 