
A Deterministic Algorithm for Balanced Cut with Applications to Dynamic
Connectivity, Flows, and Beyond

Julia Chuzhoy
TTIC
USA

Yu Gao
Georgia Tech

USA

Jason Li
CMU
USA

Danupon Nanongkai
KTH

Sweden

Richard Peng
Georgia Tech

USA

Thatchaphol Saranurak
TTIC
USA

Abstract—We consider the classical Minimum Balanced Cut
problem: given a graph G, compute a partition of its vertices
into two subsets of roughly equal volume, while minimizing the
number of edges connecting the subsets. We present the first
deterministic, almost-linear time approximation algorithm for
this problem. Specifically, our algorithm, given an n-vertex m-
edge graph G and any parameter 1 ≤ r ≤ O(logn), computes
a (logm)r

2

-approximation for Minimum Balanced Cut in
G, in time O

(
m1+O(1/r)+o(1) · (logm)O(r2)

)
. In particular,

we obtain a (logm)1/ε-approximation in time m1+O(
√
ε) for

any constant ε > 0, and a (logm)f(m)-approximation in
time m1+o(1), for any slowly growing function f(m). We
obtain deterministic algorithms with similar guarantees for the
Sparsest Cut and the Lowest-Conductance Cut problems.

Our algorithm for the Minimum Balanced Cut problem in
fact provides a stronger guarantee: it either returns a balanced
cut whose value is close to a given target value, or it certifies
that such a cut does not exist by exhibiting a large subgraph
of G that has high conductance. We use this algorithm to
obtain deterministic algorithms for dynamic connectivity and
minimum spanning forest, whose worst-case update time on an
n-vertex graph is no(1), thus resolving a major open problem in
the area of dynamic graph algorithms. Our work also implies
deterministic algorithms for a host of additional problems,
whose time complexities match, up to subpolynomial in n fac-
tors, those of known randomized algorithms. The implications
include almost-linear time deterministic algorithms for solving
Laplacian systems and for approximating maximum flows in
undirected graphs.

Keywords-deterministic algorithms; dynamic connectivity;
balanced cuts; maximum flow; Laplacian solvers;

A full version of the paper is available at https://arxiv.org/
abs/1910.08025.

I. INTRODUCTION

In the classical Minimum Balanced Cut problem, the
input is an n-vertex graph G = (V,E), and the goal is
to compute a partition of V into two subsets A and B
with VolG(A),VolG(B) ≥ Vol(G)/3, while minimizing
|EG(A,B)|; here, EG(A,B) is the set of all edges with
one endpoint in A and another in B, and, for a set S of
vertices of G, VolG(S) denotes its volume – the sum of the
degrees of all vertices of S. Lastly, Vol(G) = VolG(V) is
the total volume of the graph. The Minimum Balanced Cut
problem is closely related to the Minimum-Conductance

Cut problem, where the goal is to compute a subset S of
vertices of minimum conductance, defined as |EG(S, V \
S)|/min{VolG(S),VolG(V \S)}, and to the Sparsest Cut
problem, where the goal is to compute a subset S of vertices
of minimum sparsity: |EG(S, V \ S)|/min{|S|, |V \ S|}.
While all three problems are known to be NP-hard, approx-
imation algorithms for them are among the most central
and widely used tools in algorithm design, especially due
to their natural connections to the hierarchical divide-and-
conquer paradigm [1], [2], [3], [4], [5], [6], [7]. We note
that approximation algorithms for Minimum Balanced Cut
often consider a relaxed (or a bi-criteria) version, where
we only require that the solution (A,B) returned by the
algorithm satisfies VolG(A),VolG(B) ≥ Vol(G)/4, but the
solution value is compared to that of the optimal balanced
cut.

The first approximation algorithm for Minimum Bal-
anced Cut, whose running time is near-linear in the graph
size, was developed in the seminal work of Spielman and
Teng [2]. This algorithm was used in [2] in order to decom-
pose a given graph into a collection of “near-expanders”,
which are then exploited in order to construct spectral
sparsifiers, eventually leading to an algorithm for solving
systems of linear equations in near-linear time. Algorithms
for Minimum Balanced Cut also served as crucial building
blocks in the more recent breakthrough results that designed
near- and almost-linear time1 approximation algorithms for
a large class of flow and regression problems [8], [9], [10],
[11] and faster exact algorithms for maximum flow, shortest
paths with negative weights, and minimum-cost flow [12],
[13]. Spielman and Teng’s expander decomposition was later
strengthened by Nanongkai, Saranurak and Wulff-Nilsen [7],
[14], [15], who used it to obtain algorithms for the dynamic
minimum spanning forest problem with improved worst-case
update time. The fastest current algorithm for computing
expander decompositions is due to Saranurak and Wang
[16]; a similar decomposition was recently used by Chuzhoy
and Khanna [17] in their algorithm for the decremental

1We informally say that an algorithm runs in near-linear time, if its
running time is O(m · poly logn), where m and n are the number of
edges and vertices in the input graph, respectively. We say that the running
time is almost-linear, if it is bounded by m1+o(1).

https://arxiv.org/abs/1910.08025
https://arxiv.org/abs/1910.08025

single-source shortest paths problem, that in turn led to a
faster algorithm for approximate vertex-capacitated maxi-
mum flow.

Unfortunately, all algorithms mentioned above are ran-
domized. This is mainly because all existing almost- and
near-linear time algorithms for Minimum Balanced Cut are
randomized [2], [18]. A fundamental open question in this
area is then: is there a deterministic algorithm for Minimum
Balanced Cut with similar performance guarantees? Re-
solving this questions seems a key step to obtaining fast
deterministic algorithms for all aforementioned problems,
and to resolving one of the most prominent open problems in
the area of dynamic graph algorithms, namely, whether there
is a deterministic algorithm for Dynamic Connectivity,
whose worst-case update time is smaller than the classical
O(
√
n) bound of Frederickson [19], [20] by a factor that is

polynomial in n.
The best previous published bound on the running time

of a determinsitic algorithm for Minimum Balanced Cut is
O(mn) [21]. A recent manuscript by a subset of the authors,
together with Yingchareonthawornchai [22], obtains a run-
ning time of min

{
nω+o(1),m1.5+o(1)

}
, where ω < 2.372

is the matrix multiplication exponent, and n and m are the
number of nodes and edges of the input graph, respectively.
This algorithm is used in [22] to obtain faster deterministic
algorithms for the vertex connectivity problem. However,
the running time of the algorithm of [22] for Minimum
Balanced Cut is somewhat slow, and it just falls short
of breaking the O(

√
n) worst-case update time bound for

Dynamic Connectivity.

A. Our Results

We present a deterministic (bi-criteria) algorithm for Min-
imum Balanced Cut that, for any parameter r = O(log n),
achieves an approximation factor α(r) = (logm)r

2

in
time T (r) = O

(
m1+O(1/r)+o(1) · (logm)O(r2)

)
, where n

and m are the number of vertices and edges in the input
graph, respectively. In particular, for any constant ε > 0,
the algorithm achieves (logm)1/ε-approximation in time
O
(
m1+O(

√
ε)
)

. For any slowly growing function f(m) (for
example, f(m) = log logm or f(m) = log∗m), it achieves
(logm)f(m)-approximation in time m1+o(1).

In fact our algorithm provides somewhat stronger guaran-
tees: it either computes an almost balanced cut whose value
is within an α(r) factor of a given target value η; or it
certifies that every balanced cut in G has value Ω(η), by pro-
ducing a large sub-graph of G that has a large conductance.
This algorithm implies fast deterministic algorithms for
all the above mentioned problems, including, in particular,
improved worst-case update time guarantees for (undirected)
Dynamic Connectivity and Minimum Spanning Forest.

In order to provide more details on our results and
techniques, we need to introduce some notation. Throughout,

we assume that we are given an m-edge, n-node undirected
graph, denoted by G = (V,E). A cut in G is a partition
(A,B) of V into two non-empty subsets; abusing the
notation, we will also refer to subsets S of vertices with
S 6= ∅, V as cuts, meaning the partition (S, V \ S) of V .
The conductance of a cut S in G, that was already mentioned
above, is defined as:

ΦG (S) :=
|EG (S, V \ S) |

min {VolG (S) ,VolG (V \ S)}
,

and the conductance of a graph G, that we denote by Φ(G),
is the smallest conductance of any cut S of G: Φ (G) :=
minS(V :S 6=∅ {ΦG(S)} .

A notion that is closely related to conductance is that
of sparsity. The sparsity of a cut S in G is: ΨG (S) :=
|EG(S,V \S)|

min{|S|,|V \S|} , and the expansion of the graph G is
the minimum sparsity of any cut S in G: Ψ (G) :=
minS(V :S 6=∅ {ΨG(S)} .

We say that a cut S is balanced if VolG(S),VolG(V \
S) ≥ Vol(G)/3. The main tool that we use in our approxi-
mation algorithm for the Minimum Balanced Cut problem
is the BalCutPrune problem, that is defined next. Informally,
the problem seeks to either find a low-conductance balanced
cut in a given graph, or to produce a certificate that every
balanced cut has a high conductance, by exhibiting a large
sub-graph of G that has a high conductance.

Definition 1 (BalCutPrune problem). The input to the α-
approximate BalCutPrune problem is a graph G = (V,E),
a conductance parameter 0 < φ ≤ 1, and an approximation
factor α. The goal is to compute a partition (A,B) of V (G)
(where possibly B = ∅), with |EG(A,B)| ≤ αφ · Vol(G),
such that one of the following holds: either

1) (Cut) VolG(A),VolG(B) ≥ Vol(G)/3; or
2) (Prune) VolG(A) ≥ Vol(G)/2, and graph G[A] has

conductance at least φ.

Our main technical result is the following.

Theorem 2 (Main Result). There is a deterministic algo-
rithm, that, given a graph G with m edges, and parameters
φ ∈ (0, 1], 1 ≤ r ≤ O(log n), and α = (logm)r

2

, computes
a solution to the α-approximate BalCutPrune problem in-
stance (G,φ) in time O

(
m1+O(1/r)+o(1) · (logm)O(r2)

)
.

In particular, by letting r be a large constant, we obtain
a (logm)1/ε-approximation in time m1+O(

√
ε) for any con-

stant ε > 0, and by letting f(m) be any slowly growing
function (for example, f(m) = log logm or f(m) =
log∗m), and setting r =

√
f(m), we obtain (logm)f(m)-

approximation in time m1+o(1).
The algorithm from Theorem 2 immediately implies a

deterministic bi-criteria factor-(log n)r
2

-approximation al-
gorithm for Minimum Balanced Cut, with running time
O
(
m1+O(1/r)+o(1) · (logm)O(r2)

)
for any value of r ≤

O(logm). Indeed, suppose we are given any conductance
parameter 0 < φ < 1 for an input graph G = (V,E).
We apply the algorithm from Theorem 2 to graph G with
the parameter φ, obtaining a partition (A,B) in V (G),
with |EG(A,B)| ≤ αφ · Vol(G). If VolG(A),VolG(B) ≥
Vol(G)/4, then we obtain an (almost) balanced cut (A,B) of
conductance at most αφ. Otherwise, we are guaranteed that
VolG(A) ≥ 3Vol(G)/4, and graph G[A] has conductance
at least φ. We claim that in this case, for any balanced cut
(A′, B′) in G, |EG(A′, B′)| ≥ Ω(φ ·Vol(G)) holds. This is
because any such partition (A′, B′) of V defines a partition
(X,Y) of A, with VolG(X),VolG(Y) ≥ Ω(Vol(G)), and,
since Φ(G[A]) ≥ φ, we get that |EG(X,Y)| ≥ Ω(φ ·
Vol(G)). Therefore, we obtain the following corollary.

Corollary 3. There is an algorithm that, given an n-
vertex m-edge graph G, a target value η and a parameter
r ≤ O(log n), either returns a partition (A,B) of V (G) with
VolG(A),VolG(B) ≥ Vol(G)/4 and |EG(A,B)| ≤ α(r)·η,
for α(r) = (logm)r

2

, or it certifies that for any partition
(A,B) of V (G) with VolG(A),VolG(B) ≥ Vol(G)/3,
|EG(A,B)| ≥ Ω(η) must hold. The running time of the
algorithm is O

(
m1+O(1/r)+o(1) · (logm)O(r2)

)
.

Algorithms for Minimum Balanced Cut often differ in
the type of certificate that they provide when the value of the
Minimum Balanced Cut is greater than the given threshold
(that corresponds to the (Prune) case in Definition 1). The
original near-linear time algorithm of Spielman and Teng [2]
outputs a set S of nodes of small volume, with the guarantee
that for some subset S′ ⊆ S, the graph G − S′ has high
conductance. This guarantee, however, is not sufficient for
several applications. A version that was found to be more
useful in several recent applications, such as e.g. Dynamic
Connectivity [16], [7], [14], [15], is somewhat similar to
that in the definition of BalCutPrune, but with a somewhat
stronger guarantee in the (Prune) case2.

The approximation factor α of Spielman and Teng’s
algorithm [2] depends on the parameter φ, and its time
complexity depends on both φ and α. Several subsequent
papers have improved the approximation factor or the time
complexity of their algorithm e.g. [18], [21], [23], [24],
[25]; we do not discuss these results here since they are
not directly relevant to this work.

B. Applications

An immediate consequence of our results is deterministic
algorithms for the Sparsest Cut and the Lowest-Conductance
Cut problems, summarized in the next theorem.

2To be precise, that version requires that |EG(A,B)| ≤ αφ ·VolG(B),
which is somewhat stronger than our requirement that |EG(A,B)| ≤ α ·
φ·Vol(G). But for all applications we consider, our guarantee still suffices,
possibly because the two guarantees are essentially the same when the cut
(A,B) is balanced.

Theorem 4. There is a deterministic algorithm, that,
given an n-vertex and m-edge graph G, and a param-
eter r ≤ O(log n), computes a (log n)r

2

-approximate
solution for the Sparsest Cut problem on G, in time
O
(
m1+O(1/r)+o(1) · (log n)O(r2)

)
. Similarly, there is a de-

terministic algorithm that achieves similar performance
guarantees for the Lowest-Conductance Cut problem.

We note that the best current deterministic approximation
algorithm for both Sparsest Cut and Lowest-Conductance
Cut, due to Arora, Rao and Vazirani [26], achieves an
O(
√

log n)-approximation. Unfortunately, the algorithm has
a large (but polynomially bounded) running time, since it
needs to solve an SDP deterministically. There are faster
O(log n)-approximation deterministic algorithms for both
the Sparsest Cut and the Lowest-Conductance problems,
with running time Õ(m2), that are based on the Multiplica-
tive Weights Update framework [27], [28]. If we allow the
approximation ratio to depend on φ, where φ is the value
of the optimal solution, then there are several algorithms
that are based on a spectral approach for both problems.
The algorithm of [29] computes a cut with conductance
at most O(φ1/2) in time Õ(nω). Using the Personalized
PageRank algorithm [21], a cut of conductance at most
O(φ1/2) can found in time Õ(mn). Recently, Gao et. al
[22] provided an algorithm to compute a cut of conductance
at most φ1/2no(1), in time O(m1.5+o(1)).3

Additionally, we obtain faster deterministic algorithms for
a number of other cut and flow problems; the performance of
our algorithms matches that of the best current randomized
algorithms, to within factor no(1). We summarize these
bounds in Table I and Table II. We now turn to discuss the
implications of our results to the Dynamic Connectivity
problem, which was one of the main motivations of this
work.

In the most basic version of the Dynamic Connectivity
problem, we are given a graph G that undergoes edge dele-
tions and insertions, and the goal is to maintain the informa-
tion of whether G is connected. The Dynamic Connectivity
problem and its generalizations – dynamic Spanning Forest
(SF) and dynamic Minimum Spanning Forest (MSF) – have
played a central role in the development of the area of
dynamic graph algorithms for over three decades (see, e.g.,
[15], [7] for further discussions).

An important measure of the performance of a dynamic
algorithm is its update time – the amount of time that is
needed in order to process each update (an insertion or
a deletion of an edge). We distinguish between amortized
update time, that upper-bounds the average time that the
algorithm spends on each update, and worst-case update
time, that upper-bounds the largest amount of time that the
algorithm ever spends on a single update.

3The last two algorithms, in fact, provide additional guarantees regarding
the balance of the returned cut.

Problem Best previous running time:
deterministic

Best previous running
time: randomized

Our results: deterministic

(1 + ε)-approximate undirected
max-flow/min-cut

Õ(mmin{m1/2, n2/3}) [30]
(exact)

Õ(mε−1) [31], [9], [25] Ô(mε−2)

no(1)-approximate sparsest cut Ô(m1.5) [22] Õ(m) [18], [8] Ô(m)

no(1)-approximate
lowest-conductance cut

Ô(m1.5) [22] Õ(m) [18], [8] Ô(m)

Expander decomposition
(conductance φ)

Ô(m1.5) [22] Õ(m/φ) [16]
Ô(m) [15], [14]

Ô(m)

Congestion approximator Ω(m2) Õ(m) [25], [8], [9] Ô(m)

Spectral sparsifiers O(mn3ε−2) [32], [33] Õ(mε−2) [34], [35] no(1)-approximation, time
Ô(m)

Laplacian solvers Õ(m1.31 log(1/ε)) [36] Õ(m log(1/ε)) [37] Ô(m log(1/ε))

Table I
APPLICATIONS OF OUR RESULTS TO STATIC GRAPH PROBLEMS. AS USUAL, n AND m DENOTE THE NUMBER OF NODES AND EDGES OF THE INPUT

GRAPH, RESPECTIVELY. WE USE Õ AND Ô NOTATION TO HIDE polylogn AND no(1) FACTORS RESPECTIVELY. FOR READABILITY, WE ASSUME THAT
THE WEIGHTS AND THE CAPACITIES OF EDGES ARE POLYNOMIAL IN THE PROBLEM SIZE.

Dynamic Problem Best previous worst-case update
time: deterministic

Best previous worst-case
update time: randomized

Our results:
deterministic

Connectivity O(
√
n) [19], [20]

O(
√
n · log logn√

logn
) [38]

O(log4 n) [39], [40] no(1)

Minimum Spanning Forest O(
√
n) [19], [20] no(1) [7] no(1)

Table II
APPLICATIONS OF OUR RESULTS TO DYNAMIC (UNDIRECTED) GRAPH PROBLEMS. AS BEFORE, n AND m DENOTE THE NUMBER OF VERTICES AND

EDGES OF THE INPUT GRAPH, RESPECTIVELY. FOR READABILITY, WE ASSUME THAT THE WEIGHTS AND THE CAPACITIES OF EDGES/NODES ARE
POLYNOMIAL IN PROBLEM SIZE.

The first non-trivial algorithm for the Dynamic Con-
nectivity problem dates back to Frederickson’s work from
1985 [19], that provided a deterministic algorithm with
O(
√
m) worst-case update time. Combining this algorithm

with the sparsification technique of Eppstein et al. [20] yields
a deterministic algorithm for Dynamic Connectivity with
O(
√
n) worst-case update time. Improving and refining this

bound has been an active research direction in the past
three decades, but unfortunately, practically all follow-up
results require either randomization or amortization. We now
provide a summary of these results.

• (Amortized & Randomized) In their 1995 break-
through paper, Henzinger and King [41] greatly im-
prove the O(

√
n) worst-case update bound with a

randomized Las Vegas algorithm, whose expected
amortized update time is poly log(n). This result has
been subsequently improved, and the current best
randomized algorithms have amortized update time
that almost matches existing lower bounds, to within
O((log log n)2) factors; see, e.g., [42], [43], [44], [45].

• (Amortized & Deterministic) Henzinger and King’s
1997 deterministic algorithm [46] achieves an amor-
tized update time of O(n1/3 log n). This was later
substantially improved to O(log2 n) amortized update

time by the deterministic algorithm of Holm, de Licht-
enberg, and Thorup [47]; this update time was in
turn later improved to O(log2(n)/ log log n) by Wulff-
Nilsen [48].

• (Worst-Case & Randomized) The first improvement
over the O(

√
n) worst-case update bound was due

to Kapron, King and Mountjoy [39], who provided
a randomized Monte Carlo algorithm with worst-case
update time O(log5 n). This bound was later im-
proved to O(log4 n) by Gibb et al. [40]. Subsequently,
Nanongkai, Saranurak, and Wulff-Nilsen [7], [14], [15]
presented a Las Vegas algorithm for the more general
dynamic MSF problem with no(1) worst-case update
time.

A major open problem that was raised repeatedly (see,
e.g., [39], [49], [38], [50], [51], [47], [14]) is: can we achieve
an O(n1/2−ε) worst-case update time with a deterministic
algorithm? The only progress so far on this question is the
deterministic algorithm of Kejlberg-Rasmussen et al. [38],
that slightly improves the O(

√
n) worst-case update time

bound to O(
√
n(log log n)2/ log n) using word-parallelism.

In this paper, we resolve this question in the affirmative, and
provide a somewhat stronger result, that holds for the more
general dynamic MSF problem:

Theorem 5. There are deterministic algorithms for Dy-
namic Connectivity and Dynamic MSF, with no(1) worst-
case update time.

In order to obtain this result, we use the algorithm of
Nanongkai, Saranurak, and Wulff-Nilsen [7] for dynamic
MSF. The only randomized component of their algorithm
is the computation of an expander decomposition of a given
graph. Since our results provide a fast deterministic algo-
rithm for computing expander decomposition, we achieve
the same no(1) worst-case update time as in [7] via a
deterministic algorithm.

C. Techniques

Our algorithm for the proof of Theorem 2 is based on
the cut-matching game framework that was introduced by
Khandekar, Rao and Vazirani [18], and has been used in
numerous algorithms for computing sparse cuts [18], [15],
[16], [22] and beyond (e.g. [52], [5], [53], [54]). Intuitively,
the cut-matching game consists of two algorithms: one
algorithm, called the cut player, needs to compute a balanced
cut of a given graph that has a small value, if such a cut
exists. The second algorithm, called the matching player,
needs to solve (possibly approximately) a single-commodity
maximum flow / minimum cut problem. A combination of
these two algorithms is then used in order to compute a
sparse cut in the input graph, or to certify that no such
cut exists. Unfortunately, all current algorithms for the cut
player are randomized. Our main technical contribution is
an efficient deterministic algorithm that implements the cut
player. The algorithm itself is recursive, and proceeds by
recursively running many cut-matching games in parallel, on
much smaller graphs. This requires us to adapt the algorithm
of the matching player, so that it solves a somewhat harder
multi-commodity flow problem. We now provide more de-
tails on the cut-matching game and on our implementation
of it.

Overview of the Cut-Matching Game: We start with a
high-level overview of a variant of the cut-matching game,
due to Khandekar et al. [55]. We say that a graph W is a
ψ-expander if it has no cut of sparsity less than ψ. We will
informally say that W is an expander if it is a ψ-expander
for some ψ = 1/no(1). Given a graph G = (V,E), the goal
of the cut-matching game is to either find a balanced and
sparse cut in G, or to embed an expander W = (V,E′)
(called a witness) into G; note that W and G are defined
over the same vertex set. The embedding of W into G needs
to map every edge e of W to a path Pe in G connecting
the endpoints of e. The congestion of this embedding is the
maximum number of paths in {Pe | e ∈ E(W)} that share
a single edge of G. We require that the congestion of the
resulting embedding is low. Such an embedding serves as
a certificate that there is no sparse balanced cut in G. This
follows from the fact that, if W is a ψ-expander, and it has

a low-congestion embedding into another graph G, then G
itself is a ψ′-expander, where ψ′ depends on ψ and on the
congestion of the embedding. The algorithm proceeds via
an interaction between two algorithms, the cut player, and
the matching player, and consists of O(log n) rounds.

At the beginning of every round, we are given a graph
W whose vertex set is V , and its embedding into G; at the
beginning of the first round, W contains the set V of vertices
and no edges. In every round, the cut player either:

(C1) “cuts W ”, by finding a balanced sparse cut S in W ; or
(C2) “certifies W ” by announcing that W is an expander.
If W is certified (Item (C2)), then we have constructed
the desired embedding of an expander into G, so we can
terminate the algorithm and certify that G has no balanced
sparse cut. If a cut S is found in W (Item (C1)), then we
invoke the matching player, who either:

(M1) “matches W ”, by adding to W a large matching M ⊆
S × (V \ S) that can be embedded into G with low
congestion; or

(M2) “cuts G”, by finding a balanced sparse cut T in G (the
cut T is intuitively what prevents the matching player
from embedding a large matching M ⊆ S × (V \ S)
into G).

If a sparse balanced cut T is found in graph G (Item (M2)),
then we return this cut and terminate the algorithm. Other-
wise, the game continues to the next round. It was shown in
[55] that the algorithm must terminate after Θ(log n) rounds.

In the original cut-matching game by Khandekar, Rao and
Vazirani [18], the matching player was implemented by an
algorithm that computes a single-commodity maximum flow
/ minimum cut. The algorithm for the cut player was defined
somewhat differently, in that in the case of Item (C1),
the cut that it produced was not necessarily sparse, but it
still had some useful properties, which guaranteed that the
algorithm terminates after O(log2 n) iterations. In order to
implement the cut player, the algorithm of [18] (implicitly)
considers n vectors of dimension n each, that represent the
probability distributions of random walks on the witness
graph, starting from different vertices of G, and then uses
a random projection of these vectors in order to construct
the balanced cut. The algorithm exploits the properties of
the witness graph in order to compute these projections
efficiently, without explicitly constructing these vectors,
which would be too time consuming. Previous work (see,
e.g., [16], [17]) implies that one can use algorithms for
computing maximal flows instead of maximum flows in
order to implement the matching player in near-linear time
deterministically, if the target parameters 1/φ, α ≤ no(1).
This still left open the question: can the cut player be
implemented via a deterministic and efficient algorithm?

A natural strategy for derandomizing the algorithm of
[18] for the cut player is to avoid the random projection
of the vectors. In a previous work of a subset of the authors

with Yingchareonthawornchai [22], this idea was used to
develop a fast PageRank-based algorithm for the cut player,
that can be viewed as a derandomization of the algorithm
of Andersen, Chung and Lang for balanced sparse cut [21].
Unfortunately, it appears that this technique cannot lead to an
algorithm whose running time is below Θ(n2): if we cannot
use random projections, then we need to deal with n vectors
of dimension n each when implementing the cut player,
and so the running time of Ω(n2) seems inevitable. In this
paper, we implement the cut player in a completely different
way from the previously used approaches, by solving the
balanced sparse cut problem recursively.

We start by observing that, in order to implement the cut
player via the approach of [55], it is sufficient to provide an
algorithm for computing a balanced sparse cut on the witness
graph W ; in fact, it is not hard to see that it is sufficient
to solve this problem approximately. However, this leads us
to a chicken-and-egg situation, where, in order to solve the
Minimum Balanced Cut problem on the input graph G,
we need to solve the Minimum Balanced Cut problem on
the witness graph W . While graph W is guaranteed to be
quite sparse (with maximum vertex degree O(log n)), it is
not clear that solving the Minimum Balanced Cut problem
on this graph is much easier.

This motivates our recursive approach, in which, in order
to solve the Minimum Balanced Cut problem on the
witness graph W , we run a large number of cut-matching
games in it simultaneously, each of which has a separate
witness graph, containing significantly fewer vertices. It
is then sufficient to solve the Minimum Balanced Cut
problem on each of the resulting, much smaller, witness
graphs. We prove the following theorem that provides a
deterministic algorithm for the cut player via this recursive
approach.

Theorem 6. There is an universal constant N0, and a deter-
ministic algorithm, that we call CUTORCERTIFY, that, given
an n-vertex graph G = (V,E) with maximum vertex degree
O(log n), and a parameter r ≥ 1, such that n1/r ≥ N0,
returns one of the following:

• either a cut (A,B) in G with |A|, |B| ≥ n/4 and
|EG(A,B)| ≤ n/100; or

• a subset S ⊆ V of at least n/2 vertices, such that
Ψ(G[S]) ≥ 1/ logO(r) n.

The running time of the algorithm is
O
(
n1+O(1/r) · (log n)O(r2)

)
.

We note that a somewhat similar recursive approach was
used before, e.g., in Madry’s construction of j-trees [56],
and in the recursive construction of short cycle decomposi-
tions [57], [58]. In fact, [22] use Madry’s j-trees to solve
Minimum Balanced Cut by running cut-matching games
on graphs containing fewer and fewer nodes, obtaining an
(m1.5+o(1))-time algorithm. Unfortunately, improving this

bound further does not seem viable via this approach, since
the total number of edges contained in the graphs that
belong to deeper recursive levels is very large. Specifically,
assume that we are given an n-node graph G with m edges,
together with a parameter k ≥ 1. We can then use the j-
trees in order to reduce the problem of computing Minimum
Balanced Cut on G to the problem of computing Minimum
Balanced Cut on k graphs, each of which contains roughly
n/k nodes. Unfortunately, each of these graphs may have
Ω(m) edges. Therefore, the total number of edges in all
resulting graphs may be as large as Ω(mk), which is one
of the major obstacles to obtaining faster algorithms for
Minimum Balanced Cut using j-trees.

We now provide a more detailed description of the new
recursive strategy that we use in order to prove Theorem 6.

New Recursive Strategy: We partition the vertices of
the input n-vertex graph G into k subsets V1, V2, . . . , Vk of
roughly equal cardinality, for a large enough parameter k
(for example, k = no(1)). The algorithm consists of two
stages. In the first stage, we attempt to construct k expander
graphs W1, . . . ,Wk, where V (Wi) = Vi for all 1 ≤ i ≤ k,
and embed them into the graph G simultaneously. If we fail
to do so, then we will compute a sparse balanced cut in G.
In order to do so, we run k cut-matching games in parallel.
Specifically, we start with every graph Wi containing the
set Vi of vertices and no edges, and then perform O(log n)
iterations. In every iteration, we run the CUTORCERTIFY
algorithm on each graph W1, . . . ,Wk in parallel. Assume
that for all 1 ≤ i ≤ k, the algorithm returns a sparse
balanced cut (Ai, Bi) in Wi. We then use an algorithm
of the matching player, that either computes, for each
1 ≤ i ≤ k, a matching Mi between vertices of Ai and Bi,
and computes a low-congestion embedding of all matchings
M1, . . . ,Mk into graph G simultaneously, or it returns a
sparse balanced cut in G. In the former case, we augment
each graph Wi by adding the set Mi of edges to it. In the
latter case, we terminate the algorithm and return the sparse
balanced cut in graph G as the algorithm’s output. If the
algorithm never terminates with a sparse balanced cut, then
we are guaranteed that, after O(log n) iterations, the graphs
W1, . . . ,Wk are all expanders (more precisely, each of these
graphs contains a large enough expander, but we ignore this
technicality in this informal overview), and moreover, we
obtain a low-congestion embedding of the disjoint union
of these graphs into G. Note that, in order to execute this
stage, we recursively apply algorithm CUTORCERTIFY to k
graphs, whose sizes are significantly smaller than the size
of the graph G.

In the second stage, we attempt to construct a single ex-
pander graph W ∗ on the set {v1, . . . , vk} of vertices, where
for each 1 ≤ i ≤ k, we view vertex vi as representing the
set Vi of vertices of G. We also attempt to embed the graph
W ∗ into G, where every edge e = (vi, vj) is embedded into
Ω(n/k) paths connecting vertices of Vi to vertices of Vj . In

order to do so, we start with the graph W ∗ containing the
set {v1, . . . , vk} of vertices and no edges and then iterate.
In every iteration, we run algorithm CUTORCERTIFY on
the current graph W ∗, obtaining a partition (A,B) of its
vertices. We then use an algorithm of the matching player
in order to compute a matching M between vertices of A
and vertices of B, and to embed every edge (vi, vj) ∈ M
of the matching into Ω(n/k) paths connecting vertices of Vi
to vertices of Vj in graph G, with low congestion. If we do
not succeed in computing the matching and the embedding,
then the algorithm of the matching player returns a sparse
balanced cut in graph G. We then terminate the algorithm
and return this cut as the algorithm’s output. Otherwise, we
add the edges of M to graph W ∗ and continue to the next
iteration. The algorithm terminates once graph W ∗ is an
expander, which must happen after O(log n) iterations.

Lastly, we compose the expanders W1, . . . ,Wk and W ∗

in order to obtain an expander graph Ŵ that embeds into
G with low congestion; the embedding is obtained by
combining the embeddings of the graphs W1, . . . ,Wk and
the embedding of graph W ∗. This serves as a certificate that
G is an expander graph.

Note that the algorithm for the matching player that
we need to use differs from the standard one in that it
needs to compute k different matchings between k dif-
ferent pre-specified pairs of vertex subsets. Specifically,
the algorithm for the matching player is given k pairs
(A1, B1), . . . , (Ak, Bk) of subsets of vertices of G of equal
cardinality. Ideally, we would like the algorithm to either
(i) compute, for all 1 ≤ i ≤ k, a perfect matching Mi

between vertices of Ai and vertices of Bi, and embed all
edges of M1 ∪ · · · ∪Mk into G simultaneously with low
congestion; or (ii) compute a sparse balanced cut in G.
In fact our algorithm for the matching player achieves a
somewhat weaker objective: namely, the matchings Mi are
not necessarily perfect matchings, but they are sufficiently
large. In order to overcome this difficulty, we introduce
“fake” edges that augment each matching Mi to a perfect
matching. As a result, if the algorithm fails to compute a
sparse balanced cut in G, then we are only guaranteed that
G ∪ F is an expander, where F is (a relatively small) set
of fake edges. We then use a known “expander trimming”
algorithm of [16] in order to find a large subset S ⊆ V (G)
of vertices, such that G[S] is an expander, and the cut S
is sufficiently sparse. We note that the notion of fake edges
was used before in the context of the cut-matching game,
e.g. in [18].

The algorithm of the matching player builds on the idea
of Chuzhoy and Khanna [17] of computing maximal sets
of short edge-disjoint paths, which can be implemented
efficiently via Even-Shiloach’s algorithm for decremen-
tal single-source shortest paths [59]. Unfortunately, this
approach results in a somewhat slower running time of

O
(
m1+O(1/r) · (logm)O(r2)/φ2

)
, introducing a quadratic

dependence on 1/φ, where φ is the conductance parameter.
The expander trimming algorithm of [16] that is exploited
by the cut player also unfortunately introduces a linear
dependence on 1/φ in the running time. As a result, we
obtain an algorithm for the BalCutPrune problem that is
sufficiently fast in the high-conductance regime, that is,
where φ = 1/poly log n, but is too slow for the setting where
the parameter φ is low. Luckily, the high-conductance regime
is sufficient for many of our applications, and in particular
it allows us to obtain efficient approximation algorithms for
maximum flow. This algorithm can then in turn be used
in order to implement the matching player, even in the
low-conductance regime, removing the dependence of the
algorithm’s running time on φ. Additional difficulty for the
low-conductance regime is that we can no longer afford to
use the expander trimming algorithm of [16]. Instead, we
provide an efficient deterministic bi-criteria approximation
algorithm for the most-balanced sparsest cut problem, and
use this algorithm in order to solve the BalCutPrune
problem in the low-conductance regime. This part closely
follows ideas of [15], [14], [17], [60].

Due to lack of space, all formal proofs and further details
are deferred to the full version of the paper, that is available
at https://arxiv.org/abs/1910.08025.

II. OPEN PROBLEMS

A very interesting remaining open problem is to ob-
tain deterministic algorithms for Minimum Balanced Cut,
Sparsest Cut and Lowest-Conductance Cut, that achieve
a polylogarithmic approximation ratio, with running time
O(m1+o(1)). It would also be interesting to obtain deter-
ministic no(1)-approximation algorithms for these problems
with running time Õ(m). The latter result would imply a
near-linear time deterministic algorithm for computing an
expander decompositions, matching the performance of the
best current randomized algorithm of [16]).

It is typically desirable for a dynamic graph algorithm
to have worst-case update time O(poly log n), where n is
the number of vertices of the input graph. Our result for
dynamic connectivity (Theorem 5) only guarantees no(1)

worst-case update time, leaving the question of designing
a deterministic algorithm with O(poly log n) worst-case up-
date time for dynamic connectivity as a major open problem.
In fact, it would even be interesting to achieve such bounds
with a Las Vegas randomized algorithm. It would also be
interesting to design a Monte Carlo randomized algorithm
for maintaining a spanning forest with O(poly log n) worst-
case update time, that does rely on the so-called oblivious
adversary assumption.4 We remark that even if one can
implement an algorithm for Theorem 2 with running time

4It was shown by Kapron et al. [39], that a spanning forest can be
maintained in O(poly logn) worst case update time by a Monte Carlo
randomized algorithm under the oblivious adversary assumption.

https://arxiv.org/abs/1910.08025

Õ(m) and approximation factor O(polylogn), this would
not immediately imply any of the above goals. The reason is
that there are several additional components in the algorithm
of Nanongkai et al. [7] that each incur the no(1) factor in
the update time.

Our deterministic algorithm for spectral sparsifiers only
achieves a factor no(1)-approximation. It is an intriguing
open question whether (1 + ε)-approximate cut/spectral
sparsifiers can be computed deterministically in almost-
linear time. It is also interesting whether there is a de-
terministic O(

√
log n)-approximation algorithm for Lowest-

Conductance Cut, whose running time matches that of
the best currently known randomized algorithm, which is
O(m1+ε), for any constant ε > 0 [61]. We believe that
resolving both questions would require significantly new
ideas.

ACKNOWLEDGEMENTS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme under grant agree-
ment No 715672. Nanongkai was also partially supported
by the Swedish Research Council (Reg. No. 2015-04659).
Chuzhoy was supported in part by NSF grant CCF-1616584.
Gao and Peng were supported in part by NSF grant CCF-
1718533. Li was supported in part by NSF award CCF-
1907820.

REFERENCES

[1] H. Räcke, “Minimizing congestion in general networks,” in
43rd Symposium on Foundations of Computer Science (FOCS
2002), 16-19 November 2002, Vancouver, BC, Canada, Pro-
ceedings, 2002, pp. 43–52.

[2] D. A. Spielman and S. Teng, “Nearly-linear time algorithms
for graph partitioning, graph sparsification, and solving linear
systems,” in STOC. ACM, 2004, pp. 81–90.

[3] L. Trevisan, “Approximation algorithms for unique games,” in
46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’05). IEEE, 2005, pp. 197–205.

[4] S. Arora, E. Hazan, and S. Kale, “O(
√

logn) approximation
to SPARSEST CUT in Õ(n2) time,” SIAM J. Comput.,
vol. 39, no. 5, pp. 1748–1771, 2010. [Online]. Available:
https://doi.org/10.1137/080731049

[5] H. Räcke, C. Shah, and H. Täubig, “Computing cut-based
hierarchical decompositions in almost linear time,” in Pro-
ceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, 2014, pp. 227–238. [Online]. Available:
https://doi.org/10.1137/1.9781611973402.17

[6] K. Kawarabayashi and M. Thorup, “Deterministic edge
connectivity in near-linear time,” J. ACM, vol. 66, no. 1, pp.
4:1–4:50, 2019. [Online]. Available: https://doi.org/10.1145/
3274663

[7] D. Nanongkai, T. Saranurak, and C. Wulff-Nilsen, “Dynamic
minimum spanning forest with subpolynomial worst-case
update time,” in FOCS. IEEE Computer Society, 2017, pp.
950–961.

[8] J. Sherman, “Nearly maximum flows in nearly linear time,”
in FOCS. IEEE Computer Society, 2013, pp. 263–269.

[9] J. A. Kelner, Y. T. Lee, L. Orecchia, and A. Sidford, “An
almost-linear-time algorithm for approximate max flow in
undirected graphs, and its multicommodity generalizations,”
in Proceedings of the Twenty-Fifth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA 2014, Portland, Ore-
gon, USA, January 5-7, 2014, 2014, pp. 217–226.

[10] R. Peng, “Approximate undirected maximum flows in
O(mpoly log(n)) time,” in Proceedings of the Twenty-
Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2016, Arlington, VA, USA, January
10-12, 2016, 2016, pp. 1862–1867. [Online]. Available:
https://doi.org/10.1137/1.9781611974331.ch130

[11] R. Kyng, R. Peng, S. Sachdeva, and D. Wang, “Flows
in almost linear time via adaptive preconditioning,” in
Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019., 2019, pp. 902–913. [Online]. Available:
https://doi.org/10.1145/3313276.3316410

[12] M. B. Cohen, A. Madry, P. Sankowski, and A. Vladu,
“Negative-weight shortest paths and unit capacity minimum
cost flow in Õ(m10/7 logW) time (extended abstract),” in
SODA. SIAM, 2017, pp. 752–771.

[13] A. Madry, “Computing maximum flow with augmenting
electrical flows,” in FOCS. IEEE Computer Society, 2016,
pp. 593–602.

[14] C. Wulff-Nilsen, “Fully-dynamic minimum spanning forest
with improved worst-case update time,” in Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, 2017, pp. 1130–1143. [Online]. Available:
https://doi.org/10.1145/3055399.3055415

[15] D. Nanongkai and T. Saranurak, “Dynamic spanning forest
with worst-case update time: adaptive, Las Vegas, and
O(n1/2−ε)-time,” in Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2017,
Montreal, QC, Canada, June 19-23, 2017, 2017, pp. 1122–
1129. [Online]. Available: https://doi.org/10.1145/3055399.
3055447

[16] T. Saranurak and D. Wang, “Expander decomposition and
pruning: Faster, stronger, and simpler,” in SODA. SIAM,
2019, pp. 2616–2635.

[17] J. Chuzhoy and S. Khanna, “A new algorithm for decremen-
tal single-source shortest paths with applications to vertex-
capacitated flow and cut problems,” in STOC. ACM, 2019,
pp. 389–400.

[18] R. Khandekar, S. Rao, and U. V. Vazirani, “Graph
partitioning using single commodity flows,” J. ACM,
vol. 56, no. 4, pp. 19:1–19:15, 2009. [Online]. Available:
https://doi.org/10.1145/1538902.1538903

https://doi.org/10.1137/080731049
https://doi.org/10.1137/1.9781611973402.17
https://doi.org/10.1145/3274663
https://doi.org/10.1145/3274663
https://doi.org/10.1137/1.9781611974331.ch130
https://doi.org/10.1145/3313276.3316410
https://doi.org/10.1145/3055399.3055415
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1145/1538902.1538903

[19] G. N. Frederickson, “Data structures for on-line updating
of minimum spanning trees, with applications,” SIAM J.
Comput., vol. 14, no. 4, pp. 781–798, 1985, announced
at STOC’83. [Online]. Available: http://dx.doi.org/10.1137/
0214055

[20] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig,
“Sparsification - a technique for speeding up dynamic graph
algorithms,” J. ACM, vol. 44, no. 5, pp. 669–696, 1997.

[21] R. Andersen, F. R. K. Chung, and K. J. Lang, “Using
pagerank to locally partition a graph,” Internet Mathematics,
vol. 4, no. 1, pp. 35–64, 2007. [Online]. Available:
https://doi.org/10.1080/15427951.2007.10129139

[22] Y. Gao, J. Li, D. Nanongkai, R. Peng, T. Saranurak, and
S. Yingchareonthawornchai, “Deterministic graph cuts in
subquadratic time: Sparse, balanced, and k-vertex,” arXiv
preprint arXiv:1910.07950, 2019.

[23] L. Orecchia and N. K. Vishnoi, “Towards an sdp-based
approach to spectral methods: A nearly-linear-time algorithm
for graph partitioning and decomposition,” in Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2011, San Francisco, California,
USA, January 23-25, 2011, 2011, pp. 532–545. [Online].
Available: https://doi.org/10.1137/1.9781611973082.42

[24] L. Orecchia, S. Sachdeva, and N. K. Vishnoi, “Approximating
the exponential, the lanczos method and an õ(m)-time spectral
algorithm for balanced separator,” in Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012,
New York, NY, USA, May 19 - 22, 2012, 2012, pp. 1141–1160.
[Online]. Available: https://doi.org/10.1145/2213977.2214080

[25] A. Madry, “Faster approximation schemes for fractional
multicommodity flow problems via dynamic graph
algorithms,” in Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, 2010, pp. 121–130.
[Online]. Available: https://doi.org/10.1145/1806689.1806708

[26] S. Arora, S. Rao, and U. V. Vazirani, “Expander flows,
geometric embeddings and graph partitioning,” J. ACM,
vol. 56, no. 2, pp. 5:1–5:37, 2009. [Online]. Available:
https://doi.org/10.1145/1502793.1502794

[27] L. Fleischer, “Approximating fractional multicommodity
flow independent of the number of commodities,” SIAM
J. Discrete Math., vol. 13, no. 4, pp. 505–520, 2000,
announced at FOCS’99. [Online]. Available: https://doi.org/
10.1137/S0895480199355754

[28] G. Karakostas, “Faster approximation schemes for fractional
multicommodity flow problems,” ACM Trans. Algorithms,
vol. 4, no. 1, pp. 13:1–13:17, 2008. [Online]. Available:
https://doi.org/10.1145/1328911.1328924

[29] N. Alon, “Eigenvalues and expanders,” Combinatorica,
vol. 6, no. 2, pp. 83–96, 1986. [Online]. Available:
https://doi.org/10.1007/BF02579166

[30] A. V. Goldberg and S. Rao, “Beyond the flow decomposition
barrier,” J. ACM, vol. 45, no. 5, pp. 783–797, 1998. [Online].
Available: https://doi.org/10.1145/290179.290181

[31] J. Sherman, “Area-convexity, l∞ regularization, and
undirected multicommodity flow,” in Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, 2017, pp. 452–460. [Online]. Available:
https://doi.org/10.1145/3055399.3055501

[32] J. Batson, D. A. Spielman, and N. Srivastava, “Twice-
Ramanujan sparsifiers,” SIAM Journal on Computing, vol. 41,
no. 6, pp. 1704–1721, 2012.

[33] M. K. de Carli Silva, N. J. A. Harvey, and C. M. Sato,
“Sparse sums of positive semidefinite matrices,” ACM Trans.
Algorithms, vol. 12, no. 1, pp. 9:1–9:17, 2016. [Online].
Available: https://doi.org/10.1145/2746241

[34] D. A. Spielman and S. Teng, “Spectral sparsification of
graphs,” SIAM J. Comput., vol. 40, no. 4, pp. 981–1025,
2011. [Online]. Available: https://doi.org/10.1137/08074489X

[35] Y. T. Lee and H. Sun, “An sdp-based algorithm for
linear-sized spectral sparsification,” in Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June
19-23, 2017, 2017, pp. 678–687. [Online]. Available:
https://doi.org/10.1145/3055399.3055477

[36] D. A. Spielman and S. Teng, “Solving sparse, symmetric,
diagonally-dominant linear systems in time 0(m1.31),” in
44th Symposium on Foundations of Computer Science
(FOCS 2003), 11-14 October 2003, Cambridge, MA,
USA, Proceedings, 2003, pp. 416–427. [Online]. Available:
https://doi.org/10.1109/SFCS.2003.1238215

[37] ——, “Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems,”
SIAM J. Matrix Analysis Applications, vol. 35, no. 3, pp. 835–
885, 2014.

[38] C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie, and
M. Thorup, “Faster worst case deterministic dynamic
connectivity,” in 24th Annual European Symposium on
Algorithms, ESA 2016, August 22-24, 2016, Aarhus,
Denmark, 2016, pp. 53:1–53:15. [Online]. Available: https:
//doi.org/10.4230/LIPIcs.ESA.2016.53

[39] B. M. Kapron, V. King, and B. Mountjoy, “Dynamic
graph connectivity in polylogarithmic worst case time,”
in Proceedings of the Twenty-Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2013, New
Orleans, Louisiana, USA, January 6-8, 2013, 2013, pp.
1131–1142. [Online]. Available: https://doi.org/10.1137/1.
9781611973105.81

[40] D. Gibb, B. M. Kapron, V. King, and N. Thorn, “Dynamic
graph connectivity with improved worst case update time
and sublinear space,” CoRR, vol. abs/1509.06464, 2015.
[Online]. Available: http://arxiv.org/abs/1509.06464

[41] M. R. Henzinger and V. King, “Randomized fully dynamic
graph algorithms with polylogarithmic time per operation,”
J. ACM, vol. 46, no. 4, pp. 502–516, 1999, announced at
STOC 1995. [Online]. Available: http://doi.acm.org/10.1145/
320211.320215

http://dx.doi.org/10.1137/0214055
http://dx.doi.org/10.1137/0214055
https://doi.org/10.1080/15427951.2007.10129139
https://doi.org/10.1137/1.9781611973082.42
https://doi.org/10.1145/2213977.2214080
https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1145/1502793.1502794
https://doi.org/10.1137/S0895480199355754
https://doi.org/10.1137/S0895480199355754
https://doi.org/10.1145/1328911.1328924
https://doi.org/10.1007/BF02579166
https://doi.org/10.1145/290179.290181
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1145/2746241
https://doi.org/10.1137/08074489X
https://doi.org/10.1145/3055399.3055477
https://doi.org/10.1109/SFCS.2003.1238215
https://doi.org/10.4230/LIPIcs.ESA.2016.53
https://doi.org/10.4230/LIPIcs.ESA.2016.53
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1137/1.9781611973105.81
http://arxiv.org/abs/1509.06464
http://doi.acm.org/10.1145/320211.320215
http://doi.acm.org/10.1145/320211.320215

[42] S.-E. Huang, D. Huang, T. Kopelowitz, and S. Pettie, “Fully
dynamic connectivity in o(logn(log logn)2) amortized ex-
pected time,” in SODA, 2017.

[43] M. Thorup, “Near-optimal fully-dynamic graph connectivity,”
in Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR,
USA, F. F. Yao and E. M. Luks, Eds. ACM, 2000,
pp. 343–350. [Online]. Available: http://doi.acm.org/10.1145/
335305.335345

[44] M. R. Henzinger and M. Thorup, “Sampling to provide or to
bound: With applications to fully dynamic graph algorithms,”
Random Struct. Algorithms, vol. 11, no. 4, pp. 369–379,
1997. [Online]. Available: http://dx.doi.org/10.1002/(SICI)
1098-2418(199712)11:4〈369::AID-RSA5〉3.0.CO;2-X

[45] M. Patrascu and E. D. Demaine, “Logarithmic lower
bounds in the cell-probe model,” SIAM J. Comput.,
vol. 35, no. 4, pp. 932–963, 2006, announced at SODA’04
and STOC’04. [Online]. Available: http://dx.doi.org/10.1137/
S0097539705447256

[46] M. R. Henzinger and V. King, “Maintaining minimum span-
ning trees in dynamic graphs,” in ICALP, ser. Lecture Notes
in Computer Science, vol. 1256. Springer, 1997, pp. 594–
604.

[47] J. Holm, K. de Lichtenberg, and M. Thorup, “Poly-
logarithmic deterministic fully-dynamic algorithms for
connectivity, minimum spanning tree, 2-edge, and
biconnectivity,” J. ACM, vol. 48, no. 4, pp. 723–760,
2001, announced at STOC 1998. [Online]. Available:
http://doi.acm.org/10.1145/502090.502095

[48] C. Wulff-Nilsen, “Faster deterministic fully-dynamic graph
connectivity,” in Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, 2013, pp.
1757–1769. [Online]. Available: http://dx.doi.org/10.1137/1.
9781611973105.126

[49] M. Patrascu and M. Thorup, “Planning for fast connectivity
updates,” in FOCS. IEEE Computer Society, 2007, pp. 263–
271.

[50] V. King, “Fully dynamic connectivity,” in Encyclopedia of
Algorithms, 2016, pp. 792–793.

[51] ——, “Fully dynamic connectivity,” in Encyclopedia of Al-
gorithms. Springer, 2008.

[52] C. Chekuri and J. Chuzhoy, “Large-treewidth graph
decompositions and applications,” in Symposium on Theory
of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, 2013, pp. 291–300. [Online]. Available:
https://doi.org/10.1145/2488608.2488645

[53] ——, “Polynomial bounds for the grid-minor theorem,”
J. ACM, vol. 63, no. 5, pp. 40:1–40:65, 2016. [Online].
Available: https://doi.org/10.1145/2820609

[54] J. Chuzhoy and S. Li, “A polylogarithmic approximation
algorithm for edge-disjoint paths with congestion 2,” J. ACM,
vol. 63, no. 5, pp. 45:1–45:51, 2016. [Online]. Available:
https://doi.org/10.1145/2893472

[55] R. Khandekar, S. Khot, L. Orecchia, and N. K. Vishnoi, “On
a cut-matching game for the sparsest cut problem,” Univ.
California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-2007-
177, 2007.

[56] A. Madry, “Fast approximation algorithms for cut-based
problems in undirected graphs,” in FOCS. IEEE Computer
Society, 2010, pp. 245–254.

[57] T. Chu, Y. Gao, R. Peng, S. Sachdeva, S. Sawlani, and
J. Wang, “Graph sparsification, spectral sketches, and faster
resistance computation, via short cycle decompositions,”
in 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, 2018, pp. 361–372. [Online]. Available: https:
//doi.org/10.1109/FOCS.2018.00042

[58] Y. P. Liu, S. Sachdeva, and Z. Yu, “Short cycles via low-
diameter decompositions,” in SODA. SIAM, 2019, pp. 2602–
2615.

[59] S. Even and Y. Shiloach, “An on-line edge-deletion problem,”
Journal of the ACM (JACM), vol. 28, no. 1, pp. 1–4, 1981.

[60] Y. Chang and T. Saranurak, “Improved distributed expander
decomposition and nearly optimal triangle enumeration,” in
Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019., 2019, pp. 66–73. [Online].
Available: https://doi.org/10.1145/3293611.3331618

[61] J. Sherman, “Breaking the multicommodity flow barrier for
O(
√

logn)-approximations to sparsest cut,” in 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS
2009, October 25-27, 2009, Atlanta, Georgia, USA, 2009, pp.
363–372.

http://doi.acm.org/10.1145/335305.335345
http://doi.acm.org/10.1145/335305.335345
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1098-2418(199712)11:4<369::AID-RSA5>3.0.CO;2-X
http://dx.doi.org/10.1137/S0097539705447256
http://dx.doi.org/10.1137/S0097539705447256
http://doi.acm.org/10.1145/502090.502095
http://dx.doi.org/10.1137/1.9781611973105.126
http://dx.doi.org/10.1137/1.9781611973105.126
https://doi.org/10.1145/2488608.2488645
https://doi.org/10.1145/2820609
https://doi.org/10.1145/2893472
https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1145/3293611.3331618

