
New Hardness Results for Undirected Edge Disjoint Paths

Julia Chuzhoy∗ Sanjeev Khanna†

July 2005

Abstract

In the edge-disjoint paths (EDP) problem, we are given a graph G and a set of source-sink pairs in G.
The goal is connect as many pairs as possible in an edge-disjoint manner. This problem is NP-hard and
the best known approximation algorithm gives an Õ(min{n2/3,

√
m})-approximation for both directed

and undirected graphs; here n and m denote the number of vertices and edges in G respectively. For
directed graphs, this result is tight as a function of m since it is known that directed EDP is NP-hard to
approximate to within Ω(m1/2−ε) for any ε > 0. However, for undirected graphs, until recently nothing
better than APX-hardness was known. In a significant improvement, Andrews and Zhang [1] showed that
undirected EDP is Ω(log1/3−ε n)-hard to approximate unless NP is contained in ZPTIME(npolylog(n)).

In this paper, we improve the hardness result of [1] as well as obtain the first polylogarithmic inte-
grality gaps and hardness results for undirected EDP when congestion is allowed. A solution to EDP
has congestion c if we allow up to c paths to share an edge. When no congestion is allowed, we establish
an Ω(log1/2−ε n)-hardness for EDP. With congestion c, we show that the natural multicommodity flow
relaxation of EDP has an Ω((log n

(log log n)2
)1/(c+1)/c) integrality gap. Finally, we show that it is possible to

obtain a hardness result that is comparable to the integrality gap. In particular, we show that EDP is

Ω
(

(log n)(1−ε)/(3
2

c+ 1
2
)
)

-hard to approximate for any constant ε > 0, when congestion c is allowed, for any

c = o(log log n)/(log log log n)2, such that c = 2z − 1 for some integer z. We also obtain super-constant
hardness when c is as large as O(log log n)/(log log log n)2.

Similar results can be obtained for the All-or-Nothing flow problem, a relaxation of EDP in that the
unit flow between each routed source-sink pair does not have to be on a single path. Using standard
transformations, these results can also be extended to the node-disjoint versions of these problems as
well as to the directed setting.

1 Introduction

We study the approximability of the edge-disjoint paths (EDP) problem. We are given a graph G = (V,E)
and a set {(s1, t1), (s2, t2), . . . , (sk, tk)} of pairs of vertices. The objective is to connect as many pairs as
possible via edge-disjoint paths. Even highly restricted cases of EDP correspond to well-studied important
optimization problems. For instance, EDP on trees of height one is equivalent to the graph matching
problem. EDP and its variants also have a host of applications to network routing, resource allocation, and
VLSI design. It is then not surprising that EDP is one of the most well-studied problems in combinatorial
optimization. In directed graphs, the problem becomes NP-hard even when we are given only two source-sink
pairs [15]. In undirected graphs, the seminal work of Robertson and Seymour [29] gives a polynomial time
algorithm for any constant number of pairs. These results are suggestive of the inherent differences between
undirected and directed versions of the EDP. However, the tractability of undirected EDP with constant
number of pairs does not hold once the number of pairs is allowed to grow as a function of the input size.
In particular, the problem is NP-hard even on planar graphs [16].

Consequently, much of the recent work on EDP has focused on understanding the polynomial-time
approximability of the problem. While constant or poly-logarithmic approximation algorithms are known

∗Laboratory for Computer Science, MIT, Cambridge, MA and Dept. of CIS, University of Pennsylvania, Philadelphia, PA.

Email: cjulia@csail.mit.edu
†Dept. of CIS, University of Pennsylvania, Philadelphia PA. Email: sanjeev@cis.upenn.edu. Supported in part by an NSF

Career Award CCR-0093117.

1

for restricted classes of graphs such as trees, meshes, and expanders [3, 12, 14, 17, 22, 23], the approximability
of EDP in general graphs is not well understood. The best approximation algorithm for EDP in directed
graphs has a ratio of Õ(min(n2/3,

√
m)) [11, 24, 27, 31, 32] where n and m denote the number of vertices and

edges respectively in the input graph. For undirected graphs and directed acyclic graphs, this factor improves
to an O(

√
n)-approximation ratio [9]. In directed graphs, this is matched by an Ω(m1/2−ε)-hardness due to

Guruswami et al. [18]. In contrast, only APX-hardness was known for undirected EDP until recently when

Andrews and Zhang [1], in a significant progress, obtained an Ω(log1/3−ε n) hardness, assuming NP is not
contained in ZPTIME(npolylog(n)).

A related problem is the all-or-nothing (ANF) flow problem where for each routed pair, it suffices to
provide a unit of flow. Thus ANF is a relaxation of EDP. Recent work has shown that in undirected graphs,
ANF is O(log2 n)-approximable [6, 8]. The Ω(log1/3−ε n) hardness result in [1] extends to ANF as well.

Overview of Results and Techniques: In this paper, we focus on the approximability of EDP and

ANF in undirected graphs. Our first result is an Ω(log
1
2−ε n) hardness of approximation for undirected edge

disjoint paths (for any ε > 0). This hardness result also holds for the All-or-Nothing flow problem. Our
proof uses the framework of [1]. However, our construction directly works with the PCP characterization of
NP due to [30], avoiding the intermediate step taken by [1] of creating an independent set instance. The
high-level idea of the hardness reduction, based on framework in [1], is as following. Given an instance φ of
3SAT, we construct a graph Gφ which contains a sufficiently large collection of edge-disjoint paths for each
accepting configuration u of the verifier on φ. These paths are referred to as the canonical paths of u. The
canonical path collections for any two accepting configurations u and v that disagree on some proof bit are
made to “randomly intersect” with each other to encode this conflict. The random intersections ensure that
the resulting graph has “high girth”. The graph Gφ serves as the input graph for an EDP instance and the
source-sink pairs are simply the end-points of the canonical path collections. The pairs that are routed along
canonical paths conflict with high probability whenever the underlying configurations are in conflict with
each other. However, these conflicts can be avoided if pairs choose paths that are not canonical. The high
girth property ensures that on average, a non-canonical path is much longer than a canonical path and thus
consumes much more of the routing capacity of the graph. As a result, whenever φ is not satisfiable, with
high probability, a much smaller fraction of pairs can be routed in the graph Gφ. In particular, we establish
the following theorem:

Theorem 1 Undirected EDP and ANF are Ω(log1/2−ε n)-hard to approximate unless NP is contained in
ZPTIME(npolylog(n)).

We next consider the relaxation of the EDP where we allow each edge to be shared by a small number
of paths, say, c. We notice that EDP with congestion is usually considered in a bi-criteria setting, where
the performance of an algorithm is compared to an optimal solution to EDP with congestion 1 on edges. It
is known that the integrality gap of the multicommodity flow relaxation can be bounded by O(n1/c) (even
in directed graphs) for any constant congestion c ≥ 2 [4, 5, 27]. The integrality gap reduces to a constant
when congestion is allowed to be O(log n/ log log n) [28]. In planar graphs, when congestion 2 is allowed,
the integrality has recently shown to be bounded by O(log n) [7, 8]. On the negative side, it is known that
with c = 1, the multicommodity flow relaxation has an integrality gap of Ω(

√
n) even in planar graphs [17].

However, no superconstant lower bounds on the integrality gap of the multicommodity flow relaxation were
known so far, even for c = 2. We resolve this question by establishing the following:

Theorem 2 For any congestion 2 ≤ c ≤ O(log log n/ log log log n), the integrality gap of undirected EDP
is Ω((log n

(log log n)2)1/(c+1)/c). For ANF, the integrality gap with congestion c is Ω((log n
(log log n)2)1/(c+1)/c2). In

particular, for c = O((log log n)/(log log log n)2), integrality gaps for both problems are superconstant.

We note that an immediate consequence of Theorem 2 is that for any integer i, the gap between 1/i-
integral multicommodity flow (i.e. each flow path carries an integral multiple of 1/i units of flow) and
fractional multicommodity flow is super-constant in undirected graphs. To our knowledge, prior to our
work, it was not known if there was a superconstant gap even between half-integral flow and fractional flow

2

in directed or undirected graphs. The instances used in establishing the integrality gap have a surprisingly
simple structure.

Our final result shows hardness of approximation bounds similar to above integrality gaps.

Theorem 3 For any ε > 0 and congestion c = 2z − 1 ≤ o(log log n/(log log log n)2) for some positive

integer z, undirected EDP and ANF are Ω
(

log(1−ε)/(3
2 c+ 1

2) n
)

-hard to approximate unless NP is contained

in ZPTIME(npolylog(n)). Moreover, EDP with congestion c is hard to approximate up to some super-constant
factor, even for c = O(log log n/(log log log n)2).

We note that standard transformations allow us to get matching results for the corresponding node-
disjoint version of these problems (an undirected edge-problem can be reduced to an undirected node-problem
by working on the line graph of the edge-problem).

We have very recently learnt that two other groups [2, 19] have independently discovered results that are
similar to Theorem 2 and Theorem 3 above.

Organization: We start by reviewing the parameters of Samorodnitsky-Trevisan PCP construction in
Section 2. In Section 3, we establish Theorem 1. Section 4 presents the family of instances that establish
Theorem 2. Finally, we establish Theorem 3 in Section 5.

2 Starting Point: A PCP Result

Our starting point is a PCP characterization of NP, proved by Samorodnitsky and Trevisan in [30]. We
briefly summarize the construction here; more details can be found in the appendix. Let φ be an instance of
3SAT on n variables. For any constant k > 0, the ST construction gives a PCP verifier that uses r = O(log n)
random bits to generate q = k2 locations to probe in the proof. The verifier reads these q bits in the given
proof Π and decides whether or not φ is satisfiable. Given a random string r of the verifier, let b1(r), . . . , bq(r)
be the indices of the proof bits read. A configuration is (r, a1, . . . , aq), where a1, . . . , aq ∈ {0, 1} are values
of Πb1(r), . . . ,Πbq(r). We say that a configuration (r, a1, . . . , aq) is accepting, if, for a random string r of
the verifier and the values a1, . . . , aq of proof bits Πb1(r), . . . ,Πbq(r), the verifier accepts. If φ is a Yes-

Instance (i.e., φ is satisfiable), there exists a proof Π such that the probability that the verifier accepts
is at least 1/2. Otherwise, if φ is a No-Instance (i.e., it is non-satisfiable), for all proofs Π, the verifier

accepts with probability at most 2−k2

. Abusing the notation, we will denote by r both the random string of
the verifier and the number of random bits (i.e., the length of the string).

For our reductions, we would assume that this protocol is independently repeated λ = 2β log log n
k2 =

O(log log n) times where β >> k2 is a large constant. The verifier now accepts iff the original verifier accepts
in each protocol repetition. The resulting PCP has the following properties:

• Random Bits: λr = O(log n log log n). Let R denote the set of all possible random string, |R| = 2λr.

• Query Bits: q = λk2 = O(log log n). W.l.o.g., assume that the verifier reads exactly q bits of proof
for every random string.

• Completeness: Yes-Instance is accepted with probability at least 2−λ.

• Soundness: No-Instance is accepted with probability at most 2−λk2

.

• For each random string, there are 2λ(2k−1) accepting configurations.

• For every random string r, for every j : 1 ≤ j ≤ q, the number of accepting configurations where the
value of Πbj(r) = 0 equals the number of accepting configurations where Πbj(r) = 1.

• For each proof bit Πj let Zj be the set of all the accepting configurations in which bit Πj participates
with value 0, and let Oj be the set of all the accepting configurations in which Πj participates with
value 1. We denote nj = |Zj | = |Oj |. Then nj ≥ 2λr/2.

Let C denote the set of all the accepting configurations, |C| ≤ 2λr · 22λk.

3

3 Hardness of Approximating EDP

In this section, we will establish Theorem 1, namely, EDP is hard to approximate to within a factor of
(log n)1/2−ε for any ε > 0. The construction used in this section will also serve as a building block for
establishing Theorem 3. The starting point of our reduction is a PCP verifier for 3SAT as summarized
in the preceding section. Let φ be an instance of 3SAT on n variables. Consider a PCP verifier V for φ
as described in the preceding section. We will use V to construct an EDP instance on a graph Gφ such
that if φ is satisfiable, at least PY I pairs can be routed, and if φ is unsatisfiable, with high probability,
only PY I/ log1/2−ε N pairs can be routed; here N = npolylog(n) denotes the size of Gφ. Recall that k is a

large constant, and λ = 2β log log n
k2 . The gap between the yes and the no instances in the PCP construction

is close to 2λk2

= log2β n. In our construction, we will try to make the gap between the yes and the no

instances close to 2λk2

, while the graph size N will be close to 222λk2

, thus proving Ω
(

log
1
2−ε N

)

hardness

of approximation.
We construct our graph in two steps. First, we construct, for each proof bit Πi, a gadget denoted by

G(i). In the second step, we create the final graph, by connecting all the gadgets representing the proof bits,
and by adding source and sink pairs.

3.1 Bit Gadget

We will use two parameters M and X to describe the gadget. Consider some proof bit Πi. We now show
how to construct a corresponding gadget G(i). Recall that Zi, Oi are the collection of all the accepting
configurations, in which the value of Πi is 0 or 1, respectively, with |Zi| = |Oi| = ni. For each configuration
α ∈ Zi ∪ Oi, for each m : 1 ≤ m ≤ M + 1, there are X vertices vx,m(α, i), for 1 ≤ x ≤ X, called level m
vertices, representing this configuration.

Additionally, for each m : 1 ≤ m ≤ M , we have Xni edges, called special edges at level m, and denoted
by (`a,m, ra,m), 1 ≤ a ≤ Xni. We also denote the set of left endpoints of these edges by Lm(i) = {`a,m}Xni

a=1 ,

and the set of right endpoints of these edges by Rm(i) = {ra,m}Xni

a=1 .
Finally, we show how to connect the vertices representing the configurations with the special edges. This

is done by the means of regular edges, as follows. Consider level m vertices, for 1 ≤ m ≤ M . We have
Xni level m vertices, representing configurations in Zi (denote this set of vertices by Zm(i)), and Xni level
m vertices, representing configurations in Oi (these vertices are denoted by Om(i)). We perform a random
matching between Zm(i) and Lm(i), and also we perform a random matching between Om(i) and Lm(i).
Additionally, for each m : 2 ≤ m ≤ M + 1, we perform random matchings between Zm(i) and Rm−1, and
between Om(i) and Rm−1. The edges participating in these matchings are added to the gadget as regular
edges (see Figure 1).

R
andom

M
atching

Z2(i)

R
andom

M
atching

L2(i) R2(i) L3(i)

Z1(i)

R
andom

M
atching

R
andom

M
atching

O4(i)

Z4(i)

Xni

M
at
ch

in
g

R1(i)L1(i)

R
an

do
m

M
at
ch

in
g

M
at
ch

in
g

O2(i)

R
an

do
m

M
at
ch

in
g

R
andom

M
atching

R3(i)

Level 1 Level 2 Level 3

R
an

do
m

R
an

do
mR

andom
M
atching

O3(i)

Z3(i)

O1(i)

Figure 1: Gadget representing proof bit Πi for M = 3

This concludes the definition of bit gadget. We now define, for each configuration α ∈ Zi∪Oi, a collection
of X edge-disjoint paths, called canonical paths, representing α in gadget G(i). A canonical path Px(α, i),
for 1 ≤ x ≤ X, is defined as: (vx,1(α, i), `a1,1(i), ra1,1(i), vx1,2(α, i), . . . ,
`aM ,M (i), raM ,M (i), vxM ,M+1(α, i)). The indices xm, am for 1 ≤ m ≤ M are determined by the corresponding

4

matchings. Therefore, we have X edge-disjoint paths representing α in gadget Gi. Moreover, for all the
configurations in Zi, their Xni canonical paths are edge disjoint. The same is true for all the configurations
in Oi.

Let 1 ≤ m ≤ M , and consider the collection of special edges at level m. Each such edge participates in
exactly one canonical path representing a configuration in Zi, and exactly one canonical path representing
a configuration in Oi. Thus, the set of special level m edges defines a random matching between the paths
representing the configurations in Zi and the paths representing the configurations in Oi. In total, gadget
Gi defines M random matchings (one matching for each level) between these two sets of paths, and these
random matchings are completely independent. Observe that the length of each canonical path is 3M , and
the degree of every vertex is at most 3.

3.2 Bit Gadget Analysis

Set ∆ = M
8 log M , so that M ≥ 8∆ log ∆ holds. Consider the gadget representing some proof bit Πi. Let

P0 be the set of canonical paths representing configurations in Zi, and let P1 be the set of canonical paths
representing configurations in Oi. Recall that |P0| = |P1| = Xni.

We say that the gadget is bad if there is a pair of subsets A ⊆ P0, B ⊆ P1, where |A| = |B| = Xni

∆ ,
such that all the paths in A ∪ B are edge disjoint. We say that bad event B1 happens, if at least one of the
gadgets is bad. The proof of the lemma below is similar to a lemma in [1].

Lemma 1 The probability that gadget G(i) is bad is at most e−n.

Proof: Consider some proof bit Πi and its corresponding gadget, and denote n′ = Xni. Let A,B be
subsets of P0,P1 respectively of desired sizes. The total number of random matchings between P0 and P1 is
n′!, while the number of matchings with no edge between A and B is:

(

n′ − n′

∆

)(

n′ − n′

∆
− 1

)

· · ·
(

n′ − 2n′

∆
+ 1

)(

n′ − n′

∆

)

!

Therefore, the probability that a random matching does not contain an edge between A and B is:

(

n′ − n′

∆

)(

n′ − n′

∆ − 1
)

· · ·
(

n′ − 2n′

∆ + 1
)(

n′ − n′

∆

)

!

n′!
≤
(

1 − 1

∆

)
n′

∆

= e−
n′

∆2

Recall that our gadget defines M matchings between P0 and P1, and the gadget is bad with respect to
A and B iff none of these matchings contains an edge between A and B.

The probability that none of the M matchings contains an edge between A and B is at most e−
Mn′

∆2 .
Finally, the number of possible choices of A and B is:

[(

n′

n′

∆

)]2

≤
(

n′e
n′

∆

)2n′/∆

= (∆e)2n′/∆

Recall that M ≥ 8∆ log ∆, and thus the probability that the bipartite graph is bad is at most:

e−
Mn′

∆2 · (∆e)2n′/∆ ≤ e−
Mn′

∆2 + 2n′ log ∆
∆ ≤ e−

2n′ log ∆
∆

As n′ = niX ≥ 2λr/2X, and ∆ << X, this probability is less than e−2λr/2 ≤ e−n.

Corollary 1 The probability that bad event B1 happens is at most 1
poly(n) .

Proof: The total number of proof bits is at most 2rk2, and thus using the union bound, the probability
that B1 happens is less than 2rk2e−n, which is less than 1

poly n .

5

3.3 The Final Instance

Let α be some accepting configuration, and let i1, i2, . . . , iq be the indices of proof bits participating in α,
with q ≤ λk2. Consider bit gadget G(ij), for some 1 ≤ j ≤ q. There are X level 1 vertices representing α
in Z1(ij) ∪ O1(ij), denote them by Vj = {v1,1(α, ij), . . . , vX,1(α, ij)}. There are also X level M + 1 vertices
representing α in ZM+1(ij) ∪ OM+1(ij), denote them by Uj = {v1,M+1(α, ij), . . . , vX,M+1(α, ij)}.

We add a set of X source vertices representing configuration α, S(α) = {s1(α), . . . , sX(α)}, and X
destination vertices T (α) = {t1(α), . . . , tX(α)} (we show how to divide them into pairs later).

We perform a random matching between S(α) and V1, and also a random matching between T (α) and
Uq. Additionally, for each j : 1 ≤ j < q, we perform a random matching between Uj and Vj+1. All the edges
in the random matchings are added to the graph as regular edges.

���

�������	��

���
 � �	� �	�

��� � ��� ��� � ���

���

��� � � � ��� � � ���� � �! 	� � ��� � � �

��� � �! "� � ��� � � �

���

�����	�	��

#$��
 � �	� �	�

��� � ��� ��� � %��

���

��� � � � ��� � % ���� � �! 	� � ��� � � �

��� � �& "��� ��� � � �

��� � �& "� � �'� � % �

��� � �! 	�(� ��� � %��

���

�����	�	��

���
 � �	� �	�

) ��� �'�

) �&� �'�

��� � ��� ��� � � �

���

��� � � � ��� � � �

�����	�	��

*��
 � �	� �	�

+���� �'�

+(��� �,�
- � � � � - � � � � - � � %��

Figure 2: Source-sink pairs for a configuration α.

For each configuration α, we define X canonical paths Px(α), 1 ≤ x ≤ X, representing α, as follows.
Let i1, . . . , iq be the indices of the proof bits participating in α, q ≤ λk2. For each x : 1 ≤ x ≤ X, we
have Px(α) = (sx(α), Px1

(α, j1), . . . , Pxq
(α, jq), tx′), where x1, . . . , xq, x

′ are determined according to the
corresponding matchings.

The graph has the following properties: (i) the length of a canonical path is at most 4Mλk2; (ii) for each
configuration α, there are X canonical paths representing α, all of them edge disjoint; and (iii) the degree
of each vertex is at most 3.
Graph size: observe that each graph vertex and edge participate in at least one canonical path. The
number of canonical paths is: X · 2λr · 2λ(2k−1), and the length of each canonical path is at most 4Mλk2.
It remains to specify the values of the parameters M and X. We will use M = 2λ(k2+k) = poly log n, and

X = 222λ(k2+4k)

= 2poly log n. Therefore, the size of the graph is bounded by: N ≤ X · 2λr · M · 22λk

≤ X · 2O(log n log log n) · 2O(log log n) · 2O(log log n) ≤ X · 2O(log n log log n).
The source-sink pairs are defined as follows: For each accepting configuration α, the canonical paths

P1(α), . . . , PX(α) define a matching between the sources and the destinations corresponding to α. We use
this matching to define the source-destination pairs.

Let P denote the set of all the canonical paths.

3.4 Yes Instance: φ is Satisfiable

In the Yes-Instance , there is a PCP proof, for which the acceptance probability is at least 2−λ. For each
random string r satisfied by this proof, we can choose all the canonical paths representing the corresponding
accepting configuration. All the paths thus chosen are edge disjoint, and the number of chosen paths is at

least PY I ≥ X2λr−λ ≥ |P|
22λk·2λ . The latter inequality follows from the fact that for each random string r

there are at most 22λk accepting configurations.

3.5 No Instance: φ is Unsatisfiable

Suppose we have a no instance, and a collection P ′ of edge disjoint source-sink paths. We will show that

|P ′| can roughly be bounded by |P|

2λk2 . We partition P ′ into three subsets, as follows. Let g = 22λ(k2+k). A

6

non-canonical path is called long if its length is more than g. Otherwise, it is called short. Let P1 ⊆ P ′ be
the subset of canonical paths, P2,P3 ⊆ P ′ be the subsets of long and short non-canonical paths, respectively.
We bound the size of each subset separately.

3.5.1 Canonical Paths

Assume B1 does not happen. Then in each bit gadget Gi, either the number of paths representing Zi is less
than niX/∆, or the number of paths representing Oi is less than niX/∆. Therefore, if we remove at most
∑

i niX/∆ paths from P ′, we obtain a new collection P ′
1 of canonical paths, such that in each gadget G(i),

we have only paths from Zi or only paths in Oi. We can thus define a PCP proof as follows: the value of bit
Πi is 0 iff paths representing Zi are present in P ′

1, and it is 1 otherwise. Since we are in a No-Instance ,

and there are X paths representing each configuration, |P ′
1| ≤ X · 2λr/2λk2

, which is at most PY I/2
λk2−λ.

On the other hand,
∑

i ni can be bounded by |C|q ≤ 2λr+2λkλk2. Also, recall that ∆ = M
8 log M = 2λ(k2+k)

8λ(k2+k) .

Thus
∑

i
Xni

∆ ≤ X2λr+2λkλk2

∆ ≤ X2λr

2λk2
−2λk

when k is sufficiently large. We can now bound |P1\P ′
1| ≤ X2λr

2λk2
−2λk

≤
PY I/2

λk2−2λk−λ. Summing up, |P1| ≤ 2PY I/2
λk2−2λk−λ.

3.5.2 Long Non-Canonical Paths

The length of a non-canonical path is at least g. The total number of edges in our graph is at most

|P| · 4Mλk2. Therefore, the size of P2 is bounded by |P|·4M ·λk2

g . We will show that g
4M ·λk2 ≥ 2λk2

. Recall

that g = 22λ(k2+k), while M = 2λ(k2+k), and thus 4Mλk2 · 2λk2 ≤ 4λk2 · 22λk2+kλ ≤ 22λ(k2+k) ≤ g. So

|P2| ≤ |P|

2λk2 ≤ PY I

2λk2
−2λk−λ

.

3.5.3 Short Non-Canonical Paths

Suppose there is a short non-canonical path P ∈ P3 connecting some source and destination pair (s, t). This
path must form a cycle of length at most g + 4Mλk2 ≤ 2g with the canonical s− t path. Moreover, at least
one edge on the cycle participates in P . Let K denote the number of cycles of length at most 2g in our
graph. Then |P3| ≤ 2g · K. Our goal is to show that with high probability, K is small. The proof of the
claim below is similar a claim in [1].

Lemma 2 With probability at least 2
3 , K ≤ 24λrg.

Proof: We build a new graph G′, obtained by shrinking special edges (each special edge becomes a vertex).
Let K ′ denote the number of cycles of length at most 2g in G′. Clearly, K ≤ K ′. We now bound K ′.

The probability that some edge e exists in graph G′ is at most 1
X , and the probability that e exists given

the existence of i other edges, 1 ≤ i ≤ 2g is at most 1
X−2g ≤ 2

X . Therefore, the probability that a given

potential cycle that contains g′ edges, g′ : 1 ≤ g′ ≤ 2g exists is at most
(

2
X

)g′

. The number of potential

cycles of length g′ is bounded by Ng′

. Thus the expected number of cycles of length g′ in G′ is at most
(

2N
X

)g′

. Summing up over all values of g′, the expected number of cycles of length at most 2g is at most
(

2N
X

)2g+1
.

Recall that N ≤ X · 2λr+2λk+λ(k2+k), giving the following bound on the expected number of cycles of
length at most 2g:

E(K ′) ≤ 2λ(r+k2+4k)(2g+1) ≤ 23λrg

Using Markov’s inequality, the probability that the number of cycles of length at most 2g is greater than
24λrg ≥ 3E(K ′) is at most 1

3 .
We say that the bad event B2 happens if K > 24λrg. Assuming B2 does not happen, we get:

|P3| ≤ 2g · 24λrg ≤ 25λrg = 25λr·22λ(k2+k) ≤ 222λ(k2+3k)+log log n

7

(since r = O(log n)). Recall that λ = β log log n/k2 for very large constant β >> k2, and thus we can

assume that λk ≥ log log n, and |P3| ≤ 222λ(k2+4k) ≤ X ≤ PY I/2
λk2

.

3.6 Putting it Together

If the events B1 and B2 do not happen, then |P ′| = |P1| + |P2| + |P3| ≤ PY I/2
λ(k2−3k), and thus the

gap is Ω(2λ(k2−3k)). Recall that N = X · 2O(log n log log n) = 222λ(k2+4k)+O(log n log log n), and so log N ≤
22λ(k2+4k) + O(log n log log n). Since 22λ(k2+4k) > logβ n, we have that log N ≤ 22λ(k2+5k), and

√
log N ≤

2λ(k2−3k) · 28λk ≤
(

2λ(k2−3k)
)1+ 8

k−3

. Therefore, the gap is log
1
2−ε N , where ε is a constant that depends on

k and can be made arbitrarily small by choosing k to be sufficiently large.
Now suppose at least one of the events B1 or B2 does happen. Then |P ′| may be much larger than the

above bound even though φ is not satisfiable. But the probability of B1∪B2 is at most 1/poly n+1/3 ≤ 1/2.

Thus a log
1
2−ε N -approximation algorithm for EDP would give us a co-RPTIME(npolylog(n)) algorithm for

3SAT. Since 3SAT is in NP, we can use a standard result to convert this into a ZPTIME(npolylog(n)) algorithm
for 3SAT, giving us our main result.

4 Integrality Gap of the Multicommodity Flow Relaxation

We will construct, for each integral c ≤ O((log log n)/(log log log n)), an EDP instance of size O(n log n) for
which the integrality gap is Ω((log n

(log log n)2)1/c)/c) when congestion is restricted to be strictly less than c. Our

construction will use two parameters, β1 = 1
4 (log n

150(log log n)2)1/c and β2 = 6(2β1)
c−1 ln β1. The integrality gap

of our EDP instance will be Ω(β1/c). Towards the end, we sketch how to extend these results to ANF with
congestion.

4.1 Auxiliary Hypergraph Construction

Our starting point is a random hypergraph H with vertex set V (H) = {v1, . . . , vn}, and β2n hyper-edges,
h1, . . . , hnβ2

. Each hyper-edge hi, for 1 ≤ i ≤ nβ2 is a c-tuple of vertices, chosen randomly and independently.
Our EDP instance will be derived from the hypergraph H.

We now establish some properties of H. Let S ⊆ V (H) be a subset of vertices of size n/β1. We say that
S is bad if it contains none of the nβ2 hyper-edges. We say that event E1 happens, if there is at least one
bad subset S ⊆ V (H) of size n/β1.

Lemma 3 The probability that E1 happens is at most 1/4.

Proof: Fix some subset S ⊆ V (H) of size n/β1 The probability that a random hyper-edge is contained in
S is:

(

n/β1

c

)

(

n
c

) =

n
β1

·
(

n
β1

− 1
)

· · ·
(

n
β1

− c + 1
)

n · (n − 1) · · · (n − c + 1)
≥
(n

β1
− c

n

)c

≥ 1

(2β1)c

Therefore,

Pr[S is bad] ≤
(

1 − 1

(2β1)c

)β2n

≤ e
−

β2n

(2β1)c

Since number of possible sets S is
(

n
n/β1

)

which can be upper-bounded by (eβ1)
n/β1 ≤ β

2n/β1

1 , using the

union bound, we get that the probability that any set S of size n/β1 is bad, is at most:

β
2n
β1
1 · e

−β2n

(2β1)c ≤ e
n

β1
(2 ln β1−

β2

2cβ
c−1
1

)
≤ e−

n ln β1
β1 ≤ 1

4

8

Given a vertex v ∈ V (H), we say that it is a high-degree vertex, if it participates in more than 10β2c
hyper-edges in H. We say that event E2 happens, if the number of high-degree vertices in H is greater than
n/β1. Using Chernoff bounds, we can show the following.

Lemma 4 The probability of E2 happening is at most 1/4.

Proof: A vertex v occurs in a random c-tuple with probability c/n. Thus the expected number of
hyper-edges in which a vertex is contained is β2c. By Chernoff bounds, for any δ ≥ 2e − 1, the probability
that a vertex is contained in more than (1 + δ)β2c hyper-edges can be bounded by

1/2(1+δ)β2c < 1/(4β1).

The expected number of high degree vertices is at most n/(4β1). By Markov inequality, the probability
that there are more than n/β1 such vertices is at most 1

4 .

4.2 The EDP Instance

The construction of the EDP instance G is based on hyper-graph H defined above. For each vertex v ∈ V (H),
graph G contains a source and sink pair (s(v), t(v)). Additionally, for each hyper-edge hi : 1 ≤ i ≤ β2n, it
contains two vertices `i, ri, which are connected by a special edge. Consider now some vertex v ∈ V , and
assume it participates in hyper-edges hi1 , hi2 , . . . , hik

, where i1 < i2 < · · · < ik. We add the following regular
edges to graph G: (s(v), `i1), (rik

, t(v)), and for each j : 1 ≤ j ≤ k − 1, we add a regular edge (rij
, `ij+1

).
We define a canonical path corresponding to v as follows: P (v) = (s(v), `i1 , ri1 , . . . , `ik

, rik
, t(v)).

Properties of the EDP Instance: We will establish here that with high probability, the instance created
above satisfies some properties that would be useful in establishing our gap.

Let g > 2 be some fixed integer, and let Kg be the total number of cycles of length at most g in G. We
say that event E3 happens, if Kg > (6β2c

2)g+1.

Lemma 5 The probability that E3 happens is at most 1
4 .

Proof: Let G′ be a graph obtained from G by shrinking each special edge (`i, ri) into a vertex ui, and
let K ′

g be the number of cycles of length at most g in G′. Since Kg ≤ K ′
g, it is enough to bound K ′

g.
Notice that all the source and sink vertices in G have degree 1, and thus do not participate in any

cycle. A cycle C of length k in graph G′ is defined as an ordered k-tuple of vertices ui1 , . . . , uik
, where

ik = max{i1, . . . , ik}, and edges e1 = (ui1 , ui2), . . . , ek−1 = (uik−1
, uik

), ek = (uik
, ui1) belong to G′ For each

j : 1 ≤ j ≤ k − 2, we bound the probability that edge ej exists given the existence of edges e1, . . . , ej−1.
Let A ⊆ V (H) be the c-tuple of vertices participating in hyper-edge hij

. If edge ej exists, then hyper-edge
hij+1

must contain at least one vertex from A. The probability of this happening (given the existence of

e1, . . . , ej−1) is at most c2

n .
We now bound the probability of edges ek, ek−1 belonging to G′, given the existence of e1, . . . , ek−2.

Consider the hyper-edges hi1 , hik−1
of graph H, and let X,Y, Z be disjoint subsets of V (H), such that X ∪Y

are the vertices participating in hi1 , and Y ∪ Z are the vertices participating in hik−1
. Notice that if hyper-

edge hk contains only vertices belonging to Y (but not to X or Z), then at least one of the edges ek−1, ek

does not belong to G′ (this follows from the fact that the canonical path of each vertex v ∈ V (H) traverses
the hyper-edges of H monotonically). Therefore, in order for edges ek−1, ek to belong to G′, hyper-edge hk

must overlap with at least two out of the three sets X,Y, Z. We bound the probability that it overlaps with
both X and Y . The probabilities of hk overlapping with X and Z and with Y and Z are bounded similarly.

Let X , Y be the events that hik
∩ X 6= ∅ and hik

∩ Y 6= ∅, respectively. Then:

Pr [X ∧ Y|e1, . . . , ek−1] = Pr [X|Y, e1, . . . , ek−1]·Pr [Y|e1, . . . , ek−1] ≤ Pr [X|e1, . . . , ek−1]·Pr [Y|e1, . . . , ek−1] ≤
c4

n2

Therefore, the total probability that both edges ek−1, ek belong to G′ is at most 3 c4

n2 , and the probability

that cycle C of length k belongs to G′ is at most: 3
(

c2

n

)k

.

9

The number of potential cycles of length k can be bounded by (β2n)k. Thus, the expected number cycles
of length k is at most (3β2c

2)k. Summing up over all k : 3 ≤ k ≤ g, we get that E[Kg] ≤ (3β2c
2)g+1, and

using Markov’s inequality, we get the claimed bound.

With probability at least 1/4, none of the events E1, E2, and E3 happen; we assume this from now on.

4.3 Integrality Gap Analysis

The fractional solution can route at least n
c units of flow, by sending 1

c units of flow on each canonical path.
Consider now some integral solution whose congestion is at most c− 1, and let P denote the set of paths

routed in the integral solution. Set g = 3β1β2c
2. We partition P into three subsets: P1 contains canonical

paths, P2 contains non-canonical paths whose length is greater than g, and P3 contains non-canonical paths
whose length is smaller than g. We bound the size of each one of these sets separately.

|P1| ≤ n
β1

if event E1 does not happen. Otherwise, there must be c paths that go through a single special
edge and the solution has congestion c.

|P2| ≤ n/β1. Total number of edges in G can be bounded by 3β2cn. Since we allow a congestion of c,
total capacity available in the graphs is at most 3β2c

2n. Thus the number of paths of length greater than g

can be no more than 3β2c2n
g = 3β2c2n

3β1β2c2 = n
β1

.
To analyze P3, we first remove from P3 all paths that correspond to vertices which occur in more than

10β2c hyper-edges of H. Since event E2 does not happen, we discard at most n/β1 paths. Let P ′
3 be the set

that remains. For any s(v)-t(v) pair routed in P ′
3, the length of its canonical path is at most 10β2c. Thus the

non-canonical path in P ′
3 and the canonical path for s(v)-t(v) form a cycle of length at most g +10β2c ≤ 2g.

By Lemma 5, the number of cycles of length at most 2g can be bounded by (6β2c)
2g+2. Since each edge is

allowed a congestion of up to (c − 1), and each path in P ′
3 uses an edge on such a cycle, |P ′

3| is bounded by
2gc(6β2c)

2g+2.
Therefore, |P ′

3| can be bounded as follows:

|P ′
3| ≤ 2gc(6β2c

2)2g+2

≤ (β2c
2)3g

≤ 24g log β2

= 212β1β2c2 log β2

≤ 212β1·6(2β1)
c−1 ln β1·2c ln β1

= 272(4β1)
c·ln2 β1

≤ √
n

≤ n/β1

In total, |P| ≤ 4n/β1, and the integrality gap is at least β1

4c , giving the bound in Theorem 2.
To show the hardness of ANF with congestion, classify each routed pair to be of type A or B based on how

much flow is routed on canonical versus non-canonical paths. It is type A if more than a (c − 1)/c-fraction
of the flow is routed on the pair’s canonical path, and type B otherwise. It is easy to see that no more
than (c− 1) type A pairs can traverse a special edge without causing a congestion greater than c− 1. Thus
essentially the same analysis as given above for P1 applies. For type B pairs, we proceed as above for P2

and P3 noting that for each routed pair, we have only 1/c-fraction of the flow to be supported.

5 Hardness of EDP with Congestion

We will now establish hardness of approximating EDP with congestion c ≥ 2. We will focus here on the
case when c is any constant. As earlier, we perform a reduction from 3SAT using the PCP characterization
presented in Section 2. The parameters q, λ, and r stay the same when c is a constant. Towards the end, we
briefly describe how the parameters change when c is allowed to be as large as O(log log n)/(log log log n)2.

10

In what follows, let z be the least integer such that c < 2z. We will iteratively define sample spaces
of EDP instances, namely H1, H2, ..., Hz, such that the sample space Hi is defined in terms of Hi−1 for
2 ≤ i ≤ z. The starting sample space H1 is identical to one described in Section 3. We will prove that if φ is
a Yes-Instance , then any instance of Hz has a collection of edge disjoint paths in Hz of size at least PY I ,
while if φ is a No-Instance, then with high probability, at most PNI source-sink pairs can be routed with
congestion restricted to 2z−1. We show that for any constant ε : 0 < ε < 1, PY I/PNI ≥ (log N)(1−ε)/(3

2 2z−1),
where N is the size of instance Hz.

5.1 Construction

We will use as our building block the bit gadget in Section 3.1. We will vary the parameters M,X based on
the sample space Hi. The sample space H1 is same as in Section 3, except that instead of parameters M,X,
we use new parameters M1, X1, which are specified later. For each accepting configuration α, let P1

α denote
the set of X1 canonical paths representing α in H1. For i ≥ 2, we generate an instance of Hi by connecting
together several random instances of Hi−1. Graph Hi will contain a set of regular edges and a set of special
edges, whose sizes are the same for all the instances of Hi. An instance of Hi contains X1 source-sink pairs
for each ordered i-tuple (α1, . . . , αi) of accepting configurations. For each pair, there is a canonical path,
and let ηi denote the number of canonical paths in any instance of Hi. Clearly, ηi = |C|iX1. In order to
define the recursive construction of Hi, we need first to define the notion of concatenation of instances of Hi.

Concatenation of EDP Instances: Suppose G1, G2 are two instances of Hi−1, for some i ≥ 2. Then
concatentation of G1 and G2 is a new instance G defined as follows. Let (α1, . . . , αi−1) be an ordered
(i − 1)-tuple of accepting configurations. Recall that each instance of Hi−1 contains X1 source-sink pairs
representing (α1, . . . , αi−1). Let S1, T1 and S2, T2 be the corresponding sets of source and sink vertices in
G1 and G2, respectively. We randomly unify the vertices in T1, S2 in a pairwise manner. Consider any two
source-sink pairs (s1, t1) and (s2, t2) corresponding to (α1, . . . , αi−1) in G1 and G2, respectively, such that
t1 and s2 are unified in G. Then (s1, t2) becomes a source-sink pair for graph G, and its canonical path is
defined as a concatenation of the two canonical paths in G1 and G2. Observe that in graph G, the number
of source-sink pairs remains |C|i−1X1, the same as in G1 and G2. We define a concatenation of arbitrary
number of instances of Hi−1 in a similar fashion.

Definition of Hi: An instance of Hi is constructed by a recursive composition of instances of Hi−1 and
bit gadgets. We will use parameter Mi, Xi for constructing Hi. For i ≥ 2, we define Mi = M3

1 M2...Mi−1.
Similarly, we define Xi = (|C|qMi−1Xi−1)/2 for i ≥ 2. By our choice of parameters, we ensure that the
number of special edges in an instance of Hi−1 is Xi.

• For each accepting configuration α, and for each j : 1 ≤ j ≤ q, we build an instance B i−1(α, j) of
Hi−1. Each of these instances is constructed independently.

• For each accepting configuration α, we define a graph Gi(α) to be the concatenation of Bi−1(α, 1), . . . , Bi−1(α, q).
A source-sink pair in the concatenated graph correponding to an (i − 1)-tuple (α1, . . . , αi−1) can now
be viewed as a pair that corresponds to the i-tuple (α1, . . . , αi−1, α) in Gi(α).

• For each proof bit Πj , we build a bit gadget Gi(j) representing it, with parameters Mi, Xi.

• The above two parts are composed together as follows. Consider some accepting configuration α, and
let a1, . . . , aq be the corresponding query bits. Fix some j : 1 ≤ j ≤ q.

On one hand, we have a bit gadget Gi(aj), which contains Xi canonical paths corresponding to α. Let
Sj , Tj denote the set of sources and destinations of these paths. For each source s ∈ Sj , let f(s) ∈ Tj

denote its corresponding destination.

On the other hand, graph Gi(α) contains as sub-graph instance Bi−1(α, j) of Hi−1, which has Xi

special edges. Let A denote this set of special edges, and let L and R denote the sets of their left and
right endpoints. We remove these edges from our graph. Instead, we unify vertices in L and Sj (in
pairwise manner), and we unify vertices in R and Tj , as follows. Let e = (`, r) ∈ A, and assume we
unified ` with some source s ∈ Sj . We then unify r and f(s).

11

• Source-sink pairs are the union of the source-sink pairs in graphs Gi
α for α ∈ C.

The set of special edges in the new instance of Hi is the union of the special edges in bit gadgets Gi(j),
for all proof bits j. All the other edges are regular. Notice that the number of special edges in Hi is indeed
Xi+1: Recall that for each configuration α ∈ C, graph Gi(α) is a concatenation of q instances of H i−1, each
of them containing Xi special edges. Each such special edge is replaced by a canonical path in Gi(j) for
some proof bit j. A canonical path of a bit gadget has Mi special edges, and each special edge is shared by
two such paths. Therefore, the total number of special edges in Hi is |C|qXi

Mi

2 = Xi+1.
Also, note that the total number of canonical paths that go through a special edge in any instance of Hi

is exactly 2i.

Size of an instance of Hz: We will set the base parameters as M1 = 2λk2

and X1 = 22λk2(3
2
2z

−1)+λk

. Let

us now bound Mi. It is easy to see that M2 = M3
1 , and for all i : 2 < i ≤ z, Mi = M2

i−1 = M
3
4 2i

1 . Therefore,

for all 2 < i ≤ z, we have Mi = 2λk2 3
4 2i

< 2λk22i

.
Let Ni denote the size of an instance of Hi, and let `i denote the length of each canonical paths in an

instance of Hi. Recall that ηi = |C|iX1 is the number of canonical paths in Hi. Clearly, Ni ≤ `iηi.
To bound `1, recall that each canonical path traverses q gadgets, and length of a canonical path inside

each gadget is at most 3M1. So, `1 ≤ 4qM1. The recursive formula for `i, where i > 1 is calculated as
follows. A canonical path in Hi consists of q canonical paths in Hi−1. Additionally, each special edge of
Hi−1 is replaced with a canonical path in gadget Gi(j) (where j is some proof bit index). The length of the
canonical path inside Gi(j) is at most 3Mi, and the number of special edges on path `i is at most q`i−1.

Therefore, `i ≤ q`i−1+q`i−1 ·3Mi ≤ 4qMi`i−1 ≤ (4q)iM1M2 · · ·Mi ≤ (4q)iM
3
42i+1−2
1 . Thus the size Nz of an

instance of Hz can be bounded as Nz ≤ `zηz ≤ |C|zX1(4q)
zM

3
4 2z+1−2
1 ≤ X12

2λrz when z = O(log log log n).

Notice that X1 = 22λk2(3
2
2z

−1)+λk

. As r = O(log n), the overall construction size is O(npoly log n).

5.2 Yes Instance: φ is Satisfiable

In the Yes-Instance , there is a PCP proof, for which the acceptance probability is at least 2−λ. For each
random string r satisfied by this proof, let c(r) be the corresponding accepting configuration.

Lemma 6 If φ is a Yes-Instance , then for each i : 1 ≤ i ≤ z, graph Hi contains a collection of
PY I = |C|iX1/2

(2λk+λ)i edge-disjoint canonical paths.

Proof: Let P i
Y I be the collection of canonical paths, defined as follows. Consider any i-tuple (α1, . . . , αi)

of accepting configurations. The set P i
Y I contains the X1 paths representing this i-tuple in Hi, iff for each

j : 1 ≤ j ≤ z, αj = c(rj) for some random string rj . Therefore, |P i
Y I | ≥ (|R|iX1)/2

λi ≥ (|C|iX1)/2
(2λk+λ)i,

where the last inequality follows from the property that for each random string r, there are at most 22λk

accepting configurations. We now prove, by induction on i, that for all i : 1 ≤ i ≤ z, all the paths in P i
Y I

are edge-disjoint in Hi.
For i = 1, since there is no conflict between any pair of configurations c(r), c(r′) for random strings r, r′,

all the paths in P1
Y I are edge-disjoint. Assume now that all the paths in P i−1

Y I are edge-disjoint in Hi−1, and
consider Hi. Let α be any accepting configuration. If α 6= c(r), where r is the random string of α, then none
of the paths in Gi

α belongs to our solution. Therefore, if we have two accepting configurations α, β, such
that some paths in Gα and some paths in Gβ belong to the solution, then there is no conflict between α and
β, and thus they will not participate together in the same gadget Gi(j) for any proof bit j. Therefore, the
only way for the solution not to be edge-disjoint is that for some configuration α, there are two paths of Gα

in our solution, which share an edge. But Gα is a concatenation of q instances of Hi−1, and when restricted
to each one of these instances, our solution is exactly the set P i−1

Y I of paths, which is edge-disjoint for any
instance of Hi−1 by the induction hypothesis.

12

5.3 No Instances: φ is Unsatisfiable

Assume φ is a No-Instance . As before, we will bound the number of canonical paths (P1), long non-
canonical paths (P2), and short canonical paths (P3) in any solution that has congestion at most 2z − 1.

5.3.1 Canonical Paths

Recall that in order to construct our final graph Hz, we construct, for each proof bit Πj , for each i : 1 ≤ i ≤ z,
many instances of bit gadget Gi(j), with parameter Mi. We define a parameter ∆i = Mi

8 log Mi
, which replaces

the parameter ∆ in the definition of a bad gadget. Let B1 be the (bad) event that any of these bit gadgets
is bad. The following is a simple corollary of Lemma 1.

Corollary 2 The probability of the bad event B1 is bounded by 1
poly n .

Proof: From Lemma 1, the probability that any gadget is bad is at most e−n. Since our construction
size is quasi-polynomial, it contains less than en/2 bit gadgets. The corollary follows by the union bound.

Theorem 4 If event B1 does not occur, then for each i : 1 ≤ i ≤ z, any collection of more than |C|i·(9q2)i·X1

M1

canonical paths in graph Hi, causes congestion of 2i.

Proof: The proof is by induction on i. For each i, we bound the maximum number of canonical paths,
for which congestion is less than 2i. The analysis of the base case, where i = 1 is similar to the analysis
presented in Section 3. Recall that the number of canonical paths in any solution with congestion 1 is at

most X1

∆1

∑

j nj + 2λrX1

2λk2 ≤ |C|qX1·8 log M1

M1
+ |C|X1

2λk2 ≤ |C|qX1·8λk2

M1
+ |C|X1

2λk2 ≤ |C|(9q2)X1

M1
.

Assume now the theorem holds for i − 1, and consider Hi. Let Pi
1 be any collection of canonical paths

in Hi, such that their congestion is less than 2i. We partition the set P i
1 as follows: for each configuration

α ∈ C, let Qi
α be the paths of P i

1 that correspond to paths in Gi(α).
Definition: Let α ∈ C be an accepting configuration. We say that α is congested iff |Qi

α| ≥
2 |C|i−1·(9q2)i−1·X1

M1
.

We now proceed in two steps. First, we prove that if α is congested, then for each j : 1 ≤ j ≤ q, many
of the special edges in Bi−1(α, j) have congestion 2i−1. The second step is proving that the number of
congested configurations is small (otherwise the overall congestion is 2i).

Lemma 7 Suppose α is congested and event B1 does not occur. Then for each j ∈ {1..q}, at least
Xi

M2
1 M2···Mi−1

special edges in instance Bi−1(α, j) of Hi−1, have congestion 2i−1.

Proof: Fix j and consider instance Bi−1(α, j) of Hi−1. Let Qi(α, j) denote the restriction of Qi
α to the

canonical paths of Bi−1(α, j). We refer to the special edges of Bi−1(α, j) whose congestion is 2i−1 as
congested edges.

Since α is a congested configuration, |Qi
α| ≥ 2 |C|i−1·(9q2)i−1·X1

M1
. However, by the induction hypoth-

esis, the maximum number of canonical paths in any instance of Hi−1 that do not cause congestion

2i−1 is |C|i−1·(9q2)i−1·X1

M1
. In order to convert Qi(α, j) into a collection of canonical paths that cause con-

gestion less than 2i−1, we need to remove at least |C|i−1·(9q2)i−1·X1

M1
paths from it. Each such removed

path reduces congestion on at least one congested edge. Therefore, the number of congested special

edges is at least |C|i−1·(9q2)i−1·X1

M1
. Since the total number of special edges in any instance of Hi−1 is

Xi ≤ Ni−1 ≤ |C|i−1X1(9q
2)i−1M1 · · ·Mi−1, the number of congested edges is at least Xi

M2
1 M2···Mi−1

.

Lemma 8 If φ is a No-Instance and the event B1 does not occur, then in any solution of Hi with congestion

at most 2i − 1, no more than 2i+1|C|q2

M1
configurations can be congested.

13

Proof: Let C1 ⊆ C denote the subset of congested configurations. Consider some bit gadget Gi(j). Recall
that each canonical path in gadget Gi(j) corresponds to some special edge of some Gi(α) for α ∈ C. Let
e1 ∈ Gi(α), e2 ∈ Gi(γ) be two special edges, and assume that in the construction of Hi, edge e1 was replaced
by the canonical path Px(α), and e2 was replaced by the canonical path Px′(γ) in gadget Gi(j). Then if
these canonical paths share an edge in Gi(j), and if edges e1 and e2 are congested, our solution has total
congestion 2i.

Since gadget Gi(j) is not bad, and congestion is less than 2i, either there are less than
njXi

∆i
congested

special edges that belong to graphs Gi(α) where α ∈ Zj , or there are less than
njXi

∆i
congested special

edges in graphs Gi(α) where α ∈ Oj (here ∆i = Mi/8 log Mi). Recall that for each congested configuration,

there are at least Xi

M2
1 M2···Mi−1

congested special edges. Therefore, either Zj contains less than
njM2

1 M2···Mi−1

∆i

congested configurations, or Oj contains less than
njM2

1 M2···Mi−1

∆i
congested configurations. Thus by removing

at most
∑

j nj
M2

1 M2···Mi−1

∆i
configurations from C1, we obtain a subset C2 of accepting configurations with no

conflicts. As we have a No-Instance , |C2| ≤ |C|

2λk2 .

On the other hand, we can bound
∑

j nj ≤ |C|q, and thus,

|C1 \ C2| ≤
|C|qM2

1 M2 · · ·Mi−1

∆i
=

|C|qM2
1 M2 · · ·Mi−1 · 8 log Mi

Mi
≤ |C|qλk22i

M1
≤ |C|q22i

M1

(we have used the fact that Mi = M3
1 M2 · · ·Mi−1, and that log Mi < λk22i).

In total, |C1| ≤ |C|q22i

M1
+ |C|

2λk2 ≤ 2i+1|C|q2

M1

We are now ready to bound the number of canonical paths in P1 = Pi
1. Each congested configuration

contributes at most |C|i−1X1 paths to P1, and by Lemma 8, we have at most (2i+1|C|q2)/M1 congested

configurations. Each non-congested configuration contributes at most 2 |C|i−1·(9q2)i−1·X1

M1
paths. Thus, |P i

1| ≤
|C|i−1X1 · 2i+1|C|q2

M1
+ 2 |C|i−1·(9q2)i−1·X1

M1
· |C| ≤ 2i+1|C|iq2X1

M1
+ 2 |C|i·(9q2)i−1·X1

M1
≤ |C|iX1(9q2)i

M1
.

Since P1 = Pz
1 , we get PY I

|P1|
≥ 2λk2

(9q2)z·2(2λk+λ)z ≥ 2λk2−2λkz−λz−3z log(λk) ≥ 2λk2−3λkz.

5.3.2 Long Non-Canonical Paths

Recall that the length of each canonical path in an instance of Hz is `z ≤ (4q)zM
3
4 (2z+1−2)
1 ≤ (4q)z2λk2 3

4 (2z+1−2).

A non-canonical path is called long if its length is at least g = `zγ where γ = 2λk2

. Otherwise, it
is called short. Let P2 denote the set of long non-canonical paths in any solution that has congestion
less than c. Each edge in our final graph participates in at least one canonical path. Thus, the to-
tal number of edges is at most ηz`z. As the congestion on each edge is less than 2z, we have that

|P2| ≤ 2zηz`z

g = 2z|C|zX1

γ ≤ PY I
2z2(2λk+λ)z

2λk2 ≤ PY I

2λ(k2
−3kz)

.

5.3.3 Short Non-Canonical Paths

We next bound the size of P3, the set of short non-canonical paths in our solution. Suppose there is a short
non-canonical path P ∈ P3 connecting some source and destination pair (s, t). This path must form a cycle
of length at most g+`z ≤ 2g with the canonical s−t path. Moreover, at least one edge on the cycle lies on P .
Let K denote the number of cycles of length at most 2g in our graph. Then |P3| ≤ 2cg ·K (since congestion
is at most c). Our goal is to show that with high probability, K is small. The proof of the following lemma
is similar to Lemma 2.

Lemma 9 With probability at least 2
3 , K ≤ 3|C|(2g+2)z.

14

Proof: We build a new graph G′, obtained by shrinking the special edges (each special edge becomes a
vertex). Let K ′ denote the number of cycles of length at most 2g in G′. Clearly, K ≤ K ′. We now bound
K ′.

All the potential edges whose probability is greater than 0 in our graph can be partitioned into several
disjoint subsets, where in each subset we perform a matching between two sets of Xi vertices for 1 ≤ i ≤ z.
The different matchings are completely independent. Therefore, the probability that some edge e exists in
graph G′ is at most 1

X1
(since X1 ≤ Xi for all i ≥ 1), and the probability that e exists given the existence

of i other edges, 1 ≤ i ≤ 2g is at most 1
X1−2g ≤ 2

X1
. Thus, the probability that a given potential cycle that

contains g′ edges, g′ : 1 ≤ g′ ≤ 2g exists is at most
(

2
X 1

)g′

. The number of potential cycles of length g′ is

bounded by Ng′

z , where Nz is the graph size. Thus the expected number of cycles of length g′ in G′ is at

most
(

2Nz

X1

)g′

. Summing up over all values of g′, the expected number of cycles of length at most 2g is at

most
(

2Nz

X1

)2g+1

. Since Nz is bounded by ηz`z, we get

E(K ′) ≤
(

2ηz`z

X1

)(2g+2)

≤ |C|(2g+2)z

Using Markov’s inequality, the probability that the number of cycles of length at most 2g is greater than
3|C|(2g+1)z is at most 1/3.

We say that the bad event B2 occurs if K > 3|C|(2g+2)z. If B2 does not happen, then we have: |P3| ≤
2cg · (3|C|(2g+2)z) ≤ |C|3gz ≤ 2(λ(r+2k)z)·(4q)z2λk2(3

4
2z+1

−2)·2λk2

≤ 22λk2(3
4
2z+1

−1)+λk ≤ X1 ≤ PY I

2λ(k2
−3kz)

.

5.3.4 Putting it Together

If the events B1 and B2 do not happen, the gap between the yes and the no instances is Ω(2λ(k2−3kz)). For any

ε′ > 0, we can choose sufficiently large k such that the gap is (log Nz)
(1−ε′)/(3

42z+1−1) = (log Nz)
(1−ε′)/(3

2 c+ 1
2)

and the size of the instance is bounded by npolylog(n).
When c is allowed to grow up to log log n

(log log log n)2 for any ε > 0, the gap term Ω(2λ(k2−3kz)) yields the

desired gap only when we allow k to grow to z = log log log n. Following [20], it can be shown that using

r = O(k2 log n) random bits, we can get once again completeness at least 1/2 and soundness at most 1/2k2

.
To keep the construction size bounded by (npolylog(n)), we now choose λ to be a large constant. The rest of
the proof remains similar to the one presented above.

Acknowledgements

We thank Madhu Sudan for many useful discussions.

References

[1] M. Andrews and L. Zhang. Hardness of the Undirected Edge-Disjoint Paths Problem. Proc. of STOC,
2005.

[2] M. Andrews and L. Zhang. Hardness of the Edge-Disjoint Paths with Congestion. http://cm.bell-
labs.com/˜andrews/pub.html, 2005.

[3] Y. Aumann and Y. Rabani. An O(log k) approximate min-cut max-flow theorem and approximation
algorithm. SIAM Journal on Computing, 27(1):291–301, February 1998.

[4] Y. Azar and O. Regev. Strongly Polynomial Algorithms for the Unsplittable Flow Problem. IPCO
2001: 15-29.

[5] A. Baveja and A. Srinivasan. Approximation algorithms for disjoint paths and related routing and
packing problems. Mathematics of Operations Research, Vol. 25, pp. 255–280, 2000.

15

[6] C. Chekuri, S. Khanna, and F. B. Shepherd. The All-or-Nothing Multi-commodity Flow Problem. Proc.
of STOC, June 2004.

[7] C. Chekuri, S. Khanna, and F. B. Shepherd. Edge Disjoint Paths in Planar Graphs. Proc. of FOCS,
2004.

[8] C. Chekuri, S. Khanna, and F. B. Shepherd. Multicommodity Flow, Well-linked Terminals, and Routing
Problems Proc. of STOC, 2005.

[9] C. Chekuri, S. Khanna, and F. B. Shepherd. An O(
√

n)-approximation for EDP in Undirected Graphs
and Directed Acyclic Graphs. Manuscript, 2005.

[10] C. Chekuri and S. Khanna. On Multidimensional Packing Problems. To appear in SIAM J. on Com-
puting. Preliminary version in Proc. of SODA, 1999.

[11] C. Chekuri and S. Khanna. Edge Disjoint Paths Revisited. Proc. of SODA, 2003.

[12] C. Chekuri, M. Mydlarz, and F. B. Shepherd. Multicommodity Demand Flow in a Tree and Packing
Integer Programs. Submitted. Preliminary version in Proc. of ICALP, 2003.

[13] S. Even, A. Itai and A. Shamir. On the complexity of timetable and multicommodity flow problems.
SIAM J. on Computing, Vol 5, 691-703, 1976.

[14] A. Frank. Edge-disjoint paths in planar graphs. J. of Combinatorial Theory, Ser. B., No. 2 (1985),
164-178.

[15] S. Fortune, J. Hopcroft and J. Wyllie. The directed subgraph homeomorphism problem. Theoretical
Computer Science, Vol. 10, No. 2 (1980), pp. 111–121.

[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman, 1979.

[17] N. Garg, V. Vazirani, M. Yannakakis. Primal-Dual Approximation Algorithms for Integral Flow and
Multicut in Trees. Algorithmica, 18(1):3-20, 1997. Preliminary version appeared in Proc. of ICALP,
1993.

[18] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, and M. Yannakakis. Near-Optimal Hardness
Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems. To appear in
JCSS. Preliminary version appeared in Proc. of STOC, 1999.

[19] V. Guruswami and K. Talwar. In preparation.

[20] J. Hastad, A. Wigderson. Simple Analysis of Graph Tests for Linearity and PCP. Random Structures
and Algorithms, Vol 22, no. 2, pp 139-160, 2003.

[21] R. M. Karp. Reducibility among combinatorial problems. Complexity of Computer Computations, R.
E. Miller, J. W. Thatcher, Eds., New York: Plenum Press, 1972, 85–103.

[22] J. M. Kleinberg and É. Tardos. Approximations for the disjoint paths problem in high-diameter planar
networks. Journal of Computer and System Sciences, 57:61–73, 1998. Preliminary version in the Proc.
of STOC, 1995.

[23] J. M. Kleinberg and É. Tardos. Disjoint Paths in Densely Embedded Graphs. Proc. of FOCS, pp.
52–61, 1995.

[24] J. M. Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis, MIT, Cambridge,
MA, May 1996.

[25] J. M. Kleinberg. Decision algorithms for unsplittable flow and the half-disjoint paths problem. Proc. of
STOC, pp. 530–539, 1998.

16

[26] S. G. Kolliopoulos and C. Stein. Improved approximation algorithms for unsplittable flow problems.
Proc. of FOCS, 426–435, 1997.

[27] S. G. Kolliopoulos and C. Stein. Approximating Disjoint-Path Problems Using Greedy Algorithms and
Packing Integer Programs. IPCO 1998: 153-168.

[28] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good algorithms
and algorithmic proofs. Combinatorica, 7:365–374, 1987.

[29] N. Robertson and P. D. Seymour. Outline of a disjoint paths algorithm. In B. Korte, L. Lovász,
H. J. Prömel, and A. Schrijver, Eds., Paths, Flows and VLSI-Layout. Springer-Verlag, Berlin, 1990.

[30] A. Samorodnitsky and L. Trevisan. A PCP characterization of NP with optimal amortized query com-
plexity. In Proceedings of the 32nd Annual ACM Symposium on theory of Computing, 2000.

[31] A. Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow, and related routing
problems. Proc. of the FOCS, pp. 416–425, 1997.

[32] K. Varadarajan and G. Venkataraman. Graph Decomposition and a Greedy Algorithm for Edge-disjoint
Paths. Proc. of SODA, 2004.

A The Samorodnitsky-Trevisan PCP Construction

Our starting point is the following PCP characterization of NP, proved by Samorodnitsky and Trevisan in
[30]. Let φ be an instance of 3SAT on n variables. We have a PCP proof for the satisfiability of φ denoted
by Π and a randomized verifier, that reads q proof bits to determine whether or not φ is satisfiable. Given
a random string r of the verifier, let b1(r), . . . , bq(r) be the indices of the proof bits read. A configuration
is (r, a1, . . . , aq), where a1, . . . , aq ∈ {0, 1} are values of Πb1(r), . . . ,Πbq(r). We say that a configuration
(r, a1, . . . , aq) is accepting, if, for a random string r of the verifier and the values a1, . . . , aq of proof bits
Πb1(r), . . . ,Πbq(r), the verifier accepts. Abusing the notation, we denote by r both the random string of the
verifier and the number of random bits (i.e., the length of the string).

Theorem 5 [30] For any constants µ > 0, k > 0, there is a PCP verifier for 3SAT with the following
properties:

• If φ is a Yes-Instance , accepts with probability ≥ 1 − µ.

• If φ is a No-Instance , accepts with probability ≤ µ + 2−k2

.

• Reads 2k + k2 query bits and tosses r = O(log n) random coins.

• For every random string r, there are 22k accepting configurations.

• For every random string r, for every i : 1 ≤ i ≤ q, the number of accepting configurations where the
value of Πbi(r) = 0 equals the number of accepting configurations where Πbi(r) = 1.

In our case, we fix µ = 2−k2

and k is a large enough constant. Thus, in Yes-Instance , the acceptance
probability is at least 1

2 and in No-Instance , it is at most 2 · 2−k2

.
Observe that the length of the proof is bounded by 2r(2k+k2). For the sake of convenience, we would like

to ensure that each proof bits participates in many accepting configurations. This can be done as follows.
The verifier works as before, except that now additionally it randomly chooses one proof bit and accepts iff
the original verifier accepts. Observe that now the length of the random string becomes r′ ≤ r + r + 3 log k,
and the number of query bits read is k2 + 2k + 1. Let Πj be some proof bit, and let nj be the number of
accepting configurations in which the value of Πj is 0 (clearly, the number of accepting configurations in

which the value of Πj is 1 is also nj). We have that nj ≥ 2r · 22k ≥ 2r′/2.
We summarize the properties of the PCP construction (substituting the values of r and k by the new

values r′ and k′ = k + 1):

17

• The verifier reads at most k2 query bits and tosses r = O(log n) random bits.

• Yes-Instance : acceptance probability at least 1
2 .

• No-Instance : acceptance probability at most 2−k2

.

• For every random string, there are 22k−1 accepting configurations.

• For every random string r, for every j : 1 ≤ j ≤ q, the number of accepting configurations where the
value of Πbj(r) = 0 equals the number of accepting configurations where Πbj(r) = 1.

• For each proof bit Πj , nj ≥ 2r/2.

Repetitions

As a next step, we perform λ = O(log log n) independent repetitions of the above protocol. Recall that k is
a large enough constant. Let β be a large constant, β >> k2. We fix λ = 2β log log n

k2 = O(log log n).
The verifier accepts iff the original verifier accepts in each protocol repetition. The resulting PCP has

the following properties:

• Random Bits: λr = O(log n log log n). Let R denote the set of all possible random string, |R| = 2λr.

• Query Bits: q = λk2 = O(log log n). W.l.o.g. assume that the verifier reads exactly q bits of proof
for every random string.

• Completeness: Yes-Instance is accepted with probability at least 2−λ

• Soundness: No-Instance is accepted with probability at most 2−λk2

• For each random string, there are 2λ(2k−1) accepting configurations.

• For every random string r, for every j : 1 ≤ j ≤ q, the number of accepting configurations where the
value of Πbj(r) = 0 equals the number of accepting configurations where Πbj(r) = 1.

• For each proof bit Πj let Zj be the set of all the accepting configurations in which bit Πj participates
with value 0, and let Oj be the set of all the accepting configurations in which Πj participates with
value 1. We denote nj = |Zj | = |Oj |. Then nj ≥ 2λr/2.

18

