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ABSTRACT
A low-distortion embedding between two metric spaces is a
mapping which preserves the distances between each pair of
points, up to a small factor called distortion. Low-distortion
embeddings have recently found numerous applications in
computer science.

Most of the known embedding results are ”absolute”, that
is, of the form: any metric Y from a given class of metrics
C can be embedded into a metric X with low distortion c.
This is beneficial if one can guarantee low distortion for all
metrics Y in C. However, in many situations, the worst-
case distortion is too large to be meaningful. For example,
if X is a line metric, then even very simple metrics (an n-
point star or an n-point cycle) are embeddable into X only
with distortion linear in n. Nevertheless, embeddings into
the line (or into low-dimensional spaces) are important for
many applications.

A solution to this issue is to consider ”relative” (or ”ap-
proximation”) embedding problems, where the goal is to de-
sign an (a-approximation) algorithm which, given any met-
ric X from C as an input, finds an embedding of X into
Y which has distortion a ∗ cY (X), where cY (X) is the best
possible distortion of an embedding of X into Y .

In this paper we show algorithms and hardness results for
relative embedding problems. In particular we give:

• an algorithm that, given a general metric M , finds
an embedding with distortion O(∆3/4poly(cline(M))),
where ∆ is the spread of M

• an algorithm that, given a weighted tree metric M ,
finds an embedding with distortion poly(cline(M))

• a hardness result, showing that computing minimum
line distortion is hard to approximate up to a factor
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polynomial in n, even for weighted tree metrics with
spread ∆ = nO(1).

Categories and Subject Descriptors
F.2 [ Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY

General Terms
Algorithms

Keywords
Metric embeddings, approximation algorithms

1. INTRODUCTION
A low-distortion embedding between two metric spaces

with distance functions D and D′ is a (non-contractive)
mapping f such that for any pair of points p, q in the origi-
nal metric, their distance D(p, q) before the mapping is the
same as the distance D′(f(p), f(q)) after the mapping, up to
a (small) multiplicative factor c. Low-distortion embeddings
have been a subject of extensive mathematical studies. More
recently, they found numerous applications in computer sci-
ence (cf. [15, 13]).

Most of the research on embeddings focused on showing
absolute results, of the form:

Given a class of metrics C and a metric Y , what
is the smallest distortion c ≥ 1 such that any
metric X ∈ C can be embedded into Y with
distortion c ?

Very recently, a few papers addressed the relative 1 (or ap-
proximation) version of the problem, which is of the follow-
ing form:

Given a class of metrics C and a metric Y , what
is the smallest approximation factor a ≥ 1 of a
polynomial-time algorithm minimizing the dis-
tortion of embedding of a given input metric X ∈
C into Y ?

1The absolute and relative (resp.) versions of the problem
were referred to as combinatorial and algorithmic (resp.)
in [4]. These terms could be confusing, however, since the
absolute problem has both combinatorial and algorithmic
components: in many applications it is important how to
find low-distortion embeddings, in addition to knowing that
such embeddings exist. Thus, to avoid misunderstanding, in
this paper we use a different terminology.



Paper From Into Distortion Comments
[16] general metrics l2 c uses SDP
[14] line line c c is constant, embedding is a bijection

unweighted graphs bounded degree trees c c is constant, embedding is a bijection
[19] R

3
R

3 > (3 − ε)c hard to 3-approximate, embedding is a bijection
[9] unweighted graphs sub-trees O(c log n)
[5] unweighted graphs trees O(c)
[4] unweighted graphs line O(c2) implies

√
n-approximation

> ac Hard to a-approximate for some a > 1
c c is constant

unweighted trees line O(c3/2
√

log c)
subsets of a sphere plane 3c

Figure 1: Previous work on relative embedding problems for multiplicative distortion.

From Into Distortion Comments

general metrics line O(∆3/4c11/4)
weighted trees line cO(1)

weighted trees line Ω(n1/12c) Hard to O(n1/12)-approximate even for ∆ = nO(1)

Figure 2: Our results.

The relative formulation is of interest in situations where
the absolute formulation yields distortion that is too large to
be interesting or meaningful. A good example is the prob-
lem of embedding metrics into a line. Even simple metrics,
such as an n-point star or an n-point cycle requires Ω(n) dis-
tortion when embedded into a line. Nevertheless, line em-
beddings, or, in general, embeddings into low-dimensional
spaces, are important in many applications, such as visu-
alisation (e.g., see [20] or [18] web pages). Thus, it is im-
portant to design algorithms which produce low-distortion
embeddings, if such embeddings are possible.

Despite the importance of the problem, not many relative
embedding results are known. This is perhaps because the
problems do not seem to be easily amenable2 to standard
approximation algorithms approaches (which were, e.g., suc-
cessfully used for a closely related bandwidth problem [11,
8]). The results that we are aware of3 are listed in Figure
1 (c denotes the optimal distortion, and n denotes metric
size).

In this paper, we consider the problem of embedding met-
rics induced by weighted graphs into the line. The known
algorithms were designed for unweighted graphs and thus
provide only very weak guarantees for the problem. Specifi-
cally, assume that the minimum interpoint distance between
the points is 1 and the maximum distance4 is ∆. Then, by
scaling, one can obtain algorithms for weighted graphs, with

2For example, there exist metrics for which any vertex or-
dering resulting in “low” bandwidth must result in “high”
distortion when converted into a (non-contractive) embed-
ding. This holds, e.g., for a metric induced by a “comb”
graph, with a “teeth”, each of length b, for b >> a. The
row-by-row order, which minimizes the bandwidth, results
in Ω(ab) distortion of the edges at the end of the teeth, while
the column-by-column order gives distortion b.
3Note that the table contains only the results that hold for
the multiplicative definition of the distortion. There is a rich
body of work that applies to other definitions of distortion,
notably the additive or average distortion, summarized in
Section 1.1.
4We call the maximum/minimum interpoint distance ratio
the spread of the metric.

approximation factor multiplied by ∆.
Our results are presented in Figure 2. The first result is an

algorithm that, given a general metric c-embeddable into the
line, constructs an embedding with distortion O(∆3/4c11/4).
The algorithm uses a novel method for traversing a weighted
graph. It also uses a modification of the unweighted-graph
algorithm from [4] as a subroutine, with a more general anal-
ysis.

Then, we consider the problem of embedding weighted
tree metrics into the line. In this case we are able to get
rid of the dependence on ∆ from the approximation factor.
Specifically, our algorithm produces an embedding with dis-
tortion cO(1).

We complement our upper bounds by a lower bound,
which shows that the problem is hard to approximate up
to a factor a = Ω(n1/12). This dramatically improves over
the earlier result of [4], which only showed that the problem
is hard for some constant a > 1 (note however that their
result applies to unweighted graph metrics as well). Since
the instances used to show our hardness result have spread
∆ ≤ nO(1), it follows that approximating the distortion up
to a factor of ∆Ω(1) is hard as well. In fact, the instances
used to show hardness are metrics induced by (weighted)
trees; thus the problem is hard for tree metrics as well. Our
hardness proof is inspired by the ideas of Unger [21].

1.1 Related Work
Relative embedding problems have been theoretically stud-

ied for over a decade. Until recently, however, the research
has been mostly focused on different notions of distortion.
Specifically, several results gave been obtained for finding
embedding f from space (X, D) into (X ′, D′) that mini-
mizes the maximum additive distortion, that is, minimizing
maxp,q∈X |D(p, q)−D′(f(p), f(q))|. The results are depicted
in Figure 3. A few other results have been obtained for aver-
age distortion [6, 7]; see the papers for results and problem
definitions.



Paper From Into Distortion Comments
[10] general distance matrix ultrametrics c
[1] general distance matrix tree metrics 3c

≥ 9/8c Hard to 9/8-approximate
[12] general distance matrix line 2c

≥ 4/3c Hard to 4/3-approximate
[2] general distance matrix plane under l1 O(c)
[3] general distance matrix plane under l2 O(c) Time quasi-polynomial in ∆

Figure 3: Previous work on relative embedding problems for maximum additive distortion.

2. PRELIMINARIES
Consider an embedding of a set of vertices V into the line.

We say that U ⊂ V is embedded continuously, if there are
no vertices x, x′ ∈ U , and y ∈ V − U , such that f(x) <
f(y) < f(x′).

We say that vertex set U is embedded inside vertex set U ′

iff the smallest interval containing the embedding of U also
contains the embedding of U ′. In particular, we say that
vertex v is embedded inside edge e = (x, y) for v 6= x, v 6= y,
if either f(x) < f(v) < f(y) or f(y) < f(v) < f(x) hold.

Let M = (X, D) be a metric, and f : X → R be a non-
contracting embedding of M into the line. Then, the length
of f is maxu∈X f(u) − minv∈X f(v).

3. GENERAL METRICS
In this section we will present a polynomial-time algo-

rithm that given a metric M = (X, D) of spread ∆ that
c-embeds into the line, computes an embedding of M into
the line, with distortion O(c11/4∆3/4). Since it is known [17]
that any n-point metric embeds into the line with distortion
O(n), we can assume that ∆ = O(n4/3).

We view metric M as a complete graph G defined on
vertex set X, where the weight of each edge e = {u, v} is
D(u, v). As a first step, our algorithm partitions the point
set X into sub-sets X1, . . . , X`, as follows. Let W be a large
integer to be specified later. Remove all the edges of weight
greater than W from G, and denote the resulting connected
components by C1, . . . , C`. Then for each i : 1 ≤ i ≤ `, Xi is
the set of vertices of Ci. Let Gi be the subgraph of G induced
by Xi. Our algorithm computes a low-distortion embedding
for each Gi separately, and then concatenates the embed-
dings to obtain the final embedding of M . In order for the
concatenation to have small distortion, we need the length
of the embedding of each component to be sufficiently small
(relatively to W ). The following simple lemma, essentially
shown in [17], gives an embedding that will be used as a
subroutine.

Lemma 1. Let M = (X, D) be a metric with minimum
distance 1, and let T be a spanning tree of M . Then we
can compute in polynomial time an embedding of M into
the line, with distortion O(cost(T )), and length O(cost(T )).

The embedding in the lemma is computed by taking an
(pre-order) walk of the tree T . Since each edge is traversed
only a constant number of times, the total length and dis-
tortion of the embedding follows.

Our algorithm proceeds as follows. For each i : 1 ≤ i ≤ `,
we compute a spanning tree Ti of Gi, that has the following
properties: the cost of Ti is low, and there exists a walk
on Ti that gives a small distortion embedding of Gi. We

can then view the concatenation of the embeddings of the
components as if it is obtained by a walk on a spanning tree
T of G. We show that the cost of T is small, and thus the
total length of the embedding of G is also small. Since the
minimum distance between components is large, the inter-
component distortion is small.

3.1 Embedding the Components
In this section we concentrate on some component Gi, and

we show how to embed it into a line.
Let H be the graph on vertex set Xi, obtained by remov-

ing all the edges of length at least W from Gi, and let H ′

be the graph obtained by removing all the edges of length
at least cW from Gi. For any pair of vertices x, y ∈ Xi,
let DH(x, y) and DH′ (x, y) be the shortest-path distances
between x and y in H and H ′, respectively. Recall that by
the definition of Xi, H is a connected graph, and observe
that DH (x, y) ≥ DH′(x, y) ≥ D(x, y).

Lemma 2. For any x, y ∈ Xi, DH′(x, y) ≤ cD(x, y).

Proof: Let f be an optimal non-contracting embedding of
Gi, with distortion at most c. Consider any pair u, v of ver-
tices that are embedded consecutively in f . We start by
showing that D(u, v) ≤ cW . Let T be the minimum span-
ning tree of H. If edge {u, v} belongs to T , then D(u, v) ≤
W . Otherwise, since T is connected, there is an edge e =
{u′, v′} in tree T , such that both u and v are embedded in-
side e. But then D(u′, v′) ≤ W , and since the embedding
distortion is at most c, |f(u)−f(v)| ≤ |f(u′)−f(v′)| ≤ cW .
As the embedding is non-contracting, D(u, v) ≤ cW must
hold.

Consider now some pair x, y ∈ Xi of vertices. If no ver-
tex is embedded between x and y, then by the above argu-
ment, D(x, y) ≤ cW , and thus the edge {x, y} is in H ′ and
DH′ (x, y) = D(x, y). Otherwise, let z1, . . . , zk be the ver-
tices appearing in the embedding f between x and y (in this
order). Then the edges {x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y}
all belong to H ′, and therefore

DH′ (x, y)

≤ DH′ (x, z1) + DH′ (z1, z2) + . . . DH′(zk−1, zk) + DH′(zk, y)

= D(x, z1) + D(z1, z2) + . . . D(zk−1, zk) + D(zk, y)

≤ |f(x) − f(z1)| + |f(z1) − f(z2)| + . . . + |f(zk−1) − f(zk)|
+|f(zk) − f(y)|

= |f(x) − f(y)| ≤ cD(x, y)

2

We can now concentrate on embedding graph H ′. Since
the weight of each edge in graph H ′ is bounded by O(cW ),
we can use a modified version of the algorithm of [4] to
embed each Gi. First, we need the following technical Claim.



Claim 1. For any u, u′ ∈ Xi, there exists a shortest path
p = v1, . . . , vk, from u to u′ in H ′, such that for any i, j,
with |i − j| > 1, D(vi, vj) = Ω(W |i − j|).

Proof: Pick an arbitrary shortest path, and repeat the fol-
lowing: while there exist consecutive vertices x1, x2, x3 in
p, with DH′(x1, x3) < cW , remove x2 from p, and add the
edge {x1, x3} in p. 2

The algorithm works as follows. We start with the graph
H ′, and we guess points u, u′, such that there exists an op-
timal embedding of Gi having u and u′ as the left-most
and right-most point respectively. Let p = (v1, . . . , vk) be
the shortest path from u to u′ on H ′ (here v1 = u and
vk = u′), that is given by Claim 1. We partition Xi into
clusters V1, . . . , Vk, as follows. Each vertex x ∈ Xi belongs
to cluster Vj , that minimizes D(x, vj).

Our next step is constructing super-clusters U1, . . . , Us,
where the partition induced by {Vj}k

j=1 is a refinement of

the partition induced by {Uj}s
j=1, such that there is a small-

cost spanning tree T ′ of Gi that “respects” the partition
induced by {Uj}s

j=1. More precisely, each edge of T ′ is either
contained in a super-cluster Ui, or it is an edge of the path
p. The final embedding of Gi is obtained by a walk on T ′,
that traverses the super-clusters U1, . . . , Us in this order.

Note that there exist metrics over Gi for which any span-
ning tree that “respects” the partition induced by Vj ’s is
much more expensive that the minimum spanning tree. Thus,
we cannot simply use Uj = Vj .

We now show how to construct the super-clusters U1, . . . , Us.
We first need the following three technical claims, which con-
stitute a natural extensions of similar claims from [4] to the
weighted case. Their proofs are given in Appendix, Section
A.

Claim 2. For each i : 1 ≤ i ≤ k, maxu∈Vi
{D(u, vi)} ≤

c2W/2.

Claim 3. For each r ≥ 1, and for each i : 1 ≤ i ≤
k − r + 1,

Pi+r−1
j=i |Vi| ≤ c2W (c + r − 1) + 1.

Claim 4. If {x, y} ∈ E(H ′), where x ∈ Vi, and y ∈ Vj,
then D(vi, vj) ≤ cW + c2W , and |i − j| = O(c2).

Let α be an integer with 0 ≤ α < c4W . We partition
the set Xi into super-clusters U1, . . . , Us, such that for each
l : 1 ≤ l ≤ s, Ul is the union of c4W consecutive clusters Vj ,
where the indexes j are shifted by α. We refer to the above
partition as α-shifted.

Claim 5. Let T be an MST of Gi. We can compute in
polynomial time a spanning tree T ′ of Gi, with cost(T ′) =
O(cost(T )), and an α-shifted partition of Xi, such that for
any edge {x, y} of T ′, either both x, y ∈ Ul for some l : 1 ≤
l ≤ s, or x = vj and y = vj+1 for some j : 1 ≤ j < k.

Proof: Observe that since H is connected, all the edges of
T can have length at most W , and thus T is a subgraph of
both H and H ′. Consider the α-shifted partition obtained
by picking α ∈ {0, . . . , c4W − 1}, uniformly at random. Let
T ′ be the spanning tree obtained from T as follows: For all
edges {x, y} of T , such that x ∈ Vi ⊆ Ui′ , and y ∈ Vj ⊆ Uj′ ,
where i′ 6= j′, we remove {x, y} from T , and we add the edges
{x, vi}, {y, vj}, and the edges on the subpath of p from vi

to vj . Finally, if the resulting graph T ′ contains cycles, we
remove edges in an arbitrary order, until T ′ becomes a tree.
Note that although T ′ is a spanning tree of Gi, it is not
necessarily a subtree of H ′.

Clearly, since the edges {x, vi}, and {y, vj} that we add at
each iteration of the above procedure are contained in the
sets Ui′ , and Uj′ respectively, it follows that T ′ satisfies the
condition of the Claim.

We will next show that the expectation of cost(T ′), taken
over the random choice of α, is O(cost(T )). For any edge
{x, y} that we remove from T , the cost of T ′ is increased
by the sum of D(x, vi) and D(y, vj), plus the length of the
shortest path from vi to vj in H ′. Observe that the total
increase of cost(T ′) due to the subpaths of p that we add, is
at most cost(T ). Thus, it suffices to bound the increase of
cost(T ′) due to the edges {x, vi}, and {y, vj}.

By Claim 2, D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2.
Thus, for each edge {x, y} that we remove from T , the cost
of the resulting T ′ is increased by at most O(c2W ).

For each i, the set Ui ∪ Ui+1 contains Ω(c4W ) consecu-
tive clusters Vj . Also, by Claim 4 the difference between
the indexes of the clusters Vt1 , Vt2 containing the endpoints
of an edge, is at most |t1 − t2| = O(c2). Thus, the prob-
ability that an edge of T is removed, is at most O( 1

c2W
),

and the expected total cost of the edges in E(T ′) \ E(T )
is O(|Xi|) = O(cost(T )). Therefore, the expectation of
cost(T ′), is at most O(cost(T )). The Claim follows by the
linearity of expectation, and by the fact that there are only
few choices for α. 2

Let U1, . . . , Us be an α-shifted partition, satisfying the
conditions of Claim 5, and let T ′ be the corresponding tree.
Clearly, the subgraph T ′[Ui] induced by each Ui is a con-
nected subtree of T ′. For each Ui, we construct an embed-
ding into the line by applying Lemma 1 on the spanning
tree T ′[Ui]. By Claim 3, |Ui| = O(c6W 2), and by Claim
2, the cost of the spanning tree T ′[Ui] of Ui is at most
O(|Ui|c2W ) = O(c8W 3). Therefore, the embedding of each
Ui, given by Lemma 1 has distortion O(c8W 3), and length
O(c8W 3).

Finally, we construct an embedding for Gi by concatenat-
ing the embeddings computed for the sets U1, U2, . . . , Us,
while leaving sufficient space between each consecutive pair
of super-clusters, so that we satisfy non-contraction.

Lemma 3. The above algorithm produces a non-contracting
embedding of Gi with distortion O(c8W 3) and length
O(cost(MST(Gi))).

Proof: Let g be the embedding produced by the algorithm.
Clearly, g is non-contracting. Consider now a a pair of points
x, y ∈ X, such that x ∈ Ui, and y ∈ Uj . If |i − j| ≤ 1, then
|g(x)− g(y)| = O(c8W 3), and thus the distortion of D(x, y)
is at most O(c8W 3).

Assume now that |i − j| ≥ 2, and x ∈ Vi′ , y ∈ Vj′ .
Then |g(x) − g(y)| = O(|i − j| · c8W 3). On the other hand,
D(x, y) ≥ D(vi′ , vj′ ) − D(vi′ , x) − D(vj′ , y) ≥ D(vi′ , vj′ ) −
c2W ≥ DH′(vi′ , vj′ )/c − c2W ≥ |i′ − j′|/c − c2W = Ω(|i −
j|c4W 2). Thus, the distortion on {x, y} is O(c4W ). In total,
the maximum distortion of the embedding g is O(c8W 3).

In order to bound the length of the constructed embed-
ding, consider a walk on T ′ that visits the vertices of T
according to their appearance in the line, from left to right.
It is easy to see that this walk traverses each edge at most 4



times. Thus, the length of the embedding, which is equal to
the total length of the walk is at most 4cost(T ′) = O(cost(T )).

2

3.2 The Final Embedding
We are now ready to give a detailed description of the

final algorithm. Assume that the minimum distance in M
is 1, and the diameter is ∆. Let H = (X, E) be a graph,
such that an edge (u, v) ∈ E iff D(u, v) ≤ W , for a threshold
W , to be determined later. We use the algorithm presented
above to embed every connected component G1, . . . , Gk of
H. Let f1, f2, . . . , fk be the embeddings that we get for the
components G1, G2, . . . Gk using the above algorithm, and
let T be a minimum spanning tree of G. It is easy to see that
T connects the components Gi using exactly k − 1 edges.5

We compute our final embedding f as follows. Fix an ar-
bitrary Eulerian walk of T . Let P be the permutation of
(G1, G2, . . . , Gk) that corresponds to the order of the first
occurrence of any node of Gi in our traversal. Compute
embedding f by concatenating the embeddings fi of com-
ponents Gi in the order of this permutation. Let Ti be
the minimum spanning tree of Gi. Between every 2 con-
secutive embeddings in the permutation fi and fj , leave
space maxu∈Gi,v∈Gj

{D(u, v)} = D(a, b) + O(cost(Ti)) +
O(cost(Tj)), where D(a, b) is the smallest distance between
components Gi and Gj . This implies the following.

Lemma 4. The length of f is at most O(c∆).

Proof: The length of f is the sum of the lengths of all
fi and the space that we leave between every 2 consecutive
fi, fj ’s. Then, by Lemma 3, the length of fi is O(c·cost(Ti)).
Thus, the sum of the lengths of all fi’s is O(c ·cost(T )). The
total space that we leave between all pairs of consecutive
embeddings fi is cost(T )+2

Pk
i=1 O(cost(Ti)) = O(cost(T )).

Therefore the total length of the embedding f is O(cost(T )).
At the same time, the cost of T is at most the length of
the optimal embedding f , which is O(c∆). The statement
follows. 2

Lemma 5. Let a ∈ Gi, b ∈ Gj for i 6= j. Then W ≤
D(a, b) ≤ |f(a) − f(b)| ≤ O(c∆) ≤ O(cD(a, b) ∆

W
)

Proof: The first part D(a, b) ≤ |f(a) − f(b)| is trivial by
construction, since we left enough space between compo-
nents Gi and Gj . Since a and b are in difference connected
components, we have D(a, b) > W . Using Lemma 4 we have

that |f(a)−f(b)| = O(c∆) = O(c∆ D(a,b)
W

) = O(cD(a, b) ∆
W

).
2

Theorem 1. Let M = (X, D) be a metric with spread
∆, that embeds into the line with distortion c. Then, we
can compute in polynomial time an embedding of M into
the line, of distortion O(c11/4∆3/4).

Proof: Consider any pair of points. If they belong to dif-
ferent components, their distance distortion is O(c∆/W )
(Lemma 5). If they belong to the same component, their
distance distortion is O(c8W 3) (Lemma 3). Setting W =

∆1/4c−7/4 gives the claimed distortion bound. 2

5Follows from correctness of Kruskal’s algorithm. These k−
1 edges are exactly the last edges to be added because they
are bigger than W and within components we have edges
smaller than W

4. HARDNESS OF EMBEDDING INTO THE
LINE

In this section we show that even the problem of embed-
ding weighted trees into the line is nβ-hard to approximate,
for some constant 0 < β < 1. Our reduction is performed
from the 3SAT(5) problem, defined as follows. The input is
a CNF formula ϕ, in which each clause consists of exactly
3 different literals and each variable participates in exactly
5 clauses, and the goal is to determine whether ϕ is satisfi-
able. Let x1, . . . , xn, and C1, . . . , Cm, be the variables and
the clauses of ϕ respectively, with m = 5n/3. Given an in-
put formula ϕ, we construct a weighted tree G, such that if
ϕ is satisfiable then there is an embedding of G into the line
with distortion O(b) (for some b = poly(n)) and if ϕ is not
satisfiable, then the distortion of any embedding is at least
bτ , where τ = poly(n). The construction size is polynomial
in τ , and hence the hardness result follows.

4.1 The construction
Our construction makes use of caterpillar graphs. A cater-

pillar graph consists of a path called body, and a collection of
vertex disjoint paths, called hairs, while each hair is attached
to a distinct vertex of the body, called the base of the hair.
One of the endpoints of the caterpillar body is called the first
vertex of the caterpillar, and the other endpoint is called the
last vertex. We use two integer paremeters b = poly(n) and
τ = poly(n), whose exact value is determined later. We call
a caterpillar graph a canonical caterpillar, if: (1) its body
consists of integer-length edges, (2) the length of each hair
is a multiple of b, and (3) each hair consists of edges of
length 1

bτ
. Our weighted tree G is a collection of canonical

caterpillars, connected together in some way specified later.
Notice that in any embedding of a canonical caterpillar with
distortion less than bτ , each hair must be embedded contin-
uously (the formal proof appears below). Let B1, . . . , Bt be
caterpillars. A concatenation of B1, . . . , Bt is a caterpillar
obtained by connecting each pair of consecutive caterpillars
Bi, Bi+1 for 1 ≤ i < t with a unit-length edge between the
last vertex of Bi and the first vertex of Bi+1.

The building blocks of our graph G are literal caterpillars,
variable caterpillars and clause caterpillars, that represent
the literals, the variables and the clauses of the input for-
mula ϕ. All these caterpillars are canonical. Let xi be some
variable in formula ϕ. We define two caterpillars called lit-
eral caterpillars wi and w′

i, which represent the literals xi

and xi, respectively. Additionally, we have a variable cater-
pillar vi representing variable xi.

Let YL and YR be caterpillars whose bodies contain only
one vertex (denoted by L and R respectively), with a hair
of length τ 3b (denoted by HL and HR respectively) at-
tached to the body. The main part of our graph G is
a canonical caterpillar W , defined as a concatenation of
YL, w1, w

′
1, w2, w

′
2, . . . wn, w′

n, YR. The hairs of HL and HR

are used as padding, to ensure that all the vertices of G \
(HL ∪ HR), are embedded between L and R. The length
of the body of W is denoted by N , and is calculated later.
Variable caterpillars vi attach to W as follows. The first ver-
tex of vi connects by a unit-length edge to the first vertex
of w′

i.
For every clause Cj in formula ϕ, our construction con-

tains a canonical caterpillar kj representing it, which is also
called a key. Each key kj is attached to vertex L by an
edge of length N . Figure 4 summarizes the above described
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Figure 4: The high-level view of the construction.

construction.
We now provide the details on the structure of the literal

caterpillars. Consider a literal `, and let w be the caterpillar
that represents it (i.e., if ` is xi or xi, then w is wi or wi).
Assume that ` participates in (at most 5) clauses C`

1, C
`
2, . . ..

Then w is the concatenation of at most 5 caterpillars, de-
noted by h`

1, h
`
2, . . ., that represent the participation of ` in

these clauses (see Figure 5). Following [21], we call these
caterpillars keyholes. For convenience, we ensure that for
each literal ` there are exactly 5 such keyholes h`

1, h
`
2, . . . , h

`
5,

as follows. If the literal participates in less than 5 clauses,
we use several copies of the same keyhole that corresponds
to some clause in which ` participates. Thus, for each clause,
for each literal participating in this clause, there is at least
one keyhole. All the keyholes that correspond to the same
clause Cj are copies of the same caterpillar h(j), called the
keyhole of Cj .

The main

��� � ���� � � ������ 
! �

Figure 5: Caterpillar representing lit-

eral `.

idea of the
construction
is as follows.
First, the keys
and the key-
holes are de-
signed in a

special way, such that in order to avoid the distortion of bτ ,
each key kj has to be embedded inside one of the match-
ing keyholes (copies of h(j)). The variable caterpillars are
shaped in such a way that in any embedding with distortion
less than bτ , each variable caterpillar vi is either embedded
in wi or w′

i. If vi is embedded in wi, then no key can be
embedded inside any keyhole belonging to wi without incur-
ring the distortion of bτ , and the same is true in case vi is
embedded into w′

i. Suppose formula ϕ is satisfiable. Then
embedding of G with distortion O(b) is obtained as follows.
We first embed hair HL (starting from the vertex furthest
from L), then the body of W and then HR (starting from
the vertex closest to R). For each variable xi, if the correct
assignment to xi is true, then variable caterpillar vi is em-
bedded inside the literal caterpillar w′

i, and otherwise it is
embedded inside wi. Given a clause Cj , if ` is the satisfied
literal in this clause, we embed the key kj in the copy of key-
hole h(j), that corresponds to literal `. On the other hand,
if ϕ is not satisfiable, we still need to embed each variable
caterpillar vi inside one of the two corresponding caterpillars
wi, w′

i, thus defining an assignment to all the variables. For
example, if vi is embedded inside wi, this corresponds to the

assignment false to variable xi. Such embedding of vi will
block all the keyholes in the caterpillar wi. Since the assign-
ment is non-satisfying, for at least one of the keys kj , all the
corresponding keyholes (copies of h(j)) are blocked, and so
in order to embed kj , we will need to incur a distortion of
bτ .

The rest of the construction description, including the im-
plementation of keys and keyholes and variable caterpillars,
as well as the reduction analysis, appears in the full version
of this paper.

5. APPROXIMATION ALGORITHM FOR
WEIGHTED TREES

In this section we consider embedding of weighted trees
into the line. Given a weighted tree T , let ϕ be its optimal
embedding into the line, whose distortion is denoted by c (we
assume that c ≥ 200). We provide a poly(c)-approximation
algorithm, which, combined with earlier work, implies n1−ε

approximation algorithm for weighted trees, for some con-
stant 0 < ε < 1. The first step of our algorithm is guessing
the optimal distortion c, and from now on we assume that
we have guessed its value correctly.

We start with notation. Fix any vertex r of the tree to
be the root. Given a vertex v 6= r, denote d(v) = D(v, r).
Consider any edge e = (u, v). The length of e is denoted
by we, and de = min{d(u), d(v)} is the distance of e from
r. We say that e is a large edge if we ≥ de

c
, it is a medium

edge if de

c
> we ≥ de

c2
, and otherwise e is a small edge.

Claim 6. If e = (u, v) is a medium or a small edge, then
r is not embedded between u and v in the optimal solution.

Proof: Assume otherwise. Then |ϕ(u) − ϕ(v)| ≥ de. But
D(u, v) = we < de

c
, and edge e is stretched by a factor

greater than c. 2

Let C be the collection of connected components, obtained
by removing all the large edges from the graph. For each
component C ∈ C, let r(C) denote its “root”, i.e. the vertex
of C closest to r in tree T . We also denote by e(C) the
unique edge incident on r(C) on the path from r(C) to r,
and by α(C) the length of this edge. Clearly, in the optimal
solution, the embedding of component C lies completely to
the left or to the right of r.

Given some com-
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ponent C ∈ C, let
`(C) be the ver-
tex in C that max-
imizes D(r(C), `(C)),
and let P (C) be
the path between
r(C) and `(C) in
tree T . We de-
fine the radius of
C to be s(C) =
D(r(C), `(C)). Com-

ponent C is called large if s(C) > c4α(C), otherwise the
component is called small. We define a tree T ′ of compo-
nents, whose vertex set is C ∪ {r}, and the edges connecting
the components are the same as in the original graph, (i.e.,
e(C) for all C ∈ C.)



Procedure Partition

Let C be the current set of all the components.
While there is a large component C ∈ C, with a medium-
sized edge e on the path from r(C) to `(C), such that the
removal of e splits C into two large components, do:

Let C′ and C′′ be the two large components ob-
tained by removing e. Remove C from C and add C ′ and
C′′ to C.

The main idea of our algorithm is to find the embedding of
each one of the components separately recursively, and then
concatenate these embeddings in some carefully chosen or-
der. However, there is a problem with this algorithm, which
is illustrated by the following example. Consider a large
component C, consisting of a very long path, and a small
component C′ attached to this path in the middle. In this
case any small-distortion embedding has to interleave the
vertices of C and C ′, and thus our algorithm fails. We note
that as e(C′) is a large edge, vertices of component C ′ have
to be embedded into medium-sized edges of C (formal proof
of this fact is provided later). In order to solve the above
problem, we perform Procedure Partition, that further
subdivides large components by removing some medium-size
edges from them.

From now on we only consider the components after the
application of the above procedure, and the component graph,
the values r(C), `(C), α(C) and so on are defined with re-
spect to these components. It is easy to see that if a medium
size edge e is incident on some component C, then C is a
large component.

In fact, it is more convenient for us to define and solve a
slightly more general problem. In the modified problem, in
addition to a weighted tree T , we are also given a threshold
value H. Given any embedding of our tree into the line, we
say that it satisfies the root condition if: (1) each component
C is embedded completely to the right or to the left of r, and
(2) no component C with α(C)+s(C) ≥ cH is embedded to
the right of r. Our goal is to find an embedding that satisfies
the root condition, while minimizing its distortion. Even
though the problem might look artificial at this point, it is
easy to see that by setting H = ∞, it converts to our original
problem. The reason for defining the problem this way is
that our algorithm solves the problem recursively on each
component C ∈ C, and then concatenates their embeddings
into the final solution. In order to avoid large distortion of
the distance between r and r(C), we need to impose the
root condition on the sub-problem corresponding to C with
threshold H = D(r, r(C)). We later claim that for each
sub-problem there is an optimal embedding with distortion
c that satisfies the corresponding root condition.

5.1 The Structure of the Optimal Solution
In this section we explore some structural properties of

the optimal solution, on which our algorithm relies.

Definition 1. Let C, C ′ be two large components. We
say that these components are incompatible if s(C) > 2c3α(C′)
and s(C′) > 2c3α(C).

Lemma 6. If C and C ′ are large incompatible compo-
nents, then in the optimal solution they are embedded on
different sides of r.

Definition 2. Let C be a large component, and C ′ a
small component. We say that there is a conflict between
C and C′ iff 2c4α(C) < α(C′) < s(C)/2c4.

Lemma 7. If C is a large component having a conflict
with small component C ′, then C and C′ are embedded on
different sides of r in the optimal solution.

Claim 7. Let C, C ′ be large components and C ′′ a small
component. Moreover, assume that there is a conflict be-
tween C and C′′ and there is a conflict between C ′ and C′′.
Then C and C′ are incompatible.

Proof: Since there is a conflict between C and C ′′, α(C′′) >
2c4α(C). A conflict between C ′ and C′′ implies that α(C′′) <
s(C′)/2c4. Therefore, s(C′) > 2c3α(C). Similarly, we can
prove that s(C) > 2c3α(C′). 2

We subdivide the small components into types or subsets
M1,M2, . . .. We say that a small component C is of type i
and denote C ∈ Mi iff ci−1 ≤ α(C) < ci.

Claim 8. For each i, |Mi| ≤ 4c4.

Proof: Consider some i ≥ 1, and assume that |Mi| > 4c4.
Then in the optimal solution, there are more than 2c4 com-
ponents of type i embedded on one of the sides of r. Denote
these components by Ci

1, C
i
2, . . . , C

i
k, k > 2c4, and assume

that vertices r(Ci
j) are embedded in the optimal solution in

this order, where r(Ci
1) is embedded closest to r. It is easy to

see that for any pair C, C ′ of small components, the distance

between r(C) and r(C ′) is at least α(C)
c

. As the optimal em-
bedding is non-contracting, for every j = 1, . . . , k − 1, there
is a distance of at least α(Ci

j)/c ≥ ci−2 between the em-

bedding of r(Ci
j) and r(Ci

j+1). Therefore, r(Ci
k) is embed-

ded at a distance at least kci−2 > 2ci+2 from r. However,
d(r(Ci

k)) ≤ α(Ci
k) + cα(Ci

k) ≤ 2ci+1, and thus this distance
is distorted by more than a factor of c in the optimal em-
bedding. 2

5.2 The Approximation Algorithm
Our algorithm consists of three major phases. In the first

phase we compute the set C of components, after performing
Procedure Partition. In the second phase, we solve the
problem recursively for each one of the components C ∈ C,
where the threshold for the root condition becomes H =
D(r(C), r). In the final phase, we combine the recursive
solutions to produce the final embedding.

Claim 9. For each recursive call to our algorithm, there
is an embedding of the corresponding instance with distortion
c, that satisfies the root condition.

Proof: Let C be a component, and let C ′ be a component
obtained after decomposing C. We consider the recursive
call in C′. Since C is just a subtree of T , it embeds into
the line with distortion c. Let f be such an embedding of
C with distortion c. W.l.o.g., we can assume that r(C ′) is
embedded to the left of r(C). It suffices to show that f
satisfies the root condition in component C ′.

Observe that for the recursive call in C ′, the threshold
value is H = D(r(C), r(C ′)). All the edges of C ′ as not
large w.r.to r(C), thus all the vertices of C ′ are embedded
to the left of r(C). Assume now that the root condition is



not satisfied for C ′. This implies that there exists a compo-
nent C′′ that is obtained after decomposing C ′, such that
α(C′′) + s(C′′) ≥ cH, and such that C ′′ is embedded to
the left of r(C′). Thus, f(r(C′)) < f(l(C′′)) < f(r(C)). It
follows that |f(r(C ′)) − f(r(C))| > |f(r(C ′)) − f(l(C′′))| ≥
D(r(C′), l(C′′)) = α(C′′) + s(C′′) ≥ cH = cD(r(C ′), r(C)),
a contradiction. 2

The final embedding is produced as follows. First, parti-
tion the set C of components into two subsets R, L, contain-
ing the components to be embedded to the right and to the
left of r, respectively. The partition procedure is explained
below. The components in L are then embedded to the
left of r, while the embedding of each component is deter-
mined by the recursive procedure call, and the embeddings
of different components do not overlap. The order of com-
ponents is determined as follows. For each small component
C, let f(C) = α(C), and for each large component C ′, let
f(C′) = s(C′)/2c4. The order of embedding is according to
f(C), where the component C with smallest f(C) is embed-
ded closest to the root r. The embedding of components in
R is performed similarly, except that the embedding of each
component is the mirror image of the embedding returned
by the recursive procedure call (so that the root condition
holds in the right direction). We put enough empty space
between the embeddings of different components to ensure
that the embedding is non-contracting. In the rest of this
section we show how to partition C into the subsets R and
L.

We start with large components. We translate the prob-
lem into an instance of 2SAT, as follows. We have one vari-
able x(C) for each large cluster C. Embedding C to the
left of r is equivalent to setting x(C) = T . If two com-
ponents C and C′ are incompatible, we ensure that vari-
ables x(C) and x(C ′) get different assignments, by adding

clauses x(C) ∨ x(C ′) and x(C) ∨ x(C ′). Additionally, if
s(C) + α(C) > cH, then we ensure that C is not embed-
ded to the right of r by adding a clause x(C) ∨ x(C). The
optimal solution induces a satisfying assignment to the re-
sulting 2SAT formula, and hence we can find a satisfying as-
signment in polynomial time. The clusters C with x(C) = T
are added to L and all other clusters are added to R.

Consider now any small cluster C. If s(C) + α(C) > cH,
then we add C to L. Otherwise, if s(C) + α(C) ≤ cH, then
there is at most one large component C ′ that has conflict
with C. If such a component C ′ exists, then we embed C on
the side opposite to that where C ′ is embedded. Otherwise,
C is embedded to the left of r. Clearly, in any embedding
consistent with the above decision the root condition is sat-
isfied.

The analysis of this phase of the algorithm appears in the
full version of this paper.

Theorem 2. The algorithm produces a non-contracting
embedding with distortion bounded by cO(1).

6. CONCLUSIONS AND OPEN PROBLEMS
In this paper we presented several results on approxima-

tion algorithms for minimizing distortion of embedding met-
rics into the line. This work naturally leads to several open
problems. Perhaps the most glaring one is: does there exist a
polynomial-time cO(1)-approximation algorithm for embed-
ding general metrics into the line (i.e., can the dependence

on ∆ in the approximation factor be completely removed) ?
We conjecture that this is the case. Perhaps the first step
towards designing such algorithm would be finding a simpler
algorithm for the tree-metric case.
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APPENDIX

A. GENERAL METRICS
Claim 2 For each i, with 1 ≤ i ≤ k, maxu∈Vi

D(u, vi) ≤
c2W/2.
Proof: Let u ∈ Vi. Consider the optimal embedding f .
Since f(v1) = minw∈X f(w), and f(vk) = maxw∈X f(w), it
follows that there exists j, with 1 ≤ j < k, such that

min{f(vj), f(vj+1)} < f(u) < max{f(vj ), f(vj+1)}.
Assume w.l.o.g., that f(vj) < f(u) < f(vj+1). We have
D(u, vj) ≥ D(u, vi), since u ∈ Vi. Since f is non-contracting,
we obtain f(u) − f(vj) ≥ D(u, vj) ≥ D(u, vi). Similarly, we
have f(vj+1) − f(u) ≥ D(u, vi). Thus, f(vj+1) − f(vj) ≥
2D(u, vi). Since {vj , vj+1} ∈ E(H ′), we have D(vj , vj+1) ≤
cW . Thus, c ≥ f(vj+1)−f(vj)

D(vj+1,vj)
≥ 2D(u,vi)

cW
. 2

Claim 3 For each r ≥ 1, and for each i, with 1 ≤ i ≤
k − r + 1,

Pi+r−1
j=i |Vi| ≤ c2W (c + r − 1) + 1.

Proof: Let A =
Si+r−1

j=1 Vi. Let x = argminu∈Af(u), and

y = argmaxu∈Af(u). Let also x ∈ Vi, and y ∈ Vj . Clearly,
|f(vi) − f(vj )| ≤ cD(vi, vj) ≤ cDH′ (vi, vj) ≤ c2W |i − j| ≤
c2W (r − 1). By Claim 2, we have D(x, vi) ≤ c2W/2, and
D(y, vj) ≤ c2W/2. Thus, |f(x) − f(vi)| ≤ cD(x, vi) ≤
c3W/2, and similarly |f(y)−f(vj)| ≤ c3W/2. It follows that
|f(x)−f(y)| ≤ |f(x)−f(vi)|+|f(vi)−f(vj )|+|f(vj )−f(y)| ≤
c3W +c2W (r−1). Note that by the choice of x, y, and since
the minimum distance in M is 1, and f is non-contracting,
we have

Pi+r−1
j=i |Vi| ≤ |f(x) − f(y)| + 1, and the assertion

follows. 2

Claim 4 If {x, y} ∈ E(H ′), with x ∈ Vi, and y ∈ Vj , then
D(vi, vj) ≤ cW + c2W , and |i − j| = O(c2).
Proof: Since {x, y} ∈ E(H ′), we have D(x, y) ≤ cW . By
Claim 2, we have D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2.
Thus, D(vi, vj) ≤ D(vi, x)+D(x, y)+D(y, vj) ≤ cW +c2W .

By Claim 1, we have |i−j| = O(1+D(vi, vj)/W ) = O(c2).
2


