
Resource Minimization for Fire Containment

Parinya Chalermsook ∗ Julia Chuzhoy †

Abstract
We consider the following model for fire containment. We are
given an undirected graph G = (V, E) with a source vertex
s where the fire starts. At each time step, the firefighters
can save up to k vertices of the graph, while the fire spreads
from burning vertices to all their neighbors that have not
been saved so far. Our goal is to choose the vertices to be
saved at each time step so as to contain the fire. This is a
simple mathematical model abstracting the dynamic nature
of fire containment and other natural processes, such as, for
example, the spread of a perfectly contagious disease and its
containment via vaccination.

We focus on the Resource Minimization Fire Contain-

ment (RMFC) problem, where we are additionally given a

subset T ⊆ V of vertices called terminals that need to be

protected from fire. The objective is to minimize k - the

maximum number of vertices to be saved at any time step,

so that the fire does not spread to the vertices of T . The

problem is hard to approximate up to any factor better than

2 even on trees. We show an O(log∗ n)-approximation LP-

rounding algorithm for RMFC on trees. We also show that

an even stronger LP relaxation has an integrality gap of

Ω(log∗ n) on trees. Finally, we consider RMFC on directed

layered graphs, and show an O(log n)-approximation LP-

rounding algorithm, matching the integrality gap of the LP

relaxation.

1 Introduction

We study the following model for fire containment. The
input is an undirected graph G = (V,E) with a source
vertex s, where the fire starts. At each time step we can
choose up to k vertices to be saved by the firefighters,
while the fire spreads to every vertex that has not been
saved so far and has at least one burning neighbor.
Once a vertex is saved or burns, it remains in this
state permanently. The process stops when the fire
cannot spread to any new vertices. This is a simple
mathematical model for containing a natural process
with a simple spread mechanism. It was first suggested
by Hartnell [8] in the context of firefighting, and can
also be used in a variety of similar scenarios, such as,
for example, in containing an outbreak of a perfectly

∗Department of Computer Science, University of Chicago,
Chicago, IL 60637. Email: parinya@uchicago.edu
†Toyota Technological Institute, Chicago, IL 60637. Email:

cjulia@tti-c.org. Supported in part by NSF CAREER grant
CCF-0844872

contagious disease via vaccination, when only a small
number of individuals can be vaccinated at each time
step [10].

We consider the resource minimization version of
the problem, called Resource Minimization Fire Con-
tainment (RMFC). In this problem, we are also given a
subset T ⊆ V of vertices called terminals. The goal is
to minimize k, the maximum number of vertices to be
saved at any time step, so that the fire does not spread
to the vertices of T . We sometimes refer to k as the
number of firefighters the solution uses. Another natu-
ral version of the problem, that has been studied in the
literature, is the Firefighters problem, where the bound
k is fixed, and the goal is to maximize the total number
of vertices to which the fire does not spread.

King and MacGillivray [13] showed that RMFC is
NP-hard even on full trees of degree three, and their
result implies that the problem is hard to approximate
up to any factor better than 2. This is the only
currently known lower bound on the approximability
of RMFC, even for general graphs. On the algorithmic
side, the standard randomized rounding of a natural
LP-relaxation for RMFC on trees gives an O(log n)-
approximation. King and MacGillivray [13] also show
that the problem is efficiently solvable on graphs of
maximum degree 3 if the fire starts at a degree-2 vertex.

Better approximation algorithms are known for the
Firefighters problem on trees. Hartnell and Li [11]
showed that a simple greedy algorithm gives a factor 2-
approximation. This was improved to factor e/(e−1) by
to Cai, Verbin and Yang [3], who also showed an exact
algorithm with running time 2O(

√
n logn). Finbow et.

al. [6] showed that the Firefighters problem is NP-hard
even on trees of degree at most three, but is efficiently
solvable if the fire starts at a degree-2 vertex.

Our main result is an O(log∗ n)-approximation al-
gorithm for RMFC on trees. The algorithm is based on
the rounding of a natural linear programming relaxation
for the problem. We also show that an even stronger
LP-relaxation of RMFC on trees has an Ω(log∗ n) inte-
grality gap. Next we consider RMFC on directed lay-
ered graphs and show an O(log n)-approximation LP-
rounding algorithm, matching the lower bound on the
integrality gap of the LP that was shown by [12].

We note that the approximation factor of O(log∗ n)

is rather unusual, and the only known natural prob-
lem with Θ(log∗ n) approximability threshold is Asym-
metric k-Center [19, 2, 4]. This problem appears to
be somewhat similar in nature to RMFC on trees:
the O(log∗ n)-factor approximation algorithm for Asym-
metric k-Center starts by transforming the problem into
a covering problem on a layered graph, where every pair
of consecutive layers is viewed as an instance of the Set
Cover problem. While RMFC on trees can also be seen
as a covering problem on layered graphs, the O(log∗ n)
approximation algorithm is technically very different.
Moreover, when the underlying graph is a directed lay-
ered graph (a setting similar to the one obtained in
Asymmetric k-Center), the integrality gap of the LP-
relaxation for RMFC becomes Ω(log n), thus ruling out
the possibility of extending our approach to this setting.

We note that independently of our work, Anshele-
vich et. al. [1] studied RMFC and related problems.
In particular, they give an O(

√
n)-approximation LP-

rounding algorithm for RMFC on general graphs. They
also show that the integrality gap of the LP they are
using is Ω(log n), and give an O(log `)-approximation
for directed layered graphs with ` layers. For the Fire-
fighter problem, [1] prove an n1−ε-hardness of approx-
imation, for any 0 < ε < 1. Additionally, Anshelevich
et. al. study the same problems in the spreading model:
when the problem is viewed in the context of contain-
ing a disease via vaccination, the spreading model as-
sumes that the vaccination itself is an infectious process,
whose spreading mechanism is similar to that of the in-
fection itself. Anshelevich et. al. provide an e/(e− 1)-
approximation algorithm for the Firefighters problem,
and an O(log n)-approximation algorithm for RMFC in
the spreading model. They also prove that RMFC in
the spreading setting is at least as hard to approximate
as the Set Cover problem.

Related Work The model for fire spread control
was introduced by Hartnell [8], who studied the question
of fire containment on infinite graphs. Under his
definition, given an infinite graph G, we say that the
fire is contained iff only a finite number of vertices burn.
Wang and Moeller [20] showed that two firefighters are
sufficient to contain the fire on a Z×Z grid, and that any
algorithm using two firefighters needs at least 8 steps do
so. Develin and Hartke [5] later showed that at least 18
vertices must burn in this scenario. Wang and Moeller
[20] showed that (r − 1) firefighters are sufficient to
contain the fire in any r-regular graph, and in particular
this implies that (2d − 1) firefighters can contain the
fire on a d-dimensional grid. Develin and Hartke [5]
proved that this bound is tight, showing a lower bound
of (2d−1) firefighters for d-dimensional grids. In a more
general setting, where the fire starts simultaneously at

a finite number of vertices, Fogarty [7] showed that two
firefighters are still sufficient to contain the fire on a 2-
dimensional grid. In contrast, Develin and Hartke [5]
proved that for d-dimensional grids, with d ≥ 3, for any
integer f , there is a finite set of fire outbreak locations
for which f firefighters are insufficient.

Our Results and Techniques Our main result
is an O(log∗ n)-approximation algorithm for RMFC on
trees. The algorithm rounds a natural LP-relaxation
of the problem. We then prove that an even stronger
LP-relaxation has an Ω(log∗ n) integrality gap. We also
consider RMFC on directed layered graphs and show an
O(log n)-approximation LP-rounding algorithm, match-
ing the integrality gap of the LP relaxation.

We now provide a high level overview of the ideas
and techniques used in our O(log∗ n)-approximation
algorithm for RMFC on trees. We root the tree at the
vertex s where the fire starts, and say that vertex v
lies in layer τ iff its distance from s is τ . It is easy
to see that we can assume w.l.o.g. that any solution
chooses to save, at each time step τ , a subset of vertices
lying in layer τ . With this observation, a natural
LP relaxation for the problem assigns LP-weight x(v)
to each vertex v, with the constraints that the total
LP-weight of vertices in any layer is at most k, the
total LP-weight of any root-to-terminal path is at least
1, and the objective function of minimizing k. The
main technical part of our algorithm is a randomized
procedure, which, given an instance of RMFC on a tree
and a set T of terminals, produces an almost-feasible
near-optimal solution, in the following sense: the output
consists of a collection of subsets Uτ of vertices to
be saved at each time step τ , with |Uτ | ≤ O(k) for
each τ , and an additional set R of at most poly log |T |
vertices, such that sets {Uτ}τ induce a feasible solution
in the graph obtained by removing the vertices of R
from G. In other words, if we recursively obtain a
feasible solution for the instance where the vertices of
R serve as terminals, then the union of this solution
with the collection {Uτ}τ of sets induces a feasible
solution to the original problem. It is then easy to get
an O(log∗ n) approximation using the above procedure
as a subroutine. The input graph G is partitioned
into g = O(log∗ n) sub-instances H1, H2, . . . ,Hg, such
that each source-to-terminal path traverses every sub-
instance in this order and has total LP-weight of at
least Ω(1/g) inside each of them. We then apply the
randomized rounding algorithm to tree Hg with the
original set T of terminals, obtaining the sets {Ugτ }τ
and Rg, where |Rg| ≤ poly log |T |. Set Rg of vertices is
then used to define a set Tg−1 of terminals for instance
Hg−1, where each vertex v ∈ Rg has an ancestor in Tg−1.
The randomized rounding procedure is then applied

to (Hg−1, Tg−1), obtaining sets
({
Ug−1
τ

}
τ
, Rg−1

)
, and

so on. Since the size of the terminal set decreases
fast with each iteration, with |Ti−1| ≤ poly log |Ti|,
set T1 only contains a constant number of terminals,
which are then added to the solution, together with
sets

{⋃g
h=1 U

h
τ

}
τ
. We note that in general, once the

terminal set Th becomes small, say |Th| ≤ O(log log n),
the problem can be solved efficiently via exhaustive
search. However, the vertices of Th do not necessarily
belong to the original set T of terminals, and so we are
not guaranteed that there is a near-optimal solution for
the instance in which Th is the set of terminals. Our
LP-rounding algorithm proves that this indeed is the
case, for the approximation factor of O(log∗ n), while
also providing a direct algorithm to find such a solution.

We now proceed to describe the randomized round-
ing procedure and its analysis, the main technical part
of the paper. Observe first that the standard random-
ized rounding algorithm gives an O(log n)-approximate
solution for RMFC on trees, as follows: scan the layers
from first to last, randomly selecting k vertices in each
layer, with probabilities proportional to their LP-values.
It is easy to show that this process disconnects a con-
stant fraction of terminals from the root with high prob-
ability. Repeating this procedure O(log n) times gives
a feasible O(log n)-approximate solution. This scheme
is however somewhat wasteful: if vertex v is selected to
be in the solution, then there is no need to apply ran-
domized rounding to its descendants, as the fire cannot
reach any terminal in its subtree. Instead we can trans-
fer the LP-weight from the descendants of v to other
vertices, thus increasing the probability of choosing the
remaining vertices and hence covering their descendants
by the randomized rounding procedure. The first step of
our algorithm is transforming the solution into a 1/M
integral one, for M = O(log |T |), by a standard ran-
domized rounding procedure. We then process the lay-
ers of the tree from first to last. At each step of the
algorithm, we say that vertex u survives iff none of its
ancestors has been added to the solution so far. Con-
sider some surviving vertex v in some layer Lτ with
positive LP-weight of, say, xv = 1/M . Assume that the
total LP-weight on the path connecting v to the root
is h/M . Then we select v to be in the solution with
probability roughly (h + 1)/M . The resulting solution
is guaranteed to be feasible, since for any path P con-
necting a terminal to the root, at least one vertex of P
is in the solution (in particular, the last vertex of P with
non-zero LP-value is added to the solution with proba-
bility 1 if none of its ancestors belongs to it). The main
technical part of the analysis is to show that the cost
of the obtained solution is O(k) with high probability.
This is done by introducing a weight transfer mecha-

nism: a way to transfer LP-weight from vertices whose
ancestors are already in the solution to the remaining
vertices. The weight transfer mechanism must on one
hand ensure that the LP weight of every layer does not
increase, while on the other hand, the LP-weight of each
surviving vertex grows fast enough. We are unable to
find a perfect weight transfer mechanism (in fact the
lower bound on the integrality gap shows that it does
not exist). Instead we add, throughout the algorithm,
ancestors of vertices whose LP weight does not grow
fast enough, to the set R. The heart of the analysis
is designing a weight transfer scheme with the desired
properties, while ensuring that |R| ≤ poly log |T |.

Organization: We provide an O(log∗ n)-
approximation algorithm for RMFC on trees in Sec-
tion 3 and prove a matching lower bound on the integral-
ity gap of the stronger LP in Section 6. Section 7 con-
tains an O(log n)-approximation algorithm for directed
layered graphs. For completeness, we sketch the match-
ing lower bound of [12] on the integrality gap of the LP
in Appendix.

2 Preliminaries

In the RMFC problem, we are given an undirected graph
G = (V,E), a source vertex s ∈ V where the fire
starts, and a subset T ⊆ V of terminals that need to
be protected. At each time step τ , we need to choose
a subset Uτ of at most k vertices to be saved. Once
a vertex burns or is saved, it remains in this state
permanently. Let Bτ denote the set of burning vertices
at time step τ , with B0 = {s}. Vertex v burns at
time τ + 1 iff it has not been saved so far, that is,
v 6∈

⋃
1≤τ ′≤τ+1 Uτ ′ , and at least one neighbor of v is

in Bτ . Our goal is to select subsets {Uτ}nτ=1 of vertices
to be saved at each time step τ , so that the fire does not
spread to the terminals, while minimizing the maximum
number of vertices to be saved at any time step, k =
maxτ {|Uτ |}. Formally, given a solution S = {Uτ}nτ=1,
we say that a simple path P = (s, v1, v2, . . . , vz) is a fire
spreading path iff for each τ : 1 ≤ τ ≤ z, vτ 6∈

⋃
τ ′≤τ Uτ ′ .

We say that vertex v burns in solution S iff it lies on
any fire spreading path. Otherwise, we say that v is
protected by S. A solution is feasible iff all terminals
are protected. We consider a natural special case of
RMFC where G is a tree rooted at s. Let Li denote
the ith layer of the tree, containing all vertices whose
distance from s is i, with L0 = {s}, and Lλ being the
last layer.

Observation 2.1. Let {Uτ}nτ=1 be any feasible solution
to the RMFC problem on tree G. Then we can assume,
w.l.o.g., that for every τ : 1 ≤ τ ≤ λ, Uτ ⊆ Lτ , and
Uτ = ∅ for all τ > λ.

Proof. Assume otherwise. Consider some set Uτ , and
let v ∈ Uτ \ Lτ be any vertex. Assume that v ∈ Lτ ′ .
If τ ′ > τ , then let u be the ancestor of v in Lτ . We
replace v with u in Uτ . Clearly, this does not change the
solution cost, and the solution remains feasible. Assume
now that τ ′ < τ . Then we simply remove v from Uτ . It
is easy to see that the solution remains feasible: if v is
not protected by the solution, then it starts burning at
step τ ′, so saving v at step τ > τ ′ does not affect the
spread of the fire and the feasibility of the solution.

For a vertex v ∈ V , let Pv denote the path
connecting v to the root s. Let U ⊆ V be any subset
of vertices. We say that U is a feasible set iff for every
terminal t ∈ T , U ∩ Pt 6= ∅. Given such set U , we
define Uτ = U ∩ Lτ to be the subset of vertices to
be saved at time step τ . Recall that the cost of the
solution S = {Uτ}λτ=1 is maxτ {|Uτ |}. It will be more
convenient to work with a slightly different notion of
solution cost, called amortized cost. We say that a set U
of vertices has amortized cost k′ iff for every 1 ≤ τ ≤ λ,∑τ
τ ′=1 |Uτ ′ | ≤ k′τ , where Uτ = U ∩ Lτ . Clearly, the

amortized cost of the optimal feasible solution is at
most OPT. The next claim shows that any feasible set
with amortized cost k′ can be converted into a feasible
solution of (non-amortized) cost k′. RMFC is therefore
equivalent to the problem of finding a feasible set U of
minimum amortized cost.

Claim 2.1. Given a feasible set U of amortized cost k′,
we can efficiently find a feasible solution {U ′τ}

λ
τ=1 of

(non-amortized) cost at most k′.

Proof. For each τ : 1 ≤ τ ≤ λ, let Uτ = U ∩ Lτ . Scan
sets {Uτ}

λ
τ=1 in the decreasing order of τ . Let Uτ be the

current set, and assume that |Uτ | = k′′ > k′. Choose
an arbitrary subset S ⊆ Uτ of k′′ − k′ vertices. Remove
vertices of S from Uτ , and for each v ∈ S, add the
ancestor of v in layer (τ − 1) to Uτ−1. It is easy to
verify that the amortized cost of the new solution does
not increase and the solution remains feasible. After all
subsets Uτ are processed in this manner, the number of
vertices in each subset is at most k′.

The LP Relaxation. For each vertex v, we have
an indicator variable x(v) for including v in the solution.
Consider the following LP relaxation:

(LP) min k

s.t.
∑
v∈Lτ x(v) ≤ k ∀τ : 1 ≤ τ ≤ λ∑
v∈Pt x(v) ≥ 1 ∀t ∈ T
x(v) ≥ 0 ∀v ∈ V

The first set of constraints bounds the number of
vertices chosen in each layer of the tree by k, the
solution value, while the second set ensures that for
every terminal t ∈ T , at least one vertex on path Pt
is saved. We use the regular notion of solution cost in
the LP relaxation, while we will use the amortized cost
in LP-rounding. Notice that the optimal solution cost
OPT ≥ dke.

3 The Algorithm

We use a parameter g = O(log∗ n), and our final
approximation factor is O(g). We can assume, w.l.o.g.,
that x(v) ≤ 1/(2g): otherwise, we can add all vertices
v with x(v) > 1/2g to the solution, remove their sub-
trees from G and solve the remaining instance. This
will only increase the approximation ratio by at most
a factor of 2. Our first step is to partition the tree G
into a collection of g subgraphs H1, . . . ,Hg, such that
any root-to-terminal path in G traverses H1, . . . ,Hg in
this order and has an LP-weight of roughly 1/g inside
each. First, we partition the set V of vertices into g
subsets V1, . . . , Vg, as follows. Add s to V1 and scan the
remaining vertices in the non-decreasing order of their
distance from s, breaking ties arbitrarily. Let v be the
current vertex, and assume that the parent of v belongs
to Vj . If

∑
u∈Pv∩Vj x(u) < 1/(2g), then v is added to Vj ,

otherwise, it is added to Vj+1. It is easy to see that every
root-to-terminal path P in G traverses V1, V2, . . . , Vg in
this order, and for all j, 1/(2g) ≤

∑
u∈P∩Vj x(u) ≤ 1/g.

To construct graph Hj , we take the subgraph of G
induced by Vj , and if j > 1, we turn it into a tree by
adding a source vertex sj that connects to every vertex
v ∈ Vj whose parent does not belong to Vj . We think
for now of the leaves of Hj as being the terminals in
the corresponding RMFC instance. The LP-solution xj
associated with Hj is defined as follows: For v ∈ Vj ,
xj(v) = 2gx(v). Notice that the LP-weight of any root-
to-leaf path inside Hj is at least 1.

We will be solving each instance Hj separately.
Since Hj is a tree, it can also be viewed as a layered
graph. The layering of vertices in Hj may be different
from the original one, e.g. the first layer of Hj may
contain vertices from various subsets Lτ . However,
while solving instance Hj , we need to keep track of
the original layering of its vertices. This motivates the
notation we now introduce. Let Xj

τ denote the total
LP-weight of vertices in Lτ in the LP-solution for Hj ,
Xj
τ =

∑
v∈Lτ∩Vj xj(v). Recall that for each layer Lτ ,∑g

j=1X
j
τ ≤ 2gk, due to the scaling of LP-values x(v) by

the factor of 2g. Given any vertex v ∈ Vj , let P jv denote
the path connecting v to sj in graph Hj . Let Tj be any
subset of leaves of the tree Hj . We say that a subset

U j ⊆ Vj of vertices is a feasible solution for instance
(Hj , Tj) iff for each t ∈ Tj , at least one vertex on path
P jt belongs to U j . We define, for each 1 ≤ τ ≤ λ,
U jτ = U j∩Lτ to be the subset of vertices of U j contained
in layer τ of G.

We are now ready to present the high-level idea of
our algorithm. We start by solving the sub-instance
(Hg, Tg), where Tg is a subset of leaves of Hg, containing
one ancestor for each terminal t ∈ T . Our goal is to
produce a feasible solution Ug, where for each 1 ≤ τ ≤
λ, |Ugτ | ≤ O(Xg

τ) (in fact we will be using amortized
costs). Instead of finding such a solution, we will find
a partial solution: sets Ug, Rg such that Ug ∪ Rg is a
feasible solution for (Hg, Tg), |Rg| ≤ poly log |Tg|, and
the amortized cost of solution Ug is low. While |Rg| is
relatively small, it is possible that many vertices of Rg

lie in the same layer Lτ , while |Rg| >> k, so we cannot
output Ug ∪ Rg as the final solution, as its cost may
be too high. Instead, we consider the instance Hg−1,
together with terminal set Tg−1, containing, for each
vertex v ∈ Rg, the unique leaf of Hg−1 lying on Pv. We
then continue the same process on Hg−1, obtaining an
even smaller set Rg−1 and so on. The main technical
part of the algorithm is summarized in the following
theorem.

Theorem 3.1. For each 1 ≤ j ≤ g, for each subset
Tj of leaves of Hj, there is an efficient algorithm for
finding sets U j , Rj ⊆ Vj of vertices, such that:

• |Rj | ≤ O(log5 |Tj |).

• U j ∪Rj is a feasible solution for instance (Hj , Tj),
that is, for each t ∈ Tj, P jt ∩

(
Rj ∪ U j

)
6= ∅.

• For all 1 ≤ τ ≤ λ,
∑τ
τ ′=1 |U

j
τ ′ | ≤ O(τ+

∑τ
τ ′=1X

j
τ ′)

w.h.p., where U jτ = U j ∩ Lτ .

We defer the proof of this theorem to the next
section. We now show that it implies an O(g)-
approximation algorithm. Apply Theorem 3.1 to graphs
Hg, Hg−1, . . . ,H1 in this order. In iteration i, Theo-
rem 3.1 is applied to graph Hg−i+1 together with ter-
minal set Tg−i+1, computed as follows. For i = 1,
Tg contains, for each terminal t ∈ T , the unique leaf
of Hg lying on Pt. For i > 1, let Rg−i+2 be the
set in the output of Theorem 3.1, computed in itera-
tion (i − 1). For each vertex v ∈ Rg−i+2, let v′ be
the unique leaf of tree Hg−i+1, lying on path Pv in
G. We then add v′ to Tg−i+1. Therefore, |Tg−i+1| ≤
|Rg−i+2| ≤ O(log5 |Tg−i+2|). We now use the following
simple claim, whose proof appears in Appendix.

Claim 3.1. For a suitably chosen g = O(log∗ n), |T1|
is bounded by a constant.

The final solution is U =
(⋃g

j=1 U
j
)
∪ T1. For

each τ : 1 ≤ τ ≤ λ, let Uτ = U ∩ Lτ . Theo-
rem 3.1 ensures that

∑
τ ′≤τ |Uτ ′ | =

∑g
j=1

∑
τ ′≤τ |U

j
τ ′ |+

|T1| ≤
∑g
j=1O

(
τ +

∑
τ ′≤τ X

j
τ ′

)
+ O(1) ≤ O(gτ) +

O(gτOPT) + O(1) = O(gτOPT). Therefore, the amor-
tized cost of the solution U is O(g · OPT). It is easy to
see that U is a feasible set, as every terminal t has at
least one vertex v ∈ Pt ∩ U .

4 Proof of Theorem 3.1

We start with the tree Hj and a subset Tj of leaves
of Hj , that we call terminals. Since from now on we
focus on a specific tree Hj , to simplify the notation
we will omit the index j. So we denote Hj by H,
Vj by V , and for all 1 ≤ τ ≤ λ, Ljτ = Vj ∩ Lτ is
denoted by Lτ . We denote Tj by T , and the total
number of terminals is denoted by N = |T |. The LP-
solution xj(v) is denoted by x(v) and Xj

τ is denoted by
Xτ , so Xτ =

∑
v∈Lτ x(v). We also use the fractional

amortized cost, Xτ =
∑
τ ′≤τ Xτ ′ in our analysis. For a

vertex v ∈ V , let Pv be the unique path connecting
v to the root s of H. Recall that for each t ∈ T ,∑
v∈Pt x(v) ≥ 1. Our goal is to find two sets U,R ⊆ V

of vertices, such that |R| = O(log5N), and for each
terminal t ∈ T , Pt ∩ (R ∪ U) 6= ∅. For each 1 ≤ τ ≤ λ,
denote Uτ = U ∩ Lτ . We also need to ensure that
the amortized cost

∑τ
τ ′=1 |Uτ ′ | ≤ O(τ + Xτ) for all τ .

We use a parameter M , the smallest power of 2 whose
value is greater than 100 logN , so M = Θ(logN). The
algorithm has three steps. In the first step we transform
the fractional solution into a 1/M -integral one, with
only O(N2) vertices having non-zero LP-weight.

In the second step we partition the vertices with
non-zero LP-weight into subsets F1, F2, . . . , FM . In the
last step we compute the set R and perform randomized
rounding to obtain set U .

Step 1: Obtaining a 1/M-integral solution Given
any fractional solution y, let Yτ =

∑
v∈Lτ y(v) and Y τ =∑

τ ′≤τ Yτ ′ for all 1 ≤ τ ≤ λ. This step is summarized in
the next theorem whose proof uses standard randomized
rounding techniques and appears in Appendix.

Theorem 4.1. Given any feasible fractional solution x
for instance (H, T), there is an efficient randomized
algorithm to find a (1/M)-integral feasible solution y,
such that the number of vertices v with y(v) > 0 is at
most N2, and for all τ ≥ 1, Y τ ≤ O(τ + Xτ). The
algorithm suceeds with probability at least 1− 2/N2.

Let E1 be the event that the algorithm in Theo-
rem 4.1 succeeds, so Pr [E1] ≥ 1− 2/N2.

Step 2: Defining Sets F1, . . . , FM . Let v ∈ V be any
vertex with y(v) = r/M for some integer r > 0, and
assume that

∑
u∈Pv\{v} y(u) = h/M , for some integer

h ≥ 0. Then v belongs to sets Fh+1, Fh+2, . . . , Fh+r. We
view the weight y(v) of v as being evenly split among
the r sets, and so the weight of v with respect to Fh+r′
is yh+r′(v) = 1/M , for all 1 ≤ r′ ≤ r. We then have
that

∑
h:v∈Fh yh(v) = y(v). For each terminal t ∈ T ,

for each h : 1 ≤ h ≤M , there is exactly one vertex v ∈
Pt∩Fh. We now group sets F1, . . . , FM geometrically, by
defining logM sets of indices I1, . . . , IlogM (recall that
M is a power of 2). Set I1 contains the first M/2 indices,
set I2 contains the next M/4 indices, and so on, with the
last set IlogM containing a single index M . Formally:

Iq =
{
b+ r | b =

∑
1≤q′<qM/2q

′
, 1 ≤ r ≤M/2q

}
.

Step 3: Randomized Rounding This is the main
step of the algorithm. The goal is to choose a set U
of vertices that will serve as the output. We will also
define a set R of vertices, R =

⋃M
h=0Rh. The algorithm

has M iterations. Set R0 is selected before the first
iteration starts (we specify its choice below), and for
each h : 1 ≤ h ≤M , set Rh is selected in iteration h.

Consider the beginning of iteration h and assume
that h ∈ Iq for some 1 ≤ q ≤ logM . Vertex v ∈ Fh is
called active iff no vertex of Pv currently belongs to
R ∪ U . Let Ah ⊆ Fh denote the subset of vertices
of Fh that are active at the beginning of iteration h.
We select a subset Rh ⊆ Ah of vertices to be added
to R (we show how to select this subset below). Next,
each vertex v ∈ Ah \Rh is added to U with probability
min {16 · 2q/M, 1}.

This completes the description of the algorithm,
except for the definition of the sets Rh. It will be
convenient to partition the algorithm’s execution into
logM phases, where phase q consists of iterations h ∈
Iq. We now define Uτ = U ∩ Lτ for all 1 ≤ τ ≤ λ.
It is easy to see that U ∪ R is a feasible solution for
(H, T), since for every terminal t ∈ T , Pt ∩ (U ∪R) 6= ∅
(otherwise, the vertex v ∈ Pt ∩ FM should have been
added to U with probability 1).

It is easy to see that the expected amortized cost of
solution U for each τ is low. In particular, if we show
that each vertex v ∈ Fh is added to U with probability
at most O(yh(v)), then the expected amortized cost
of U for each τ is O(Y τ): Consider some v ∈ Fh for
some h ∈ Iq. By the definition of the decomposition
F1, F2, . . . , FM , vertex v has one ancestor vh′ ∈ Fh′

for all h′ < h. Vertex v is added to set U iff it
remains active until iteration h, and it is chosen by the
randomized rounding procedure. Consider some q′ < q.
The probability that no vertex in set {vh′ : h′ ∈ Iq′} is

added to U is bounded by (1−2q
′+4/M)M/2q

′

≤ 1/2, so
the probability that v remains active at the beginning
of iteration h is at most 1/2q−1. Since v is selected by
the randomized rounding procedure with probability at
most 16 ·2q/M , overall v is added to U with probability
at most O(yh(v)) = O(1/M). Therefore, the expected
amortized cost of U for every τ is O(Y τ). This bound
on the expectation is however not enough for us, and
is only provided here for intuition. We need to prove
that the amortized cost of the set U is low for each τ
with high probability; the proof of this claim is more
involved.

Analysis. Recall that if event E1 happens, then
Y τ ≤ O(τ + Xτ) for all 1 ≤ τ ≤ λ. In order to bound
the amortized solution cost, it is therefore enough to
prove that with high probability:

(4.1) ∀τ : 1 ≤ τ ≤ λ
∑
τ ′≤τ

|Uτ ′ | ≤ O(Y τ)

Recall that the partition {Lτ}λτ=1 of vertices of H
corresponds to the original layers in graph G, while sub-
sets {Fh}Mh=1 are defined according to the distribution
of the LP-weight on vertices of H. We break the sum-
mation in (4.1) down by sets F1, . . . , FM as follows. For
each 1 ≤ τ ≤ λ, for each 1 ≤ h ≤M , let Lτ,h = Fh∩Lτ
and Uτ,h = Fh ∩ Uτ . Let Yτ,h =

∑
v∈Lτ,h yh(v) and

Y τ,h =
∑
τ ′≤τ Yτ ′,h. So

∑M
h=1 Y τ,h ≤ Y τ . In order to

show that (4.1) holds w.h.p., it is now enough to show
that w.h.p.:

(4.2)
∀h : 1 ≤ h ≤M, ∀τ : 1 ≤ τ ≤ λ

∑
τ ′≤τ

|Uτ ′,h| ≤ 200Y τ,h

For each τ : 1 ≤ τ ≤ λ, let Aτ,h contain the vertices
of Fh ∩Lτ , that are active at the beginning of iteration
h, i.e. Aτ,h = Ah ∩ Lτ . We say that event E2(h) holds
for h ∈ Iq iff:

(4.3) ∀τ : 1 ≤ τ ≤ λ
∑
τ ′≤τ

|Aτ ′,h| ·
2q

M
≤ 2Y τ,h

Let E2 =
⋂

1≤h≤M E2(h). The heart of our algo-
rithm and its analysis is to show the choice of sets Rh,
for which events E2(h) happen with high probability for
all h. The formal statement is summarized in the fol-
lowing theorem:

Theorem 4.2. There is an efficient procedure for se-
lecting, in each iteration h′ : 1 ≤ h′ ≤ M , a subset
Rh′ ⊆ Ah′ of vertices, with |Rh′ | ≤ O(log4N), such

that for each h : 1 ≤ h ≤ M , event E2(h) happens with
probability at least 1− 1/N2.

The proof of Theorem 4.2 appears in the next
section. We first complete the proof of Theorem 3.1
using Theorem 4.2. If event E2(h) happens, then∑
τ ′≤τ |Aτ ′,h|·

2q

M ≤ 2Y τ,h. In iteration h, our algorithm
chooses, for each τ , vertices in Aτ,h \ Rh to be added
to Uτ,h with probability min {16 · 2q/M, 1} each. So
intuitively, if (4.3) holds, then from Chernoff bound,
(4.2) also holds with high probability for all τ and
h. This approach indeed works, except for the cases
where Y τ,h is small, and so the probability of success
guaranteed by the Chernoff bound is low. We take care
of this problem by adding vertices to set R0 as follows.
Fix some h : 1 ≤ h ≤M . Let τh be the largest index for
which Y τh,h ≤M . Add all the vertices in

⋃
τ≤τh Lτ,h to

R0. Notice that since every vertex in Fh has LP-value
yh(v) ≥ 1/M , we add at most M2 vertices for each h,
so |R0| ≤ M3. It is now easy to complete the proof of
Theorem 3.1. Let E3(h) be the event that (4.2) holds
for h, and let E3 =

⋂
1≤h≤M E3(h). The proof of the

next theorem follows from applying standard Chernoff
bounds.

Theorem 4.3. Event E3 happens with probability at
least 1− 1/N .

Proof. We start with the following claim:

Claim 4.1. For each h : 1 ≤ h ≤ M , we have that
Pr [¬E3(h) | E1 ∧ E2(h)] ≤ 1/N2.

Proof. Assume that h ∈ Iq and consider some τ : 1 ≤
τ ≤ λ. If τ ≤ τh, then Uτ,h = ∅ for each τ ′ ≤ τ ,
so Equation (4.2) holds for this choice of τ, h. Other-
wise, if τ > τh, then since we condition on event E2(h),∑
τ ′≤τ |Aτ ′,h|·

2q

M ≤ 2Y τ,h. For each v ∈
(⋃

τ ′≤τ Aτ ′,h

)
\

Rh, let Zv be the indicator variable for including
v in U , so

∑
τ ′≤τ |Uτ ′,h| =

∑
τ ′≤τ

∑
v∈Aτ′,h\Rh

Zv.

Then E
[∑

τ ′≤τ
∑
v∈Aτ′,h\Rh

Zv

]
≤ 16

∑
τ ′≤τ |Aτ ′,h| ·

2q

M ≤ 32Y τ,h. Using the Chernoff bound,

Pr
[∑

τ ′≤τ |Uτ ′,h| > 200Y τ,h
]
≤ 2−200Y τ,h ≤ 2−200M ,

since Y τ,h ≥ M . Applying the union bound over all
values τ : τh ≤ τ ≤ λ for which Lτ,h 6= ∅ (notice that
there are at most N2 ·M such values), we get the desired
result.

Since Pr [¬E3(h)] ≤ Pr [¬E3(h) | E1 ∧ E2(h)] +
Pr [¬(E1 ∧ E2(h))] ≤ Pr [¬E3(h) | E1 ∧ E2(h)] + 3/N2,
we get that Pr [¬E3(h)] ≤ 4/N2. Using the union bound
over all indices h : 1 ≤ h ≤M finishes the proof.

Finally, we set R =
⋃M
h=0Rh. Since |Rh| ≤

O(log4N) for all h, we have that |R| ≤ O(log5N) as
required. This completes the proof of Theorem 3.1,
except for the proof of Theorem 4.2.

5 Proof of Theorem 4.2

We start with a high-level overview of the proof. For
a vertex v ∈ H, let L(v) be the layer Lτ to which v
belongs. Consider the set Fh for some fixed h ∈ Iq, for
some 1 ≤ q ≤ logM , and the partition Fh =

⋃λ
τ=1 Lτ,h

of set Fh into layers, where Lτ,h = Fh ∩ Lτ . We say
that v ∈ Fh is active at the beginning of iteration
h′ < h iff no vertex of Pv has been added to U ∪ R
in iterations 1, 2, . . . , h′ − 1. Let Ah

′

h ⊆ Fh denote
the set of active vertices of Fh at the beginning of
iteration h′, so A1

h = Fh \R0, and let Ah
′

τ,h = Ah
′

h ∩ Lτ .
Similarly, for each phase q′ : 1 ≤ q′ ≤ q, we denote by
A

(q′)
h ⊆ Fh the set of vertices that are active at the

beginning of phase q′. Since the LP-weight of each
vertex v ∈ Fh w.r.t. Fh is yh(v) = 1

M , we have,
for each τ : 1 ≤ τ ≤ λ, |A1

τ,h| · 1
M ≤ Yτ,h, and∑

τ ′≤τ |A1
τ ′,h| · 1

M ≤ Y τ,h (the inequality is since A1
τ,h

does not include the vertices of R0, which are counted
in Y τ,h). As the algorithm progresses, some of the
vertices of Fh \ R0 become inactive. Our main idea
is to transfer the LP-weight from such vertices to the
remaining active vertices of Fh. The transfer is only
performed from vertex v ∈ Lτ to vertex v′ ∈ Lτ ′ if
τ ≤ τ ′. This ensures that throughout the algorithm,
the amortized fractional weight Y τ,h does not increase
for any τ . For each vertex v ∈ Ah′h , we denote by yh

′

h (v)
its LP-weight at the beginning of iteration h′, and by
y
(q′)
h (v) its LP-weight at the beginning of phase q′. Our

goal is to ensure that for each phase 1 ≤ q′ ≤ q, for each
vertex v ∈ A

(q′)
h that remains active at the beginning

of phase q′, its LP-weight y(q′)
h (v) ≥ 2q

′−1

M . Therefore,
the LP-weight of the surviving active vertices doubles in
each phase, and eventually, at the beginning of iteration
h, yhh(v) ≥ 2q−1

M for each active vertex v. Since the
amortized fractional LP-weight Y τ,h does not increase
throughout the algorithm, this will give the desired
bound

∑
τ ′≤τ |Ahτ ′,h| ·

2q

M ≤ 2Y τ,h for all τ . The main
ingredient of our analysis is a weight transfer mechanism
for moving the LP-weight from vertices that become
inactive to those that remain active in Fh.

We now provide an informal overview of the weight
transfer scheme. We focus on the weight transfer within
a specific set Fh, where h ∈ Iq for some 1 ≤ q ≤ logM .
Let h′ < h be the index of the current iteration, and
h′ ∈ Iq′ . Assume that at the beginning of phase
q′, the LP-weight of each active vertex v ∈ A

(q′)
h is

y
(q′)
h (v) ≥ 2q

′−1

M . We need to ensure that the LP-
weight of each surviving active vertex of Fh becomes
at least 2q

′
/M at the end of phase q′. Since phase q′

has M/2q
′

iterations, it is enough to ensure that the
LP-weight of each surviving active vertex increases by
at least (2q

′
/M)2 in each iteration h′ ∈ Iq′ . Consider

the following simple weight transfer mechanism: Fix
some partition of the active vertices Ah

′

h ⊆ Fh into
subsets Z1, . . . , Zr of roughly equal size. For each
subset Zj , 1 ≤ j ≤ r, if some vertex v ∈ Zj becomes
inactive during iteration h′, then its LP-weight is evenly
split among the vertices of Zj+1. Observe that for
each active vertex v ∈ Ah′h , the probability to become
inactive in iteration h′ is at least 16 · 2q

′
/M (this is

the probability that the ancestor of v in Fh′ is added
to U). So we expect a (16 · 2q′/M)-fraction of vertices
of Zj to become inactive. In case a close number of
vertices (say, |Zj | · 8 · 2q

′
/M vertices) become inactive,

each vertex in Zj+1 will receive a total contribution of
|Zj |·8·2q

′

M · 2q
′−1

M · 1
|Zj+1| ≥ (2q

′
/M)2, as desired. There

are two main obstacles to this approach. First, in
order to show that w.h.p., for each Zj , the number of
vertices that become inactive is close to the expected
one, we need to ensure that there is a certain degree
of independence among these events (for example, if all
vertices in Zj have one common ancestor in Fh′ , this
will not be the case). So ideally, we would like set Zj
to contain a roughly equal number of descendants of
many (say Ω(log2N)) distinct vertices of Ah

′

h′ . At the
same time, in order to guarantee that the amortized cost
does not grow, we need to ensure that for each v ∈ Zj
and u ∈ Zj+1, L(v) ≤ L(u) for all j, so the weight is
only transferred from layer Lτ to layer Lτ ′ where τ ≤ τ ′.
This motivates the weight transfer mechanism that we
formally describe below.

We now turn to the formal proof of Theorem 4.2.
The proof consists of two parts. In the first part we
define the procedure for selecting subsets Rh′ ⊆ Ah

′

h′ of
vertices to be added to the set R in each iteration h′.
The second part proves that for each h : 1 ≤ h ≤ M ,
event E2(h) happens with high probability, under this
choice of sets Rh′ . We start with the first part. Consider
some iteration h′ of the algorithm, 1 ≤ h′ ≤ M . For
each h : h′ < h ≤ M , we define a partition Chi,j of the
set Ah

′

h′ of vertices. (Notice that each h > h′ defines
a distinct partition

{
Chi,j

}
of Ah′h′ .) This partition is

used, on the one hand, to define a subset Rh′,h ⊆ Ah
′

h′

of vertices, and on the other hand, we later use it to
define a weight transfer mechanism. Eventually we set
Rh′ =

⋃
h>h′ Rh′,h.

Defining Sets Chi,j and set Rh′,h. We now fix
some index h : h′ < h ≤ M and define the partition{
Chi,j

}
of Ah

′

h′ induced by Fh. To simplify the notation,
we denote the sets Chi,j by Ci,j here.

Consider first some vertex v ∈ Ah
′

h′ that is active
at the beginning of iteration h′. Let D(v) ⊆ Ah

′

h

be the set of the descendants of v in Fh that are
currently active. We order the vertices u ∈ D(v)
in the non-decreasing order of layers L(u), D(v) =
{u1, . . . , uzv}, where L(u1) ≤ L(u2) ≤ · · · ≤ L(uzv).
We now group the vertices of D(v) geometrically, with
D1(v) = {u1}, D2(v) containing the next two vertices
and so on. Formally, for 1 ≤ i ≤ blog zvc, Di(v) ={
ub+r | 1 ≤ r ≤ 2i−1, b =

∑
i′<i 2i

′−1
}

, and Ddlog zve(v)
contains the remaining vertices, Ddlog zve(v) = D(v) \(⋃

i<dlog zveDi(v)
)

.

We now define logN classes of vertices in Ah
′

h′ , as

follows: Ci =
{
v ∈ Ah′h′ : |Di(v)| = 2i−1

}
(notice that

vertex v belongs to Θ(log zv) such classes). Observe that
the set

⋃
v∈Ci Di(v) contains exactly 2i−1 descendants

for each vertex v ∈ Ci. We group the vertices of Ci
into subsets, containing O(log2N) vertices each. The
descendants Di(v) of vertices in each such subset will
serve as the sets Zj from the intuitive explanation
above. Since we can only transfer LP-weight from layer
Lτ to layer Lτ ′ where τ ≤ τ ′, we need to perform this
grouping carefully.

Fix some class Ci, for 1 ≤ i ≤ logN . For each
vertex v ∈ Ci, consider the corresponding set Di(v) of
its 2i−1 descendants in Ah

′

h . Let τi(v) be the largest
index τ of a layer to which any vertex in Di(v) belongs,
so τi(v) = maxu∈Di(v) {L(u)}. We now order the
vertices of Ci in the non-decreasing order of τi(v), and
partition them into consecutive subsets of 10M2 vertices
each in this order. Formally, we partition set Ci into
αi =

⌈
|Ci|/10M2

⌉
subsets, {Ci,j}αij=1, where each set,

except possibly for the last one, contains 10M2 vertices,
and if v ∈ Ci,j and u ∈ Ci,j+1 then τi(v) ≤ τi(u).
This completes the definition of the partition Chi,j of
Ah
′

h′ induced by Fh. We denote the corresponding
values αi, for 1 ≤ i ≤ logN by αh

′,h
i , omitting the

superscripts when clear from context. We now define
Rh′,h =

⋃logN
i=1 Chi,1. Observe that |Rh′,h| ≤ O(logN ·

M2) = O(log3N). We set Rh′ =
⋃M
h=h′+1Rh′,h, and so

|Rh′ | ≤ O(log4N). This completes the first part of the
proof.

From now on we fix an index h : 1 ≤ h ≤ M , and
assume that h ∈ Iq for some 1 ≤ q ≤ M . Our goal is
to prove that event E2(h) happens with probability at
least 1 − 1/N2 w.r.t. the choice of sets Rh′ described

above. Consider some iteration h′ : 1 ≤ h′ < h of the
algorithm, and the partition {Ci,j}i,j of Ah

′

h′ induced
by Fh. Fix some set Ci,j of the partition, for some
1 ≤ i ≤ logN , 1 ≤ j < αi. Since each vertex in
Ci,j is added to U ∪Rh′ with probability at least 16·2q

′

M
in iteration h′ and |Ci,j | = 10M2, we expect at least
160M · 2q

′
vertices of Ci,j to be added to U ∪ Rh′

in iteration h′. Let E(h, h′, i, j) be the good event
that at least 80M · 2q

′
vertices of Ci,j are added to

U∪Rh′ . We now proceed as follows. First, we show that
with high probability, events E(h, h′, i, j) happen for all
relevant indices h′, i, j. This is done in the next claim,
whose proof uses standard Chernoff bound together
with the union bound. Next we show a weight transfer
procedure, which ensures that for each 1 ≤ h′ < h, if
E(h, h′, i, j) happens for all i and j, then each remaining
active vertex in Ah

′

h receives a sufficient contribution to
its LP-weight.

Claim 5.1. Events E(h, h′, i, j) hold for all 1 ≤ h′ < h,
1 ≤ i ≤ logN , 1 ≤ j < αh

′,h
i with probability at least

1− 1/N2.

Proof. Since αh
′,h
i ≤ N for all i, h, h′, the number

of possible choices of indices h′, i, j is bounded by
N ·M · logN ≤ O(N log2N).

Consider a specific event E(h, h′, i, j), and let Ci,j ⊆
Ah
′

h′ be the corresponding set of vertices. Then |Ci,j | =
10M2, and each vertex v ∈ Ci,j is chosen to be in U∪Rh′
with probability at least 16 ·2q′/M , where h′ ∈ Iq′ . The
expected number of vertices of Ci,j added to U is at least
160M ·2q′ , and so from Chernoff bound, the probability
that less than 80M · 2q′ vertices are added is bounded
by e−10M ≤ 1/N10. So the probability that a specific
event E(h, h′, i, j) does not happen is at most N−10, and
using the union bound, the probability that any of the
events E(h, h′, i, j) does not happen is at most 1/N2.

Weight Transfer Procedure We now focus on
the partition {Ci,j}i,j induced by Fh on Ah

′

h′ and define
a weight transfer procedure for vertices of Ah

′

h . For each
such i : 1 ≤ i ≤ logN , for each j : 1 ≤ j ≤ αi, let
Si,j =

⋃
v∈Ci,j Di(v), and S′i,j =

⋃
v∈Ci,j Di+1(v).

Consider a pair of vertices v ∈ Ci,j , u ∈ Ci,j+1. By
the definition of the partition {Ci,j}, τi(v) ≤ τi(u). So
if v′ ∈ Di(v), then it appears at layer L(v′) ≤ τi(v). On
the other hand, if u′ ∈ Di+1(u), then it belongs to layer
L(u′) ≥ τi(u) ≥ τi(v) ≥ L(v′) (due to the definition
of sets Di′(u)). So we can transfer LP-weight from
vertices of Si,j to vertices of S′i,j+1 without increasing
the amortized cost Y τ,h for any value τ .

We have two types of weight transfer rules. First,
for each i : 1 ≤ i ≤ logN , for each j : 1 ≤ j < αi,

we transfer the LP-weight between Si,j and S′i,j+1, as
follows: if any vertex v ∈ Si,j becomes inactive, then
half of its current LP-weight yh

′

h (v) is evenly split among
all vertices of S′i,j+1. For each 1 ≤ i ≤ logN , for each
1 ≤ j < αi, we say that vertices of S′i,j+1, are covered
by the first weight transfer rule.

The second weight transfer rule only applies to sets
C1,j , where 1 ≤ j ≤ α1. Observe that for each v ∈ C1,
D1(v) only consists of a single vertex. We are therefore
guaranteed that for each 1 ≤ j < α1, if v ∈ S1,j and
v′ ∈ S1,j+1 then L(v) ≤ L(v′). The second weight
transfer rule is that for every 1 ≤ j < α1, if any
vertex v ∈ S1,j becomes inactive, then half of its current
LP-weight yh

′

h (v) is evenly split among all vertices of
S1,j+1. For each 1 ≤ j < α1, we say that every
vertex in S1,j+1 is covered by the second weight transfer
rule. This finishes the definition of the weight transfer
procedure. Our claim is that every vertex u ∈ Ah

′

h is
either covered by one of the weight transfer rules, or its
ancestor belongs to Rh′,h. In the former case, we will
show that u receives a sufficient contribution to its LP-
weight, while in the latter case, u becomes inactive after
iteration h′.

Claim 5.2. If u ∈ Ah′h is not covered by either weight
transfer rule, then its ancestor belongs to Rh′,h.

Proof. Consider some u ∈ Ah
′

h , and assume that u ∈
Di(v) for some v ∈ Ah′h′ . We consider the following two
cases.

First, if i > 1, then v ∈ Ci−1 because |Di−1(v)| =
2i−2 must hold. Assume that v ∈ Ci−1,j , for some
1 ≤ j ≤ αi−1. If j > 1, then v ∈ S′i−1,j , and it is
therefore covered by the first weight transfer rule. If
j = 1, then v ∈ Rh′,h.

The second case is when i = 1. In this case, either
v ∈ C1,1, and then v ∈ Rh′,h, or else v ∈ C1,j for some
j > 1, and so vertex u is covered by the second weight
transfer rule.

It now remains to show that if events E(h, h′, i, j)
hold, then each vertex u ∈ Ah

′

h receives a sufficient
contribution. This is done in the following claim.

Claim 5.3. Let h′ ∈ Iq′ , and assume that at the begin-
ning of iteration h′ the LP-weight yh

′

h (u) ≥ 2q
′−1/M for

all u ∈ Ah′h . Assume also that events E(h, h′, i, j) hold
for all 1 ≤ i ≤ logN , 1 ≤ j < αi. Then the LP-weight
of every vertex u ∈ Ah

′+1
h increases by at least (2q

′
/M)2

in iteration h′, i.e. yh
′+1
h (u) ≥ yh′h (u) + (2q

′
/M)2.

Proof. Consider some vertex u ∈ Ah
′+1
h . Since it

remains active at the end of iteration h′, its ancestor

in Fh′ was not added to Rh′ , so u is covered by one of
the weight transfer rules. Assume first that u is covered
by the first weight transfer rule, so u ∈ S′i,j+1, for some
1 < i ≤ logN , 1 ≤ j < αi. Since event E(h, h′, i, j)
holds, at least 80M ·2q′ vertices of Ci,j have been added
to U ∪ Rh′ during iteration h′. Each such vertex has
2i−1 descendants in Si,j , and each such descendant has
LP-weight of at least 2q

′−1/M . So overall, we have at

least 1
2 · 2

i−1 · 80M · 2q′ · 2q
′−1

M = 2i−1 · 20 · 22q′ weight
that is evenly split among the vertices of S′i,j+1. Recall
that |Ci,j+1| ≤ 10M2, and for each vertex v ∈ Ci,j+1,
|Di+1(v)| ≤ 2i. Therefore, |S′i,j+1| ≤ 10M2 · 2i. Each

vertex u ∈ S′i,j+1 then receives at least 20·2i−1·22q′

10M2·2i ≥
22q′

M2

weight as desired.
Assume now that u ∈ S1,j+1. Again, since event

E(h, h′, 1, j) happened, at least 80M · 2q
′

vertices of
C1,j have been added to U ∪ Rh′ in iteration h′. We
then have at least 80M ·2q′ vertices in S1,j that become
inactive, each of which having LP-weight of 2q

′−1/M .
So each vertex of S1,j+1 receives a contribution of at

least
1
2 ·80·2

q′ ·2q
′−1

10M2 ≥ 22q′/M2.

Corollary 5.1. Let h ∈ Iq. Assume that events
E(h, h′, i, j) happen for all 1 ≤ h′ < h, 1 ≤ i ≤ logN ,
1 ≤ j < αi. Then for each phase q′ : 1 ≤ q′ ≤ q, for
each vertex u ∈ A(q′)

h that is active at the beginning of
phase q′, its LP-weight y(q′)

h (u) ≥ 2q
′−1/M .

Proof. The proof is by induction on q′. At the beginning
of the first phase, the LP-weight of every vertex u ∈ A(1)

h

for all h is 1/M , so the claim holds. Assume now that
it holds at the beginning of phase q′. Let u ∈ A(q′+1)

h

be some vertex that remains active at the end of phase
q′. We apply Claim 5.3 for all h′ ∈ Iq′ . This ensures
that, for each one of the M/2q

′
iterations of phase q′,

the LP-weight of u increases by at least (2q
′
/M)2, and

so the total increase in the LP-weight in phase q′ is at
least 2q

′
/M .

We are now ready to complete the proof of Theo-
rem 4.2. From the above corollary, if events E(h, h′, i, j)
happen for all 1 ≤ h′ < h, 1 ≤ i ≤ logN , 1 ≤ j < αi,
then at the beginning of iteration h, the LP-weight of
every vertex in Ahh is at least 2q−1/M . Moreover, we
have only transferred weight from vertices in Lτ,h to
vertices in Lτ ′,h for τ ≤ τ ′. Therefore, throughout the
algorithm, the amortized LP-weight Y τ,h does not in-
crease for any τ . So at the beginning of iteration h, the
total LP-weight of active vertices in sets L1,h, . . . ,Lτ,h
is at least

∑
τ ′≤τ |Aτ ′,h| · 2q−1/M and at most Y τ,h.

Therefore, event E2(h) holds with probability at least

1 − 1/N2. We have also shown that the sizes of the
selected sets Rh′ are bounded by O(log4N).

6 Integrality Gap

In this section we present a lower bound of Ω(log∗ n) on
the integrality gap of (LP), matching the upper bound
to within a constant factor. There is a natural way
to strengthen the LP as follows. Guess the value k of
the optimal solution and scan the non-terminal vertices
in the reversed order of their layers: Lλ, Lλ−1, . . . , L1.
When vertex v is considered, apply (LP) to instance
(Gv, Tv), where Gv is the sub-tree rooted at v and Tv is
the subset of terminals contained in it. If the cost of the
LP solution for (Gv, Tv) is greater than k, then v cannot
lie on a fire spreading path in the optimal solution and
is therefore protected by it. We then remove from G
all vertices of Gv except for v, and set the new set of
terminals to be (T\Tv)∪{v}. LetG′ be the tree obtained
after all vertices of G have been processed. Then either
G′ consists of a single vertex s, with the set of terminals
T = {s}, so we obtain a certificate that the guessed
value k of the optimal solution is too low, or for each
vertex v of G′, there is a feasible solution of cost at most
k for (LP) on the instance (G′v, Tv) defined by the sub-
tree of G′ rooted at v. In the latter case we say that G′

is k-feasible. We show that the integrality gap of (LP)
is Ω(log∗ n) even on 1-feasible instances.

h

w

Figure 1: Type-1 spider of width w and height h

6.1 Integrality Gap Construction We use the fol-
lowing two simple spider graphs. A type-1 spider of
width w and height h consists of w paths of length h
each. The paths are completely disjoint, except that
they all share one common endpoint called the spider
head. The other endpoints of the w paths are called the
spider feet. Type-2 spider of width w and height h is

h+1

w

h+w

Figure 2: Type-2 spider of width w and height h

defined similarly, except that the lengths of the w paths
vary, with the ith path, for 1 ≤ i ≤ w, having length
h + i (see Figures 1 and 2). We view each such spider
as a tree rooted at its head.

The integrality gap instance G uses a parameter M ,
and it consists of M + 1 levels. Each level i : 0 ≤ i ≤M
is a forest. The set of roots of its trees is denoted by
Ai, and the set of their leaves by Bi. All vertices of
Ai lie in the same layer of G, and the same is true for
Bi. For convenience, when defining level i, we renumber
its layers, so Ai is layer 0 of level i and Bi is the last
layer, whose index is denoted by λi. Vertices in set
Bi are partitioned into `i subsets, Bi =

⋃`i
j=1 B

j
i . We

now proceed to describe the levels. Level 0 consists
of only two layers, A0 = {s} and B0 = {s1, . . . , s2M}
with edges connecting s to every vertex of B0. Set B0

is partitioned into `0 = 2M subsets B1
0, . . . ,B2M

0 , with
Bj0 = {sj} for 1 ≤ j ≤ 2M . We now describe level i
for some i > 0. Consider the last layer Bi−1 of level

i − 1 and its corresponding partition
{
Bji−1

}`i−1

j=1
. Let

I be the set of all ordered M -tuples of vertices in Bi−1,
where the vertices in each M -tuple belong to distinct
sets of the partition. Therefore, I consists of all ordered
M -tuples (v1, . . . , vM), such that, for each 1 ≤ r ≤ M ,
if vr ∈ Bjri−1, then all indices j1, . . . , jM are distinct. Let
`i = |I| ≤ |Bi−1|M . We add a set Aρi = {vρ1 , . . . , v

ρ
M} of

vertices for each ρ ∈ I and set Ai =
⋃
ρ∈I A

ρ
i . For each

ρ = (v1, . . . , vM) ∈ I, for each r : 1 ≤ r ≤ M , there
is an edge (vr, vρr), where vr ∈ Bi−1. This finishes the

definition of set Ai. Level i contains, for each M -tuple
ρ = (vρ1 , . . . , v

ρ
M) ∈ I, a gadget Hρ

i , consisting of M
identical trees, whose roots are the M vertices of Aρi .
The set of the leaves of the M trees, lying in layer λi,
is denoted by Bρi . We then set Bi =

⋃
ρ∈I B

ρ
i , with the

corresponding partition of Bi into `i subsets {Bρi }ρ∈I .
We set λi =

∑`i
j=1(2M)j , and we assume that we are

given some arbitrary ordering ρ1, . . . , ρ`i of the tuples
in I.

We now fix an M -tuple ρj = (v1, . . . , vM) ∈ I
and define the corresponding gadget Hρj

i . The gadget
consists of M copies of tree Tj , rooted at vertices
v
ρj
1 , . . . , v

ρj
M . Let v denote the root of Tj , and let

bj =
∑

1≤j′<j(2M)j
′
. We add a type-2 spider of width

(2M)j and height bj , whose head is v. The feet of the
spider are called special vertices. If the current level
i 6= M , then we perform the following additional step.
For each special vertex u of Tj , if u lies at layer bj + h,
for 1 ≤ h ≤ (2M)j , then we add a type-1 spider of
width 2Mλi and height λi − h − bj whose head is u.
This ensures that all leaves of tree Tj lie in layer λi.
The final gadget Hρj

i is obtained by attaching a copy
of Tj as a subtree to each vertex in Aρji . This finishes
the description of level i. Notice that there are at most
M special vertices at each layer of level i. The set T
of terminals is the set of all special vertices lying at the
last level M . Let N denote the construction size.

6.2 Analysis We show that instance G is 1-feasible,
and in particular the cost of the fractional solution is 1.
On the other hand, we prove that the cost of any feasible
integral solution is at least M . We start by bounding
N , the construction size.

Since N ≤ O(|BM |2), it is enough to bound the
sizes of sets Bi for all i. Recall that |B0| = 2M .
For i ≥ 1, we have that `i ≤ |Bi−1|M . Therefore,
λi ≤ (2M)`i+1 ≤ (2M)|Bi−1|M+1. The number of
special vertices at level i is at most Mλi, and each
special vertex has 2Mλi descendants in set Bi, so overall
|Bi| ≤ 2M2λ2

i ≤ 2M2 · (2M)2|Bi−1|M+2 ≤ (2M)|Bi−1|2M .
For simplicity, denote Yi = |Bi| for all i, and m = 2M .
We then have the following recurrence: Y0 = m, and for
0 ≤ i < M , Yi+1 ≤ mYmi . We use the following claim.

Claim 6.1. For 0 ≤ i ≤M , log(i)N ≤ m2Y mM−i.

Proof. The claim holds trivially for i = 0. Assume
that the claim holds for some i. Then log(i+1)N ≤
log(m2Y mM−i) ≤ 2 logm + m log YM−i. Replacing
YM−i ≤ mYmM−i−1 , we get that:

log(i+1)N ≤ 2 logm+m log
(
mYmM−i−1

)
≤ 2 logm+m · Y mM−i−1 logm ≤ m2Y mM−i−1

for a large enough m.

Applying the claim for i = M , we obtain that
log(M)N ≤ m2Y m0 ≤ (2M)O(M). Clearly, taking the
logarithm for O(log∗M) ≤ M more steps will get the
number on the right hand side below 1. Therefore,
log(2M)N ≤ 1, and M = Ω(log∗N).

We now to proceed to analyze the fractional solution
cost.

Claim 6.2. There is a fractional solution of cost 1 for
instance G, and moreover G is 1-feasible.

Proof. The fractional solution simply assigns a 1/M
value to each special vertex. Since every layer contains
at most M special vertices, the cost of the solution is 1.
It is also easy to see that for every level i, if u ∈ Bi is
a descendant of v ∈ Ai, then the path connecting v to
u contains exactly one special vertex. Therefore, there
are M special vertices on every root-to-terminal path,
and the solution is feasible.

We now show that instanceG is 1-feasible. Consider
some non-terminal vertex v, its subtree Gv and the
corresponding subset Tv of terminals. If v has only
one child, then there is a trivial fractional solution of
cost 1 to instance (Gv, Tv), in which an LP-value of 1 is
assigned to the child of v. Assume now that v has more
than 1 child. This can only happen if v is a special
vertex, or v ∈ Ai, or v ∈ Bi for some level i.

Assume first that v ∈ Ai for some level i : 1 ≤ i ≤
M (the case where i = 0, and v = s has been analyzed
above). Consider the sub-tree Giv rooted at v, restricted
to only vertices of level i. This subtree contains at most
one special vertex at each layer. Therefore, there is a
feasible solution of cost 1 to instance (Gv, Tv), where
LP-weight of 1 is assigned to every special vertex of Giv.

Assume now that v ∈ Bi−1 for some i : 1 ≤ i ≤ M .
Let vρ1 , . . . , vρh be the children of v. Due to the
definition of I, each vertex vρj : 1 ≤ j ≤ h participates
in a distinct gadget Hρ

i at level i. This again ensures
that all special vertices lying in the sub-tree of v at level
i belong to distinct layers. A feasible solution of cost 1
is then obtained by placing an LP-weight of 1 on each
such special vertex.

Finally, assume that v is a non-terminal special
vertex at level i : 1 ≤ i < M . Due to the definition
of the partition of Bi, all descendants of v in Bi belong
to the same set Bji of the partition. This ensures that all
descendants of v in Ai+1 participate in distinct gadgets

Hρ
i+1, and therefore the special vertices in the sub-tree

of v lying at level i + 1 all belong to distinct layers.
Again, a feasible fractional solution of cost 1 for the
corresponding instance is obtained by assigning an LP-
value 1 to all special vertices lying at level i+ 1.

It now only remains to show that the optimal
integral solution cost is at least M . Let λ be the
total number of layers in our construction, and let
S = {Uτ}τ≥1 be any solution of cost at most M − 1.
From Observation 2.1, we can assume, w.l.o.g., that for
all 1 ≤ τ ≤ λ, Uτ ⊆ Lτ , where Lτ is layer τ of the
tree, and Uτ = ∅ for τ > λ. We assume that we are
given a solution S = {Uτ}λτ=1 of this form. To simplify
the analysis of this part, we view the set of vertices
B0 = {s1, . . . , s2M} as special vertices, and we define
2M gadgets Hρ

0 : 1 ≤ ρ ≤ 2M at level 0, where gadget
Hρ

0 consists of a single vertex sρ. In order to prove that
S is not a feasible solution, it is enough to show that
at least one terminal is not protected. The next lemma
will then complete the analysis of the integrality gap.

Lemma 6.1. Let S = {Uτ}λτ=1 be any integral solution
of cost at most M − 1. Then for every i : 0 ≤ i ≤ M ,
there is a set Vi of M + 1 special vertices lying at level
i, that are not protected by S. Moreover, all vertices in
Vi belong to distinct level-i gadgets Hρ

i .

Proof. The proof is by induction. Consider first i = 0.
Since B0 contains 2M vertices, and the solution is only
allowed to save M − 1 of them, at least M + 1 vertices
in B0 are not protected, and they belong to distinct
gadgets by definition. Assume now that the lemma is
true for some 0 ≤ i < M , and let Vi = {u1, . . . , uM+1}
be the corresponding set of unprotected special vertices
at level i. We need the following claim:

Claim 6.3. Let u be any special vertex lying at level i
that is not protected by S. Then at least one descendant
of u in Bi is not protected by S.

Proof. Assume otherwise. Recall that there is a type-1
spider of width 2Mλi and height at most λi rooted at
u. Let Q be the set of the leaves of this spider, Q ⊆ Bi.
Protecting each vertex in Q requires saving a distinct
vertex of the spider. As vertex u is not protected,
solution S can only protect at most (M−1)λi vertices of
the spider, and hence protect at most (M−1)λi vertices
of Q.

For each vertex uj ∈ Vi, let wj be any descendant
of uj in Bi that is not protected by S. Since vertices
{uj}M+1

j=1 belong to distinct level-i gadgets, vertices
w1, . . . , wM+1 belong to distinct sets in the partition
of Bi. We say that an M -tuple ρ ∈ I is bad iff

ρ ⊆ {w1, . . . wM+1}. Clearly, there are at least 2M
bad ordered tuples ρ ∈ I. Given a bad tuple ρ ∈ I,
we say that the corresponding level-(i+ 1) gadget Hρ

i+1

is bad iff none of the vertices in set Aρi+1 is protected
by S. Since we have at least 2M bad tuples ρ, there are
2M corresponding disjoint sets Aρi+1 of vertices in Ai+1,
while S can only save M−1 vertices of Ai+1. Therefore,
there are at least M + 1 bad level-(i + 1) gadgets. It
now only remains to prove that each such bad gadget
contains at least one special vertex that is not protected
by S.

Claim 6.4. Let H = Hρ
i+1 be a bad level-(i+ 1) gadget.

Then at least one special vertex of H is not protected by
S.

Proof. Assume that ρ is the jth tuple in the correspond-
ing set I. Consider the set Aρi+1 of vertices. Each vertex
v ∈ Aρi+1 is a head of a type-2 spider of width (2M)j

and height bj , and none of the vertices in Aρi+1 is pro-
tected by S. Therefore, in order to protect all special
vertices of these spiders, S has to save at least M ·(2M)j

vertices in layers 1, . . . , bj +(2M)j of level (i+1). Since
at most (M−1) vertices can be saved in each layer, it is
enough to show that M · (2M)j > (M −1)(bj + (2M)j),
or equivalently that (2M)j > (M − 1)bj . Indeed,
bj =

∑j−1
j′=1(2M)j

′ ≤ (2M)j

2M−1 <
(2M)j

M−1 .

7 RMFC on Directed Layered Graphs

In this section we show a simple O(log n)-approximation
LP-rounding algorithm for RMFC on directed layered
graphs, matching the lower bound of [12] on the inte-
grality gap of the LP. For completeness, we sketch their
lower bound in Appendix. We assume that we are given
a directed graph G = (V,E), whose vertices are parti-
tioned into layers L0, . . . , Lλ, where L0 = {s}, and all
edges are between consecutive pairs of layers Lτ , Lτ+1,
directed from Lτ towards Lτ+1. Let OPT denote the
optimal solution cost. Notice that given any solution
S = {Uτ}nτ=1, if vertex v ∈ Lτ ′ is not protected by S,
then it starts burning at time τ ′, so we can assume that
v 6∈ Uτ for τ > τ ′. We therefore have the following
observation:

Observation 7.1. Given any feasible solution
{Uτ}nτ=1 for RMFC on directed layered graphs, we
can assume w.l.o.g. that for every τ : 1 ≤ τ ≤ λ,
Uτ ⊆

⋃
τ ′≥τ Lτ ′ , and Uτ = ∅ for all τ > λ.

For vertex v ∈ V , let Pv be the set of all paths
connecting the source s to v. Similarly to RMFC on
trees, we define amortized solution cost. Let U ⊆ V

be any subset of vertices. We say that U is a feasible
set iff for each terminal t ∈ T , for every path P ∈ Pt,
P ∩ U 6= ∅. The amortized cost of U is the maximum,
over all 1 ≤ τ ≤ λ, of

(∑
τ ′≤τ |U ∩ Lτ ′ |

)
/τ . Let OPT′

denote the minimum amortized cost of any feasible set
U . Similarly to RMFC on trees, the next claim shows
that OPT = OPT′.

Claim 7.1. For any RMFC instance on directed layered
graphs, OPT = OPT′.

Proof. Let {Uτ}λτ=1 be the optimal solution to the
RMFC instance, and let U =

⋃λ
τ=1 Uτ . From Obser-

vation 7.1,
∑
τ ′≤τ |U ∩ Lτ ′ | ≤

∑
τ ′≤τ |Uτ ′ | ≤ τOPT for

all τ , so the amortized cost of U is at most OPT.
We now show the opposite direction. Let U be

a feasible set with amortized cost k. We construct a
solution {U ′τ}

λ
τ=1 with (non-amortized) cost at most k

as follows. Consider first the solution S = {Uτ}λτ=1,
where Uτ = U ∩ Lτ for all τ . It is easy to see that
S is a feasible solution: assume otherwise, and let t
be any terminal that is not protected by S. Let P =
(s, v1, . . . , vz = t) be the corresponding fire spreading
path. Since U is a feasible set, there is some vτ ∈ P ∩U ,
for 1 ≤ τ ≤ z. However, vτ ∈ Uτ , and so P cannot be a
fire spreading path.

Finally, we transform the solution S to ensure that
its (non-amortized) cost is at most k. This is done
similarly to the proof of Claim 2.1, as follows. We scan
the sets Uλ, Uλ−1, . . . , U1 in this order. Let Uτ be the
current set. If |Uτ | = k′ > k, then we remove any
collection of k′ − k vertices from Uτ and add them to
Uτ−1. It is easy to see that this operation does not
increase the amortized cost and preserves the feasibility
of the solution. Once all the sets Uτ are processed, each
set contains at most k vertices.

We can therefore focus on finding a feasible set
with a low amortized cost. We use the following LP
relaxation.

min k

s.t.
∑
τ ′≤τ

∑
v∈Lτ′

x(v) ≤ τk ∀τ : 1 ≤ τ ≤ λ∑
v∈P x(v) ≥ 1 ∀t ∈ T, ∀P ∈ Pt
x(v) ≥ 0 ∀v ∈ V

Though the number of constraints in this LP is
exponential, it can be efficiently solved using a sepa-
ration oracle, that computes a minimum-weight path
connecting s to any terminal t ∈ T . We now describe

our LP-rounding algorithm. First, we round each LP-
value x(v) up to the next multiple of 1/n. The re-
sulting fractional solution is clearly still feasible, and
its amortized cost increases by at most a factor of
2. Next, we partition the vertices with non-zero LP-
weight into n sets F1, . . . , Fn, as follows. Let v ∈ V
be any vertex with x(v) = r/n, where r > 0. For
each path P ∈ Pv, let X(P) =

∑
v′∈P\{v} x(v′), and let

h = minP∈Pv {n ·X(P)}. Then v belongs to sets Fh+r′
for all 1 ≤ r′ ≤ r. We view the weight x(v) of v as being
evenly distributed among these r sets, so the weight of
v w.r.t. Fh+r′ is xh+r′(v) = 1/n, for 1 ≤ r′ ≤ r. We
need the following claim.

Claim 7.2. For each h : 1 ≤ h ≤ n, set Fh is a feasible
set.

Proof. Let t ∈ T be any terminal and let P = (s =
v0, v1, . . . , vz = t) ∈ Pt be any path connecting s to
t. It is enough to show that for each h : 1 ≤ h ≤ n,
P ∩ Fh 6= ∅. For each τ : 0 ≤ τ ≤ z, let Yτ =
minP∈Pvτ {X(P)}. Let τ ′ be the largest index for which
Yτ ′ < h/n. We argue that vτ ′ ∈ Fh. First notice
that vτ ′ belongs to Fh′+1, . . . , Fh′+r for h′ = nYτ ′ < h
and r = nx(vτ ′). There are two cases. If τ ′ = z, we
have that Yτ ′ + x(vτ ′) ≥ 1, and therefore vτ ′ ∈ Fh
since h′ < h ≤ h′ + r. Otherwise if τ ′ < z, we have
Yτ ′ + x(vτ ′) ≥ Yτ ′+1 ≥ h/n, and hence vτ ′ ∈ Fh since,
again, h′ < h ≤ h′ + r.

Our final solution is the set Fh∗ with smallest
amortized cost over all sets Fh. The next claim shows
that this gives an O(log n)-approximation.

Claim 7.3. The amortized cost of Fh∗ is at most
O(k log n).

Proof. We first recall the notation used in the previous
sections. We denote, for each h : 1 ≤ h ≤ n and
each τ : 1 ≤ τ ≤ λ, Xτ,h =

∑
v∈Fh∩Lτ xh(v) and

Xτ,h =
∑
τ ′≤τ Xτ ′,h. For each h, let τh denote the

layer τ : 1 ≤ τ ≤ λ that maximizes Xτ,h/τ .
For each h, we denote the amortized cost of Fh

by by cost(Fh) = maxτ≤λ
{

1
τ

(∑
τ ′≤τ |Fh ∩ Lτ ′ |

)}
, or

equivalently, cost(Fh) = maxτ
{

1
τ

∑
τ ′≤τ Xτ ′,h · n

}
=

n
τh
· Xτh,h, since the LP-weight xh(v) of every vertex

v ∈ Fh w.r.t. Fh is 1/n. We now have that:

cost(Fh∗) ≤
1
n

n∑
h=1

cost(Fh) =
n∑
h=1

Xτh,h/τh

Partition the indices h : 1 ≤ h ≤ n into
dlog λe subsets I1, . . . , Idlog λe, as follows: Iq =

{
h | 2q−1 ≤ τh < 2q

}
, for 1 ≤ q ≤ dlog λe. For each

such set Iq, we bound the summation for indices h ∈ Iq
as follows:

∑
h∈Iq

Xτh,h/τh ≤
∑
h∈Iq

X2q,h/2q−1

≤ 2
n∑
h=1

X2q,h/2q

≤ 2X2q/2q ≤ 4k

(the additional factor of 2 comes from the original
rounding to produce a 1/n-integral solution). Summing
up over all sets Iq, we get that cost(Fh∗) ≤ O(OPT ·
log λ) ≤ O(log n)OPT.

Acknowledgement: We would like to thank San-
jeev Khanna and Neil Olver for suggesting the problem
to us, and for many helpful discussions.

References

[1] E. Anshelevich, D. Chakrabarty, A. Hate and C.
Swami. Approximations for the FireFighter Problem:
Cuts over Time and Submodularity. ISAAC 2009, to
appear.

[2] A. F. Archer. Two O(log∗ k)-approximation algo-
rithms for the asymmetric k-center problem. Proceed-
ings of the 8th Conference on Integer Programming and
Combinatorial Optimization, pp. 1–14, 2001.

[3] L. Cai, E. Verbin, and L. Yang. Firefighting on Trees:
(1−1/e)-Approximation, Fixed Parameter Tractability
and a Subexponential Algorithm. ISAAC 2008

[4] J. Chuzhoy, S. Guha, E. Halperin, G. Kortsarz, S.
Khanna, R. Krauthgamer and S. Naor. Asymmetric
k-center is log*n-hard to Approximate. Journal of the
ACM, Volume 52, Issue 4, pp. 538-551, 2005.

[5] M. Develin and S. Hartke. Fire containment in grids
of dimension three and higher. Discrete Applied Math-
tematics, 155(17), 2257-2268 (2007)

[6] S Finbow, A King, G MacGillivray, R Rizzi The fire-
fighter problem for graphs of maximum degree three.
Discrete Mathematics, 307(16), 2094-2105 (2007)

[7] P. Fogarty. Catching the fire on grids M.Sc. Thesis,
University of Vermont, 2003.

[8] B.L. Hartnell. Firefighter! An application of domi-
nation. 24th Manitoba Conference on Combinatorial
Mathematics and Computing, 1995.

[9] S.G. Hartke. Attempting to narrow the integrality
gap for the firefighter problem on trees. Discrete
Methods in Epidemiology, J.Abello and G.Cormode,
eds., DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, 70 (2006), 179-185.

[10] S.G. Hartke. Graph-theoretic models of spread and
competition. Phd. Thesis, Rutgers, The State Univer-
sity of New Jersey.

[11] B. Hartnell and Q. Li Firefighting on trees: How bad
is the greedy algorithm? Congressus Numerantium,
2000

[12] S. Khanna, N. Olver. Personal communication, 2008.
[13] A. King and G. MacGillivray The firefighter problem

for cubic graphs. Discrete Mathematics, to appear
[14] G. MacGillivray, P. Wang. On the firefighter problem

J. Comb. Math. Comb. Comp., 47, 83-96 (2003).
[15] M.E. Messinger. Firefighting on the Triangular Grid.

Journal of Combinatorial Mathematics and Combina-
torial Computing, 63 (2007) 37-45.

[16] M.E. Messinger Firefighting on the Strong Grid.
Manuscript.

[17] M.E. Messinger. Average Firefighting on Infinite
Grids. Australasian Journal of Combinatorics, 41
(2008) 15-28.

[18] K.L.Ng and P. Raff. A generalization of the firefighter
problem on Z × Z. Discrete Applied Mathematics,
156(5), 730-745 (2008).

[19] R. Panigrahy and S. Vishwanathan. An O(log∗ n)
approximation algorithm for the asymmetric p-center
problem. J. of Algorithms, 27(2):259–268, 1998.

[20] P. Wang and G. Moeller. Fire control on graphs J.
Comb. Math. Comb. Comp., 41, 19-34 (2002).

A Chernoff Bound

We state Chernoff bound that we use throughout the
paper.

Theorem A.1. (Chernoff bound) Let X1, . . . , Xn

be independent Poisson random variables such that
Pr [Xi = 1] = pi. Let X =

∑n
i=1Xi and µ = E [X].

Then:

• For 0 < δ < 1, Pr [X ≤ (1− δ)µ] ≤ e−µδ2/2.

• For R ≥ 6µ, Pr [X ≥ R] ≤ 2−R

B Proof of Claim 3.1

For 1 ≤ i ≤ g, denote Zi = |Tg−i+1|. We then have the
following recursion: Z1 = |Tg| ≤ n, and for all i > 1,
Zi ≤ c · log5 Zi−1, for some constant c > 1. We need to
prove that Zg is bounded by a constant for a suitably
chosen g = O(log∗ n).

We prove by induction that Zi ≤ (10c log(i−1) n)5.
The base case when i = 1 holds trivially. Assume that
the statement holds for i and consider Zi+1. Then

Zi+1 ≤ c log5 Zi ≤ c
(

log
(

(10c log(i−1) n)5
))5

, by
the induction hypothesis. We then get that Zi+1 ≤
c
(

5 log(10c) + 5 log(i) n
)5

≤
(

10c log(i) n
)5

whenever

log(i) n > 5c log(10c). So for g = O(log∗ n), Zg is
bounded by a constant.

C Proof of Theorem 4.1

For each terminal t ∈ T , let Pt denote the unique path
connecting t to the root of H. We start by removing
from H all vertices that do not lie on any path Pt for
t ∈ T . Let H ′ = (V ′, E′) be the resulting tree and
L′1, . . . ,L′λ be the resulting layers, so L′τ = V ′ ∩ Lτ
for all τ . Observe that since every vertex of V ′ lies on
some path Pt for t ∈ T , |L′τ | ≤ N for all τ . Next,
for each vertex v ∈ V ′ whose distance from the root
is at most N , we set x′(v) = x(v) + 1/N , and for all
other vertices we set x′(v) = 0. Since H ′ is a tree with
N leaves, the number of vertices with non-zero value
x′(v) is now at most N2. It is easy to see that x′ is a
feasible fractional solution, as the summation of values
x′(v) along any path Pt for t ∈ T is at least 1: If Pt
contains at least N vertices, then values x′(v) of the
first N vertices of Pt are at least 1/N , and their total
sum is at least 1. Otherwise, if Pt contains less than N
vertices, then for each vertex v ∈ Pt, x′(v) ≥ x(v), so
the total sum remains at least 1. For each 1 ≤ τ ≤ λ,
let X ′τ =

∑
v∈L′τ

x′(v), and let X
′
τ =

∑
τ ′≤τ X

′
τ ′ . Since

|L′τ | ≤ N , we have that X ′τ ≤ Xτ + 1 and X
′
τ ≤ τ +X

for all τ .
The next step is to perform randomized rounding.

Let z be the largest index for which X
′
z ≤ 1

2 . For
vertices v ∈ Lτ with τ ≤ z, we set y(v) = 0. Consider
now any vertex v ∈ L′τ for τ > z. We can write
x′(v) = cv

M + pv where pv < 1/M and cv = bx′(v)Mc.
We set y(v) = cv+bv

M , where bv = 1 with probability
Mpv, and it is 0 otherwise. We first show that the
resulting solution y is “almost feasible” w.h.p.:

Claim C.1. With probability at least 1−1/N2, for each
terminal t ∈ T ,

∑
v∈Pt y(v) ≥ 1/8.

Proof. Fix some terminal t ∈ T . Let P ′t ⊆ Pt contain
all vertices lying in layers L′τ with τ > z. Since the total
weight X

′
z of all vertices in layers L′1, . . . ,L′z is bounded

by 1
2 ,
∑
v∈P ′t

x′(v) ≥ 1
2 . We now consider two cases. If∑

v∈P ′t
cv/M ≥ 1/4, then clearly

∑
v∈Pt y(v) ≥ 1/4.

Otherwise,
∑
v∈P ′t

pv ≥ 1/4. Consider the random
variables bv for v ∈ P ′t . These are independent {0, 1}
variables with E

[∑
v∈P ′t

bv

]
= M

∑
v∈P ′t

pv ≥ M/4.
Using Chernoff bound:

Pr

∑
v∈P ′t

y(v) ≤ 1/8

 ≤ Pr

∑
v∈P ′t

bv ≤M/8

 ≤ e−M/32

Using the union bound over all terminals, and the
fact that M ≥ 100 logN , we get that with probability
at least 1−1/N2, for each terminal t ∈ T ,

∑
v∈Pt y(v) ≥

1/8.

We now bound the amortized cost of the solution y.

Claim C.2. With probability at least 1−1/N2, for each
τ : 1 ≤ τ ≤ λ, Y τ ≤ 8X

′
τ .

Proof. The proof is again a simple application of the
Chernoff bound. Let I be the set of indices τ for which
L′τ contains at least one vertex v with non-zero value
x′(v). Recall that |I| ≤ N2. It is enough to prove that
the claim holds for all τ ∈ I, since for τ 6∈ I, Yτ = 0.
For τ ≤ z, Y τ = 0 so the claim clearly holds.

Consider now some τ ∈ I, τ > z. Let S contain
all vertices v ∈ L′τ ′ for all τ ′ : z < τ ′ ≤ τ , so
Y τ =

∑
v∈S y(v). Let Cτ =

∑
v∈S cv and Pτ =∑

v∈S pv, so X
′
τ ≥ Cτ/M + Pτ . Let Bτ =

∑
v∈S bv,

so Y = (Cτ +Bτ)/M . Recall that X
′
τ ≥ 1

2 for τ > z.
We now consider two cases. First, if Pτ ≥ 1

2 , then
E [Bτ] = MPτ ≥ M/2. Therefore, using Chernoff
bound, Pr [Bτ ≥ 6MPτ] ≤ 2−3M . But if Bτ ≤ 6MPτ ,
then Y τ = Cτ+Bτ

M ≤ Cτ+6PτM
M ≤ 6

(
Cτ
M + Pτ

)
≤ 6X

′
τ .

Assume now that Pτ < 1
2 . Then E [Bτ] ≤ M/2.

Again, using Chernoff bound, Pr [Bτ ≥ 3M] ≤ 2−3M .
But if Bτ ≤ 3M , then Y τ = Cτ+Bτ

M ≤ Cτ
M + 3 ≤ 8X

′
τ ,

since X
′
τ ≥ max

{
1
2 ,

Cτ
M

}
.

In either case, Y τ ≤ 8X
′
τ with probability at least

1 − 2−3M . Using the union bound over all τ ∈ I and
the fact that M ≥ 100 logN while |I| ≤ N2 gives the
desired result.

The final solution is obtained by scaling the values
y(v) up by the factor of 8.

D Integrality Gap for Directed Layered Graphs

We sketch the lower bound of Ω(log n) on the integrality
gap of the LP for RMFC on directed layered graphs
due to Khanna and Olver [12]. Let d be a parameter,
and λ =

⌈
ed
⌉
. The construction has λ + 1 layers

L0, . . . , Lλ where L0 = {s}, and Lτ contains τd vertices
for all τ ≥ 1. The terminal set is T = Lλ. For
each 0 ≤ τ ≤ λ − 1, there is an edge (u, v) for every
u ∈ Lτ , v ∈ Lτ+1.

Consider the following fractional solution: for each
v ∈ Lτ , we set x(v) = 1/(τd). It is easy to see that
this is a feasible fractional solution: for each terminal
t ∈ T , for each path P ∈ Pt, we have

∑
u∈P x(u) =

1
d

∑
τ≤λ

1
τ ≥

1
d lnλ ≥ 1. The total LP-weight of each

layer is exactly 1, so the cost of the solution is 1. It is
easy to see that the cost of the optimal integral solution
for this instance is d. Since the construction size n =
d(
∑
τ≤λ τ) = O(dλ2) = O(de2d), the integrality gap is

d = Ω(log n).

