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Abstract

The Flat Wall Theorem of Robertson and Seymour states
that there is some function f , such that for all integers
w, t > 1, every graph G containing a wall of size f(w, t),
must contain either (i) a Kt-minor; or (ii) a small subset
A ⊂ V (G) of vertices, and a flat wall of size w in G \ A.
Kawarabayashi, Thomas and Wollan recently showed a self-
contained proof of this theorem with the following two sets of
parameters: (1) f(w, t) = Θ(t24(t2 + w)) with |A| = O(t24),

and (2) f(w, t) = w2Θ(t24)

with |A| ≤ t − 5. The latter
result gives the best possible bound on |A|. In this paper
we improve their bounds to f(w, t) = Θ(t(t + w)) with
|A| ≤ t− 5. For the special case where the maximum vertex
degree in G is bounded by D, we show that, if G contains
a wall of size Ω(Dt(t + w)), then either G contains a Kt-
minor, or there is a flat wall of size w in G. This setting
naturally arises in algorithms for the Edge-Disjoint Paths
problem, with D ≤ 4. Like the proof of Kawarabayashi et
al., our proof is self-contained, except for using a well-known
theorem on routing pairs of disjoint paths. We also provide
efficient algorithms that return either a model of the Kt-
minor, or a vertex set A and a flat wall of size w in G \A.

We complement our result for the low-degree scenario by

proving an almost matching lower bound: namely, for all

integers w, t > 1, there is a graph G, containing a wall of

size Ω(wt), such that the maximum vertex degree in G is 5,

and G contains no flat wall of size w, and no Kt-minor.

1 Introduction

The main combinatorial object studied in this paper is a
wall. In order to define a wall W of height h and width
r, or an (h×r)-wall, we start from a grid of height h and
width 2r. Let C1, . . . , C2r be the columns of the grid in
their natural left-to-right order. For each column Cj ,

let ej1, e
j
2, . . . , e

j
h−1 be the edges of Cj , in their natural

top-to-bottom order. If j is odd, then we delete all
edges eji where i is even. If j is even, then we delete all

edges eji where i is odd. We then remove all vertices of
the resulting graph whose degree is 1. This final graph,
denoted by Ŵ , is called an elementary (h× r)-wall (see
Figure 1). The pegs of Ŵ are all the vertices on its
outer boundary that have degree 2. An (h× r)-wall W
is simply a subdivision of the elementary (h × r)-wall
Ŵ , and the pegs of W are defined to be the vertices of
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W that serve as the pegs of Ŵ . We sometimes refer to
a (w × w)-wall as a wall of size w.
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Figure 1: An elementary wall of height 5 and width 4,
with the corners circled.

The well-known Excluded Grid Theorem of Robertson
and Seymour [RS86] states that there is some function
g : Z+ → Z+, such that for every integer w ≥ 1,
every graph of treewidth at least g(w) contains the
(w × w)-grid as a minor. Equivalently, if the treewidth
of G is g(w), then G contains a wall of size Ω(w).
This important theorem has found many applications
in graph theory and algorithms. However, in some
scenarios it is useful to have more structure than that
provided by the presence of a large wall in a graph.
The Flat Wall Theorem helps provide this additional
structure, and it is used, for example, in algorithms for
the Node-Disjoint Paths problem [RS95]. We start with
some basic definitions and results that are needed in
order to state the Flat Wall Theorem.

Suppose we are given a graph G = (V,E) with four
special vertices s1, t1, s2, t2. In the Two-Disjoint-Paths
problem, our goal is to find two disjoint paths P1

and P2 in G, with P1 connecting s1 to t1, and P2

connecting s2 to t2. The well-known Two-Disjoint-
Paths Theorem [Jun70, RS90, Sey06, Shi80, Tho80]
states that either there is a solution to the Two-Disjoint-
Paths problem, orG can “almost” be drawn inside a disc
in the plane, with s1, s2, t1, t2 appearing on its boundary
in this circular order. In order to define the specific
notion of the “almost” drawing, we first need to define
C-reductions.

Recall that a separation in a graph G is a pair X,Y
of sub-graphs of G, such that G = X ∪ Y , and



E(X) ∩ E(Y ) = ∅. The order of the separation is
|V (X)∩V (Y )|. Let C be any set of vertices in graph G,
and let (X,Y ) be any separation of H of order at most
3 with C ⊆ V (Y ). Assume further that all vertices of
X ∩ Y are connected inside graph X. Let G̃ be the
graph obtained from Y by adding the edges connecting
all pairs of vertices in X ∩ Y . Then we say that G̃
is an elementary C-reduction of H. Observe that if
s1, t1, s2, t2 ∈ C, then there is a solution to the Two-
Disjoint-Paths problem in G iff there is such a solution
in G̃. This is since at most one of the two paths P1, P2

may contain the vertices of X \Y . We say that a graph
G∗ is a C-reduction of G iff it can be obtained from G
by a sequence of elementary C-reductions. The Two-
Disjoint-Paths Theorem states that either there is a
feasible solution to the Two-Disjoint-Paths problem in
G, or some C-reduction of G, for C = {s1, s2, t1, t2}, can
be drawn inside a disc in the plane, with the vertices of
C appearing on the boundary of the disc, in the circular
order (s1, s2, t1, t2).

More generally, let C be any set of vertices of G, and
let C̃ be any circular ordering of the vertices of C. A
C̃-cross in G is a pair P1, P2 of disjoint paths, whose
endpoints are denoted by s1, t1 and s2, t2, respectively,
such that s1, s2, t1, t2 ∈ C, and they appear in C̃ in
this circular order. A more general version of the Two-
Disjoint-Paths Theorem [Jun70, RS90, Sey06, Shi80,
Tho80] states that either G contains a C̃-cross, or some
C-reduction ofG can be drawn inside a disc in the plane,
with the vertices of C appearing on the boundary of the
disc, in the order specified by C̃. In the latter case, we
say that graph G is C̃-flat.

Given a wall W , let Γ(W ) be the outer boundary of W ,
and let C be the set of the pegs of W . We say that W
is a flat wall in G iff there is a separation (X,Y ) of G,
with W ⊆ Y , X ∩ Y contained in Γ(W ), and the set C
of all pegs of W contained in X ∩ Y , such that, if we
denote Z = X ∩Y , and Z̃ is the ordering of the vertices
of Z induced by Γ(W ), then graph Y is Z̃-flat.

We are now ready to state the Flat Wall Theorem (a
more formal statement appears in Section 2). There
are two functions f and g, such that, for any integers
w, t > 1, for any graph G containing a wall of size
f(w, t), either (i) G contains a Kt-minor, or (ii) there
is a set A of at most g(t) vertices in G, and a flat wall
of size w in G \ A. A somewhat stronger version of
this theorem was originally proved by Robertson and
Seymour [RS95], with g(t) = O(t2); however, they do
not provide explicit bounds on f(w, t). Giannopoulou
and Thilikos [GT13] showed a proof of this theorem
with g(t) = t − 5, obtaining the best possible bound
on |A|, but they also do not provide explicit bounds

on f(w, t). Recently, Kawarabayashi, Thomas and
Wollan [KTW12] gave a self-contained proof of the
theorem in the following two settings: with g(t) =
O(t24) they achieve f(w, t) = Θ(t24(t2 + w)), and with

g(t) = t − 5, they obtain f(w, t) = w2Θ(t24)

. They also
provide an efficient algorithm, that, given a wall of size
Θ(t24(t2+w)), either computes a model of the Kt-minor
in G, or returns a set A of at most O(t24) vertices, and
a flat wall of size w in graph G \A.

In this paper we improve their bounds to f(w, t) =
Θ(t(t + w)) with g(t) = t − 5. We note that this is
the best possible bound on |A|, since one can construct
a graph G containing an arbitrarily large wall and no
Kt-minor, such that at least t − 5 vertices need to be
removed from G in order to obtain a flat wall of size w
for any w > 2 (see Section 2). For the special case where
the maximum vertex degree in G is bounded by D, we
show that, if G contains a wall of size Ω(Dt(t + w)),
then either G contains a Kt-minor, or there is a flat
wall of size w in G. This latter setting naturally arises
in algorithms for the Edge-Disjoint Paths problem, with
D ≤ 4. Like the proof of Kawarabayashi et al., our proof
is self-contained, except for using the Two-Disjoint-
Paths Theorem. We also provide efficient algorithms
that return either a model of the Kt-minor, or a vertex
set A and a flat wall of size w in G\A. We complement
our latter result by proving an almost matching lower
bound: namely, for all integers w, t > 1, there is a
graph G, containing a wall of size Ω(wt), such that the
maximum vertex degree in G is 5, and G contains no
flat wall of size w, and no Kt-minor.

We now briefly summarize our techniques and com-
pare them to the techniques of Kawarabayashi et
al. [KTW12]. The proof of the flat wall theorem
in [KTW12] proceeds as follows. Let W be the (R×R)
wall in G. Kawarabayashi et al. start by showing
that either there is a collection P = {P1, . . . , Pk} of
k = Ω(t12) disjoint paths in G, where each path Pi con-
nects a pair of vertices xi, yi ∈ W , and is internally
disjoint from W , such that the distance between every
pair of vertices in set {xi, yi | 1 ≤ i ≤ k} is large in W ;
or there is a set A of O(t24) vertices, such that, if P
is a path in graph G \ A connecting a pair of vertices
x, y ∈ W , such that P is internally disjoint from W ,
then the distance between the endpoints of P is small
in W . In the former case, the paths in P are exploited,
together with the wall W to find a model of the Kt-
minor in G. Assume now that the latter case happens.
The wall W is then partitioned into O(t24) disjoint hori-
zontal strips of equal height, so at least one of the strips
does not contain any vertex of A. Denote this strip by
S. Strip S is in turn partitioned into a large number of



disjoint walls, where each wall spans a number of con-
secutive columns of the strip S. They show that either
one of the resulting walls contains a large sub-wall that
is flat in graph G \ A; or we can find a model of a Kt-
minor in G.

The starting point of our proof is somewhat different.
Instead of working with a square (R × R) wall, it is
more convenient for us to work with a wall whose width
r is much larger than its height h. In order to achieve
this, we start with the (R × R) wall, and partition it
into horizontal strips of height h. We then connect
these strips in a snake-like manner to obtain one long
wall, of width Ω(R2/h) and height h. This strip is
partitioned into Ω(R2/h2) disjoint walls of size (h× h),
that we call basic walls. Let B = (B1, . . . , BN ) be the
resulting sequence of basic walls, for N = Ω(R2/h2).
For each such basic wall Bi, we define a core sub-wall
B′i of Bi, obtained from Bi by deleting the top 2t and
the bottom 2t rows. The construction of the long strip
and its partition into basic walls and core walls imposes
a convenient structure on the wall, that allows us to
improve the parameters of the flat wall theorem. Let Γ′i
be the outer boundary of the core wall B′i. A path P
connecting a vertex in B′i \Γ′i to some vertex of W \B′i,
such that P is internally disjoint from W , is called a
bridge for B′i. If the other endpoint of P lies in one of
the walls Bi−1, Bi, Bi+1, then we call it a neighborhood
bridge.

We show that if we can find a collection of Ω(t2) disjoint
neighborhood bridges incident on distinct core walls, or
a collection of Ω(t2) disjoint non-neighborhood bridges
incident on distinct core walls, then we can find a Kt-
minor in G. Our constructions of the Kt-minors are
more efficient than those in [KTW12], in that they
require a much smaller number of disjoint bridges. This
is achieved by exploiting the convenient structure of a
long wall partitioned into basic walls, and several new
ways to embed a clique minor into G. In a theorem
somewhat similar to that of [KTW12], we show that
we can either find a collection of Ω(t2) disjoint non-
neighborhood bridges incident on distinct core walls, or
there is a set A of O(t2) vertices, and a large subset
B′ of basic walls, such that for each basic wall Bi ∈ B′,
every bridge for the corresponding core wall B′i in graph
G \ A is a neighborhood bridge. In the former case,
we use the disjoint non-neighborhood bridges to find a
Kt-minor. Assume now that the latter case happens.
If many of the walls in B′ have neighborhood bridges
incident on their corresponding core walls, then we
construct a collection of Ω(t2) disjoint neighborhood
bridges incident on distinct core walls, which implies
that G contains a Kt-minor. Otherwise, for each wall

Bi ∈ B′, we try to find a pair Pi, Qi of disjoint paths,
with Pi connecting the top left corner ofB′i to its bottom
right corner, and Qi connecting its top right corner to
its bottom left corner, such that Pi, Qi are internally
disjoint from W . We show that either we can find, for
each Bi ∈ B′, the desired pair (Pi, Qi) of paths, such
that all these paths are disjoint, or one of the walls
Bi ∈ B′ contains a large sub-wall that is flat in G \A (a
more careful analysis than the one described here leads
to an improved bound of |A| ≤ t − 5). In the former
case, we again construct a Kt-minor, by exploiting the
paths {Pi, Qi}Bi∈B′ , while in the latter case we obtain
the desired flat wall in G \ A. The main difference of
our approach from that of [KTW12] is (1) converting the
square wall W into a long strip S, which is partitioned
into smaller square basic walls, and defining a core
wall for each basic wall. Performing this step right
at the beginning of the algorithm imposes a convenient
structure on the wall W that makes the analysis easier;
(2) we propose more different ways to embed a Kt-minor
into G, which in turn lead to improved parameters; and
(3) careful analysis that allows us to lower |A| from
Θ(t2) to t−5, without increasing the size of the wall we
start from.

Organization. We start with preliminaries in Sec-
tion 2. Since the formal statements of our main results
require defining some graph-theoretic notation, these
statements can also be found in Section 2. In Sections 3–
4 we lay the foundations for proving both upper bounds:
in Section 3 we describe several families of graphs such
that, if G contain any such graph as a minor, then it
must contain a Kt-minor. In Section 4 we describe an
algorithm that turns a square R×R wall into a “long”
wall of height h and width R2/h. This long wall is then
partitioned into R2/h2 basic walls of size h×h. The ba-
sic walls are in turn partitioned into several types, and
we show how to handle most of these types. Sections 5
and 6 complete the proofs of the two upper bounds,
where Section 5 focuses on the small-degree case, and
6 handles general graphs. We provide the proof of our
lower bound in Section 7.

2 Preliminaries and Statements of the Main
Theorems

Throughout the paper, we use two parameters: t and w,
and our goal is to either find a Kt-minor or a flat wall
of size (w × w). We denote T = t(t − 1)/2 throughout
the paper.

We say that a path P is internally disjoint from a set U
of vertices, if no vertex of U serves as an inner vertex of
P . We say that two paths P, P ′ are internally disjoint,



iff for each v ∈ V (P ) ∩ V (P ′), v is an endpoint of both
paths.

Given a graph G and three sets A,X,B of vertices of
G, we say that X separates A from B iff G\X contains
no paths from the vertices of A \ X to the vertices of
B \X.

Definition 2.1. A separation in graph G is a pair
G1, G2 of subgraphs of G, such that G = G1 ∪ G2 and
E(G1) ∩ E(G2) = ∅. The order of the separation is
|V (G1) ∩ V (G2)|.

Notice that if (G1, G2) is a separation of G, then there
are no edges in G between V (G1 \G2) and V (G2 \G1).

Definition 2.2. Given a graph G and a path P in G,
we say that P is a 2-path iff every inner vertex of P has
degree 2 in G. In other words, P is an induced path in
G. We say that P is a maximal 2-path iff the degree of
each of the two endpoints of P is not 2.

Minors and Models. We say that a graph H is a
minor of a graph G, iff H can be obtained from G
by a series of edge deletion, vertex deletion, and edge
contraction operations. Equivalently, H is a minor of
G iff there is a map f : V (H) → 2V (G) assigning to
each vertex v ∈ V (H) a subset f(v) of vertices of G,
such that: (i) for each v ∈ V (H), the sub-graph of G
induced by f(v) is connected; (ii) if u, v ∈ V (H) and
u 6= v, then f(u) ∩ f(v) = ∅; and (iii) for each edge
e = (u, v) ∈ E(H), there is an edge in E(G) with one
endpoint in f(v) and the other endpoint in f(u). A
map f satisfying these conditions is called a model of H
in G. The following observation follows easily from the
definition of minors.

Observation 2.1. If H is a minor of G and H ′ is a
minor of H then H ′ is a minor of G.

It is sometimes more convenient to use embeddings
instead of models for graph minors. A valid embedding
of a graph H into a graph G is a map ϕ, mapping every
vertex v ∈ V (H) to a connected sub-graph ϕ(v) of G,
such that, if u, v ∈ V (H) with u 6= v, then ϕ(v)∩ϕ(u) =
∅. Each edge e = (u, v) ∈ E(H) is mapped to a path
ϕ(e) in G, such that one endpoint of ϕ(e) belongs to
V (ϕ(v)), another endpoint to V (ϕ(u)), and the path
does not contain any other vertices of

⋃
v′∈V (H) ϕ(v′).

We also require that all paths in {ϕ(e) | e ∈ E(H)} are
internally disjoint. A valid embedding of H into G can
be easily converted into a model of H in G, and can be
used to certify that H is a minor of G.

Walls and Grids. In this part we formally define grid
graphs and wall graphs. We note that Kawarabayashi et
al. [KTW12] provide an excellent overview and intuitive
definitions for all terminology needed in the statement
of the Flat Wall Theorem. Many of our definitions and
explanations in this section follow their paper.

We start with a grid graph. A grid of height h and
width r (or an (h × r)-grid), is a graph, whose vertex
set is: {v(i, j) | 1 ≤ i ≤ h; 1 ≤ j ≤ r}. The edge set
consists of two subsets: a set of horizontal edges
E1 = {(v(i, j), v(i, j + 1)) | 1 ≤ i ≤ h; 1 ≤ j < r};
and a set of vertical edges E2 =
{(v(i, j), v(i+ 1, j)) | 1 ≤ i < h; 1 ≤ j ≤ r}. The
sub-graph induced by E1 consists of h disjoint paths,
that we refer to as the rows of the grid. The ith row,
that we denote by Ri, is the row incident on v(i, 1).
Similarly, the sub-graph induced by E2 consists of r
disjoint paths, that we refer to as the columns of the
grid. The jth column, that is denoted by Cj , is the
column starting from v(1, j). Geometrically, we view
the rows R1, . . . , Rh as ordered from top to bottom,
and the columns C1, . . . , Cr as ordered left-to-right in
the standard drawing of the grid. We say that vertices
v(i, j) and v(i′, j′) of the grid are separated by at least
z columns iff |j − j′| > z.

We now proceed to define a wall graph W . In order
to do so, it is convenient to first define an elementary
wall graph, that we denote by Ŵ . To construct an
elementary wall Ŵ of height h and width r (or an (h×r)-
elementary wall), we start from a grid of height h and
width 2r. Consider some column Cj of the grid, for

1 ≤ j ≤ r, and let ej1, e
j
2, . . . , e

j
h−1 be the edges of Cj , in

the order of their appearance on Cj , where ej1 is incident
on v(1, j). If j is odd, then we delete from the graph
all edges eji where i is even. If j is even, then we delete

from the graph all edges eji where i is odd. We process
each column Cj of the grid in this manner, and in the
end delete all vertices of degree 1. The resulting graph
is an elementary wall of height h and width r, that we
denote by Ŵ (See Figure 1).

Let E′1 be the set of edges of Ŵ that correspond to
the horizontal edges of the original grid, and let E′2
be the set of the edges of Ŵ that correspond to the
vertical edges of the original grid, so E′1 = E1, E

′
2 ⊆ E2.

Notice that as before, the sub-graph of Ŵ induced by
E′1 defines a collection of h node-disjoint paths, that
we refer to as the rows of Ŵ . We denote these rows
by R1, . . . , Rh, where for 1 ≤ i ≤ h, Ri is incident on
v(i, 1). (It will be clear from context whether we talk
about the rows of a wall graph or of a grid graph). Let
V1 denote the set of all vertices in the first row of Ŵ ,



and Vh the set of vertices in the last row of Ŵ . There is
a unique set C of r node-disjoint paths, where each path
C ∈ C starts at a vertex of V1, terminates at a vertex
of Vh, and is internally disjoint from V1 ∪ Vh. We refer
to these paths as the columns of Ŵ . We order these
columns from left to right, and denote by Cj the jth
column in this ordering, for 1 ≤ j ≤ r. The sub-graph
Z = R1 ∪ C1 ∪Rh ∪ Cr of Ŵ is a simple cycle, that we
call the outer bondary of W . We now define the four
corners of the wall. The top left corner a is the unique
vertex in the intersection of R1 and C1; the top right
corner b is the unique vertex in the intersection of R1

and Cr. Similarly, the bottom left and right corners, d
and c are defined by Rh ∩C1 and Rh ∩Cr, respectively
(see Figure 1). All vertices of Z that have degree 2 are
called the pegs of Ŵ .

We say that a graph W is a wall of height h and width r,
or an (h×r)-wall, iff it is a subdivision of the elementary
wall Ŵ of height h and width r. Notice that in this
case, there is a natural mapping f : V (Ŵ ) → V (W ),
such that for u 6= v, f(u) 6= f(v), and for each edge e =
(u, v) ∈ E(Ŵ ), there is a path Pe in W with endpoints

f(u), f(v), such that all paths
{
Pe | e ∈ E(Ŵ )

}
are

internally disjoint from each other, and do not contain

the vertices of
{
f(u′) | u′ ∈ V (Ŵ )

}
as inner vertices.

We call such a mapping a good (Ŵ ,W )-mapping. The
corners of W are defined to be the vertices to which the
corners of Ŵ are mapped, and the pegs of W are the
vertices to which the pegs of Ŵ are mapped. Notice that
the mapping f is not unique, and so the choice of the
corners and the pegs of W is not fixed. For convenience,
throughout this paper, the paths Pe of W corresponding
to the horizontal edges of Ŵ are called blue paths, and
the paths Pe corresponding to the vertical edges of Ŵ
are called red paths. For each 1 ≤ i ≤ h and 1 ≤ j ≤ r,
the ith row of W , Ri, and the jth column of W , Cj ,
are naturally defined as the paths corresponding (via f)
to the ith row and jth column of Ŵ , respectively. A
(w × w)-wall is sometimes called a wall of size w.

Definition 2.3. Let W ′,W be two walls, where W ′ is
a sub-graph of W . We say that W ′ is a sub-wall of W
iff every row of W ′ is a sub-path of a row of W , and
every column of W ′ is a sub-path of a column of W .

Notice that if a wallW is a sub-division of an elementary
wall Ŵ , and we are given some (Ŵ ,W )-good mapping
f : V (Ŵ ) → V (W ), then any sub-wall Ŵ ′ of Ŵ
naturally defines a sub-wall W ′ of W : wall W ′ is the
union of all paths Pe for e ∈ E(Ŵ ′). Moreover, since
f is fixed, the corners and the pegs of W ′ are uniquely
defined.

We will often work with a special type of sub-walls of a
given wall W — sub-walls spanned by contiguous sets
of rows and columns of W . We formally define such
sub-walls below.

Consider an (h × r) elementary-wall Ŵ , and let 1 ≤
i1 < i2 ≤ h be integers. We define a sub-wall
of Ŵ spanned by rows (Ri1 , . . . , Ri2) to be the sub-

graph of Ŵ induced by
⋃i2
i=i1

V (Ri). Similarly, for
integers 1 ≤ j1 < j2 ≤ r we define a sub-wall
of Ŵ spanned by columns (Cj1 , . . . , Cj2) to be the

graph obtained from Ŵ , by deleting all vertices in(⋃j1−1
j=1 V (Cj)

)
∪
(⋃r

j=j2+1 V (Cj)
)

, and deleting all

vertices whose degree is less than 2 in the resulting
graph. The sub-wall Ŵ ′′ of Ŵ spanned by rows
(Ri1 , . . . , Ri2) and columns (Cj1 , . . . , Cj2) is computed

as follows: let Ŵ ′ be sub-wall of Ŵ spanned by rows
(Ri1 , . . . , Ri2). Then Ŵ ′′ is the sub-wall of Ŵ ′ spanned
by columns (Cj1 , . . . , Cj2).

Finally, assume we are given any (h × r)-wall W , the
corresponding (h×r)-elementary wall Ŵ and a (Ŵ ,W )-
good mapping f : V (Ŵ ) → V (W ). For integers
1 ≤ i1 < i2 ≤ h, and 1 ≤ j1 < j2 ≤ r, we define the
sub-wall W ′ of W spanned by rows (Ri1 , . . . , Ri2) and
columns (Cj1 , . . . , Cj2), as follows. Let Ŵ ′ be the sub-

wall of Ŵ spanned by rows (Ri1 , . . . , Ri2) and columns
(Cj1 , . . . , Cj2). We then let W ′ be the unique sub-wall

of W corresponding to Ŵ ′ via the mapping f . That
is, W ′ is the union of all paths Pe for e ∈ E(Ŵ ′).
As observed before, since the mapping f is fixed, the
corners and the pegs of W ′ are uniquely defined. Sub-
walls of W spanned by sets of consecutive rows, and
sub-walls spanned by sets of consecutive columns are
defined similarly.

From our definition of an elementary wall, it is clear
that the (h × 2r)-grid contains the (h × r)-elementary
wall as a minor. It is also easy to see that an (h × r)-
wall W contains the (h × r)-grid G as a minor: let Ŵ
be the (h× r)-elementary wall, and assume that we are
given some (Ŵ ,W )-good mapping f : V (Ŵ )→ V (W ).
Clearly, Ŵ is a minor of W . For every 1 ≤ i ≤ h,
1 ≤ j ≤ r, let P (i, j) = Ri ∩ Cj , where Ri and Cj are

the ith row and the jth column of Ŵ , respectively. We
contract all edges in P (i, j). Once we process all pairs
Ri, Cj in this manner, we obtain the (h×r)-grid G̃. We

call G̃ a contraction of W . Notice that if the mapping
f : V (Ŵ ) → V (W ) is fixed, then this contraction is
uniquely defined, and so is the model of G̃ in W .

Linkedness. We now turn to define the notion of t-
linkedness that we use extensively in our proof.



Definition 2.4. For any integer t > 0, we say that two
disjoint sets X,Y of vertices of are t-linked in graph G,
iff for any pair X ′ ⊆ X, Y ′ ⊆ Y of vertex subsets, with
|X ′| = |Y ′| ≤ t, there is a set of |X ′| node-disjoint paths
in graph G, connecting the vertices of X ′ to the vertices
of Y ′.

A useful feature of grid graphs is that the sets of vertices
in the first and the last columns of the grid are t-
linked, as long as t is no larger than the smaller of the
dimensions of the grid. We show this in the following
claim, whose proof is omitted due to lack of space.

Claim 2.1. Let G be an (h× r) grid, t ≤ min {h, r} an
integer, X the set of all vertices on the first column of
G and Y the set of all vertices on the last column of G.
Then X and Y are t-linked in G.

A similar claim holds for wall graphs, except that we
need to be more careful in defining the sets X and Y of
vertices.

Claim 2.2. Let Ŵ be an (h × r)-elementary wall, t ≤
min {h, r} a parameter, X a set of vertices lying in the
first column of G and Y a set of vertices lying in the
last column of G, such that for each row Ri of Ŵ ,
|X ∩ Ri| ≤ 1 and |Y ∩ Ri| ≤ 1. Then X and Y are
t-linked in G.

C-Reductions and Flat Walls.

Definition 2.5. Let G be a graph, X ⊆ V (G), and
let (A,B) be a separation of G of order at most 3 with
X ⊆ A. Moreover, assume that the vertices of A ∩ B
are connected in B. Let H be the graph obtained from
G[A] by adding an edge connecting every pair of vertices
in A∩B. We say that H is an elementary X-reduction
in G, determined by (A,B). We say that a graph J is
an X-reduction of G if it can be obtained from G by a
series of elementary X-reductions.

We need a definition of C-flat graphs. Intuitively, let
G be any graph, and let C be any simple cycle of G.
Suppose there is some C-reduction H of G, such that
H is a planar graph, and there is a drawing of H in
which C bounds its outer face. Then we say that G
is C-flat. Following is an equivalent way to define C-
flat graphs, due to [KTW12], which is somewhat more
convenient to work with.

Definition 2.6. Let G be a graph, and let C be a cycle
in G. We say that G is C-flat if there exist subgraphs
G0, G1, . . . , Gk of G, and a plane graph G̃, such that:

• G = G0 ∪ G1 ∪ · · · ∪ Gk, and the graphs
G0, G1, . . . , Gk are pairwise edge-disjoint;

• C is a subgraph of G0.

• G0 is a subgraph of G̃, with V (G̃) = V (G0).
Moreover, G̃ is a plane graph, and the cycle C
bounds its outer face;

• For all 1 ≤ i ≤ k, |V (Gi) ∩ V (G0)| ≤ 3.

– If |V (Gi) ∩ V (G0)| = 2, then u and v are
adjacent in G̃;

– If V (Gi)∩V (G0) = {u, v, w}, then some finite
face of G̃ is incident with u, v, w and no other
vertex;

• For all 1 ≤ i 6= j ≤ k, V (Gi) ∩ V (Gj) ⊆ V (G0).

We are now ready to define a flat wall.

Definition 2.7. Let G be a graph, and let W be a
wall in G with outer boundary D. Suppose there is
a separation (A,B) of G, such that A ∩ B ⊆ V (D),
V (W ) ⊆ B, and there is a choice of pegs of W , such that
every peg belongs to A. If some A∩B-reduction of G[B]
can be drawn in a disc with the vertices of A∩B drawn
on the boundary of the disc in the order determined by
D, then we say that the wall W is flat in G.

Statements of the Main Theorems. We need one
more definition in order to state our main theorems.
Let W be a wall in some graph G, and assume that
G contains a Kt-minor. Recall that a model of the Kt-
minor in G maps each vertex v ∈ V (Kt) to a subset f(v)
of vertices of G. We say that the Kt-minor is grasped
by the wall W iff for each v ∈ V (Kt), f(v) intersects at
least t rows of W , or at least t columns of W . We will
use the following simple observation.

Observation 2.2. Let W be an (h×r)-wall in a graph
H, and G̃ an (h× r)-grid, such that G̃ is a contraction
of W . Suppose we are given a model f(·) of a Kt-minor
in G̃, such that for each v ∈ V (Kt), f(v) intersects at
least t rows or at least t columns of G̃. Then there is a
model of Kt in H grasped by W .

The observation follows from the fact that for each row
Ri of G̃, every vertex onRi is mapped by the contraction
to a set of vertices of H contained in the ith row of W ,
and the same holds for the columns of G̃.

We are now ready to state our main theorems. Our
first theorem is a slightly weaker version of the flat wall



theorem, in that it is mostly interesting for graphs whose
maximum vertex degree is relatively small. Such graphs
arise, for example, in edge-disjoint routing problems,
and the guarantees given by this theorem are somewhat
better than the guarantees given by the stronger flat
wall theorem that appears below, as we do not need to
deal with apex vertices.

Theorem 2.1. Let G be any graph with maxi-
mum vertex degree D, let w, t > 1 be inte-
gers, set T = t(t − 1)/2, and let R = (w +

4t)
(

2 +
⌈√

8D2(10T + 6) + 14T + 8
⌉)

= Θ(Dt(w +

t)). Then there is an algorithm, that, given any (R×R)-
wall W ⊆ G, either computes a model of a Kt-minor
grasped by W in G, or returns a sub-wall W ∗ of W of
size at least (w × w), such that W ∗ is a flat wall in
G. The running time of the algorithm is polynomial in
|V (G)|, D,w and t.

Theorem 2.2. Let G be any graph, let w, t > 1 be
integers, set T = t(t − 1)/2, and let R = (w +
4t)
(
2 +

⌈√
500T + 200

⌉)
= Θ(t(w + t)). Then there is

an algorithm, that, given any (R × R)-wall W ⊆ G,
either finds a model of a Kt-minor grasped by W in
G, or returns a set A of at most t − 5 vertices, and a
sub-wall W ∗ of W of size at least (w × w), such that
V (W ∗) ∩ A = ∅ and W ∗ is a flat wall in G \ A. The
running time of the algorithm is polynomial in |V (G)|, w
and t.

Observe that the bound of t − 5 on |A| is the best
possible. Indeed, let G be the graph obtained from an
(R×R)-elementary wall W (for any value R), by adding
a set A = {a1, . . . , at−5} of new vertices, and connecting
every vertex of A to every vertex of W . Clearly, in order
to obtain a flat wall of size (w×w) for any w > 2 in G,
we need to delete all vertices of A from it. Assume for
contradiction that G contains a model f of a Kt-minor.
Let C = {f(v) | v ∈ V (Kt)} be the sets of vertices of
G to which the vertices of Kt are mapped. Then at
most t− 5 sets in C may contain vertices of A. So there
are at least 5 sets S1, . . . , S5 ∈ C of vertices, where for
1 ≤ i ≤ 5, Si ∩A = ∅. But then sets S1, . . . , S5 define a
model of a K5-minor in graph W , and since W is planar,
this is impossible.

Our lower bound is summarized in the following theo-
rem.

Theorem 2.3. For all integers w, t > 1, there is a
graph G, containing a wall of size Ω(wt), such that G
does not contain a flat wall of size w, and it does not

contain a Kt-minor. The maximum vertex degree of G
is 5.

A C-cross and a Wall-Cross. Suppose we are given
a graph G and a cycle C in G. A C-cross in G is
a pair P1 and P2 of disjoint paths, with ends s1, t1
and s2, t2, respectively, such that s1, s2, t1, t2 occur in
this order on C, and no vertex of C serves as an
inner vertex of P1 or P2. The next theorem follows
from [Jun70, RS90, Sey06, Shi80, Tho80, KTW12].

Theorem 2.4. Let G be a graph and let C be a cycle
in G. Then the following conditions are equivalent:

• G has no C-cross;

• Some C-reduction of G can be drawn in the plane
with C as a boundary of the outer face;

• G is C-flat.

Moreover, there is an efficient algorithm, that either
computes a C-cross in G, or returns the subgraphs
G0, G1, . . . , Gk of G and the plane graph G̃, certifying
that G is C-flat.

We will be extensively using a special type of cross,
connecting the corners of a wall. For brevity of notation,
we define it below, and we call it a wall-cross.

Definition 2.8. Let G be any graph, and W an (h ×
r)-wall in G. Let Ŵ be the corresponding (h × r)-
elementary wall, and assume that we are given a
(Ŵ ,W )-good mapping f : V (Ŵ )→ V (W ). Let a, b, c, d
be the four corners of W (whose choice is fixed given f),
appearing on the boundary of W in this order. A wall-
cross for W is a pair P1, P2 of disjoint paths, where P1

connects a to c, and P2 connects b to d.

Assume that we are given any pair u, v of vertices of
a wall W . We say that u and v are separated by a
column Cj of W , iff u, v 6∈ V (Cj), and V (Cj) separates
u from v in graph W . Similarly, we say that u, v are
separated by a row Ri of W , iff u, v 6∈ V (Ri), and
V (Ri) separates u from v in W . We will repeatedly use
the following simple theorem, whose proof is omitted
from this extended abstract and can be found in the
full version of the paper.

Theorem 2.5. Assume that we are given a wall W of
height h ≥ 5 and width r ≥ 5, with corners a, b, c, d
appearing on the boundary of W in this order. Let



u, v ∈ V (W ) be any pair of vertices, such that one of
the following holds: either (1) neither u nor v lie on
the boundary of W and they are separated by some row
or some column of W ; or (2) u lies on the boundary
of W , and v lies in the sub-wall of W spanned by rows
(R3, . . . , Rh−2) and columns {C3, . . . , Cr−2}. Let W ′ be
the graph obtained from W by adding the edge (u, v) to
it. Then there is a wall-cross for W in W ′.

3 Some Useful Graphs

In this section we construct a graphH∗, and define three
families of graphs: H1,H2,H3, such that, if G contains
H∗ or one of the graphs in H1 ∪ H2 ∪ H3 as a minor,
then it contains a Kt-minor.

3.1 Graph H∗. We start with a grid containing 2t
rows, that we denote by R1, . . . , R2t, and Tt+1 columns,
denoted by C1, . . . , CTt+1. The vertex lying at the
intersection of row Ri and column Cj is denoted by
v(i, j).

Consider the vertices ui = v(t, ti) for 1 ≤ i ≤ T (so
these are vertices roughly in the middle row of the
grid, spaced t apart horizontally). For each such vertex
ui, let Li be the cell of the grid for which ui is the
upper left corner. We add two diagonals to this cell,
that is, two edges: ei = (v(t, ti), v(t + 1, ti + 1)), and
ei+1 = (v(t + 1, ti), v(t, ti + 1)). We call these edges
cross edges. This completes the definition of the graph
H∗. Let J1 be the sub-graph of H∗, induced by the set
V (C1)∪· · ·V (Ct) of vertices. The proof of the following
lemma is omitted from this extended abstract.

Lemma 3.1. Let G be any graph and let W be a wall
in G. Assume that G contains H∗ as a minor. Then G
contains a Kt-minor. Moreover, if J1 is a contraction of
some sub-wall of W , then there is a model of Kt grasped
by W in G, and this model can be found efficiently given
a model of H∗ in G.

3.2 Graph Families H1,H2,H3. In this section, we
define three graph families H1,H2,H3. We will show
that if G contains a graph from any of these families
as a minor, then it contains a Kt-minor. Before we
proceed to define these families of graphs, we need a
few definitions.

Let G′ be the (h × r)-grid. As with walls, we define
sub-grids of G′ spanned by subsets of rows and columns
of G′. For any consecutive subset R′ of the rows of
G′, the sub-grid of G′ spanned by R′ is G′[S], where

S contains all vertices v(i, j) with Ri ∈ R′. Similarly,
given any consecutive subset R′ of the rows of G′, and a
consecutive subset C′ of the columns of G′, the sub-grid
of G spanned by the rows in R′ and the columns in C′ is
G[S′], where S′ contains all vertices v(i, j) with Ri ∈ R′
and Cj ∈ C′.

Assume now that we are given two vertices v(i, j) and
v(i′, j′) of the grid G′, where j ≤ j′. We say that v(i, j)
and v(i′, j′) are separated by column Cj′′ of the grid
iff j < j′′ < j′. We say that they are separated by x
columns ofG′ iff at least x distinct columns Cj′′ separate
v(i, j) from v(i′, j′), or, equivalently, j′ − j > x.

Graph Family H1. A graph H belongs to the family
H1 iff H is the union of the (h × r) grid G′, where
h > 2t, and a set E′ of T edges, such that the following
additional conditions hold. Let G1 be the sub-grid of
G′ spanned by the top t rows, G2 the sub-grid of G′

spanned by the bottom t rows, and G3 the sub-grid of
G′ spanned by the remaining rows. Let X be the set
of all endpoints of the edges in E′. Then the following
conditions must hold:

• X ⊆ V (G3), and |X| = 2T , so all edges in E′ have
distinct endpoints.

• Every pair of vertices in X is separated by at least
t + 2 columns, and no vertex of X belongs to the
first column of G′.

Let B1 be the sub-grid of G′ spanned by the first
t columns of G′ and all rows of G′. The proof of
the following theorem is omitted from this extended
abstract.

Theorem 3.1. Let G be any graph, and assume that it
contains a graph H ∈ H1 as a minor. Then G contains
a Kt-minor. Moreover, if G contains a wall W , and B1

is a contraction of a sub-wall of W , then G contains a
model of a Kt-minor grasped by W , and this model can
be found efficiently given a model of H in G.

Graph Family H2. A graph H belongs to the family
H2 iff H is the union of the (h × r) grid G′, where
h > 4t, and a set E′ of 2T + 2 edges, and the following
conditions hold. Let G1 be the sub-grid of G′ spanned
by the top t rows, G2 the sub-grid of G′ spanned by
the bottom t rows, and G3 the sub-grid of G′ spanned
by rows {R2t+1, . . . , Rh−2t}. We assume that E′ =
{e1, . . . , e2T+2}, and for each 1 ≤ i ≤ 2T + 2, the
endpoints of ei are labeled as xi and yi. Let X =
{xi | 1 ≤ i ≤ 2T + 2}, and Y = {yi | 1 ≤ i ≤ 2T + 2}.
Then the following conditions must hold:



• X ∪ Y contains 4T + 4 distinct vertices.

• X ⊆ V (G3), and every pair of vertices in X is
separated by at least t+ 2 columns.

• Y ⊆ V (G1) ∪ V (G2).

Let B1 be the sub-grid of G′ spanned by the first
t columns of G′ and all rows of G′. The proof of
the following theorem is omitted from this extended
abstract.

Theorem 3.2. Let G be any graph, that contains a
graph H ∈ H2 as a minor. Then G contains a Kt-
minor. Moreover, if G contains a wall W , and B1 is
a contraction of a sub-wall of W , then G contains a
model of a Kt-minor grasped by W , and this model can
be found efficiently given a model of H in G.

Graph Family H3. A graph H belongs to the family
H3 iff H is the union of the (h × r) grid G′, where
h > 4t, and a set E′ of 10T + 6 edges, and the
following conditions hold. Let G1 be the sub-grid of
G′ spanned by the top t rows, G2 the sub-grid of G′

spanned by the bottom t rows, and G3 the sub-grid of G′

spanned by rows {R2t+1, . . . , Rh−2t}. We assume that
E′ = {e1, . . . , e10T+6}, and for each 1 ≤ i ≤ 10T + 6,
the endpoints of ei are labeled as xi and yi. Let X =
{xi | 1 ≤ i ≤ 10T + 6}, and Y = {yi | 1 ≤ i ≤ 10T + 6}.
Then the following conditions must hold:

• X ∪ Y contains 20T + 12 distinct vertices.

• X ⊆ V (G3), and every pair of vertices in X is
separated by at least 2t+ 2 columns in G′.

• For each 1 ≤ i ≤ 10T + 6, xi and yi are separated
by at least t+ 1 columns in G′.

• No vertex of X ∪Y lies in the first t columns, or in
the last column of G′.

Let J1 be the sub-grid of G′ spanned by the first
t + 1 columns of G′ and all rows of G′. The proof
of the following theorem is omitted from this extended
abstract.

Theorem 3.3. Let G be any graph, that contains a
graph H ∈ H3 as a minor. Then G contains a Kt-
minor. Moreover, if G contains a wall W , and J1 is
a contraction of a sub-wall of W , then G contains a
model of a Kt-minor grasped by W , and this model can
be found efficiently given a model of H in G.

4 Chain of Walls, Bridges, Core Walls, and
Wall Types

Our starting point is a combinatorial object that we call
a chain of basic walls.

Definition 4.1. A chain (B,P) of N basic walls of
height z consists of:

• A collection B of N disjoint walls B1, . . . , BN , that
we call basic walls, where each wall Bi has height
z and width at least z.

• A set P =
⋃N−1
j=1 Pj of disjoint paths, where for

each 1 ≤ j < N , Pj =
{
P j1 , . . . , P

j
z

}
is a set of

z paths, connecting the pegs of Bj lying in the last
column of Bj to the pegs of Bj+1 lying in the first

column of Bj+1, and for 1 ≤ i ≤ z, P ji connects a
vertex in the ith row of Bj to a vertex in the ith row
of Bj+1. Moreover, the paths in P do not contain

the vertices of
⋃N
j′=1 V (Bj′) as inner vertices.

We denote by W ′(B,P) the corresponding graph(⋃N
j=1 Bj

)
∪
(⋃N−1

j=1 Pj
)

.

Observe that graph W ′ = W ′(B,P) is a wall of height z
and width at least Nz. We will always assume that we
are given some fixed choice of the four corners (a, b, c, d)
of the wall W ′, that appear along the boundary of W ′ in
this order clock-wise, and a is the top left corner of W ′.
Therefore, for each basic wall Bi, the four corners of Bi
are also fixed, and are denoted by ai, bi, ci, di, where ai
is the top left corner, and the four corners appear in this
order clock-wise along the boundary of Bi. We need the
following theorem.

Theorem 4.1. For any integers N, z ≥ 2, given a wall
W of size (Nz × Nz), there is an efficient algorithm
to construct a chain (B,P) of N(N − 2) basic walls of
height z, such that W ′(B,P) is a sub-graph of W , and
each basic wall B ∈ B is a sub-wall of W .

The proof of the theorem can be found in the full version
of the paper; we provide an informal overview here. We
sketch the proof for the case where W is an elementary
wall; if the input wall W is not elementary, then we first
build a chain of walls in the corresponding elementary
wall Ŵ , and then use it to define a chain of walls for
W in a natural manner. For each 1 ≤ i < N , we
delete all edges of W connecting row iz to row iz + 1,
thus obtaining a partition of W into N horizontal strips



S1, . . . , SN , where each strip is a wall of height z and
width Nz. Each such strip is in turn partitioned into
N disjoint (z × z)-walls, that we call basic walls. Let B
be the corresponding collection of basic walls. For each
horizontal strip Si, we then discard the first and the last
basic wall of Si from B, and we use these basic walls
to connect the horizontal strips together, in a snake-
like fashion, to obtain one wall of height z and width
N(N − 2)z. This final wall, together with the set B of
basic walls defines the desired chain of walls.

Let G be any graph, (B,P) a chain of N basic walls
of height z in G, and let W ′ = W ′(B,P) be the
corresponding sub-graph of G. Let C be the set of all
connected components of G \ V (W ′). We say that a
component F ∈ C touches a vertex v ∈ V (W ′) iff G
contains an edge from a vertex of F to v.

Given an integer parameter 1 ≤ τ < z/2, for each
1 ≤ i ≤ N , we define a τ -core sub-wall B′i of Bi, as
follows. Wall B′i is the sub-wall of Bi spanned by rows
(Rτ , . . . , Rz−τ+1) and all columns of Bi (see Figure 2).
The boundary of the τ -core wall B′i is denoted by Γ′i,
and its four corners are denoted by a′i, b

′
i, c
′
i, d
′
i. We will

assume throughout this section that the value of τ is
fixed, and we will sometimes refer to the τ -core walls
simply as core walls.

!""
#$

B�
i

Bi

τ

τ

Figure 2: Graphs Bi and B′i.

Definition 4.2. A bridge incident on a core wall B′i is
one of the following: either an edge with one endpoint
in V (B′i\Γ′i), and another in V (W ′\B′i); or a connected
component F ∈ C, that touches a vertex of V (B′i \ Γ′i),
and a vertex of V (W ′ \B′i).

For 1 < i < N , we define the neighborhood of Bi as
follows: N (Bi) = V (Bi−1 ∪ Pi−1 ∪ Bi ∪ Pi ∪ Bi+1).
We say that a bridge F incident on the core wall B′i
is a neighborhood bridge for B′i iff either F is an edge
whose both endpoints lie in N (Bi), or F is a connected

component of C, such that all vertices of W ′ that F
touches belong to N (Bi). Otherwise, we say that F is
a non-neighborhood bridge for B′i.

For 1 < i < N , we say that the core wall B′i is a type-1
wall iff there is at least one bridge F incident on B′i,
such that F is a neighborhood bridge for B′i. We say
that it is a type-2 wall if it is not a type-1 wall, and at
least one bridge is incident on B′i. Therefore, if B′i is a
type-2 wall, then at least one bridge F incident on B′i
is a non-neighborhood bridge for B′i.

Assume now that B′i is not type-1 and not type-2 wall.
Then no bridge is incident on B′i, so graph G\Γ′i consists
of at least two connected components, with one of them
containing B′i \ Γ′i. Therefore, there is a separation
(X,Y ) of G, with B′i ⊆ X, X ∩ Y ⊆ Γ′i, and for each
1 ≤ j ≤ N with j 6= i, Bj ⊆ Y . Recall that the corners
a′i, b

′
i, c
′
i, d
′
i of the wall B′i are fixed. We assume that

they appear on Γ′i in this order clockwise, with a′i being
the top left corner. If graph X contains a wall-cross
for B′i (that is, a pair of disjoint paths connecting a′i
to c′i and b′i to d′i), then we say that wall B′i is of type
3. Otherwise, it is of type 4. Notice that given W ′, for
each 1 < i < N , we can efficiently determine what type
wall B′i belongs to, and if it is a type-3 wall, then we
can find the corresponding wall-cross efficiently.

The proofs of both Theorems 2.1 and 2.2 proceed in a
similar way: we start with a wall W of an appropriate
size, and apply Theorem 4.1 to obtain a chain of walls
(B,P) with some parameters z and N . We then show
that if, for any of the basic walls in the chain, the
corresponding τ -core wall is of type 4, then G contains
a flat sub-wall of W of size ((z − 2τ) × (z − 2τ)).
Therefore, with an appropriate choice of z and τ , we
can assume that all τ -core walls are of types 1, 2 or 3.
For each one of these three types, we show that if there
are many τ -core walls of that type, then G contains
a Kt-minor grasped by W . Therefore, large parts of
the proofs of both theorems are similar, and only differ
in the specific parameters we choose. In the rest of this
section we formally state and prove theorems that allow
us to handle walls of each one of the four types. The
statements of the theorems are generic enough so we can
apply them in the different settings with the different
choices of the parameters that we need.

We start by observing that if at least one basic wall
of B is of type 4, then G contains a flat wall of size
((z− 2τ)× (z− 2τ)). The proof of the following lemma
is omitted here and appears in the full version of the
paper.

Lemma 4.1. Let G be any connected graph, B a wall



of size ((z + 2) × (z + 2)) in G, Γ an outer boundary
of B, and a, b, c, d the corners of B appearing on Γ in
this order circularly. Assume further that there is a
separation (X,Y ) of G, with B ⊆ X and X ∩ Y ⊆ Γ,
such that X does not contain a wall-cross for B. Then
there is an efficient algorithm to find a flat wall B′ of
size (z × z) in G, such that B′ is a sub-wall of B.

We then obtain the following immediate corollary:

Corollary 4.1. Let G be any connected graph, W a
wall in G, (B,P) a chain of N walls of height at least z
in G, and τ < z/2 some integer. Assume that for some
1 < i < N , the τ -core wall B′i is a type-4 wall. Then
there is an efficient algorithm to find a flat wall of size
((z−2τ)× (z−2τ)) in G. Moreover, if Bi is a sub-wall
of W , then so is the flat wall.

4.1 Type-3 Core Walls. We use the following the-
orem to handle type-3 walls.

Theorem 4.2. Let G be a connected graph, τ > t an
integer, W a wall in G, and (B,P) a chain of N walls
of height z > 2τ in G. If the number of τ -core walls
B′i of type 3 with 1 < i < N in the chain of walls is
at least 2T , then G contains a Kt-minor. Moreover, if
B1 ∈ B is a sub-wall of W , then G contains a model of
a Kt-minor that is grasped by W , and it can be found
efficiently given (B,P).

In order to prove the theorem, we show that G contains
the graph H∗, defined in Section 3, as a minor. The the-
orem then follows from Lemma 3.1 and Observation 2.1.
The proof can be found in the full version of the paper.

4.2 Type-1 Core Walls In this section we take care
of type-1 core walls, by proving the following theorem.

Theorem 4.3. Let G be a connected graph, τ ≥ 2t an
integer, W a wall in G, and (B,P) a chain of N walls of
height z > 2τ in G. If the number of τ -core walls B′i ∈ B
of type 1 with 1 < i < N is at least 12T + 6, then G
contains a Kt-minor. Moreover, if B1 ∈ B is a sub-wall
of W , then G contains a model of a Kt-minor grasped
by W , and it can be found efficiently, given (B,P).

Proof. Let S be the set of τ -core walls B′i of type
1, with 1 < i < N . We select a subset S ′ ⊆ S
of 4T + 2 core walls, such that, if we denote S ′ ={
B′i1 , B

′
i2
, . . . , B′4T+2

}
, where 1 < i1 < i2 < . . . <

i4T+2 < N , then i1 > 2, and for all 1 ≤ r < 4T + 2,

ir+1 ≥ ir + 3. In other words, B′1, B
′
2, B

′
N 6∈ S ′, and

every consecutive pair of core walls is separated by at
least two walls. In order to construct S ′, we can use a
simple greedy algorithm: order the walls in S in the
ascending order of their indices; add to S ′ all walls
whose indices are 0 modulo 3 in this ordering; delete
walls from S ′ as necessary until |S ′| = 4T + 2 holds.

Consider now some wall B′ir ∈ S
′. Recall that there is at

least one neighborhood bridge Fr incident on B′ir . This
bridge must contain a path Pir , connecting a vertex of
B′ir \Γ′ir to a vertex of N (Bir ) \B′ir , such that Pir does
not contain any vertices of W ′ as internal vertices. We
denote the endpoint of Pir that belongs to B′ir \ Γ′ir
by xir , and its other endpoint by yir . Notice that
since τ ≥ 2t, xir cannot belong to the sub-walls of W ′

spanned by the top 2t or the bottom 2t rows of W ′.
All paths {Pi}B′i∈S′ are completely disjoint from each

other, since for r 6= r′, |ir−ir′ | ≥ 3, so the neighborhood
bridges Fir , Fir′ are disjoint.

Let R1 be the set of the top t rows of W ′, R2 the set of
the bottom t rows of W ′, andR3 the set of all remaining
z−2t rows of W ′. For 1 ≤ j ≤ 3, let Wj be the sub-wall
of W ′ spanned by the rows in Ri and all columns of
W ′. We partition S ′ into two subsets, S1,S2, where S1
contains all walls B′ir ∈ S

′ with yir ∈ V (W1 ∪W2), and
S2 containing all remaining walls. The following two
lemmas will finish the proof.

Lemma 4.2. If |S1| ≥ 2T + 2, then G contains a Kt-
minor. Moreover, if B1 is a sub-wall of W , then G
contains a model of Kt-minor grasped by W , and it can
be found efficiently, given (B,P).

The proof proceeds by showing that graph G contains
a graph H ∈ H2 as a minor, and then invokes The-
orem 3.2. The formal proof can be found in the full
version of the paper.

Lemma 4.3. If |S2| ≥ 2T , then G contains a Kt-minor.
Moreover, if B1 is a sub-wall of W , then G contains a
model of a Kt-minor grasped by W , and it can be found
efficiently, given (B,P).

Proof. The idea of the proof is to define a different
partition B′ of W ′ into basic walls, such that for each
original basic wall Bi with B′i ∈ S2, there is a basic
wall B̃i ∈ B′ with N (Bi) ⊆ B̃i. Let B̃′i be the (t + 1)-
core sub-wall of B̃i, and let Zi be the graph B̃′i ∪ Pi.
We show that Zi contains a wall-cross for B̃′i, and so
we reduce the problem to the case where the number
of (t + 1)-core walls of type 3 is at least 2T . Applying
Theorem 4.2 then finishes the proof.



Formally, for each wall B′i ∈ S2, let i1 be the index of
the first column of W ′ whose vertices are contained in
N (Bi), and let i2 be the index of the last column of W ′

whose vertices are contained in N (Bi). We define a set
Ci of consecutive columns of W ′ to contain all columns
starting from Ci1 and ending with Ci2 . Let B̃i be the
sub-wall of W ′ spanned by columns in Ci and all rows of
W ′. Notice that for B′i, B

′
j ∈ S2, if i 6= j, then Ci∩Cj = ∅

due to the choice of S ′. Let C∗ be the set of the first t
columns of W ′. We define one additional basic wall B̃∗

to be the sub-wall of W ′ spanned by the columns in C∗
and all rows of W ′. Let B′ be the set of these new basic
walls.

Let W ′′ be the sub-wall of W ′ obtained by taking the
union of all the columns of W ′ that are contained in the
walls in B′, and all the rows of W ′. Then W ′′ and the
walls in B′ define a chain of 2T walls of height z. Let
G′ be the union of W ′′ with all paths Pi for B′i ∈ S2.

For convenience, for each B′i ∈ S2, we re-name the path
Pi to be P (B̃) where B̃ ∈ B′ is the basic wall containing
B′i.

For each B̃ ∈ B′, where B̃ 6= B̃∗, let B̃′ be the (t + 1)-
core sub-wall of B̃, and let G(B̃) be the union of B̃
with the path P (B̃) (whose both endpoints must be
contained in B̃′). Notice that the endpoints of P (B̃) are
separated by at least one row or at least one column,
as one endpoint of P (B̃) belongs to B′j \ Γ′j and the
other to N (Bj) \ V (B′j) for the corresponding 2t-core

wall B′j ∈ S2. From Theorem 2.5, graph G(B̃) contains

a wall-cross for B̃′. Therefore, the chain of walls defined
by W ′′ and B′ contains 2T (t + 1)-core walls, that are
type-3 walls in graph G′. From Theorem 4.2, G′ must
contain a Kt-minor. Moreover, if B1 ∈ B is a sub-wall
of W , then so is B̃∗ ∈ B′. Therefore, from Theorem 4.2,
G′ must contain a Kt-minor grasped by W , and it can
be found efficiently given (B,P). � �

5 Proof of Theorem 2.1

We assume w.l.o.g. that graph G is connected -
otherwise it is enough to prove the theorem for the
connected component of G containing W . We set
z′ = w + 4t. Let W be the R × R wall in G. Using
Theorem 4.1, we can build a chain (B,P) of N =
8D2(10T + 6) + 14T + 8 basic walls of height at least z′

in G, such that each wall Bi ∈ B is a sub-wall of W . Let
W ′ = W ′(B,P) be the sub-graph corresponding to the
chain of walls. Throughout the proof, we will set τ = 2t,
and we will consider the set S∗ of all τ -core walls B′i with
1 < i < N , so |S∗| ≥ 8D2(10T + 6) + 14T + 6.

If at least one of the core walls B′i ∈ S∗ is a type-4 wall,
then from Corollary 4.1, we can find a flat sub-wall of
W of size ((z′−2τ)×(z′−2τ)) = (w×w). Therefore, we
assume from now on that no core wall in S∗ is a type-4
wall.

If the number of type-3 core walls in S∗ is at least 2T ,
then from Theorem 4.2, we can efficiently construct
a Kt-minor in G grasped by W . If the number of
type-1 core walls in S∗ is at least 12T + 6, then
from Theorem 4.3, we can construct a Kt-minor in
G grasped by W . Therefore, we assume from now
on that the number of type-2 walls in S∗ is at least
8D2(10T+6)+14T+6−2T−(12T+6) = 8D2(10T+6).

Let S ⊆ S∗ be the set of all core walls B′i of type 2, with
1 < i < N . We select a subset S ′ ⊆ S of 4D2(10T + 6)
core walls, such that every consecutive pair of such
walls is separated by at least one wall. In other words,

if we denote S ′ =
{
B′i1 , B

′
i2
, . . . , B′i4D2(10T+6)

}
, where

1 < i1 < i2 < . . . < i4D2(10T+6) < N , then for all
1 ≤ r < 4D2(10T + 6), ir+1 ≥ ir + 2. Subset S ′
can be found using a standard greedy procedure, by
ordering the walls in S in the ascending order of their
indices, and then choosing all walls whose location in
this ordering is even. We then delete walls from S ′ as
necessary to ensure that |S ′| = 4D2(10T + 6). We need
the following claim, whose proof is omitted from this
extended abstract.

Claim 5.1. There is an efficient algorithm to find a set
P of 10T + 6 disjoint paths in G, such that:

• For each path P ∈ P, its endpoints are labeled
xP and yP . There is a core wall B′iP ∈ S

′, such
xP ∈ V (B′iP \ Γ′iP ), and yP ∈ V (W ′ \ N (BiP )).
Moreover, if P, P ′ ∈ P are distinct, then iP 6= iP ′ .

• The paths in P are internally disjoint from W ′.

Finally, we show that G contains a graph H ∈ H3 as a
minor, and then invoke Theorem 3.3. We start with the
graph G′ = W ′ ∪

(⋃
P∈P P

)
. For each column Cj and

row Ri of W ′, we contract all edges in Cj∩Ri, obtaining
a graph H ′′, which is a subdivision of a grid. We then
turn H ′′ into a grid H ′, as follows: for each maximal
2-path P of H ′′ that does not contain the corners of
H ′′, we contract all but one edges of P . So far we have
contracted edges ofW ′ to turn it into a grid, but we have
made no changes in the paths P ∈ P. Our last step is to
contract, for each path P ∈ P, all but one edges of P . It
is immediate to verify that the resulting graph belongs
to the family H3, and therefore, from Theorem 3.3, it
contains a Kt-minor. Let J1 be the sub-graph of H ′



spanned by the first t columns of H ′. Since B1 is a
sub-wall of W , J1 is a contraction of a sub-wall of W ,
and so from Theorem 3.3, graph G contains a Kt-minor
grasped by W , and it can be found efficiently.

6 Proof of Theorem 2.2

We assume w.l.o.g. that graph G is connected -
otherwise it is enough to prove the theorem for the
connected component of G containing W . We set
z′ = w + 4t. Let W be the R × R wall in G. Using
Theorem 4.1, we can build a chain (B,P) of N =
500T + 200 basic walls of height at least z′ in G, such
that each wall Bi ∈ B is a sub-wall of W . We set τ = 2t,
and we will consider the set S∗ of all τ -core walls B′i
with 1 ≤ i ≤ N . Let Γ′i be the boundary of the τ -core
wall B′i, and let W ′ = W ′(B,P) be the sub-graph of G
corresponding to (B,P).

For each Bi ∈ B, we define a pair of vertex subsets
Xi = V (B′i) \ V (Γ′i) and Yi = V (W ′) \ N (Bi). Notice
that Xi ∩ Yi = ∅ and each pair (x, y) of vertices with
x ∈ Xi, y ∈ Yi is separated by at least t+ 1 columns in
W ′. We denote Mi = (Xi, Yi), and we call it a demand
pair for Bi. We say that a path P routes the pair Mi,
iff one of the endpoints of P belongs to Xi, the other
endpoint belongs to Yi, and P is internally disjoint from
W ′. Notice that if the endpoints of a path P belong
to two distinct sets Xi, Xj , then it is possible that P
routes both the pairs Mi,Mj . We say that the pair Mi

is routable in a sub-graph H of G, iff there is a path
P in H that routes Mi. We start with the following
theorem, whose proof is almost identical to the proof of
Lemma 2.1 in [KTW12] and is omitted.

Theorem 6.1. There is an efficient algorithm, that
returns one of the following: either (1) a set A of at
most 40T+20 vertices of G, and a set B′ ⊆ B\{B1, BN}
of least 396T+3t+150 walls, such that for each Bi ∈ B′,
V (Bi) ∩A = ∅, and Mi is not routable in G \A, or (2)
a set P∗ of 10T + 6 disjoint paths in G, such that:

• For each path P ∈ P∗, the endpoints are labeled
xP and yP , and there is 1 < iP < N , such that
xP ∈ XiP and yP ∈ YiP ;

• If P, P ′ ∈ P∗ and P 6= P ′, then |iP − iP ′ | > 1; and

• All paths in P∗ are internally disjoint from W ′.

We apply Theorem 6.1 to our chain of walls (B,P).
Assume first that the outcome of Theorem 6.1 is a
set P∗ of 10T + 6 paths. We show that G contains
a graph H ∈ H3 as a minor, exactly as in the proof

of Theorem 2.1, and then invoke Theorem 3.3. We
start with the graph G′ = W ′ ∪

(⋃
P∈P∗ P

)
. For each

column Cj and row Ri of W ′, we contract all edges in
Cj∩Ri, obtaining a graph H ′′, which is a subdivision of
a grid. We then turn H ′′ into a grid H ′, as follows: for
each maximal 2-path P of H ′′ that does not contain the
corners of H ′′, we contract all but one edges of P . So far
we have contracted edges of W ′ to turn it into a grid,
but we made no changes in the paths P ∈ P∗. Our last
step is to contract, for each path P ∈ P∗, all but one
edges of P . It is easy to verify that the resulting graph
belongs to the family H3. Indeed, Theorem 6.1 ensures
that for P, P ′ ∈ P∗ where P 6= P ′, the vertices xP and
xP ′ belong to core wallsB′iP , B

′
iP ′

, with |iP−iP ′ | > 1. In
other words, the two walls are separated by at least one
wall, and xP , xP ′ are separated by at least 2t columns.
The definition of the pairs Mi ensures that for each path
P ∈ P∗, yP and xP are also separated by at least 2t
columns. For every P ∈ P∗, xP ∈ XiP = B′iP \ Γ′iP ,
so xP does not lie in the top 2t or the bottom 2t rows
of the grid. We can now apply Theorem 3.3 to find a
Kt-minor grasped by W .

Assume now that the outcome of Theorem 6.1 is a
set A of at most 40T + 20 vertices of G, and a set
B′ ⊆ B \ {B1, BN} of at least 396T + 3t + 150 walls,
such that for each Bi ∈ B′, V (Bi) ∩ A = ∅, and Mi

is not routable in G \ A. Let B′′ ⊆ B′ be a subset of
132T +t+50 walls, such that for each pair Bi, Bi′ ∈ B′′,
with i 6= i′, |i − i′| ≥ 3. We can find B′′ by standard
methods: order the walls in B′ in their natural left-
to-right order, and select all walls whose index is 1
modulo 3 in this ordering, discarding any excess walls
as necessary, so |B′′| = 132T + t+ 50. Lastly, we would
like to ensure that B′′ does not contain walls Bi with
1 ≤ i ≤ t−3 and N−t+4 ≤ i ≤ N , by simply removing
all such walls from B′′. Since there are at most t−3 such
walls in B′′, the final size of B′′ is at least 132T + 50.
Notice that if Bi, Bj ∈ B′′ with i 6= j, then there is no
path P in G \A, such that P is internally disjoint from
W ′ and it connects Xi to V (Bj), since V (Bi) ⊆ Yi and
Mi is not routable in G \A.

Assume that A = {a1, . . . , am}, where m ≤ 40T + 20.
Our next step is to gradually construct, for each 1 ≤
j ≤ m, a collection Qj of paths, where for each path
Q ∈

⋃m
j=1Qj there is an index iQ with BiQ ∈ B′′,

such that Q starts at a vertex of XiQ , and for Q 6= Q′,
iQ 6= iQ′ . All paths in set Qj must terminate at aj ,
and all paths in

⋃m
j=1Qj are internally disjoint from

W ′ ∪ A, and mutually disjoint from each other, except
for possibly sharing their last endpoint (we view the
paths as directed towards the vertices of A).

We start with Qj = ∅ for all 1 ≤ j ≤ m. We say that



vertex aj ∈ A is active iff |Qj | < 2t. Let A∗ ⊆ A be
the set of all vertices that are inactive in the current
iteration. We say that a wall Bi ∈ B′′ is active, iff no
path of

⋃m
j=1Qj starts at a vertex of Xi. An iteration

is executed as follows. Assume that there is a path
Q in G \ A∗, connecting a vertex v ∈ Xi, for some
active wall Bi, to some active vertex aj ∈ A \ A∗,
such that Q contains no vertices of W ′ ∪ A as inner
vertices. We claim that Q is disjoint from all paths
Q′ ∈

⋃m
j=1Qj , except possibly for sharing the last

vertex aj with Q′. Indeed, assume for contradiction
that Q′ and Q share some vertex other than aj , say
vertex u. Let BiQ′ be the wall to which the first vertex
of Q′ belongs. Then, since Bi is still active, iQ′ 6= i must
hold, and so V (BiQ′ ) ⊆ Yi. Concatenating the segments
of Q and Q′ between their starting endpoints and u, we
obtain a path connecting Xi to Yi, that does not contain
any vertices of A and is internally disjoint from W ′,
contradicting the fact that Mi is not routable in G \A.
Therefore, Q is disjoint from all paths Q′ ∈

⋃m
j=1Qj ,

except for possibly sharing its last vertex aj withQ′. We
then add Q to Qj , and continue to the next iteration.
It is easy to see that each iteration can be computed
efficiently. The algorithm terminates when we cannot
make progress anymore: that is, for each active wall
Bi, there is no path Q connecting a vertex in Xi to a
vertex in A \A∗, such that Q is internally disjoint from
W ′∪A. It is easy to see that the number of iterations is
bounded by |B′′|, and so the algorithm can be executed
efficiently. Consider the final set A∗ of inactive vertices,
and the final set B∗ of active walls. We say that Case 1
happens if |A∗| ≥ t − 4; we say that Case 2 happens if
|A∗| ≤ t− 5, but |B′′ \ B∗| ≥ 80T + 40 + 6t2; otherwise
we say that Case 3 happens. We analyze each of the
three cases separately.

Case 1. We show that if Case 1 happens,
then we can find a model of Kt grasped by
W . We define a new graph Z, whose ver-
tex set is V (Z) = {v1, . . . , vt, u1, . . . , ut−4},
and the set of edges is a union of two sub-
sets: E1 = {(vi, uj) | 1 ≤ i ≤ t; 1 ≤ j ≤ t− 4}, and
E2 = {(vi, vj) | 1 ≤ i < j ≤ 4}. In other words, Z is
obtained from Kt,t−4, by adding the 6 edges connecting
all pairs of vertices in {v1, . . . , v4}. It is easy to see
that Z contains a Kt-minor, by contracting, for each
5 ≤ i ≤ t− 4, the edge (vi, ui+4). We will show that G
contains graph Z as a minor, and provide an efficient
algorithm for embedding Z into G. It is then easy to
find a model of Z, and consequently, a model of Kt in
G.

Since we assume that Case 1 happened, |A∗| ≥ t − 4
when the algorithm terminates. Let a1, . . . , at−4 be

arbitrary t − 4 vertices of A∗. We will embed, for each
1 ≤ i ≤ t − 4, vertex ui of Z into {ai}: the connected
sub-graph of G consisting of only the vertex ai.

We say that a basic wall Bi ∈ B′′ is bad iff some vertex of
a1, . . . , at−4 belongs to N (Bi). Since every pair of walls
in B′′ is separated by at least two walls, the number of
bad walls in B′′ is at most t− 4.

Consider now some vertex aj , for 1 ≤ j ≤ t − 4, and
the corresponding set Qj of 2t paths. We discard from
Qj all paths that originate at a vertex that belongs to a
bad wall. We also discard additional paths from Qj as

needed, until |Qj | = t holds. Let Qj =
{
Qj1, . . . , Q

j
t

}
be this final set of paths, and for each 1 ≤ i ≤ t, we
denote by xji the first endpoint of path Qji . We assign

the label i to xji , denoting `(xji ) = i. Let Q =
⋃t−4
j=1Qj ,

and let Ã = {a1, . . . , at−4}.

Our next step is to define a collection L = {L1, . . . , Lt}
of t disjoint paths contained in W ′ \ Ã, such that, for
each 1 ≤ i ≤ t, path Li contains all vertices whose
label is i. We will then embed each vertex vi of Z into
the path Li. The edge (vi, uj) of Z, for 1 ≤ i ≤ t,

1 ≤ j ≤ t − 4, will then be embedded into Qji . Finally,
we will define a new set S of 6 disjoint paths contained in
W ′\Ã, that connect every pair of paths in {L1, . . . , L4}.
We will ensure that the paths in S are internally disjoint
from the paths in L. They are also guaranteed to be
internally disjoint from the paths in Q, since all paths
in S are contained in W ′. The paths in S will be used
to embed the edges of E2.

Recall that the walls B1, . . . , Bt−3 do not belong to
B′′. Let Bi∗ ∈ {B1, . . . , Bt−3} be any of these walls
that does not contain vertices of Ã. Similarly, let
Bi∗∗ ∈ {BN−t+4,...,BN

} be any wall that does not

contain vertices of Ã. Notice that for each wall Bi ∈ B′′,
i∗ < i < i∗∗ must hold. Let B̃ ⊆ B′′ be the set of all
walls Bi that contain the vertices xjq, for 1 ≤ j ≤ t− 4,
1 ≤ q ≤ t.

Let R be any set of t rows of W ′, such that no vertex in
Ã lies in a row of R. Since there are 4t+w rows in W ′,
and |Ã| = t − 4, such a set exists. We assume that the
paths in R are ordered in their natural top-to-bottom
order.

Consider now some vertex xjq, for some 1 ≤ j ≤ t − 4,

1 ≤ q ≤ t, and assume that xjq belongs to some basic

wall Bi ∈ B̃. Recall that the label of xjq is q, and N (Bi)

does not contain vertices of Ã. Let S1 be the set of t
vertices lying in the first column of Bi−1, that belong
to the rows in R, such that exactly one vertex from
each row in R belongs to S1. Define S2 similarly for



the last column of Bi+1. We will construct a set L(Bi)
of t disjoint paths, contained in W ′[N (Bi)], connecting
the vertices of S1 to the vertices of S2, such that the
qth path of L(Bi) in their natural top-to-bottom order
contains xjq.

Assume first that xjq belongs to some row Rs of Bi.

Then 2t < s < z′ − 2t + 1 must hold, as xjq ∈ Xi. Let
R′ be the set of the top q − 1 rows of W ′, the bottom
t − q rows of W ′, and the row Rs (so row Rs is the
qth row in the set R′ in their natural top-to-bottom
order). Let T1 be a set of t vertices lying in the last
column of Bi−1, that belong to the rows of R′, such
that exactly one vertex from each row in R′ belongs to
T1. Define T2 similarly for the first column of Bi+1. We
now build three sets of paths: L1 is a set of t disjoint
paths contained in Bi−1, connecting the vertices of S1

to the vertices of T1; L2 is the set of t disjoint paths
containing, for each row R ∈ R′, the segment of R
between the unique vertex of R′ ∩ T1 and the unique
vertex of R′ ∩ T2, and L3 is a set of t disjoint paths
contained in Bi+1, connecting the vertices of T2 to the
vertices of S2 (the existence of the sets L1,L3 of paths
follows from Claim 2.2). Let L(Bi) be the concatenation
of the paths in L1,L2,L3. Then the qth path of L(Bi)
in their natural top-to-bottom order must contain xjq.

If xjq does not belong to a row of Bi, but instead lies on
a red path of Bi, let P be that red path, and assume
that its two endpoints, u and u′ belong to rows Rs and
Rs+1, respectively. We define sets S1, T1 and S2 exactly
as before. We change the definition of the set T2 slightly:
instead of a vertex from row Rs lying in the first column
of Bi+1, we include a vertex from Rs+1, lying in the first
column of Bi+1. The definitions of the paths L1 and L3

remain unchanged. The set L2 also remains unchanged,
except for the path contained in the row Rs. We replace
that path with the following path: we include a segment
of Rs between with the unique vertex in T1∩V (Rs) and
u, the path P , and the segment of Rs+1 between u′ and
the unique vertex in T2∩V (Rs+1). We then let L(Bi) be
the concatenation of L1,L2,L3. Then the qth path of
L(Bi) in their natural top-to-bottom order must contain
xjq.

For each wall Bi ∈ B̃, we have defined a collection L(Bi)
of t disjoint paths, that are contained in W ′[N (Bi)],
where for 1 ≤ j ≤ t, the jth path starts and terminates
at the jth row of R. We now connect all these paths
together, as follows. For each consecutive pair Bi, Bi′ of
walls in B̃, for each 1 ≤ j ≤ t, let u be the last endpoint
of the jth path in L(Bi), and let u′ be the first endpoint
of the jth path in L(Bi′). Both u and u′ must belong
to the jth row of R. We use a segment of that row to

connect u to u′. Once we process every consecutive pair
of walls in B̃, we obtain a set L of t disjoint paths, such
that, for each 1 ≤ q ≤ t, all vertices whose label is q are
contained in the qth path of R. Moreover, all paths in
L are contained in W ′ \ Ã.

Let L1, L2, L3, L4 be the first four paths of L. We extend
the four paths slightly to the right and to the left, as
follows. For each 1 ≤ j ≤ 4, let Rij be the row to which
the endpoints of the path Lj belong (that is, Rij is the
jth row of R). Let C1, C2, C3 be the first three columns
of Bi∗ , and let C4 be the first column of Bi∗∗ . (Recall
that Bi∗ ∈ {B1, . . . , Bt−3} and Bi∗∗ ∈ {BN−t+4,...,BN

},
and they do not contain vertices of Ã.) We extend L1

to the left along the row Ri1 until it contains a vertex
of C1 (see Figure 3). We extend L2 to the left along the
row Ri2 until it contains a vertex of C3, and we extend
it to the right along Ri2 until it contains a vertex of
C4. We extend L3 to the left along the row Ri3 until it
contains a vertex of C2. Finally, we extend L4 to the
left along the row Ri4 until it contains a vertex of C1,
and we extend L4 to the right along the row Ri4 until
it contains a vertex of C4. This finishes the definition
of the paths L1, . . . , Lt. We embed, for each 1 ≤ i ≤ t,
the vertex vi of graph Z into the path Li. Each edge
(uj , vi) of E1, for 1 ≤ j ≤ t− 4, 1 ≤ i ≤ t, is embedded

into the path Qji . Since Li is guaranteed to contain

the endpoint xji of Qji (whose label is i), this is a valid
embedding. Finally, we need to show how to embed
the 6 edges of E2. Observe that each of the four paths
L1, L2, L3, L4 intersect the column C3, partitioning it
into three segments, each connecting a consecutive pair
of these paths. We use these three segments of C3 to
embed the edges (v1, v2), (v2, v3) and (v3, v4). Column
C2 is only intersected by paths L1, L3 and L4. We use
the segment of C2 between rows Ri1 and Ri3 to embed
the edge (v1, v3). Column C1 is only intersected by L1

and L4. We use a segment of C1 between rows Ri1 and
Ri4 to embed the edge (v1, v4). Finally, column C4 is
only intersected by L2 and L4, and we use it similarly
to embed the edge (v2, v4).

This finishes the definition of the embedding of the
graph Z into G. As observed before, we can now find
a model of a Kt-minor in G. It is easy to see that the
model of the Kt minor is grasped by W ′, since there is
at least one basic wall Bi, such that every path in L
intersects every column of Bi, and all basic walls Bi are
sub-walls of W .

Case 2. If Case 2 happens, then |B′′ \B∗| ≥ 80T +40+
6t2. For each vertex aj ∈ A, for each path Q ∈ Qj , let
x(Q) denote the endpoint of Q that is different from aj .
We say that a wall Bi ∈ B′′ is bad iff N (Bi) contains
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Figure 3: Constructing the paths in S

a vertex of A. Since for each pair Bi, Bi′ ∈ B′′, with
i 6= i′, |i − i′| ≥ 3 holds, the number of bad walls in
B′′ \ B∗ is at most |A| ≤ 40T + 20.

For each vertex aj ∈ A, we delete from Qj all paths
Q where x(Q) belongs to a bad wall. Then after this
procedure,

∑
aj∈A |Qj | ≥ |B

′′ \ B∗| − (40T + 20) ≥
40T + 20 + 6t2, and

∑
aj∈A(|Qj | − 1) ≥ 6t2.

We discard some additional vertices from A, to obtain
the final set Ã. First, for each vertex aj ∈ A, if
|Qj | ≤ 1, then we delete aj from A. It is easy to see
that

∑
aj∈A(|Qj | − 1) does not decrease. Finally, let

A′ ⊂ A be the subset of vertices that lie in the first 2t
rows of W ′, and let A′′ ⊂ A be the subset of vertices
lying in the last 2t rows of W ′. We assume w.l.o.g. that∑
aj∈A′′(|Qj | − 1) ≤

∑
aj∈A′(|Qj | − 1). We delete the

vertices of A′′ from A, obtaining the final set Ã. From
our construction,

∑
aj∈Ã(|Qj | − 1) ≥ 3t2. Let R be the

set of the bottom 2t rows of W ′. Then no vertex of Ã
belongs to a row of R.

Our next step is to find a collection A1, . . . , At of t
disjoint subsets of Ã, such that for each 1 ≤ r ≤ t,∑
aj∈Ar

(|Qj | − 1) ≥ t. We will also delete some paths
from sets Qj for aj ∈ Ar, to ensure that this summation
is exactly t for each set Ar.

We find the partition of Ã via a simple greedy proce-
dure. Assume w.l.o.g. that Ã = {a1, . . . , am′}. Let j be

the smallest index, such that
∑j
i=1(|Qi|−1) ≥ t. Then,

since for all ai ∈ Ã, 2 ≤ |Qi| ≤ 2t,
∑j
i=1(|Qi| − 1) ≤ 3t.

We delete paths from Qj , until
∑j
i=1(|Qi| − 1) = t

holds. From our choice of j, |Qj | ≥ 2 continues to
hold. We set A1 = {a1, . . . , aj}, delete the vertices of

A1 from Ã, and continue to the next iteration. Since∑
ai∈Ã(|Qi| − 1) ≥ 3t2, we can continue this process for

t iterations, and find the desired collection A1, . . . , At
of subsets of Ã.

Consider some set Ar, for 1 ≤ r ≤ t. Recall that for
each vertex ai ∈ Ar, |Qi| ≥ 2. We select one arbitrary
path Qri ∈ Qi, and we assign to its endpoint x(Qri ) the
label (t + r). Let Sr1 = {Qri | ai ∈ Ar} be the set of all
paths whose endpoint is assigned the label (t+ r), and
let Sr2 =

(⋃
ai∈Ar

Qi
)
\ Sr1 be the set of the remaining

paths. Then |Sr2 | = t. For each Q ∈ Sr2 , we assign
to x(Q) a label in {1, . . . , t}, such that each label is
assigned to exactly one endpoint x(Q) of a path in Sr2 .

In the rest of the proof, we will embed a Kt,t-minor into
G, as follows. We denote the two sets of vertices in the
bi-partition of Kt,t by {v1, . . . , vt} and {u1, . . . , ut}. We

will build 2t paths P1, . . . , P2t in W ′ \ Ã, such that for
each 1 ≤ i ≤ 2t, path Pi contains all vertices with label
i. This is done very similarly to the algorithm used in
Case 1.

For each 1 ≤ r ≤ t, let Cr be the union of the path Pt+r
and all paths in Sr1 . Note that Cr is a connected graph,
as for each Q ∈ Sr1 , the label of x(Q) is t + r, and so
Pt+r must contain x(Q). For each 1 ≤ r ≤ t, we embed
the vertex vr of Kt,t into Cr. For each 1 ≤ i ≤ t, we
embed the vertex ui of Kt,t into the path Pi. The edge
(vr, uj) is then embedded into the unique path Q ∈ Sr2
whose endpoint x(Q) has label j. Then one endpoint of
Q belongs to Ar, and hence to Cr, while the other must
lie on Pj . This finishes the description of the embedding
of Kt,t into G. It is now easy to obtain an embedding
of Kt into G: for each 1 ≤ i ≤ t, we take the union of
the embeddings of vi, ui and edge (vi, ui) to obtain an
embedding of the ith vertex of Kt. The edge connecting
the ith and the jth vertices of Kt is then embedded into
the same path as the edge (vi, uj) ofKt,t. We will ensure
that each path Pi that we construct intersects at least t
columns of W ′. It then follows that the corresponding
model of Kt is grasped by W .

It now only remains to define the set {P1, . . . , P2t} of
disjoint paths in W ′ \ Ã, such that for each 1 ≤ i ≤ 2t,
all vertices whose label is i belong to Pi, and each path
Pi intersects at least t columns of W ′. Recall that we
have defined a setR of 2t rows of W ′ that do not contain
the vertices of Ã. The remainder of the proof closely
follows the analysis for Case 1 and is omitted.

Case 3. If Case 3 happens, then |A∗| ≤ t − 5, and
|B∗| ≥ 132T + 50− (80T + 40 + 6t2) ≥ 14T + 6. Recall
that we have the following properties for the walls in
B∗:

P1. For each Bi, Bi′ ∈ B∗ with i 6= i′, |i− i′| ≥ 3;

P2. For each Bi ∈ B∗, A ∩ V (Bi) = ∅;

P3. For each Bi ∈ B∗, there is no path Q connecting a



vertex of Xi to a vertex of A \ A∗ in G, such that
Q is internally disjoint from W ′ ∪A;

P4. For each Bi ∈ B∗, there is no path P routing Mi in
G \A∗.

In order to see that the last property holds, assume for
contradiction that there is a path P routingMi inG\A∗.
Since from Theorem 6.1 Mi is not routable in G \ A,
path P must contain a vertex of A \ A∗, contradicting
Property (P3).

We say that Bi ∈ B∗ is a type-1̃ wall iff there is a path
Pi connecting Xi to V (W ′ \B′i) in G \A∗, such that Pi
is internally disjoint from W ′ ∪ A∗. Let Bi ∈ B∗ be a
wall of type-1̃, and let Pi be the corresponding path. We
denote by xi the endpoint of Pi lying in Xi = V (B′i\Γ′i),
and by yi its other endpoint. From Property (P4),
yi 6∈ Yi, and so yi ∈ Ni \ V (B′i) must hold. Observe
that if Bi, Bi′ ∈ B∗ are type-1̃ walls, then Pi and Pi′

must be disjoint - otherwise, by combining Pi and Pi′ ,
we can obtain a path P connecting xi ∈ Xi to xi′ ∈ Yi
in graph G \ A∗, contradicting Property (P4). Let B∗1
be the set of all type-1̃ walls in B∗.

We say that Case 3a happens if |B∗1 | ≥ 12T +6. Assume
that Case 3a happens, and consider the sub-graph G′

of G, obtained by taking the union of W ′ and the
paths Pi for all Bi ∈ B∗1 . Then W ′ is a chain of N
walls of height at least z′ in G′, and for every wall
Bi ∈ B∗1 , the corresponding τ -core wall B′i is a type-
1 wall in G′, with Pi being the neighborhood bridge for
Bi. Applying Theorem 4.3 to G′ and W ′, we obtain an
efficient algorithm to find a model of a Kt-minor in G′

(and hence in G), grasped by W .

From now on we assume that Case 3a does not happen.
Let B∗2 = B∗ \ B∗1 and consider any wall Bi ∈ B∗2 .
Then (G \ A∗) \ Γ′i consists of at least two connected
components, with one of them containing B′i \ Γ′i.
Therefore, there is a separation (X,Y ) of G \ A∗, with
B′i ⊆ X, X ∩ Y ⊆ Γ′i, and for each Bj ∈ B∗2 with j 6= i,
Bj ⊆ Y . Recall that the corners a′i, b

′
i, c
′
i, d
′
i of the wall

B′i are fixed. We assume that they appear on Γ′i in this
order clockwise. If graph X contains a wall-cross for
B′i (that is, a pair of disjoint paths connecting a′i to c′i
and b′i to d′i), then we say that wall Bi is of type 2̃.
Otherwise, it is of type 3̃.

If at least one wall Bi ∈ B∗2 is a type-3̃ wall, then from
Lemma 4.1, we can efficiently find a flat wall B′ of size
((z′−2τ)× (z′−2τ)) = ((z′−4t)× (z′−4t)) = (w×w)
in G \A∗, such that B′ is a sub-wall of Bi and hence of
W .

From now on we assume that all walls in B∗2 are of type
2̃. Recall that |B∗2 | ≥ 14T + 6 − (12T + 6) ≥ 2T . For
each wall Bi ∈ B∗2 , let Q1

i , Q
2
i be the pair of disjoint

paths realizing the wall-cross for B′i, and let Q̃ =⋃
Bi∈B∗2

{
Q1
i , Q

2
i

}
. As in Case 3a, all paths in Q̃ must be

completely disjoint, since otherwise we can combine two
such paths to obtain a routing of some demand Mi for
Bi ∈ B∗2 in graph G \ A∗, contradicting Property (P4).
Consider the sub-graph G′ of G, obtained by taking the
union of W ′ and the paths in Q̃. Then W ′ is a chain of
N walls of height at least z′ in G′, and for every wall
Bi ∈ B∗2 , the corresponding τ -core wall B′i is a type-3
wall in G′, with Q1

i , Q
2
i being the corresponding wall-

cross. Applying Theorem 4.2 to G′ and W ′, we can find
a model of a Kt minor in G′ (and hence in G), grasped
by W .

7 A Lower Bound

In this section we prove Theorem 2.3. We can assume
that w, t ≥ 4000: otherwise, we can use a graph G
consisting of a single vertex. We round w down to
the closest integral multiple of 4, and we set w′ =
w/4 − 8 and t′ = bt/30c. In order to construct the
graph G, we start with a grid whose height and width
is (w′t′ − 1). For each 0 ≤ i < t′, 0 ≤ j < t′,
vertex v(iw′, jw′) is called a special vertex. The unique
cell of the grid for which v(iw′, jw′) is the left top
corner is denoted by Q(iw′, jw′), and we call it a
black cell. For each black cell Q(iw′, jw′), we add
the two diagonals (v(iw′, jw′), v(iw′ + 1, jw′ + 1)) and
(v(iw′ + 1, jw′), v(iw′, jw′ + 1)) to the graph. This
completes the definition of the graph G. Clearly, G
contains a wall of size Ω(w′t′) = Ω(wt) as a minor. We
next prove that G does not contain a Kt-minor.

Theorem 7.1. Graph G does not contain a Kt-minor.

Proof. The proof uses the notions of graph drawing and
graph crossing number. A drawing of a graph H in
the plane is a mapping, in which every vertex of H
is mapped into a point in the plane, and every edge
into a continuous curve connecting the images of its
endpoints, such that no three curves meet at the same
point, and no curve contains an image of any vertex
other than its endpoints. A crossing in such a drawing
is a point where the images of two edges intersect, and
the crossing number of a graph H, denoted by cr(H),
is the smallest number of crossings achievable by any
drawing of H in the plane. We use the following well-
known theorem [ACNS82, Lei83].



Theorem 7.2. For any graph G = (V,E) with |E| >
7.5|V |, cr(G) ≥ |E|3

33.75|V |2 . In particular, for all n > 16,

cr(Kn) > (n− 1)4/272.

Assume for contradiction that G contains a Kt-minor,
and consider its model f . The main idea is to use the
natural drawing ψ of G, that contains (t′−1)2 crossings,
together with the model f , to obtain a drawing ψ′ of
Kt with fewer than (t − 1)4/272 crossings, leading to
a contradiction. For convenience, instead of defining a
drawing of Kt, we define a drawing of another graph H,
obtained from Kt by subdividing each edge e ∈ E(Kt)
by two new vertices, u(e) and u′(e). Clearly, a drawing
of H with z crossings immediately gives a drawing
of Kt with z crossings. We let V1 = V (Kt), and
V2 = V (H) \ V1. For each vertex v ∈ V1, let δ(v) be
the set of edges of H incident on e. Let E′ be the set of
edges of H whose both endpoints belong to V2.

We first define the drawings of the vertices of V1. For
each vertex v ∈ V (Kt), we select an arbitrary vertex
xv ∈ f(v). The drawing of v in ψ′ is at the same point
as the drawing of xv in ψ.

We now turn to define the drawings of the vertices of
V2 and the edges of H. Along the way, for each vertex
v ∈ V1, we will define a set P(v) of paths contained
in f(v). The paths in P(v) will be used to define the
drawings of the edges in δ(v). For each edge e ∈ E(H),
we will associate a path Q(e) ⊆ G with e, and we will
draw the edge e along the drawing of the path Q(e) in
ψ. In other words, let γ be the drawing of the path
Q(e) in G. The drawing ψ′(e) of e will start at the
first endpoint of γ, and then will continue very close
to γ, in parallel to it and without crossing it, so that
ψ′(e) does not contain the images of any vertices of G,
except for the endpoints of γ. It will then terminate at
the drawing of the second endpoint of γ. Notice that for
now we allow ψ′(e) to self-intersect arbitrarily. Consider
now two edges e, e′ ∈ E(H), and their corresponding
paths Q(e), Q(e′). We distinguish between three types
of crossings between ψ′(e) and ψ′(e′). Type-1 crossings
arise whenever an edge e∗ ∈ Q(e) crosses an edge
e∗∗ ∈ Q(e′) in ψ. The number of type-1 crossings
between the images of e and e′ in ψ′ is bounded by the
number of crossings between the edges of Q(e) and the
edges of Q(e′) in ψ. We will ensure that for each edge
e∗ ∈ E(G), at most t − 1 paths in {Q(e) | e ∈ E(H)}
contain e∗. Therefore, the number of type-1 crossings
can be bounded by (t−1)2 times the number of crossings
in ψ, giving the total bound of (t − 1)2 · (t′ − 1)2.
If two paths Q(e), Q(e′) share some edge e∗ ∈ E(G),
then the portions of the images of e and e′ that are
drawn along e∗ may cross arbitrarily. Similarly, if Q(e)

and Q(e′) share some vertex v ∈ V (G) where v is
an inner vertex on both paths, then the images of e
and e′ may cross arbitrarily next to ψ(v). We call all
such crossings type-2 crossings. We also include among
type-2 crossings the self-crossings of an image of any
edge e ∈ E(H), that are not type-1 crossings. (We
will eventually eliminate all type-2 crossings.) Finally,
if an endpoint v of some path Q(e) also belongs to
some path Q(e′), where e, e′ ∈ E(H) and e 6= e′, then
we allow the images of e and e′ to cross once due to
this containment. We call all such crossings type-3
crossings. We will ensure that each vertex v ∈ V (G)
may serve as an inner vertex in at most t − 1 paths
{Q(e) | e ∈ E(H)}, and, since the number of vertices of
G serving as endpoints of paths in {Q(e) | e ∈ E(H)} is
at most 2|E(H)|, the number of all type-3 crossings will
be bounded by 2|E(H)| · (t− 1) ≤ 6t(t− 1)2.

We now proceed to define the drawings of the vertices
of V2 and the edges of H, along with the sets P(v) of
paths for all v ∈ V1. We start with P(v) = ∅ for all
v ∈ V1.

Let e = (v, v′) be any edge of Kt. Recall that f(e)
is an edge e′, connecting some vertex a ∈ f(v) to
some vertex b ∈ f(v′). Since f(v) induces a connected
sub-graph in G, let P1 be any simple path connecting
xv to a in G[f(v)]. Similarly, let P2 be any path
connecting b to xv′ in G[f(v′)]. Consider the vertices
u(e), u′(e) that subdivide the edge e in H, and assume
that u(e) lies closer to v than u′(e) in the subdivision.
We denote the edges e1 = (v, u(e)), e2 = (u(e), u′(e)),
and e3 = (u′(e), v′). We draw the edge e2 along the
drawing ψ(e′), where u(e) is drawn at ψ(a), and u′(e)
is drawn at ψ(b), and we set Q(e2) = (e′). We draw
the edge e1 = (v, u(e)) of H along the path P1, setting
Q(e1) = P1, and we add P1 to P(v). Similarly, we
draw the edge (v′, u′(e)) along the path P2, setting
Q(e2) = P2. We then add P2 to P(v′).

Recall that the graphs {G[f(v)] | v ∈ V (Kt)} are com-
pletely disjoint. Moreover, the edges {f(e) | e ∈ E(Kt)}
are all distinct, and they do not belong to the graphs
{G[f(v)] | v ∈ V (Kt)}. Therefore, for v, v′ ∈ V1 with
v 6= v′, the paths in P(v) and P(v′) are completely
disjoint. It is then easy to see that type-2 crossings
in ψ′ are only possible between the images of edges
e, e′ ∈ E(H), where e, e′ ∈ δ(v) for some v ∈ V1. Our
next step is to re-route the edges of δ(v) along the paths
contained in f(v) in such a way that their corresponding
drawings do not have type-2 crossings. In order to do
so, we perform a simple un-crossing procedure. Given
a pair e, e′ ∈ δ(v) of edges, whose images have a type-2
crossing in ψ′, we remove one of the type-2 crossings,
without increasing the total number of crossings in the



current drawing, by un-crossing the images of the two
edges, as shown in Figure 4. We continue performing
this procedure, until for each vertex v ∈ V1, for every
pair e, e′ ∈ δ(v), the images of e and e′ do not have a
type-2 crossing. We can still associate, with each edge
e ∈ δ(v), a path Q(e) ⊆ G[f(v)], such that e is drawn
along Q(e). We also eliminate type-2 self-crossings of
an edge by simply shortcutting the image of the edge at
the crossing point. Eventually, only type-1 and type-3
crossings remain in the graph. An edge e∗ ∈ E(G) may
belong to at most (t − 1) paths in {Q(e) | e ∈ E(H)}
(if e lies in G[f(v)] for some v ∈ V1, then it may only
belong to the paths in P(v); otherwise, it may belong to
at most one path Q(e′) for e′ ∈ E′); similarly, a vertex
u ∈ V (G) may be an inner vertex on at most (t − 1)
paths in {Q(e) | e ∈ E(H)}. Therefore, as observed be-
fore, the total number of crossings in ψ′ is bounded by
(t−1)2(t′−1)2+6t(t−1)2 ≤ (t−1)2( t

30−1)2+6t(t−1)2 <
(t− 1)4/272, contradicting Theorem 7.2.

Figure 4: Uncrossing the drawings of a pair of edges to
eliminate a type-2 crossing.

�

The following theorem completes the proof of Theo-
rem 2.3.

Theorem 7.3. Graph G does not contain a flat wall of
size (w × w).

Proof. Assume otherwise. Let W be the flat wall of size
(w × w), U the set of the pegs of W , Γ its boundary,
and (A,B) the separation of G certifying the flatness of
W : that is, W ⊆ B, A ∩ B ⊆ Γ, U ⊆ A ∩ B, and B is
A ∩B-flat.

For 1 ≤ i ≤ w/4, let Wi be the sub-wall of
W spanned by rows (Ri, . . . , Rw−i+1) and columns
(Ci, . . . , Cw−i+1), so W1 = W , and let Γi be the bound-
ary of Wi.

Fix some 1 < i ≤ w/4. Observe that every path P in
graph G connecting a vertex of Wi \ Γi to a vertex of
W \Wi must contain a vertex of Γi: otherwise, there is a
path P ′ whose endpoints belong to Wi \Γi and W \Wi,

respectively, and P ′ is internally disjoint from W . Path
P ′ must be contained in B, since Γ separates A from
B, and P ′ is internally disjoint from Γ. Then we can
use Theorem 2.5 to build a wall-cross for W in graph B,
contradicting the fact that W is a flat wall. Therefore,
there is a separation (Ai, Bi) of G, with Wi ⊆ Bi and
Ai ∩Bi ⊆ Γi, such that A ⊆ Ai and W \Wi ⊆ Ai.

Following is the central lemma in the proof of Theo-
rem 7.3.

Lemma 7.1. Let 3 ≤ i ≤ w/4, let Q be any black cell,
and let S be the set of the 4 vertices serving as the
corners of Q. Then S 6⊆ Bi.

Before we prove Lemma 7.1, let us complete the proof
of Theorem 7.3 using it. Let v∗ be one of the vertices
in the intersection of row Rw/2 and column Cw/2 of W .
Then there must be a black cell Q in G, such that there
is a path P of length at most w′ from v∗ to one of the
corners of the cell Q in G. Let S′ be the set of the
vertices on P , and the vertices that serve as corners of
Q, so |S′| ≤ w′ + 4. Consider the cycles Γ4, . . . ,Γw/4.
Since |S′| ≤ w′ + 4 < w/4 − 3, at least one of these
cycles Γi does not contain any vertex of S′. Therefore,
in G \ Γi, v

∗ is connected to all vertices of S′, and in
particular S′ ⊆ Bi, a contradiction. From now on we
focus on proving Lemma 7.1. Our starting point is the
following simple claim, whose proof is omitted.

Claim 7.1. Let 1 ≤ i ≤ w/4, let Q = Q(i′w′, j′w′)
be any black cell, and let S be the set of the four
vertices serving as the corners of Q. Assume further
that S ⊆ Bi. Then there are four disjoint paths in Bi
connecting the vertices of S to the vertices of Γi.

We will also repeatedly use the following simple claim,
whose proof can be found, e.g. in [RS90].

Claim 7.2. Let H be any graph, X,Y any pair of
disjoint vertex subsets of H, and assume that there is
a set P of k disjoint paths connecting the vertices of X
to the vertices of Y in H. Let X ′ ⊆ X, and assume
that there is a set P ′ of k − 1 disjoint paths connecting
the vertices of X ′ to the vertices of Y in H, such that
the paths in P ′ are internally disjoint from X ∪ Y .
Then there is a set P ′′ of k disjoint paths connecting
the vertices of X to the vertices of Y in H, such that
the paths in P ′′ are internally disjoint from X ∪Y , and
k− 1 of the paths in P ′′ originate at the vertices of X ′.

We are now ready to complete the proof of Lemma 7.1.
Fix some 3 ≤ i ≤ w/4, and let Q be some black cell,



such that the set S of the four vertices serving as the
corners of Q is contained in Bi. From Claim 7.1, we can
find two disjoint paths, P1, P2, connecting the vertices
of S to the vertices of Γi in Bi. Let a, b, c, d be the
four corners of the wall Wi−1, in this clock-wise order,
where a is the top left corner. It is easy to see that
we can extend the two paths P1, P2, using the edges of
Wi \Wi−1, so that they connect two vertices of S to a
and c, the two paths remain disjoint, and are contained
in Bi−1.

From Claim 7.1, there are three disjoint paths in Bi−1,
connecting the vertices of S to the vertices of Γi−1.
Using Claim 7.2, we can assume that two of these paths
terminate at a and c, respectfully. The third path can
then be extended, using the edges of Γi−1, so that it
terminates at either c or d, and it remains disjoint
from the first two paths. We assume w.l.o.g. that it
terminates at c. Let P ′1, P

′
2, P

′
3 be the resulting three

paths.

Let a′, b′, c′, d′ be the four corners W , that appear on Γ
in this clock-wise order, where a′ is the top left corner.
We can extend the three paths P ′1, P

′
2, P

′
3, using the

edges of E(W ) \ E(Wi−1), so that they connect three
vertices of S to a′, b′ and c′, such that the three paths
remain disjoint. It is easy to see that all three paths are
contained in B = B1. Finally, using Claim 7.1, there
are four disjoint paths in B, connecting the vertices of
S to the vertices of Γ. Using Claim 7.2, we can assume
that three of these paths terminate at a′, b′ and c′. The
vertices a′, b′, c′ partition Γ into three segments, each of
which contains at least two pegs. Let x be the endpoint
of the fourth path. Then we can extend the fourth path
along Γ, so that it remains disjoint from the first three
paths, and it terminates at a peg of W . As the corners
of a wall are a subset of its pegs, we now obtained a set
P of four disjoint paths, connecting the vertices of S to
the vertices of U , where P ⊆ B. Using the paths in P,
and the edges of the cell Q, we can route any matching
between the four corresponding pegs in graph B. This
contradicts the fact that B is A∩B-flat. This completes
the proof of Lemma 7.1, and of Theorem 7.3. �
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