
Low-distortion Embeddings of General Metrics Into the Line

Mihai Badoiu Julia Chuzhoy Piotr Indyk Anastasios Sidiropoulos

CSAIL, MIT

{mihai,cjulia,indyk,tasos}@mit.edu

Abstract

A low-distortion embedding between two metric spaces is a mapping which preserves the distances
between each pair of points, up to a small factor called distortion. Low-distortion embeddings have
recently found numerous applications in computer science.

Most of the known embedding results are ”absolute”, that is, of the form: any metric Y from a given
class of metrics C can be embedded into a metric X with low distortion c. This is beneficial if one can
guarantee low distortion for all metrics Y in C. However, in many situations, the worst-case distortion
is too large to be meaningful. For example, if X is a line metric, then even very simple metrics (an
n-point star or an n-point cycle) are embeddable into X only with distortion linear in n. Nevertheless,
embeddings into the line (or into low-dimensional spaces) are important for many applications.

A solution to this issue is to consider ”relative” (or ”approximation”) embedding problems, where
the goal is to design an (a-approximation) algorithm which, given any metricX fromC as an input, finds
an embedding of X into Y which has distortion a ∗ cY (X), where cY (X) is the best possible distortion
of an embedding of X into Y .

In this paper we show algorithms and hardness results for relative embedding problems. In particular
we give:

• an algorithm that, given a general metricM , finds an embedding with distortionO(∆4/5poly(cline(M))),
where ∆ is the spread of M

• an algorithm that, given a weighted tree metricM , finds an embedding with distortion poly(cline(M))

• a hardness result, showing that computing minimum line distortion is hard to approximate up to a
factor polynomial in n, even for weighted tree metrics with spread ∆ = nO(1).

1 Introduction

A low-distortion embedding between two metric spaces with distance functions D andD ′ is a (non-contractive)
mapping f such that for any pair of points p, q in the original metric, their distance D(p, q) before the map-
ping is the same as the distance D′(f(p), f(q)) after the mapping, up to a (small) multiplicative factor c.
Low-distortion embeddings have been a subject of extensive mathematical studies. More recently, they
found numerous applications in computer science (cf. [Lin02, Ind01]).

Most of the research on embeddings focused on showing absolute results, of the form:

Given a class of metrics C and a metric Y , what is the smallest distortion c ≥ 1 such that any
metric X ∈ C can be embedded into Y with distortion c ?

1



Paper From Into Distortion Comments
[LLR94] general metrics l2 c uses SDP
[KRS04] line line c c is constant and embedding is a bijection

unweighted graphs bounded degree trees c as above
[EP04] unweighted graphs sub-trees O(c log n)
[BIS04] unweighted graphs trees O(c)

[BDG+05] unweighted graphs line O(c2) implies
√

n-approximation
> ac Hard to a-approximate for some a > 1

c c is constant
unweighted trees line O(c3/2

√
log c)

subsets of a sphere plane 3c

Figure 1: Previous work on relative embedding problems for multiplicative distortion.

Very recently, a few papers addressed the relative 1 (or approximation) version of the problem, which is of
the following form:

Given a class of metrics C and a metric Y , what is the smallest approximation factor a ≥ 1
of a polynomial-time algorithm minimizing the distortion of embedding of a given input metric
X ∈ C into Y ?

The relative formulation is of interest in situations where the absolute formulation yields distortion that is
too large to be interesting or meaningful. A good example is the problem of embedding metrics into a line.
Even simple metrics, such as an n-point star or an n-point cycle requires Ω(n) distortion when embedded
into a line. Nevertheless, line embeddings, or, in general, embeddings into low-dimensional spaces, are
important in many applications, such as visualisation (e.g., see [TdSL] or [MDS] web pages). Thus, it is
important to design algorithms which produce low-distortion embeddings, if such embeddings are possible.

Despite the importance of the problem, not many relative embedding results are known. This is perhaps
because the problems do not seem to be easily amenable2 to standard approximation algorithms approaches
(which were, e.g., successfully used for a closely related bandwidth problem [Fei00, DV01]). The results
that we are aware of3 are listed in Figure 1 (c denotes the optimal distortion, and n denotes metric size).

In this paper, we consider the problem of embedding metrics induced by weighted graphs into the line.
The known algorithms were designed for unweighted graphs and thus provide only very weak guarantees for
the problem. Specifically, assume that the minimum interpoint distance between the points is 1 and the max-
imum distance4 is ∆. Then, by scaling, one can obtain algorithms for weighted graphs, with approximation
factor multiplied by ∆.

Our results are presented in Figure 2. The first result is an algorithm that, given a general metric c-
embeddable into the line, constructs an embedding with distortion O(∆4/5c13/5). The algorithm uses a

1The absolute and relative (resp.) versions of the problem were referred to as combinatorial and algorithmic (resp.)
in [BDG+05]. These terms could be confusing, however, since the absolute problem has both combinatorial and algorithmic com-
ponents: in many applications it is important how to find low-distortion embeddings, in addition to knowing that such embeddings
exist. Thus, to avoid misunderstanding, in this paper we use a different terminology.

2For example, there exist metrics for which any vertex ordering resulting in “low” bandwidth must result in “high” distortion
when converted into a (non-contractive) embedding. This holds, e.g., for a metric induced by a “comb” graph, with a “teeth”, each
of length b, for b >> a. The row-by-row order, which minimizes the bandwidth, results in Ω(ab) distortion of the edges at the end
of the teeth, while the column-by-column order gives distortion b.

3Note that the table contains only the results that hold for the multiplicative definition of the distortion. There is a rich body of
work that applies to other definitions of distortion, notably the additive or average distortion, summarized in Section 1.1.

4We call the maximum/minimum interpoint distance ratio the spread of the metric.

2



From Into Distortion Comments
general metrics line O(∆4/5c13/5)

weighted trees line cO(1)

weighted trees line Ω(n1/12c) Hard to O(n1/12)-approximate even for ∆ = nO(1)

Figure 2: Our results.

Paper From Into Distortion Comments
[FCKW93] general distance matrix ultrametrics c
[ABFC+96] general distance matrix tree metrics 3c

≥ 9/8c Hard to 9/8-approximate
[HIL98] general distance matrix line 2c

≥ 4/3c Hard to 4/3-approximate
[B0̆3] general distance matrix plane under l1 O(c)

[BDHI04] general distance matrix plane under l2 O(c) Time quasi-polynomial in ∆

Figure 3: Previous work on relative embedding problems for maximum additive distortion.

novel method for traversing a weighted graph. It also uses a modification of the unweighted-graph algorithm
from [BDG+05] as a subroutine, with a more general analysis.

Then, we consider the problem of embedding weighted tree metrics into the line. In this case we are
able to get rid of the dependence on ∆ from the approximation factor. Specifically, our algorithm produces
an embedding with distortion cO(1).

We complement our upper bounds by a lower bound, which shows that the problem is hard to ap-
proximate up to a factor a = Ω(n1/12). This dramatically improves over the earlier result of [BDG+05],
which only showed that the problem is hard for some constant a > 1 (note however that their result applies
to unweighted graph metrics as well). Since the instances used to show our hardness result have spread
∆ ≤ nO(1), it follows that approximating the distortion up to a factor of ∆Ω(1) is hard as well. In fact, the
instances used to show hardness are metrics induced by (weighted) trees; thus the problem is hard for tree
metrics as well. Our hardness proof is inspired by the ideas of Unger [Ung98].

1.1 Related Work

Relative embedding problems have been theoretically studied for over a decade. Until recently, however, the
research has been mostly focused on different notions of distortion. Specifically, several results gave been
obtained for finding embedding f from space (X,D) into (X′, D′) that minimizes the maximum additive
distortion, that is, minimizing maxp,q∈X |D(p, q) − D′(f(p), f(q))|. The results are depicted in Figure 3.
A few other results have been obtained for average distortion [Dha04, DGR04]; see the papers for results
and problem definitions.
2 Preliminaries

Consider an embedding of a set of vertices V into the line. We say that U ⊂ V is embedded continuously,
if there are no vertices x, x′ ∈ U , and y ∈ V − U , such that f(x) < f(y) < f(x′).

We say that vertex set U is embedded inside vertex set U ′ iff the smallest interval containing the embed-
ding of U also contains the embedding of U ′. In particular, we say that vertex v is embedded inside edge
e = (x, y) for v 6= x, v 6= y, if either f(x) < f(v) < f(y) or f(y) < f(v) < f(x) hold.

3



Let M = (X,D) be a metric, and f : X → R be a non-contracting embedding of M into the line.
Then, the length of f is maxu∈X f(u) − minv∈X f(v).

3 General metrics

In this section we will present a polynomial-time algorithm that given a metric M = (X,D) of spread ∆
that c-embeds into the line, computes an embedding of M into the line, with distortion O(c11/4∆3/4). Since
it is known [Mat90] that any n-point metric embeds into the line with distortion O(n), we can assume that
∆ = O(n4/3).

We view metric M as a complete graph G defined on vertex set X , where the weight of each edge
e = {u, v} is D(u, v). As a first step, our algorithm partitions the point set X into sub-sets X1, . . . , X`, as
follows. Let W be a large integer to be specified later. Remove all the edges of weight greater than W from
G, and denote the resulting connected components by C1, . . . , C`. Then for each i : 1 ≤ i ≤ `, Xi is the
set of vertices of Ci. Let Gi be the subgraph of G induced by Xi. Our algorithm computes a low-distortion
embedding for each Gi separately, and then concatenates the embeddings to obtain the final embedding
of M . In order for the concatenation to have small distortion, we need the length of the embedding of
each component to be sufficiently small (relatively to W ). The following simple lemma, essentially shown
in [Mat90], gives an embedding that will be used as a subroutine.

Lemma 1. Let M = (X,D) be a metric with minimum distance 1, and let T be a spanning tree of M .
Then we can compute in polynomial time an embedding of M into the line, with distortion O(cost(T )), and
length O(cost(T )).

The embedding in the lemma is computed by taking an (pre-order) walk of the tree T . Since each edge
is traversed only a constant number of times, the total length and distortion of the embedding follows.

Our algorithm proceeds as follows. For each i : 1 ≤ i ≤ `, we compute a spanning tree Ti of Gi,
that has the following properties: the cost of Ti is low, and there exists a walk on Ti that gives a small
distortion embedding of Gi. We can then view the concatenation of the embeddings of the components as
if it is obtained by a walk on a spanning tree T of G. We show that the cost of T is small, and thus the total
length of the embedding of G is also small. Since the minimum distance between components is large, the
inter-component distortion is small.

3.1 Embedding the Components

In this section we concentrate on some component Gi, and we show how to embed it into a line.
Let H be the graph on vertex set Xi, obtained by removing all the edges of length at least W from

Gi, and let H ′ be the graph obtained by removing all the edges of length at least cW from Gi. For any
pair of vertices x, y ∈ Xi, let DH(x, y) and DH′(x, y) be the shortest-path distances between x and y
in H and H ′, respectively. Recall that by the definition of Xi, H is a connected graph, and observe that
DH(x, y) ≥ DH′(x, y) ≥ D(x, y).

Lemma 2. For any x, y ∈ Xi, DH′(x, y) ≤ cD(x, y).

Proof: Let f be an optimal non-contracting embedding of Gi, with distortion at most c. Consider any pair
u, v of vertices that are embedded consecutively in f . We start by showing that D(u, v) ≤ cW . Let T be
the minimum spanning tree of H . If edge {u, v} belongs to T , then D(u, v) ≤ W . Otherwise, since T is
connected, there is an edge e = {u′, v′} in tree T , such that both u and v are embedded inside e. But then

4



D(u′, v′) ≤ W , and since the embedding distortion is at most c, |f(u) − f(v)| ≤ |f(u′) − f(v′)| ≤ cW .
As the embedding is non-contracting, D(u, v) ≤ cW must hold.

Consider now some pair x, y ∈ Xi of vertices. If no vertex is embedded between x and y, then by the
above argument, D(x, y) ≤ cW , and thus the edge {x, y} is in H ′ and DH′(x, y) = D(x, y). Otherwise,
let z1, . . . , zk be the vertices appearing in the embedding f between x and y (in this order). Then the edges
{x, z1}, {z1, z2}, . . . , {zk−1, zk}, {zk, y} all belong to H ′, and therefore

DH′(x, y) ≤ DH′(x, z1) +DH′(z1, z2) + . . . DH′(zk−1, zk) +DH′(zk, y)

= D(x, z1) +D(z1, z2) + . . . D(zk−1, zk) +D(zk, y)

≤ |f(x) − f(z1)| + |f(z1) − f(z2)| + . . .+ |f(zk−1) − f(zk)| + |f(zk) − f(y)|

= |f(x) − f(y)| ≤ cD(x, y)

�

We can now concentrate on embedding graph H ′. Since the weight of each edge in graph H ′ is bounded
by O(cW ), we can use a modified version of the algorithm of [BDG+05] to embed each Gi. First, we need
the following technical Claim.

Claim 1. There exists a shortest path p = v1, . . . , vk, from u to u′ in H ′, such that for any i, j, with
|i− j| > 1, D(vi, vj) = Ω(W |i− j|).

Proof: Pick an arbitrary shortest path, and repeat the following: while there exist consecutive vertices
x1, x2, x3 in p, with DH′(x1, x3) < cW , remove x2 from p, and add the edge {x1, x3} in p. �

The algorithm works as follows. We start with the graph H ′, and we guess points u, u′, such that there
exists an optimal embedding of Gi having u and u′ as the left-most and right-most point respectively. Let
p = (v1, . . . , vk) be the shortest path from u to u′ on H ′ (here v1 = u and vk = u′), that is given by Claim
1. We partition Xi into clusters V1, . . . , Vk, as follows. Each vertex x ∈ Xi belongs to cluster Vj , that
minimizes D(x, vj).

Our next step is constructing super-clusters U1, . . . , Us, where the partition induced by {Vj}
k
j=1 is a

refinement of the partition induced by {Uj}
s
j=1, such that there is a small-cost spanning tree T ′ of Gi that

“respects” the partition induced by {U j}
s
j=1. More precisely, each edge of T ′ is either contained in a super-

cluster Ui, or it is an edge of the path p. The final embedding ofGi is obtained by a walk on T ′, that traverses
the super-clusters U1, . . . , Us in this order.

Note that there exist metrics over Gi for which any spanning tree that “respects” the partition induced
by Vj’s is much more expensive that the minimum spanning tree. Thus, we cannot simply use Uj = Vj .

We now show how to construct the super-clusters U1, . . . , Us. We first need the following three technical
claims, which constitute a natural extensions of similar claims from [BDG+05] to the weighted case. Their
proofs are given in Appendix, Section A.

Claim 2. For each i : 1 ≤ i ≤ k, maxu∈Vi {D(u, vi)} ≤ c2W/2.

Claim 3. For each r ≥ 1, and for each i : 1 ≤ i ≤ k − r + 1,
∑i+r−1

j=i |Vi| ≤ c2W (c+ r − 1) + 1.

Claim 4. If {x, y} ∈ E(H ′), where x ∈ Vi, and y ∈ Vj , then D(vi, vj) ≤ cW + c2W , and |i− j| = O(c2).

Let α be an integer with 0 ≤ α < c4W . We partition the set Xi into super-clusters U1, . . . , Us, such
that for each l : 1 ≤ l ≤ s, Ul is the union of c4W consecutive clusters Vj , where the indexes j are shifted
by α. We refer to the above partition as α-shifted.

5



Claim 5. Let T be an MST of Gi. We can compute in polynomial time a spanning tree T ′ of Gi, with
cost(T ′) = O(cost(T )), and an α-shifted partition of Xi, such that for any edge {x, y} of T ′, either both
x, y ∈ Ul for some l : 1 ≤ l ≤ s, or x = vj and y = vj+1 for some j : 1 ≤ j < k.

Proof: Observe that since H is connected, all the edges of T can have length at most W , and thus T is a
subgraph of both H and H ′. Consider the α-shifted partition obtained by picking α ∈ {0, . . . , c4W − 1},
uniformly at random. Let T ′ be the spanning tree obtained from T as follows: For all edges {x, y} of T ,
such that x ∈ Vi ⊆ Ui′ , and y ∈ Vj ⊆ Uj′ , where i′ 6= j′, we remove {x, y} from T , and we add the edges
{x, vi}, {y, vj}, and the edges on the subpath of p from vi to vj . Finally, if the resulting graph T ′ contains
cycles, we remove edges in an arbitrary order, until T ′ becomes a tree. Note that although T ′ is a spanning
tree of Gi, it is not necessarily a subtree of H ′.

Clearly, since the edges {x, vi}, and {y, vj} that we add at each iteration of the above procedure are
contained in the sets Ui′ , and Uj′ respectively, it follows that T ′ satisfies the condition of the Claim.

We will next show that the expectation of cost(T ′), taken over the random choice of α, is O(cost(T )).
For any edge {x, y} that we remove from T , the cost of T ′ is increased by the sum of D(x, vi) and D(y, vj),
plus the length of the shortest path from vi to vj in H ′. Observe that the total increase of cost(T ′) due to the
subpaths of p that we add, is at most cost(T ). Thus, it suffices to bound the increase of cost(T′) due to the
edges {x, vi}, and {y, vj}.

By Claim 2, D(x, vi) ≤ c2W/2, and D(y, vj) ≤ c2W/2. Thus, for each edge {x, y} that we remove
from T , the cost of the resulting T ′ is increased by at most O(c2W ).

For each i, the set Ui ∪ Ui+1 contains Ω(c4W ) consecutive clusters Vj . Also, by Claim 4 the difference
between the indexes of the clusters Vt1 , Vt2 containing the endpoints of an edge, is at most |t1−t2| = O(c2).
Thus, the probability that an edge of T is removed, is at most O( 1

c2W ), and the expected total cost of
the edges in E(T ′) \ E(T ) is O(|Xi|) = O(cost(T )). Therefore, the expectation of cost(T ′), is at most
O(cost(T )). The Claim follows by the linearity of expectation, and by the fact that there are only few
choices for α. �

Let U1, . . . , Us be an α-shifted partition, satisfying the conditions of Claim 5, and let T ′ be the corre-
sponding tree. Clearly, the subgraph T ′[Ui] induced by each Ui is a connected subtree of T ′. For each Ui, we
construct an embedding into the line by applying Lemma 1 on the spanning tree T ′[Ui]. By Claim 3, |Ui| =
O(c6W 2), and by Claim 2, the cost of the spanning tree T ′[Ui] of Ui is at most O(|Ui|c

2W ) = O(c8W 3).
Therefore, the embedding of each Ui, given by Lemma 1 has distortion O(c8W 3), and length O(c8W 3).

Finally, we construct an embedding for Gi by concatenating the embeddings computed for the sets
U1, U2, . . . , Us, while leaving sufficient space between each consecutive pair of super-clusters, so that we
satisfy non-contraction.

Lemma 3. The above algorithm produces a non-contracting embedding ofGi with distortion O(c8W 3) and
length O(cost(MST(Gi))).

Proof: Let g be the embedding produced by the algorithm. Clearly, g is non-contracting. Consider now a a
pair of points x, y ∈ X , such that x ∈ Ui, and y ∈ Uj . If |i− j| ≤ 1, then |g(x) − g(y)| = O(c8W 3), and
thus the distortion of D(x, y) is at most O(c8W 3).

Assume now that |i − j| ≥ 2, and x ∈ Vi′ , y ∈ Vj′ . Then |g(x) − g(y)| = O(|i − j| · c8W 3). On the
other hand, D(x, y) ≥ D(vi′ , vj′)−D(vi′ , x)−D(vj′ , y) ≥ D(vi′ , vj′)−c

2W ≥ DH′(vi′ , vj′)/c−c
2W ≥

|i′ − j′|/c − c2W = Ω(|i − j|c4W 2). Thus, the distortion on {x, y} is O(c7W 2). In total, the maximum
distortion of the embedding g is O(c8W 3).

In order to bound the length of the constructed embedding, consider a walk on T ′ that visits the vertices
of T according to their appearance in the line, from left to right. It is easy to see that this walk traverses each

6



edge at most 4 times. Thus, the length of the embedding, which is equal to the total length of the walk is at
most 4cost(T ′) = O(cost(T )). �

3.2 The Final Embedding

We are now ready to give a detailed description of the final algorithm. Assume that the minimum dis-
tance in M is 1, and the diameter is ∆. Let H = (X,E) be a graph, such that an edge (u, v) ∈ E iff
D(u, v) ≤ W , for a threshold W , to be determined later. We use the algorithm presented above to embed
every connected component G1, . . . , Gk of H . Let f1, f2, . . . , fk be the embeddings that we get for the
components G1, G2, . . . Gk using the above algorithm, and let T be a minimum spanning tree of G. It is
easy to see that T connects the components Gi using exactly k − 1 edges.5 We compute our final embed-
ding f as follows. Fix an arbitrary Eulerian walk of T . Let P be the permutation of (G1, G2, . . . , Gk) that
corresponds to the order of the first occurrence of any node of Gi in our traversal. Compute embedding f by
concatenating the embeddings fi of components Gi in the order of this permutation. Let Ti be the minimum
spanning tree of Gi. Between every 2 consecutive embeddings in the permutation fi and fj , leave space
maxu∈Gi,v∈Gj {D(u, v)} = D(a, b) + O(cost(Ti)) + O(cost(Tj)), where D(a, b) is the smallest distance
between components Gi and Gj . This implies the next two Lemmata (see Appendix, Section A for proofs).

Lemma 4. The length of f is at most O(c∆).

Lemma 5. Let a ∈ Gi, b ∈ Gj for i 6= j. Then W ≤ D(a, b) ≤ |f(a) − f(b)| ≤ O(c∆) ≤ O(cD(a, b) ∆
W )

Theorem 1. Let M = (X,D) be a metric with spread ∆, that embeds into the line with distortion c. Then,
we can compute in polynomial time an embedding of M into the line, of distortion O(c11/4∆3/4).

Proof: Consider any pair of points. If they belong to different components, their distance distortion is
O(c∆/W ) (Lemma 5). If they belong to the same component, their distance distortion isO(c8W 3) (Lemma
3). Setting W = ∆1/4c−7/4 gives the claimed distortion bound. �

4 Hardness of Embedding Into the Line

In this section we show that even the problem of embedding weighted trees into the line is nβ-hard to
approximate, for some constant 0 < β < 1. Our reduction is performed from the 3SAT(5) problem, defined
as follows. The input is a CNF formula ϕ, in which each clause consists of exactly 3 different literals and
each variable participates in exactly 5 clauses, and the goal is to determine whether ϕ is satisfiable. Let
x1, . . . , xn, and C1, . . . , Cm, be the variables and the clauses of ϕ respectively, with m = 5n/3. Given an
input formula ϕ, we construct a weighted tree G, such that if ϕ is satisfiable then there is an embedding of
G into the line with distortion O(b) (for some b = poly(n)) and if ϕ is not satisfiable, then the distortion of
any embedding is at least bτ , where τ = poly(n). The construction size is polynomial in τ , and hence the
hardness result follows.

5Follows from correctness of Kruskal’s algorithm. These k − 1 edges are exactly the last edges to be added because they are
bigger than W and within components we have edges smaller than W

7



4.1 The construction

Our construction makes use of caterpillar graphs. A caterpillar graph consists of a path called body, and a
collection of vertex disjoint paths, called hairs, while each hair is attached to a distinct vertex of the body,
called the base of the hair. One of the endpoints of the caterpillar body is called the first vertex of the
caterpillar, and the other endpoint is called the last vertex. We use two integer paremeters b = poly(n) and
τ = poly(n), whose exact value is determined later. We call a caterpillar graph a canonical caterpillar,
if: (1) its body consists of integer-length edges, (2) the length of each hair is a multiple of b, and (3) each
hair consists of edges of length 1

bτ . Our weighted tree G is a collection of canonical caterpillars, connected
together in some way specified later. Notice that in any embedding of a canonical caterpillar with distortion
less than bτ , each hair must be embedded continuously (the formal proof appears below). Let B1, . . . , Bt be
caterpillars. A concatenation of B1, . . . , Bt is a caterpillar obtained by connecting each pair of consecutive
caterpillars Bi, Bi+1 for 1 ≤ i < t with a unit-length edge between the last vertex of Bi and the first vertex
of Bi+1.

The building blocks of our graph G are literal caterpillars, variable caterpillars and clause caterpillars,
that represent the literals, the variables and the clauses of the input formula ϕ. All these caterpillars are
canonical. Let xi be some variable in formula ϕ. We define two caterpillars called literal caterpillars wi

and w′
i, which represent the literals xi and xi, respectively. Additionally, we have a variable caterpillar vi

representing variable xi.
Let YL and YR be caterpillars whose bodies contain only one vertex (denoted by L and R respectively),

with a hair of length τ 3b (denoted by HL and HR respectively) attached to the body. The main part of our
graph G is a canonical caterpillar W , defined as a concatenation of YL, w1, w

′
1, w2, w

′
2, . . . wn, w

′
n, YR. The

hairs of HL and HR are used as padding, to ensure that all the vertices of G \ (HL ∪ HR), are embedded
between L and R. The length of the body ofW is denoted by N , and is calculated later. Variable caterpillars
vi attach to W as follows. The first vertex of vi connects by a unit-length edge to the first vertex of w′i.

For every clause Cj in formula ϕ, our construction contains a canonical caterpillar kj representing it,
which is also called a key. Each key kj is attached to vertex L by an edge of length N . Figure 5 (which
appears in the Appendix) summarizes the above described construction.

We now provide the details on the structure of the literal caterpillars. Consider a literal `, and let w be
the caterpillar that represents it (i.e., if ` is xi or xi, then w is wi or wi). Assume that ` participates in (at
most 5) clauses C`

1, C
`
2, . . .. Then w is the concatenation of at most 5 caterpillars, denoted by h`

1, h
`
2, . . ., that

represent the participation of ` in these clauses (see Figure 4). Following [Ung98], we call these caterpillars
keyholes. For convenience, we ensure that for each literal ` there are exactly 5 such keyholes h`

1, h
`
2, . . . , h

`
5,

as follows. If the literal participates in less than 5 clauses, we use several copies of the same keyhole that
corresponds to some clause in which ` participates. Thus, for each clause, for each literal participating in
this clause, there is at least one keyhole. All the keyholes that correspond to the same clause Cj are copies
of the same caterpillar h(j), called the keyhole of Cj .

The main idea of the construction is as follows. First, the
��� � ���� � � ������

	


 �

Figure 4: Caterpillar representing literal `.

keys and the keyholes are designed in a special way, such that
in order to avoid the distortion of bτ , each key kj has to be em-
bedded inside one of the matching keyholes (copies of h(j)).
The variable caterpillars are shaped in such a way that in any
embedding with distortion less than bτ , each variable caterpil-

lar vi is either embedded in wi or w′
i. If vi is embedded in wi, then no key can be embedded inside any

keyhole belonging to wi without incurring the distortion of bτ , and the same is true in case vi is embed-
ded into w′

i. Suppose formula ϕ is satisfiable. Then embedding of G with distortion O(b) is obtained as

8



follows. We first embed hair HL (starting from the vertex furthest from L), then the body of W and then
HR (starting from the vertex closest to R). For each variable xi, if the correct assignment to xi is TRUE,
then variable caterpillar vi is embedded inside the literal caterpillar w′

i, and otherwise it is embedded inside
wi. Given a clause Cj , if ` is the satisfied literal in this clause, we embed the key kj in the copy of keyhole
h(j), that corresponds to literal `. On the other hand, if ϕ is not satisfiable, we still need to embed each
variable caterpillar vi inside one of the two corresponding caterpillars wi, w′

i, thus defining an assignment
to all the variables. For example, if vi is embedded inside wi, this corresponds to the assignment FALSE to
variable xi. Such embedding of vi will block all the keyholes in the caterpillar wi. Since the assignment is
non-satisfying, for at least one of the keys kj , all the corresponding keyholes (copies of h(j)) are blocked,
and so in order to embed kj , we will need to incur a distortion of bτ .

The rest of the construction description, including the implementation of keys and keyholes and variable
caterpillars, as well as the reduction analysis, appears in Appendix, Section B.

5 Approximation Algorithm for Weighted Trees

In this section we consider embedding of weighted trees into the line. Given a weighted tree T , let ϕ be
its optimal embedding into the line, whose distortion is denoted by c (we assume that c ≥ 200). We pro-
vide a poly(c)-approximation algorithm, which, combined with earlier work, implies n1−ε approximation
algorithm for weighted trees, for some constant 0 < ε < 1. The first step of our algorithm is guessing the
optimal distortion c, and from now on we assume that we have guessed its value correctly.

We start with notation. Fix any vertex r of the tree to be the root. Given a vertex v 6= r, denote
d(v) = D(v, r). Consider any edge e = (u, v). The length of e is denoted bywe, and de = min{d(u), d(v)}
is the distance of e from r. We say that e is a large edge if we ≥ de

c , it is a medium edge if de
c > we ≥ de

c2
,

and otherwise e is a small edge.

Claim 6. If e = (u, v) is a medium or a small edge, then r is not embedded between u and v in the optimal
solution.

Proof: Assume otherwise. Then |ϕ(u) − ϕ(v)| ≥ de. But D(u, v) = we <
de
c , and edge e is stretched by a

factor greater than c. �

Let C be the collection of connected components, obtained by removing all the large edges from the
graph. For each component C ∈ C, let r(C) denote its “root”, i.e. the vertex of C closest to r in tree T . We
also denote by e(C) the unique edge incident on r(C) on the path from r(C) to r, and by α(C) the length
of this edge. Clearly, in the optimal solution, the embedding of component C lies completely to the left or
to the right of r.

Given some component C ∈ C, let `(C) be the vertex in C that maximizes D(r(C), `(C)), and let P (C)
be the path between r(C) and `(C) in tree T . We define the radius of C to be s(C) = D(r(C), `(C)).
Component C is called large if s(C) > c4α(C), otherwise the component is called small. We define a tree
T ′ of components, whose vertex set is C ∪ {r}, and the edges connecting the components are the same as in
the original graph, (i.e., e(C) for all C ∈ C.)

The main idea of our algorithm is to find the embedding of each one of the components separately
recursively, and then concatenate these embeddings in some carefully chosen order. However, there is a
problem with this algorithm, which is illustrated by the following example. Consider a large component C ,

9



PROCEDURE PARTITION

Let C be the current set of all the components.
While there is a large component C ∈ C, with a medium-sized edge e on the path from r(C) to
`(C), such that the removal of e splits C into two large components, do:

Let C ′ and C ′′ be the two large components obtained by removing e. Remove C from C
and add C ′ and C ′′ to C.

consisting of a very long path, and a small component C ′ attached to this path in the middle. In this case any
small-distortion embedding has to interleave the vertices of C and C ′, and thus our algorithm fails. We note
that as e(C ′) is a large edge, vertices of component C ′ have to be embedded into medium-sized edges of C
(formal proof of this fact is provided later). In order to solve the above problem, we perform PROCEDURE

PARTITION, that further subdivides large components by removing some medium-size edges from them.
From now on we only consider the components after the appli-

��� �����	��
�� 
��

�

��� ���

�������

�

�������

cation of the above procedure, and the component graph, the values
r(C), `(C), α(C) and so on are defined with respect to these com-
ponents. It is easy to see that if a medium size edge e is incident on
some component C , then C is a large component.

In fact, it is more convenient for us to define and solve a slightly
more general problem. In the modified problem, in addition to a
weighted tree T , we are also given a threshold value H . Given any
embedding of our tree into the line, we say that it satisfies the root
condition if: (1) each component C is embedded completely to the
right or to the left of r, and (2) no component C with α(C)+ s(C) ≥ cH is embedded to the right of r. Our
goal is to find an embedding that satisfies the root condition, while minimizing its distortion. Even though
the problem might look artificial at this point, it is easy to see that by setting H = ∞, it converts to our
original problem. The reason for defining the problem this way is that our algorithm solves the problem
recursively on each component C ∈ C, and then concatenates their embeddings into the final solution. In
order to avoid large distortion of the distance between r and r(C), we need to impose the root condition
on the sub-problem corresponding to C with threshold H = D(r, r(C)). We later claim that for each
sub-problem there is an optimal embedding with distortion c that satisfies the corresponding root condition.

5.1 The Structure of the Optimal Solution

In this section we explore some structural properties of the optimal solution, on which our algorithm relies.

Definition 1. Let C,C ′ be two large components. We say that these components are incompatible if s(C) >
2c3α(C ′) and s(C ′) > 2c3α(C).

The proof of the following lemma appears in Appendix.

Lemma 6. If C and C ′ are large incompatible components, then in the optimal solution they are embedded
on different sides of r.

Definition 2. LetC be a large component, and C ′ a small component. We say that there is a conflict between
C and C ′ iff 2c4α(C) < α(C ′) < s(C)/2c4.

10



Lemma 7. If C is a large component having a conflict with small component C ′, then C and C ′ are
embedded on different sides of r in the optimal solution.

The proof of the above lemma can be found in the Appendix.

Claim 7. Let C,C ′ be large components and C ′′ a small component. Moreover, assume that there is a
conflict between C and C ′′ and there is a conflict between C ′ and C ′′. Then C and C ′ are incompatible.

Proof: Since there is a conflict between C and C ′′, α(C ′′) > 2c4α(C). A conflict between C ′ and C ′′

implies that α(C ′′) < s(C ′)/2c4. Therefore, s(C ′) > 2c3α(C). Similarly, we can prove that s(C) >
2c3α(C ′). �

We subdivide the small components into types or subsets M1,M2, . . .. We say that a small component
C is of type i and denote C ∈ Mi iff ci−1 ≤ α(C) < ci.

Claim 8. For each i, |Mi| ≤ 4c4.

Proof: Consider some i ≥ 1, and assume that |Mi| > 4c4. Then in the optimal solution, there are more than
2c4 components of type i embedded on one of the sides of r. Denote these components by C i

1, C
i
2, . . . , C

i
k,

k > 2c4, and assume that vertices r(C i
j) are embedded in the optimal solution in this order, where r(C i

1) is
embedded closest to r. It is easy to see that for any pair C,C ′ of small components, the distance between
r(C) and r(C ′) is at least α(C)

c . As the optimal embedding is non-contracting, for every j = 1, . . . , k − 1,
there is a distance of at least α(C i

j)/c ≥ ci−2 between the embedding of r(C i
j) and r(C i

j+1). Therefore,
r(C i

k) is embedded at a distance at least kci−2 > 2ci+2 from r. However, d(r(C i
k)) ≤ α(C i

k) + cα(C i
k) ≤

2ci+1, and thus this distance is distorted by more than a factor of c in the optimal embedding. �

5.2 The Approximation Algorithm

Our algorithm consists of three major phases. In the first phase we compute the set C of components, after
performing PROCEDURE PARTITION. In the second phase, we solve the problem recursively for each one
of the components C ∈ C, where the threshold for the root condition becomes H = D(r(C), r). In the final
phase, we combine the recursive solutions to produce the final embedding.

Claim 9. For each recursive call to our algorithm, there is an embedding of the corresponding instance
with distortion c, that satisfies the root condition.

Proof: Let C be a component, and let C ′ be a component obtained after decomposing C . We consider the
recursive call in C ′. Since C is just a subtree of T , it embeds into the line with distortion c. Let f be such
an embedding of C with distortion c. W.l.o.g., we can assume that r(C ′) is embedded to the left of r(C). It
suffices to show that f satisfies the root condition in component C′.

Observe that for the recursive call in C ′, the threshold value is H = D(r(C), r(C ′)). All the edges
of C ′ as not large w.r.to r(C), thus all the vertices of C ′ are embedded to the left of r(C). Assume now
that the root condition is not satisfied for C′. This implies that there exists a component C ′′ that is obtained
after decomposing C ′, such that α(C ′′) + s(C ′′) ≥ cH , and such that C ′′ is embedded to the left of r(C ′).
Thus, f(r(C ′)) < f(l(C ′′)) < f(r(C)). It follows that |f(r(C ′)) − f(r(C))| > |f(r(C ′)) − f(l(C ′′))| ≥
D(r(C ′), l(C ′′)) = α(C ′′) + s(C ′′) ≥ cH = cD(r(C ′), r(C)), a contradiction. �

The final embedding is produced as follows. First, partition the set C of components into two subsets R,
L, containing the components to be embedded to the right and to the left of r, respectively. The partition

11



procedure is explained below. The components in L are then embedded to the left of r, while the embedding
of each component is determined by the recursive procedure call, and the embeddings of different compo-
nents do not overlap. The order of components is determined as follows. For each small component C ,
let f(C) = α(C), and for each large component C ′, let f(C ′) = s(C ′)/2c4. The order of embedding is
according to f(C), where the component C with smallest f(C) is embedded closest to the root r. The
embedding of components in R is performed similarly, except that the embedding of each component is the
mirror image of the embedding returned by the recursive procedure call (so that the root condition holds in
the right direction). We put enough empty space between the embeddings of different components to ensure
that the embedding is non-contracting. In the rest of this section we show how to partition C into the subsets
R and L.

We start with large components. We translate the problem into an instance of 2SAT, as follows. We have
one variable x(C) for each large cluster C . Embedding C to the left of r is equivalent to setting x(C) =
T . If two components C and C ′ are incompatible, we ensure that variables x(C) and x(C ′) get different
assignments, by adding clauses x(C) ∨ x(C ′) and x(C) ∨ x(C ′). Additionally, if s(C) + α(C) > cH ,
then we ensure that C is not embedded to the right of r by adding a clause x(C) ∨ x(C). The optimal
solution induces a satisfying assignment to the resulting 2SAT formula, and hence we can find a satisfying
assignment in polynomial time. The clusters C with x(C) = T are added to L and all other clusters are
added to R.

Consider now any small cluster C . If s(C) + α(C) > cH , then we add C to L. Otherwise, if s(C) +
α(C) ≤ cH , then there is at most one large component C ′ that has conflict with C . If such a component C ′

exists, then we embed C on the side opposite to that where C ′ is embedded. Otherwise, C is embedded to
the left of r. Clearly, in any embedding consistent with the above decision the root condition is satisfied.

The analysis of this phase of the algorithm appears in Section C.3 of the Appendix, together with the
proof of the following theorem:

Theorem 2. The algorithm produces a non-contracting embedding with distortion bounded by cO(1).

References

[ABFC+96] R. Agarwala, V. Bafna, M. Farach-Colton, B. Narayanan, M. Paterson, and M. Thorup. On the
approximability of numerical taxonomy: (fitting distances by tree metrics). 7th Symposium on
Discrete Algorithms, 1996.

[BDG+05] M. Bădoiu, K. Dhamdhere, A. Gupta, Y. Rabinovich, H. Raecke, R. Ravi, and A. Sidiropou-
los. Approximation algorithms for low-distortion embeddings into low-dimensional spaces.
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2005.

[BDHI04] M. Bădoiu, E. Demaine, M. Hajiaghai, and P. Indyk. Embeddings with extra information.
Proceedings of the ACM Symposium on Computational Geometry, 2004.

[BIS04] M. Bădoiu, P. Indyk, and A. Sidiropoulos. A constant-factor approximation algorithm for
embedding unweighted graphs into trees. AI Lab Technical Memo AIM-2004-015, 2004.

[B0̆3] M Bădoiu. Approximation algorithm for embedding metrics into a two-dimensional space.
14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

12



[DGR04] K. Dhamdhere, A. Gupta, and R. Ravi. Approximating average distortion for embeddings into
line. Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS),
2004.

[Dha04] K. Dhamdhere. Approximating additive distortion of line embeddings. Proceedings of
RANDOM-APPROX, 2004.

[DV01] J. Dunagan and S. Vempala. On euclidean embeddings and bandwidth minimization. Pro-
ceedings of the 5th Workshop on Randomization and Approximation, 2001.

[EP04] Y. Emek and D. Peleg. Approximating minimum max-stretch spanning trees on unweighted
graphs. Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, 2004.

[FCKW93] M. Farach-Colton, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary
tree. Annual ACM Symposium on Theory of Computing, 1993.

[Fei00] U. Feige. Approximating the bandwidth via volume respecting embeddings. Journal of Com-
puter and System Sciences, 60(3):510–539, 2000.

[HIL98] J. Hastad, L. Ivansson, and J. Lagergren. Fitting points on the real line and its application to
rh mapping. Lecture Notes in Computer Science, 1461:465–467, 1998.

[Ind01] P. Indyk. Tutorial: Algorithmic applications of low-distortion geometric embeddings. Annual
Symposium on Foundations of Computer Science, 2001.

[KRS04] C. Kenyon, Y. Rabani, and A. Sinclair. Low distortion maps between point sets. Annual ACM
Symposium on Theory of Computing, 2004.

[Lin02] N. Linial. Finite metric spaces - combinatorics, geometry and algorithms. Proceedings of the
International Congress of Mathematicians III, pages 573–586, 2002.

[LLR94] N. Linial, E. London, and Y. Rabinovich. The geometry of graphs and some of its algorith-
mic applications. Proceedings of 35th Annual IEEE Symposium on Foundations of Computer
Science, pages 577–591, 1994.

[Mat90] J. Matoušek. Bi-lipschitz embeddings into low-dimensional euclidean spaces. Comment.
Math. Univ. Carolinae, 31:589–600, 1990.

[MDS] MDS: Working Group on Algorithms for Multidimensional Scaling. Algorithms for multidi-
mensional scaling. DIMACS Web Page.

[TdSL] J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear
dimensionality reduction. http://isomap.stanford.edu/.

[Ung98] W. Unger. The complexity of the approximation of the bandwidth problem. Annual Symposium
on Foundations of Computer Science, 1998.

13



A General metrics

Claim 2 For each i, with 1 ≤ i ≤ k, maxu∈Vi D(u, vi) ≤ c2W/2.
Proof: Let u ∈ Vi. Consider the optimal embedding f . Since f(v1) = minw∈X f(w), and f(vk) =
maxw∈X f(w), it follows that there exists j, with 1 ≤ j < k, such that

min{f(vj), f(vj+1)} < f(u) < max{f(vj), f(vj+1)}.

Assume w.l.o.g., that f(vj) < f(u) < f(vj+1). We haveD(u, vj) ≥ D(u, vi), since u ∈ Vi. Since f is non-
contracting, we obtain f(u)−f(vj) ≥ D(u, vj) ≥ D(u, vi). Similarly, we have f(vj+1)−f(u) ≥ D(u, vi).
Thus, f(vj+1) − f(vj) ≥ 2D(u, vi). Since {vj , vj+1} ∈ E(H ′), we have D(vj , vj+1) ≤ cW . Thus,

c ≥
f(vj+1)−f(vj )

D(vj+1,vj)
≥ 2D(u,vi)

cW . �

Claim 3 For each r ≥ 1, and for each i, with 1 ≤ i ≤ k − r + 1,
∑i+r−1

j=i |Vi| ≤ c2W (c+ r − 1) + 1.

Proof: Let A =
⋃i+r−1

j=1 Vi. Let x = argminu∈Af(u), and y = argmaxu∈Af(u). Let also x ∈ Vi, and
y ∈ Vj . Clearly, |f(vi)−f(vj)| ≤ cD(vi, vj) ≤ cDH′(vi, vj) ≤ c2W |i−j| ≤ c2W (r−1). By Claim 2, we
haveD(x, vi) ≤ c2W/2, andD(y, vj) ≤ c2W/2. Thus, |f(x)−f(vi)| ≤ cD(x, vi) ≤ c3W/2, and similarly
|f(y)−f(vj)| ≤ c3W/2. It follows that |f(x)−f(y)| ≤ |f(x)−f(vi)|+|f(vi)−f(vj)|+|f(vj)−f(y)| ≤
c3W + c2W (r − 1). Note that by the choice of x, y, and since the minimum distance in M is 1, and f is
non-contracting, we have

∑i+r−1
j=i |Vi| ≤ |f(x) − f(y)| + 1, and the assertion follows. �

Claim 4 If {x, y} ∈ E(H ′), with x ∈ Vi, and y ∈ Vj , then D(vi, vj) ≤ cW + c2W , and |i− j| = O(c2).
Proof: Since {x, y} ∈ E(H ′), we have D(x, y) ≤ cW . By Claim 2, we have D(x, vi) ≤ c2W/2, and
D(y, vj) ≤ c2W/2. Thus, D(vi, vj) ≤ D(vi, x) +D(x, y) +D(y, vj) ≤ cW + c2W .

By Claim 1, we have |i− j| = O(D(vi, vj)/W ) = O(c2). �

Lemma 4 The length of f is at most O(c∆).
Proof: The length of f is the sum of the lengths of all fi and the space that we leave between every 2
consecutive fi, fj’s. Then, by Lemma 3, the length of fi is O(c · cost(Ti)). Thus, the sum of the lengths of
all fi’s is O(c · cost(T )). The total space that we leave between all pairs of consecutive embeddings f i is
cost(T )+2

∑k
i=1O(cost(Ti)) = O(cost(T )). Therefore the total length of the embedding f is O(cost(T )).

At the same time, the cost of T is at most the length of the optimal embedding f , which is O(c∆). The
statement follows. �

Lemma 5 Let a ∈ Gi and b ∈ Gj for i 6= j. Then D(a, b) ≤ |f(a) − f(b)| ≤ O(cD(a, b) ∆
W )

Proof: The first part D(a, b) ≤ |f(a)− f(b)| is trivial by construction, since we left enough space between
components Gi and Gj . Since a and b are in difference connected components, we have D(a, b) > W .

Using Lemma 4 we have that |f(a) − f(b)| = O(c∆) = O(c∆ D(a,b)
W ) = O(cD(a, b) ∆

W ). �

14



��� ���� ���� ���

�
	

� �

�
��


�������

� � �


 �

� � �


��

���� �

�

��� ���

�

���
�

� � �

Figure 5: The high-level view of the construction.

B The Hardness Result

In this section we provide further details that complete the reduction description, followed by the reduction
analysis. Note that all the caterpillars used in our construction are canonical, thus each hair of each caterpillar
is a path of length- 1

bτ edges.

B.1 Keys and Keyholes

We start with the following definition.

Definition 3. For an integer α, a barrier caterpillar of length α consists of a body of α unit-length edges,
and a hair of length b, attached to each one of the vertices of the body.

Observe that the length of an embedding of a barrier of length α is at least αb. Intuitively, a barrier B of
a “proper” length makes it impossible to embed a “short” edge (u, v) such that u and v are on the opposite
sides of B, without incurring high distortion.

For a clause Cj , the corresponding keyhole h(j) consists of three parts: prefix, suffix and the main part.
The prefix caterpillar, denoted by P , starts with a barrier of size τ3, which is connected by an edge of

length τ 2, called large edge, to vertex s which in turn is connected by a unit-length edge to a barrier of size
3τ4. There is also a hair of length bτ 2, called large hair, that attaches to vertex s.

The suffix caterpillar is denoted by S, and it is the mirror reflection of the prefix, where vertex s is
denoted by t (see Figure 6).

�����

 
!

�����

!

"
���

��# $%�'& $%�'&
���

��#

Figure 6: The prefix and the suffix.

The main part of keyhole h(j) corresponding to clause Cj consists of m caterpillars Q1, Q2, . . . , Qm.
Caterpillar Qi, for 1 ≤ i ≤ j consists of a vertex zi with a hair of length τb attached to it, which is referred

15



to as a small hair. Vertex zi connects with an edge of length τ (called a small edge) to a barrier of size τ 2.
For j < i ≤ m, caterpillar Qi is just a barrier of size τ 2. The keyhole hj is defined to be the concatenation
of P,Q1, . . . , Qm, S.

We now proceed to define the keys. A key kj is defined identically to the keyhole hj , with the following
changes:

• Observe that in the body of prefix P of h(j), vertex s is adjacent to two edges, of sizes τ2 and 1. We
switch these two edges. We do the same with the two edges adjacent to vertex t in the body of suffix
S. The resulting prefix and suffix are denoted by P′ and S′ respectively.

• Observe that each vertex zi, 1 ≤ i ≤ j is attached in the body of h(j) to two edges, of sizes 1 and τ .
We switch these two edges.

...

...

�
���

�
���

�
���

�
���

���

�
���
�

�����

�
���� ��� � ��	 ���

���
��

�
���
��

�����

� ��	��� ����
� 
��

�
���

�
���
�


�


���
� �


�


����������� ��� 


������� 


�����

� ��	 ��� �
����

�����

�
�� ��	 ��� ���

Figure 7: The key and the keyhole.

The intuition is that when any key is embedded into a keyhole, the two large hairs of the key have to be
embedded inside the two large edges of the keyhole and vice versa, while the small hairs of both key and
keyhole are embedded between the two long hairs. Similarly, the small hairs of the key have to be embedded
inside the small edges of the keyhole and vice versa. Moreover, inside each small edge of a key (keyhole), at
most one small hair of a keyhole (key) can be embedded, if the distortion is less than τb. Assume now that
the key and the keyhole do not match, for example, we have key kj and keyhole h(i) where j < i. Then the
number of small hairs in the keyhole is larger than the number of small edges in the key, and the distortion
of embedding key kj into keyhole h(i) is large.

B.2 Variable caterpillars

We now define caterpillars vi, representing variable xi in formula ϕ.
Caterpillar vi is a concatenation of five identical caterpillars L1, . . . , L5. Caterpillar Lj for 1 ≤ j ≤ 5

consists of three parts: The prefix P′ and the suffix S′ are identical to the prefix and the suffix of a key; the
main part consists of m barriers of size τ 2 each, where each pair of consecutive barriers is connected by an
edge of length τ .

The idea is that when vi is embedded into wi or w′
i, then each one of the caterpillars L1, . . . , L5 will

be embedded into the 5 corresponding keyholes, thus blocking them. More precisely, the 10 large hairs of
vi will be embedded into the 10 large edges of L1, . . . , L5, ensuring that no large hair of any key can be
embedded there.

16



B.3 Construction Size

We fix τ = nµ for some large integer µ. Our first step is bounding the length N of the body of W . Recall
that W consists of 2n literal caterpillars, each consisting of 5 keyholes. The length of a keyhole is at most
m(τ2 + τ + 1) + 6τ 4 + 2τ3 + 2τ2 + 2 < 7τ4. Therefore, N = O(τ 4n). We set b = 3N .

One can easily see that the size of the construction is dominated by the number of vertices on the hairs
HR and HL. The length of each one of these hairs is τ 3b, and the length of each edge on a hair is 1

bτ .
Therefore, the construction size is O(τ 4b2) = O(τ12n2).

B.4 Analysis

In the following, we consider an embedding f of our graph G with distortion less than τb. We start by
showing several structural properties of this embedding.

Claim 10. Each hair of each caterpillar is embedded continuously.

Proof: Assume otherwise. Then there is an edge e = (x, y) on some hair H , and a vertex v not belonging
to H embedded inside e. But the length of e is only 1

τb , while the distance D(x, v) is at least 1, and thus the
distortion is at least τb. �

Claim 11. The set of vertices in G \ (HL ∪ HR) is embedded continuously between the embeddings of L
and R.

Proof: By Claim 10, HL and HR are embedded continuously. Since the length of each HL, and HR is
τ3b, and the length of the longest edge of W is τ 2, it follows that G \ (HL ∪HR) also has to be embedded
continuously. Thus, in order to avoid distortion larger than τb, G \ (HL ∪HR) has to be embedded between
L and R. �

Our next goal is to prove that given some large edge e = (u, v) on the body of W (which must belong
to the prefix or the suffix of one of the keyholes), the only large hair of W that is embedded in it is the hair
attached to u or v. The meaning of this claim is that the embedding of W has to be “nice”, with the main
part of each keyhole embedded between its prefix and suffix.

Claim 12. Let hi
j be any keyhole on caterpillar W , and let e be one of its large edges (assume w.l.o.g.

that this edge is from its prefix). Let H be the large hair belonging to the prefix. Then H is the only hair
belonging to W embedded inside e.

Proof: We denote e = (s, a), where s is the base of hair H . Recall that there is a barrier B1 of size τ 3

attached to a. If hi
j is not the first keyhole of W , then there is a suffix of another keyhole adjacent to B1,

with a barrier B2 of size τ 3 attached to B1 by a unit-length edge. The other endpoint of B2 attaches by a
unit-length edge to a base of a large hair H ′. Clearly, H is embedded inside edge e continuously. Since the
length of H is τ 2b, barriers B1, B2, and hair H ′ are embedded on the same side of H as vertex a.

��

���

�

� �

�

�����	 ��	



����������

17



Assume the claim is false, and let H ′′ be some other large hair belonging to some keyhole embedded
inside e. Let x be the base of this hair. Since hair H ′′ is embedded inside edge e, so is its base x. Recall
that vertex x attaches with a unit-length edge to a barrier B ′ of length 3τ 4. As the body of this barrier
consists of unit-length edges, it has to be embedded completely between the embeddings of H and H ′. The
distance between s and the base of H ′ is only 2τ 3 + τ2 + 3, and thus the distance between their images in
the embedding is at most 2τ 4b + τ2b + 3b. On the other hand, the size of the embedding of B ′ must be at
least 3τ 4b.

The only case we still need to consider is when hi
j is the first keyhole on W . But then it is easy to

see that the barrier B ′ has to be embedded between the embeddings of H and the hair HL, which is again
impossible.

�

The next corollary follows from Claim 12 and uses the fact that the main part of each keyhole only
contains edges of length at most τ .

Corollary 1. The main part of each keyhole is embedded between the two large hairs of the prefix and the
suffix of the keyhole. Moreover, the large hairs of caterpillar W are embedded in the same order in which
they appear on the body of W .

Proof: Consider some keyhole hj , and path P between s and t on its body. Recall that s and t serve as
bases of large hairs whose length is τ 2b, and every edge on path P is of length at most τ . Therefore, all the
vertices on path P and the hairs attached to them have to be embedded between the embeddings of these
two large hairs.

Assume now that the large hairs on caterpillar W are not embedded in the same order in which they
appear in W . Then there are three hairs H1,H2,H3, such that H1 and H2 appear consecutively in W , but
H3 is embedded between H1 and H2. Let a and b be the bases of hairs H1 and H2. Then H3 is embedded
inside some edge e on the path (a, b). In order to avoid distortion τb, e has to be a large edge, and the only
large edges between a and b are the two edges adjacent to a and b inside which the hairs H1 and H2 are
embedded, which contradicts Claim 12 �

We prove next that for any large edge on any keyhole, at most one large hair of any key or a variable
caterpillar can be embedded inside it.

Claim 13. Let hi be some keyhole, and let e be one of its large edges. Then there is at most one large hair
belonging to any key or a variable caterpillar embedded inside e.

Proof: Denote the endpoints of e by {v, u}. From the construction, there is a large hair H attached to one
of these vertices, assume it’s u. Recall also that both v and u are connected to barriers of size at least τ 3.
Clearly, hair H is embedded inside e right next to vertex u. Suppose there are two other large hairs, H ′ and
H ′′ embedded inside e, and assume that H ′′ is embedded between H and H ′. Denote the base of the hair
H ′′ by v′′. Recall that v′′ is connected by unit-length edge to a barrier of length τ 3. It is impossible to embed
this whole barrier inside edge e, since the total length of such an embedding would be τ 3b, while the length
of edge e is only τ 2. Therefore, there is at least one unit-length edge e′ (part of the barrier body), whose
one endpoint is embedded next to H ′′ and whose other endpoint is embedded outside e. But then one of the
hairs H ′, H is embedded inside e′, so it is impossible that the distortion is less than τb.

�

Using the same reasoning, we can prove the following two claims:

18



Claim 14. For each small edge in a keyhole, only one small hair belonging to any key or a variable cater-
pillar can be embedded inside it.

Claim 15. For every key, for each one of its large (small, respectively) edges, at most one large (small,
respectively) hair of a keyhole can be embedded inside it.

Additionally, observe that the main part of any key ki must be embedded completely between the prefix
and the suffix of some keyhole h̀j and the large hairs of ki are embedded into large hairs of h`

j . In this case
we say that key ki is embedded inside keyhole h`

j .

Yes instance

Note that the distance between any two vertices on the bodies of any caterpillars in our construction is at
most 3N = b.

Claim 16. For each j, with 1 ≤ j ≤ m, key kj can be embedded inside a copy of h(j) with distortion O(b).

Proof: The embedding is as follows. We move from left to right. While embedding the barriers, we embed
a hair from the key and then a hair from the keyhole interchangeably, as follows: let H be a hair from
the key and H ′ be a hair from a keyhole. We first embed H starting from its base, then we embed H′

starting from the vertex furthest from its base. The distance between the embeddings of H and H ′ is 3b,
and thus the maximum stretch of an edge on the bodies of the barriers is O(b). The large and the small hairs
are embedded inside the large and the small edges respectively as follows. Let the endpoints of the large
(small) edge of the key be denoted by v, u (the hair is attached to v), and denote the endpoints of the large
(small) edge of the keyhole by u′, v′, the hair being attached to v′. We first embed vertex u′, then the large
(small) hair of the key, starting from v, then the large (small) hair of the keyhole (starting from the endpoint
opposite to v′, so v′ is embedded last), and then vertex u. In case H , H ′ are large, the distance between
their embeddings is 2τ 2b+ b, and if they are small, the distance is 2τb+ b. In any case, the distortion of this
embedding is at most O(b). �

For each variable caterpillar vi, we can view its five sub-caterpillars L1, . . . , L5 as “master keys” that
can be embedded into any keyhole. We say that variable caterpillar vi is embedded inside literal w iff the
five sub-caterpillars of vi are embedded into the five keyholes of w.

Similarly to Claim 16, we can prove the following claim.

Claim 17. For each i : 1 ≤ i ≤ n, variable caterpillar vi can be embedded inside each one of the literal
caterpillars wi or w′

i with distortion at most O(b).

Lemma 8. If ϕ is satisfiable, then there exists an embedding of G into the line, with distortion at most O(b).

Proof: Consider the satisfying assignment to the variables, and assume the assignment to xi is TRUE. Then,
we embed vi inside w′

i. Each clause contains at least one literal that satisfies it, so no variable caterpillar is
embedded on this literal. We embed the key corresponding to the clause on the keyhole that belongs to that
literal.

Finally, we embed HL andHR, to the left and to the right of the image ofG, respectively. The maximum
distortion of this embedding is at most O(b). �

19



Unsatisfiable instance

Claim 18. Suppose we have any embedding with distortion less than τb. Then each key is embedded in one
of its corresponding keyholes.

Proof: Suppose key ki is embedded inside some keyhole hj and i 6= j (w.l.o.g., let i < j). Since all the
small edges of ki and the small hairs of hj are embedded between the long hairs of ki, and the number of
small edges of ki is less than the number of small hairs of hj , the distortion must be at least bτ . �

Claim 19. Each variable caterpillar vi is embedded inside either wi, or w′
i. Moreover, once we embed

vi inside wi or w′
i, it is impossible to embed any keys inside keyholes of wi or w′

i, respectively, without
incurring distortion τb.

Proof: Let vi be some variable caterpillar. Observe that there are 10 large hairs in vi, which, in order to
avoid distortion of τb, have to be embedded into 10 large edges of W . We prove that these have to be 10
consecutive large edges of wi or of w′

i. Recall that the large hairs of W are embedded in the order in which
they appear in W , each one of them is embedded into its adjacent large edge. The edge that attaches v i to
W is unit length, thus the first large hair of vi has to be embedded into the hair of w′

i or wi that lies closest
to vi. Observe also that large hairs of W can only be embedded inside large edges of vi, and only one such
hair is embedded into any large edge of vi. Therefore, all the large hairs of vi have to be embedded into the
large edges of wi or into the large edges of w′

i. Assume we embed vi into wi. Then inside each large edge
of wi, there is a large hair of vi embedded in it. By Claim 13, it is impossible to embed additional large edge
into this edge, thus none of the keys can be embedded into keyholes belonging to wi. �

Lemma 9. If ϕ is not satisfiable, then any embedding of G into the line has distortion at least τb.

Proof: Assume we have an embedding with distortion less than τb. Then by Claim 18, each variable must be
embedded in one of its corresponding literals, which implies an assignment to the variables. This assignment
is not a satisfying one, so for some clause, for each one of its literals, there is a variable caterpillar embedded
inside them, so it is impossible to embed the key corresponding to the clause into one of its keyholes, and
the distortion must be at least τb. �

Theorem 3. Given an M -point metric that c-embeds into the line, it is NP-hard to compute an embedding
with distortion less than Ω(cM 1/12−ε) for arbitrarily small constant ε.

Proof: Recall that our construction size is M = τ 12n2. If ϕ is satisfiable, then there is an embedding with
distortion O(b). Otherwise, any embedding has distortion at least τb. Since τ = nµ for a large enough
constant µ, the theorem follows.

�

20



C Approximation Algorithm for Weighted Trees

In this section, we provide proofs omitted from Section 5.

C.1 Large Incompatible Components

The goal of this section is to prove Lemma 6
We start with the following claim:

Claim 20. Let C and C ′ be two large incompatible components. Then in the optimal solution, vertex `(C ′)
is not embedded inside any edge of P (C).

Proof: Assume otherwise, and let e = (u, v) be an edge of P (C), with d(u) < d(v), such that `(C ′) is
embedded between u and v. In order to finish our proof, it is enough to show that D(u, `(C′)) ≥ d(u): in
this case, if `(C ′) is embedded between u and v, then |ϕ(u)−ϕ(v)| ≥ d(u), and as e is not a large edge, it is
stretched by a factor greater than c in this embedding. It now only remains to prove thatD(u, `(C ′)) ≥ d(u).
For the sake of convenience, we denote ` = `(C ′).

We consider three cases. The first case is when the components C and C′ are not the ancestor and
descendant of one another in the tree of components. Let a be the least common ancestor of u and `, note
that a 6= u, a 6= `. Then D(u, `) = D(a, u)+D(a, `). However, D(a, `) ≥ s(C ′) ≥ c4α(C ′) ≥ c2de(C′) ≥
d(a) (we are using the facts thatC ′ is a large component and so s(C ′) ≥ c4α(C ′) and also that e(C) is a large

or a medium size edge, and therefore α(C ′) = we(C′) ≥
de(C′)

c2
). Thus, D(u, `) ≥ D(a, u) + d(a) ≥ d(u)

as desired.
The second case is when C ′ is a descendant of C in the tree of components. Let a ∈ C be the least

common ancestor of u and `, note that a = u is possible. Then D(u, `) = D(u, a) + D(a, `). Again,
D(a, `) ≥ s(C ′) ≥ c4α(C ′) ≥ c2de(C′) ≥ d(a) holds, and thus D(u, `) ≥ D(a, u) + d(a) ≥ d(u).

The third case is when C ′ is an ancestor of C in the component tree. Let a ∈ C ′ be the least com-
mon ancestor of u and `. Notice first that D(a, r(C′)) < s(C ′)/2 must hold, since otherwise de(C) ≥
D(a, r(C ′)) ≥ s(C ′)/2 > c3α(C) = c3we(C), which is impossible since e(C) is a large or a medium size
edge. Assume now thatD(a, r(C ′)) < s(C ′)/2 holds. But thenD(a, `) ≥ s(C ′)/2 ≥ c3α(C). To finish the
proof, observe thatD(u, `) = D(a, `)+D(a, u) ≥ c3α(C)+D(u, r(C)) ≥ d(r(C))+D(u, r(C)) ≥ d(u).

�

Lemma 10 (Lemma 6). If C and C ′ are large incompatible components, then in the optimal solution they
are embedded on different sides of r.

Proof: Assume C and C ′ are embedded on the same side of r. As Claim 20 holds in both directions, the
only way for C and C ′ to be embedded on the same side of r is when `(C) is embedded between r(C ′) and
r or when `(C ′) is embedded between r(C) and r.

Assume w.l.o.g. that `(C) is embedded between r(C ′) and r. Since D(`(C), r) ≥ s(C) ≥ 2c3α(C ′),
vertices r(C ′) and r are embedded at a distance at least 2c3α(C ′) from one another. However, d(r(C ′)) =
α(C ′) + de(C′) ≤ α(C ′) + c2α(C ′) < 2c2α(C ′) and thus this distance is distorted by more than a factor of
c.

�

21



C.2 Combining Large and Small Components

This section is devoted to proving Lemma 7.

Lemma 11 (Lemma 7). If C is a large component having a conflict with small component C ′, then C and
C ′ are embedded on different sides of r in the optimal solution.

Proof: Our proof consists of three claims. In the first claim, we show that if C and C′ are embedded on
the same side of r, then r(C ′) is embedded inside some edge e on path P (C). The second claim shows that
C ′ must be a descendant of C in the tree of components. Finally, in the third claim, we show that edge e
on path P (C) into which r(C ′) is embedded is a medium-size edge, whose removal splits C into two large
components, therefore e must have been removed by PROCEDURE PARTITION.

Claim 21. Assume that C and C ′ are embedded on the same side of r. Then r(C ′) is embedded inside some
edge e on path P (C).

Proof: Assume otherwise. Then either r(C ′) is embedded between r and r(C), or all the vertices on path
P (C) are embedded between r(C ′) and r. If the former case is true, then |ϕ(r) − ϕ(r(C))| > d(r(C ′)) ≥
α(C ′) ≥ 2c4α(C). But d(r(C)) = α(C) + de(C) ≤ α(C) + c2α(C) < 2c2α(C). Thus, the distance
between r and r(C) is distorted by a factor greater than c.

If the latter is true, then |ϕ(r) − ϕ(r(C ′))| > s(C) > 2c4α(C ′). However, this means that the distance
between r and r(C ′) is distorted by a factor greater than c, since d(r(C ′)) = α(C ′) + de(C′) ≤ α(C ′) +
cα(C ′) ≤ 2cα(C ′). �

Let e = (u, v) denote the edge on path P (C), such that r(C ′) is embedded inside e, and assume w.l.o.g.
that d(u) < d(v).

Claim 22. C ′ is a descendant of C in the tree of components.

Proof: Assume otherwise. There are two cases to consider. If C is the descendant of C ′, then de(C) ≥
α(C ′) ≥ 2c4α(C), which is impossible since e(C) is a large or a medium size edge.

The second case is when C and C ′ are not an ancestor-descendant pair. Let a be the least common
ancestor of u and r(C ′), and notice that a 6∈ C ′. We show thatD(u, r(C ′)) ≥ d(u), and thus |ϕ(u)−ϕ(v)| ≥
d(u) must hold, while D(u, v) = we < d(u)/c since e is not large. Therefore, edge e is stretched by a factor
greater than c, leading to a contradiction. To see that D(u, r(C ′)) ≥ d(u), Observe that D(u, r(C ′)) ≥
α(C ′)+α(C) +D(u, r(C)). However, α(C ′) ≥ 2c4α(C) ≥ de(C) (we used the facts that C ′ and C have a
conflict, and also that e(C) is a large or a medium size edge). Therefore, D(u, r(C ′)) ≥ d(e(C))+α(C)+
D(u, r(C)) ≥ d(u).

�

Claim 23. Edge e is of medium size, and upon its removal component C splits into two large components.

Proof: We first show that e is a medium size edge. Let a be the least common ancestor of r(C′) and u. Since
C ′ is a descendant of C , a ∈ C . Then D(u, r(C ′)) = D(u, a) + D(a, r(C ′)). However, D(a, r(C ′)) ≥

α(C ′) ≥ d(a)
c , since e(C ′) is a large edge, and a is on the path from r(C ′) to the root. Altogether, we have

thatD(u, r(C ′)) ≥ D(u, a)+ d(a)
c ≥ d(u)

c . Since r(C ′) is embedded between u and v, |ϕ(u)−ϕ(v)| ≥ d(u)
c ,

and thus D(u, v) = we ≥
d(u)
c2

must hold.
Consider now two components C1, C2 obtained from C by removing edge e, and assume w.l.o.g. that

r(C) ∈ C1. We show that both these components are large.

22



Assume for contradiction that C1 is small. On one hand, since C and C ′ have a conflict, 2c4α(C) <
α(C ′). On the other hand, since r(C ′) is embedded inside edge e, and D(u, r(C ′)) ≥ α(C ′), then α(C ′) ≤
cwe must hold. Combining the two inequalities together, we have: 2c3α(C) < we. But since e is not large,
d(u) = de > we · c > 2c4α(C). Finally, recall that d(u) ≤ D(u, r(C)) + α(C) + c2α(C), and thus
D(u, r(C)) > c4α(C) must hold. But D(u, r(C)) ≤ s(C1), and thus C1 is a large component.

We now prove that C2 is a large component. The main part of the proof is showing that d(u) ≤
(

1 − 1
c

) s(C)
c3 . Assume that the above bound is true. Then since e is not large, we <

d(u)
c ≤

(

1 − 1
c

) s(C)
c4 .

On the other hand, we can show that s(C2) is sufficiently large relatively to we, as follows:

s(C2) ≥ s(C) − d(u) − we ≥ s(C) −

(

1 −
1

c

)

s(C)

c3
−

(

1 −
1

c

)

s(C)

c4
≥

(

1 −
1

c

)

s(C)

Therefore, s(C2) ≥ c4we holds, and C2 is a large component.
It now only remains to prove that d(u) ≤

(

1 − 1
c

) s(C)
c3

. Recall that r(C ′) is embedded between u and
v, and thus the distance between the embeddings of u and v is at least:

D(u, r(C ′)) +D(v, r(C ′)) ≥ 2D(u, r(C ′)) = 2[D(u, a) +D(a, r(C ′))]

As the distortion is at most c,

we ≥ 2
D(u, a) +D(a, r(C ′))

c

must hold. On the other hand, edge e is not large, and thus

we <
d(u)

c
=
d(a) +D(u, a)

c

Combining the two inequalities together, we get:

d(a) ≥ D(u, a) + 2D(a, r(C ′)) ≥ D(u, a) + 2α(C ′)

Since a is on the path from r(C ′) to r and e(C ′) is a large edge, α(C ′) ≥ d(a)
c . We thus have:

d(a)
(

1 − 2
c

)

≥ D(u, a).
Altogether,

d(u) = d(a) +D(u, a) ≤ d(a)

(

2 −
2

c

)

≤ cα(C ′)

(

2 −
2

c

)

≤
s(C)

c3

(

1 −
1

c

)

�

�

C.3 Analysis of the Algorithm

We start with the following simple observation.

Observation 1. Let C be any component, and let r be the root of the current instance. Then D(r(C), r) ≤
2c2α(C).

23



Proof: It is easy to see that D(r(C), r) = α(C) + de(C). However, since e(C) is a large or a medium size

edge, α(C) ≥
de(C)

c2
. In total, D(r(C), r) ≤ α(C) + c2α(C) ≤ 2c2α(C). �

We now bound the empty space we need to leave between each pair of components that are embedded
next to each other. Consider some component C embedded to the left of r. Recall that in the recursive
procedure call for C , we use threshold value H = D(r(C), r) for the root condition. Let v ∈ C be the
rightmost vertex in the embedding of C .

We want to show D(v, r) is “small”.Assume w.l.o.g. that v 6= r(C). Let C ′ be the component, obtained
by the decomposition of C , that contains v. Note that due to Observation 1, D(r(C ′), r(C)) ≤ 2c2α(C ′).
Since v (and therefore C ′) lies on the right side of r(C), it must satisfy the threshold condition α(C ′) +
s(C ′) ≤ cH = cD(r(C), r). We can now write

D(v, r) ≤ D(r(C), r) + [D(v, r(C ′)) +D(r(C ′), r(C))]

≤ D(r(C), r) + [s(C ′) + 2c2α(C ′)]

≤ D(r(C), r) + 2c3H

≤ 3c3D(r(C), r)

≤ 6c5α(C)

For each component C embedded to the left of r, we leave empty space of 6c5α(C) to the right of the
embedding of C , and empty space of s(C)+D(r, r(C)) ≤ s(C)+2c2α(C) to the left of the embedding of
C , such that empty spaces belonging to different components do not overlap. The embedding of components
in R is performed similarly. It is easy to see that the resulting embedding is non-contracting.

Consider now some component C . Let L(C),S(C) denote the sets of large and small components,
respectively, embedded between C and r by our algorithm. We define L(C) =

∑

C′∈L(C) s(C
′), and

S(C) =
∑

C′∈S(C) α(C ′). In order to bound the approximation ratio of our algorithm, it is helpful to bound
first the values L(C) and S(C) in terms of α(C).

Lemma 12. For any component C , L(C) ≤ 4c4α(C), and S(C) ≤ 24c8α(C).

Proof:
We start by bounding L(C). Consider any pair C1, C2 of large components, embedded on the same side

of r. These components are compatible, and thus we can assume w.l.o.g. that s(C1) ≤ 2c3α(C2). However,
since C2 is large, α(C2) ≤ s(C2)/c

4, and therefore s(C1) ≤ 2s(C2)/c, and C1 is embedded closer than C2

to the root.
Assume now that C is a large component, and let C ′ ∈ L(C) be the component that maximizes s(C ′).

Then s(C ′) ≤ 2c3α(C) (since otherwise C must be embedded closer to r than C ′). Moreover, the values of
s(C ′′) for C ′′ ∈ L(C) constitute a geometric series with ratio 2

c . Therefore, L(C) ≤ 4c3α(C).
If C is a small component, let C ′ ∈ L(C) be the component that maximizes s(C ′). Due to the ordering

of the components by our algorithm, s(C′)
2c4

≤ α(C). The values of s(C ′′) for C ′′ ∈ L(C) again form a
geometric series, and thus L(C) ≤ 4c4α(C).

We now proceed to bound S(C). Recall that there are at most 4c4 small components of each type.
Assume first that C is a small component of type i. Then S(C) contains at most 4c4 components of the
same type (whose α is less than α(C)), and at most 4c4 components for each one of the types 1, . . . , i− 1.
Thus, S(C) ≤ 12c4α(C).

24



Suppose now that C is a large component, and let C ′ ∈ S(C) be the component maximizing α(C ′).
Then α(C ′) ≤ s(C)

2c4
. Since there is no conflict between C and C ′, α(C ′) ≤ 2c4α(C) must hold. Again, we

have at most 4c4 components of the same type as C ′, whose α-value is not greater than α(C ′), and at most
4c4 components of each one of the smaller types. Therefore, S(C) ≤ 12c4 · 2c4α(C) ≤ 24c8α(C). �

Definition 4. Given a component C , its weight W (C) is defined to be the sum of weights of its edges.

Claim 24. W (C) ≤ 2cs(C)

Proof: The length of any embedding of C is at least W (C), while the maximum distance between any pair
of points in C is 2s(C). Since the distortion of the optimal embedding is c, the claim holds. �

The next theorem is the central theorem in the analysis of our algorithm.

Theorem 4. Let C be the instance of our problem with threshold H for the root condition. Then the
algorithm produces an embedding with the following properties:

• The length of the embedding is at most c13W (C).

• The length of the embedding to the right of the root r is at most c28H .

• For any vertex v ∈ C , v is embedded within distance c29D(v, r) from r.

Proof:
The proof is by induction on the instance size. Let C be the collection of components produced by our

algorithm. We assume that the claim holds for each C ′ ∈ C and the corresponding threshold value, and
prove it for C .

We start by bounding the embedding length. We first bound the length of the embedding to the left of
r. Let CL be the leftmost component embedded to the left of r (if such a component exists). The length of
the embedding to the left of r consists of the following parts: (1) the lengths of the embeddings of all the
components in L: they are bounded by c13

∑

C′∈L
W (C ′) by the inductive hypothesis; (2) the additional

space we need to leave between the components to ensure non-contraction.
We show that this additional space is at most c13α(CL). Observe that edge e(CL) does not participate

in any of the recursive algorithm executions. Since we can bound the length of the embedding to the right
of r in a similar fashion, this will finish the proof that the total length of the embedding is at most c13W (C).

We now bound the additional space we need to place between the components. Let C ′ ∈ L \ {CL} be
some large component. The empty space we need to leave due to C ′ is at most 2[s(C ′) +D(r(C ′), r)] ≤
2[s(C ′)+2c2α(C ′)] ≤ 3s(C ′) (since C ′ is large). Thus, in total, the large components in L\{CL} contribute
at most 3L(CL) ≤ 12c4α(CL). Consider now some small component C ′ ∈ L \ {CL}. The empty space
due to C ′ is again bounded by 2[s(C ′) +D(r(C ′), r)] ≤ 2[s(C ′) + 2c2α(C ′)]. However, since C ′ is small,
s(C ′) ≤ c4α(C ′), and thus its contribution is at most 3c4α(C ′). In total, small components in L \ {CL}
contribute at most 3c4S(CL) ≤ 72c12α(CL). Finally, component CL itself contributes at most 6c5α(CL).
The total additional empty space is thus at most:

12c4α(CL) + 72c12α(CL) + 6c5α(CL) ≤ c13α(CL)

We now prove the second part of the theorem.
Let CR be the rightmost component in our embedding. From the root condition, α(CR)+ s(CR) ≤ cH .

If C ′ is a large component embedded between CR and r, then its embedding length is at most c13W (C ′) ≤

25



2c14s(C ′). The amount of empty space we need to leave out for this component is at most 2[s(C ′) +
D(r(C ′), r)] ≤ 2[s(C ′) + 2c2α(C ′)] ≤ 3s(C ′). Thus, the total contribution of such components is at most
6c14L(CR) ≤ 3c14 · 4c4α(CR) = 12c18α(CR).

Similarly, the length of the embedding of a small component C ′ is at most 2c14s(C ′) ≤ 2c18s(C ′),
and the amount of free space we need to add due to C ′ is bounded by 2[s(C ′) +D(r(C ′), r)] ≤ 2[s(C ′) +
2c2α(C ′)] ≤ 3c4α(C ′).The total contribution of small components is at most 3c18S(CR) ≤ 3c18·24c8α(CR) ≤
72c26α(CR). Finally, the length of the embedding of CR is at most 2c14s(CR), and the empty space we
need to leave to the left of it is at most 6c5α(CR). The total size of the embedding to the right of r is at
most:

12c18α(CR) + 72c26α(CR) + 6c5α(CR) + 2c14s(CR) ≤ c27(α(CR) + s(CR)) ≤ c28H

Finally, we prove the third part of the theorem. Consider some vertex v, belonging to some component
C ′. Let ψ be the embedding computed by the algorithm. Then |ψ(v)−ψ(r)| ≤ |ψ(v)−ψ(r(C ′))|+ |ψ(r)−
ψ(r(C ′))|, while D(v, r) = D(v, r(C ′)) +D(r, r(C ′)). By the inductive hypothesis, |ψ(v) −ψ(r(C ′))| ≤
c30D(v, r(C ′)). We now prove that |ψ(r) − ψ(r(C ′))| ≤ c30D(r, r(C ′)), thus finishing the proof.

The distance between the embeddings of r(C ′) and r consists of three parts: (1) The length of the
recursive embedding of component C ′ to the right of its root r(C ′): bounded by c28D(r, r(C ′)) by the
induction hypothesis; the empty space we need to leave between the embedding of C ′ and its neighbor that
lies between C ′ and r: bounded by 6c5α(C ′); (3) the embeddings of all the components lying between C ′

and the root r, and their empty spaces. The last term can be bounded by the similar way we used to bound
the distance between the embedding of CR and the root, which is at most c27α(CR). Summing the three
terms together, we get:

|ψ(r) − ψ(r(C ′))| ≤ c28D(r, r(C ′)) + 6c5α(C) + c27α(CR) ≤ c29D(r, r(C ′))

�

Theorem 5. (Theorem 2) The algorithm produces a non-contracting embedding with distortion bounded by
cO(1).

Proof: It is easy to see that the embedding produced by the algorithm is non-contracting. We now prove
that the distortion is at most 4c32. Let e = (u, v) be some edge in our original instance. Let C be the first
instance in our recursive algorithm executions, where u and v are separated: i.e., u, v ∈ C , but there are two
components Cu, Cv ⊆ C , such that u ∈ Cu, v ∈ Cv . Let r denote the root of the current instance.

Then edge e is a large or a medium-size edge, and thus D(u, v) = we ≥ d(u)
c2

. Also, since d(v) =
d(u) + we ≤ c2we + we ≤ 2c2we, we have that in total:

D(u, v) = we ≥
d(u) + d(v)

4c2

On the other hand, consider the embedding ψ produced by our algorithm. Then:

|ψ(u) − ψ(v)| ≤ |ψ(u) − ψ(r)| + |ψ(v) − ψ(r)|

≤ c30(d(u) + d(v))

≤ 4c32
d(u) + d(v)

4c2

≤ 4c32we

26



�

27


