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ABSTRACT
One of the key results in Robertson and Seymour’s semi-
nal work on graph minors is the Grid-Minor Theorem (also
called the Excluded Grid Theorem). The theorem states
that for every fixed-size grid H, every graph whose treewidth
is large enough, contains H as a minor. This theorem has
found many applications in graph theory and algorithms.
Let f(k) denote the largest value, such that every graph
of treewidth k contains a grid minor of size f(k) × f(k).
The best current quantitative bound, due to recent work
of Kawarabayashi and Kobayashi [15], and Leaf and Sey-

mour [18], shows that f(k) = Ω(
√

log k/ log log k). In con-
trast, the best known upper bound implies that f(k) =

O(
√
k/ log k) [22]. In this paper we obtain the first poly-

nomial relationship between treewidth and grid-minor size
by showing that f(k) = Ω(kδ) for some fixed constant δ > 0,
and describe an algorithm, whose running time is polynomial
in |V (G)| and k, that finds a model of such a grid-minor in
G.
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The seminal work of Roberston and Seymour on graph mi-
nors makes essential use of the notions of tree decomposi-
tions and treewidth. A key structural result in their work
is the Grid-Minor theorem (also called the Excluded Grid
theorem), which states that for every fixed-size grid H, ev-
ery graph whose treewidth is large enough, contains H as a
minor. This theorem has found many applications in graph
theory and algorithms. Let f(k) denote the largest value,
such that every graph of treewidth k contains a grid minor
of size f(k) × f(k). The quantitative estimate for f given
in the original proof of Robertson and Seymour [23] was
substantially improved by Robertson, Seymour and Thomas
[22] who showed that f(k) = Ω(log1/5 k); see [13, 12] for
a simpler proof with a slightly weaker bound. There have
been recent improvements by Kawarabayashi and Kobayashi
[15], and by Leaf and Seymour [18], giving the best current

bound of f(k) = Ω(
√

log k/ log log k). On the other hand,
the known upper bounds on f are polynomial in k. It is easy
to see, for example by considering the complete graph on n
nodes with treewidth n − 1, that f(k) = O(

√
k). This can

be slightly improved to f(k) = O(
√
k/ log k) by considering

sparse random graphs (or Ω(logn)-girth constant-degree ex-
panders) [22]. Robertson et al. [22] suggest that this value
may be sufficient, and Demaine et al. [9] conjecture that the

bound of f(k) = Θ(k1/3) is both necessary and sufficient. It
has been an important open problem to prove a polynomial
relationship between a graph’s treewidth and the size of the
largest grid-minor in it1. In this paper we prove the follow-
ing theorem, which accomplishes this goal, while also giving
a polynomial-time algorithm to find a large grid-minor.

Theorem 1.1 There is a universal constant δ > 0, such
that for every k ≥ 1, every graph G of treewidth k contains
a grid-minor of size Ω(kδ) × Ω(kδ). Moreover, there is a
randomized algorithm that, given G, with high probability
outputs a model of the grid-minor of size Ω(kδ) × Ω(kδ) in
G, and whose running time is polynomial in |V (G)| and k.

Our proof shows that δ is at least 1
98
− o(1) in the preceding

theorem. We obtain the following corollary by the observa-
tion that any planar graph H is a minor of a grid of size
k′ × k′ where k′ = O(|V (H)|) [22].

1The relationship between grid-minors and treewidth is
much tighter in some special classes of graphs. In planar
graphs f(k) = Ω(k) [22]; a similar linear relationship is
known in bounded-genus graphs [10] and graphs that ex-
clude a fixed graph H as a minor [11] (see also [15]).



Corollary 1.1 There is a universal constant c such that, if
G excludes a planar graph H as a minor, then the treewidth
of G is O(|V (H)|c).

The Grid-Minor theorem has several important applications
in graph theory and algorithms, and also in proving lower
bounds. The quantitative bounds in some of these applica-
tions can be directly improved by our main theorem. We
anticipate that there will be other applications for our main
theorem, and also for the algorithmic and graph-theoretic
tools that we develop here.
Our proof and algorithm are based on a combinatorial ob-
ject, called a path-of-sets system that we informally describe
now; see Figure 1. A path-of-sets system of width r and
height h consists of a collection of r disjoint sets of nodes
S1, . . . , Sr together with collections of paths P1, . . . ,Pr−1

that are disjoint, which connect the sets in a path-like fash-
ion. The number of paths in each set Pi is h. Moreover,
for each i, the induced graph G[Si] satisfies the following
routing properties for the end-points of the paths Pi−1 and
Pi (sets Ai and Bi of vertices in the figure): for any pair
A ⊆ Ai, B ⊆ Bi of vertex subsets with |A| = |B|, there are
|A| node-disjoint paths connecting A to B in G[Si].
Given a path-of-sets system of width h and height h, we
can efficiently find a grid minor of size Ω(h1/2) × Ω(h1/2)
in G, slightly strengthening a similar recent result of Leaf
and Seymour [18], who use a related combinatorial object
that they call an (h, r)-grill. Our main contribution is to
show that, given a graph G with treewidth k, one can effi-
ciently build a path-of-sets system of width h and height h,
if hc ≤ k/polylog(k), where c is a fixed constant. The cen-
tral ideas for the construction build upon and extend recent
work on algorithms for the Maximum Edge-Disjoint Paths
problem with constant congestion [6, 7], and connections
to treewidth [4, 2]. In order to construct the path-of-sets
system, we use a closely related object, called a tree-of-sets
system. The definition of the tree-of-sets system is very
similar to the definition of the path-of-sets system, except
that, instead of connecting the clusters Si into a single long
path, we connect them into a tree whose maximum vertex
degree is at most 3. We extend and strengthen the results
of [6, 7, 4], by showing an efficient algorithm, that, given
a graph of treewidth k, constructs a large tree-of-sets sys-
tem. We then show how to construct a large path-of-sets
system, given a large tree-of-sets system. We believe that
the tree-of-sets system is an interesting combinatorial object
of independent interest and hope that future work will yield
simpler and faster algorithms for constructing it, as well as
improved parameters. This could lead to improvements in
algorithms for related routing problems, and better bounds
for Theorem 1.1.
We note that our definition of the tree-of-sets system re-
quires very strong disjointness properties: the paths con-
necting the different clusters must be completely disjoint
from each other, and internally disjoint from the clusters Si.
While the combinatorial objects constructed in [6] are some-
what similar to the tree-of-sets system, they do not provide
this guarantee. The work of [7] only guarantees that every
edge participates in at most two paths, or in one path and
one cluster, while the work of [4] only guarantees that every
vertex may participate in a constant number of such paths
(for some large constant), in addition to at most one cluster.
The main technical contributions of our paper, compared to

previous work are (1) ensuring the strong disjointness prop-
erties of the tree-of-sets system; and (2) an algorithm that
constructs a path-of-sets system from a tree-of-sets system.
A useful technical tool that we develop is an algorithm for
boosting well-linkedness, generalizing prior work on boosting
edge-well-linkedness [5], which is of independent interest and
has applications to reducing congestion in node-capacitated
routing problems.

Organization: The paper is based on several technical re-
sults and the proof is somewhat long. Section 2 summarizes
some of the high-level definitions and tools. Section 3 for-
mally defines a path-of-sets system and states the theorem
to construct a grid-minor from it. Section 4 describes the
construction of a path-of-sets system from a tree-of-sets sys-
tem. Section 5 describes the construction of a tree-of-sets
system. Due to space constraints many details are omitted
and the reader is referred to the full version of the paper [3].

2. PRELIMINARIES
All graphs in this paper are finite, they may have parallel
edges, but no self-loops. Given a graph G = (V,E) and
a set of vertices A ⊆ V , we denote by outG(A) the set of
edges with exactly one endpoint in A and by EG(A) the
set of edges with both endpoints in A. For disjoint sets of
vertices A and B, the set of edges with one end point in A
and the other in B is denoted by EG(A,B). We may omit
the subscript G if it is clear from the context. For a vertex v
in a graph G we use dG(v) to denote its degree. Given a set
P of paths in G, we denote by V (P) the set of all vertices
participating in paths in P, and similarly, E(P) is the set of
all edges that participate in paths in P. We sometimes refer
to sets of vertices as clusters. All logarithms are to the base
of 2.
A useful and simple claim that we need is the following.

Claim 2.1 Let T be a rooted tree such that |V (T )| ≥ `p for
some positive integers `, p. Then T has at least ` leaves or
a root-to-leaf path containing at least p vertices.

The treewidth of a graph G = (V,E) is typically defined via
tree decompositions. A tree-decomposition for G consists
of a tree T = (V (T ), E(T )) and a collection of sets {Xv ⊆
V }v∈V (T ) called bags, such that the following two properties
are satisfied: (i) for each edge (a, b) ∈ E, there is some node
v ∈ V (T ) with both a, b ∈ Xv and (ii) for each vertex a ∈ V ,
the set of all nodes of T whose bags contain a form a non-
empty (connected) subtree of T . The width of a given tree
decomposition is maxv∈V (T ) |Xv| − 1, and the treewidth of
a graph G, denoted by tw(G), is the width of a minimum-
width tree decomposition for G.
We say that a graph H is a minor of a graph G, iff H can
be obtained from G by a sequence of edge deletion and con-
traction operations. Equivalently, H is a minor of G iff
there is a map ϕ : V (H) → 2V (G) assigning to each vertex
v ∈ V (H) a subset ϕ(v) of vertices of G, such that: (1) For
each v ∈ V (H), the sub-graph of G induced by ϕ(v) is con-
nected; (2) If u, v ∈ V (H) and u 6= v, then ϕ(u)∩ ϕ(v) = ∅;
and (3) For each edge e = (u, v) ∈ E(H), there is an edge in
E(G) with one endpoint in ϕ(u) and the other endpoint in
ϕ(v). A map ϕ satisfying these conditions is called a model
of H in G. We say that G contains a (g × g)-grid minor iff
some minor H of G is isomorphic to the (g × g) grid.
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Figure 1: A path-of-sets system. Each set Pi contains h paths. All paths in
⋃r−1
i=1 Pi are node-disjoint and

internally disjoint from
⋃r
i=1 Si.

Sparsest Cut and the Flow-Cut Gap Suppose we are
given a graph G = (V,E), and a subset T ⊆ V of k ter-
minals. The sparsity of a cut (S, S) with respect to T
is Φ(S) = |E(S,S)|

min{|S∩T |,|S∩T |} , and the value of the sparsest

cut in G is defined to be: Φ(G) = minS⊂V {Φ(S)}. The
goal of the sparsest cut problem is, given an input graph G
and a set T of terminals, to find a cut of minimum spar-
sity. Arora, Rao and Vazirani [1] have shown an O(

√
log k)-

approximation algorithm for the sparsest cut problem. We
denote this algorithm by AARV, and its approximation fac-
tor by βARV(k) = O(

√
log k).

A problem dual to sparsest cut is the maximum concurrent
flow problem. We use the same graph G and set the capac-
ity c(e) of every edge e to 1. Given a flow F : E → R+, the
edge-congestion of the flow is the maximum, over all edges
e ∈ E, of F (e)/c(e). If the edge-congestion of F is at most
1, then we sometimes say that F causes no edge-congestion.
For the above definition of the sparsest cut problem, the
corresponding variation of the concurrent flow problem asks
to find the maximum value λ, such that every pair of termi-
nals can send λ/k flow units to each other simultaneously
with no edge-congestion. The flow-cut gap is the maximum
ratio, in any graph and for any set of k terminals in the
graph, between the value of the minimum sparsest cut and
the value λ∗ of the maximum concurrent flow for the termi-
nals in the graph. The flow-cut gap in undirected graphs,
that we denote by βFCG(k) throughout the paper, is known
to be Θ(log k) [19]. Therefore, if Φ(G) = α, then every pair
of terminals can simultaneously send α

kβFCG(k)
flow units

to each other with no edge-congestion. Equivalently, every
pair of terminals can send 1/k flow units to each other with
edge-congestion at most βFCG(k)/α. Moreover, given any
matching M on the set T of terminals, one unit of flow for
each pair in M can be simultaneously routed with congestion
at most 2βFCG(k)/α.

Linkedness and Well-Linkedness We define the notion
of linkedness and the different notions of well-linkedness that
we use.

Definition 2.1 We say that a set T of vertices is α-well-
linked2 in G, iff for any partition (A,B) of the vertices of G
into two subsets, |E(A,B)| ≥ α ·min {|A ∩ T |, |B ∩ T |}.
2This notion of well-linkedness is based on edge-cuts and
we distinguish it from node-well-linkedness that is directly
related to treewidth. For technical reasons it is easier to
work with edge-cuts and hence we use the term well-linked
to mean edge-well-linkedness, and explicitly use the term
node-well-linkedness when necessary.

Notice that if a set T of terminals is α-well-linked in G, then
the value of the sparsest cut in G with respect to T is at
least α.

Definition 2.2 We say that a set T of vertices is node-
well-linked in G, iff for any pair (T1, T2) of equal-sized sub-
sets of T , there is a collection P of |T1| node-disjoint
paths, connecting the vertices of T1 to the vertices of T2.
(Note that T1, T2 are not necessarily disjoint, and we allow
a singleton vertex as a path).

Our algorithm proceeds by reducing the degree of the input
graph to polylog(k), while preserving the treewidth to within
a factor of polylog(k). The notions of edge- and node-well-
linkedness can be related to each other via the maximum
degree and we exploit this connection throughout the algo-
rithm. We will repeatedly use the following simple claim,
whose proof appears in the full version of the paper.

Claim 2.2 Let G = (V,E) be any graph, and let T be any
subset of vertices of G called terminals, such that T is α-
well-linked in G. Let E′ be any subset of m′ edges of G,

such that m′ < α|T |
3

. Then there is a connected component

C of G \ E′, containing at least |T | − m′

α
terminals.

Corollary 2.1 Let G be a graph with maximum vertex de-
gree ∆, and let T be any subset of vertices of G such that T
is α-well-linked in G. Let X be any subset of n′ vertices of

G, with n′ < α|T |
3∆

. Then there is a connected component C

of G \X containing at least |T | − n′∆
α

vertices of T .

The corollary follows from Claim 2.2, by letting E′ be the
set of edges incident on the vertices of X.

Definition 2.3 Two disjoint vertex subsets A,B are linked
in G iff for any pair of equal-sized subsets A′ ⊆ A, B′ ⊆ B
there is a set P of |A′| = |B′| node-disjoint paths connecting
A′ to B′ in G.

The proof of the following Theorem appears in the full ver-
sion of the paper.

Theorem 2.1 Suppose we are given two disjoint subsets
T1, T2 of vertices of G, with |T1|, |T2| ≥ κ, such that T1∪T2 is
α-well-linked in G, and each one of the sets T1, T2 is node-
well-linked in G. Let T ′1 ⊂ T1, T ′2 ⊂ T2, be any pair of
subsets with |T ′1 | = |T ′2 | ≤ ακ

4∆
. Then T ′1 and T ′2 are linked

in G.



Boosting Well-Linkedness Suppose we are given a graph
G and a set T of vertices of G called terminals, where T
is α-well-linked in G. Boosting theorems allow us to boost
the well-linkedness by selecting an appropriate subset of the
terminals, whose well-linkedness is greater than α. A stan-
dard spanning-tree based clustering scheme of [5] allows one
to obtain a set T ′ ⊆ T of Ω(α|T |) terminals, such that
T ′ is 1/2-well-linked. However, we need a stronger result:
we would like to find a large subset T ′ ⊂ T , such that T ′
is node-well-linked in G. The following theorem, whose
proof appears in the full version of the paper, allows us to
achieve this.

Theorem 2.2 Suppose we are given a connected graph G =
(V,E) with maximum vertex degree ∆, and a subset T of κ
vertices called terminals, such that T is α-well-linked in G,
for some α < 1, and κ ≥ 8∆/α. Then there is a subset
T ′ ⊂ T of Ω

(
ακ
∆

)
terminals, such that T ′ is node-well-

linked in G. Moreover, if κ ≥ 64∆4βARV(κ)/α, then there
is an efficient algorithm that computes a subset T ′ ⊂ T
of Ω

(
α

∆5βARV(κ)
· κ
)

terminals, such that T ′ is node-well-

linked in G. The algorithm also computes, for each terminal
t ∈ T ′, a tree Tt ⊆ G containing at least d1/αe terminals of
T , with t ∈ V (Tt), such that all trees {Tt}t∈T ′ are pairwise
node-disjoint.

Finally, we would like to obtain a slightly stronger result.
Suppose we are given a connected graph G = (V,E) with
maximum vertex degree ∆, and r disjoint subsets T1, . . . , Tr
of vertices called terminals, such that T =

⋃
j Tj is α-well-

linked in G, and |Tj | ≥ κ for all j. We would like to select,
for each 1 ≤ j ≤ r, a large subset T ∗j ⊂ Tj of terminals,
such that T ∗j is node-well-linked in G, and for every pair
1 ≤ j 6= j′ ≤ r, T ∗j , T ∗j′ are linked in G. The following
corollary, whose proof appears in the full version of the pa-
per, combines Theorem 2.2 with Theorem 2.1 to achieve this
goal.

Corollary 2.2 Let G be a connected graph, with maximum
vertex degree at most ∆, and let T1, . . . , Tr be a collection
of disjoint vertex subsets, called terminals, such that T =⋃
j Tj is α-well-linked in G, and |Tj | ≥ κ for all j, where

κ ≥ 64∆4βARV(κ)/α. Assume that we apply Theorem 2.2 to
each set Tj of terminals in turn independently, and let T ′j be
the outcome of Theorem 2.2 when applied to Tj. Let T ∗j ⊂ T ′j
be any subset of

|T ′j |
12∆

= Ω
(

α
∆6βARV(κ)

· κ
)

terminals. Then

for each 1 ≤ j ≤ r, T ∗j is node-well-linked in G, and for all
1 ≤ i 6= j ≤ r, T ∗i and T ∗j are linked in G.

Treewidth, Well-Linkedness and Degree Reduction
The following lemma summarizes an important connection
between the treewidth and the size of the largest node-well-
linked set of vertices.

Lemma 2.1 (Reed [21]) Let k be the size of the largest
node-well-linked set in G. Then k ≤ tw(G) ≤ 4k.

Lemma 2.1 guarantees that any graph G of treewidth k con-
tains a set X of Ω(k) vertices, that is node-well-linked in
G. The proof of Theorem 1.1 uses the notion of edge-well-
linkedness as well as node-well-linkedness. In order to be

able to translate between both types of well-linkedness we
reduce the maximum vertex degree of the input graph G.
Combining a lemma from Kreutzer and Tazari [17] and the
cut-matching game of Khandekar, Rao and Vazirani [16], we
obtain the following theorem that provides the starting point
for our algorithm. The proof appears in the full version of
the paper.

Theorem 2.3 Let G be any graph with tw(G) = k. Then
there is an efficient randomized algorithm to compute a sub-
graph G′ of G with maximum vertex degree ∆ = O(log3 k),
and a subset X of Ω(k/ poly log k) vertices of G′, such that
X is node-well-linked in G′, with high probability.

We note that one can also reduce the degree to a constant
with an additional polylog(k) factor loss in the treewidth [4];
the constant can be made 4 with a polynomial factor loss in
treewidth [17].

Re-Routing Two Sets of Disjoint Paths We need the
following lemma, whose proof closely follows arguments of
Conforti, Hassin and Ravi [8].

Lemma 2.2 Let G be a directed graph, and let X ,Y be two
sets of directed simple paths in G, where all paths in X ∪ Y
share the same destination vertex s. The paths in X are
disjoint from each other, except for sharing the destination
s, and the same is true for Y (but a vertex v 6= s may appear
on a path in X and on a path in Y.) Let H be the graph
obtained by the union of the paths in X ∪ Y. Then we can
efficiently find a subset X ′ ⊆ X of at least |X | − |Y| paths,

and for each path Q ∈ Y, a path Q̂ in graph H, with the same

endpoints as Q, such that, if we denote Y ′ =
{
Q̂ | Q ∈ Y

}
,

then all paths in X ′ ∪ Y ′ are pairwise disjoint (except for
sharing the last vertex s).

3. A PATH-OF-SETS SYSTEM
In this section we define our main combinatorial object,
called the path-of-sets system. We start with a few defi-
nitions.
Suppose we are given a collection S = {S1, . . . , Sr} of dis-
joint vertex subsets of V (G). Let Si, Sj ∈ S be any two such
subsets. We say that a path P connects Si to Sj iff the first
vertex of P belongs to Si and the last vertex of P belongs to
Sj . We say that P connects Si to Sj directly, if additionally
P does not contain any vertices of

⋃
S∈S S as inner vertices.

Definition 3.1 A path-of-sets system of width r and height
h consists of:

• A sequence S = {S1, . . . , Sr} of r disjoint vertex sub-
sets of G, where for each i, G[Si] is connected;

• For each 1 ≤ i < r, a set Pi of h disjoint paths, con-
necting Si to Si+1 directly (that is, paths in Pi do
not contain the vertices of

⋃
S∈S S as inner vertices),

such that all paths in
⋃
i Pi are mutually disjoint;

and has the following additional property. For each 1 ≤ i <
r, let Bi be the set of vertices of Pi that belong to Si, and let
Ai+1 be the set of vertices of Pi that belong to Si+1. Then
for each 1 < i < r, sets Ai and Bi are linked in G[Si]. (See
Figure 1).



We note that Leaf and Seymour [18] have defined a very sim-
ilar object, called an (h, r)-grill, and they implicitly showed
that the two objects are roughly equivalent. Namely, a path-
of-sets system with parameters h and r contains an (h, r)-
grill as a minor, while an (h, r)-grill contains a path-of-sets
system of height h and width Ω(r/h). They also show an
efficient algorithm, that, given an (h, r)-grill with h = Ω(g3)
and r = Ω(g4), finds a (g × g)-grid minor in the grill3. The
following theorem gives better bounds when the starting
point is a path-of-sets system. The proof appears in the
full version of the paper.

Theorem 3.1 Given a path-of-sets system of width h and
height h in a graph G, there is an efficient algorithm that
finds a model of a grid minor of size Ω(

√
h)×Ω(

√
h) in G.

4. FINDING A PATH-OF-SETS SYSTEM
We can view a path-of-sets system as a meta-path, whose
vertices v1, . . . , vr correspond to the sets S1, . . . , Sr, and
each edge e = (vi, vi+1) corresponds to the collection Pi of
h disjoint paths. Unfortunately, we do not know how to find
such a meta-path directly (except for r = O(log k), which is
not enough for us). As we show below, a generalization of
the work of [7], combined with some ideas from [4] gives a
construction of a meta-tree of degree at most 3, instead of
the meta-path. We define the corresponding object that we
call a strong tree-of-sets system.

Definition 4.1 A strong tree-of-sets system with parame-
ters r, h̃ consists of:

• A collection S = {S1, . . . , Sr} of r disjoint vertex sub-
sets of G, where for each 1 ≤ i ≤ r, G[Si] is connected;

• A tree T over a set {v1, . . . , vr} of vertices, whose max-
imum vertex degree is at most 3;

• For each edge e = (vi, vj) of T , we are given a set P∗e
of h̃ disjoint paths, connecting Si to Sj directly (that
is, paths in P∗e do not contain the vertices of

⋃
S∈S S as

inner vertices). Moreover, all paths in P∗ =
⋃
e∈E(T ) P

∗
e

are pairwise disjoint.

For a set Si ∈ S, and an edge e ∈ E(T ) incident on
vi, let ΓSi(e) be the set of the endpoints of the paths in
P∗e , that belong to Si. We then have:

• For each Si ∈ S, for every pair e, e′ ∈ E(T ) of edges
incident to vi, where e 6= e′, the sets ΓSi(e) and ΓSi(e

′)
are linked in G[Si].

The following technical theorem expands and generalizes the
results of [7].

Theorem 4.1 Suppose we are given a graph G of maxi-
mum vertex degree ∆ = O(log3 k), and a subset T of k
vertices called terminals, such that T is node-well-linked in
G and the degree of every vertex in T is 1. Additionally,

3In fact [18] shows a slightly stronger result that a (h, r)-grill
with h ≥ (2g+1)(2`−5)+2 and r ≥ `(2g+`−2) contains a
g × g grid-minor or a bipartite-clique K`,` as a minor. This
can give slightly improved bounds on the grid-minor size if
the given graph excludes bipartite-clique minors for small `.

assume that we are given parameters r > 1, h̃ > 4 log k,
such that k/ log8 k > c′h̃r23∆19, where c′ is a sufficiently
large but fixed constant. Then there is an efficient random-
ized algorithm that with high probability computes a strong
tree-of-sets system (S, T,

⋃
e∈E(T ) P

∗
e ) in G, with parameters

brc, bh̃c. Moreover, for all Si ∈ S, Si ∩ T = ∅.

We defer the proof of Theorem 4.1 to Section 5. The fol-
lowing theorem is a central result of this section. It allows
us to obtain a path-of-sets system from a strong tree-of-sets
system.

Theorem 4.2 There is an efficient algorithm, that, given
a strong tree-of-set system (S, T,

⋃
e∈E(T ) P

∗
e ) with parame-

ters r, h̃, and integers h∗, r∗, such that (r∗)2 ≤ r and h̃ >
16h∗(r∗)2 + 1, computes a path-of-sets system of width r∗

and height h∗.

Before we prove the preceding theorem, we use the results
stated so far to complete the proof of the main result of the
paper.

Proof of Theorem 1.1. We assume that k is large enough,
so, e.g. k1/30 > c∗ log k for some large enough constant c∗.
Given a graph G = (V,E) with treewidth k, we use The-
orem 2.3 to compute a subgraph G′ of G with maximum
vertex degree ∆ = O(log3 k), and a set X of Ω(k/ poly log k)
vertices, such that X is node-well-linked in G′. We add a
new set T of |X| vertices, each of which connects to a dis-
tinct vertex of X with an edge. For convenience, we denote
this new graph by G, and |T | by k, and we refer to the ver-
tices of T as terminals. Clearly, the maximum vertex degree
of G is at most ∆ = O(log3 k), the degree of every terminal
is 1, and T is node-well-linked in G. We then apply Theo-
rem 4.1 to G and T to obtain a strong tree-of-sets system

(S, T,
⋃
e∈E(T ) P

∗
e ), with parameters r = k2/49

log2 k
, h̃ = k3/49

log24 k
.

It is easy to verify that the conditions of the theorem hold
for these values.
We then apply Theorem 4.2 to obtain a path-of-set system

with height h∗ = b h̃
1/3

4
c and width r∗ = h∗. Again it is easy

to verify that the conditions of the theorem are satisfied for
these choices. Finally we use Theorem 3.1 to construct a grid
minor of size Ω(

√
h∗)×Ω(

√
h∗). Notice that h∗ = Θ(h̃1/3) =

Θ(k1/49/ poly log k), and the the size of the grid minor com-

puted by the algorithm is
(

Ω
(

k1/98

poly log k

)
× Ω

(
k1/98

poly log k

))
.
2

The rest of this section is devoted to proving Theorem 4.2.
Let (S, T,∪e∈E(T )P∗e ) be a strong tree-of-set system with

parameters r and h̃. Let h∗, r∗ be integers such that (r∗)2 ≤
r and h̃ > 16h∗(r∗)2 + 1.
For convenience, for each set S ∈ S, we denote the corre-
sponding vertex of T by vS . If tree T contains a root-to-leaf
path of length at least r∗, then we are done, as this path
gives a path-of-sets system of height h̃ ≥ h∗ and width r∗.
Otherwise, since |V (T )| = r ≥ (r∗)2, T must contain at
least r∗ leaves (see Claim 2.1). Let L be any subset of r∗

leaves of T (if there are more leaves in T , we only choose r∗

of them). Let L = {S ∈ S | vS ∈ L} be the collection of r∗

clusters whose corresponding vertices belong to L. We next
show how to build a path-of-sets system, whose collection of
sets is L.



Intuitively, we would like to perform a depth-first-search
tour on the meta-tree T . This should be done with many
paths in parallel. In other words, we want to build h∗ dis-
joint paths, that visit the sets in S in the same order — the
order of the tour. The clusters in L will then serve as the
sets S in our final path-of-sets system, and the collection of
h∗ paths that we build will be used for the paths Pi. In
order for this to work, we need to route up to three sets of
paths across clusters S ∈ S. For example, if the vertex vS
corresponding to the cluster S is a degree-3 vertex in T , then
for the DFS tour, we need to route three sets of paths across
S: one set connecting the paths coming from vS ’s parent to
its first child, one set connecting the paths coming back from
the first child to the second child, and one set connecting the
paths coming back from the second child to its parent. Even
though every pair of relevant vertex subsets on the interface
of S is linked, this property only guarantees that we can
route one such set of paths, which presents a major techni-
cal difficulty in using this approach directly. Moreover, it
is not clear how to coordinate the routing between different
clusters, without losing too many paths.
Our algorithm consists of two phases. In the first phase, we
build a collection of disjoint paths, connecting the cluster
corresponding to the root of the tree T to the clusters in L,
along the root-to-leaf paths in T . In the second phase, we
build the path-of-sets system by exploiting the paths con-
structed in Step 1, to simulate the tree tour.

4.1 Step 1
Let G′ be the graph obtained from the union of G[S] for
all S ∈ S, and the sets P∗e of paths, for all e ∈ E(T ). We
root T at any degree-1 vertex, and we let S∗ be the cluster
corresponding to the root of T . The goal of the first step is
summarized in the following theorem.

Theorem 4.3 We can efficiently compute in graph G′, for
each S ∈ L, a collection QS of bh̃/r∗c paths, that have the
following properties:

• Each path Q ∈ QS starts at a vertex of S∗ and termi-
nates at a vertex of S; its inner vertices are disjoint
from S and S∗.

• For each path Q ∈ QS, for each cluster S′, where vS′
lies on the path connecting vS∗ to vS in T , the inter-
section of Q with G′[S′] is a contiguous segment of Q.
For any cluster S′ where vS′ is not on the path con-
necting vS∗ to vS in T , Q ∩ S′ = ∅.

• The paths in Q =
⋃
S∈LQS are vertex-disjoint.

Notice that from the structure of graph G′, if P is the path
connecting vS∗ to vS in the tree T , then every path in QS
visits every cluster S′ with vS′ ∈ P exactly once, in the
order in which they appear on P , and it does not visit any
other clusters of S.

Proof. For each cluster S′ ∈ S, let n(S′) be the number
of the descendants of vS′ in the tree T that belong to L. If
S′ 6= S∗, then let e be the edge of the tree T connecting vS′
to its parent. Let ΓS′ = ΓS′(e) be the set of vertices of S′

that serve as endpoints of the paths in P∗e . We process the
tree in top to bottom order, while maintaining a set Q of
disjoint paths. We ensure that the following invariant holds
throughout the algorithm. Let S, S′ be any pair of clusters,

such that vS is the parent of vS′ in T . Assume that so far
the algorithm has processed vS but it has not processed vS′
yet. Then there is a collection QS′ ⊆ Q of n(S′) · bh̃/r∗c
paths connecting S∗ to S′ in Q. Each such path does not
share vertices with S′, except for its last vertex, which must
belong to ΓS′ . Moreover, for every path Q ∈ QS′ , for every
cluster S′′ where vS′′ lies on the path connecting vS∗ to
vS′ in T , the intersection of G′[S′′] and Q is a contiguous
segment of Q, and for any other cluster S′′, Q ∩ S′′ = ∅.
In the first iteration, we start with the root vertex vS∗ . Let
vS be its unique child, and let e = (vS∗ , vS) be the corre-

sponding edge of T . We let QS be any subset of n(S)·bh̃/r∗c
paths of P∗e , and we set Q = QS . (Notice that |L| · bh̃/r∗c ≤
h̃ = |P∗e |, since |L| = r∗, so we can always find such a subset
of paths).
Consider now some non-leaf vertex vS , and assume that its
parent has already been processed. We assume that vS has
two children. The case where vS has only one child is treated
similarly. Let QS ⊂ Q be the subset of paths currently
connecting S∗ to S, and let Γ′ ⊆ ΓS be the endpoints of
these paths that belong to S. Let vS′ , vS′′ be the children
of vS in T , and let e1 = (vS , vS′), e2 = (vS , vS′′) be the
corresponding edges of T . We need the following claim.

Claim 4.1 We can efficiently find a subset Γ1 ⊂ ΓS(e1) of

n(S′) · bh̃/r∗c vertices and a subset Γ2 ⊂ ΓS(e2) of n(S′′) ·
bh̃/r∗c vertices, together with a set R of |Γ′| disjoint paths
contained inside G′[S], where each path connects a vertex of
Γ′ to a distinct vertex of Γ1 ∪ Γ2.

Proof. We build the following flow network, starting
with G[S]. Set the capacity of every vertex in S to 1. Add
a sink t, and connect every vertex in Γ′ to t with a directed
edge. Add a new vertex s1 of capacity n(S′)·bh̃/r∗c and con-
nect it with a directed edge to every vertex of ΓS(e1). Sim-

ilarly, add a new vertex s2 of capacity n(S′′) · bh̃/r∗c and
connect it with a directed edge to every vertex of ΓS(e2).
Finally, add a source s and connect it to s1 and s2 with
directed edges.
From the integrality of flow, it is enough to show that there
is an s-t flow of value |Γ′| = n(S) ·bh̃/r∗c = (n(S′)+n(S′′)) ·
bh̃/r∗c in this flow network. Since Γ′ and ΓS(e1) are linked,
there is a set P1 of |Γ′| disjoint paths connecting the vertices
of Γ′ to the vertices of ΓS(e1). We send n(S′)/n(S) flow
units along each such path. Similarly, there is a set P2 of
|Γ′| disjoint paths connecting vertices of Γ′ to vertices of
ΓS(e2). We send n(S′′)/n(S) flow units along each such
path. It is immediate to verify that this gives a feasible s-t
flow of value |Γ′| in this network.

Let P1 ⊆ P∗(e1) be a subset of paths whose endpoints be-
long to Γ1, and define P2 ⊆ P∗(e2) similarly for Γ2. Con-
catenating the paths in QS , R, and P1 ∪ P2, we obtain two
collections of paths: set QS′ of n(S′)·bh̃/r∗c paths, connect-

ing S∗ to S′, and set QS′′ of n(S′′)·bh̃/r∗c paths, connecting
S∗ to S′′, that have the desired properties. We delete the
paths of QS from Q, and add the paths in QS′ and QS′′
instead.
Once all non-leaf vertices of the tree T are processed, we
obtain the desired collection of paths.

4.2 Step 2



In this step, we process the tree T in the bottom-up order,
gradually building the path-of-sets system. We will imitate
the depth-first-search tour of the tree, and exploit the sets
{QS | S ∈ L} of paths constructed in Step 1 to perform this
step.
For every vertex vS of the tree T , let TvS be the subtree
of T rooted at vS . Define a sub-graph GS of G′ to be the
union of all clusters G′[S′] with vS′ ∈ V (TvS ), and all sets
P∗e of paths with e ∈ E(TvS ). We also define LS ⊆ L to
be the set of all descendants of vS that belong to L, and
LS = {S′ | vS′ ∈ LS} the collection of the corresponding
clusters.
We process the tree T in a bottom to top order, maintaining
the following invariant. Let vS be any vertex of T , and let
`S be the length of the longest simple path connecting vS to
any of its descendants in T . Once vertex vS is processed, we
have computed a path-of-sets system (LS ,PS) of height h∗

and width |LS |, that is completely contained in GS . (That
is, the path-of-sets system is defined over the collection LS of
vertex subsets - all subsets S′ ∈ L where vS′ is a descendant
of vS in T ). Let A,B ∈ LS be the first and the last set
on the path-of-sets system. Then we also compute subsets

Q′A ⊆ QA, Q′B ⊆ QB of paths of size at least b h̃
2r∗ c−8`S ·h∗,

such that the paths in Q′A∪Q′B are completely disjoint from
the paths in PS (see Figure 2). Note that QA,QB are the
sets of paths computed in Step 1, so the paths inQA∪QB are
also disjoint from

⋃
S′∈L S

′, except that one endpoint of each
such path must belong to A or B. We note that since the tree

height is bounded by r∗, b h̃
2r∗ c−8`S ·h∗ ≥ b h̃

2r∗ c−8r∗ ·h∗ > 0
where the latter inequality follows from the assumption that
h̃ > 16h∗(r∗)2 + 1.

A B

Q�
A Q�

B

S

S∗

...

Figure 2: Invariant for Step 2.

Clearly, once all vertices of the tree T are processed, we
obtain the desired path-of-sets system (L,P) of width r∗

and height h∗. We now describe the algorithm for processing
each vertex.
If vS is a leaf of T , then we do nothing. If vS ∈ L, then
the path-of-sets system consists of only S = {S}, with A =
B = S. We let Q′A,Q′B be any pair of disjoint subsets of

QS containing b h̃
2r∗ c paths each. If vS is a degree-2 vertex

of T , then we also do nothing. The path-of-sets system is
inherited from its child, and the corresponding sets Q′A,Q′B
remain unchanged. Assume now that vS is a degree-3 vertex,
and let vS′ , vS′′ be its two children. Consider the path-of-

sets systems that we computed for its children: (LS′ ,PS
′
)

S

...
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(c) The end

Figure 3: Processing a degree-3 vertex vS.

for S′ and (LS′′ ,PS
′′

) for S′′. Let A1, B1 be the first and
the last cluster of the first system, and A2, B2 the first and
the last cluster of the second system (see Figure 3(a)). The
idea is to connect the two path-of-sets systems into a single
system, by joining one of {A1, B1} to one of {A2, B2} by
h∗ disjoint paths. These paths will be a concatenation of
sub-paths of some paths from Q′A1

∪Q′B1
∪Q′A2

∪Q′B2
, and

additional paths contained inside S.
Consider the paths in Q′A1

and direct these paths from A1

towards S∗. For each such path Q, let vQ be the first vertex
of Q that belongs to S. Let Γ1 =

{
vQ | q ∈ Q′A1

}
. We sim-

ilarly define Γ2, Γ′1,Γ
′
2 for Q′B1

, Q′A2
and Q′B2

, respectively.
Denote Γ = Γ1 ∪ Γ2, and Γ′ = Γ′1 ∪ Γ′2. For simplicity, we
denote the portions of the paths in Q′A1

∪Q′B1
that are con-

tained in S by P, and the portions of paths in Q′A2
∪ Q′B2

that are contained in S by P ′ (see Figure 3(b)).
Our goal is to find a set R of 4h∗ disjoint paths inside S
connecting Γ to Γ′, such that the paths in R intersect at



most 8h∗ paths in P, and at most 8h∗ paths in P ′. Since
sets Γ,Γ′ are linked in G′[S], we can find a set R of 4h∗

disjoint paths inside S connecting Γ to Γ′, however these
paths may intersect many paths in P ∪ P ′. We start from
an arbitrary set R of 4h∗ disjoint paths connecting Γ to Γ′

inside S. We next re-route these paths, using Lemma 2.2.
We apply Lemma 2.2 twice. First, we unify all vertices of
Γ into a single vertex s, and direct the paths in P and the
paths in R towards it. We then apply Lemma 2.2 to the
two sets of paths, with P as X and R as Y. Let P̃ ⊂ P,
R′ be the two resulting sets of paths. We discard from P̃
paths that share endpoints with paths in R′ (at most |R′|
paths). Then |P̃| ≥ |P|− 2|R| = |P|− 8h∗, and R′ contains
4h∗ disjoint paths connecting vertices in Γ to vertices in Γ′.
Moreover, the paths in P̃ ∪ R′ are completely disjoint.
Next, we unify all vertices in Γ′ into a single vertex s, and
direct all paths in P ′ and R′ towards s. We then apply
Lemma 2.2 to the two resulting sets of paths, with P ′ serving
as X and R′ serving as Y. Let P̃ ′ ⊂ P and R′′ be the two
resulting sets of paths. We again discard from P̃ ′ all paths
that share an endpoint with a path in R′′ – at most |R′′|
paths. Then |P̃ ′| ≥ |P̃| − 2|R′′| ≥ |P̃| − 8h∗, and the paths

in P̃ ′ ∪ R′′ are completely disjoint from each other. Notice
also that the paths in R′′ remain disjoint from the paths in
P̃, since the paths in R′′ only use vertices that appear on
the paths in R′ ∪ P ′, which are disjoint from P̃.
Consider now the final set R′′ of paths. The paths in R′′
connect the vertices of Γ1 ∪ Γ2 to the vertices of Γ′1 ∪ Γ′2.
There must be two indices i, j ∈ {1, 2}, such that at least
a quarter of the paths in R′′ connect the vertices of Γi to
the vertices of Γ′j . We assume without loss of generality
that i = 2, j = 1, so at least h∗ of the paths in R′′ connect
the vertices of Γ2 to the vertices of Γ′1. Let R∗ ⊂ R′′ be
the set of these paths. We obtain a collection P∗ of h∗

paths connecting B1 to A2, by concatenating the prefixes of
the paths in Q′B1

, the paths in R′′, and the prefixes of the
paths in Q′A2

(see Figure 3(c)). Notice that the paths in P∗
are completely disjoint from the two path-of-sets systems,
except for their endpoints that belong to B1 and A2. This
gives us a new path-of-sets system, whose collection of sets
is S = LS . The first and the last sets in this system are A1

and B2, respectively. In order to define the new set Q′A1
, we

discard from Q′A1
all paths that share vertices with paths in

R′′ (as observed before, there are at most 8h∗ such paths).
Since, at the beginning of the current iteration, |Q′A1

| ≥
b h̃

2r∗ c − 8h∗`S′ ≥ b h̃
2r∗ c − 8h∗(`S − 1), at the end of the

current iteration, |Q′A1
| ≥ b h̃

2r∗ c − 8h∗`S as required. The
new set Q′B2

is defined similarly. From the construction, the
paths in Q′A1

∪ Q′B2
are completely disjoint from the paths

in R∗, and hence they are completely disjoint form all paths
participating in the new path-of-sets system. This finishes
the proof of Theorem 4.2.
In order to complete the proof of Theorem 1.1, it is now
enough to prove Theorem 4.1. We do so in the following
section.

5. FINDING A TREE-OF-SETS SYSTEM
In this section we prove Theorem 4.1. For this purpose we
first define a weaker version of the tree-of-sets system, that
is easier to work with, and then show how one can obtain a
strong tree-of-set systems from it.

Definition 5.1 Given a set S of vertices in graph G, the
interface of S is Γ = {v ∈ S | ∃e = (u, v) ∈ outG(S)}. We
say that S has the α-bandwidth property in G iff its interface
Γ is α-well-linked in G[S].

Definition 5.2 A weak tree-of-sets system with parameters
r, h, αBW consists of:

• A collection S = {S1, . . . , Sr} of r disjoint vertex sub-
sets of G, where for each 1 ≤ i ≤ r, G[Si] is connected;

• A tree T over a set {v1, . . . , vr} of vertices, whose max-
imum vertex degree is at most 3;

• For each edge e = (vi, vj) of T , we are given a set Pe of
h disjoint paths, connecting Si to Sj directly (that is,
paths in Pe do not contain the vertices of

⋃
S∈S S as in-

ner vertices). Moreover, all paths in P =
⋃
e∈E(T ) Pe

are pairwise disjoint,

and has the following additional property. Let G′ be the sub-
graph of G obtained by the union of G[Si] for all Si ∈ S and⋃
e∈E(T ) P(e). Then each Si ∈ S has the αBW-bandwidth

property in G′.

In the following lemma, we show how to obtain a strong
tree-of-sets system from a weak tree-of-sets system.

Lemma 5.1 There is an efficient randomized algorithm, that,
given a graph G with maximum vertex degree ∆, and a
weak tree-of-sets system (S, T,

⋃
e∈E(T ) Pe) with parameters

r, h, αBW in G, computes a strong tree-of-sets system
(S, T,

⋃
e∈E(T ) P

∗
e ) with parameters r, h̃, such that

• P∗e ⊂ Pe for each e ∈ E(T )

• h̃ = Ω(
α2
BW

∆11(βARV(h))2
· h)

Proof. We prove the lemma by boosting well-linkedness
using the claims in Section 2. Consider the given weak tree-
of-sets system (S, T,∪e∈E(T )Pe) in G. Let Si ∈ S. Con-
sider some edge e = (vi, vj) of T . Let Γ1 be the set of
endpoints of the paths in Pe that belong to Si, and re-
call that Γ1 is αBW-well-linked in G[Si]. We apply The-
orem 2.2 to Si and Γ1, to obtain a subset Γ′1 ⊆ Γ1 of

Θ
(

αBW
∆5βARV(h)

· h
)

vertices, such that Γ′1 is node-well-linked

in G[Si]. Let P ′e ⊂ Pe be a subset of paths whose endpoint

belongs to Γ′1, so |P ′e| = Θ
(

αBW
∆5βARV(h)

· h
)

. Let Γ2 be the

set of endpoints of the paths in P ′e that belong to Sj . We
apply Theorem 2.2 to Sj and Γ2 to obtain a subset Γ′2 ⊂ Γ2

of Θ
(

( αBW
∆5βARV(h)

)2 · h
)

vertices, such that Γ′2 is node-well-

linked in Sj . Let P ′′e ⊂ P ′e be a subset of all paths whose
endpoint belongs to Γ′2. Finally, we select an arbitrary sub-

set P∗e of h̃ = b |P
′′
e |

12∆
c = Θ

(
α2
BW

∆11(βARV(h))2
· h
)

paths. We

denote by ΓSi(e) the endpoints of the paths in P∗e that be-
long to Si, and we denote by ΓSj (e) the endpoints of the
paths in P∗e that belong to Sj . We process every edge e ∈ T
in this manner. Consider now any non-leaf vertex vi ∈ T
and its corresponding set Si ∈ S. Let e 6= e′ be any pair
of edges incident on vi in T . Then from Corollary 2.2, sets
ΓSi(e) and ΓSi(e

′) of vertices are linked in G[Si].

The following theorem is the main result of this section.



Theorem 5.1 Suppose we are given a graph G of maxi-
mum vertex degree ∆ = O(log3 k), and a subset T of k ver-
tices called terminals, such that T is node-well-linked in G
and the degree of every vertex in T is 1. Additionally, as-
sume that we are given any parameters r > 1, h > 4 log k,
such that k/ log4 k > chr19∆8, where c is a large enough
constant. Then there is an efficient randomized algorithm
that with high probability computes a weak tree-of-sets sys-
tem (S, T,

⋃
e∈E(T ) Pe) in G, with parameters bhc, brc and

αBW = Ω
(

1
r2 log1.5 k

)
. Moreover, for all Si ∈ S, Si ∩ T = ∅.

Before we plunge into the proof of Theorem 5.1, we show
how to complete the proof of Theorem 4.1.

Proof of Theorem 4.1. LetG be graph with maximum de-
gree ∆ = O(log3 k) and a node-well-linked set T of k termi-

nals each of which has degree 1 in G. Let h̃, r be parameters

such that k/ log8 k > c′h̃r23∆19. Let αBW = Ω
(

1
r2 log1.5 k

)
,

as in the statement of Theorem 5.1. Let h ≥ h̃ be the

smallest number such that h̃ = c′′ · α2
BW

∆11(βARV(h))2
· h for

some sufficiently large constant c′′. If G has a tree-of-sets
system (S, T,

⋃
e∈E(T ) Pe) with parameters r, h, αBW, then,

via Lemma 5.1, we can obtain a strong tree-of-sets system
(S, T,

⋃
e∈E(T ) P

∗
e ) with parameters r, h̃. Thus it suffices to

verify that the parameters r, h, αBW satisfy the conditions
of Theorem 5.1, that is, we need to check that k/ log4 k ≥
chr19∆8. It is easy to verify this given the choice of αBW and
h and the assumption that k/ log8 k > c′h̃r23∆19. 2

The proof of Theorem 5.1 mostly follows the algorithm of [7].
The main difference is a change in the parameters, so that
the number of clusters in the tree-of-sets system is polyno-
mial in k and not polylogarithmic, and extending the argu-
ments of [7] to handle vertex connectivity instead of edge
connectivity. We also improve and simplify some of the ar-
guments of [7]. For simplicity, if (S, T,

⋃
e∈E(T ) Pe) is a weak

tree-of-sets system in G, with parameters h, r, αBW as in the
theorem statement, and for each Si ∈ S, Si ∩ T = ∅, then
we say that it is a good tree-of-sets system. In this version
of the paper we limit ourselves to giving a very high-level
overview of the proof and refer the reader to [3].
The proof uses two main parameters: r0 = r2, and h0 =
h ·poly(r ·∆ · log k). We say that a subset S of vertices of G
is a good router iff the following three conditions hold: (1)
S∩T = ∅; (2) S has the αBW-bandwidth property; and (3) S
can send a large amount of flow (say at least h0/2 flow units)
to T with no edge-congestion in G. A collection of r0 disjoint
good routers is called a good family of routers. Roughly, the
proof consists of two parts. The first part shows how to find
a good family of routers, and the second part shows that,
given a good family routers, we can build a good tree-of-sets
system. The proof of the first part is very similar to the
argument in [6]; due to space constraints we omit discussion
of this here. We sketch the second part.

Suppose we are given a good family R = {S1, . . . , Sr0} of
routers. We now give a high-level description of an algo-
rithm to construct a good tree-of-sets system from R. The
algorithm consists of two phases. We start with the first
phase.
Since every set Si ∈ R can send h0/2 flow units to the
terminals with no edge-congestion, and the terminals are 1-

well-linked in G, it is easy to see that every pair Si, Sj ∈ R
of sets can send h0/2 flow units to each other with edge-
congestion at most 3, and so there are at least h0

6∆
node-

disjoint paths connecting Si to Sj . We build an auxiliary
graph H, by contracting each cluster Si ∈ R into a super-
node vi. We view the super-nodes v1, . . . , vr0 as the termi-
nals ofH, and denote T̃ = {v1, . . . , vr0}. We then use known
connectivity-preserving reduction procedures in graph H re-
peatedly, to obtain a new graph H ′, whose vertex set is T̃ ,
every pair of vertices remains h0

poly(∆)
-edge-connected, and

every edge e = (vi, vj) ∈ E(H ′) corresponds to a path Pe in
G, connecting a vertex of Si to a vertex of Sj . Moreover,
the paths {Pe | e ∈ E(H ′)} are node-disjoint, and they do
not contain the vertices of

⋃
S∈R S as inner vertices. More

specifically, graph H is obtained from H ′ by first perform-
ing a sequence of edge contraction and edge deletion steps
that preserve element-connectivity of the terminals [14], and
then performing edge-splitting steps that preserves edge-
connectivity [20]. Let Z be a graph whose vertex set is

T̃ , and there is an edge (vi, vj) in Z iff there are many (say
h0

r20 poly(∆)
) parallel edges (vi, vj) in H ′. We show that Z is

a connected graph, and so we can find a spanning tree T
of Z. Since r0 = r2, either T contains a path of length
r, or it contains at least r leaves. Consider the first case,
where T contains a path P of length r. We can use the
path P to define a tree-of-sets system (in fact, it will give a
path-of-sets system directly, after we apply Theorem 2.2 to
boost well-linkedness inside the clusters that participate in
P , and Corollary 2.2 to ensure the linkedness of the corre-
sponding vertex subsets inside each cluster). From now on,
we focus on the second case, where T contains r leaves. As-
sume without loss of generality that the good routers that
are associated with the leaves of T are R′ = {S1, . . . , Sr}.
We show that we can find, for each 1 ≤ i ≤ r, a subset
Ei ⊂ outG(Si) of h3 = h poly(r ·∆) edges, such that for each
pair 1 ≤ i < j ≤ r, there are h3 node-disjoint paths con-
necting Si to Sj in G, where each path starts with an edge
of Ei and ends with an edge of Ej . In order to compute
the sets Ei of edges, we show that we can simultaneously
connect each set Si to the set S∗ ∈ R corresponding to the
root of tree T with many paths. For each i, let Pi be the
collection of paths connecting Si to S∗. We will ensure that
all paths in

⋃
i Pi are node-disjoint. The existence of the

sets Pi of paths follows from the fact that all sets Si can
simultaneously send large amounts of flow to S∗ (along the
leaf-to-root paths in the tree T ) with relatively small conges-
tion. After boosting the well-linkedness of the endpoints of
these paths in S∗ using Theorem 2.2 for each Pi separately,
and ensuring that, for every pair Pi,Pj of such path sets,
their endpoints are linked inside S∗ using Corollary 2.2, we
obtain somewhat smaller subsets P ′i ⊂ Pi of paths for each
i. The desired set Ei of edges is obtained by taking the first
edge on every path in P ′i. We now proceed to the second
phase.
The execution of the second phase is very similar to the ex-
ecution of the first phase, except that the initial graph H is
built slightly differently. We will ignore the clusters inR\R′.
For each cluster Si ∈ R′, we delete all edges in outG(Si)\Ei
from G, and then contract the vertices of Si into a super-
node vi. As before, we consider the set T̃ = {v1, . . . , vr}
of supernodes to be the terminals of the resulting graph H̃.
Observe that now the degree of every terminal vi is exactly



h3, and the edge-connectivity between every pair of termi-
nals is also exactly h3. It is this additional property that
allows us to build the tree-of-sets system in this phase. As
before, we perform standard splitting operations to reduce
graph H̃ to a new graph H̃ ′, whose vertex set is T̃ . As be-
fore, every edge e = (vi, vj) in H̃ ′ corresponds to a path Pe
connecting a vertex of Si to a vertex of Sj in G; all paths

in
{
Pe | e ∈ E(H̃ ′)

}
are node-disjoint, and they do not con-

tain the vertices of
⋃
S∈R′ S as inner vertices. However, we

now have the additional property that the degree of every
vertex vi in H̃ ′ is h3, and the edge-connectivity of every pair
of vertices is also h3. We build a graph Z̃ on the set T̃ of
vertices as follows: for every pair (vi, vj) of vertices, if there

number of edges (vi, vj) in H̃ ′ is ni,j > h3/r
3, then we add

ni,j parallel edges (vi, vj) to Z̃. Otherwise, if ni,j < h3/r
3,

then we do not add any edge connecting vi to vj . We then
show that the degree of every vertex in Z̃ remains very close
to h3, and the same holds for edge-connectivity of every pair
of vertices in Z̃. Note that every pair vi, vj of vertices of Z̃
is either connected by many parallel edges, or there is no
edge (vi, vj) in Z̃. In the final step, we show that we can

construct a spanning tree of Z̃ with maximum vertex de-
gree bounded by 3. This spanning tree immediately defines
a good tree-of-sets system. A way of seeing that graph Z̃
has a spanning tree of degree at most 3 is to observe that
graph Z̃ is 1-tough (that is, if we remove q vertices from Z̃,
there are at most q connected components in the resulting
graph, for any q). It is known that any 1-tough graph has
a spanning tree of degree at most 3 [25]. For algorithmic
purposes, we use a different proof and construct the desired
spanning tree using the algorithm of Singh and Lau [24].
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