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ABSTRACT

We study the Excluded Grid Theorem of Robertson and
Seymour. This is a fundamental result in graph theory, that
states that there is some function f : Z* — Z%, such that
for any integer g > 0, any graph of treewidth at least f(g),
contains the (g x g)-grid as a minor. Until recently, the
best known upper bounds on f were super-exponential in
g. A recent work of Chekuri and Chuzhoy provided the
first polynomial bound, by showing that treewidth f(g) =
O(g°® poly log g) is sufficient to ensure the existence of the
(g X g)-grid minor in any graph. In this paper we provide a
much simpler proof of the Excluded Grid Theorem, achiev-
ing a bound of f(g) = O(g* polylogyg). Our proof is self-
contained, except for using prior work to reduce the maxi-
mum vertex degree of the input graph to a constant.

1. INTRODUCTION

We study the Excluded Grid Theorem of Robertson and Sey-
mour [29] - a fundamental and widely used result in graph
theory. Informally, the Excluded Grid Theorem states that
for any undirected graph G, if the treewidth of G is large,
then G contains a large grid as a minor. Graph treewidth is
an important and extensively used graph parameter, that,
intuitively, measures how close a given graph G is to being
“tree-like”. The treewidth of a graph is usually defined via
tree-decompositions. A valid tree-decomposition of a graph
G consists of a tree T', and, for each node a € V(T'), a subset
X (a) C V(G) of vertices of G, sometimes called a bag. We
require that for each edge e = (u,v) € E(G), there is a node
a € V(T), whose bag X (a) contains both « and v, and for
each vertex v € V(G), the set X = {a € V(T) | v € X(a)}
of nodes of T" whose bags contain v forms a non-empty con-
nected sub-tree of T. The width of a given tree decompo-
sition (7', X) is mingev(ry | X (a)] — 1, and the treewidth of
a graph G, denoted by tw(G), is the smallest width of any
valid tree-decomposition of G. For example, the treewidth of
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a tree is 1; the treewidth of the (g x g)-grid is ©(g); and the
treewidth of an n-vertex constant-degree expander is ©(n).
Many combinatorial optimization problems that are hard
on general graphs, have efficient algorithms on trees, often
via the dynamic programming technique. Such algorithms
can frequently be extended to bounded-treewidth graphs,
usually by applying the dynamic programming-based algo-
rithms to the bounded-width tree-decomposition T of G.
However, for large-treewidth graphs, a different toolkit is
often needed. The Excluded Grid Theorem provides a use-
ful insight into the structure of large-treewidth graphs, by
showing that any such graph must contain a large grid as
a minor. Recall that a graph H is a minor of a graph G,
iff H can be obtained from G by a series of edge-deletion,
edge-contraction, and vertex-deletion operations. We are
now ready to formally state the Excluded Grid Theorem.

Theorem 1.1 [29] There is some function f : Zt — Z%,
such that for any integer g > 1, any graph of treewidth at
least f(g) contains the (g X g)-grid as a minor.

The Excluded Grid Theorem plays an important role in
Robertson and Seymour’s seminal graph minor series, and it
is one of the key elements in their efficient algorithm for the
Node-Disjoint Paths problem (where the number of the de-
mand pairs is bounded by a constant) [30]. It is also widely
used in Erdos-Pésa-type results (see, e.g. [32} 17} [29]) and
in Fixed Parameter Tractability; in fact the Excluded Grid
Theorem is the key tool in the bidimentionality theory [12,
14].

It is therefore important to study the best possible upper
bounds on the function f, for which Theorem holds.
Besides being a fundamental graph-theoretic question in its
own right, better upper bounds on f immediately result in
faster algorithms and better parameters in may applications,
e.g. in Fixed Parameter Tractability and Erdos-Pésa-type
results. The original upper bound on f of |29] was substan-
tially improved by Robertson, Seymour and Thomas |28] to

flg) = 209" Diestel et al. [16] (see also [15]) provide a
simpler proof with a slightly weaker bound. This was in
turn improved by Kawarabayashi and Kobayashi |19], and
by Leaf and Seymour [22], to f(g) = 20(9° /T g) Finally,
a recent work of Chekuri and Chuzhoy [2] provides the first
polynomial upper bound on the function f(g), by showing
that Theorem holds for f(g) = O(g°® polylogg). On
the negative side, Robertson et al. [28] show that f(g) =
Q(g*log g) must hold, and they conjecture that this value is



sufficient. Demaine et al. [13] conjecture that the bound of
f(g) = ©(g®) is both necessary and sufficient.

In this paper we provide a proof of Theorem with an
improved bound of f(g) = O(g*® polylogg). The main ad-
vantage of our proof is that, unlike the proof of [2], it is very
simple conceptually. Our proof is almost self-contained, in
the following sense: we provide a self-contained proof of The-
orem for bounded-degree graphs G. In order to handle
general graphs, we need to use previously known results to
reduce the maximum vertex degree of the input graph to
a constant, while approximately preserving its treewidth.
This is the only part of our proof that is not self-contained.
We discuss this in more detail below. Unlike the proof
of [2], that relies on many known technical tools, such as
the cut-matching game of Khandekar, Rao and Vazirani |20,
graph-reduction step preserving element-connectivity |18} (8],
edge-splitting [23], and LP-based approximation algorithms
for bounded-degree spanning tree [31] to name a few, our
proof is entirely from first principles. The contribution of
this paper is therefore two-fold: we provide a conceptu-
ally simple framework for proving the Excluded Grid The-
orem, and show that it can be used to obtain a polynomial
bound of f(g); and we improve the bound of [2] on f(g)
from O(g%® poly log g) to O(g%® poly log g). We note that we
have tried to present a simple proof, while simultaneously
optimizing the bound on f(g). Unfortunately, these two
goals are sometimes conflicting, and we chose to compro-
mise somewhat on both of them. Namely: the proof can be
significantly simplified if we are only interested in obtaining
a polynomial bound on f(g); on the other hand, the bound
that we obtain can be further improved, at the cost of mak-
ing the proof more technical. Our hope is that the simple
conceptual framework introduced in this paper will lead to
significantly better bounds for the Excluded Grid Theorem.
There are two caveats in our proof. The first one, that we
have already mentioned, is that it requires that the input
graph G has a bounded degree. This can be achieved in
several ways, using prior work. Reed and Wood [27] showed
that any graph of treewidth k contains a sub-graph of maxi-

mum vertex degree 4, and treewidth Q(k'/4/log!/® k). Kreutzer

and Tazari |21] gave a constructive proof of a similar re-
sult, with slightly weaker bounds. The algorithm of Chekuri
and Ene [4] can be used to construct a sub-graph G’ of
the input treewidth-k graph G, such that the treewidth of
G’ is Q(k/ poly log k), and maximum vertex degree bounded
by some constant. Finally, Chekuri and Chuzhoy [3] have
recently shown that any graph G of treewidth & contains
a sub-graph of maximum vertex degree 3, and treewidth
Q(k/ polylog k). Unfortunately, this latter result builds on
parts of the previous proof of the Excluded Grid Theo-
rem of [2]. Therefore, if one is interested in a simple self-
contained proof of Theorem [1.1] one should use the result
of [27] as a starting point. In this paper we chose instead
to use the result of 3] as our starting point, for two rea-
sons. First, it gives the best bounds on both the degree and
the treewidth of the resulting graph. Second, working with
graphs whose maximum vertex degree is 3 is easier than
with general constant-degree graphs, since routing on edge-
disjoint and node-disjoint paths in such graphs is very sim-
ilar. This saves on a number of technical steps and makes
the proof easier to follow. The second caveat is that, un-
like the proof of [2], that also provides an algorithm, whose
running time is polynomial in n and g, to construct the

grid minor, our proof is non-constructive. We believe that
it can be turned into an algorithm whose running time is
20() . poly(n), where k = poly(g) is the treewidth of the in-
put graph, using methods similar to those used in [2], but we
have decided to keep the proof non-constructive for the sake
of simplicity. It is however unlikely that our methods can
give an algorithm whose running time is polynomial in both
k and n, since we need to solve the sparsest cut problem
(with k terminals) exactly. We note that most applications
of the Excluded Grid Theorem (e.g. in Fixed-Parameter
Tractability and in Erdos-Pésa—type results) only use the
non-constructive version of the theorem. In other results,
where a constructive version is used, such as the algorithm
of Robertson and Seymour for the Node-Disjoint Paths prob-
lem [30], a running time 2°%*) - poly(n) for finding the grid
minor is acceptable, since the rest of the algorithm inher-
ently incurs this (and in fact much higher) running time.
As in much prior work in this area, we use the notion of
well-linkedness. We say that a set T of vertices is a-well-
linked in graph H, for 0 < a < 1, iff for any pair 77, 7" C T
of disjoint equal-sized subsets of vertices of T', there is a set
Q(T’, T") of paths in H, connecting every vertex of T’ to a
distinct vertex of T”, such that every edge of H participates
in at most 1/« such paths. We will informally say that
a set T of vertices is well-linked, if T' is a-well-linked for
some constant «. A central combinatorial object used in
the proof of the Excluded Grid Theorem of [2], and that we
also use here, is the Path-of-Sets system. We note that Leaf
and Seymour |22] used a very similar, but somewhat weaker
object, called a grill. A path-of-sets system of width r and
height h consists of a sequence S = (S1,...,S;) of r clusters,
where for each cluster S; C V(G), we are given two disjoint
subsets A;, B; C S; of h vertices each. We require that the
vertices of A; U B; are well-linked in G[S;]. Additionally,
for each 1 < i < r, the path-of-sets system contains a set
Pi of h paths, connecting every vertex of B; to a distinct
vertex of A;y1. The paths in UZ P; must be all mutually
disjoint, and they cannot contain the vertices of |J},_, Sy
as inner vertices. Chekuri and Chuzhoy [2], strengthening
a similar result of Leaf and Seymour [22], showed that if a
graph G contains a path-of-sets system of height ©(g?) and
width ©(g?), then G contains the (g x g)-grid as a minor.
Therefore, in order to prove the Excluded Grid Theorem, it
is now enough to prove that there is a function f : Z* — ZT,
such that any graph of treewidth at least f(g) contains a
path-of-sets system of height Q(g?) and width Q(g?).
Chekuri and Chuzhoy [2] showed this to be true for f(g) =

O(g% polylog g), and we prove it here for f(g) = O(g° poly log g).

We now briefly summarize the proof of [2], before we describe
our proof. It is well-known (see e.g. [26]), that if a graph
G has treewidth k, then there is a subset ' C V(G) of k/4
vertices, such that T is well-linked in G. Throughout the
proof, we will refer to the vertices of T" as terminals. Given
any cluster C' C V(G), we will denote by out(C) the set of
edges of G with exactly one endpoint in C, and by I'(C) the
boundary of C' — the set of vertices of C incident on the
edges of out(C).

The proof of [2] consists of four steps. In the first step, they
show that any graph G of treewidth k£ contains a large col-
lection S of disjoint good routers. Informally, a good router
is a cluster C' C V(G), such that (i) the boundary of C' is
well-linked in G[C]; and (ii) there is a set P(C) of k¢ disjoint
paths, for some constant 0 < € < 1, connecting the termi-



nals to the vertices of C. The construction of the routers
involves several old and new techniques, such as building a
contracted graph that “hides” irrelevant information about
G by contracting some clusters; random partitions of graphs;
and the so-called well-linked decompositions. In the second
step, the clusters of S are “organized” into a tree: that is,
we construct an object, called a tree-of-sets system, that is
similar to the path-of-sets system, except that the clusters
are connected via a tree-like structure instead of a path-like
structure. This step involves carefully removing vertices of
G that do not belong to the clusters of S, while preserv-
ing the connectivities between the clusters of S, by using
graph-reduction steps preserving element-connectivity, to-
gether with standard edge-splitting. If the resulting tree-of-
sets system has a long root-to-leaf path, then we can use this
path as the final path-of-sets system. Otherwise, let S’ C S
be the subset of clusters that serve as the leaves of the tree.
In the third step, we repeat Step 2 on the clusters of S’ in-
stead of the clusters of S, and a carefully selected sub-graph
G’ of G, to ensure that the tree corresponding to the result-
ing tree-of-sets system has maximum vertex degree at most
3. This step relies on an LP-based approximation algorithm
for bounded-degree spanning trees of [31]. Finally, in the
fourth step, we turn the resulting tree-of-sets system into a
path-of-sets system, by carefully simulating a DFS tour of
the corresponding tree.

In contrast, our algorithm consists of only one subroutine,
that, intuitively, shows that, given any path-of-sets system
of width 1 and height h, we can obtain a path-of-sets sys-
tem of width 2 and height h/c’, for some constant ¢’. More
specifically, suppose we are given some subset S of vertices
of GG, and two disjoint subsets T1,T> C S of vertices, such
that |Th| = h/c (where ¢ is some constant), |T>| = h, and
(Th U T5) is well-linked in G[S]. We show that there are
two disjoint clusters X,Y in S, a subset E' C E(X,Y) of
h/c? edges whose endpoints are all distinct, and two sub-
sets Tt € X NTy of at least h/c2 vertices and T C Y N T
of at least h/c vertices, such that, if we denote by YT x and
Ty the endpoints of the edges of E’ that belong to X and
Y, respectively, then Tx U Ty is well-linked in G[X], and
Ty U Ty is well-linked in G[Y] (see Figure [1(a)). We call
the corresponding tuple (X,Y, Ty, Ts, E') a 2-cluster chain,
and we call this procedure a splitting of a cluster. Using this
procedure, it is now easy to complete the proof of the Ex-
cluded Grid Theorem. Let k be the treewidth of the input
bounded-degree graph G. Our algorithm performs 2log, g
phases, where each phase j starts with a path-of-sets sys-
tem of width 27=! and height k/(8¢*U~Y), and produces a
path-of-sets system of width 27 and height k/(8¢*). For
our initial path-of-sets system of width 1 and height k/8,
we use S1 = V(G), and we let (A1, By) be any partition of
the terminals into equal-sized subsets. Clearly, after 2log, g
phases, we obtain a path-of-sets system of width ¢ and
height k/(8¢g*'°8¢). Each phase is executed by simply split-
ting each cluster of the current path-of-sets system into two,
using the cluster-splitting procedure described above. We
omit the technical details, that can be found in Section
We now briefly sketch our algorithm for splitting a cluster
S. We note that this is an informal and imprecise overview,
that is only intended to provide intuition. Let k' = |Ti|.
We start by defining a slightly weaker object, called a weak
2-cluster chain. This object consists of two disjoint clusters
C1,C> C S\ (T1 UT>), such that for ¢ € {1,2}, the interface

(b) Weak 2-cluster chain.

Figure 1: Splitting a cluster.

vertices of C; are well-linked in G[C;], and there is a set
P; of Q(k’") node-disjoint paths, connecting the vertices of
C; to the terminals of T3, such that the paths in P; U P2
are disjoint from each other, and do not contain the vertices
of C1 U C> as inner vertices (see Figure . We show
that the existence of the weak 2-cluster chain is sufficient
to guarantee the existence of the (strong) 2-cluster chain in
G|[S]: the idea is to use the well-linkedness of the set T1 UT5
of vertices, to carefully connect the two clusters C1,C> to
each other, and to connect one of them to the set T of
vertices, by large enough collections of disjoint paths. The
main technical ingredient of the paper is therefore showing
that any cluster S, with two disjoint subsets 11,72 C S of
vertices, where (11 U T3) is well-linked in G[S], contains a
weak 2-cluster chain.

From now on we denote G[S] by H, and we call the ver-
tices in T = T1 U T, terminals. Let C C V(H) \ T be
any cluster of non-terminal vertices of H, and let (A, B)
be the minimum balanced cut of H \ C, with respect to
T. In other words, (4, B) is a partition of V(H) \ C, with
|[ANTy|,|BNT1| > |T1]/4, such that |E(A, B)| is minimized
among all such partitions. Informally, we say that cluster
C is a good cluster if |E(A4, B)| < k'/28, and we say that
it is a perfect cluster if k'/28 < |E(A, B)| < 7k’ /32 (where
k' = |T1]). The main observation in the proof is that if we
find a perfect cluster C, such that I'(C) is «*-well-linked
in H[C], for some constant a, then we can find a weak 2-
cluster chain in H. In order to find such a cluster C, we
first observe that there is a good cluster Cy C V(H) \ T,
whose interface vertices are well-linked in H[Cp]: the clus-
ter Co = V(H)\ T. Among all such good clusters Co, we
choose one minimizing | out(Co)|, and among all such clus-
ters, we choose one minimizing |Cp|. We then compute a
minimum balanced cut (Z,Z’) of Cp, with respect to the
interface vertices I'(Cp). Assume without loss of general-
ity that |[I'(Co) N Z| < |T(Co) N Z'|. Tt is not hard to see
that if |T'(Co) N Z| is small enough, then Z’ must be a perfect
cluster, whose interface vertices are sufficiently well-linked in



H|[Z'] to guarantee the existence of the weak 2-cluster chain.
Otherwise, we use the two clusters Z and Z’, together with
some useful properties of balanced cuts, in order to construct
a weak 2-cluster chain directly.

Organization. We start with Preliminaries in Section [2]
and provide an overview of our algorithm in Section [3] We
then provide our algorithm for splitting a cluster in Sec-
tion [l

2. PRELIMINARIES

Given a graph G = (V, E) and a set A C V of vertices, we
denote by E¢(A) the set of edges with both endpoints in A.
For two disjoint sets A, B C V, the set of edges with one
endpoint in A and the other in B is denoted by E¢(A4, B).
The degree of a vertex v € V is denoted by dg(v). Given a
set P of paths in G, we denote by V' (P) the set of all vertices
participating in paths in P. We sometimes refer to sets of
vertices as clusters. Given a cluster C' C V| we denote by
outg(C) the set of edges with exactly one endpoint in C,
and by I'¢(C) the set of vertices of C incident on the edges
of outg(C). We sometimes call I'q(C) the boundary of C.
We may omit the subscript G if it is clear from the context.
We say that a path P is internally disjoint from a set U of
vertices, if no vertex of U serves as an inner vertex of P. We
say that two paths P, P’ are internally disjoint, iff for each
vertex v € V(P) N V(P'), v is an endpoint of both paths.
Let P be any collection of paths in graph G. We say that
the paths in P cause edge-congestion 7, if every edge e € E
is contained in at most n paths in P.

Assume that we are given two subsets S, 7 C V' of vertices.
We denote by P : S ~ T a collection P = {P, |v € S}
of paths, where path P, has v as its first vertex and some
vertex of T as its last vertex. Notice that each path of
P originates from a distinct vertex of S, and |P| = |S|.
If additionally the set P of paths causes edge-congestion
at most 7, then we denote this by P : S ~»,;, T. Assume
now that |S| = |T'| = |P|, and each path in P connects a
distinct vertex of S to a distinct vertex of T'. Then we denote
P : S ~3 T, and if the paths in P cause edge-congestion at
most 77, then we denote P : S '1\377 T. Notice that the paths
of P are allowed to contain the vertices of S U T as inner
vertices. Similarly, flow F' from the vertices of S to the
vertices of T', where every vertex of S sends one flow unit,
every vertex of T receives one flow unit, and every edge
carries at most 7 flow units is denoted by F': .S '1\:,1>,7 T. We
will repeatedly use the following simple observation, whose
proofis omitted here.

Observation 2.1 Let G be any graph, with mazimum ver-
tex degree at most 3, and T1,T> C V(G) any pair of disjoint
equal-sized subset of vertices, such that the degree of every
verter in Ty U Ty is at most 2. Let P : Ty ~31 T be any
set of edge-disjoint paths connecting every vertex of Ty to a
distinct vertex of T>. Then the paths in P are node-disjoint.

2.1 Linkedness, Well-Linkedness, and Band-
width Property

The notion of well-linkedness has played a central role in
algorithms for routing problems (see e.g. |24, |7}, |6, |25, |1,
10} [11], [4]), and is also often used in graph theory. Several
different variations of this notion were used in the past. The

definitions we use here are equivalent to those used in |10} 11}
41 12], but for convenience we define them slightly differently.

Definition 2.1 Given a graph G, a subset T C V(G) of
vertices, and a parameter 0 < a < 1, we say that T is
a-well-linked in G, iff for any pair of disjoint equal-sized
subsets T',T" C T, there is a flow F : T’ ,{jl/a T" in G.

Notice that from the integrality of flow, if T is a-well-linked,
then for any pair of disjoint equal-sized subsets T',T"" C T,
there is also a set P : T” k’l’Fl/aT T" of paths in G. The next
observation relates our definition to the one used in |7} 6,
10, 111} |4} 2], and its proof is omitted here.

Observation 2.2 Assume that we are given a vertex set
T C V(G) and a parameter 0 < a < 1, such that T is not
a-well-linked in G. Then there is a partition (A, B) of V(G),
with |E(A,B)| < ac-min {|ANT|,|BNT|}.

We call the partition given in Observation 2-2] an a-violating
partition of G with respect to T. We also need a slightly
more general definition of well-linkedness, similar to that
introduced in [10].

Definition 2.2 Given an integer k', and a parameter 0 <
a < 1, we say that a set T of vertices is (k', o)-well-linked
in graph G, iff for any pair of disjoint subsets T, T" C T,
with |T'| = |T"| < k', there is a flow F : T' ~3,,, T in G.

Notice that if |T| < 2K, then T is a-well-linked in G iff
it is (k¥', a)-well-linked in G. Notice also that if a set T of
terminals is (k¥', @)-well-linked in G, then so is any subset
T’ C T. As before, if set T is (k’, a)-well-linked in G, then
for any pair of disjoint subsets 7", 7" C T, with |T'| =
|T"”| <K', there is a set P : T’ 3(1/04} T" of paths in G.
The following observation is an analogue of Observation [2.2]
and its proof is omitted here.

Observation 2.3 Assume that we are given a set T of ver-
tices of G, an integer k' > 0, and a parameter 0 < o < 1.
Assume further that T is not (k', a)-well-linked in G. Then
there is a partition (A, B) of V(G), such that |E(A, B)| <
a-min{|ANT|,|BNT|k'}.

We call the partition given in Observation a (K, a)-
violating partition with respect to T. We next define the
notion of bandwidth property, somewhat similar to the one
defined in [24].

Definition 2.3 Given an integer k' and a parameter o > 0,
we say that a cluster C has the (k', a)-bandwidth property, iff
T'a(C) is (K, a)-well-linked in G[C]. We say that it has the
a-bandwidth property, iff T (C) is a-well-linked in G[C].

The following observation is immediate from the definition
of the bandwidth property.

Observation 2.4 Let G be any connected graph, and let C
be any cluster of G that has the (k', a)-bandwidth property,
for any integer k' > 2, and any parameter o > 0. Then
G[C] is connected.

We now define a stronger notion of well-linkedness, called
node-well-linkedness.



Definition 2.4 We say that a set T of vertices is node-well-
linked in G, iff for any pair (T',T") of disjoint equal-sized
subsets of T, there is a collection P : T' A3 T" of node-
disjoint paths in G.

Notice that from Observation 2.1} if G is a graph with max-
imum vertex degree at most 3, and T is a set of vertices
of degree at most 2 each, then T is node-well-linked in G
iff T' is 1-well-linked in G. Finally, we define the notion of
linkedness between a pair of vertex subsets.

Definition 2.5 We say that two disjoint subsets T1,T> of
vertices of G are a-linked for 0 < a < 1, iff for any pair
Ty CTy and Ty C Ty of equal-sized vertex subsets, there is
a flow F : Ty «lil/a T in G.

Notice that as before, if 71 and 1% are a-linked, then for
any pair 77 C Ty and T4 C T» of equal-sized vertex subsets,
there is a set P : T} 3(1/,)1 T3 of paths G.

The following lemma summarizes an important connection
between the graph treewidth, and the size of the largest
node-well-linked set of vertices in it.

Lemma 2.1 [260] Let k be the size of the largest node-well-
linked vertex set in G. Then k < tw(G) < 4k.

2.2 Balanced Cuts

Definition 2.6 Let G be any graph, and T C V(G) any
subset of its vertices. Given a parameter 0 < p < 1/2, a
partition (A, B) of V(G) is called a p-balanced cut of G
with respect to T, iff |ANT|,|BNT| > p|T|. It is called a
minimum p-balanced cut of G with respect to T, if it min-
imizes |E(A, B)| among all p-balanced cuts, and subject to
this, minimizes min{|ANT|,|BNT|}.

We will use the following lemma, whose proof uses standard
techniques (a variation of the so-called well-linked decompo-
sitions). The proof is omitted from this extended abstract.

Lemma 2.2 Let G = (V, E) be any graph, and C C'V any
cluster that has the a-bandwidth property, for some 0 < a <
1. Let (A, B) be the minimum p-balanced cut of G[C]| with
respect to I'(C), for some 0 < p < 1/4, and assume that
IT(C)NA| > |T'(C)NB|. Then A has the a/(2+a)-bandwidth
property.

2.3 Treewidth and Degree Reduction

Our proof of Theorem[I.I]assumes that the maximum vertex
degree of the input graph G is bounded by a constant. There
are several known results, that, given a graph G of treewidth
k, find a sub-graph G’ of G, whose maximum vertex degree
is bounded by a constant, and whose treewidth is close to
tw(G). For example, Reed and Wood [27] have shown that
any graph of treewidth k contains a sub-graph of maximum
vertex degree at most 4, and treewidth Q(k'/*/log'/® k).
The algorithm of Chekuri and Ene [4] can be used to con-
struct a sub-graph G’ of G of treewidth k/polylogk, and
maximum vertex degree bounded by some constant. We use
the following stronger result of [3]:

Theorem 2.1 [3] Let G be any graph of treewidth k. Then
there is a sub-graph G' of G, whose mazimum vertex degree
is 3, and tw(G') = Q(k/polylogk). Moreover, there is a
set T C V(G') of Q(k/ polylogk) vertices, such that T is
1-well-linked in G', and each vertez of T has degree 1 in G'.

The starting point of the above theorem is a path-of-sets
system of width poly log k, and height k/ poly log k, whose
existence follows from [2]. We chose to use Theorem
as our starting point, since it provides the best parameters,
and, due to Observation degree-3 graphs are somewhat
easier to work with. But our proof can work as well using
the result of [27] as a starting point instead.

2.4 A Path-of-Sets System

A central combinatorial object that we use is the path-of-sets
system, introduced in [2]. A closely related object, called a
grill, was previously defined by Leaf and Seymour [22].

Definition 2.7 A path-of-sets system (S, U:;ll P;) of width
r and height h in graph G consists of:

o A sequence S = (S1,...,Sr) of r disjoint vertex subsets
of G, where for each i, G[S;] is connected;

e For each 1 <1i <7, two disjoint sets A;, B; C S; of h
vertices each; the vertices of A1 U B, must have degree
1 in G; and

e Foreach 1l <i<r, asetP;:B; A Ait1 of h paths,
such that all paths in | J, Pi are mutually node-disjoint,
and do not contain the vertices of Usjes Sj as inner
vertices. '

We say that it is an a-weak path-of-sets system, if for all
1 <i<r, A;UB; is a-well-linked in G[S;]; we say that
it is a good path-of-sets system, if for all 1 < i < r, B;
is 1-well-linked in G[Si], and (Ai, B;) are }-linked in G[S;].
Finally, we say that it is a perfect path-of-sets system, if for
each 1 <1i <r, A; is node-well-linked in G[S;], B; is node-
well-linked in G[S;], and (Aji, B;) are 1-linked in G[S;].

The following theorem allows us to turn an a-weak path-of-
sets system into a good one, and eventually into a perfect
one, with only a small loss in the system’s height. The proof
is omitted from this extended abstract. A simpler proof,
with somewhat weaker parameters, can be found in [2].

Theorem 2.2 Let G be a graph with maximum vertex de-
gree 3, and suppose we are given an a-weak path-of-sets sys-
tem of height h and width r in G, where 0 < a < 1, and 1/«
is an integer. Then G contains a good path-of-sets system of
height [ah/4] and width r, and it contains a perfect path-of-
sets system of height at least ah/c*, for some constant c*,
and width r.

The following theorem, whose proof appears in [2], slightly
improves upon a similar result of [22].

Theorem 2.3 [2] Let G be any graph and let (S,|J;_, P:)
be a perfect path-of-sets system of height h and width h in G.

Then G contains the (Q(\/E) X Q(\/E)) -grid as a minor.



3. OVERVIEW

In this section we provide an overview of our proof of Theo-
rem Let G be any graph of treewidth & = Q(g°
We assume that ¢ is a power of 2 - otherwise we round
it up to the nearest power of 2, thereby at most doubling
it. We use Theorem to obtain a sub-graph G’ of G,
whose maximum vertex degree is 3, together with a set T
of k¥ = Q(r/ polylog k) terminals, such that the terminals
of T are 1-well-linked in G’, and the degree of every termi-
nal is 1. From now on we will be working with graph G’
only, so to simplify the notation, we denote G’ by G, and
k* by k. We assume that k£ > cg3° for some large constant
¢ > 24000, and it is a power of 2 - otherwise we round it
down to the closest power of 2. We discard terminals from
T until |T'| = & holds.

For 0 < j < 2logg,let r; = 2/ and h; = st7r7r- We perform
2log, g phases. The input to phase j, for 1 < j < 2log, g, is
a good path-of-sets system of width r;_; and height h;_1,
and the output is a good path-of-sets system of width r;
and height h;. The input to the first phase is a path-of-sets
system of width 1 and height /2, constructed as follows.
We let & = (S1), where S1 = V(G), and we let (A1, B1)
be is any partition of T" into two equal-sized subsets. Since
the terminals of T" are 1-well-linked in G, it is immediate to
verify that this is a good path-of-sets system of width ro = 1
and height ho = /2. Clearly, after 2log, g iterations, we
will obtain a good path-of-sets system of width ¢2 and height
P Toas 5FT = 751 = Q(g%). From Theorem , there is a
perfect path-of-sets system of width g* and height ¢2 in G,
and from Theorem G contains the (2(g) x Q(g))-grid
as a minor. The execution of each phase is summarized

in the following theorem, whose proof finishes the proof of
Theorem [[L11

Theorem 3.1 Suppose we are given a graph G with mazi-

mum vertezx degree 3, and a good path-of-sets system (S, U:;ll Pi)

of width r and height h, where h is a power of 2. Then there
is a good path-of-sets system of width 2r and height h/2'7 in

From now on we focus on proving Theorem The cen-
tral combinatorial object that we use is a two-cluster chain
(that can intuitively be thought of as a path-of-sets system
of width 2, except that the sizes of Ai, Bi, A2, Ba are no
longer uniform).

Definition 3.1 Let G be a graph, T, T> two disjoint sets
of vertices, with |T1| = k and |Tz| = k' = k/64, where k >
12000 is a power of 2. A 2-cluster chain (X,Y, Tl,TQ,E')
consists of:

e two disjoint clusters X, Y C V(G);

e a subset Tl C ThnNX, with |T1| = k', and a subset
T2 g T2 n Y, wzth |T2| = ](3/512,

e aset B/ C E(X,Y) of k/512 edges, whose endpoints
are all distinct;

Let Tx C X be the subset of vertices of X incident
on the edges of E', and let Ty C Y be the subset of
vertices of Y incident on the edges of E'. Then:

poly log g).

e T1UYx is (k/512, ) -well-linked in G[X] and ToUYy
is (k/512, a™)-well-linked in G[Y], for & =1/64. (See
Figure .

The main technical contribution of our paper is the following
theorem, that is proved in Section

Theorem 3.2 Suppose we are given a graph G, with max-
imum vertex degree at most 3, and two disjoint subsets of
vertices, T1 of size k (where k > 12000 is an integral power
of 2), and T» of size k' = k/64, such that the degree of
every vertex in Th UT> is 1 in G, the vertices of Th are 1-
well-linked, and (T1,T2) are -linked in G. Then there is a
2-cluster chain in G.

We are now ready to complete the proof of Theorem [3.1]
Let P = UJ;_ 11731 For convenience, for each path P € P,
we delete all edges an inner vertices of P from the graph,
and instead add a new vertex tp, that connects to the two
endpoints u, v of P. Let P’ = (u,tp,v) be the resulting path.
We denote the resulting graph by G’. For each 1 <i <r—1,
let Z; = {tp | P € P;}. We also let Z; be any subset of h/64
vertices of A1, and Z, = B,. We perform r iterations, where
the ith iteration splits cluster S;. We assume that for each
1 < ¢ < 7, when iteration i starts, we are given a subset
Z!_1 C Z;_1 of h/64 vertices. In the ith iteration, we apply
Theoremto graph G; = G'[S;UZ;_,UZ,], with T\ = Z;,
and To = Z;_;. Since the path-of-sets system is good, it is
easy to see that T3 is 1-well-linked in G;, and (71, T») are %—
linked. Let (X;,Y;) be the resulting pair of clusters, E; = E’
the corresponding set of edges, and Z/_ , = Tb, Z, =T} the
corresponding vertex subsets. We then continue to the next
iteration. Consider the final collection (Y1, X1,...,Y,, X;)
of clusters obtained after r iterations. Then for each 0 < i <
\Z”L = h/512. We build an o*-weak path-of sets system
(S/ Uis 771 P;), as follows. We let S’ = (S1,...,S5,), where
forlgzgr, Sh_ 1 =Y, and S5, = X;. For 1 <i<r,let
Pji_1 be any subset of h/512 edges of E;. For 1 < i < r,
we let P%; be the set of paths P € P;, where tp € Z!'. We
let A} = Z{, and Bj, any subset of h/512 vertices of Z,.
For 1 < i < 2r, we let B} be the subset of the endpoints of
the paths in P; that lie in Sj, and we let Aj ; be the subset
of their endpoints that lie in S;,;. It is now easy to verify
that we obtain an «*-weak path-of-sets system of width 2r
and height h/512, where a* = 1/64. From Theorem [2.2] we
can now obtain a good path of-sets system of width 27 and

height at least 512 Se = 277

4. SPLITTING A CLUSTER

The goal of this section is to prove Theorem [3:2} We denote
T = T1 UT>, and we call the vertices of T' terminals. Recall
that |Ti| = k, |T2| = k' = k/64, and we denote k" = k/512.
Let G* be a minimal (with respect to edge- and vertex-
deletion) sub-graph of G, in which T is (k/4, 1)-well-linked,
and (T4, T%) are 3-linked. For each terminal ¢ € T', we sub-
divide the unique edge incident on t by a new vertex v;. It is
easy to see that a 2-cluster chain in G* immediately defines
a 2-cluster chain in G. From now on we will be working with
graph G*, and for simplicity of notation, we denote G* by G.
Our goal is to show that G contains a 2-cluster chain. Notice
that from the minimality of G, it is a connected graph.

Given a cluster C C V(G) \ T, we denote by P(C) the
maximum-cardinality set of node-disjoint paths connecting



the terminals in T' to I'(C'), and we denote p(C) = |P(C)]|.
We assume w.l.o.g. that the paths in P(C) are internally
disjoint from C'UT. The following lemma can be seen as a
variation of the Deletable Edge Lemma of Chekuri, Khanna
and Shepherd [5] (the proof of their original lemma can be
found in [9]), though it is somewhat simpler. The proof is
omitted from this extended abstract.

Lemma 4.1 Let C be any cluster of G, with CNT = ), such
that C' has the (k/4,1)-bandwidth property. Then p(C) =

L)

4.1 Weak 2-Cluster Chain

In this section we define a weak 2-cluster chain, which is
somewhat weaker than the 2-cluster chain defined in Sec-
tion Bl We then show that if G contains a weak 2-cluster
chain, then it must contain a (strong) 2-cluster chain.

Definition 4.1 A weak 2-cluster chain consists of two dis-
joint clusters X' and Y', and a set P = P1 U P2 of node-
disjoint paths, such that:

e TNX' TNY =0;

e X' has the (k”, a*)-bandwidth property, and Y' has the
(K", a*)-bandwidth property in G; and

o |P1]| = |P2| = 2k'; paths in P1 connect vertices in Ty
to vertices in X', and paths in P2 connect vertices in
T, to wvertices in Y'. Moreover, the paths in P are
internally disjoint from X' UY'.

We will refer to the 2-cluster chain defined in Section [3] as
a strong 2-cluster chain from now on. In the next theorem
we show how to obtain a strong 2-cluster chain from a weak
one. The proof is omitted from this extended abstract.

Theorem 4.1 IfG contains a weak 2-cluster chain (X', Y',P),

then it contains a strong 2-cluster chain.

4.2 Good Clusters and Perfect Clusters

Definition 4.2 Let C C V(G)\T be any cluster containing
non-terminals vertices only, and let (A, B) be the minimum
1/4-balanced cut in G\ C with respect to T1. We say that C
s a good cluster, iff |E(A, B)| < k/28. We say that it is a
perfect cluster, iff k/28 < |E(A, B)| < 7k/32.

The proof of the following theorem uses standard techniques,
namely variations of the so-called well-linked decomposi-
tions, and it is omitted from this extended abstract.

Theorem 4.2 If there is a perfect cluster C C V(G)\ T,
such that |out(C)| < k + k' + 1, and C has the (K", a*)-
bandwidth property, then G contains a 2-cluster chain.

We will also use the following simple observation, whose
proof is omitted from this extended abstract.

Observation 4.1 Let C be a good cluster, and let (C',C")
be any partition of C, where |out(C) Nout(C")| < 27k/80.
Then C’ is a good or a perfect cluster.

4.3 Splitting the Cluster

We are now ready to prove that G contains a 2-cluster chain.
We are interested in a cluster C C V(G) \ T, with the fol-
lowing properties: C' is a good or a perfect cluster, and it
has the 1/23-bandwidth property. Among all such clusters
C, let C* be the one minimizing |out(C*)|, and subject to
this, minimizing |C*|. We note that |out(C*)| < k + k'
must hold, since V(G) \ T is a good cluster, and, from the
well-linkedness properties of the terminals, it is not hard to
see that it has the 1/23-bandwidth property. We need the
following two claims.

Claim 4.1 If C* is a good cluster, then every vertex v €
I(C™) is incident on ezxactly one edge of out(C*).

PROOF. Assume otherwise, and let v € T'(C*) be inci-
dent on more than one edge of out(C™). Since maximum
vertex degree in G is 3, and G[C™] is connected, due to the
1/23-bandwidth property of C*, v has exactly one neigh-
bor u € C*. Consider the cluster ¢’ = C* \ {v}. Then
[out(C")| < |out(C*)], and it is easy to see that C’ has the
1/23-bandwidth property. Moreover, from Observation
(' is a good or a perfect cluster, contradicting the choice of
cr. O

Claim 4.2 p(C*) = |I'(C™)|.

PROOF. Assume otherwise. Intuitively, if p(C*) < |T'(C™)],
then there is a small cut separating I'(C*) from the termi-
nals in 7. We use this cut to define a new cluster C’, such
that C’ is either a good or a perfect cluster, and it has the
1/23-bandwidth property, while | out(C")| < | out(C™)|, con-
tradicting the choice of C*.

Let p = p(C*). From Menger’s theorem, there is a tri-
partition (X,Y, Z) of V(G), such that |Y| = p, Y separates
X from Z in G, C* CYUZ,and T C X UY. Among
all such tri-partitions, we choose the one minimizing |Y| +
|Z|. As each terminal has degree 1 in G, it is easy to see
that Y NT = 0, and so T C X. Recall that P(C*) is the
largest-cardinality set of node-disjoint paths connecting the
terminals of T' to C*, and the paths in P(C*) are internally
disjoint from C*. Therefore, Y contains exactly one vertex
from each path in P(C*), and so Y N C* C I'(C*). We
let C’ be the set of vertices of the connected component of
G[Y U Z], containing C*. Notice that I'(C’) C Y, and so
IT(CH)] < IT(C*)|. Since C* C C’, and C* is a good or a
perfect cluster, it is easy to see that C’ is also a good or a
perfect cluster. Moreover, the set P(C™) of paths defines a
collection P’ of node-disjoint paths, connecting every vertex
of T'(C") to some vertex in I'(C™*), such that the paths in P’
are internally disjoint from C*. Using the fact that C* has
the 1/23-bandwidth property, it is easy to see that C” also
has the 1/23-bandwidth property.

In order to reach a contradiction, it is now enough to show
that | out(C’)| < | out(C™*)|. We partition the edges of out(C")
into two subsets: set Ej contains all edges incident on the
vertices of Y N T'(C*), and set E; contains all remaining
edges. Similarly, we partition the edges of out(C™) into two
subsets: set £} contains all edges incident on the vertices of
Y NI'(C™), and set E> contains all remaining edges. Observe
first that the edges of By and Ef are incident on the same
subset of vertices: Y NT'(C*), and, since C* C C’, it is easy
to see that |E1| < |E1].



Let Y =Y NI(C*). Since |T(C")| < [T(C*)|, and Y’ C
("), |T(CH\Y'| < [T(C*)\Y’|. Every vertex of I'(C*)\ Y’
has at least one edge incident to it in Ej, and every edge
of E» is incident on some vertex of I'(C") \ Y'. Therefore,
it is enough to show that every vertex in I'(C’) \ Y’ is in-
cident on exactly one edge of Fa. Assume otherwise, and
let v € T(C')\ Y’ be any vertex incident on at least two
edges of Es. Since v € Y’ it does not belong to I'(C*), or
to C*. Moreover, v has at most one neighbor in Z - de-
note it by u. Therefore, we can obtain a new tri-partition
(XU{v}, Y \{v})U{u}, Z\ {u}) separating the terminals
from C*, contradicting the choice of the partition (X,Y, Z).
We conclude that |Ex| < |[T(C)\Y'| < [T(C*)\Y'] <
|E5), and |out(C")| < | out(C*)|, contradicting the choice of
cr. O

If C* is a perfect cluster, then, from Theorem |4.2} we obtain
a 2-cluster chain in G. Therefore, we assume from now on
that C* is a good cluster. We use the following theorem
to finish our proof. Its statement is slightly stronger than
what we need, but this stronger statement will be used in
the proof itself.

Theorem 4.3 Let C C V(G)\ T be any good cluster with
lout(C)| < k+ k' +1, and p(C) > |I(C)| — 1, such that C
has the 1/23-bandwidth property, and every vertezx of I'(C) is
incident on ezxactly one edge of out(C). Then either there is
a strong 2-cluster chain in G, or there is a good or a perfect
cluster C' C C, with |out(C")| < |out(C)|, such that C' has
the 1/23-bandwidth property.

From Theorem |4.3] either G has a strong 2-cluster chain, or
there is a good cluster ¢’ C C* with |out(C")| < |out(C)],
such that C’ has the 1/23-bandwidth property. The latter
is impossible from the definition of C*, so G must contain
a 2-cluster chain. From now on we focus on proving Theo-

rem (4.3}
Proof of Theorem 4.3

We start with the following two theorems, whose proofs use
standard techniques, and are omitted from this extended
abstract.

Theorem 4.4 If there is a good cluster C' C C, with | out(C")| <

k+k 41 and |T(C")| < 7k/8, such that C' has the (K", a*)-
bandwidth property, then there is a weak 2-cluster chain in

G.

Case 1: a < 1/5.

Let (Z,Z') be the minimum 1/4-balanced cut of C' with
respect to I'(C), where |ZNT'(C)| > |Z'NT(C)|. We consider
three sub-cases.

Subcase la. This first sub-case happens if |E(Z,Z")| >
2-|(C)|. Observe that for 0 < o' < 1, function lf—;,
monotonously increases in o’. So there is some value o <
o' < 1, such that |E(Z,Z")| > lf—;/\P(Cﬂ The following
lemma uses standard techniques, and its proof is omitted
from this extended abstract.

Lemma 4.2 There is a cluster C' C C, such that | out(C")| <
[out(C)|, IT(C) NT(C")| > 3|T(C)|/4, and C' has the o' -
bandwidth property.

Let C’ be the cluster given by Lemma and let C" =
C\C'. Then [T(C")NT(C)] < T(O))/4< (k+ K +1)/4
Since every vertex of I'(C') is incident on exactly one edge of
out(C), we get that | out(C”) Nout(C)| < |T(C")NT(C)| <
(k+ k' +1)/4 < 27k/80. Therefore, from Observation
(' is a good or a perfect cluster. Since o’ > a > 1/23, C’
is a valid output for the theorem. Notice that |out(C’)| <
|out(C)].

Subcase 1b. This case happens if |E(Z, Z")| < 2-|T(C)],
and Z is a good or a perfect cluster. In this case, from
Lemma cluster Z has the o/-bandwidth property, for
o/ = 3%~ Moreover, since a < 1/5, |E(Z, Z")| < [T(C)|/4 <
IT(C) N Z'|, and so |out(Z)] < |out(C)| < k+ K.

If @« > 1/11, then o = a/(2 4 «) > 1/23, and we return
C' = Z. Otherwise, if @ < 1/11, then o = o/(2+a) > 1/64,
since a > 1/23, and:

) < Oy gz, 7)) < O, ey
< 17|1(C)| < 17(k+ & +1) o Tk

- 20 - 20 - 8’

since k¥’ = k/64. If Z is a perfect cluster, then from The-
orem [4.2] we obtain a 2-cluster chain. Otherwise, Z is a
good cluster, and we obtain the 2-cluster chain by applying
Theorem [4.4] to cluster Z.

Subcase 1c. This case happens if |E(Z, Z")| < :2-|T(C),
but Z is not a good or a perfect cluster. From Obser-
vation |out(Z") Nout(C)| > 27k/80 must hold, and,
since every vertex of I'(C) is incident on exactly one edge of
out(C), we get that [I'(Z") NT(C)| > |out(Z") Nout(C)| >
27k /80.

In this case, we construct a 2-cluster chain in G. We let
X' = Z. Since C has the a > 1/23-bandwidth property,

Theorem 4.5 Suppose there is some value p, such that p|I'(C)| < from Lemma X’ has the o'-bandwidth property, for

(k+k +1)/4, and a minimum p-balanced cut (A, B) of C
with respect to T'(C), such that [['(A) NT(C)| > |I'(B) N
['(C)| > 27k/80. Then there is a cluster C' C B that has
the (K", a*)-bandwidth property, and |T(C')NT(C)| > 3k/64.

If IT(C)| < 7k/8, then from Theorem [4.4] there is a 2-cluster
chain in G. We assume from now on that |I'(C)| > 7k/8.
Let o be the largest value for which C' has the a-bandwidth
property, so a > 1/23. We distinguish between three cases.
The first case is when a < 1/5; the second case is when a >
1/5 but C does not have the (k/4,1)-bandwidth property,
and the third case is when C' has the (k/4,1)-bandwidth
property.

o = a/(2 +a) > a*. Therefore, X' has the (k" a*)-
bandwidth property. We then apply Theorem to the
partition (Z,Z’), to obtain a cluster C' C Z’, that has the
(K", a*)-bandwidth property, and we set Y’ = C’. In order
to define the sets P1 and P2 of paths, observe that all but
one vertices of I'(C') have a path of P(C) terminating at
them, since p(C) > |I'(C)| — 1. Since we have assumed that
ID(C)| > Tk/8, |IT(Z) NT(C)| > |I(C)|/2 > 7k/16. There-
fore, at least 7k/16 —1 > k/32+ k' paths of P(C) terminate
at the vertices of I'(Z), and all paths in P(C) are internally
disjoint from C. We let P1 be any subset of k/32 paths ter-
minating at the vertices of Z, that originate from the vertices
of Ti. Recall that [['(C")NT(C)| > 3k/64 > k/32 + k' + 1.



Therefore, at least k/32 paths of P(C) originate from the
vertices of T1 and terminate at the vertices of C'. We let
P2 C P(C) be any set of k/32 such paths. It is now easy to
see that (X', Y’, Py, P2) is a valid weak 2-cluster chain.

Case 2: o > 1/5, but C does not have the (k/4,1)-
bandwidth property.

We say that a partition (Z, Z’) of C is a sparse cut, iff the
following condition holds:

|E(Z,Z")| <min{|T(C)N Z|,|IT(C)NZ'|}.

Since we have assumed that C' does not have the (k/4,1)-
bandwidth property, there is some sparse cut (Z,Z’) of C,
with |E(Z,Z")| < k/4. Let r be the smallest value |E(Z, Z")|
among all sparse cuts (Z,Z') of C, so r < k/4, and let
p' = (r+1)/|T(C)|. Finally, let (A’, B') be the minimum p’-
balanced cut of C' with respect to I'(C'), and assume w.l.o.g.
that |T(C)N A’| > |T(C) N B’|. From the above discussion,
|E(A’, B")| = r < k/4. We need the following claim, whose
proof is omitted from this extended abstract.

Claim 4.3 Set A’ has the 1/11-bandwidth property.

We now consider two subcases. The first subcase happens
when A’ is a good or a perfect cluster. It is easy to see that
lout(A")| < |out(C)| < k + k' in this case, and we return
C" = A’. The second subcase happens when A’ is not a
good or a perfect cluster.

In this case, we construct a 2-cluster chain in G, similarly
to Case lc. We let X’ = A’. From the above discussion
X' has the 1/11 > a*-bandwidth property, and so it has
the (k”,a*)-bandwidth property. From Observation
|out(B’) Nout(C)| > 27k/80 must hold, and, since every
vertex of I'(C') is incident on exactly one edge of out(C), we
get that |T'(B’) NT(C)| > |out(B’) Nout(C)| > 27k/80.
We then apply Theoremto the partition (A’, B'), to ob-
tain a cluster C’ C B’, that has the a*-bandwidth property,
and we set Y/ = C’. In order to define the sets P; and P-
of paths, observe that all but one vertices of I'(C') have a
path of P(C) terminating at them, since p(C) > |T'(C)| — 1.
Since we have assumed that |I'(C)| > 7k/8, [I'(A")NT(C)| >
IT(C)|/2 > 7k/16. Therefore, at least 7k/16 —1 > k/32+ k'
paths of P(C) terminate at the vertices of I'(A4’), and all
paths in P(C) are internally disjoint from C. We let Py
be any subset of k/32 paths terminating at the vertices of
A’, that originate from the vertices of in 77. Recall that
IT(C"YNT(C)| > 3k/64 > k/32 + k' + 1. Therefore, at least
k/32 paths of P(C') originate from the vertices of 77 and ter-
minate at the vertices of C’. We let Py C P(C) be any such
set of k/32 paths. It is now easy to see that (X', Y, P1, P2)
is a valid weak 2-cluster chain.

Case 3: C has the (k/4,1)-bandwidth property.

Observe that in Cases 1 and 2, whenever we did not con-
struct the 2-cluster chain, we returned a good or a perfect
cluster C" C C with the 1/23-bandwidth property, such that
|out(C”)| < |out(C)|. We will use this fact later.

From Lemma p(C) = |T(C)|, and so [T'(C)| < k + K.
Since every vertex of I'(C) is incident on exactly one edge of
out(C), we get that |out(C)| < k + k’. We claim that there
is some vertex v € I'(C), such that v is a non-separating
vertex for G[C]. Indeed, assume otherwise, and let C be
the set of all connected components of G[C] \ I'(C). Then

there must be some component R € C, so that exactly one
vertex v € I'(C) has an edge connecting v to a vertex of R.
Let u € V(R) be any vertex. Since V(R)NT = (), and v
separates R from T, it is easy to see that 77 remains 1-well-
linked, and (7%, 7%) remain i-linked in G\ {u}, contradicting
the minimality of G. Let v be any vertex in I'(C'), such that
v is not a separator vertex for G[C]. Consider the cluster
C'=C\ {v}.

We start by observing that C’ has the 1/23-bandwidth prop-
erty, in the following claim, whose proof uses standard tech-
niques and is omitted from this extended abstract.

Claim 4.4 Cluster C' has the 1/23-bandwidth property.

From Observation cluster C” is either a good or a per-
fect cluster. Moreover, it is easy to see that |out(C’)| <
[out(C)|+1 < k+k"+1, and p(C’) > [T'(C")| — 1 (there are
at most two vertices that belong to I'(C’) \T'(C) - the neigh-
bors of v in C; we can extend the path of P(C) terminating
at v to terminate at one of these vertices). If C’ is a per-
fect cluster, then from Theorem G contains a 2-cluster
chain. Therefore, we assume that C’ is a good cluster. We
now consider three subcases.

The first sub-case happens when C’ does not have the (k/4, 1)-
bandwidth property, and every vertex of I'(C’) is incident
on exactly one edge of out(C’). In this case, cluster C’ is
a valid input to Theorem [£-3] where it falls under Case 1
or Case 2. In each of these cases, we either showed that
G contains a 2-cluster chain, or produced a good or a per-
fect cluster C” C C’, that has the 1/23-bandwidth property,
and |out(C”)| < |out(C")] < |out(C)| + 1, so |out(C")| <
|out(C)|. We can then return the cluster C”.

The second sub-case happens when at least one vertex u
of T'(C") is incident on two edges of out(C’). In this case,
we consider the cluster C” = C’ \ {u}. It is easy to see
that C” still has the 1/23-bandwidth property, and from
Observation [{.]] it is a good or a perfect cluster. Moreover,
C" ¢ C, and |out(C")| < |out(C")| < |out(C)| + 1, so
[out(C")| < |out(C)|. We then return cluster C”.

The third sub-case happens when every vertex of T'(C’) is
incident on exactly one edge of out(C’), and C’ has the
(k/4,1)-bandwidth property. In this case, from Lemma
p(C") = |[T(C")| = |out(C')]. However, since C' ¢ C,
p(C") < |T(C)| must hold. Therefore, |out(C")| < [T'(C)] <
|out(C)|, and we return C”.

S. CONCLUSION

In this paper we have introduced a simple framework for
proving the Excluded Grid Theorem. The proof of the theo-
rem reduces to proving Theorem [3.2] and any improvement
in the parameters of the resulting 2-cluster chain will im-
mediately improve the bounds on f(g) in Theorem An-
other interesting open direction is improving the parameters
of Theorem 23] Currently, in order to obtain the (gx g)-grid
minor, we need to start from a path-of-sets system, whose
width and height are both Q(g?). Can we obtain a (g x g)-
grid minor from a path-of-sets system of width ©(g) (at the
cost of slightly increasing its height)? If the answer to this
question is positive, then this can significantly improve the
upper bound on f(g), possibly almost halving its exponent.
We leave these possible avenues for improvements as open
questions.



Acknowledgement. The author thanks Chandra Chekuri
for many extensive discussions.

6.
1]

[10

11

[12]

REFERENCES

Matthew Andrews. Approximation algorithms for the
edge-disjoint paths problem via Raecke
decompositions. In Proceedings of IEEE FOCS, pages
277-286, 2010.

Chandra Chekuri and Julia Chuzhoy. Polynomial
bounds for the grid-minor theorem. In Proceedings of
the 46th Annual ACM Symposium on Theory of
Computing, STOC ’14, pages 60—69, New York, NY,
USA, 2014. ACM.

Chandra Chekuri and Julia Chuzhoy. Degree-3
treewidth sparsifiers. In Piotr Indyk, editor,
Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, January 4-6, 2015, pages 242-255.
SIAM, 2015.

Chandra Chekuri and Alina Ene. Poly-logarithmic
approximation for maximum node disjoint paths with
constant congestion. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 326-341. SIAM, 2013.
Chandra Chekuri, Sanjeev Khanna, and F. Bruce
Shepherd. A deletable edge lemma for general graphs.
Manuscript, 2004.

Chandra Chekuri, Sanjeev Khanna, and F. Bruce
Shepherd. Multicommodity flow, well-linked terminals,
and routing problems. In Proc. of ACM STOC, pages
183-192, 2005.

Chandra Chekuri, Sanjeev Khanna, and F. Bruce
Shepherd. The all-or-nothing multicommodity flow
problem. STAM Journal on Computing,
42(4):1467-1493, 2013.

Chandra Chekuri and Nitish Korula. A graph
reduction step preserving element-connectivity and
applications. In Proc. of ICALP, pages 254265, 2009.
Chandra Chekuri, Guyslain Naves, and F. Bruce
Shepherd. Maximum edge-disjoint paths in k-sums of
graphs. In Fedor V. Fomin, Rusins Freivalds, Marta Z.
Kwiatkowska, and David Peleg, editors, Automata,
Languages, and Programming - 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12,
2013, Proceedings, Part I, volume 7965 of Lecture
Notes in Computer Science, pages 328-339. Springer,
2013.

Julia Chuzhoy. Routing in undirected graphs with
constant congestion. In Proc. of ACM STOC, pages
855-874, 2012.

Julia Chuzhoy and Shi Li. A polylogarithimic
approximation algorithm for edge-disjoint paths with
congestion 2. In Proc. of IEEE FOCS, 2012.

E.D. Demaine and M Hajiaghayi. The
Bidimensionality Theory and Its Algorithmic
Applications. The Computer Journal, 51(3):292-302,
November 2007.

Erik Demaine, MohammadTaghi Hajiaghayi, and
Ken-ichi Kawarabayashi. Algorithmic graph minor
theory: Improved grid minor bounds and Wagner’s
contraction. Algorithmica, 54:142-180, 2009.

(14]

(15]

(16]

(17]

(18]

(19]

20]

21]

(22]

23]
(24]

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

Erik D Demaine and MohammadTaghi Hajiaghayi.
Quickly deciding minor-closed parameters in general
graphs. European Journal of Combinatorics,
28(1):311-314, January 2007.

Reinhard Diestel. Graph Theory, 4th Edition, volume
173 of Graduate texts in mathematics. Springer, 2012.
Reinhard Diestel, Tommy R. Jensen, Konstantin Yu.
Gorbunov, and Carsten Thomassen. Highly connected
sets and the excluded grid theorem. J. Comb. Theory,
Ser. B, 75(1):61-73, 1999.

Fedor V. Fomin, Saket Saurabh, and Dimitrios M.
Thilikos. Strengthening Erdos-Pésa property for
minor-closed graph classes. Journal of Graph Theory,
66(3):235-240, 2011.

H. R. Hind and O. Oellermann. Menger-type results
for three or more vertices. Congressus Numerantium,
113:179-204, 1996.

K. Kawarabayashi and Y. Kobayashi. Linear min-max
relation between the treewidth of H-minor-free graphs
and its largest grid minor. In Proc. of STACS, 2012.
Rohit Khandekar, Satish Rao, and Umesh Vazirani.
Graph partitioning using single commodity flows. J.
ACM, 56(4):19:1-19:15, July 2009.

Stephan Kreutzer and Siamak Tazari. On brambles,
grid-like minors, and parameterized intractability of
monadic second-order logic. In Proc. of ACM-SIAM
SODA, pages 354-364, 2010.

Alexander Leaf and Paul Seymour. Tree-width and
planar minors. Journal of Combinatorial Theory,
Series B, 2014.

W. Mader. A reduction method for edge connectivity
in graphs. Ann. Discrete Math., 3:145-164, 1978.
Harald Récke. Minimizing congestion in general
networks. In Proc. of IEEE FOCS, pages 43-52, 2002.
Satish Rao and Shuheng Zhou. Edge disjoint paths in
moderately connected graphs. SIAM J. Comput.,
39(5):1856-1887, 2010.

Bruce Reed. Surveys in Combinatorics, chapter
Treewidth and Tangles: A New Connectivity Measure
and Some Applications. London Mathematical Society
Lecture Note Series. Cambridge University Press,
1997.

Bruce A Reed and David R Wood. Polynomial
treewidth forces a large grid-like-minor. Furopean
Journal of Combinatorics, 33(3):374-379, April 2012.
N Robertson, P Seymour, and R Thomas. Quickly
Excluding a Planar Graph. Journal of Combinatorial
Theory, Series B, 62(2):323-348, November 1994.
Neil Robertson and P D Seymour. Graph minors. V.
Excluding a planar graph. Journal of Combinatorial
Theory, Series B, 41(1):92-114, August 1986.

Neil Robertson and Paul D Seymour. Graph minors.
XIII. the disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65-110, 1995.
Mohit Singh and Lap Chi Lau. Approximating
minimum bounded degree spanning trees to within
one of optimal. In David S. Johnson and Uriel Feige,
editors, STOC, pages 661-670. ACM, 2007.

C Thomassen. On the presence of disjoint subgraphs
of a specified type. Journal of Graph Theory,
12(1):101-111, 1988.



	Introduction
	Preliminaries
	Linkedness, Well-Linkedness, and Bandwidth Property
	Balanced Cuts
	Treewidth and Degree Reduction
	A Path-of-Sets System

	Overview
	Splitting a Cluster
	Weak 2-Cluster Chain
	Good Clusters and Perfect Clusters
	Splitting the Cluster

	Conclusion
	References

