
Approximation Algorithms for
the Directed k-Tour and k-Stroll Problems

MohammadHossein Bateni1? Julia Chuzhoy2??

1 Princeton University, Princeton NJ 08540, USA,
mbateni@cs.princeton.edu

2 Toyota Technological Institute, Chicago, IL 60637, USA.
cjulia@ttic.edu

Abstract. We consider two natural generalizations of the Asymmetric Travel-
ing Salesman problem: the k-Stroll and the k-Tour problems. The input to the
k-Stroll problem is a directed n-vertex graph with nonnegative edge lengths, an
integer k, and two special vertices s and t. The goal is to find a minimum-length s-
t walk, containing at least k distinct vertices. The k-Tour problem can be viewed
as a special case of k-Stroll, where s = t. That is, the walk is required to be
a tour, containing some pre-specified vertex s. When k = n, the k-Stroll prob-
lem becomes equivalent to Asymmetric Traveling Salesman Path, and k-Tour to
Asymmetric Traveling Salesman.
Our main result is a polylogarithmic approximation algorithm for the k-
Stroll problem. Prior to our work, only bicriteria (O(log2 k), 3)-approximation
algorithms have been known, producing walks whose length is bounded
by 3OPT, while the number of vertices visited is Ω(k/ log2 k). We also
show a simple O(log2 n/ log logn)-approximation algorithm for the k-Tour
problem. The best previously known approximation algorithms achieved
min(O(log3 k), O(log2 n·log k/ log log n))-approximation in polynomial time,
and O(log2 k)-approximation in quasi-polynomial time.

1 Introduction

In the Asymmetric Traveling Salesman Problem (ATSP), the input is a directed n-
vertex graph G = (V,E) with nonnegative edge lengths, and the goal is to find a
minimum-length tour, visiting each vertex at least once. ATSP, along with its undi-
rected counterpart, the Traveling Salesman problem, is a classical combinatorial opti-
mization problem, that has been studied extensively. In a recent breakthrough, Asadpour
et al. [1] have shown anO(log n/ log log n)-approximation algorithm for ATSP, break-
ing the long-standing barrier ofO(log n) on its approximation ratio [12,3,5,10,13]. With
only APX-hardness known on the negative side, this remains one of the central open
problems in the area of approximation. A closely related problem is Asymmetric Trav-
eling Salesman Path (ATSPP), defined exactly like ATSP, except that the input also
? The author was supported by a Gordon Wu fellowship as well as NSF ITR grants CCF-

0205594, CCF-0426582 and NSF CCF 0832797, NSF CAREER award CCF-0237113, MSPA-
MCS award 0528414, NSF expeditions award 0832797.

?? Supported in part by NSF CAREER award CCF-0844872.

contains two vertices s and t, and instead of a tour, we are required to find a mini-
mum length s-t walk, visiting every vertex at least once. While ATSPP appears to be
very similar to ATSP, an O(log n)-approximation algorithm has only been discovered
recently by Chekuri and Pál [9], and required new non-trivial ideas.

In this paper we focus on two natural and well-studied generalizations of ATSP:
the k-Stroll and the k-Tour problems3. In the k-Stroll problem, in addition to the edge-
weighted graph G, we are also given a parameter k, and two special vertices s and t.
The goal is to find a minimum-length walk from s to t, containing at least k distinct
vertices. The k-Tour problem is defined similarly, except that instead of the vertices s
and t, the input contains one root vertex r, and we are required to find a minimum-
length tour containing r, that visits at least k distinct vertices. Therefore, k-Tour can be
viewed as a special case of k-Stroll, where s = t. When the input graph is undirected,
we get the undirected k-Tour and k-Stroll problems, respectively4. For the special case
where k = n, k-Tour becomes equivalent to ATSP, and k-Stroll becomes equivalent to
ATSPP.

An (α, β) bicriteria approximation algorithm for the k-Stroll problem is an algo-
rithm that returns a walk of length at most β · OPT, containing at least k/α distinct
nodes. Chekuri, Korula and Pál [7] and Nagarajan and Ravi [18] have independently
shown, using different methods, (O(log2 k), 3) bicriteria approximation algorithms for
the k-Stroll problem. To the best of our knowledge, these are the only known approx-
imation algorithms for the problem. The main result of our paper is a polylogarithmic
approximation algorithm for the k-Stroll problem. We note that undirected k-Stroll
has a factor (2 + ε)-approximation algorithm, due to Chaudhuri et al. [6].

The first nontrivial approximation algorithm for the k-Tour problem, due to Chekuri
and Pál [8], achieved an O(log2 k)-approximation in quasi-polynomial time. Chekuri,
Korula and Pál [7] and Nagarajan and Ravi [18] have later independently shown polyno-
mial time algorithms achieving O(log3 k) and O(log2 n · log k)-approximation, respec-
tively. Using the recent result of [1] for ATSP, the latter approximation factor improves
to O(log2 n · log k/ log log n). We show a simple O(log2 n/ log log n)-approximation
algorithm for the problem.

Related Work There is a large body of research on ATSP and its variants. We only
mention here results most closely related to the problems we study. The Orienteering
problem is defined as follows: given an edge-weighted graph, two vertices s and t and
a budget B, find an s-t walk of length at most B, maximizing the number of distinct
vertices visited. The problem is closely related to the k-Stroll problem, and this rela-
tionship has been made formal by Blum et al. [4], who showed that an α-approximation
algorithm for k-Stroll gives an O(α)-approximation for Orienteering, in both the di-
rected and the undirected settings. This result was later generalized by Chekuri, Korula
and Pál [7] and Nagarajan and Ravi [18], who proved that an (α, β)-bicriteria approx-
imation for k-Stroll implies an O(αβ)-approximation for Orienteering, in both di-

3 k-Tour is sometimes referred to as k-ATSP in the literature. Similarly, k-Stroll is sometimes
called k-ATSPP.

4 Since we will be focusing on directed graphs, the names k-Tour and k-Stroll will refer to the
directed versions of the problems throughout the paper, unless stated otherwise.

rected and undirected graphs. Chekuri and Pál [8] showed that for any fixed integer
h, the directed Orienteering problem has an O(log OPT/ log h)-approximation algo-
rithm, whose running time is (n logB)O(h logn). In particular, they obtainO(log OPT)-
approximation in quasi-polynomial time, and sub-logarithmic approximation in sub-
exponential time. Chekuri, Korula and Pál [7] and Nagarajan and Ravi [18] have later
independently obtained a polynomial-time O(log2 OPT) approximation algorithm for
directed Orienteering. The results of [8] also hold for generalizations of the directed
Orienteering problem: directed Submodular Orienteering, where instead of maxi-
mizing the number of distinct vertices contained in the tour, the goal is to maximize
the value of some given submodular function over the set of vertices the tour visits, and
directed Submodular Orienteering with time windows, where each vertex is associ-
ated with a time window, and a vertex is covered by the tour only if it is visited during
its time window. The undirected version of the Orienteering problem has also been
studied extensively. The first constant factor approximation algorithm, due to Blum et
al. [4], achieved a factor 4 approximation, and was later improved by Bansal et al. [2]
to factor 3. The best currently known approximation algorithm, due to Chekuri, Korula
and Pál [7], gives a factor (2+ ε)-approximation. On the negative side, the basic Orien-
teering problem is known to be APX-hard for both directed and undirected graphs [4].
Chekuri and Pál [8] have shown that an α-approximation for undirected Submodular
Orienteering implies anO(α log k)-approximation for the Group Steiner tree problem,
and therefore undirected Submodular Orienteering is hard to approximate to within
factor Ω(log1−ε n) unless NP ⊆ ZTIME

(
npoly log(n)

)
[14].

Problem definitions, our results and techniques The input to the k-Stroll problem is a
complete directed n-vertex graph G = (V,E) with lengths ce ≥ 0 on edges, satisfying
the triangle inequalities. Additionally, we are given two special vertices s and t and an
integer k. The goal is to find an s-t walk of minimum length that visits at least k distinct
vertices.

The input to the k-Tour problem is a complete directed n-vertex graph G = (V,E)
with edge lengths ce ≥ 0, satisfying the triangle inequality, an integer k and a root ver-
tex r. The objective is to find a minimum-length tour T , containing at least k distinct
vertices, including r. Let β denote the best approximation factor efficiently achievable
for the k-Tour problem. Our result for the k-Stroll problem is summarized in the fol-
lowing theorem:

Theorem 1. There is an efficient O(log k) ·β-approximation algorithm for the k-Stroll
problem.

The algorithm is somewhat similar to the quasi-polynomial time algorithm of
Chekuri and Pál [8] for the Orienteering problem, in the following sense: the algorithm
also guesses the middle point v of the walk, partitioning the problem into two subprob-
lems, and then solves the two subproblems separately. This is done by the means of
dynamic programming, and the main challenge is to keep the size of the dynamic pro-
gramming table polynomial in n. To demonstrate this difficulty, consider the top-most
level of the recursion, and let v be the guessed vertex that appears in the middle of the
tour. Our algorithm partitions all the vertices into three subsets Lv , Rv , and Cv , with

the following properties: All vertices of Lv that are covered by the optimal walk, must
appear before v on it, and similarly all vertices of Rv belonging to the optimal walk
appear after v on it. The vertices of Cv may appear either before or after v, and we can
solve the problem induced by these vertices using the algorithm for the k-Tour problem.
The main challenge is that when we continue to recursively solve the problem induced
by, say, Lv , we need to ensure that the vertices of Rv are not used in its solution, so
we do not over-count the vertices we cover. Therefore, for each subproblem that we
solve, we need to find a way to concisely represent the vertices that have been removed
in previous recursive levels. Equivalently, we need to keep the number of entries in the
dynamic programming table polynomial in the input size, while ensuring that we do not
over-count vertices that the solution visits.

We now turn to the k-Tour problem. Let βHK be the best approximation factor
achievable for the ATSP problem, via LP-rounding of the Held-Karp LP-relaxation [15]
(see Section 3.1 for formal definitions). From the work of Asadpour et al. [1], βHK ≤
O(log n/ log log n). We obtain the following result for the k-Tour problem.

Theorem 2. There is an efficient O(log n) · βHK approximation algorithm for
the k-Tour problem. In particular, the problem is approximable to within factor
O(log2 n/ log log n).

From the work of Chekuri, Korula and Pál [7], and from Theorem 2,
the approximation factor β for the k-Tour problem is therefore bounded by
min(O(log2 n/ log log n), O(log3 k)). Therefore, we establish the following result for
the k-Stroll problem:

Corollary 1. The k-Stroll problem has an efficient min(O(log2 n ·
log k/ log log n), O(log4 k)) approximation algorithm.

Our algorithm for the k-Tour problem is simple, and it is very similar to the
O(log2 n)-approximation algorithm of Nagarajan and Ravi [18] for the minimum ra-
tio ATSP problem. Nagarajan and Ravi then use this algorithm as a subroutine to ob-
tain an O(log2 n · log k)-approximation for k-Tour. We bypass this step by solving the
k-Tour problem directly, and this allows us to save the O(log k) factor in the approx-
imation ratio. We note that following the work of Asadpour et al. [1], the approxima-
tion factors in [18] improve to O(log2 n/ log log n) for minimum ratio ATSP, and to
O(log2 n · log k/ log log n) for the k-Tour problem.

Our algorithm starts by solving a linear programming relaxation of the k-Tour prob-
lem, which can be seen as an extension of the Held-Karp LP-relaxation for ATSP. Each
vertex v is associated with an indicator variable zv , for covering v by the solution. We
then partition all vertices geometrically into O(log n) buckets, according to their val-
ues zv , with bucket Bi containing vertices v with 2−i < zv ≤ 2−i+1. Next, using
the LP-rounding algorithm for ATSP, we find, for each bucket Bi, a tour Ti of length
O(βHK ·2i ·OPT), containing all vertices ofBi. This tour is then partitioned intoΘ(2i)
segments, containing d|Bi|/2ie vertices each, and the cheapest such segment, T ∗i is se-
lected. We then connect together the selected segments T ∗i , for all buckets Bi to obtain
the final tour T .

Organization: Section 2 is devoted to the polylogarithmic approximation algorithm for
the k-Stroll problem, and the algorithm for the k-Tour problem appears in Section 3. All
proofs omitted from this version can be found in the full version of the paper available
on authors’ web pages.

2 Approximation Algorithm for the k-Stroll Problem

2.1 Preliminaries

We assume that we are given a complete directed n-vertex graph G = (V,E) with
nonnegative lengths ce on edges, satisfying the triangle inequality. Additionally, we are
given two special vertices s and t, called the source and the sink, and an integer k. The
goal is to find an s-t walk of minimum length, visiting at least k distinct vertices. For
any instance I of the problem, we denote by OPT(I) the cost of the optimal solution
for this instance, and when the instance is clear from context, we denote it by OPT. For
each pair u, v of vertices, we denote by d(u, v) the length of the shortest path connecting
u to v in G.

Let α denote the desired approximation factor. We assume throughout the algorithm
that we know the value L∗ of the optimal solution. This can be assumed w.l.o.g. by
using standard techniques: we can perform a binary search on the value L∗, and run
our approximation algorithm for each such guessed value L. If the algorithm produces
a solution whose cost is bounded by αL, then L∗ ≤ L, and otherwise L∗ > L, so we
can adjust our guessed value L accordingly. Therefore, from now on we assume that
we have a value L∗ ≥ OPT, and our goal is to produce a solution of cost at most αL∗.
Our first step is to make the edge lengths polynomially-bounded. The proof of the next
claim uses standard techniques and is omitted.

Claim 1. We can assume, at the cost of losing a constant factor in the approximation
ratio, that all edge lengths ce are integers in {0, . . . , N}, where N = poly(n).

We use the following notation in describing the algorithm. For a vertex v ∈ V
and a parameter D, let B(v,D) = {u ∈ V | d(v, u) ≤ D, d(u, v) ≤ D} . For a pair
x, y of vertices and a parameterD, let S(x, y,D) = {u ∈ V | d(x, u) + d(u, y) ≤ D}.
Therefore, S(x, y,D) is the set of all vertices that may appear on a path of length D
connecting x to y.

For technical reasons that will be apparent later, we need to ensure that B(s, L∗) =
{s} and B(t, L∗) = {t}. We can do so, w.l.o.g., by adding a new source vertex s′ and
a new sink vertex t′. Set the lengths of edges (s′, s) and (t, t′) to 0, and the lengths of
all other edges incident to s′ and t′ to n2 · L∗ (recall that the graph is required to be
complete). This does not affect the solution cost or the approximation factor. So from
now on we assume that in the input instance I, B(s, L∗) = {s} and B(t, L∗) = {t}.

Throughout the algorithm, we will be solving instances of the k-Tour problem on
sub-graphs ofG. Let Algk-tour be a β-approximation algorithm for the k-Tour problem.
An instance I(V ′, r, k′) of the k-Tour problem, where V ′ ⊆ V , r ∈ V , k′ ∈ Z+, is an
instance defined on the sub-graph of G induced by V ′∪{r}, with the root vertex r, and
the parameter k′ denoting the number of vertices that need to be covered. We denote by
Algk-tour(V

′, r, k′) the output of Algk-tour on instance I(V ′, r, k′).

2.2 Algorithm Overview

Let θ = 3/2 and α(k′) = 9 logθ k′ + 3, for k′ > 1. Our final approximation factor is
O(β · α(k)) = O(β · log k), as required.

We solve the problem using dynamic programming. Each entry of the dynamic
programming table is parametrized by T (x, y, k′, D,∆1, ∆2), where x, y ∈ V , k′ is an
integer, 1 ≤ k′ ≤ k, and D,∆1, ∆2 are integers between 0 and L∗. Let

V (x, y,D,∆1, ∆2) = S(x, y,D) \ (B(x,∆1) ∪B(y,∆2)) .

Entry T (x, y, k′, D,∆1, ∆2) is associated with an instance of the k-Stroll problem
denoted by π(x, y, k′, D,∆1, ∆2). The instance is defined on the subgraph of G in-
duced by V (x, y,D,∆1, ∆2) ∪ {x, y}. The number of vertices to be covered by the
stroll is k′, and the endpoints of the stroll are x and y.

We say that entry T (x, y, k′, D,∆1, ∆2) is feasible iff ∆1, ∆2 ≥ D, d(x, y) ≤ D,
and the value of the optimal solution of instance π(x, y, k′, D,∆1, ∆2) is at most
D. A feasible entry T (x, y, k′, D,∆1, ∆2) must contain a feasible solution for prob-
lem π(x, y, k′, D,∆1, ∆2), whose length is at most 3β(∆1 + ∆2) + β · α(k′) · D.
Notice that since we have ensured that B(s, L∗) = {s} and B(t, L∗) = {t}, en-
try T (s, t, k, L∗, L∗, L∗) is feasible, with V (s, t, L∗, L∗, L∗) = V . So if the entries
of the dynamic programming table are computed correctly, it must contain a solu-
tion to I of cost O(βα(k))L∗ = O(log k)βL∗, as desired. The entries of the dy-
namic programming table are filled in from smaller to larger values k′. After entry
T = T (x, y, k′, D,∆1, ∆2) is processed, it either contains a feasible solution to prob-
lem π(x, y, k′, D,∆1, ∆2) of cost at most 3β(∆1 +∆2) + β ·α(k′) ·D, in which case
we say that T is good, or the value of T is undefined, and we say that it is bad. The
latter will only happen if T is infeasible.

2.3 Computing the entries of the dynamic programming table:

Let T = T (x, y, k′, D,∆1, ∆2) be a feasible entry of the dynamic programming table
that needs to be processed. Recall that ∆1, ∆2 ≥ D, and we can assume that the cost
of the optimal solution for instance π = π(x, y, k′, D,∆1, ∆2) is bounded by D. For
simplicity, we denote V ′ = V (x, y,D,∆1, ∆2). We say that the problem instance π is
easy iff one of the following happens—in fact, these are the base cases of the dynamic
programming.

1. k′ ≤ 4, or
2. d(y, x) ≤ 3(∆1 +∆2) +D, or
3. None of the above holds, and there are two integers k1, k2, with k1 + k2 ≥
k′, such that the tours T1 = Algk-tour(B(x, 3∆1) ∩ V ′, x, k1) and T2 =
Algk-tour(B(y, 3∆2)∩V ′, y, k2) have total length at most 3β(∆1+∆2)+2βD. In
other words, we can find two tours: T1 rooted at x inside the sub-graph induced by
B(x, 3∆1)∩V ′, and T2 rooted at y inside the sub-graph induced byB(y, 3∆2)∩V ′,
that together cover k′ vertices (we show below that the two tours are disjoint), and
their total length is at most 3β(∆1 +∆2) + 2βD.

Notice that we can check if π is easy in polynomial time.

Claim 2. If T = T (x, y, k′, D,∆1, ∆2) is feasible, and π = π(x, y, k′, D,∆1, ∆2) is
easy, then we can find a solution for π of cost at most 3β(D +∆1 +∆2) ≤ 3β(∆1 +
∆2) + β · α(k′) ·D.

Proof. If k′ ≤ 4, an optimal solution of cost at most D can be found by exhaustive
search. Otherwise, if d(y, x) ≤ 3(∆1 + ∆2) + D, then there is a solution to instance
I(V ′, x, k′) of the k-Tour problem of cost at most 2D + 3∆1 + 3∆2. We obtain a
solution to π by concatenating Algk-tour(V

′, x, k′) with edge (x, y). The cost of the
solution is bounded by D + β(2D + 3∆1 + 3∆2) ≤ 3β(D +∆1 +∆2).

Finally, if none of the above happens, the sets B(x, 3∆1) and B(y, 3∆2) are com-
pletely disjoint. So if the third condition holds, the two tours T1,T2 are completely
disjoint, covering together k′ distinct vertices. We can connect them to each other by
adding the edge (x, y), obtaining a solution of cost at most 3β(∆1 +∆2 +D) to π. ut

From now on we assume that the instance π is not easy. We also assume that for all
k′′ < k′, all entries T (x′, y′, k′′, D′, ∆′1, ∆

′
2) have been computed correctly. That is, if

T (x′, y′, k′′, D′, ∆′1, ∆
′
2) is a feasible entry, then it is good.

Our high-level idea is to subdivide π into two sub-instances, and then look the cor-
responding values up in the dynamic programming table. Let P denote the optimal
solution for π. Roughly speaking, we would like to find a pivot vertex v that lies “in
the middle” of P , with roughly half the vertices appearing before and after v on P ,
and then obtain two sub-problems: one that appears “to the left” and one that appears
“to the right” of v on P . Let v be the guessed “middle” vertex, and let DL, DR be the
guessed values of the lengths of the segments of P before and after it visits v (since
we have a complete graph, v is visited at most once). We require that DL +DR = D,
d(x, v) ≤ DL, and d(v, y) ≤ DR. We now define the following three sets of vertices:

– Cv = B(v,D) ∩ V ′.
– Lv = {u ∈ V ′ \ Cv | d(x, u) + d(u, v) ≤ DL}. Equivalently, Lv =

(S(x, v,DL) \B(v,D))∩V ′. Notice that if u ∈ Lv , then d(v, u)+ d(u, y) > DR

(otherwise u must belong to Cv). Therefore, if u ∈ P , then it has to appear before
v on P .

– Rv = {u ∈ V ′ \ Cv | d(v, u) + d(u, y) ≤ DR}. Equivalently, Rv =
(S(v, y,DR) \B(v,D))∩V ′. Notice that if u ∈ Rv , then d(x, u)+d(u, v) > DL

(otherwise u ∈ Cv). Therefore, if u ∈ P , then u has to appear after v on P .

Clearly, the three sets Cv, Lv and Rv are completely disjoint. It is easy to see that
we can transform P into another x-y walk P ′, that visits the same vertices as P , and it
consists of three segments: the first segment connects x to v and only contains vertices
of Lv ∪ {x, v}; the second segment is a tour containing only vertices of Cv , including
v; and the third segment connects v to y and only contains vertices of Rv ∪ {v, y}.
The lengths of these segments are bounded by DL, DL + 2D + DR ≤ 3D and DR,
respectively. Let kL, kC , kR be the numbers of distinct vertices contained in each of the
segments, respectively, kL+kC +kR = k′+2 (notice that vertex v appears on all three
segments).

Observe that if value kC has been guessed correctly, then Algk-tour(Cv, v, kC) re-
turns a tour PC , containing kC vertices from Cv , including v, of length at most 3βD.
We would like now to look the remaining two segments up in the dynamic program-
ming table. The first segment should appear in T (x, v, kL, DL, ∆1, D), and the sec-
ond segment in T (v, y, kR, DR, D,∆2). Indeed, this approach works if we can ensure
that V (x, v,DL, ∆1, D) = Lv and V (v, y,DR, D,∆2) = Rv . Unfortunately this is
not necessarily true. To overcome this issue, we proceed as follows. First, we define
a set of admissible pivots. We then show that if v is an admissible pivot, then indeed
V (x, v,DL, ∆1, D) = Lv and V (v, y,DR, D,∆2) = Rv . Finally, we show how to
take care of the case where no pivot is admissible.

Definition 1. We say that v is an admissible pivot iff v 6∈ B(x, 2∆1) and v 6∈
B(y, 2∆2).

Claim 3. If v is admissible, then V (x, v,DL, ∆1, D) = Lv and V (v, y,DR, D,∆2) =
Rv .

The proof of the above claim is omitted and appears in the full version of the paper.
We now proceed as follows. First, we define the notion of good admissible pivots. In-
tuitively, an admissible pivot is good iff it lies “in the middle” of the optimal solution.
More precisely, we use the following definition.

Definition 2. An admissible pivot v is good iff there are integers kL, kR, kC , DL, DR,
with kL + kR + kC = k′ + 2, DL + DR = D, kL, kR ≤ 2k′/3, such that both
T (x, v, kL, DL, ∆1, D) and T (v, y, kR, DR, D,∆2) are good entries, and the length
of the tour Algk-tour(Cv, v, kC) is at most 3βD.

Observe that we can check whether a pivot v is good and admissible in polynomial
time. The next claim shows that if a good admissible pivot exists, then we can find the
required solution to the instance π. After that we show how to handle the case where
no admissible pivot exists. In this case, we show that we can decompose the problem
into two sub-problems, one of which is easy, while the other is “small”, in the sense that
the number of vertices that we need to cover in the second sub-problem is significantly
smaller than k′.

Claim 4. If there is a good admissible pivot, then we can find a solution to π of cost at
most 3β(∆1 +∆2) + β · α(k′) ·D.

Proof. Since pivot v is admissible, from Claim 3, V (x, v,DL, ∆1, D) = Lv and
V (v, y,DR, D,∆2) = Rv . Consider the three paths PL = T (x, v, kL, DL, ∆1, D),
PR = T (v, y, kR, DR, D,∆2), and PC = Algk-tour(Cv, v, kC). Since the sets Lv, Cv
and Rv are completely disjoint, the three paths are also completely disjoint, except
for the vertex v, that appears on each one of them (Notice that since v is admissible,
x, y 6∈ Cv). So altogether these paths cover kL + kR + kC − 2 = k′ distinct ver-
tices of V ′ ∪ {x, y}. Let P be the path obtained by concatenating PL,PC and PR. It
now only remains to bound the length of P . The lengths of PL and PR are bounded by
3β(∆1+D)+β(9 logθ kL+3)DL and 3β(D+∆2)+β(9 logθ kR+3)DR, respectively.

Since kL, kR ≤ 2k′/3 and θ = 3/2, logθ kL ≤ logθ k′ − 1 and logθ kR ≤ logθ k′ − 1.
Therefore, the total solution cost is bounded by

3βD + [3β(∆1 +D) + β(9 logθ kL + 3)DL] + [3β(D +∆2) + β(9 logθ kR + 3)DR]
≤ 3βD + 3β(∆1 +D) + β(9(logθ k

′ − 1) + 3)DL + 3β(D +∆2) + β(9(logθ k
′ − 1) + 3)DR

= 3βD + 3β(∆1 +∆2 + 2D) + β(9(logθ k
′ − 1) + 3)(DL +DR)

≤ 3β(∆1 +∆2) + β(9 logθ k
′ + 3)D

= 3β(∆1 +∆2) + β · α(k′) ·D.ut

It now only remains to take care of the case where no good admissible pivots exist.
This is done in the following claim, whose proof is omitted due to lack of space.

Claim 5. If T is a feasible entry, π is not easy, and no good admissible pivot exists, then
there is an admissible (non-good) pivot v, integers kL, kR, kC ,DL, DR, with kL+kR+
kC = k′ + 2, DL +DR = D, such that the length of the tour Algk-tour(Cv, v, kC) is
at most 3βD, and the entries T (x, v, kL, DL, ∆1, D) and T (v, y, kR, DR, D,∆2) are
good. Moreover, either kR ≤ 2k′/3, and problem π(x, v, kL, DL, ∆1, D) is easy, or
kL ≤ 2k′/3, and problem π(v, y, kR, DR, D,∆2) is easy. In either case, we can find a
solution to π of cost at most 3β(∆1 +∆2) + β · α(k′) ·D.

We now summarize our algorithm for computing entry T (x, y, k′, D,∆1, ∆2):

– If instance π(x, y, k′, D,∆1, ∆2) is easy, return the solution of cost at most 3β(D+
∆1 +∆2) ≤ 3β(∆1 +∆2) + β · α(k′) ·D, guaranteed by Claim 2.

– Otherwise, if there is a good admissible pivot v, return the solution of cost at most
3β(∆1 +∆2) + β · α(k′) ·D, guaranteed by Claim 4.

– Otherwise, if there is an admissible pivot v, and integers kL, kR, kC , DL, DR,
with kL + kR + kC = k′ + 2, DL + DR = D, such that the length of the
tour Algk-tour(Cv, v, kC) is at most 3βD, the entries T (x, v, kL, DL, ∆1, D)
and T (v, y, kR, DR, D,∆2) are good, and either (1) kR ≤ 2k′/3, and
π(x, v, kL, DL, ∆1, D) is easy, or (2) kL ≤ 2k′/3 and π(v, y, kR, DR, D,∆2) is
easy: return a solution of cost at most 3β(∆1 +∆2) + β ·α(k′) ·D, guaranteed by
Claim 5.

– Otherwise, the entry T (x, y, k′, D,∆1, ∆2) is undefined.

From the above discussion, if T (x, y, k′, D,∆1, ∆2) is feasible, and all entries
T (x′, y′, k′′, D′, ∆′1, ∆

′
2) for k′′ < k′ have been computed correctly, the algorithm

finds a solution to the k-Stroll instance π(x, y, k′, D,∆1, ∆2) of cost at most 3β(∆1 +
∆2) + βα(k′)D. In particular, the entry T (s, t, k, L∗, L∗, L∗) will contain an s-t walk
covering k vertices, of length at most O(β · α(k) · L∗) = O(log k) · β · L∗.

3 Approximation Algorithm for the k-Tour Problem

3.1 Preliminaries and Notation

We assume that we are given a directed graph G = (V,E) with nonnegative lengths
ce for all edges e ∈ E. For each vertex v ∈ V , we denote by δ−(v) and δ+(v)

the sets of the incoming and the outgoing edges, respectively. Similarly, for a sub-
set U ⊆ V , of vertices δ−(U) = {(v, u) ∈ E | v ∈ V \ U, u ∈ U} and δ+(U) =
{(u, v) ∈ E | u ∈ U, v ∈ V \ U}. Given a pair u, v of vertices, the distance d(u, v) is
the length of the shortest path from u to v in G, where the length of each edge e is ce.

Held-Karp LP: We will use the famous Held-Karp LP-relaxation for the ATSP prob-
lem [15], defined as follows:

(LP-HK) minimize
∑
e∈E cexe

s.t. ∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe ∀v ∈ V (1)∑

e∈δ+(U) xe ≥ 1 ∀U ⊂ V (2)
xe ≥ 0 ∀e ∈ E

For each edge e ∈ E, the LP-relaxation contains an indicator variable xe for in-
cluding e in the solution. The objective is to minimize the total length of edges in the
solution. An integral solution to LP-HK induces a subgraph ofG, and the set (1) of con-
straints ensures that the in-degree of every vertex equals its out-degree, while the set (2)
of constraints requires each subset U ⊂ V of vertices has at least one edge leaving the
set in this subgraph. Although (LP-HK) has an exponential number of constraints, it can
be solved in polynomial time, either by the ellipsoid algorithm with a separation oracle,
or by writing an equivalent LP relaxation with a polynomial number of variables and
constraints.

Let βHK denote the best approximation factor achievable by any LP-rounding
algorithm based on (LP-HK). More precisely, βHK is the smallest approximation
factor, for which there is an efficient algorithm A, that for any instance I of the
ATSP problem, produces a solution whose cost is at most βHK · OPTHK(I), where
OPTHK(I) is the value of the optimal solution of (LP-HK) for I. From the recent
result of Asadpour et al. [1], βHK ≤ O(log n/ log log n). The goal of this section
is to show an O(log n)βHK-approximation algorithm for the k-Tour problem. Let
α = O(log n)βHK denote the desired approximation factor.

LP relaxation for k-Tour Throughout the algorithm, we assume that we know the value
L∗ of the optimal solution to the k-Tour problem. This is done using standard tech-
niques: we can perform a binary search on the value L∗, and run our approximation
algorithm for the guessed value L. If the algorithm produces a solution whose cost is
bounded by αL, then we know that L∗ ≤ L, and otherwise L∗ > L, so we can ad-
just our guess on the value of L∗ accordingly. Therefore, from now on we assume that
we have a value L∗ that upper-bounds the optimal solution cost, and our goal is to
produce a solution of cost at most αL∗. We now perform the following simple transfor-
mation to our input graph G: first, we discard all vertices v, for which d(r, v) > L∗ or
d(v, r) > L∗. Next, we discard all edges e with ce > L∗. Since the discarded edges and
vertices do not participate in the optimal tour, the value of the optimal tour in the new
graph does not change. For simplicity, we will use G to denote the new graph. Clearly,
a tour of length αL∗ in the new graph translates to a tour of the same length in the old

graph. We are now ready to define the linear programming relaxation, extending (LP-
HK) to the k-Tour problem. In addition to variables xe for all e ∈ E, the LP relaxation
contains, for each vertex v ∈ V , variable zv , indicating whether v belongs to the tour.

(LP-k-Tour) minimize
∑
e∈E cexe

s.t. ∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe ∀v ∈ V (3)∑

e∈δ+(U) xe ≥ zv ∀U ⊆ V \ {r},∀v ∈ U (4)
zv ≤ 1 ∀v ∈ V (5)
zr = 1 (6)∑
v∈V zv ≥ k (7)
zv, xe ≥ 0 ∀v ∈ V,∀e ∈ E

The set (3) of constraints is identical to constraints (1) of (LP-HK). The second
set of constraints, (4), corresponds to constraints (2) of (LP-HK), and it requires that
whenever a vertex v belongs to the solution, every cut U containing v but not r, has
an edge e ∈ δ+(U) in the solution. The next three constraints (5)–(7) ensure that each
vertex is covered at most once, the root vertex r belongs to the solution, and the total
number of vertices covered is k, respectively.

The LP relaxation has exponentially many constraints, but similarly to (LP-HK), it
can be solved efficiently by either using the Ellipsoid method with a separation oracle,
or by writing an equivalent polynomial-size LP relaxation. Let OPTLP denote the op-
timal solution value of (LP-k-Tour). Notice that we can assume that OPTLP ≤ L∗, the
guessed value of the optimal solution cost.

3.2 LP-rounding

We start with initial rounding of the LP-solution.

Lemma 1. We can efficiently find a feasible solution (x′, z′) to (LP-k-Tour) of
cost at most 4 · OPTLP , such that all nonzero values z′v belong to the set{
1/2i | 0 ≤ i ≤ d3 log ne

}
.

Proof. Let (x, z) be the optimal feasible solution to (LP-k-Tour), whose cost is
OPTLP . We transform it to solution (x′, z′) as follows: for each edge e ∈ E, set
x′e = 4xe. For each v ∈ V , if 1/2i < zv ≤ 1/2i−1, then if i > d3 log ne, set z′v = 0;
otherwise, z′v = min(1, 1/2i−2).

It is immediate to see that the cost of the new solution (x′, z′) is bounded by
4OPTLP . We now only need to verify that it is a feasible solution. First, since all values
xe were multiplied by the same factor, constraints (3) continue to hold. It is also easy
to see that for each vertex v, z′v ≤ 1, and z′r = 1, and therefore constraints (5) and (6)
still hold. Consider now constraint (4) for some v ∈ V , U ⊆ V \ {r} with v ∈ U . The
value of zv has increased by at most factor 4, while the values xe for all e ∈ δ+(U)
have increased by factor 4. Therefore, the constraint continues to hold.

Finally, it remains to show that
∑
v∈V z

′
v ≥ k. Let Z0 contain the set of vertices

v, for which zv ≤ 1/2d3 logne ≤ 1
n3 . These are the only vertices whose LP-values

have decreased. The total value
∑
v∈Z0

zv ≤ 1/n2. Let Z1 denote the set of ver-
tices v for which z′v = 1. If |Z1| ≥ k, then clearly constraint (7) holds. Otherwise,∑
v 6∈Z1

zv ≥ 1 must hold in the original solution, and therefore
∑
v 6∈Z1∪Z0

zv ≥
1 − 1/n2 ≥

∑
v∈Z0

zv . For each vertex v 6∈ Z1 ∪ Z0, we have that z′v ≥ 2zv . So
overall

∑
v 6∈Z1

z′v ≥ 2
∑
v 6∈Z1∪Z0

zv ≥
∑
v 6∈Z1

zv . Since
∑
v∈Z1

z′v ≥
∑
v∈Z1

zv ,
constraint (7) continues to hold. ut

For each i : 0 ≤ i ≤ d3 log ne, we denote byBi the set of vertices v with z′v = 1/2i,
and set ki = |Bi|. Recall that

∑d3 logne
i=0 ki/2i ≥ k.

Theorem 3. For each i : 0 ≤ i ≤ d3 log ne, we can efficiently find a tour Ti of cost at
most βHK · 2i+5 · L∗, visiting all vertices in Bi.

The proof of the theorem is omitted due to lack of space. We now show that Theo-
rem 2 follows from it. We first show that for each i : 0 ≤ i ≤ d3 log ne, there is a path
T ∗i , containing at least dk/2ie vertices of Bi, of length at most O(βHK) · L∗. Since
we have discarded all vertices v with d(v, r) > L∗ or d(r, v) > L∗, we can turn T ∗i
into a tour containing the vertex r, at the additional cost of 2L∗. Therefore, for each
i : 0 ≤ i ≤ d3 log ne, we obtain a tour containing the vertex r, and additional dk/2ie
vertices ofBi, of length at mostO(βHK) ·L∗. Connecting all these tours together gives
a tour of length at most O(βHK · log n) · L∗, containing at least

∑d3 logne
i=0 ki/2i ≥ k

vertices.
It now only remains to show how to find the paths T ∗i . Fix some i : 0 ≤ i ≤

d3 log ne. If ki/2i ≤ 1, then choose any vertex v ∈ Bi, and the path T ∗i then only
consists of the vertex v. Otherwise, consider the tour Ti. This tour contains all ki vertices
ofBi, and its length is at most βHK ·2i+5 ·L∗. We partition Ti into at least 2i−2 disjoint
consecutive segments, each containing dki/2ie vertices ofBi. We let T ∗i be the segment
of minimum length, so the length of T ∗i is bounded by O(βHK · L∗).

Acknowledgment We would like to thank Chandra Chekuri for suggesting the problems,
and for sharing with us his survey on open problems related to Orienteering.

References

1. A. ASADPOUR, M. X. GOEMANS, A. MADRY, S. O. GHARAN, AND A. SABERI, An
O(logn/ log logn)-approximation algorithm for the asymmetric traveling salesman prob-
lem, in SODA ’10, 2010.

2. N. BANSAL, A. BLUM, S. CHAWLA, AND A. MEYERSON, Approximation algorithms for
deadline-tsp and vehicle routing with time-windows, in STOC ’04: Proceedings of the thirty-
sixth annual ACM symposium on Theory of computing, New York, NY, USA, 2004, ACM,
pp. 166–174.

3. M. BLASER, A new approximation algorithm for the asymmetric tsp with triangle inequality,
in SODA ’03: Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, Philadelphia, PA, USA, 2003, Society for Industrial and Applied Mathematics,
pp. 638–645.

4. A. BLUM, S. CHAWLA, D. R. KARGER, T. LANE, A. MEYERSON, AND M. MINKOFF,
Approximation algorithms for orienteering and discounted-reward tsp, in IN FOCS, 2003,
pp. 46–55.

5. M. CHARIKAR, M. X. GOEMANS, AND H. KARLOFF, On the integrality ratio for the asym-
metric traveling salesman problem, Math. Oper. Res., 31 (2006), pp. 245–252.

6. K. CHAUDHURI, B. GODFREY, S. RAO, AND K. TALWAR, Paths, trees, and minimum la-
tency tours, in 44th Symposium on Foundations of Computer Science (FOCS 2003), 11-14
October 2003, Cambridge, MA, USA, Proceedings, IEEE Computer Society, 2003, pp. 36–
45.

7. C. CHEKURI, N. KORULA, AND M. PÁL, Improved algorithms for orienteering and related
problems, in SODA ’08: Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms, Philadelphia, PA, USA, 2008, Society for Industrial and Applied Math-
ematics, pp. 661–670.

8. C. CHEKURI AND M. PÁL, A recursive greedy algorithm for walks in directed graphs,
Foundations of Computer Science, Annual IEEE Symposium on, 0 (2005), pp. 245–253.

9. , An O(logn) approximation ratio for the asymmetric traveling salesman path prob-
lem, Theory of Computing, 3 (2007), pp. 197–209.

10. U. FEIGE AND M. SINGH, Improved approximation ratios for traveling salesperson tours
and paths in directed graphs, in APPROX ’07/RANDOM ’07: Proceedings of the 10th In-
ternational Workshop on Approximation and the 11th International Workshop on Random-
ization, and Combinatorial Optimization. Algorithms and Techniques, Berlin, Heidelberg,
2007, Springer-Verlag, pp. 104–118.

11. A. FRANK, On connectivity properties of eulerian digraphs, Ann. Discrete Math., 41 (1989).
12. A. FRIEZE, G. GALBIATI, AND F. MAFFIOLI, On the worst-case performance of some

algorithms for the asymmetric traveling salesman problem, Networks, 12 (1982), pp. 23–39.
13. M. X. GOEMANS, N. J. A. HARVEY, K. JAIN, AND M. SINGH, A randomized rounding

algorithm for the asymmetric traveling salesman problem, 2009.
14. E. HALPERIN AND R. KRAUTHGAMER, Polylogarithmic inapproximability, in STOC ’03:

Proceedings of the thirty-fifth annual ACM Symposium on Theory of Computing, New York,
NY, USA, 2003, ACM, pp. 585–594.

15. M. HELD AND R. M. KARP, The Traveling-Salesman Problem and Minimum Spanning
Trees, OPERATIONS RESEARCH, 18 (1970), pp. 1138–1162.

16. B. JACKSON, Some remarks on arc-connectivity, vertex splitting, and orientation in graphs
and digraphs, Journal of Graph Theory, 12 (1998), pp. 429–436.

17. W. MADER, A reduction method for edge connectivity in graphs, Ann. Discrete Math., 3
(1978), pp. 145–164.

18. V. NAGARAJAN AND R. RAVI, Poly-logarithmic approximation algorithms for directed ve-
hicle routing problems, in Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, 10th International Workshop, APPROX 2007, and 11th Inter-
national Workshop, RANDOM (APPROX-RANDOM), vol. 4627 of Lecture Notes in Com-
puter Science, Springer, 2007, pp. 257–270.

19. A. SCHRIJVER, Combinatrial Optimization: Polyhedra and Efficiency, vol. 24 of Algorithms
and Combinatorics, Springer, 2003.

	Approximation Algorithms for the Directed k-Tour and k-Stroll Problems
	MohammadHossein Bateni Julia Chuzhoy

