
Approximation Algorithms for

the Directed k-Tour and k-Stroll Problems

MohammadHossein Bateni∗ Julia Chuzhoy†

Abstract

We consider two natural generalizations of the Asymmetric Traveling Salesman problem: the
k-Stroll and the k-Tour problems. The input to the k-Stroll problem is a directed n-vertex graph
with nonnegative edge lengths, an integer k, and two special vertices s and t. The goal is to
find a minimum-length s-t walk, containing at least k distinct vertices (including the endpoints
s, t). The k-Tour problem can be viewed as a special case of k-Stroll, where s = t. That is,
the walk is required to be a tour, containing some pre-specified vertex s. When k = n, the
k-Stroll problem becomes equivalent to Asymmetric Traveling Salesman Path, and k-Tour to
Asymmetric Traveling Salesman.

Our main result is a polylogarithmic approximation algorithm for the k-Stroll problem. Prior
to our work, only bicriteria (O(log2 k), 3)-approximation algorithms have been known, produc-
ing walks whose length is bounded by 3OPT, while the number of vertices visited is Ω(k/ log2 k).
We also show a simple O(log2 n/ log log n)-approximation algorithm for the k-Tour prob-
lem. The best previously known approximation algorithms achieved min(O(log3 k), O(log2 n ·
log k/ log log n))-approximation in polynomial time, and O(log2 k)-approximation in quasipoly-
nomial time.

1 Introduction

In the Asymmetric Traveling Salesman Problem (ATSP), the input is a directed n-vertex graph
G = (V,E) with nonnegative edge lengths, and the goal is to find a minimum-length tour, visiting
each vertex at least once. ATSP, along with its undirected counterpart, the Traveling Salesman
problem, is a classical combinatorial optimization problem, that has been studied extensively. In a
recent breakthrough, Asadpour et al. [1] have shown an O(log n/ log log n)-approximation algorithm
for ATSP, breaking the long-standing barrier of O(log n) on its approximation ratio [12, 3, 5, 10, 13].
With only APX-hardness known on the negative side, this remains one of the central open problems
in the area of approximation. A closely related problem is Asymmetric Traveling Salesman Path
(ATSPP), defined exactly like ATSP, except that the input also contains two vertices s and t, and
instead of a tour, we are required to find a minimum length s-t walk, visiting every vertex at least
∗Department of Computer Science, Princeton University, Princeton, NJ 08540; Email:

mbateni@cs.princeton.edu. He is also with Center for Computational Intractability, Princeton, NJ 08540.
He was supported in part by a Gordon Wu fellowship, a Charlotte Elizabeth Procter fellowship as well as NSF
ITR grants CCF-0205594, CCF-0426582 and NSF CCF 0832797, NSF CAREER award CCF-0237113, MSPA-MCS
award 0528414, NSF expeditions award 0832797. Most of the work was done while the author was an intern in
Toyota Technological Institute.
†Toyota Technological Institute, Chicago, IL 60637. Email: cjulia@ttic.edu. Supported in part by NSF CA-

REER award CCF-0844872.

1

once. While ATSPP appears to be very similar to ATSP, an O(log n)-approximation algorithm has
only been discovered recently by Chekuri and Pál [9], and required new nontrivial ideas.

In this paper we focus on two natural and well-studied generalizations of ATSP: the k-Stroll and
the k-Tour problems1. In the k-Stroll problem, in addition to the edge-weighted graph G, we are
also given an integer k, and two special vertices s and t. The goal is to find a minimum-length walk
from s to t, containing at least k distinct vertices. The k-Tour problem is defined similarly, except
that instead of the vertices s and t, the input contains one root vertex r, and we are required to
find a minimum-length tour containing r, that visits at least k distinct vertices. Therefore, k-Tour
can be viewed as a special case of k-Stroll, where s = t. When the input graph is undirected, we get
the undirected k-Tour and undirected k-Stroll problems, respectively2. For the special case where
k = n, k-Tour becomes equivalent to ATSP, and k-Stroll becomes equivalent to ATSPP.

A bicriteria (α, β)-approximation algorithm for the k-Stroll problem is an algorithm that returns
a walk of length at most β · OPT, containing at least k/α distinct vertices. Chekuri, Korula
and Pál [7] and Nagarajan and Ravi [18] have independently shown, using different methods,
(O(log2 k), 3) bicriteria approximation algorithms for the k-Stroll problem. To the best of our
knowledge, these are the only known approximation algorithms for the problem. The main result
of our paper is a polylogarithmic approximation algorithm for the k-Stroll problem. We note that
undirected k-Stroll has a (2 + ε)-approximation algorithm, due to Chaudhuri et al. [6].

The first nontrivial approximation algorithm for the k-Tour problem, due to Chekuri and Pál [8],
achieved an O(log2 k)-approximation in quasi-polynomial time. Chekuri, Korula and Pál [7] and
Nagarajan and Ravi [18] have later independently shown polynomial time algorithms achieving
O(log3 k) and O(log2 n · log k) approximation, respectively. Using the recent result of [1] for
ATSP, the latter approximation factor improves to O(log2 n · log k/ log logn). We show a simple
O(log2 n/ log log n)-approximation algorithm for the problem.

Related Work There is a large body of research on ATSP and its variants. We only mention
here results most closely related to the problems we study. The Orienteering problem is defined
as follows: given an edge-weighted graph, two vertices s and t and a budget B, find an s-t walk
of length at most B, maximizing the number of distinct vertices visited. The problem is closely
related to the k-Stroll problem, and this relationship has been made formal by Blum et al. [4], who
showed that an α-approximation algorithm for k-Stroll gives an O(α)-approximation for Orienteer-
ing, in both the directed and the undirected settings. This result was later generalized by Chekuri,
Korula and Pál [7] and Nagarajan and Ravi [18], who proved that an (α, β)-bicriteria approxima-
tion for k-Stroll implies an O(αβ)-approximation for Orienteering, in both directed and undirected
graphs. Chekuri and Pál [8] showed that for any fixed integer h, the directed Orienteering prob-
lem has an O(log OPT/ log h)-approximation algorithm, whose running time is (n logB)O(h logn).
In particular, they obtain O(log OPT)-approximation in quasipolynomial time, and sublogarithmic
approximation in subexponential time. Chekuri, Korula and Pál [7] and Nagarajan and Ravi [18]
have later independently obtained a polynomial-time O(log2 OPT) approximation algorithm for
directed Orienteering. The results of [8] also hold for generalizations of the directed Orienteering
problem: directed Submodular Orienteering, where instead of maximizing the number of distinct
vertices contained in the tour, the goal is to maximize the value of some given submodular function

1k-Tour is sometimes referred to as k-ATSP in the literature. Similarly, k-Stroll is sometimes called k-ATSPP.
2Since we will be focusing on directed graphs, the names k-Tour and k-Stroll will refer to the directed versions of

the problems throughout the paper, unless stated otherwise.

2

over the set of vertices the tour visits, and directed Submodular Orienteering with time windows,
where each vertex is associated with a time window, and a vertex is covered by the tour only if
it is visited during its time window. The undirected version of the Orienteering problem has also
been studied extensively. The first constant factor approximation algorithm, due to Blum et al. [4],
achieved a factor 4 approximation, and was later improved by Bansal et al. [2] to factor 3. The best
currently known approximation algorithm, due to Chekuri, Korula and Pál [7], gives a factor (2+ε)
approximation. On the negative side, the basic Orienteering problem is known to be APX-hard for
both directed and undirected graphs [4]. Chekuri and Pál [8] have shown that an α-approximation
for undirected Submodular Orienteering implies an O(α log k)-approximation for the Group Steiner
tree problem, and therefore undirected Submodular Orienteering is hard to approximate to within
factor Ω(log1−ε n) unless NP ⊆ ZTIME

(
npoly log(n)

)
[14].

Problem definitions, our results and techniques The input to the k-Stroll problem is a
complete directed n-vertex graph G = (V,E) with lengths ce ≥ 0 on edges, satisfying the triangle
inequality. Additionally, we are given two special vertices s and t and an integer k. The goal is to
find an s-t walk of minimum length that visits at least k distinct vertices.

The input to the k-Tour problem is a complete directed n-vertex graph G = (V,E) with edge
lengths ce ≥ 0, satisfying the triangle inequality, an integer k and a root vertex r. The objective
is to find a minimum-length tour T , containing at least k distinct vertices, including r. Let β
denote the best approximation factor efficiently achievable for the k-Tour problem. Our result for
the k-Stroll problem is summarized in the following theorem:

Theorem 1. There is an efficient O(log k) · β-approximation algorithm for the k-Stroll problem.

The algorithm is somewhat similar to the quasipolynomial time algorithm of Chekuri and Pál [8]
for the Orienteering problem, in the following sense: the algorithm also guesses the middle point v
of the walk, partitioning the problem into two subproblems, and then solves the two subproblems
separately. This is done by means of dynamic programming, and the main challenge is to keep the
size of the dynamic programming table polynomial in n. To demonstrate this difficulty, consider
the top-most level of the recursion, and let v be the guessed vertex that appears in the middle of
the tour. Our algorithm partitions all the vertices into three subsets Lv, Rv, and Cv, with the
following properties: All vertices of Lv that are covered by the optimal walk, must appear before
v on it, and similarly all vertices of Rv belonging to the optimal walk appear after v on it. The
vertices of Cv may appear either before or after v, and we can solve the problem induced by these
vertices using the algorithm for the k-Tour problem. The main challenge is that when we continue
to recursively solve the problem induced by, say, Lv, we need to ensure that the vertices of Rv
are not used in its solution, so we do not over-count the vertices we cover. Therefore, for each
subproblem that we solve, we need to find a way to concisely represent the vertices that have been
removed in previous recursive levels. Equivalently, we need to keep the number of entries in the
dynamic programming table polynomial in the input size, while ensuring that we do not over-count
vertices that the solution visits.

We now turn to the k-Tour problem. Let βHK be the best approximation factor achievable
for the ATSP problem, via LP rounding of the Held-Karp LP relaxation [15] (see Section 3.1 for
formal definitions). From the work of Asadpour et al. [1], βHK ≤ O(log n/ log logn). We obtain
the following result for the k-Tour problem.

3

Theorem 2. There is an efficient O(log n) ·βHK approximation algorithm for the k-Tour problem.
In particular, the problem is approximable to within factor O(log2 n/ log logn).

From the work of Chekuri, Korula and Pál [7], and from Theorem 2, the approximation factor
β for the k-Tour problem is therefore bounded by min(O(log2 n/ log logn), O(log3 k)). Therefore,
we establish the following result for the k-Stroll problem:

Corollary 3. The k-Stroll problem has an efficient min(O(log2 n · log k/ log log n), O(log4 k)) ap-
proximation algorithm.

Our algorithm for the k-Tour problem is simple, and it is very similar to the O(log2 n)-
approximation algorithm of Nagarajan and Ravi [18] for the minimum ratio ATSP problem. Nagara-
jan and Ravi then use this algorithm as a subroutine to obtain an O(log2 n · log k)-approximation
for k-Tour. We bypass this step by solving the k-Tour problem directly, and this allows us to save
the O(log k) factor in the approximation ratio. We note that following the work of Asadpour et
al. [1], the approximation factors in [18] improve to O(log2 n/ log log n) for minimum ratio ATSP,
and to O(log2 n · log k/ log log n) for the k-Tour problem.

Our algorithm starts by solving a linear-programming relaxation of the k-Tour problem, which
can be seen as an extension of the Held-Karp LP relaxation for ATSP. Each vertex v is associated
with an indicator variable zv, for covering v by the solution. We then partition all vertices geomet-
rically into O(log n) buckets, according to their values zv, with bucket Bi containing vertices v with
2−i < zv ≤ 2−i+1. Next, using the LP-rounding algorithm for ATSP, we find, for each bucket Bi, a
tour Ti of length O(βHK · 2i ·OPT), containing all vertices of Bi. This tour is then partitioned into
Θ(2i) segments, containing d|Bi|/2ie vertices each, and the cheapest such segment, T ∗i , is selected.
We then connect together the selected segments T ∗i for all buckets Bi to obtain the final tour T .

Organization Section 2 is devoted to the polylogarithmic approximation algorithm for the k-
Stroll problem, and the algorithm for the k-Tour problem appears in Section 3.

2 Approximation Algorithm for the k-Stroll Problem

2.1 Preliminaries

We assume that we are given a complete directed n-vertex graph G = (V,E) with nonnegative
lengths ce on edges, satisfying the triangle inequality. Additionally, we are given two special vertices
s and t, called the source and the sink, and an integer k. The goal is to find an s-t walk of minimum
length, visiting at least k distinct vertices. For any instance I of the problem, we denote by OPT(I)
the cost of the optimal solution for this instance, and when the instance is clear from context, we
use the short-hand OPT. For each pair u, v of vertices, we denote by d(u, v) the length of the
shortest path connecting u to v in G.

Let α denote the desired approximation factor. We assume throughout the algorithm that we
know the value L∗ of the optimal solution. This can be assumed w.l.o.g. using standard techniques:
we can perform a binary search on the value L∗, and run our approximation algorithm for each
such guessed value L. If the algorithm produces a solution whose cost is bounded by αL, then
L∗ ≤ L, and otherwise L∗ > L, so we can adjust our guessed value L accordingly. Therefore, from
now on we assume that we have a value L∗ ≥ OPT, and our goal is to produce a solution of cost

4

at most αL∗. Our first step is to make the edge lengths polynomially bounded. The proof of the
next claim uses standard techniques.

Claim 4. We can assume, at the cost of losing a constant factor in the approximation ratio, that
all edge lengths ce are integers in {0, . . . , N}, where N = poly(n).

Proof. Let I denote the input problem instance. We can assume, w.l.o.g., that L∗/n4 = 1, by
scaling all edge weights appropriately. Let I ′ be a new instance, defined on graph G, where for
each edge e = (u, v), the new edge length c′e is the length of the shortest path connecting u to v
in I. The two instances, I, I ′ are equivalent, in the sense that any solution of cost C in I gives a
solution of the cost at most C in I ′, and vice versa. Let P ∗ be the optimal solution in I ′. Then
P ∗ visits every vertex at most once, and its length is at most L∗. We now build a new instance I ′′,
as follows. First, remove from G all edges e with c′e > L∗, and round the lengths of all remaining
edges up to the next integer. To obtain our final instance I ′′, let G′′ be the complete graph on the
set V of vertices. For each pair (u, v) of vertices, set the length of the edge (u, v) to be the length
of the shortest path connecting u to v, with respect to the new values of the edge lengths. If no
such path exists, the edge length is set to N = n5. Consider the path P ∗ in instance I ′′. It is easy
to see that the length of P ∗ is at most 2L∗, since for each edge e ∈ P ∗ with c′e ≥ 1, the length
increased by at most factor 2, and all edges e ∈ P ∗ with c′e ≤ 1 can in total contribute at most
n ≤ L∗ to the length of P ∗. Therefore, OPT(I ′′) ≤ 2L∗. Moreover, any solution of cost C < n5 to
I ′′ gives a solution of cost at most C to I ′, and hence to I. Therefore, an α-approximate solution
for I ′′ (where α = o(n)) is a 2α-approximation for I.

We use the following notation in describing the algorithm. For a vertex v ∈ V and a parameter
D, let B(v,D) = {u ∈ V | d(v, u) ≤ D, d(u, v) ≤ D} . For a pair x, y of vertices and a parameter D,
let S(x, y,D) = {u ∈ V | d(x, u) + d(u, y) ≤ D}. Therefore, S(x, y,D) is the set of all vertices that
may appear on a path of length D connecting x to y.

For technical reasons that will be apparent later, we need to ensure that B(s, L∗) = {s} and
B(t, L∗) = {t}. We can do so, w.l.o.g., by adding a new source vertex s′ and a new sink vertex t′,
and setting the lengths of edges (s′, s) and (t, t′) to 0, and the lengths of all other edges incident
to s′ and t′ to n2 ·L∗. (Recall that the graph is required to be complete). In order to maintain the
correct number of vertices visited, we increase k by two. This transformation does not affect the
solution cost or the approximation factor. So from now on we assume that in the input instance I,
B(s, L∗) = {s} and B(t, L∗) = {t}.

Throughout the algorithm, we will be solving instances of the k-Tour problem on subgraphs of
G. Let Algk-tour be a β-approximation algorithm for the k-Tour problem. An instance I(V ′, r, k′)
of the k-Tour problem, where V ′ ⊆ V , r ∈ V , k′ ∈ Z+, is an instance defined on the subgraph
of G induced by V ′ ∪ {r}, with the root vertex r, and the parameter k′ denoting the number of
vertices (counting r itself) that need to be covered. We denote by Algk-tour(V ′, r, k′) the output
of Algk-tour on instance I(V ′, r, k′).

2.2 Algorithm Overview

Let θ = 3/2 and α(k′) = 9 logθ k′ + 3, for k′ > 1. Our final approximation factor is O(β · α(k)) =
O(β · log k), as required.

We solve the problem using dynamic programming. Each entry of the dynamic programming
table is parametrized by T (x, y, k′, D,∆1,∆2), where x, y ∈ V , k′ is an integer, 1 ≤ k′ ≤ k, and

5

D,∆1,∆2 are integers between 0 and L∗. Let

V (x, y,D,∆1,∆2) = S(x, y,D) \ (B(x,∆1) ∪B(y,∆2)) .

Entry T (x, y, k′, D,∆1,∆2) is associated with an instance of the k-Stroll problem denoted by
π(x, y, k′, D,∆1,∆2). The instance is defined on the subgraph of G induced by V (x, y,D,∆1,∆2)∪
{x, y}. The number of vertices to be covered by the stroll is k′, counting the endpoints of the stroll
which are x and y.

We say that entry T (x, y, k′, D,∆1,∆2) is feasible iff ∆1,∆2 ≥ D, d(x, y) ≤ D, and the
value of the optimal solution of instance π(x, y, k′, D,∆1,∆2) is at most D. A feasible entry
T (x, y, k′, D,∆1,∆2) must contain a feasible solution for problem π(x, y, k′, D,∆1,∆2), whose
length is at most 3β(∆1 +∆2)+β ·α(k′) ·D. Notice that since we have ensured that B(s, L∗) = {s}
and B(t, L∗) = {t}, entry T (s, t, k, L∗, L∗, L∗) is feasible, with V (s, t, L∗, L∗, L∗) = V \ {s, t}. So if
the entries of the dynamic programming table are computed correctly, it must contain a solution to
I of cost O(βα(k))L∗ = O(log k)βL∗, as desired. The entries of the dynamic programming table are
filled in from smaller to larger values k′. After entry T = T (x, y, k′, D,∆1,∆2) is processed, it either
contains a feasible solution to problem π(x, y, k′, D,∆1,∆2) of cost at most 3β(∆1+∆2)+β·α(k′)·D,
in which case we say that T is good, or the value of T is undefined, and we say that it is bad. The
latter will only happen if T is infeasible.

2.3 Computing the entries of the dynamic programming table

Let T = T (x, y, k′, D,∆1,∆2) be a feasible entry of the dynamic programming table that needs
to be processed. Recall that ∆1,∆2 ≥ D, and we can assume that the cost of the optimal
solution for instance π = π(x, y, k′, D,∆1,∆2) is bounded by D. For simplicity, we denote
V ′ = V (x, y,D,∆1,∆2). We say that the problem instance π is easy iff one of the following
happens—in fact, these are the base cases of the dynamic programming.

1. k′ ≤ 4, or

2. d(y, x) ≤ 3(∆1 + ∆2) +D, or

3. none of the above holds, and there are two integers k1, k2, with k1 + k2 ≥ k′, such that the
tours T1 = Algk-tour(B(x, 3∆1) ∩ V ′, x, k1) and T2 = Algk-tour(B(y, 3∆2) ∩ V ′, y, k2) have
total length at most 3β(∆1 + ∆2) + 2βD. In other words, we can find two tours: T1 rooted
at x inside the subgraph induced by B(x, 3∆1) ∩ V ′, and T2 rooted at y inside the subgraph
induced by B(y, 3∆2)∩V ′, that together cover k′ vertices (we show below that the two tours
are disjoint), and their total length is at most 3β(∆1 + ∆2) + 2βD.

Notice that we can check if π is easy in polynomial time.

Claim 5. If T = T (x, y, k′, D,∆1,∆2) is feasible, and π = π(x, y, k′, D,∆1,∆2) is easy, then we
can find a solution for π of cost at most 3β(D + ∆1 + ∆2) ≤ 3β(∆1 + ∆2) + β · α(k′) ·D.

Proof. If k′ ≤ 4, an optimal solution of cost at most D can be found by exhaustive search. Other-
wise, if d(y, x) ≤ 3(∆1 +∆2)+D, then there is a solution to instance I(V ′, x, k′) of the k-Tour prob-
lem of cost at most 2D+3∆1+3∆2. We obtain a solution to π by concatenating Algk-tour(V ′, x, k′)
with edge (x, y). The cost of the solution is bounded by D+β(2D+3∆1+3∆2) ≤ 3β(D+∆1+∆2).

6

Finally, if none of the above happens, the sets B(x, 3∆1) and B(y, 3∆2) are completely disjoint.
So if the third condition holds, the two tours T1,T2 are completely disjoint, covering together k′

distinct vertices. We can connect them to each other by adding the edge (x, y), obtaining a solution
of cost at most 3β(∆1 + ∆2 +D) to π.

From now on we assume that the instance π is not easy. We also assume that for all k′′ < k′, all
entries T (x′, y′, k′′, D′,∆′1,∆

′
2) have been computed correctly. That is, if T (x′, y′, k′′, D′,∆′1,∆

′
2) is

a feasible entry, then it is good.
Our high-level idea is to subdivide π into two subinstances, and then look the corresponding

values up in the dynamic programming table. Let P denote the optimal solution for π. Roughly
speaking, we would like to find a pivot vertex v 6∈ {s, t} that lies “in the middle” of P, with roughly
half the vertices appearing before and after v on P, and then obtain two subproblems: one that
appears “to the left” and one that appears “to the right” of v on P. Let v be the guessed “middle”
vertex, and let DL, DR be the guessed values of the lengths of the segments of P before and after it
visits v (since we have a complete graph, v is visited at most once). We require that DL+DR = D,
d(x, v) ≤ DL, and d(v, y) ≤ DR. We now define the following three sets of vertices:

• Cv = B(v,D) ∩ V ′.

• Lv = {u ∈ V ′ \ Cv | d(x, u) + d(u, v) ≤ DL}. Equivalently, Lv = (S(x, v,DL) \B(v,D))∩V ′.
Notice that if u ∈ Lv, then d(v, u)+d(u, y) > DR (otherwise u must belong to Cv). Therefore,
if u ∈ P, then it has to appear before v on P.

• Rv = {u ∈ V ′ \ Cv | d(v, u) + d(u, y) ≤ DR}. Equivalently, Rv = (S(v, y,DR) \B(v,D))∩V ′.
Notice that if u ∈ Rv, then d(x, u) + d(u, v) > DL (otherwise u ∈ Cv). Therefore, if u ∈ P,
then u has to appear after v on P.

Clearly, the three sets Cv, Lv and Rv are completely disjoint. It is easy to see that we can
transform P into another x-y walk P ′, that visits the same vertices as P, and it consists of three
segments: the first segment connects x to v and only contains vertices of Lv ∪ {x, v}; the second
segment is a tour containing only vertices of Cv, including v; and the third segment connects v to
y and only contains vertices of Rv ∪ {v, y}. The lengths of these segments are bounded by DL,
DL + 2D + DR ≤ 3D and DR, respectively. Let kL, kC , kR be the numbers of distinct vertices
contained in each of the segments, respectively, kL + kC + kR = k′ + 2. (Notice that vertex v
appears on all three segments).

Observe that if value kC has been guessed correctly, then Algk-tour(Cv, v, kC) returns a tour
PC , containing kC vertices from Cv, including v, of length at most 3βD. We would like now
to look the remaining two segments up in the dynamic programming table. The first segment
should appear in T (x, v, kL, DL,∆1, D), and the second segment in T (v, y, kR, DR, D,∆2). Indeed,
this approach works if we can ensure that V (x, v,DL,∆1, D) = Lv and V (v, y,DR, D,∆2) = Rv.
Unfortunately this is not necessarily true. To overcome this issue, we proceed as follows. First,
we define a set of admissible pivots. We then show that if v is an admissible pivot, then indeed
V (x, v,DL,∆1, D) = Lv and V (v, y,DR, D,∆2) = Rv. Finally, we show how to take care of the
case where no pivot is admissible.

Definition 1. We say that v is an admissible pivot iff v 6∈ B(x, 2∆1) and v 6∈ B(y, 2∆2).

Claim 6. If v is admissible, then V (x, v,DL,∆1, D) = Lv and V (v, y,DR, D,∆2) = Rv.

7

Proof. Let V ∗ = V (x, v,DL,∆1, D). We show that V ∗ = Lv; the other case is symmet-
ric. Assume first that u ∈ Lv. We show that u ∈ V ∗ as well. By the definition of Lv,
u ∈ (S(x, v,DL) \B(v,D)) ∩ V ′. On the other hand, V ′ = S(x, y,D) \ (B(x,∆1) ∪B(y,∆2)).
In particular, u 6∈ B(x,∆1). Therefore, u ∈ S(x, v,DL) \ (B(v,D) ∪B(x,∆1)) and so u ∈ V ∗.

Assume now that u ∈ V ∗. From the definition of V ∗, this means that u ∈ S(x, v,DL), u 6∈
B(x,∆1) and u 6∈ B(v,D). Assume for contradiction that u 6∈ Lv. Since Lv contains all vertices
in S(x, v,DL) \ B(v,D) that participate in V ′, it means that u 6∈ V ′. But since u ∈ S(x, v,DL),
we have that d(x, u) + d(u, v) ≤ DL, which together with d(v, y) ≤ DR implies that d(x, u) +
d(u, y) ≤ DL + DR ≤ D, and hence u ∈ S(x, y,D). Therefore, the only possibility for u 6∈ V ′

is that u ∈ B(y,∆2). Then we have that d(y, u) ≤ ∆2; d(u, v) ≤ DL and d(v, y) ≤ DR. Since
DL+DR = D ≤ ∆2, we get that v ∈ B(y, 2∆2), a contradiction for v being an admissible pivot.

We now proceed as follows. First, we define the notion of good admissible pivots. Intuitively,
an admissible pivot is good iff it lies “in the middle” of the optimal solution. More precisely, we
use the following definition.

Definition 2. An admissible pivot v is good iff there are integers kL, kR, kC , DL, DR, with kL +
kR + kC = k′ + 2, DL + DR = D, kL, kR ≤ 2k′/3, such that both T (x, v, kL, DL,∆1, D) and
T (v, y, kR, DR, D,∆2) are good entries, and the length of the tour Algk-tour(Cv, v, kC) is at most
3βD.

Observe that we can check whether a pivot v is good and admissible in polynomial time. The
next claim shows that if a good admissible pivot exists, then we can find the required solution to
the instance π. After that we show how to handle the case where no admissible pivot exists.

Claim 7. If there is a good admissible pivot, then we can find a solution to π of cost at most
3β(∆1 + ∆2) + β · α(k′) ·D.

Proof. Since pivot v is admissible, from Claim 6, V (x, v,DL,∆1, D) = Lv and V (v, y,DR, D,∆2) =
Rv. Consider the three paths PL = T (x, v, kL, DL,∆1, D), PR = T (v, y, kR, DR, D,∆2), and PC =
Algk-tour(Cv, v, kC). Since the sets Lv, Cv and Rv are completely disjoint, the three paths are also
completely disjoint, except for the vertex v, that appears on each one of them. (Notice that from the
definition of Cv, x, y 6∈ Cv). So altogether these paths cover kL + kR + kC − 2 = k′ distinct vertices
of V ′∪{x, y}. Let P be the path obtained by concatenating PL,PC and PR. It now only remains to
bound the length of P. The lengths of PL and PR are bounded by 3β(∆1 +D)+β(9 logθ kL+3)DL

and 3β(D + ∆2) + β(9 logθ kR + 3)DR, respectively. Since kL, kR ≤ 2k′/3 and θ = 3/2, logθ kL ≤
logθ k′ − 1 and logθ kR ≤ logθ k′ − 1. Therefore, the total solution cost is bounded by

3βD + [3β(∆1 +D) + β(9 logθ kL + 3)DL] + [3β(D + ∆2) + β(9 logθ kR + 3)DR]
≤ 3βD + 3β(∆1 +D) + β(9(logθ k

′ − 1) + 3)DL + 3β(D + ∆2) + β(9(logθ k
′ − 1) + 3)DR

= 3βD + 3β(∆1 + ∆2 + 2D) + β(9(logθ k
′ − 1) + 3)(DL +DR)

≤ 3β(∆1 + ∆2) + β(9 logθ k
′ + 3)D

= 3β(∆1 + ∆2) + β · α(k′) ·D.

It now only remains to take care of the case where no good admissible pivots exist. In this case,
we show that we can decompose the problem into two subproblems, one of which is easy, while
the other is “small,” in the sense that the number of vertices that we need to cover in the second
subproblem is significantly smaller than k′. This is done in the following claim.

8

Claim 8. If T is a feasible entry, π is not easy, and no good admissible pivot exists, then there
is an admissible (non-good) pivot v, integers kL, kR, kC , DL, DR, with kL + kR + kC = k′ + 2,
DL + DR = D, such that the length of the tour Algk-tour(Cv, v, kC) is at most 3βD, and the
entries T (x, v, kL, DL,∆1, D) and T (v, y, kR, DR, D,∆2) are good. Moreover, either kR ≤ 2k′/3,
and problem π(x, v, kL, DL,∆1, D) is easy, or kL ≤ 2k′/3, and problem π(v, y, kR, DR, D,∆2) is
easy. In either case, we can find a solution to π of cost at most 3β(∆1 + ∆2) + β · α(k′) ·D.

Proof. For simplicity, we call vertices of V ′ that belong to B(x, 2∆1) “red,” and vertices of V ′ that
belong to B(y, 2∆2) “blue.” Consider the optimal solution P to the problem π. First, it is easy
to see that all red vertices appear before all blue vertices on P: otherwise, if some blue vertex b
appears before some red vertex r on P, then d(y, x) ≤ d(y, b) + d(b, r) + d(r, x) ≤ D + 2∆1 + 2∆2,
so π is an easy problem (case 2). Similarly, no vertex can be blue and red simultaneously.

Let r be the last red vertex and b the first blue vertex on path P. Observe that all vertices lying
before r on P belong to B(x, 3∆1), and all vertices appearing after b on P belong to B(y, 3∆2),
since ∆1,∆2 ≥ D. Thus, if no vertex lies between r and b on P, there are two integers k1 and k2,
k1 +k2 = k′, such that the two instances I(B(x, 3∆1)∩V ′, x, k1) and I(B(y, 3∆2)∩V ′, y, k2) of the
k-Tour problem have solutions of total cost at most 3(∆1 + ∆2) + 2D, so problem π is easy (case
3).

Let Q be the set of all vertices lying between r and b on P. Then all vertices in Q are admissible
pivots. Let P1 be the portion of P lying between x and r, and let P2 be the portion of P lying
between b and y. If both P1 and P2 contain less than 2k′/3 distinct vertices, then one of the pivots
in Q must be good. Since we have assumed that there are no good admissible pivots, either P1 or P2

contains more than 2k′/3 vertices. For simplicity, assume the former; the other case is symmetric.
Let v be the vertex appearing on P right after r. We choose v as the pivot. Observe that v is
an admissible pivot. Consider the corresponding sets Lv, Cv and Rv. As before, we can replace P
by a path P ′ that consists of three segments. The first segment connects x to v and only visits
vertices of Lv ∪ {x, v}; the second segment is a tour containing v and only visiting vertices of Cv,
and the third segment connects v to y and only contains vertices of Rv∪{v, y}. The lengths of these
segments are bounded by DL, 3D and DR, respectively, where DL + DR = D. Let kL, kC and kR
denote the number of distinct vertices appearing on each one of the three segments, respectively,
kL + kR + kC = k′ + 2. Observe that only vertices that appear after v on P belong to Rv, so
kR ≤ 2k′/3. Finally, we need to show that problem π′ = π(x, v, kL, DL,∆1, D) is easy. First, if
d(v, x) ≤ 3(∆1 +D) +DL, problem π′ is easy (case 2). So assume this is not the case. Recall that
since v is an admissible pivot, V (x, v,DL,∆1, D) = Lv, and since all vertices of Lv appear before v
on P, Lv ⊆ V (P1) ⊆ B(x, 3∆1) ∩ V ′. Therefore, there is a solution to the k-tour problem instance
I(B(x, 3∆1)∩V ′, x, kL−1) of cost at most DL+3∆1, and solution to I(B(v, 3D)∩V ′, v, 1)) of cost
0, and so π′ is easy (case 3). Since the two entries T (x, v, kL, DL,∆1, D) and T (v, y, kR, DR, D,∆2)
are feasible, they must also be good.

It now only remains to bound the solution cost. We assume again w.l.o.g. that the first case
happens, that is, kR ≤ 2k′/3, and problem π(x, v, kL, DL,∆1, D) is easy. Using Claim 5, we can
find a solution TL to instance π(x, v, kL, DL,∆1, D) of cost at most 3β(DL+ ∆1 +D). We let TC =
Algk-tour(Cv, v, kC) be the tour of cost at most 3βD, and recall that the entry T (v, y, kR, DR, D,∆2)
is good, so it contains a path, denoted by TR, of length at most 3β(D+ ∆2) + β(9 logθ kR + 3)DR.

9

Then the total cost is bounded by

3βD + 3β(DL + ∆1 +D) + [3β(D + ∆2) + β(9 logθ kR + 3)DR]
≤ 3βD + 3β(DL + ∆1 +D) + 3β(D + ∆2) + β(9(logθ k

′ − 1) + 3)DR

≤ 3βD + 3β(∆1 + 2D + ∆2) + β(9(logθ k
′ − 1) + 3)(DL +DR)

≤ 3β(∆1 + ∆2) + β(9(logθ k
′ + 3)D

≤ 3β(∆1 + ∆2) + β · α(k′) ·D.

We now summarize our algorithm for computing entry T (x, y, k′, D,∆1,∆2):

• If instance π(x, y, k′, D,∆1,∆2) is easy, return the solution of cost at most 3β(D+∆1+∆2) ≤
3β(∆1 + ∆2) + β · α(k′) ·D, guaranteed by Claim 5.

• Otherwise, if there is a good admissible pivot v, return the solution of cost at most 3β(∆1 +
∆2) + β · α(k′) ·D, guaranteed by Claim 7.

• Otherwise, if there is an admissible pivot v, and integers kL, kR, kC , DL, DR, with kL + kR +
kC = k′ + 2, DL +DR = D, such that the length of the tour Algk-tour(Cv, v, kC) is at most
3βD, the entries T (x, v, kL, DL,∆1, D) and T (v, y, kR, DR, D,∆2) are good, and either (1)
kR ≤ 2k′/3, and π(x, v, kL, DL,∆1, D) is easy, or (2) kL ≤ 2k′/3 and π(v, y, kR, DR, D,∆2) is
easy: return a solution of cost at most 3β(∆1 + ∆2) + β · α(k′) ·D, guaranteed by Claim 8.

• Otherwise, the entry T (x, y, k′, D,∆1,∆2) is undefined.

From the above discussion, if T (x, y, k′, D,∆1,∆2) is feasible, and all entries
T (x′, y′, k′′, D′,∆′1,∆

′
2) for k′′ < k′ have been computed correctly, the algorithm finds a so-

lution to the k-Stroll instance π(x, y, k′, D,∆1,∆2) of cost at most 3β(∆1 + ∆2) + βα(k′)D. In
particular, the entry T (s, t, k, L∗, L∗, L∗) will contain an s-t walk covering k vertices, of length at
most O(β · α(k) · L∗) = O(log k) · β · L∗.

3 Approximation Algorithm for the k-Tour Problem

3.1 Preliminaries and Notation

We assume that we are given a directed graph G = (V,E) with nonnegative lengths ce for all
edges e ∈ E. For each vertex v ∈ V , we denote by δ−(v) and δ+(v) the sets of the incoming
and the outgoing edges of v, respectively. Similarly, for a subset U ⊆ V of vertices, δ−(U) =
{(v, u) ∈ E | v ∈ V \ U, u ∈ U} and δ+(U) = {(u, v) ∈ E | u ∈ U, v ∈ V \ U}. Given a pair u, v of
vertices, the distance d(u, v) is the length of the shortest path from u to v in G, where the length
of each edge e is ce.

Held-Karp LP: We will use the famous Held-Karp LP relaxation for the ATSP problem [15],
defined as follows:

10

(LP-HK) minimize
∑

e∈E cexe

s.t. ∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe ∀v ∈ V (1)∑

e∈δ+(U) xe ≥ 1 ∀U ⊂ V (2)
xe ≥ 0 ∀e ∈ E

For each edge e ∈ E, the LP relaxation contains an indicator variable xe for including e in the
solution. The objective is to minimize the total length of edges in the solution. An integral solution
to LP-HK induces a subgraph of G, and the set (1) of constraints ensures that the in-degree of every
vertex equals its out-degree, while the set (2) of constraints requires each subset U ⊂ V of vertices
to have at least one edge leaving the set in this subgraph. Although (LP-HK) has an exponential
number of constraints, it can be solved in polynomial time, either by the Ellipsoid algorithm with a
separation oracle, or by writing an equivalent LP relaxation with a polynomial number of variables
and constraints.

Let βHK denote the best approximation factor achievable by any LP-rounding algorithm based
on (LP-HK). More precisely, βHK is the smallest approximation factor, for which there is an efficient
algorithm A, that for any instance I of the ATSP problem, produces a solution whose cost is at
most βHK · OPTHK(I), where OPTHK(I) is the value of the optimal solution of (LP-HK) for I.
From the recent result of Asadpour et al. [1], βHK ≤ O(log n/ log logn). The goal of this section is
to show an O(log n)βHK-approximation algorithm for the k-Tour problem. Let α = O(log n)βHK
denote the desired approximation factor.

LP relaxation for k-Tour Throughout the algorithm, we assume that we know the value L∗ of
the optimal solution to the k-Tour problem. This is done using standard techniques: we can perform
a binary search on the value L∗, and run our approximation algorithm for the guessed value L. If
the algorithm produces a solution whose cost is bounded by αL, then we know that L∗ ≤ L, and
otherwise L∗ > L, so we can adjust our guess on the value of L∗ accordingly. Therefore, from now
on we assume that we have a value L∗ that upper-bounds the optimal solution cost, and our goal
is to produce a solution of cost at most αL∗. We now perform the following simple transformation
to our input graph G: first, we discard all vertices v, for which d(r, v) > L∗ or d(v, r) > L∗. Next,
we discard all edges e with ce > L∗. Since the discarded edges and vertices do not participate in
the optimal tour, the value of the optimal tour in the new graph does not change. For simplicity,
we will use G to denote the new graph. Clearly, a tour of length αL∗ in the new graph translates
to a tour of the same length in the old graph. We are now ready to define the linear programming
relaxation, extending (LP-HK) to the k-Tour problem. In addition to variables xe for all e ∈ E,
the LP relaxation contains, for each vertex v ∈ V , a variable zv, indicating whether v belongs to

11

the tour.

(LP-k-Tour) minimize
∑

e∈E cexe

s.t. ∑
e∈δ−(v) xe =

∑
e∈δ+(v) xe ∀v ∈ V (3)∑

e∈δ+(U) xe ≥ zv ∀U ⊆ V \ {r},∀v ∈ U (4)
zv ≤ 1 ∀v ∈ V (5)
zr = 1 (6)∑
v∈V zv ≥ k (7)
zv, xe ≥ 0 ∀v ∈ V,∀e ∈ E

The set (3) of constraints is identical to constraints (1) of (LP-HK). The second set of con-
straints, (4), corresponds to constraints (2) of (LP-HK), and it requires that whenever a vertex v
belongs to the solution, every cut U containing v but not r, has an edge e ∈ δ+(U) in the solution.
The next three constraints (5)–(7) ensure that each vertex is covered at most once, the root vertex
r belongs to the solution, and the total number of vertices covered is k, respectively.

The LP relaxation has exponentially many constraints, but similarly to (LP-HK), it can be
solved efficiently. Let OPTLP denote the optimal solution value of (LP-k-Tour). Notice that we
can assume that OPTLP ≤ L∗, the guessed value of the optimal solution cost.

3.2 LP rounding

We start with initial rounding of the LP solution.

Lemma 9. We can efficiently find a feasible solution (x′, z′) to (LP-k-Tour) of cost at most 4 ·
OPTLP , such that all nonzero values z′v belong to the set

{
1/2i | 0 ≤ i ≤ d3 log ne

}
.

Proof. Let (x, z) be the optimal feasible solution to (LP-k-Tour), whose cost is OPTLP . We trans-
form it to solution (x′, z′) as follows: for each edge e ∈ E, set x′e = 4xe. For each v ∈ V , if
1/2i < zv ≤ 1/2i−1, then if i > d3 log ne, set z′v = 0; otherwise, z′v = min(1, 1/2i−2).

It is immediately seen that the cost of the new solution (x′, z′) is bounded by 4OPTLP . We now
only need to verify that it is a feasible solution. First, since all values xe were multiplied by the
same factor, constraints (3) continue to hold. It is also easy to see that for each vertex v, z′v ≤ 1,
and z′r = 1, and therefore constraints (5) and (6) still hold. Consider now constraint (4) for some
v ∈ V , U ⊆ V \ {r} with v ∈ U . The value of zv has increased by at most a factor 4, while the
values xe for all e ∈ δ+(U) have increased by a factor 4. Therefore, the constraint continues to
hold.

Finally, it remains to show that
∑

v∈V z
′
v ≥ k. Let Z0 contain the set of vertices v, for which

zv ≤ 1/2d3 logne ≤ 1
n3 . These are the only vertices whose LP values have decreased. The total value∑

v∈Z0
zv ≤ 1/n2. Let Z1 denote the set of vertices v for which z′v = 1. If |Z1| ≥ k, then clearly

constraint (7) holds. Otherwise,
∑

v 6∈Z1
zv ≥ 1 must hold in the original solution, and therefore∑

v 6∈Z1∪Z0
zv ≥ 1−1/n2 ≥

∑
v∈Z0

zv. For each vertex v 6∈ Z1∪Z0, we have that z′v ≥ 2zv. So overall∑
v 6∈Z1

z′v ≥ 2
∑

v 6∈Z1∪Z0
zv ≥

∑
v 6∈Z1

zv. Since
∑

v∈Z1
z′v ≥

∑
v∈Z1

zv, constraint (7) continues to
hold.

For each i : 0 ≤ i ≤ d3 log ne, we denote by Bi the set of vertices v with z′v = 1/2i, and set
ki = |Bi|. Recall that

∑d3 logne
i=0 ki/2i ≥ k.

12

Theorem 10. For each i : 0 ≤ i ≤ d3 log ne, we can efficiently find a tour Ti of cost at most
βHK · 2i+5 · L∗, visiting all vertices in Bi.

Before proving the above theorem, we show that Theorem 2 follows from it. We first show that
for each i : 0 ≤ i ≤ d3 log ne, there is a path T ∗i , containing at least dk/2ie vertices of Bi, of length
at most O(βHK) · L∗. Since we have discarded all vertices v with d(v, r) > L∗ or d(r, v) > L∗, we
can turn T ∗i into a tour containing the vertex r, at the additional cost of 2L∗. Therefore, for each
i : 0 ≤ i ≤ d3 log ne, we obtain a tour containing the vertex r, and additional dk/2ie vertices of Bi,
of length at most O(βHK) · L∗. Connecting all these tours together gives a tour of length at most
O(βHK · log n) · L∗, containing at least

∑d3 logne
i=0 ki/2i ≥ k vertices, as required.

It now only remains to show how to find the paths T ∗i . Fix some i : 0 ≤ i ≤ d3 log ne. If
ki/2i ≤ 1, then choose any vertex v ∈ Bi, and the path T ∗i then only consists of the vertex v.
Otherwise, consider the tour Ti. This tour contains all ki vertices of Bi, and its length is at most
βHK · 2i+5 · L∗. We partition Ti into at least 2i−2 disjoint consecutive segments, each containing
dki/2ie vertices of Bi. We let T ∗i be the segment of minimum length, so the length of T ∗i is bounded
by O(βHK · L∗).

3.3 Proof of Theorem 10

Fix an index i : 0 ≤ i ≤ d3 log ne, and let T = Bi ∪ {r}. We refer to vertices of T as terminals. Let
H be the complete graph on the set T of vertices, where the length ce of each edge e = (u, v) is
the length of the shortest path from u to v in G. It is enough to show that (LP-HK) has a feasible
solution of cost at most 2i+5 · L∗ on the instance of ATSP defined by H.

Consider the current solution (x′, z′) to (LP-k-Tour). Our first step is to transform it as follows:
for each e ∈ E, we set x′′e = x′e · 2i; for each v ∈ T , we set z′′v = 1, and for all other vertices,
we set z′′v = 0. It is easy to see that (x′′, z′′) remains a feasible solution of (LP-k-Tour), with the
parameter ki replacing k. The cost of the solution increases by factor 2i, and is therefore bounded
by 2i+2 · OPTLP . In order to turn it into a feasible solution for (LP-HK) on graph H, we need
remove the non-terminal vertices, while preserving the feasibility of the solution. We will do so
using the standard edge splitting operation, that preserves the local connectivity of the graph. We
now proceed in two steps. In the first step, we transform the values x′′e to become (1/n2)-integral.
This will allow us, in the second step, to eliminate the non-terminal vertices, while preserving the
feasibility of the solution, using the standard edge splitting techniques.

Step 1: In this step we replace the values x′′e by 1/n2-integral values xe for e ∈ E, such that
(xe, z′′) remains a feasible solution for (LP-k-Tour). Let E0 be the set of edges e with x′′e = 0, and
let E′ = E \E0. Recall that for each e ∈ E′, ce ≤ L∗. A function f : E′ → R is called a circulation
iff for each v ∈ V ,

∑
e∈δ−(v) f(e) =

∑
e∈δ+(v) f(e). We will use Hoffman’s circulation theorem [19,

Theorem 11.2]:

Theorem 11. Given lower and upper capacities, `, u : E → R, there exists a circulation f satisfying
`(e) ≤ f(e) ≤ u(e) for all e ∈ E, iff:

• `(e) ≤ u(e) for all e ∈ E, and

• For all U ⊂ V ,
∑

e∈δ−(U) `(e) ≤
∑

e∈δ+(U) u(e).

Furthermore, if ` and u are integer-valued, f can be chosen to be integer-valued.

13

We set the edge capacities as follows: for e ∈ E′, set `e = b2n2x′′ec and ue = d2n2x′′ee. It is easy
to see that the conditions of Theorem 11 hold, since for all U ⊂ V ,

∑
e∈δ−(U) x

′′
e =

∑
e∈δ+(U) x

′′
e ,

by Constraint (3) of (LP-k-Tour). Let f be the resulting integral circulation. We now set, for
each e ∈ E′, xe = f(e)/n2, and xe = 0 otherwise. Observe that xe ≤ 2(x′′e + 1/2n2), and so∑

e∈E′ cexe ≤ 2
∑

e∈E′ cex
′′
e + maxe {ce} ≤ 2i+5 · L∗. It is also easy to see that if, for some U ⊂ V ,∑

e∈δ+(U) x
′′
e ≥ 1, then

∑
e∈δ+(U) xe ≥ 1 as well. Therefore, (x, z) is a feasible solution for (LP-k-

Tour) with parameter ki. Moreover, the values xe are 1/n2-integral.

Step 2: In this step we produce a feasible solution for (LP-HK) on the ATSP instance defined
by H. We start with the graph G, and for each e ∈ E, we build n2 · xe copies of e. Let G′ be
the resulting multigraph. Since (x, z) is a feasible solution for (LP-k-Tour), each pair v, v′ ∈ T of
terminals can send 1 flow unit from v to v′ in G, where the capacity of each edge e is set to be xe.
Therefore, each pair (v, v′) ∈ T has n2 edge disjoint paths connecting v to v′ in G′.

Let D = (V,A) be any directed multigraph with no self-loops. For any pair (v, v′) ∈ V of
vertices, their connectivity λ(v, v′;D) is the maximum number of edge-disjoint paths connecting v
to v′ in D. Given a pair a = (u, v), b = (v, w) of edges, a splitting-off procedure replaces the two
edges a, b by a single edge (u,w). We denote by Da,b the resulting graph. The next theorem is the
extension of Mader’s theorem [17] to directed graphs, due to Frank [11] and Jackson [16]. Following
is a simplified version of Theorem 3 from [16]:

Theorem 12. Let D = (V,A) be an Eulerian digraph, v ∈ V and a = (v, u) ∈ A. Then there is
an edge b = (w, v) ∈ A, such that for all y, y′ ∈ V \ {v}: λ(y, y′;D) = λ(y, y′;Dab)

We can now apply Theorem 12 to graph G′, until all non-terminals become isolated vertices.
For every pair (u, v) ∈ T , if the final graph G′ contains γe copies of edge e = (u, v), then we set
x̃e = γe/n

2. It is easy to see that x̃ defines a feasible solution to (LP-HK) on graph H, since every
pair (u, v) ∈ T of terminals can still send one flow unit to each other in H, when edge capacities are
set to x̃e. Due to the triangle inequality, the splitting-off procedure does not increase the solution
cost, which remains bounded by 2i+5 · L∗.

Acknowledgment We would like to thank Chandra Chekuri for suggesting the problems, and
for sharing with us his survey on open problems related to Orienteering.

References

[1] A. Asadpour, M. X. Goemans, A. Madry, S. Oveis Gharan, and A. Saberi, An
O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem, in
SODA, 2010, pp. 379–389.

[2] N. Bansal, A. Blum, S. Chawla, and A. Meyerson, Approximation algorithms for
deadline-TSP and vehicle routing with time-windows, in STOC, 2004, pp. 166–174.

[3] M. Blaser, A new approximation algorithm for the asymmetric TSP with triangle inequality,
in SODA, 2003, pp. 638–645.

[4] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff,
Approximation algorithms for orienteering and discounted-reward TSP, in FOCS, 2003, pp. 46–
55.

14

[5] M. Charikar, M. X. Goemans, and H. Karloff, On the integrality ratio for the asym-
metric traveling salesman problem, Math. Oper. Res., 31 (2006), pp. 245–252.

[6] K. Chaudhuri, B. Godfrey, S. Rao, and K. Talwar, Paths, trees, and minimum latency
tours, in FOCS, 2003, pp. 36–45.

[7] C. Chekuri, N. Korula, and M. Pál, Improved algorithms for orienteering and related
problems, in SODA, 2008, pp. 661–670.

[8] C. Chekuri and M. Pál, A recursive greedy algorithm for walks in directed graphs, in FOCS,
2005, pp. 245–253.

[9] , An O(log n) approximation ratio for the asymmetric traveling salesman path problem,
Theory of Computing, 3 (2007), pp. 197–209.

[10] U. Feige and M. Singh, Improved approximation ratios for traveling salesperson tours and
paths in directed graphs, in APPROX, 2007, pp. 104–118.

[11] A. Frank, On connectivity properties of Eulerian digraphs, Ann. Discrete Math., 41 (1989).

[12] A. Frieze, G. Galbiati, and F. Maffioli, On the worst-case performance of some algo-
rithms for the asymmetric traveling salesman problem, Networks, 12 (1982), pp. 23–39.

[13] M. X. Goemans, N. J. A. Harvey, K. Jain, and M. Singh, A randomized rounding
algorithm for the asymmetric traveling salesman problem, CoRR, abs/0909.0941 (2009).

[14] E. Halperin and R. Krauthgamer, Polylogarithmic inapproximability, in STOC, 2003,
pp. 585–594.

[15] M. Held and R. M. Karp, The traveling-salesman problem and minimum spanning trees,
Oper. Res., 18 (1970), pp. 1138–1162.

[16] B. Jackson, Some remarks on arc-connectivity, vertex splitting, and orientation in graphs
and digraphs, J. Graph Theory, 12 (1998), pp. 429–436.

[17] W. Mader, A reduction method for edge connectivity in graphs, Ann. Discrete Math., 3 (1978),
pp. 145–164.

[18] V. Nagarajan and R. Ravi, Poly-logarithmic approximation algorithms for directed vehicle
routing problems, in APPROX, 2007, pp. 257–270.

[19] A. Schrijver, Combinatrial Optimization: Polyhedra and Efficiency, vol. 24 of Algorithms
and Combinatorics, Springer, 2003.

15

	Introduction
	Approximation Algorithm for the k-Stroll Problem
	Preliminaries
	Algorithm Overview
	Computing the entries of the dynamic programming table

	Approximation Algorithm for the k-Tour Problem
	Preliminaries and Notation
	LP rounding
	Proof of Theorem 10

