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THE HARDNESS OF METRIC LABELING∗

JULIA CHUZHOY† AND JOSEPH (SEFFI) NAOR‡

Abstract. The metric labeling problem is an elegant and powerful mathematical model captur-
ing a wide range of classification problems. The input to the problem consists of a set L of labels
and a weighted graph G = (V, E). Additionally, a metric distance function on the labels is defined,
and for each label and each vertex, an assignment cost is given. The goal is to find a minimum-cost
assignment of the vertices to the labels. The cost of the solution consists of two parts: the assignment
costs of the vertices and the separation costs of the edges (where each edge pays its weight times the
distance between the two labels to which its endpoints are assigned).

Due to the simple structure and the variety of applications, the problem and its special cases
(with various distance functions on the labels) have recently received much attention. Metric labeling
is known to have a logarithmic approximation, and it has been an open question for some time
whether a constant approximation exists. We refute this possibility and prove that no constant
factor approximation algorithm exists for metric labeling, unless P=NP. Moreover, we prove that the
problem is Ω

�
(log |V |)1/2−δ � -hard to approximate for any constant δ : 0 < δ < 1/2, unless NP has

quasi-polynomial time algorithms.
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1. Introduction. The metric labeling problem, first formulated by Kleinberg
and Tardos [18], captures a broad range of classification problems that arise in com-
puter vision and related fields. In such classification problems, the goal is to assign
labels to some given set of objects in a way consistent with observed data or some
other form of prior knowledge. Formally, the input to the metric labeling problem
consists of an n-vertex undirected graph G(V,E) with weights w on edges, and a set L
of labels with metric distance function d : L×L → R associated with them. Addition-
ally, for each vertex v ∈ V and label ` ∈ L, an assignment cost c(v, `) is specified. The
problem output is an assignment f : V → L of the vertices to the labels. Intuitively,
the vertices are the objects we would like to classify, and the assignment function f
provides such a classification. The prior knowledge is modeled by the means of the
vertex assignment costs c(v, `), that can be used to express an estimate on how likely
it is that ` is the correct label for vertex v, and by the edge weights, which define
pairwise relations between the objects. The weights of the edges express a prior es-
timate on how likely it is that the endpoints of the given edge should be assigned to
close or identical labels.

Given a solution f : V → L to the metric labeling problem, its cost Q(f) consists
of two components.
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Vertex Labeling Cost: For each v ∈ V , this cost is c(v, f(v)).
Edge Separation Cost: For each edge e = (u, v) the cost is w(u, v) · d(f(u), f(v)).

Thus,

Q(f) =
∑

u∈V

c(u, f(u)) +
∑

(u,v)∈E

w(u, v) · d(f(u), f(v))

and the goal is to find a labeling f : V → L minimizing Q(f).
Metric labeling has rich connections to some well known problems in combinatorial

optimization. A special case of metric labeling is the 0-extension problem, studied
by Karzanov [16, 17]. In this problem, there are no assignment costs. However, the
graph contains a set {t1, . . . , tk} of terminals, where the label of terminal ti is fixed
in advance to i, while the non-terminals are free to be assigned to any of the labels.
As in the metric labeling problem, a metric is defined on the set of labels. The cost
of an assignment consists only of the edge separation cost. The 0-extension problem
generalizes the well-studied multiway cut problem [9, 6, 14], which is defined exactly
like 0-extension, except that the metric on the label set is the uniform metric.

The first approximation algorithm for the metric labeling problem was shown
by Kleinberg and Tardos [18]. This algorithm uses the probabilistic tree embedding
technique [4, 5], and its approximation factor is O(log k log log k), where k denotes
the number of labels in L. This bound was recently improved to O(log k) [11] and
it is currently the best known approximation factor for the metric labeling problem.
Some special cases of metric labeling, where the metric on the terminals belongs to
some restricted class of metrics, were shown to have better approximation factors
[18, 13, 8].

Chekuri et al.[8] proposed a natural linear programming formulation for the gen-
eral metric labeling problem. A solution to this linear program is an embedding of the
graph in a k-dimensional simplex, where the distance between points in the simplex
is defined by a special metric, the earth mover’s distance metric (EMD), and not by
the (standard) `1 metric. It was also shown in [8], that the integrality gap of this
formulation is at most the distortion of a probabilistic tree embedding of the given
metric d, i.e., O(log k) [11]. Archer et al. [1] presented an approximation algorithm
which is based on rounding the EMD solution to the linear program of [8] and achieves
an O(log |V |) approximation factor.

Călinescu et al.[7] considered approximation algorithms for the 0-extension prob-
lem via a metric relaxation, originally studied by Karzanov [16], and obtained an
O(log k)-approximation algorithm for general metrics. This result was improved to
O(log k/ log log k) by Fakcharoenphol et al. [10].

Our Results. A question that has intrigued many researchers since the appear-
ance of [18] is whether there exists a constant factor approximation algorithm for
the metric labeling problem. We answer this question in the negative, and prove an
Ω

(

(log n)1/2−δ
)

-hardness of approximation for any constant δ : 0 < δ < 1/2, as-

suming NP 6⊆ DTIME
(

npoly(log n)
)

. We also prove that there is no constant factor
approximation algorithm for metric labeling unless P = NP. For the sake of sim-
plicity, we focus on a problem called restricted metric labeling, which was shown by
Chekuri et al.[8] to be equivalent to metric labeling. In the restricted metric labeling
problem, the assignment costs of the vertices are restricted to be either 0 or ∞, or
equivalently, each vertex v ∈ V has a list of labels, L(v), to which it is allowed to be
assigned. The solution cost then only consists of the edge separation cost.

Following our work, Karloff et al. [15] showed that the 0-extension problem
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is Ω
(

(log n)1/4−ε
)

-hard to approximate for any constant ε, unless NP has quasi-
polynomial time algorithms. Their proof builds on ideas presented in this work.

Organization. We start in Section 2 with some preliminaries, and we present in
Section 3 a simple (3−δ)-hardness proof (for any constant 0 < δ < 1) for the restricted
metric labeling problem. This proof provides the intuition and motivation for the new
ideas needed to obtain the stronger hardness bounds shown in Section 4.

2. Preliminaries. We prove our hardness results for the restricted metric label-
ing problem, defined as follows. The input consists of an undirected graph G(V,E)
with weights w on edges, and a set L of labels with distance function d : L× L → R.
Additionally, for each vertex v ∈ V , there is a subset L(v) ⊆ L of labels to which v
can be assigned. The goal is to find an assignment f : V → L, such that for each
v ∈ V , f(v) ∈ L(v). The solution cost is the sum, over all edges e = (u, v), of the edge
separation cost w(e)d(f(u), f(v)). We notice that our hardness results work even for
the uniform weight function, i.e., for each edge e ∈ E, w(e) = 1.

We perform our reduction from the gap version of Max 3SAT(5). The input to
the problem is a CNF formula φ with n variables and 5n

3 clauses. Each clause consists
of 3 literals and each variable participates in 5 clauses, appearing in each clause at
most once.

Let ε : 0 < ε < 1, be a constant and let φ be an instance of Max 3SAT(5). Then φ
is called a Yes-instance if there is an assignment that satisfies all the clauses, and it is
called a No-instance (with respect to ε) if any assignment satisfies at most a fraction
(1−ε) of the clauses. Following is one of the several equivalent statements of the PCP
theorem [2, 3].

Theorem 2.1. There is a constant ε, 0 < ε < 1, such that it is NP-hard to
distinguish between Yes-instances and No-instances of the Max 3SAT(5) problem.

In our reduction, we start from a 3SAT(5) formula φ, and produce an instance of
the restricted metric labeling problem. Our first step is describing and analyzing a
(standard) two-prover protocol for the 3SAT(5) problem. This protocol will help us
translate 3SAT(5) instances into instances of restricted metric labeling, and analyze
the reduction.

The one-round two-prover protocol for 3SAT(5) is defined as follows. Given a
3SAT(5) formula φ on n variables:

• The verifier randomly chooses a clause C from the formula φ and one of the
variables x belonging to C. Variable x is called the distinguished variable.

• Prover 1 receives clause C and is expected to return an assignment to all the
variables appearing in the clause. Prover 2 receives variable x and is expected
to return an assignment to x.

• After receiving the answers of the provers, the verifier checks that the an-
swer of prover 1 defines a satisfying assignment to clause C and that the
assignments of prover 1 and prover 2 to variable x are identical.

The following well known theorem easily follows from Theorem 2.1.
Theorem 2.2. If φ is a Yes-instance, then there is a strategy of the provers such

that the verifier always accepts. If φ is a No-instance, then for any strategy of the
provers, the acceptance probability is at most (1 − ε

3 ).

3. A Simple (3 − δ) Hardness. In this section we present a simple (3 − δ)-
hardness for the restricted metric labeling problem (for any constant 0 < δ < 1), and
also provide some intuition as to the new ideas needed to improve this bound.

We start by amplifying the soundness of the 2-prover protocol presented above
by means of parallel repetitions, a usual practice in PCP reductions. The number of
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repetitions is a sufficiently large constant l. The new protocol proceeds as follows.
• The verifier chooses, randomly and independently, l clauses C1, . . . , Cl from

the input formula φ. For each i, 1 ≤ i ≤ l, the verifier chooses, randomly and
independently, one variable xi belonging to Ci.

• Prover 1 receives clauses C1, . . . , Cl and is expected to return an assignment
to all the variables appearing in the clauses, such that all clauses are satisfied.
Prover 2 receives variables x1, . . . , xl and is expected to return an assignment
to these variables.

• After receiving the answers of the provers, the verifier checks that the answer
of prover 1 defines satisfying assignments to clauses C1, . . . , Cl and that the
assignments of prover 1 and prover 2 to variables x1, . . . , xl are identical.

The following theorem follows from the well known Raz parallel repetition theo-
rem [19], which bounds the error probability of the above protocol.

Theorem 3.1. There is a constant α > 0, such that if φ is a Yes-instance,
there is a strategy of the provers for which the verifier always accepts, and if φ is a
No-instance, then for any strategy of the provers, the acceptance probability is at most
2−αl.

Let Q1 denote the set of all the possible queries to prover 1 (i.e., each query
q ∈ Q1 is an l-tuple of clauses). Given a query q1 ∈ Q1, let A(q1) denote the set of
all the assignments to the variables that appear in the clauses of q1 that satisfy these
clauses. Similarly, Q2 denotes the set of all the possible queries to prover 2 (each
query is an l-tuple of variables), and given q2 ∈ Q2, A(q2) is the set of all the possible
answers of prover 2 to query q2.

We assume that at the beginning of the protocol, the verifier chooses a random
string r, which determines the choice of the clauses and the variables sent to the
provers. Let R denote the set of all the possible random strings. Given a random
string r ∈ R, let q1(r), q2(r) be the queries sent to prover 1 and prover 2 respectively,
when the verifier chooses r.

The set of labels is defined as follows. For every possible query of each one of the
two provers, and for every possible answer to this query, there is a label, i.e.,

L = {`(q,A) | q ∈ Q1 ∪ Q2, A ∈ A(q)}

In order to define the metric distance function on the labels, we construct a label
graph GL. The vertices of this graph are the labels, and the metric distance between
the labels is defined to be the length of the shortest path in this graph. We now
define the edges of graph GL. Consider some random string r of the verifier, and let
q1 = q1(r), q2 = q2(r). Let A1 ∈ A(q1), A2 ∈ A(q2) be any pair of consistent answers
to these queries. Then there is an edge of length 1 between `(q1, A1) and `(q2, A2)
in GL. Note that since each edge connects a label belonging to prover 1 and a label
belonging to prover 2, the graph is bipartite. Therefore, for any random string r, if
q1 = q1(r) and q2 = q2(r), and if A1 ∈ A(q1), A2 ∈ A(q2) are inconsistent answers to
these queries, then the distance between labels `(q1, A1) and `(q2, A2) in graph GL is
at least 3.

We now proceed to define the input graph. For every query q ∈ Q1 ∪ Q2, there
is a vertex v(q). This vertex can only be assigned to those labels, that correspond to
query q, i.e.,

V = {v(q) | q ∈ Q1 ∪ Q2}
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L(v(q)) = {`(q,A) | A ∈ A(q)}

The edge set is defined as follows. For each random string r of the verifier, there
is an edge connecting v(q1(r)) and v(q2(r)). All edges have unit weight.

Yes-instance. If φ is a Yes-instance, then there is a strategy of the provers such
that their answers are always accepted by the verifier. This strategy defines the
assignments of the vertices to the labels, namely, vertex v(q) for q ∈ Q1 ∪ Q2 is
assigned to label `(q,A), where A ∈ A(q) is the answer of the corresponding prover
to query q under the above strategy. Consider some random string r of the verifier
and the corresponding queries q1 = q1(r), q2 = q2(r). Let A1 ∈ A(q1), A2 ∈ A(q2) be
the answers of the provers according to the above strategy. Note that vertices v(q1),
v(q2) are assigned to labels `(q1, A1), `(q2, A2) and that the answers A1 and A2 of
the provers are consistent. Therefore, there is an edge in the label graph between
the labels `(q1, A1) and `(q2, A2), and thus the distance between the two labels (and
the cost incurred by the edge connecting v(q1) and v(q2)) is 1. The total cost of the
solution is therefore |R|, where R is the set of all the random strings of the verifier.

No-instance. Consider any solution to the problem. Note that the assignments of
the vertices to the labels define a strategy of the provers (the assignment of vertex v(q),
q ∈ Q1 ∪ Q2 to label `(q,A), A ∈ A(q), implies that the answer of the corresponding
prover to query q is A). Let R′ ⊆ R be the set of random strings of the verifier for
which the answers of the two provers are inconsistent. From Theorem 3.1, |R′| ≥
(1 − 2−αl)|R|. Consider a random string r ∈ R′ and let q1 = q1(r), q2 = q2(r). Let
`(q1, A1), `(q2, A2) be the labels to which the vertices v(q1), v(q2) are assigned. As the
answers A1, A2 of the provers are inconsistent, the distance between the two labels
(and hence the separation cost paid by the edge between v(q1) and v(q2)) is at least
3. Therefore, the total cost of the solution is at least 3(1 − 2−αl)|R|) = 3(1 − δ)|R|,
where δ is an arbitrarily small constant.

It follows that the gap between the costs of Yes and No instances is 3(1− δ), and
since the size of the construction is polynomial in n, we have that restricted metric
labeling is 3(1 − δ)-hard to approximate for any constant δ, unless P=NP.

It is not hard to see that the analysis is tight. Consider some random string r and
the corresponding queries q1 = q1(r), q2 = q2(r). Let A1, A2 be a pair of inconsistent
answers to queries q1, q2. We show that there is a path of length 3 in the graph GL

between the pair of labels `(q1, A1), `(q2, A2). We denote q1 = (Ci1 , . . . , Cil
) and

q2 = (xi1 , . . . , xil
), and recall that for each j : 1 ≤ j ≤ l, xij

is one of the variables
of clause Cij

. Let x′
ij

and x′′
ij

denote the other two variables. The path of length

3 connecting the two labels starts at label `(q1, A1). The second label on this path
is `(q′2, A

′
2), where q′2 = (x′

i1
, . . . , x′

il
) and A′

2 contains assignments to (x′
i1

, . . . , x′
il
)

identical to those in A1. The third label is `(q1, A
′
1) (we define A′

1 below), and the
final fourth label is `(q2, A2). In order to define A′

1, fix some j : 1 ≤ j ≤ l, and
consider the jth entry of q1, a clause whose variables are xij

, x′
ij

and x′′
ij

. We need to

specify the assignments to these variables in A′
1. The assignment to xij

is defined to
be the same assignment that appears in A2, the assignment to x′

ij
is the same as in

A′
2, and the assignment to x′′

ij
is set in such a way that clause Cij

is satisfied.
Thus, even though the two answers A1 and A2 of the provers might be inconsistent

in many coordinates, there is still a short path between the two labels. In order to
improve the hardness bound, it would be helpful (and enough) to ensure that if two
answers are inconsistent in almost all the coordinates, then the length of the shortest
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path between the two corresponding labels is Ω(l). This is the intuition behind the
construction and the k-prover protocol described in the next section.

4. The Main Hardness Result. In this section we prove an Ω
(

(log n)1/2−δ
)

-
hardness of restricted metric labeling, for any constant δ : 0 < δ < 1

2 . We start by
defining a new k-prover protocol for 3SAT(5). The protocol is then used in a way
which is similar to the construction in Section 3 to obtain the stronger hardness result.

4.1. A New k-Prover Protocol. We define a new k-prover protocol, where
the k provers are denoted by P1, . . . , Pk, and k will be later set to poly(log n). This
protocol is based on the basic one-round two-prover protocol, and it proceeds as
follows.

• The verifier sends one query to each prover. Each one of the queries has
(

k
2

)

entries, which are determined in the following way. For each pair (i, j) of
provers, where 1 ≤ i < j ≤ k, the verifier chooses, uniformly, independently
at random, a clause Cij and a distinguished variable xij belonging to this
clause. The entry (i, j) in the queries of the provers is then defined as follows.
In the query sent to prover Pi, this entry contains clause Cij . In the query
sent to prover Pj , this entry contains variable xij . For each other prover
Pa, where a 6= i, j, the entry (i, j) of its query contains both clause Cij and
variable xij .
Thus, in general, for any prover Ph, 1 ≤ h ≤ k, coordinate (y, z) of its query
(where 1 ≤ y < z ≤ k), is defined as follows:

– if h = y, then the entry contains Cyz.
– if h = z, then the entry contains xyz.
– if h 6= y, z, then the entry contains both Cyz and xyz.

• Each one of the provers responds with an assignment to all the variables
appearing in its query, both as parts of clauses and as distinguished variables.

• After receiving the answers of the provers, the verifier checks, for each coor-
dinate (i, j), 1 ≤ i < j ≤ k, that the answers of all the provers are consistent,
i.e., all the provers Pa, a 6= j, return an identical assignment to the vari-
ables of Cij , and the assignment of prover Pj to variable xij matches the
assignments of all the other provers.

We note that our k-prover system departs from standard protocols in several
ways. First, we do not use the parallel repetitions theorem here, as there is no need
to amplify the soundness of the protocol. Observe also that for each prover Pa,
for each coordinate (i, j) : i, j 6= a, the prover receives both the clause Cij and the
distinguished variable xij . It may look that some of the information the prover receives
is redundant. Indeed, in k-prover systems (e.g., [12]), the provers usually receive
either the clause or the distinguished variable, but not both. However, this sending of
redundant information to the provers is essential for our reduction. Intuitively, it will
ensure that if, for some random string r, the answers of the k provers are inconsistent
in many coordinates, then the distances between the corresponding labels are long.

We assume again that all the random choices of the verifier are made at the
beginning of the protocol, by choosing a random string r out of the set R of all the
possible random strings of the desired length. Given a random string r ∈ R, for each
i, 1 ≤ i ≤ k, let qi(r) be the query sent to prover Pi when the verifier chooses the
random string r, and let Qi be the set of all the possible queries of prover i. For each
i : 1 ≤ i ≤ k, for each qi ∈ Qi, let A(qi) denote the set of all the possible answers of
prover Pi to query qi, which satisfy all the clauses appearing in the query.
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Definition 4.1. Consider a pair of provers Pi and Pj, 1 ≤ i < j ≤ k, and
let qi ∈ Qi, qj ∈ Qj be a pair of queries, such that for some random string r ∈ R,
qi = qi(r), qj = qj(r). Let Ai and Aj denote the respective answers of the provers
to the queries. We say that the answers are weakly consistent if the assignments to
Cij and xij in Ai and Aj respectively are consistent. The answers are called strongly
consistent if they are also consistent in every other coordinate, i.e., for each (a, b),
1 ≤ a < b ≤ k, where (a, b) 6= (i, j):

• If both entries qi(a, b) and qj(a, b) contain clause Cab and variable xab, then
the assignments to the variables of clause Cab in Ai and Aj are identical.

• If one of the entries qi(a, b) and qj(a, b) contains clause Cab and the other
contains clause Cab and variable xab, then the assignments to the variables
of the clause Cab in Ai and Aj are identical.

• If one of the entries qi(a, b) and qj(a, b) contains variable xab and the other
contains clause Cab and variable xab, then the assignments to the variables
of clause Cab and variable xa,b in Ai and Aj are consistent.

Theorem 4.2. If φ is a Yes-instance, then there is a strategy of the k provers
such that the verifier always accepts. If φ is a No-instance, then for any strategy of
the provers, for every pair of provers Pi and Pj, 1 ≤ i < j ≤ k, the probability that
their answers are weakly consistent is at most (1 − ε

3 ).
Proof. For the Yes-instance, the theorem follows immediately. We now prove

that the theorem holds for the No-Instance. Assume otherwise. Let Pi and Pj be a
pair of provers such that the probability that their answers are weakly consistent is
more than (1 − ε

3 ). We partition the set of random strings R into classes, such that
within each class the random strings are identical except for the clause Cij and the
distinguished variable xij . Each such class, (together with the corresponding queries
and answers to the queries), can be viewed as a two-prover protocol (while we ignore
all the coordinates of the queries and the answers except for (i, j)). As the probability
of obtaining a pair of weakly consistent answers is more than (1− ε

3 ), at least for one
of the classes, the probability that the verifier accepts is greater than (1 − ε

3 ). This
defines a strategy for the two-prover protocol in which the acceptance probability of
the verifier is greater than (1 − ε

3 ), contradicting Theorem 2.2.

4.2. The Graph and the Label Set. In this section we construct an instance
of the restricted metric labeling problem from an input 3SAT(5) formula φ. Our
construction is based on the k-prover system described above.
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Fig. 4.1. Edges in the graph of labels incident to `(r, A1, . . . , Ak)

The set of labels L consists of two subsets:
Query Labels: for each prover Pi, 1 ≤ i ≤ k, for each query q ∈ Qi, and for each

answer A ∈ A(q) to the query q, there is a label `(Pi, q, A).
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Constraint Labels: consider a random string r of the verifier. Let A1, . . . , Ak, be
any collection of possible answers of the provers to the queries q1(r), . . . , qk(r),
i.e., for each 1 ≤ i ≤ k, Ai ∈ A(qi(r)). Moreover, assume that these answers
are accepted by the verifier, (i.e., A1, . . . , Ak are strongly consistent). Then,
there is a label `(r,A1, A2, . . . , Ak).

We now define a graph GL(L,E′) on the label set. The metric on the label
set is implied by the shortest path distance function in the graph. The vertices of
GL are the labels and the edges are defined as follows. Consider a constraint label
` = `(r,A1, A2, . . . , Ak), Then, for each i, 1 ≤ i ≤ k, there is an edge of length 1

2
between ` and `(Pi, qi(r), Ai) (see Figure 4.1).

Thus, the graph is a collection of stars, while some stars share some of their leaves.
We now proceed to define graph G(V,E). The vertex set V is the union of two

vertex sets: a set of query vertices, denoted by V1, and a set of constraint vertices,
denoted by V2.
Query Vertices: for each prover Pi, 1 ≤ i ≤ k, and for each query q ∈ Qi, there is

a vertex v(Pi, q). Thus,

V1 = {v(Pi, q) | 1 ≤ i ≤ k and q ∈ Qi}

Vertex v(Pi, q) can only be assigned to the labels corresponding to (Pi, qi),
i.e.,

L(v(Pi, q)) = {`(Pi, q, A) | A ∈ A(q)}

Note that assigning v(Pi, q) to a label in L(v(Pi, q)) defines an answer of
prover Pi to query q.

Constraint Vertices: for each random string r, there is a vertex v(r), i.e.,

V2 = {v(r) | r ∈ R}

Vertex v(r) can be assigned only to labels corresponding to r, i.e., L(v(r))
consists of labels `(r,Ai, . . . , Ak), such that ∀i, Ai ∈ A(qi(r)) and (A1, . . . Ak)
are strongly consistent.

The edges of the graph are as follows. Every constraint vertex v(r) is connected
to every assignment vertex v(Pi, qi(r)) by a unit-weight edge (see Figure 4.2).
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	�����
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����������	�����
����
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Fig. 4.2. Edges incident to v(r)

The graph is therefore a collection of stars that can have common leaves.
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4.3. Hardness of Approximation Proof.

4.3.1. Yes-Instances. Assume that the input 3SAT(5) formula φ is a yes-
instance. Consider a strategy of the provers for which the acceptance probability
of the verifier is 1. For every prover Pi, 1 ≤ i ≤ k, for every query q ∈ Qi, let
f(q) ∈ A(q) be the answer of prover Pi to query q under this strategy. Note that for
each random string r, f(q1(r)), . . . , f(qk(r)) are strongly consistent. We define the
following labeling of the graph G (see Figure 4.3).

• For each random string r ∈ R, vertex v(r) is assigned to label `(r, f(q1(r)), . . . , f(qk(r))).
• For each i : 1 ≤ i ≤ k, q ∈ Qi, vertex v(Pi, q) is assigned to label `(Pi, q, f(q)).

Consider an edge in the graph G between v(r) and v(Pi, qi(r)), r ∈ R, 1 ≤ i ≤ k.
Vertex v(r) is assigned to label `(r, f(q1(r)), . . . , f(qk(r))) and vertex v(Pi, qi(r)) is
assigned to label `((Pi, qi(r), f(qi(r))). Thus, the separation cost of the edge is 1

2 ,
since the distance between the two labels is 1

2 . Hence, the total cost of the solution is
1
2 · k · |R|.
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Fig. 4.3. Yes instance: the embedding of edges incident to v(r).

4.3.2. No-Instances. Assume that the input 3SAT(5) formula φ is a no-instance.
We prove that the cost of any solution to the metric labeling instance is at least
(

k
2

)

· ε
3 · |R|, and thus the gap between the Yes and the No instances is Ω(k). Observe

that the assignment of the query vertices to query labels defines a strategy of the
provers. We concentrate on this strategy and define the set T ⊆ R × [k] × [k].

Definition 4.3. For r ∈ R, 1 ≤ i < j ≤ k, (r, i, j) ∈ T if and only if the answers
of provers Pi and Pj to queries qi(r) and qj(r), respectively, are not weakly consistent
(under the above strategy). The following proposition is a direct consequence of
Theorem 4.2.

Proposition 4.4. |T | ≥
(

k
2

)

· ε
3 · |R|.

Consider an edge e ∈ E and assume that the endpoints of the edge are assigned
to labels `1 and `2. We denote by Pe the shortest path between the labels `1 and `2
in the graph of labels GL. Note that the length of Pe is exactly the cost paid by edge
e, and the solution cost is

∑

e∈E |Pe|. We define the set T ′ ⊆ R× [k]× [k] as follows.
Consider a random string r ∈ R and a pair of provers Pi and Pj , 1 ≤ i, j ≤ k, i 6= j.
Let e be the edge between v(r) and v(Pi, qi(r)). Then, (r, i, j) ∈ T ′ if and only if the
path Pe contains a label belonging to prover Pj (i.e., a label of the form `(Pj , q, A),
for some q ∈ Qj , A ∈ A(q)). Observe that the cost of the solution is at least |T ′|.

Lemma 4.5. For r ∈ R, suppose (r, i, j) ∈ T , where 1 ≤ i < j ≤ k. Then, either
(r, i, j) ∈ T ′, or (r, j, i) ∈ T ′.

Proof. Suppose that vertex v(r) is assigned to label `(r,A1, . . . , Ak), and sup-
pose vertices v(Pi, qi(r)) and v(Pj , qj(r)) are assigned to labels `(Pi, qi(r), A

′
i) and

`(Pj , qj(r), A
′
j), respectively. As (r, i, j) ∈ T , the answers A′

i and A′
j of provers Pi

and Pj cannot be weakly consistent. However, the answers Ai and Aj are strongly
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consistent. Therefore, either the (i, j) coordinates in Ai and A′
i differ (recall that this

coordinate contains an assignment to a clause Cij), or the (i, j) coordinates in Aj

and A′
j differ (this coordinate contains an assignment to a distinguished variable xij).

Assume the former is true (the other case is handled similarly).
Let e be the edge between v(r) and v(Pi, qi(r)). It is enough to show that the

path Pe contains a label corresponding to prover Pj . Suppose this is not the case.
Let `(Pa, qa, A) and `(Pb, qb, A

′) be two consecutive query labels on the path. As the
two labels are at distance 1, there must be an r′ ∈ R, such that qa = qa(r′) and
qb = qb(r

′), and the answers A and A′ are strongly consistent. As a, b 6= j, the (i, j)
coordinate in qa and in qb must contain some clause, and the two clauses are identical.
Moreover, coordinate (i, j) of A and A′ must contain an identical assignment to the
variables of this clause. Therefore, if path Pe starts at `(Pi, qi(r), A

′
i), and does not

pass through any label belonging to prover Pj , then for every query label `(Ps, qs, A)
appearing on the path, coordinate (i, j) of qs contains the same clause as that of qi(r),
and coordinates (i, j) in A and A′

i are identical. This is also true for the last query
label on the path, denoted by `(Pd, qd, Ad). But this label is connected by an edge to
label `(r,A1, . . . , Ak), and therefore coordinates (i, j) of Ad and Ai must be identical,
which is impossible.

It follows from the lemma that |T ′| ≥ |T |, yielding that the solution cost is at
least

(

k
2

)

· ε
3 · |R|.

4.3.3. The Hardness Factor. The gap between the cost of the Yes-Instance
and the No-Instance solutions is Ω(k). The size of the construction is dominated

by the number of labels. For each i, 1 ≤ i ≤ k, |Qi| ≤ (5n)k2

, and for each q ∈ Qi,

|A(q)| ≤ 7k2

, and therefore the number of query labels is at most k(5n)k2

·7k2

. The size

of R is at most (5n)k2

and for each r ∈ R the number of k-tuples of consistent answers

is at most 7k2

. Hence, the number of constraint labels is bounded by (5n)k2

·7k2

. The

construction size is therefore N = nO(k2). If k is a constant, then it is polynomial in n.
Choosing k = poly(log n), we get that k = (log N)

1

2
−δ for arbitrarily small constant

δ > 0.
Thus, we have proved the following result.
Theorem 4.6. There is no efficient constant factor approximation algorithm for

the metric labeling problem, unless P=NP. Moreover, for any constant 0 < δ < 1/2,

there is no Ω((log N)
1

2
−δ)-approximation algorithm for the problem, unless NP ⊆

DTIME(npoly(log n)).
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