
Resource Minimization Job Scheduling∗

Julia Chuzhoy † Paolo Codenotti ‡

July 17, 2009

Abstract

Given a set J of jobs, where each job j is associated with release date rj , deadline dj and
processing time pj , our goal is to schedule all jobs using the minimum possible number of machines.
Scheduling a job j requires selecting an interval of length pj between its release date and dead-
line, and assigning it to a machine, with the restriction that each machine executes at most one
job at any given time. This is one of the basic settings in the resource-minimization job schedul-
ing, and the classical randomized rounding technique of Raghavan and Thompson provides an
O(log n/ log log n)-approximation for it. This result has been recently improved to an O(

√
log n)-

approximation, and moreover an efficient algorithm for scheduling all jobs on O((OPT)2) machines
has been shown. We build on this prior work to obtain a constant factor approximation algorithm
for the problem.

1 Introduction

In one of the basic scheduling frameworks, the input consists of a set J of jobs, and each job j ∈ J
is associated with a subset I(j) of time intervals, during which it can be executed. The sets I(j) of
intervals can either be given explicitly (in this case we say we have a discrete input), or implicitly by
specifying the release date rj , the deadline dj and the processing time pj of each job j (continuous
input). In the latter case, I(j) is the set of all time intervals of length pj contained in the time window
[rj , dj]. A schedule of a subset J ′ ⊆ J of jobs assigns each job j ∈ J ′ to one of the time intervals
I ∈ I(j), during which j is executed. In addition to selecting a time interval, each job is also assigned
to a machine, with the restriction that all jobs assigned to a single machine must be executed on
non-overlapping time intervals.

In this paper we focus on the Machine Minimization problem, where the goal is to schedule all the
jobs, while minimizing the total number of machines used. We refer to the discrete and the contin-
uous versions of the problem as Discrete and Continuous Machine Minimization, respectively. Both
versions admit an O(log n/ log log n)-approximation via the Randomized LP-Rounding technique of
Raghavan and Thompson [8], and this is the best currently known approximation for Discrete Ma-
chine Minimization. Chuzhoy and Naor [7] have shown that the discrete version is Ω(log log n)-hard
to approximate. Better approximation algorithms are known for Continuous Machine Minimization:
an O(

√
log n)-approximation algorithm was shown by Chuzhoy et. al. [6], who also obtain better

performance guarantees when the optimal solution cost is small. Specifically, they give an efficient
∗A conference version of this paper is to appear in APPROX 2009
†Toyota Technological Institute, Chicago, IL 60637. Email: cjulia@tti-c.org. Supported in part by NSF CAREER

award CCF-0844872
‡Department of Computer Science, University of Chicago, Chicago, IL 60637. Email: paoloc@uchicago.edu

1

algorithm for scheduling all jobs on O(k2) machines, where k is the number of machines used by the
optimal solution. In this paper we improve their result by showing a constant factor approximation
algorithm for Continuous Machine Minimization. Combined with the lower bound of [6], our result
proves a separation between the discrete and the continuous versions of Machine Minimization.

Related Work A problem that can be seen as dual to Machine Minimization is Throughput Max-
imization, where the goal is to maximize the number of jobs scheduled on a single machine. This
problem has an

(
e

e−1 + ε
)

-approximation for any constant ε, in both the discrete and the continuous
settings [5]. The discrete version is MAX-SNP hard even when each job has only two intervals [9]
(i.e., |I(j)| = 2 for all j), while no hardness of approximation results are known for the continuous
version. In the more general weighted setting of Throughput Maximization, each job j is associated
with weight wj , and the goal is to maximize the total weight of scheduled jobs. The best current
approximation factor for this problem is 2 for both the discrete and the continuous versions [2].

A natural generalization of Throughput Maximization is the Resource Allocation problem, where each
job j is also associated with height (or bandwidth) hj . The goal is again to maximize the total weight
of scheduled jobs, but now the jobs are allowed to overlap in time, as long as the total height of all
jobs executed at each time point does not exceed 1. For the weighted variant of this problem, Bar-Noy
et. al. [3] show a factor 5-approximation, while the unweighted version can be approximated up to
factor (2e − 1)/(e − 1) + ε for any constant ε [5]. For the special case of Resource Allocation where
each job has exactly one time interval (i.e., |I(j)| = 1 for all j), Calinescu et. al. [4] show a factor
(2 + ε)-approximation for any ε, and Bansal et. al. [1] give a Quasi-PTAS.

Our Results and Techniques We show a constant factor approximation algorithm for Continuous
Machine Minimization. Our algorithm builds on the work of Chuzhoy et. al. [6]. Since the basic linear
programming relaxation for the problem is known to have an Ω(log n/ log logn) integrality gap, [6]
design a stronger recursive linear programming relaxation for the problem. The solution of this LP
involves dynamic programming, where each entry of the dynamic programming table is computed by
solving the LP relaxation on the corresponding sub-instance. Using the LP solution, [6] then partition
the input set J of jobs into k = dOPTe subsets, J1, . . . , Jk. They show that each subset J i can be
scheduled on O(ki) machines, where ki is the total number of machines used to schedule all jobs in J i

by the fractional solution. Since in the worst case ki can be as large as k for all i, they eventually use
O(k2) machines to schedule all jobs.

We perform a similar partition of jobs into subsets. One of our main ideas is to define, for each job
class J i, a function fi(t), whose value is the total fractional weight of intervals of jobs in J i containing
time point t. We then find a schedule for each job class J i, that schedules at most O(dfi(t)e) jobs at
each time point t. The algorithm for finding the schedule itself is similar to that of [6], but more work
is needed to adapt their algorithm to this new setting.

2 Preliminaries

In the Continuous Machine Minimization problem the input consists of a set J of jobs, and each job
j ∈ J is associated with a release date rj , a deadline dj and a processing time pj . The goal is to
schedule all jobs, while minimizing the number of machines used. In order to schedule a job j, we
need to choose a time interval I ⊆ [rj , dj] of length pj during which job j will be executed, and to
assign the job to one of the machines. For each machine M , let J (M) be the set of jobs assigned to
M and let I(M) be the set of intervals chosen for the jobs in J (M). Then every pair of intervals in
I(M) must be disjoint.

We denote by I(j) the set of all time intervals of job j, so I(j) contains all intervals of length pj

2

contained in the time window [rj , dj]. For convenience we will assume that these intervals are open.
If I ∈ I(j), then we say that interval I belongs to job j. Notice that |I(j)| may be exponential in
the input length. Given any solution, if interval I is chosen for job j, we say that j is scheduled on
interval I, and for each t ∈ I we say that j is scheduled at time t. We denote by T the smallest time
interval containing all the input job intervals, and denote by OPT both the optimal solution and its
cost. We refer to the time interval [rj , dj] as the time window of job j. We will use the following
simple observation.

Claim 1 Let S be a set of intervals containing exactly one interval I ∈ I(j) for each job j ∈ J .
Moreover, assume that for each time point t ∈ T , the total number of intervals in S containing t is at
most k. Then all jobs in J can be scheduled on k machines, and moreover, given S, such a schedule
can be found efficiently.

Proof: Consider the interval graph defined by the set S. The size of the maximum clique in this
graph is at most k, and therefore it can be efficiently colored by k colors. Each color will correspond
to a distinct machine.

Our goal is therefore to select a time interval I ∈ I(j) for each job j, while minimizing the maximum
number of jobs scheduled at any time point t.

The Linear Programming Relaxation. We now describe the linear programming relaxation of [6],
which is also used by our approximation algorithm. We start with the following basic linear program-
ming relaxation for the problem. For each job j ∈ J , for each interval I ∈ I(j), we have an indicator
variable x(I, j) for scheduling job j on interval I. We require that each job is scheduled on at least
one interval, and that the total number of jobs scheduled at each time point t ∈ T is at most z, the
value of the objective function. The linear programming relaxation is then as follows.

(LP1) min z

s.t.
∑

I∈I(j) x(I, j) = 1 ∀j ∈ J∑
j∈J

∑
I∈I(j):

t∈I
x(I, j) ≤ z ∀t ∈ T

x(I, j) ≥ 0 ∀j ∈ J, ∀I ∈ I(j)

It is well-known however that the integrality gap of (LP1) is Ω
(

log n
log log n

)
(e.g. see [6]). To overcome

this barrier, Chuzhoy et. al. [6] propose a stronger relaxation for the problem. Consider first the special
case where the optimal solution uses only one machine, that is, OPT = 1. Let I ∈ I(j) be some job
interval, and suppose there is another job j′ 6= j, whose entire time window [rj′ , dj′] is contained in I.
Then interval I is called forbidden interval for job j. Since OPT = 1, job j cannot be scheduled on
interval I. Therefore, we can add the valid constraint x(I, j) = 0 to the LP for all jobs j and intervals
I, where I is a forbidden interval for job j. Chuzhoy et. al. show an LP-rounding algorithm for this
stronger LP relaxation that schedules all jobs on a constant number of machines for this special case
of the problem.

When the optimal solution uses more than one machine, constraints of the form x(I, j) = 0, where I
is a forbidden interval for job j, are no longer valid. Instead, [6] define a function m(T) for each time
interval T ⊆ T , whose intuitive meaning is as follows. Let J(T) be the set of jobs whose time window
is completely contained in T . Then m(T) is the minimum number of machines needed to schedule
jobs in J(T). Formally, m(T) = dze, where z is the optimal solution of the following linear program:

3

(LP(T)) min z

s.t.
∑

I∈I(j) x(I, j) = 1 ∀j ∈ J(T)∑
j∈J(T)

∑
I∈I(j):

t∈I
x(I, j) ≤ z ∀t ∈ T (1)∑

j∈J(T)

∑
I∈I(j):
T ′⊆I

x(I, j) ≤ z −m(T ′) ∀T ′ ⊆ T (2)

x(I, j) ≥ 0 ∀j ∈ J(T), ∀I ∈ I(j)

Observe that for integral solutions, where x(I, j) ∈ {0, 1} for all j ∈ J, I ∈ I(j), the value m(T) is
precisely the number of machines needed to schedule all jobs in J(T). Constraint (2) requires that for
each time interval T ′ ⊆ T , the total number of jobs scheduled on intervals containing T ′ is at most
m(T) − m(T ′). This is a valid constraint, since at least m(T ′) machines are needed to schedule all
jobs in J(T ′). Therefore, dOPT(T)e ≤ OPT. Notice that the number of constraints in LP (T) may
be exponential in the input size. This difficulty is overcome in [6] as follows. First they define, for
each job j ∈ J a new discrete subset I ′(j) of time intervals, with |I ′(j)| = poly(n). Sets I ′(j) of
intervals for j ∈ J define a new instance of Discrete Machine Minimization, whose optimal solution
cost is at most 3 OPT. Moreover, any solution for the new instance implies a feasible solution for the
original instance of the same cost. Next they define the set D ⊆ T of time points, consisting of all
release dates and deadlines of jobs in J , and all endpoints of intervals in {I ′(j)}j∈J . Clearly, the size
of D is polynomially bounded. Finally they modify LP (T), so that Constraint (1) is only defined for
t ∈ D and Constraint (2) is only applied to time intervals T with both endpoints in D. The new
LP relaxation can be solved in polynomial time and its solution cost is denoted by OPT′. We are
guaranteed that

⌈
OPT′

⌉
≤ 3 OPT. Moreover, any feasible solution to the new LP implies a feasible

solution to the original LP. From now on we will denote by x this near-optimal fractional solution,
and by OPT′(T) its value,

⌈
OPT′(T)

⌉
≤ 3 OPT. For each job j ∈ J , let I∗(j) ⊆ I(j) be the subset of

intervals I for which x(I, j) > 0. For any interval I ∈ I∗(j), we call x(I, j) the LP-weight of I.

3 The Algorithm

Our algorithm starts by defining a recursive partition of the time line into blocks. This recursive
partition in turn defines a partition of the jobs into job classes J1, J2, . . . Our algorithm then defines,
for each job class J i, a function fi : T → R, where fi(t) is the summation of values x(I, j) over all jobs
j ∈ J i and intervals I ∈ I(j) containing t. We then consider each of the job classes J i separately, and
show an efficient algorithm for scheduling jobs in J i so that at most O(dfi(t)e) jobs of J i are executed
at each time point t ∈ T .

3.1 Partition into Blocks and Job Classes

Let T be any time interval, and let B be any set of disjoint sub-intervals of T . Then we say that B
defines a partition of T into blocks, and each interval B ∈ B is referred to as a block. Notice that we
do not require that the union of the intervals in B is T .

Let k = dm(T)e be the cost of the near-optimal fractional solution. We define a recursive partition
of the time interval T into blocks. We use a partitioning sub-routine that receives as input a time
interval T and a set J(T) of jobs whose time windows are contained in T . The output of the procedure

4

is a partition B of T into blocks. This partition in turn defines a partition of the set J(T) of jobs, as
follows. For each B ∈ B, we have a set JB ⊆ J(T) of jobs whose time window is contained in B, so
JB = {j ∈ J(T) | [rj , dj] ⊆ B}. Let J ′′ = ∪B∈BJB, and let J ′ = J(T)\J ′′. Notice that J ′ ∪̇ (

⋃̇
B∈BJB)

is indeed a partition of J(T), and that for each j ∈ J ′, rj and dj lie in distinct blocks. The partitioning
procedure will also guarantee the following properties: (i) For each job j ∈ J ′, each interval I ∈ I∗(j)
has a non-empty intersection with at most two blocks; and (ii) For each B ∈ B, there is a job j ∈ J ′
and a job interval I ∈ I∗(j), with B ⊆ I.

A partitioning procedure with the above properties is provided in [6]. For the sake of completeness
we briefly sketch it here. Let T = [L,R]. We start with t = L and B = ∅. Given a current time point
t, the next block B = (`, r) is defined as follows. If there is any job j ∈ J(T) with a time interval
I ∈ I∗(j) containing t, we set the left endpoint of our block to be ` = t. Otherwise, we set it to
be the first (i.e., the leftmost) time point to the right of t for which such a job and such an interval
exist. To define the right endpoint of the block, we consider the set S of all job intervals with non-zero
LP-weight containing `, so S = {I | ` ∈ I and ∃j ∈ J(T) : I ∈ I∗(j)}. Among all intervals in S, let I∗

be the interval with rightmost right endpoint. We then set r to be the right endpoint of I∗. Block
B = (`, r) is then added to B, we set t = r and continue.

We are now ready to describe our recursive partitioning procedure. We have k iterations (recall that
k = dm(T)e is the cost of the near-optimal fractional solution). Iteration h, for 1 ≤ h ≤ k, produces
a partition Bh of T into blocks, refining the partition Bh−1. Additionally, we produce a partition of
the set J of jobs into k classes J1, . . . , Jk. In the first iteration, we apply the partitioning procedure
to time interval T and the set J of jobs. We set B1 to be the partition into blocks produced by the
procedure. We denote the corresponding partition of the jobs as follows: J1 = J ′, and for all B ∈ B1,
we denote JB by J1

B. In general, to obtain partition Bh, we run the partitioning algorithm on each one
of the blocks B ∈ Bh−1, together with the associated subset Jh−1

B of jobs. For each block B ∈ Bh−1,
we denote by BB the new block partition and by Jh−1

B = (J ′B, J
′′
B) the new job partition computed

by the partitioning procedure. We then set Bh =
⋃

B∈Bh−1 BB, Jh =
⋃

B∈Bh−1 J ′B, and for each block
B′ ∈ Bh, let Jh

B′ denote the subset of jobs in Jh−1, whose time windows are contained in B′. This
finishes the description of the recursive partitioning procedure. An important property, established in
the next claim, is that every job is assigned to one of the k classes J1, . . . , Jk.

Claim 2 J = J1 ∪ · · · ∪ Jk.

Proof: It is enough to prove that for each B ∈ Bk, Jk
B = ∅. Assume otherwise, and let B ∈ Bk

be some block with j ∈ Jk
B. Consider the nested set of blocks B1, B2, . . . , Bk = B, where for each

h : 1 ≤ h < k, Bh ∈ Bh and Bh+1 ⊆ Bh, so Bh+1 has been created when the partitioning procedure
was applied to Bh. Let jh ∈ Jh−1

Bh−1
be the job whose interval Ih ∈ I∗(j) has defined the right endpoint

of Bh. We then have a set of nested intervals: [rj , dj] ⊆ Bk ⊆ Ik ⊆ Bk−1 ⊆ · · · ⊆ B1 ⊆ I1. We
claim that for each h : 1 ≤ h ≤ k, m(Bh) ≥ k − h + 1. The proof is by induction. We start with
h = k. Since [rj , dj] ⊆ Bk, m(Bk) ≥ 1. Assume now the claim for some h, and we will prove it for
h − 1. Consider block Bh−1. Since interval Ih was used to define the right endpoint of Bh, the time
window of jh is contained in Bh−1, while Bh ⊆ Ih and x(jh, Ih) > 0. Constraint (2) then ensures
that m(Bh−1) ≥ m(Bh) + 1 ≥ k − h. It follows that m(B1) = k. But B1 ⊆ I1 and x(j1, I1) > 0,
contradicting Constraint (2) of LP (T).

We have thus obtained a recursive partition B1, . . . ,Bk of T into blocks, and a partition J =
⋃k

h=1 J
h

of jobs into classes. For simplicity we denote B0 = {T }.

The algorithm of [6] can now be described as follows. Consider the set Jh of jobs, for 1 ≤ h ≤ k,
together with the partition Bh−1 of T into blocks. Recall that for each block B ∈ Bh−1, Jh−1

B is the

5

subset of jobs whose time windows are contained in B, and Jh ⊆
⋃

B∈Bh−1 J
h−1
B . Consider now some

block B ∈ Bh−1 and the corresponding subset J̃ = Jh ∩ Jh−1
B . Let B′ = BB be the partition of B into

blocks returned by the partitioning procedure when computing Bh. This partition has the property
that each interval I ∈ I∗(j) of each job j ∈ J̃ has a non-empty intersection with at most two blocks
in B′, and furthermore for each j ∈ J̃ , the window of j is not contained in any single block B ∈ B′.
These two properties are used in [6] to extend a simpler algorithm for the special case where OPT = 1
to the more general setting, where an arbitrary number of machines is used. In particular, if kh is
the fractional number of machines used to schedule jobs in Jh (i.e., kh is the maximum value, over
time points t, of

∑
j∈Jh

∑
I∈I(j):t∈I x(I, j)), then all jobs in Jh can be efficiently scheduled on O(dkhe)

machines. In the worst case, dkhe can be as large as dke for all h : 1 ≤ h ≤ k, and so overall O(k2)
machines are used in the algorithm of [6].

In this paper, we refine this algorithm and its analysis as follows. For each h : 1 ≤ h ≤ k, we define a
function fh : T → R, where fh(t) is the total fractional weight of intervals containing t that belong to
jobs in Jh. Clearly, for all t,

∑
h fh(t) ≤ k. We then consider each one of the job classes Jh separately.

For each job class Jh we find a schedule for jobs in Jh, such that for each time point t ∈ T , at most
O(dfh(t)e) jobs are scheduled on intervals containing t. The algorithm for scheduling jobs in Jh and
its analysis are similar to those in [6]. We partition all jobs in Jh into a constant number of subsets,
according to the way the fractional weight is distributed on their intervals. We then schedule each
one of the subsets separately. The analysis is similar to that of [6], but does not follow immediately
from their work. In particular, more care is needed in the analysis of the subsets of jobs j that have
substantial LP-weight on intervals lying inside blocks to which rj or dj belong.

We now proceed to describe our algorithm more formally. For each job class Jh : 1 ≤ h ≤ k, let
fh : T → R be defined as follows. For each t ∈ T , fh(t) =

∑
j∈Jh

∑
I∈I(j):

t∈I
x(I, j). Our goal is to prove

the following theorem:

Theorem 1 For each job class Jh : 1 ≤ h ≤ k, we can efficiently schedule jobs in Jh so that, for each
time point t ∈ T , at most O(dfh(t)e) jobs are scheduled on intervals containing t.

We prove the theorem in the next section. We show here that a constant factor approximation
algorithm for Continuous Machine Minimization follows from Theorem 1. For each time point t ∈ T ,
the total number of jobs scheduled on intervals containing point t is at most

∑
hO(dfh(t)e). Since∑

h fh(t) ≤ k,
∑k

h=1 dfh(t)e ≤ 2k, and so the solution cost is O(k).

3.2 Proof of Theorem 1

Consider a job class Jh and the block partition Bh−1. For each block B ∈ Bh−1, let J∗B = Jh−1
B ∩ Jh

be the set of jobs whose windows are contained in B, and so Jh =
⋃

B∈Bh−1 J∗B. Clearly, for blocks
B 6= B′, the windows of jobs in J∗B and J∗B′ are completely disjoint, and therefore they can be considered
separately. From now on we focus on scheduling jobs in J∗B inside a specific block B ∈ Bh−1. For
simplicity, we denote J∗ = J∗B, and B∗ is the partition of B into blocks obtained when computing Bh.
Recall that we have the following properties: (i) For each job j ∈ J∗, rj and dj lie in distinct blocks
of B∗; and (ii) For each job j ∈ J∗, each interval I ∈ I∗(j) has a non-empty intersection with at most
two blocks

For each t ∈ B, let g(t) = dfh(t)e. Observe that g(t) is a step function. Our goal is to schedule all jobs
in Jh so that, for each t ∈ B, at most O(g(t)) jobs are scheduled on intervals containing t. The rest
of the algorithm consists of three steps. In the first step, we partition the area “below” the function
g(t) into a set R of rectangles of height 1. In the second step we assign each job interval I ∈ I∗(j)

6

for j ∈ J∗ to one of the rectangles R ∈ R, such that the total LP-weight of intervals assigned to R at
each time point t ∈ R is at most 5. In the third step, we partition all jobs in J∗ into 7 types, and find
a schedule for each one of the types separately. The assignment of job intervals to rectangles found in
Step 2 will help us find the final schedule.

Step 1: Defining Rectangles. A rectangle R is defined by a time interval W (R), and we think of R
as the interval W (R) of height 1. We say that time point t belongs to R iff t ∈W (R) and we say that
interval I is contained in R iff I ⊆W (R). We denote by `R and rR the left and the right endpoints of
W (R) respectively. We find a nested set R of rectangles, such that for each t ∈ T , the total number
of rectangles containing t is exactly g(t).

To compute the set R of rectangles, we maintain a function g′ : B → Z. Initially g′(t) = g(t) for all
t ∈ B and R = ∅. While there is a time point t ∈ B with g′(t) > 0, we perform the following: Let
I be the longest consecutive sub-interval of B with g′(t) ≥ 1 for all t ∈ I. We add a rectangle R of
height 1 with W (R) = I to R and decrease the value g′(t) for all t ∈ I by 1. Consider the final set
R of rectangles. For each t ∈ B, let R(t) ⊆ R be the subset of rectangles containing the point t.
Then for each t ∈ B, |R(t)| = g(t). Furthermore, it is easy to see that R is a nested set of rectangles,
and for every pair R,R′ ∈ R of rectangles with non-empty intersection, either W (R) ⊆ W (R′) or
W (R′) ⊆W (R) holds.

Claim 3 If R,R′ ∈ R and W (R) ∩W (R′) 6= ∅, then either W (R) ⊆W (R′) or W (R′) ⊆W (R).

Proof: Assume otherwise, and assume w.l.o.g. that R was added to R before R′. Consider the
interval I = W (R) ∪W (R′). Then at the time when R was added to R, for each t ∈ I g(t) > 1, and
moreover W (R) ⊂ I. Therefore, we should have added I instead of W (R) to R.

Notice also that a rectangle R ∈ R may contain several blocks or be contained in a block. Its endpoints
also do not necessarily coincide with block boundaries.

Step 2: Assigning Job Intervals to Rectangles. We start by partitioning the set R of rectangles
into k layers as follows. The first layer L1 contains all rectangles R ∈ R that are not contained in any
other rectangle in R. In general layer Lz contains all rectangles R ∈ R \ (L1 ∪ · · ·Lz−1) that are not
contained in any other rectangle in R \ (L1 ∪ · · ·Lz−1) (if we have identical rectangles then at most
one of them is added to each layer, breaking ties arbitrarily). Since R is a nested set of rectangles,
each R ∈ R belongs to one of the layers L1, . . . , Lk, and the rectangles in each layer are disjoint.

Let I = {I ∈ I∗(j) | j ∈ J∗} be the set of all intervals of jobs in J∗ with non-zero weight. For I ∈ I,
we say that I belongs to layer zI iff zI is the largest index, for which there is a rectangle R ∈ Lz

containing I. If I belongs to layer LzI , then for each layer Lz′ , 1 ≤ z′ ≤ zI , there is a unique rectangle
R(I, z′) ∈ Lz′ containing I. Let Iz ⊆ I be the set of intervals belonging to layer z. Then I =

⋃k
z=1 Iz.

We process intervals in I1, . . . , Ik in this order, while intervals belonging to the same layer are processed
in non-increasing order of their lengths, breaking ties arbitrarily. Let I ∈ Iz be some interval, and
assume that I ∈ I∗(j). Consider the rectangles R(I, 1), . . . , R(I, zI). For each z′ : 1 ≤ z′ ≤ zI , we say
that I is feasible for R(I, z′) iff, for each time point t ∈ I, the total LP-weight of intervals currently
assigned to R that contain t is at most 5 − x(I, j). We select any rectangle R(I, z′), 1 ≤ z′ ≤ zI , for
which I is feasible and assign I to R(I, z′). In order to show that this procedure succeeds, it is enough
to prove the following:

Claim 4 When interval I is processed, there is at least one rectangle R(I, z′), with 1 ≤ z′ ≤ zI , for
which I is feasible.

Proof: Assume otherwise. Let I ′ ∈ I be any interval that has already been processed. It is easy to

7

see that I ′ 6⊂ I: If I ′ and I belong to the same layer, then the length of I ′ should be greater than or
equal to the length of I, so I ′ 6⊂ I. If I ′ belongs to some layer z and I belongs to layer zI > z, then
by the definition of layers it is impossible that I ′ ⊆ I (since then any rectangle containing I would
also contain I ′). Therefore, any job interval that has already been processed and overlaps with I must
contain either the right or the left endpoint of I. Let ` and r denote the left and the right endpoints
of I, respectively.

Let R be any rectangle in {R(I, 1), . . . , R(I, zI)}. Let w`(R) denote the total LP-weight of job intervals
assigned to R that contain `, and define wr(R) similarly for r. Since I cannot be assigned to R,
w`(R) + wr(R) > 4. Therefore, either

∑zI
z=1w`(R(I, z)) > 2zI or

∑zI
z=1wr(R(I, z)) > 2zI . Assume

w.l.o.g. that it is the former. So we have a set S of job intervals belonging to layers 1, . . . , zI , all
containing point `, whose total LP-weight is greater than 2zI . Let t1, t2 be the time points closest to
` on left and right respectively, such that g(ti) < zI + 1 for i ∈ {1, 2}. Then there is a layer-(zI + 1)
rectangle R ∈ R with W (R) = [t1, t2]. Let I ′ be any interval in S. Since I ′ belongs to one of the
layers 1, . . . , zI , it is not contained in W (R), and so either t1 ∈ I ′ or t2 ∈ I ′. Therefore, either the
total LP-weight of intervals I ′ in S containing t1 is more than zI , or the total LP-weight of intervals
I ′ in S containing t2 is more than zI . But this contradicts the fact that g(ti) < zI + 1.

Step 3: Scheduling the Jobs Given a rectangle R ∈ R, let I(R) ⊆ I be the set of job intervals
assigned to R. For simplicity from now on we denote J∗ by J and the block partition B∗ by B. As
before, for each time point t, R(t) ⊆ R denotes the set of rectangles containing t. We partition the
jobs into 7 types Q1, . . . , Q7. We then schedule each of the types separately. Each job j ∈ J will be
scheduled on one of its time intervals I ∈ I(j). If I ∈ I(R), then we say that j is scheduled inside R.
Given a subset S of jobs scheduled inside a rectangle R, we say that the schedule uses α machines iff
for each time point t ∈ R, the total number of jobs of S scheduled on intervals in I(R) containing t is
at most α. We will ensure that for each job type Qi, for each rectangle R ∈ R, all jobs of Qi scheduled
inside R use a constant number of machines. Since |R(t)| = g(t) for all t ∈ B, overall we obtain a
schedule where the number of jobs scheduled at time t is at most O(g(t)) for all t ∈ B, as desired.
We start with a high level overview. The set Q1 contains jobs with a large LP-weight on intervals
intersecting block boundaries. The set Q2 contains all jobs with large LP-weight on intervals I whose
length is more than half the length of R(I). These two job types are taken care of similarly to type
1 and 2 jobs in [6]. The sets Q3 and Q5 contain jobs j with large LP-weight on intervals belonging
to rectangles that contain dj . These sets corresponds to jobs of type 3 in [6]. However, in our more
general setting, we need to consider many different rectangles contained in a block simultaneously, and
so these job types require more care and the algorithm for scheduling them and its analysis are more
complex. Job types 4 and 6 are similar to types 3 and 5, except that we use release dates instead of
deadlines. Finally, type 7 contains all remaining jobs, and we treat them similarly to jobs of type 5
in [6]. We now proceed to define the partition of jobs into 7 types, and show how to schedule jobs of
each type.

Type 1: Let P be the set of time points that serve as endpoints of blocks in B. We say that I ∈ I is
a type-1 interval, and denote I ∈ I1, iff it contains a point in P . We define the set of jobs of type 1:
Q1 =

{
j ∈ J |

∑
I∈I(j)∩I1 x(I, j) ≥ 1/7

}
. These jobs are treated similarly to type-1 jobs in [6]. For

the sake of completeness, we sketch the algorithm below.

To schedule type-1 jobs, we construct a directed flow network G = (V,E), as follows. Let V1 = Q1,
and V2 = {(p,R) | p ∈ P,R ∈ R(p)}, i.e., V2 contains pairs (p,R) where p is a block boundary and R
is a rectangle containing p). Additionally, we have a source s and a sink t, so the final set of vertices is
V = V1 ∪ V2 ∪ {s, t}. The edges are defined as follows. There is an edge of capacity 1 from the source
s to every vertex in V1, and an edge of capacity 35 from every vertex in V2 to t. Additionally, for each
j ∈ V1 and (p,R) ∈ V2, there is an edge of capacity 1 from j to (p,R) iff there is an interval I ∈ I∗(j)

8

containing p that is assigned to R. The solution to the linear program defines a feasible flow in this
graph of value |V1| as follows. We send one flow unit from the source s to each vertex in V1. For each
j ∈ V1 and (b, R) ∈ V2, with (j, (b, R)) ∈ E, the amount of flow sent on e is proportional to the sum

of values x(I, j) for intervals I ∈ I∗(j)∩I(R) containing p. Formally, we send

P
I∈I∗(j)∩I(R):

p∈I

x(I,j)P
I∈I∗(j)∩I1 x(I,j) flow

units on edge e.

By the definition of Q1, the total amount of flow leaving j is exactly 1, and the value of the flow
on edge (j, (b, R)) is at most 7

∑
I∈I∗(j)∩I(R):

p∈I
x(I, j). Finally, for each (b, R) ∈ V2, the amount of flow

sent on edge ((b, R), t) is the same as the total flow entering (b, R). Notice that since the total sum
of weights x(I, j) of intervals I ∈ I(R) containing any point t ∈ R is at most 5, the total flow on
edge ((b, R), t) is at most 35. By the integrality of flow, there is an integral flow of the same value.
We will use this integral flow to schedule jobs of type Q1, as follows. If an edge (j, (p,R)) carries one
flow unit, then we schedule j on any interval I ∈ I∗(j) ∩ I(R) that contains point p. We then say
that j is scheduled inside R. Consider now some rectangle R ∈ R, and let p ∈ P ∩ R. Then at most
35 jobs of Q1 are scheduled inside R on intervals containing p. Moreover, since each interval I ∈ I
has a non-empty intersection with at most two blocks, for each time point t ∈ R, at most 70 jobs are
scheduled inside R on intervals containing t. This finishes the algorithm for scheduling jobs of Q1.

We will now focus on the set I ′ = I \ I1 of intervals that do not cross block boundaries. We can
now refine our definition of rectangles to intersections of blocks and rectangles. More formally, for
each R ∈ R, the partition B of B into blocks also defines a partition of R into a collection C(R,B)
of rectangles. We then define a new set R′ =

⋃
R∈R C(R,B) of rectangles. The set I(R′) of intervals

assigned to R′ ∈ C(R,B) is the set of intervals in I(R) that are contained in R′. We will schedule the
remaining jobs inside the rectangles of R′, such that the schedule inside each R ∈ R′ uses a constant
number of machines. Recall that for each R,R′ ∈ R, if R ∩ R′ 6= ∅, then either W (R) ⊆ W (R′) or
W (R′) ⊆W (R). It is easy to see that the same property holds for rectangles in R′.

Type 2 An interval I ∈ I ′ is called large iff the length of the rectangle R ∈ R′, where I ∈ I(R),
is at most twice the length of I. Let I2 denote the set of all large intervals. We define Q2 ={
j ∈ J \Q1 |

∑
I∈I(j)∩I2 x(I, j) ≥ 1/7

}
. These jobs are scheduled similarly to type-2 jobs in [6], as

follows.

Note that for every rectangle R ∈ R′,
∑

I∈I(R)∩I2 x(I, j) ≤ 10. We can now find a matching between
rectangles in R′ and jobs in Q2, that will define the assignment of the jobs to the rectangles. We
construct a graph whose vertices are jobs in Q2 and rectangles in R′, and there is an edge between
j ∈ Q2 and R ∈ R′ iff there is a large interval I ∈ I∗(j)∩I2∩I(R). As in jobs of type 1, the fractional
solution gives us a fractional matching, where each job is fractionally assigned to one rectangle, and
each rectangle is assigned at most 70 jobs. We can therefore find an integral assignment, where
each rectangle R is assigned at most 70 jobs, and job j is assigned to R only if there is an interval
I ∈ I(j) ∩ I(R).

Type 3 Consider an interval I ∈ I(j) for some job j ∈ J \ (Q1 ∪ Q2), and assume that I ∈
I(R) for R ∈ R′. We say that I is deadline large iff dj ∈ R and pj > 1

2(dj − `R). Let I3 be
the set of all deadline large intervals. We define the set Q3 of jobs of type 3 as follows: Q3 ={
j ∈ J \ (Q1 ∪Q2) |

∑
I∈I(j)∩I3 x(I, j) ≥ 1/7

}
.

For each job j ∈ Q3, define the interval Γj = (dj − pj , dj). Notice that Γj is the right-most interval in
I(j). We simply schedule each job j ∈ Q3 on interval Γj .

Claim 5 The total number of jobs of Q3 scheduled at any time t is at most 70g(t).

9

Proof: For each job j ∈ Q3, for each rectangle R ∈ R′, with I(j) ∩ I(R) ∩ I3 6= ∅, we define a
fractional value x′′R(Γj , j). We will ensure that for each j ∈ Q3,

∑
R∈R′ x

′′
R(Γj , j) = 1, and for each

rectangle R ∈ R′, for each t ∈ R′,
∑

j:t∈Γj
x′′R(Γj , j) ≤ 70. Since for each point t, |R(t)| = g(t), the

claim follows.

Consider now some fixed rectangle R ∈ R′. We change the fractional schedule of intervals inside R
in two steps. In the first step, for each j ∈ Q3, we set x′(I, j) = x(I, j)/

∑
I∈I3∩I(j) x(I, j) for each

I ∈ I(j) ∩ I(R) ∩ I3. By the definition of jobs of type 3, we now have that

∀t ∈ R
∑
j∈Q3

∑
I∈I(j)∩I(R):

t∈I

x′(I, j) ≤ 35 (3)

Next, for each job j ∈ Q3 with Γj ⊆ R, we set x′′R(Γj , j) =
∑

I∈I(R) x
′(I, j). Notice that since j ∈ Q3,∑

R∈R′ x
′′
R(Γj , j) = 1. It is now enough to prove that for each time point t ∈ R,

∑
j∈Q3:t∈Γj

x′′R(Γj , j) ≤
70.

Assume otherwise. Let t be some time point, such that
∑

j∈Q3:t∈Γj
x′′R(Γj , j) > 70. Let St be the set

of jobs j ∈ Q3 with t ∈ Γj and x′′R(Γj , j) > 0, and let j′ ∈ St be the job with smallest processing time.
Consider the time point t′ = dj′−pj′ . We claim that for each j ∈ St, for each interval I ∈ I(j)∩I(R),
either t′ ∈ I or t ∈ I. If this is true then we have that either

∑
j∈Q3

∑
I∈I(j)∩I(R):

t∈I
x′(I, j) > 35 or∑

j∈Q3

∑
I∈I(j)∩I(R):

t′∈I
x′(I, j) > 35, contradicting (3).

Consider some job j ∈ St and assume for contradiction that there is some time interval I ∈ I(j)∩I(R)
that contains neither t nor t′. Then I must lie completely to the left of t′ and hence to the left of Γj′ .
But since pj ≥ pj′ , we have that t′ − `R ≥ pj ≥ pj′ , and so dj′ − `R ≥ 2pj′ , contradicting the fact that
j′ ∈ St.

Type 4 Same as type 3, but for release date instead of deadline. Is treated similarly to Type 3. The
set of type 4 jobs is denoted by Q4.

Type 5 Consider some interval I ∈ I(j) for j ∈ J \ (Q1 ∪ · · · ∪ Q4), and assume that I ∈ I(R) for
R ∈ R′. We say that I is of type 5 (I ∈ I5) iff dj ∈ R and I 6∈ I3 (so dj − `R ≥ 2pj). We define the

set Q5 of jobs of type 5 as follows: Q5 =
{
j ∈ J \ (Q1 ∪ · · · ∪Q4) |

∑
I∈I(j)∩I5 x(I, j) ≥ 1/7

}
.

For a job j ∈ Q5 and a rectangle R ∈ R′, we say that R is admissible for j iff dj ∈ R and dj−`r ≥ 2pj .
We say that an interval I ∈ I(j) is admissible for j iff I ∈ I5. Notice that if j ∈ Q5 then the sum of
values x(I, j) where I is admissible for j is at least 1/7. Let R ∈ R′ be any rectangle, and let S ⊆ Q5

be any subset of jobs of type 5. We say that set S is feasible for R iff R is admissible for each j ∈ S,
and, for each time point t ∈ R,

∑
j∈S:dj≤t pj < 70(t− `R). We now proceed as follows. First we show

that if S is feasible for R, then we can schedule all jobs of S inside R on at most 140 machines. After
that we show how to assign all jobs of Q5 to rectangles such that each rectangle is assigned a feasible
subset. We start with the following lemma.

Lemma 1 If S ⊆ Q5 is a feasible subset of jobs for R then all jobs in S can be scheduled inside R on
at most 140 machines.

Proof: We will schedule all jobs of S on 140 machines inside the time interval W (R). We scan all
140 machines simultaneously from left to right starting from time point `R. Whenever any machine
becomes idle, we schedule on it the job with earliest deadline among all available jobs of S. It is easy
to see that all jobs are scheduled: Assume otherwise, and let j be the first job that we are unable
to schedule. Consider the time point t = dj − pj . All the machines are occupied at time t, and they

10

only contain jobs whose deadline is before dj . Therefore,
∑

j′∈S:dj′<dj
pj′ ≥ 140(t − `R). But since

dj − `R ≥ 2pj , we have that t− `R = dj − pj − `R ≥ 1
2(dj − `R), and so

∑
j′∈S:dj′<dj

pj′ ≥ 70(dj − `R),
contradicting the fact that S is feasible for R.

We now show how to assign jobs of Q5 to rectangles, such that each rectangle is assigned a feasible
subset. Consider some block B′ ∈ B. Let R(B′) ⊆ R′ be the set of rectangles contained in B′, and let
H(B′) ⊆ Q5 be the subset of jobs of type 5 whose deadline is inside B′. We will assign jobs in H(B′)
to rectangles in R(B′). Recall the partition of the set R(B′) of rectangles into layers. Layer i, denoted
by Li, consists of all rectangles that are not contained in any other rectangle of R(B′)\(L1∪· · ·∪Li−1)
(if we have identical rectangles then at most one of them is assigned to each layer and we break the
ties arbitrarily). Consider some job j ∈ H(B′). Let z(j) be the maximum index i, such that some
rectangle R ∈ Li is admissible for j. Then for each z : 1 ≤ z ≤ z(j), there is a unique layer-z rectangle
Rz(j) that is admissible for j.

We will assign a subset A(R) of jobs to each rectangle R ∈ R(B′). We start with A(R) = ∅ for all R.
We process jobs of H(B′) in non-decreasing order of their deadlines. When job j is processed, it is
assigned to Rz(j), where z is the maximum index, 1 ≤ z ≤ z(j), such that A(R) ∪ {j} is feasible for
R. It now only remains to prove is that every job j can be assigned to a rectangle. The next lemma
will finish the analysis of the algorithm for type-5 jobs.

Lemma 2 For each job j ∈ H(B′), when j is processed, there is a rectangle Rz(j), 1 ≤ z ≤ z(j), such
that j can be assigned to Rz(j).

Proof: Assume otherwise, and let j be the first job that cannot be assigned to any such rectangle.
We now proceed as follows. We construct a subset R̃ ⊆ R(B′) of rectangles, and for each R ∈ R̃ we
define a time point tR ∈ R. For each R ∈ R̃, we define a subset J̃(R) ⊆ A(R) of jobs whose deadline
is before tR and show that the total processing time of jobs in J̃(R) is more than 35(tR− `R). On the
other hand, we ensure that for each j ∈

⋃
R∈R̃ J̃(R), for each admissible interval I for j, if I ∈ I(R),

then R ∈ R̃ and I ⊆ [`R, tR]. This leads to a contradiction, since for each j ∈ J̃ , at least 1/7 of the
LP weight is on admissible intervals, and all such intervals are contained in the intervals [`R, tR] for
R ∈ R̃. On the other hand, for each rectangle R ∈ R̃, for each time point t ∈ R, the total LP-weight
of intervals of R containing t is at most 5.

Let R ∈ R(B′) be any rectangle, and let t ∈ R. We say that R is overpacked for t iff
∑

j′∈A(R):dj′≤t pj′ >

35(t − `R). We process the rectangles layer-by-layer. At the beginning, we set R̃ = ∅ and J̃ = ∅. In
the first iteration, we consider the rectangles of layer L1. Let R = R1(j). We add R to R̃ and set
tR = dj . Note that since j could not be assigned to R, rectangle R must be overpacked for tR. We
add to J̃ all jobs in A(R) ∪ {j}.

In iteration i, we consider rectangles R ∈ Li. Consider the set Y (R) of jobs j′ for which z(j′) ≥ i and
Ri(j′) = R. If J̃ ∩ Y (R) is non-empty, we add R to R̃, and set tR to be the maximum deadline of any
job j′ ∈ J̃ ∩ Y (R). Notice that since j′ was not assigned to R, rectangle R is overpacked for tR. Let
J̃(R) be the set of all jobs j′′ ∈ A(R) with dj′′ ≤ tR. We add jobs in J̃(R) to J̃ .

Consider the final set R̃ of rectangles and the set J̃ of jobs. Clearly, the set J̃ of jobs is the disjoint
union of sets J̃(R) for R ∈ R̃. Recall that J̃(R) contains all jobs j′ ∈ A(R) with dj′ ≤ tR. Since each
rectangle R ∈ R̃ is overpacked for tR, we have that

∑
j∈J̃ pj > 35

∑
R∈R̃(tR− `R). On the other hand,

the next claim shows that for each job j ∈ J̃ , for each admissible interval I of j, if I ∈ I(R), then
R ∈ R̃ and I lies to the left of tR.

Claim 6 Let j ∈ J̃ , let I be any admissible interval for j, and assume that I ∈ I(R). Then R ∈ R̃,
and I ⊆ [`R, tR].

11

We now obtain a contradiction as follows. We have shown that
∑

j∈J̃ pj > 35
∑

R∈R̃(tR − `R).
On the other hand, for each job j ∈ J̃ , at least 1/7 of its LP-weight lies on admissible intervals.
Since all these admissible intervals are contained inside intervals [`R, tR] for R ∈ R̃, we have that∑

R∈R̃
∑

j

∑
I∈I(j)∩I(R):

I⊆[`R,tR]

x(I, j) ≥ 1
7

∑
j∈J̃ pj > 5

∑
R∈R̃(tR − `R). This contradicts the fact that for

every rectangle R ∈ R′, for each t ∈ R,
∑

j

∑
I∈I(j)∩I(R):t∈I x(I, j) ≤ 5. It now only remains to prove

Claim 6.

Proof: [Of Claim 6] Consider some job j′ ∈ J̃ , and suppose it was added to J̃ in iteration i. Let I be
any admissible interval of j′. Then there must be an index z : 1 ≤ z ≤ z(j′) such that I ∈ I(Rz(j)).
We now consider three cases. First, if z = i, then let R = Ri(j′). Then, since j′ was added to J̃ in
iteration i, j′ ∈ J̃(R) and so I ⊆ [`R, tR]. Clearly, R ∈ R̃. Assume now that z > i and let R = Rz(j′).
Then j′ ∈ J̃ in iteration z, and so when R was considered, j′ ∈ Y (R) ∩ J̃ . So R has been added to R̃
and tR has been set to be at least dj′ . Finally, assume that z < i. Let R = Ri(j′) and R′ = Rz(j′).
Then R ⊆ R′. It is then enough to prove the following claim:

Claim 7 Let R ∈ Li and R′ ∈ Li−1, with R ⊆ R′. Assume that R ∈ R̃. Then R′ ∈ R̃, and moreover
tR′ ≥ tR.

Proof: Consider the iteration i when R was added to R̃, and let j′′ ∈ Y (R) be the job which
determined tR, so tR = dj′′ . Two cases are possible. If j′′ ∈ A(R′), then j′′ has been added to J̃ in
iteration i − 1 when R′ was processed. So R′ ∈ R̃ and tR′ ≥ dj′′ = tR. Otherwise, j′′ was in J̃ when
R′ was processed. Since R ⊆ R′ and R is admissible for j′′, so is R′. Therefore, j′′ ∈ Y (R′) ∩ J̃ and
so R′ ∈ R̃ and tR′ ≥ dj′′ = tR.

Type 6 Like type 5, but for release date.

Type 7 All other jobs. The algorithm for these jobs is the same as the one used in [6], substituting
rectangles for blocks. For completeness, we go over the algorithm.

Let I7 = I \ (I1 ∪ · · · I6). Notice that if I ∈ I7, it does not cross any block boundaries. Moreover
if I ∈ I(j) ∩ I(R) for some j ∈ J and R ∈ R′, then R does not contain dj or rj , and the length of
rectangle R is at least 2pj . Let Q7 = J \ (Q1 ∪ · · · ∪Q6). Then, we have:

Q7 =

j | ∑
I∈I(j)∩I7

x(I, j) ≥ 1/7

 .

We divide Q7 into classes based on size. Let Hi be the set of jobs j ∈ Q7 with 2i+1 < pj ≤ 2i. For
each rectangle R, let X(R, i) =

∑
j∈Hi

∑
I∈I(j)∩I(R)∩I7 x(I, j). For each R ∈ R′, we will schedule at

most dX(R, i)e jobs from Hi (simultaneously, for all i). Notice that for j ∈ Q7, if I(j)∩I(R)∩I7 6= ∅,
then j can be scheduled anywhere inside rectangle R, since R does not contain dj or rj .

Claim 8 For each rectangle R ∈ R′, we can schedule dX(R, i)e jobs of Hi inside R on 142 machines,
simultaneously for all i.

Proof: First note that we can schedule bX(R, i)c jobs on 70 machines, allowing to break a job and
schedule parts of it on different machines. Next, note that because jobs are small, we can schedule

12

dX(R, i)e jobs on 71 machines. We need to double the number of machines to schedule the jobs that
were broken.

Now for each size class Hi, we need to decide which job is scheduled in which rectangle, so that
each rectangle gets assigned at most dX(R, i)e jobs. The fractional LP solution implies a feasible
assignment exists, and earliest deadline greedy assignment will give an integral solution.

4 Conclusion

We have shown a polynomial time constant factor approximation algorithm for the Continuous Ma-
chine Minimization problem. This improves upon the best previously known bound of O(

√
log n) [6],

while a lower bound of Ω(log log n) is known for the discrete version of the problem [7]. Hence our
result proves a separation between the discrete and the continuous versions. For the discrete version,
the best known approximation factor is O(log n/ log log n) [8]. Closing this gap remains an interesting
open problem.

References

[1] Nikhil Bansal, Amit Chakrabarti, Amir Epstein, and Baruch Schieber. A quasi-ptas for unsplittable
flow on line graphs. In STOC ’06: Proceedings of the thirty-eighth annual ACM Symposium on
Theory of Computing, pages 721–729, New York, NY, USA, 2006. ACM.

[2] A. Bar-Noy, S. Guha, J. Naor, and B. Schieber. Approximating the throughput of multiple ma-
chines in real-time scheduling. Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 622–631, 1999.

[3] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch Schieber. A
unified approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–1090,
2001.

[4] Gruia Calinescu, Amit Chakrabarti, Howard Karloff, and Yuval Rabani. Improved approximation
algorithms for resource allocation. In In 9th International Integer Programming and Combinatorial
Optimization Conference, volume 2337 of LNCS, pages 401–414. Springer-Verlag, 2002.

[5] J. Chuzhoy, R. Ostrovsky, and Y. Rabani. Approximation algorithms for the job interval selection
problem and related scheduling problems. Math. Oper. Res. 31, 4, pp. 730–738, 2006.

[6] Julia Chuzhoy, Sudipto Guha, Sanjeev Khanna, and Joseph Naor. Machine minimization for
scheduling jobs with interval constraints. In FOCS, pages 81–90, 2004.

[7] Julia Chuzhoy and Joseph (Seffi) Naor. New hardness results for congestion minimization and
machine scheduling. J. ACM, 53(5):707–721, 2006.

[8] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably good algo-
rithms and algorithmic proofs. Combinatorica, 7, 1987.

[9] F.C.R. Spieksma. On the approximability of an interval scheduling problem. Journal of Scheduling,
2:215–227, 1999.

13

