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Abstract

We consider the Max-Min Allocation problem: given a set A of m agents and a set I of n
items, where agent A ∈ A has utility uA,i for item i ∈ I, our goal is to allocate items to agents
so as to maximize fairness. Specifically, the utility of an agent is the sum of its utilities for the
items it receives, and we seek to maximize the minimum utility of any agent. While this problem
has received much attention recently, its approximability has not been well-understood thus far:
the best known approximation algorithm achieves an Õ(

√
m)-approximation, and in contrast, the

best known hardness of approximation stands at 2.
Our main result is an algorithm that achieves an Õ(nε)-approximation in nO(1/ε) time for any

ε = Ω( log logn
logn ). In particular, we obtain a poly-logarithmic approximation in quasi-polynomial

time, and for every constant ε > 0, we obtain an nε-approximation in polynomial time. An inter-
esting technical aspect of our algorithm is that we use as a building block a linear program whose
integrality gap is Ω(

√
m). We bypass this obstacle by iteratively using the solutions produced by

the LP to construct new instances with significantly smaller integrality gaps, eventually obtaining
the desired approximation.

We also investigate the special case of the problem, where every item has non-zero utility for
at most two agents. This problem is hard to approximate up to any factor better than 2. We
give a factor 2-approximation algorithm.
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1 Introduction

We consider the problem of allocating indivisible goods to a set of agents, with the objective to
maximize the minimum utility of any agent. Formally, we are given a set A of m agents, a set I of n
indivisible items, and non-negative utilities uA,i for each agent A and item i. The total utility of an
agent A for a subset S ⊆ I of items is uA(S) :=

∑
i∈S uA,i, that is, the utility function is additive.

An allocation of items is a function Φ : A → 2I such that every item is allocated to at most one
agent, that is, Φ(A) ∩ Φ(A′) = ∅ whenever A 6= A′. The Max-Min Allocation problem is to find
an allocation Φ of items which maximizes minA∈A {uA(Φ(A))}.

The Max-Min Allocation problem arises naturally in the context of fair allocation of indivisible
resources where maximizing the utility of the least ‘happy’ person is arguably a suitable notion of
fairness. Woeginger [20] and Epstein and Sgall [11] gave polynomial time approximation schemes
(PTAS) for the special case where all agents have identical utilities for the items. Woeginger [21]
also gave an FPTAS for the case where the number of agents, m, is a constant. The first non-trivial
approximation algorithm for the general Max-Min Allocation problem is due to Bezakova and
Dani [6], achieving a factor (n−m+ 1)-approximation. They also showed that the problem is hard
to approximate up to any factor smaller than 2.

Bansal and Sviridenko [3] introduced a restricted version of the Max-Min Allocation problem,
called the Santa Claus problem, where each item has the same utility for a subset of agents and 0
utility for the rest. In other words, for each agent A and item i, either uA,i = ui, or uA,i = 0, where
the value ui only depends on the item i. They proposed an LP relaxation for the problem, referred
to as the configuration LP, and used it to give an O(log logm/ log log logm)-approximation for the
Santa Claus problem. Subsequently, Feige [12], and Asadpour, Feige and Saberi [1] showed a constant
upper bound on the integrality gap of the configuration LP for the Santa Claus problem. However
their proofs are non-constructive and do not give approximation algorithms. Very recently, Haeupler,
Saha and Srinivasan [14] turned the proof of Feige [12] into a constructive one, by expanding the
recent constructive proof of the Lovász Local Lemma by Moser and Tardos [17], thus providing a
constant factor approximation algorithm for the Santa Claus problem.

As for the general Max-Min Allocation problem, Bansal and Sviridenko [3] showed that the
configuration LP has an integrality gap of Ω(

√
m) in this setting. Recently, Asadpour and Saberi [2]

gave an O(
√
m log3m) approximation algorithm for the problem using the same LP relaxation. This

is the best approximation algorithm known for the problem prior to our work, while the best current
hardness of approximation factor is 2 [6]. The main result of our paper is an Õ(nε)-approximation
algorithm for any ε = Ω(log log n/ log n) for the general Max-Min Allocation problem, whose
running time is nO(1/ε). This implies a quasi-polynomial time poly-logarithmic approximation to the
general Max-Min Allocation problem, and for any constant ε > 0, gives an nε-approximation in
polynomial time. Interestingly, one of our main building blocks is an LP-relaxation whose integrality
gap is Ω(

√
m). We bypass this obstacle by iteratively using the LP solutions to construct a sequence

of new instances with diminishing integrality gaps.

We also investigate a special case of Max-Min Allocation where each item has positive utility for
at most two agents. We call this special case the 2-restricted Max-Min Allocation problem. When
the two positive utilities are identical for both agents, we call it a uniform 2-restricted instance. To
the best of our knowledge, prior to our work, the approximability status of the 2-restricted Max-Min
Allocation problem has been the same as that of the the general Max-Min Allocation; for the
uniform 2-restricted Max-Min Allocation the algorithm and analysis of Bansal and Sviridenko
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for the Santa Claus problem implies a factor-4 approximation. We give a 2-approximation algorithm
for the non-uniform 2-restriced Max-Min Allocation.

Remark: Following the publication of the conference version of our work, Verschae and Wiese [19]
have given a faster and combinatorial 2-approximation for the non-uniform 2-restricted Max-Min
Allocation.

Remark: We note that the previous results had m, the number of agents, as the parameter in the
approximation factor, while our result is an Õ(nε) approximation. In general, the parameter n could
be much larger than m. However, as an easy corollary of our main result, we show that for any
constant ε > 0, an O(mε)-approximation can be achieved in quasi-polynomial time.

Overview of Results and Techniques. Our main result is summarized in the following theorem:

Theorem 1 For any ε ≥ 9 log logn
logn , there is an nO(1/ε)-time randomized algorithm to compute an

O(nε log n)-approximate solution for the Max-Min Allocation problem. In particular, there is an

O(log10 n)-approximation algorithm whose running time is n
O( logn

log logn
)
.

Fix an ε > 0 such that the desired approximation factor is Õ(nε). Our algorithm starts by guessing
the optimal solution value M . We then define a class of structured Max-Min Allocation instances
that we call canonical instances, and show that any input instance can be transformed into a canonical
instance, with only an O(log n) factor loss in the approximation ratio. In a canonical instance, there
are only two types of agents – heavy agents, whose utility for any item is either 0 or M , and light
agents. Each light agent has a distinct heavy item for which it has utility M , and for every other
item, the utility is either M/t or 0, where t ≥ nε is a large integer. The items with a utility of M/t
for a light agent are referred to as the light items. Next we transform the problem of assigning items
to agents into a network flow problem, by means of private items. Each agent is assigned at most
one distinct private item, for which it has utility M . The private item of a light agent is its unique
heavy item, and we fix some maximal assignment of remaining items to heavy agents. Of course, if
every agent is assigned a private item, we immediately obtain a near-optimal solution. So assume
that some agents do not get assigned any private items; such agents are called terminals. A key
observation is that if the optimal solution value is M , then, given any assignment of private items,
there always exists a way of re-assigning private items such that every terminal is assigned a heavy
item. Re-assignment means a heavy agent “frees” its private item if it gets another heavy item while
a light agent frees its private item if it gets t light items. These freed-up private items can then be
re-assigned. Thus, given any allocation of private items, we can construct a flow network with the
property that there exists an integral flow satisfying certain constraints (for instance, out-flow of 1
for light agents implies an in-flow of t). We then design a linear programming relaxation to obtain a
feasible fractional flow solution for the above network. Our LP relaxation has size nO(1/ε) when the
desired approximation ratio is Õ(nε). However, the integrality gap of the LP relaxation is Ω(

√
m),

and thus directly rounding the LP-solution cannot give a better than O(
√
m) approximation factor.

This brings us to another key technical idea. Although the LP has a large integrality gap, we show
that we can obtain a better approximation algorithm by performing LP-rounding in phases. In each
phase we solve the LP and run a rounding algorithm to obtain a solution which is almost feasible:
all terminals get heavy items but some items might be allocated twice. From this almost-feasible
solution, we recover a new assignment of private items and hence a new instance of the LP, one that
has a much smaller number of terminals than the starting instance. We thus show that in poly(1/ε)
phases, either one of these instances will certify that the optimal solution cost is smaller than the
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guessed value M , or we will get an Õ(nε)-approximation. We note that Theorem 1 can also be used
to obtain an approximation in terms of number of agents. We prove the following corollary.

Corollary 1 For any fixed ε > 0, there is a quasi-polynomial time mε-approximation algorithm for
Max-Min Allocation.

Our second result is about 2-restricted Max-Min Allocation instances.

Theorem 2 There is a 2-approximation algorithm for the non-uniform 2-restricted Max-Min Al-
location problem.

The 2-restricted Max-Min Allocation can be cast as an orientation problem on (non-uniformly)
weighted graphs. Our main technical lemma is a generalization of Eulerian orientations to weighted
graphs. At a high level, we show that the edges of any (non-uniformly) weighted graph can be
oriented such that the total weight coming into any vertex w.r.t. the orientation is greater than half
the total weight incident on the vertex in the undirected graph minus the maximum weight edge
incident on the vertex. Note that in the case of unweighted graphs, these orientations correspond
to Eulerian orientations. We also prove that for any δ > 0, even the uniform 2-restricted Max-Min
Allocation is NP-hard to approximate to within a factor of (2− δ).

Related Work. The Max-Min Allocation problem falls into the broad class of resource alloca-
tion problems which are ubiquitous in computer science, economics and operations research. When
the resources are divisible, the fair allocation problem, also dubbed as cake-cutting problems, has
been extensively studied by economists and political scientists with entire books (for example, [7])
written on the subject. However, the indivisible case has come into focus only recently.

A work whose results are similar in spirit to ours is that of Bateni, Charikar, and Guruswami
[4, 5] who design approximation algorithms for special cases of the Max-Min Allocation problem.
They consider the setting where all utilities uA,i ∈ {0, 1,∞}. Let G∞ be the graph whose vertices
correspond to items and agents, and there is an edge between an agent A and an item i iff uA,i =∞.
They achieve an O(nε)-approximation in nO(1/ε) time and a polylogarithmic approximation in quasi-
polynomial time for the following two special cases: (1) when the degree of every item in G∞ is at
most 2, and (2) when graph G∞ contains no cycles. They also give a 4-approximation for the 2-
restricted Max-Min Allocation and show that the uniform 2-restricted Max-Min Allocation
is NP-hard to approximate to a factor better than 2. Finally, they show that the general Max-
Min Allocation is equivalent to the 3-restricted Max-Min Allocation, where every item has a
non-zero utility for at most 3 agents.

The complexity of resource allocation problems also depends on the complexity of the utility functions
of agents. The utility functions we deal with in this paper are additive – for every agent A, the total
utility of a set S of items is simply uA(S) :=

∑
i∈S uA,i. More general utility functions have been

studied in the literature, with two major examples being submodular utilities, where for every agent
A and any two subsets S, T of items, uA(S) + uA(T ) ≥ uA(S ∪ T ) + uA(S ∩ T ), and sub-additive
utilities, where uA(S) + uA(T ) ≥ uA(S ∪ T ). Note that submodular utilities are a special case
of the sub-additive utilities. Khot and Ponnuswami [15] gave a (2m − 1)-approximate algorithm
for Max-Min Allocation with sub-additive utilities. Recently, Goemans et al. [13] using the
Õ(
√
m)-approximation algorithm of Asadpour and Saberi [2] as a black box, gave a Õ(

√
nm1/4)-

approximation for Max-Min Allocation with submodular utilities. We note that using our main
theorem above, the algorithm of [13] gives a Õ(n1/2+ε)-approximation for submodular Max-Min
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Allocation in time nO(1/ε). We remark here that nothing better than a factor 2 hardness is known
for Max-Min Allocation even with the general sub-additive utilities.

Max-Min Allocation can be viewed as a dual problem to the minimum makespan machine schedul-
ing. Lenstra, Shmoys and Tardos [16] gave a factor 2-approximation algorithm for the problem, and
also showed the problem is NP-hard to approximate to a factor better than 3/2. Closing this gap has
been one of the challenging problems in the field of approximation algorithms. Recently Ebenlendr
et al. [10] studied a very restricted setting where each job can only be assigned to two machines, and
moreover it takes the same time on both. For this case, authors give a factor (7/4)-approximation
algorithm, and show that even this special case is NP-hard to approximate better than a factor 3/2.
Our investigation of the 2-restricted Max-Min Allocation is inspired by [10].

Organization. Section 2 presents transformations that allow us to focus on instances and solutions
with a special structure. Section 3 shows how to get an almost-feasible Õ(nε)-approximate solution
for ε = Ω(log log n/ log n). In Section 4, we establish our main result, namely Theorem 1. We prove
Corollary 1 in Section 5, and conclude with a proof of Theorem 2 in Section 6.

2 Preliminaries

We are given a set A of m agents, a set I of n indivisible items, and non-negative utility uA,i for
each agent A and item i. The utility of agent A for a subset S ⊆ I of items is uA(S) :=

∑
i∈S uA,i.

The Max-Min Allocation problem is to find an allocation Φ : A → 2I of items to agents which
maximizes minA∈A {uA(Φ(A))}, while Φ(A) ∩ Φ(A′) = ∅ for A 6= A′. We assume that we are given
ε ≥ 9 log log n/ log n, and so nε ≥ Ω(log9 n). Our goal is to produce an Õ (nε)-approximate solution
in nO(1/ε) time. We use M to denote the (guessed) value of the optimal solution. Our algorithm
w.h.p. either produces a solution of cost Õ(nε)M , or returns a certificate that M > OPT. For an
agent A and an item i, we use interchangeably the phrases “A has utility γ for item i” and “item i
has utility γ for A” to indicate that uA,i = γ. We say that item i is wanted by agent A iff uA,i > 0.

Polynomially Bounded Utilities. We first show that we can assume w.l.o.g. that all utilities
are polynomially bounded. We give a simple transformation that ensures that each non-zero utility
value is between 1 and 2n, with at most a factor 2 loss in the optimal value. We can assume w.l.o.g.
that any non-zero utility value is at least 1 (otherwise, we can scale all utilities up appropriately),
and that the maximum utility is at most M (the optimal solution value). For each agent A and item
i, we define its new utility as follows. If uA,i < M/2n then u′A,i = 0; otherwise

u′A,i = uA,i ·
2n

M
.

Since the optimal solution value in the original instance is M , the optimal solution value in the new
instance at most 2n. Moreover, it is easy to see that this value is at least n: consider any agent A
and the subset S of items assigned to A by OPT. The total utility of S for A is at least M , and at
least M/2 of the utility is received from items i for which uA,i ≥ M/2n. Therefore, the new utility
of set S for A is at least n. It is easy to see that any α-approximate solution to the transformed
instance implies a (2α)-approximate solution to the original instance.

Canonical Instances. It will be convenient to work with a structured class of instances that we
refer to as canonical instances. Given ε = Ω(log log n/ log n), we say that an instance I of Max-Min
Allocation is ε-canonical, or simply, canonical iff:
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• All agents are partitioned into two sets, a set L of light agents and a set H of heavy agents.

• Each heavy agent A ∈ H has a subset ΓH(A) of items, where for each i ∈ ΓH(A), uA,i = M ,
and for each i 6∈ ΓH(A), uA,i = 0.

• Each light agent A ∈ L is associated with

– a distinct item h(A) that has utility M for A and is referred to as the heavy item for A;
if A 6= A′ then h(A) 6= h(A′),

– a parameter NA ≥ nε, and

– a set ΓL(A) of items, referred to as the light items for A. Each item in ΓL(A) has a utility
of M/NA for A. If i 6∈ ΓL(A) ∪ {h(A)} then uA,i = 0.

Given an assignment of items to agents in the canonical instance, we say that a heavy agent A is
satisfied iff it is assigned one of the items in ΓH(A), and we say that a light agent A is α-satisfied
(for some α ≥ 1) iff it is either assigned item h(A), or it is assigned at least NA/α items from the set
ΓL(A). In the latter case we say that A is satisfied by light items. A solution is called α-approximate
iff all heavy agents are satisfied and all light agents are α-satisfied. Given a canonical instance, our
goal is to find an assignment of items to agents that 1-satisfies all agents. The next lemma shows
that we can restrict our attention to canonical instances, at the cost of losing a logarithmic factor in
the approximation ratio.

Lemma 1 Given ε = Ω(log log n/ log n) and an instance I of the Max-Min Allocation problem
with optimal solution value M , we can produce in polynomial time a canonical instance I ′ such that
I ′ has a solution that 1-satisfies all agents. Moreover, any α-approximate solution to I ′ can be
converted into a max {O(α log n), O(nε log n)}-approximate solution to I.

Proof: Given an instance I of the Max-Min Allocation problem, we create a canonical instance
I ′ as follows. Define s = blog(M/(nε log n))c. Recall that M ≤ 2n, so s ≤ log n for large enough n.
For each agent in I, the canonical instance I ′ will contain 2s+ 1 new agents, for a total of m(2s+ 1)
agents. Let I be the set of items in I. The set I′ of items for the instance I ′ will contain I as well
as 2ms additional items that we define later.

Specifically, for each agent B in I, we create the following collection of new agents and items:

• A heavy agent H0(B) and s light agents L1(B), . . . , Ls(B) where each light agent Lj(B) is
associated with value NLj(B) = M/(s · 2j) ≥M/(s · 2s) ≥ nε.

• For each j ∈ {1, . . . , s}, if the utility of item i ∈ I for B is 2j−1 ≤ uB,i < 2j , then agent Lj(B)
has utility s · 2j = M/NLj(B) for i. If i ∈ I is an item for which uB,i ≥ 2s, then H0(B) has
utility M for item i.

• Additionally, for each light agent Lj(B) there is a heavy item h(Lj(B)), which has utility M
for it, and also a heavy agent Hj(B), who has utility M for h(Lj(B)).

• Finally, we have a set of s items YB = {i1(B), . . . , is(B)} such that each item in YB has utility
M for each of the agents in {H0(B), H1(B), . . . ,Hs(B)}, the set of heavy agents for B.
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This completes the definition of the canonical instance I ′.

Now let Φ be an optimal allocation for the instance I. We will use Φ to construct an allocation
Φ′ for I ′ that 1-satisfies all agents. Consider some agent B in the original instance. The optimal
solution Φ assigns a set Φ(B) of items to B. We can partition Φ(B) into (s + 1) sets ϕ0, ϕ1, ..., ϕs,
as follows. The set ϕ0 ⊆ Φ(B) contains all items i with uB,i ≥ 2s. For each j ∈ {1, . . . , s}, set
ϕj contains all items i with 2j−1 ≤ uB,i < 2j . Assume first that ϕ0 6= ∅, and let i be any item
in ϕ0. Then we assign item i to heavy agent H0(B). The remaining s heavy agents corresponding
to B are assigned one item from YB each. The light agents Lj(B) are assigned their heavy items
h(Lj(B)). All agents corresponding to B are now 1-satisfied. Assume now that ϕ0 = ∅. Then there
is a j ∈ {1, . . . , s}, such that uB(ϕj) ≥M/s. Since each item in ϕj has utility at most 2j for B, we
have that |ϕj | ≥M/(s · 2j) = NLj(B). We assign all items in ϕj to Lj(B), and h(Lj(B)) is assigned
to the heavy agent Hj(B). Now the remaining s heavy agents are assigned one item of YB each.
For each one of the remaining light agents, we assign h(Lj′(B)) to Lj′(B). Therefore, the canonical
instance has a solution that 1-satisfies all agents.

Conversely, consider now any α-approximate solution Φ′ for the canonical instance I ′. Let B be some
agent in the original instance. Consider the corresponding set of heavy agents H0(B), . . . ,Hs(B).
Since there are only s items in the set YB, at least one of the heavy agents is not assigned an item from
this set. Assume first that it is the heavy agent H0(B). Then it must be assigned some item i ∈ I for
which agent B has utility at least 2s ≥M/(2nε log n). We then assign item i to agent B. Otherwise,
assume it is Hj(B), for j 6= 0 that is not assigned an item from YB. Then Hj(B) is assigned item
h(Lj(B)), and so Lj(B) must be assigned a set S′ of at least NLj(B)/α = M/(s ·2j ·α) items, each of

which has a utility of at least 2j−1 for B. We then assign the items in S′ to B. Since s ≤ log n, this set
has utility at least M/(2α log n) for B. Thus, we obtain a max {O(nε log n), O(α log n)}-approximate
solution.

From now on, we assume that we are working with a canonical instance.

Private Items and Flow Solutions. One of the basic concepts of our algorithm is that of private
items and flow solutions defined by them. Throughout the algorithm we maintain an assignment π
of private items to agents. Such an assignment is called good iff it satisfies the following properties:
(1) For every light agent A ∈ L, its private item is π(A) = h(A); (2) An item i can be a private item
of a heavy agent A ∈ H only if i ∈ ΓH(A); and (3) An item can be a private item for at most one
agent. We denote by S the set of items that do not serve as private items. The set of heavy agents
that have private items is denoted by Hpvt, and the remaining heavy agents are called terminals and
are denoted by T.

The initial assignment π of private items to heavy agents is obtained as follows. We create a bipartite
graph G = (U, V,E), where U = H, V is the set of items that do not serve as private items for light
agents, and E contains an edge between A ∈ U and i ∈ V iff i ∈ ΓH(A). We compute a maximum
matching in G that determines the assignment of private items to heavy agents. To simplify notation,
we say that for a terminal A ∈ T, π(A) is undefined and {π(A)} , ∅.

The Flow Network. Given a canonical instance I and a good assignment π : L ∪Hpvt → I of
private items, we define the corresponding directed flow network N(I, π) as follows. The set of
vertices is A∪ I∪{s}. Source s connects to every vertex i where i ∈ S. If agent A ∈ A has a private
item and i = π(A), then vertex A connects to vertex i. If A is a heavy agent and i ∈ ΓH(A)\{π(A)},
then vertex i connects to vertex A. If A is a light agent and i ∈ ΓL(A) then vertex i connects
to vertex A. Note that every agent A has out-degree at most 1. Let N(I, π) denote the resulting
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network. We have the following constraints on the flow in this network.

C1. All flow originates at the source s.

C2. Each terminal agent A ∈ T receives one flow unit.

C3. For each heavy agent A ∈ H, if the outgoing flow is 1 then the incoming flow is 1; otherwise
both are 0.

C4. For each item i ∈ I, if the outgoing flow is 1 then the incoming flow is 1; otherwise both are 0.

C5. For each light agent A ∈ L, if the outgoing flow is 1 then the incoming flow is exactly NA.

An integral flow obeying the above conditions is called a feasible flow. We say that a flow is α-feasible
iff constraints (C1)–(C4) hold, while constraint (C5) is relaxed as below:

C6. For each light agent A ∈ L, if the outgoing flow is 1 then the incoming flow is at least NA/α.

The next lemma shows that the problem of α-satisfying all agents is equivalent to the problem of
finding an α-feasible flow.

Lemma 2 Let π : A\T→ I be any good assignment of private items. An assignment that 1-satisfes
the agents of I implies a feasible flow in N(I, π). Moreover, an integral α-feasible flow in N(I, π)
implies an α-approximate solution for the canonical instance I.

Proof: Fix a 1-satisfying assignment to agents of I. We assume w.l.o.g. that all items in I \ S are
assigned: otherwise if i ∈ I \ S is not assigned by the solution, we can assign it to the unique agent
A ∈ A such that π(A) = i, and un-assign all the items that were originally assigned to A. Let A ∈ H
be a heavy agent. If it is assigned an item i 6= π(A), then we send one flow unit from vertex i to
vertex A. If A 6∈ T, then it also sends one flow unit to π(A). Consider now a light agent A ∈ L. If
it is not assigned π(A), then there is a subset S′ ⊆ ΓL(A) of NA items assigned to A. Each of these
items sends one flow unit to A, and A sends one flow unit to π(A). Finally, each item i ∈ S that
participates in the assignment receives one flow unit from s. It is easy to see that this is a feasible
flow.

For the second part, fix any integral α-feasible flow. Consider any agent A that may be heavy or
light. We simply assign to A every item that sends flow to it. If there is no such item, we assign
π(A) to A. It is easy to verify that this is an α-approximate solution, since every terminal receives
one flow unit and all other agents that do not have any flow going through them can be assigned
their private items.

Let I∗ be the set of items and let H∗ be the set of heavy agents reachable from s by a path that
does not contain light agents. A useful property of our initial assignment of private items is that
H∗ does not contain any terminals (otherwise we could have increased the matching). Throughout
the algorithm, the assignment of private items to H∗ does not change, and the above property is
preserved. Given any pair v, v′ of vertices, we say that a path p which starts at v and ends at v′,
connects v to v′ directly if it does not contain any light agents as intermediate vertices (however we
allow v and v′ to be light agents under this definition). We say that v is directly connected to v′ if
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such a path exists. Similarly, given an integral flow solution, we say that v sends flow directly to v′

iff the flow is sent via a path p that does not contain light agents as intermediate vertices.

An Equivalent Formulation. A simple path p is called an elementary path iff it does not contain
any light agents as intermediate vertices, and either a) originates and terminates at light agents,
or b) originates at a light agent and terminates at a terminal, or c) originates at the source s and
terminates at a light agent. It is easy to verify that the problem of finding an α-feasible flow is
equivalent to finding a collection P of elementary paths such that:

Ĉ1. All paths in P are internally-disjoint (i.e. they do not share intermediate vertices).

Ĉ2. Each terminal has exactly one path p ∈ P terminating at it.

Ĉ3. For each light agent A ∈ L, there is at most one path p ∈ P starting at A, and if such a path
exists, then there are at least NA/α paths in P terminating at A.

3 Almost Feasible Solutions

In this section, we develop a key technical building block for our main result. We present an LP-
rounding algorithm for the Max-Min Allocation problem that produces an almost-feasible so-
lution. Specifically, we obtain a solution that satisfies constraints (Ĉ1)–(Ĉ3) except that for some
items and some heavy agents there may be two elementary paths containing them: one terminating
at some light agent and another at a terminal. Similarly, some light agents A will have two elemen-
tary paths starting at A, one terminating at another light agent and another at a terminal. The
fact that we are unable to obtain a feasible solution is not surprising: the LP that we construct
has an Ω(

√
m) integrality gap, as we show in Section A in the Appendix. We bypass this obstacle

in our final algorithm presented in Section 4, and obtain a much better approximation guarantee
while using the LP-rounding algorithm from this section as a subroutine. The following theorem
summarizes the properties of the almost feasible solution that we obtain.

Theorem 3 Let I = (A, I) be any 1-satisfiable canonical instance, and let π : A \ T → I be a
good assignment of private items to non-terminal agents, such that N(I, π) does not contain direct
paths from source s to any terminal. Let α = O

(
log n/ε5

)
. Then we can find, in nO(1/ε) time, two

collections P1 and P2 of elementary paths in N(I, π) with the following properties.

D1. All paths in P1 terminate at the terminals and all paths in P2 terminate at light agents. More-
over, each terminal lies on exactly one path in P1.

D2. All paths in P1 are completely vertex disjoint, and paths in P2 are internally vertex-disjoint but
may share endpoints. A non-terminal agent or an item may appear in both P1 and P2.

D3. For each light agent A ∈ L, there is at most one path in P1 and at most one path in P2 that
originates at A (so, in total, there may be two paths in P1 ∪ P2 originating at A).

D4. If there is a path p ∈ P1 ∪ P2 originating at some light agent A ∈ L, then at least NA/α paths
in P2 terminate at A.
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The rest of this section is devoted to the proof of Theorem 3. We start by an observation on the
structure of the optimal solutions in Section 3.1. Next, we present in Section 3.2 a useful technical tool
we call BS tree decomposition, that was shown by Bansal and Sviridenko [3]; its proof is presented
here for completeness. In Section 3.3 we show how to obtain almost feasible solutions for a restricted
simple class of instances, which immediately gives us an Õ(

√
n)-approximation for the whole problem.

This section is not a part of the proof of Theorem 3, and we mostly present it to demonstrate some
of the ideas used in our main algorithm. Finally, in Section 3.4 we prove Theorem 3.

3.1 Structured Near-Optimal Solutions for Canonical Instances.

Given a canonical instance I and a good assignment π of private items, an optimal solution OPT
to I defines a feasible integral flow in N(I, π). We can assume w.l.o.g. that this flow contains no
directed cycles. This is since, for every directed cycle C, where every edge of C carries one flow unit,
we can obtain an equivalent solution by setting the flow on every edge of C to be 0. This corresponds
to an equivalent solution to the Max-Min Allocation problem, where every agent A appearing
on the cycle C is assigned its private item, (which must also appear on cycle C directly after A).

Consider the graph G obtained from N(I, π) as follows: we remove the source s and all its adjacent
edges. We also remove all edges that do not carry any flow in OPT, and finally remove all isolated
vertices. The resulting graph is then a collection of disjoint trees, since the out-degree of every vertex
is at most 1, and we have assumed that the graph contains no directed cycles. Each such tree τ
has a terminal t ∈ T as its root, that has one incoming edge. Each heavy agent in the tree has one
incoming and one outgoing edge, and each light agent A has NA incoming edges and one outgoing
edge. The leaves are items in S. Such a solution is called an h-layered forest iff for every tree τ ,
the number of light agents on any leaf-to-root path is the same; we denote it by h(τ). Moreover,
h(τ) ≤ h for all trees τ . (Note that h(τ) ≥ 1 must hold since there are no direct paths between s
and the terminals.) It is convenient to work with layered solutions, and we now show that for any
canonical instance, there exists an (h+ 1)-approximate h-layered solution for h = 9/ε.

Lemma 3 For every ε-canonical instance I, there is an h-layered forest that defines an (h + 1)-
approximate solution, for h = 9/ε.

Proof: We will start with an optimal solution OPT for I, and convert it into an h-layered solution
in which every light agent will be (h + 1)-satisfied. Consider any tree τ in the collection of disjoint
trees in the graph G corresponding to OPT. We transform it into an h-layered tree in h iterations.

A light agent A ∈ L that belongs to τ is called a level-1 agent iff it receives at least NA/(h+ 1) flow
units directly from items in S. Let L1(τ) be the set of all level-1 light agents of τ . Consider some
agent A ∈ L1(τ). For each child v of A in τ , if v does not lie on an elementary path connecting an
item of S to A, then we remove v together with its sub-tree from τ .

In general, for j > 1, a light agent A is a level-j agent iff it does not belong to levels 1, . . . , j − 1 and
it receives at least NA/(h+1) flow units directly from level-(j−1) agents. In iteration j, we consider
the set Lj(τ) of level-j agents. Let A ∈ Lj(τ) be any such agent, and let v be any child of A in τ .
If v lies on a elementary path p connecting some level-(j − 1) agent to A in τ , then we do nothing.
Otherwise, we remove v and its subtree from τ . We claim that after iteration h is completed, all
remaining light agents in τ belong to L = ∪hj=1Lj(τ). Thus we can convert every tree τ into an
h-layered tree, obtaining a (h+ 1)-approximate h-layered solution.
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Claim 1 After h iterations, every light agent A remaining in τ belongs to L.

Proof: Assume otherwise. Then we can find a light agent A /∈ L in τ , such that all light agents
in the sub-tree of A belong to L (Start with arbitrary agent A remaining in τ , such that A 6∈ L. If
there is a light agent A′ in the subtree of A that does not belong to L, then continue with A′. When
this process stops we have agent A as required).

Agent A receives at least NA flow units in the original tree, but it does not belong to Lj(τ) for
1 ≤ j ≤ h. That is, it receives less than NA/(h+ 1) flow units directly from light agents in Lj(τ) for
1 ≤ j ≤ h − 1 and less than NA/(h + 1) flow units directly from S. It follows that it must receive
at least NA/(h+ 1) ≥ nε/(h+ 1) units of flow directly from agents in Lh. Each one of these agents
receives at least nε/(h + 1) flow from agents in Lh−1(τ) and so on. So for each j : 1 ≤ j ≤ h, the
sub-tree of A contains at least (nε/(h + 1))h−j+1 agents from Lj(τ), and in particular it contains
(nε/(h + 1))h agents from L1(τ). We now show that by our choice of ε and h, (nε/(h + 1))h > m
which would be a contradiction.

Recall that nε ≥ log9 n and 1 > ε ≥ 9 log log n/ log n. So 9 ≤ (h = 9/ε) ≤ log n/ log log n. Thus, for
n large enough (h+ 1) ≤ 2h ≤ 2 log n/(log log n) ≤ log n ≤ nε/9 giving us (nε/(h+ 1))h ≥ (n8ε/9)h ≥
n8 ≥ n > m.

From now on we can focus on h-layered instances. For simplicity, we scale down all values NA for
A ∈ A by a factor of (h + 1), so that an optimal h-layered solution can 1-satisfy all agents. Note
that this increases the approximation ratio of our algorithm by a factor of (h+ 1).

3.2 The BS Tree Decomposition

One of the tools we use in our algorthm is a tree-decomposition theorem of Bansal and Sviridenko [3].
We remark that this theorem has no connection to the trees induced in the flow network N(I, π)
by a feasible solution. The setup for the theorem is the following. We are given an undirected
bipartite graph G = (A, I, E) where A is a set of agents, I is a set of items and E contains an edge
(A, i) iff A has utility M for i. Additionally, every agent A is associated with a value 0 ≤ xA ≤ 1.
(We can think of xA as the extent to which A is satisfied by light items in a fractional solution). We
are also given a fractional assignment yA,i of items, such that:

∀i ∈ I
∑
A∈A

yA,i ≤ 1 (1)

∀A ∈ A
∑

(A,i)∈E

yA,i = 1− xA (2)

∀(A, i) ∈ E 0 ≤ yA,i ≤ 1 (3)

The theorem of [3] shows that such an assignment can be decomposed into a collection of disjoint
trees in graph G. For each such tree τ , the summation of values xA for agents in τ is at least 1

2 ,
and moreover if A(τ) is the set of agents of τ and I(τ) is the set of items of τ , then for each agent
A ∈ A(τ), it is possible to satisfy all agents in A(τ) \ {A} by the items in I(τ).

Theorem 4 ([3]) There exists a decomposition of G = (A, I, E) into a collection of disjoint trees
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T1, T2, . . . , Ts, such that, for each tree Tj, either (1) Tj contains a single edge between some item i
and some agent A, or (2) the degree of each item i ∈ I(Tj) is 2 and

∑
A∈A(Tj)

xA > 1/2.

Corollary 2 For each tree Tj in the decomposition, for each agent A ∈ A(Tj), it is possible to satisfy
all agents in A(Tj) \ {A} by items in I(Tj).

Proof: Root tree Tj at vertex A. Now every agent A′ 6= A is assigned item i, where i is the parent
of A′ in Tj . Since the degree of every item is at most 2, this is a feasible assignment.

Proof: (of Theorem 4) We remove from E all edges (A, i) ∈ E with yA,i = 0. Let E∗ ⊆ E be the set
of edges (A, i) with yA,i = 1. We remove from G edges in E∗ together with their endpoints. These
will be the trees of type (1) in the statement of the theorem. We now perform the following three
steps.

Step 1: Converting G into a forest. We will transform values yA,j so that the set of edges with
non-negative values yA,j forms a forest, while preserving constraints (1)–(3), as follows. Suppose
there is a cycle C induced by edges of E. Since the cycle is even (the graph being bipartite), it
can be decomposed into two matchings M1 and M2. Suppose the smallest value yA,i for any edge
(A, i) ∈M1∪M2 is δ, and assume w.l.o.g. that this edge lies in M1. For each (A, i) ∈M2, we increase
yA,i by δ and for each (A, i) ∈ M1 we decrease yA,i by δ. It is easy to see that constraints (1)–(3)
continue to hold, and at least one edge (A, i) ∈ M1 ∪M2 has value yA,i = 0. All edges (A, i) with
yA,i = 0 are then removed from E, and all edges (A, i) with yA,i = 1 are added to E∗ with A and i
removed from G. We can continue this process until no cycles remain in G.

We now fix some tree τ in G. While there exists an item i ∈ I(τ) of degree 1, we perform Step 2.

Step 2: If there is an item i in τ with degree 1, then let A be the unique agent with (A, i) ∈ E. We
set yA,i = 1 − xA and yA,i′ = 0 for all i 6= i′. Notice that constraints (1)–(3) continue to hold. We
then add (A, i) to E∗, removing the edge and both its endpoints from G giving a tree of type (i) in
the theorem statement.

Assume now that the degree of every item i ∈ I(τ) is 2. Clearly then |I(τ)| = |A(τ)| − 1. Then∑
A∈A(τ)

∑
i∈I(τ) yA,i ≤ |I(τ)| = |A(τ)|−1. On the other hand,

∑
A∈A(τ)

∑
i∈I(τ) yA,i =

∑
A∈A(τ)(1−

xA) = |A(τ)| −
∑

A∈A(τ) xA. Therefore,
∑

A∈A(τ) xA ≥ 1.

Otherwise, while there is an item in I(τ) of degree greater than 2, we perform Step 3:

Step 3: Root tree τ at an arbitrary vertex in I(τ). Let i ∈ I(τ) be a vertex of degree at least 3,
such that in the sub-tree of i all items have degree 2. Now consider the children of i, denoted by
A1, A2, . . . , Ar, with r ≥ 2. Note that there is j : 1 ≤ j ≤ r with yAj ,i < 1/2. Remove the edge (Aj , i)
from G, and add the sub-tree τ ′ rooted at Aj to the decomposition. Note that all item vertices in
this sub-tree has degree exactly 2. Also note that:∑

A′∈A(τ ′)

∑
i′∈I(τ ′) yA′,i′ ≤ |I(τ ′)| = |A(τ ′)| − 1, while on the other hand

∑
A′∈A(τ ′)

∑
i′∈I(τ ′) yA′,i′ =∑

A′∈A(τ ′)(1− xA′)− yAj ,i = |A(τ ′)| −
∑

A′∈A(τ ′) xA′ − yAj ,i.

Therefore,
∑

A′∈A(τ ′) xA′ ≥ 1− yAj ,i ≥ 1
2 .
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3.3 An Õ(
√
n)-Approximation via 1-Layered Instances

In this section, as a warm-up towards the eventual goal of computing approximate h-layered solutions,
we consider the special case of finding an optimal 1-layered solution, that is, we restrict solutions
to trees τ with h(τ)=1. We design an LP relaxation and a rounding scheme for the relaxation, to
obtain an O(log n)-approximation to the problem of finding the optimal 1-layered solution. We then
describe how this suffices to obtain an Õ(

√
n)-approximation overall.

As we restrict our solution to trees τ with h(τ) = 1, we know that the items in I∗ (items reachable
directly from s) will only be used to send flow to the light agents, and items in I′ = I\ I∗ will only be
used to send flow directly to terminals. Similarly, heavy agents in H∗ will send flow to light agents,
while heavy agents in Hpvt \H∗ will send flow directly to terminals. Therefore, if there are any edges
from items in I′ to agents in H∗ we can remove them (no edges are possible between agents in H\H∗
and items in I∗, since each item has only one incoming edge). Similarly, if there are any edges from
items in I′ to light agents in L, we can remove them.

We now proceed with the design of an LP relaxation. For each light agent A ∈ L, we have a variable
xA showing whether or not A is satisfied by light items. We have a flow of type A, denoted by fA,
from the source s to the agent A, and we require that A receives at least NA · xA flow units of this
type, while at most xA flow units of this type go through any item in I∗. Finally, the total flow
through any item is bounded by 1. Let P(A) be the set of paths originating in s and ending at A,
that only use items in I∗. We then have the following constraints:

∀A ∈ L
∑

p∈P(A) fA(p) = NA · xA (NA · xA flow units sent to A) (4)

∀A ∈ L, ∀i ∈ I∗
∑

p∈P(A):

i∈p
fA(p) ≤ xA (capacity constraint w.r.t. flow of type A) (5)

∀i ∈ I∗
∑

A∈L
∑

p:i∈p fA(p) ≤ 1 (general capacity constraint) (6)

Additionally, we need to send one flow unit to each terminal. For A ∈ L, t ∈ T, let P(A, t) be the
set of all paths directly connecting A to t that only use items in I′. We now have the standard flow
constraints:

∀t ∈ T
∑

A∈L
∑

p∈P(A,t) f(p) = 1 (Each terminal receives 1 flow unit) (7)

∀A ∈ L
∑

t∈T
∑

p∈P(A,t) f(p) = xA (Light agent A sends xA flow units) (8)

∀i ∈ I′
∑

p:i∈p f(p) ≤ 1 (Capacity constraints) (9)

The rounding algorithm consists of three steps. In the first step we perform the BS tree decomposition
on the part of the graph induced by L ∪ (H \H∗) and I′. The second step is randomized rounding
which will create logarithmic congestion. In the last step we take care of the congestion to get an
approximate feasible solution.

Step 1: Tree decomposition We consider the graph induced by vertices corresponding to all
agents in set Z = L∪ (H \H∗) and the set I′ of items. Notice that agents in Z only have utilities M
for items in I′ (since we have removed all edges from I′ to L). For each light agent A ∈ L we have
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a value xA (the extent to which A is satisfied by light items). For all other agents A, let xA = 0.
Our fractional flow solution can be interpreted as a fractional assignment of items in I′ to agents in
Z, such that each agent A ∈ Z is fractionally assigned a total of (1− xA)-fraction of items in I′, as
follows. Let A ∈ H \H∗ be any heavy agent. For each item i ∈ I′, we set yA,i to be the amount
of flow sent on edge (i → A) if such an edge exists. If A is a heavy non-terminal agent, let z be
the amount of flow sent on edge (A → π(A)). We set yA,π(A) = 1 − z. For a light agent A, we set
yA,π(A) = 1 − xA. It is easy to see that this assignment satisfies Constraints (1)–(3). Therefore, we
can apply Theorem 4 and obtain a collection T1, . . . , Ts of trees together with a matching M of a
subset of items I′′ ⊆ I′ to a subset Z′ ⊆ Z of heavy agents, that do not participate in trees T1, . . . , Ts.
Since the sum of values xA for agents in any tree is at least 1/2, each tree has at least one light
agent.

Step 2: Randomized rounding Consider some tree Tj computed above. We select one of its
light agents A with probability xA/X, where X is the summation of values xA′ for A′ ∈ Tj . Notice
that xA/X ≤ 2xA, since X ≥ 1

2 . The selected light agent will eventually be satisfied by light items.
Once we select one light agent Aj for each tree Tj , we can satisfy the remaining agents of the tree
with the items of the tree. Let L∗ = {A1, . . . , As}. We have thus obtained an assignment of an item
from I′ to every agent in Z \ L∗. This assignment in turn defines a collection of simple paths P,
where every path p ∈ P connects an agent in A1, . . . , As to a terminal, with at most one path leaving
each agent Aj and exactly one path entering each terminal, as follows: Consider any terminal T .
Suppose it is assigned item i. Since item i is not the private item of T , there must be an agent A
such that π(A) = i. This agent either belongs to L∗ and then we are done, or it is a heavy agent. In
the latter case we continue to the item that is assigned to it and so on. In the end, we obtain a path
connecting a light agent in L∗ to the terminal T . It is clear that each light agent has at most one
path originating at it since it has a unique private item, and all paths that we obtain are completely
disjoint.

We now turn to finding a collection of elementary paths to satisfy the agents in L∗. For each A ∈ L∗

we multiply its flow fA by the factor of 1/xA, so that A now receives NA flow units. For agents not
in L∗, we reduce their flows to 0. Notice that due to constraint (5), at most 1 unit of flow fA goes
through any item. Since each agent A is selected with probability at most 2xA, using the standard
Chernoff bound, we get that w.h.p. the congestion (total flow) on any vertex is O(log n)1.

Step 3: Final solution In the final solution, we require that each agent A ∈ L∗ receives
bNA/ log nc flow units integrally via internally disjoint paths from s. Recall that we have a frac-
tional flow with congestion O(log n). So by scaling this flow by a factor of 1/O(log n), we obtain a
feasible fractional 1/O(log n)-relaxed flow. By the integrality of flow we can get such an integral flow.
Notice that throughout Step 3 we only change the routing of flow from source s to the light agents
in L∗, and the flow-paths connecting the light agents in L∗ to the terminals remain unchanged.

We now show that this algorithm is enough to get an Õ(
√
n) approximation for Max-Min Alloca-

tion. We set ε = 1
2 . Notice that it is now enough to consider instances where M ≥ 4

√
n: otherwise,

1Let fA(i) and FA(i) be the total flow of type A through item i in the LP and the final solution respectively. We
have E[FA(i)] ≤ 2xAfA(i)/xA = 2fA(i). Note that for A ∈ {A1, . . . , As}, FA(i)’s are independent random variables.
By constraint (5), FA(i) ≤ 1. By constraint (6),

∑
A fA(i) ≤ 1 implying total expected flow through i is at most 2.

Therefore, by a standard application of the Chernoff bound, we get that for each item i, Pr[
∑
A FA(i) ≥ O(logn)] ≤ 1/n2

and thus by a union bound, w.h.p. every item has total flow of O(logn) through it.
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if M ≤ 4
√
n, then an O(

√
n)-approximation can be computed by simply finding a matching that

assigns to each agent at least one item it is interested in. Therefore, from now on we assume that
M ≥ 4

√
n. It is easy to see by using a straightforward modification of Lemma 3 that in this case, by

losing a constant factor, we can assume that the optimal solution consists of trees τ with h(τ) = 1.
Therefore the algorithm presented here will provide an O(log n)-approximation for the problem of
finding 1-layered solutions, and Õ(

√
n)-approximation overall.

3.4 Almost Feasible Solutions for Multi-Layered Instances

In this section we prove Theorem 3, by generalizing the algorithm from the previous section to
h = 9/ε layers (recall that 1/ε = O(log n/ log logn)). Recall that from Lemma 3, we can assume
that the optimal solution to our instance I induces a collection of h-layered trees. However, we do
not know what layer each agent and item appears at in the optimal solution. Therefore, we define a
new flow network Nh(I, π), that can be viewed as a “structured” or a “layered” version of N(I, π).
We simulate trees of hight h′, for 1 ≤ h′ ≤ h, by a graph Gh′ , that contains h′ levels. Each level
j, roughly speaking, contains a copy of the original graph N(I, π), and it is used to simulate the
flow-paths that belong to level j in the optimal solution (we say that a vertex belongs to level j
in the optimal solution iff there are exactly j light agents on the path connecting it to the source
s). The graphs Gh′ , for 1 ≤ h′ ≤ h are completely disjoint, except that they share the source s.
Additionally, our final graph Nh(I, π) contains another sub-graph Ĝ, that is used to route flow from
the last level of each graph Gh′ to the terminals.

We solve the LP and perform randomized rounding on the new graph Nh(I, π). Since this graph
contains a large number of copies of each item and agent from the original instance, we will need to
transform our solution into an almost-feasible flow in the original graph N(I, π). We now proceed
to formally define the graph Nh(I, π).

3.4.1 The Graph Nh(I, π)

In this section we construct a directed graph Nh(I, π). Recall that any integral solution induces a
collection of disjoint trees τ with various heights h(τ) ≤ h. To simplify the description of the LP
(and at the cost of losing another factor h in the approximation ratio), our graph will consist of h
subgraphs, where subgraph Gh′ , for 1 ≤ h′ ≤ h, is an h′-layered graph that will correspond to trees
τ of height h(τ) = h′ in the optimal solution. Graphs Gh′ are completely disjoint except that they
share the source vertex s. Fix some h′ : 1 ≤ h′ ≤ h. Graph Gh′ is partitioned into h′ levels. It
contains h′ copies L1, . . . ,Lh′ of the set L of the light agents. Copy Lj belongs to level j of Gh′ , for
1 ≤ j ≤ h′.

Level 1 additionally contains the source s, a copy of each item in I∗ and a copy of each heavy agent
in H∗ (recall that these are the items and the agents that can be reached directly from s). There is
an edge from s to every item in S, an edge from every heavy agent A ∈ H∗ to its private item π(A),
and an edge from each item i ∈ ΓH(A) \ π(A) to A. Additionally, if item i is a light item for a light
agent A, we put an edge between i and a copy of A in L1.

Level j is defined as follows. Apart from Lj , it contains a copy of each heavy non-terminal agent
A ∈ H \ T and a copy of each item i ∈ I \ S. Let Hj and Ij denote the set of copies of the heavy
agents and items at level j. Recall that each item i ∈ I \S is a private item of some agent. Consider
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some such item i. If it is a private item of a heavy agent A, then we add an edge from a copy of A in
Hj to a copy of i in Ij . If it is a private item of light agent A, then we add an edge from a copy of
A in Lj−1 to a copy of i in Ij . If i is a non-private item admissible for heavy agent A, then we add
an edge from a copy of i in Ij to a copy of A in Hj . If i is a light item for a light agent A then we
add an edge from a copy of i in Ij to a copy of A in Lj . This completes the description of Gh′ . We
will denote by Hh′

j , I
h′
j the copies of the heavy agents and items at level j of Gh′ , and we will omit

the superscript h′ when clear from context. Our final graph consists of the union of graph Gh′ , for
1 ≤ h′ ≤ h. Finally, we add an additional sub-graph Ĝ to Nh(I, π), that will be used to route flow
directly to the terminals.

Graph Ĝ consists of a set Ĥ of vertices, containing a vertex for every heavy agent and a set Î
containing a vertex for every item i ∈ I\S. Note that every item in Î is a private item of some agent.
If i ∈ Î is a private item of a heavy agent A then we add an edge from a copy of A in Ĥ to a copy of
i in Î. If it is a private item of a light agent A, then for all h′ : 1 ≤ h′ ≤ h, we add an edge from the
copy of A in Lh

′
h′ to the copy of i in Î (so there are only edges from the last layer of each Gh′ to the

items in Î). If i is an admissible but non-private item for some heavy agent A then we add an edge
from the copy of i in Î to the copy of A in Ĥ.

This completes the description of the graph Nh(I, π). Notice that for each item i ∈ I and each agent
A ∈ A of I, there are at most h2 copies in Nh(I, π). Also notice that there is a single copy of the
terminals. We will be looking for an integral flow in this new graph, satisfying conditions (Ĉ1)–(Ĉ3).
Notice that given an optimal h-layered solution to the original instance, it is easy to convert it into
a feasible integral flow in the new instance.

3.4.2 The Linear Programming Relaxation

We start with a high-level overview and intuition. The LP is a natural generalization of the 1-level
LP from the previous section, but the size of the LP now grows to nO(1/ε). Consider some sub-graph
Gh′ , for 1 ≤ h′ ≤ h. For each light agent A in the last layer Lh

′
h′ of Gh′ , we have a variable xA

showing to what extent A is satisfied by light items (and equivalently, how much flow it sends to the
terminals). Let L =

⋃
h′ L

h′
h′ denote the set of all light agents in the last layers of the graphs Gh′ . We

write standard flow constraints on the part of the graph induced by (L∪ Ĥ∪ Î), requiring that each
terminal receives one flow unit, and each agent A ∈ L sends xA flow units. We also have capacity
constraints requiring that at most one flow unit traverses any vertex.

It is instructive to first try to generalize the LP-rounding algorithm from the previous section to the
multi-layered setting. We can again perform the BS decomposition on the LP-solution in graph Ĝ,
to obtain the tree decomposition, and then randomly choose one vertex in each such tree that will
be satisfied by light items. Therefore, for each graph Gh′ , we obtain a subset L′h′ ⊆ Lh

′
h′ of light

agents, that need to be satisfied by light items. From this point onwards we focus on each subgraph
Gh′ separately. We perform an iterative randomized rounding procedure to create a feasible integral
solution that originates at the source s and satisfies these agents. In the jth iteration we will select
light agents from layer (h′− j), which need to be satisfied by light items. Given these agents we will
choose the light agents in the successive layer, again via randomized rounding. So after j iterations,
we will have an integral flow in levels h′ − j, . . . , h′ and fractional flow in the remaining levels.

In the first iteration, for each selected agent A ∈ L′h′ , we scale all its incoming flow from the source
s by a factor of 1/xA. In order to ensure that congestion does not grow, our LP needs to ensure
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that for every item i in Gh′ (no matter what level it is in), the amount of flow traversing item i that
eventually reaches the agent A is at most xA. Once A is chosen, we need to choose NA light agents
in Lh′−1 that will send their flow to A. This again is done by randomized rounding. For each A′ that
we choose, we will scale all the relevant flow by 1/xA′ , and we again need to ensure that no vertex
in the graph sends more than xA′ flow to A′. The need to ensure this type of capacity constraints
over all levels makes the LP somewhat complex. In particular, for the flow-paths contained in level
j, we need to keep track of the h′ − j light agents that this flow-path reaches in sets Lh′−j , . . . ,Lh′ .
In fact for each such j-tuple of light agents, we need to introduce an LP-variable, which leads to the
large size of the LP.

The LP consists of three parts. The first and the easiest part deals with routing the flow directly to
the terminals. After this part, we can focus on each subgraph Gh′ separately. In the second part, we
will coordinate the flow that light agents at one level of Gh′ send to light agents in the next level,
ignoring the actual routing of the flow inside each level. In the third part we will perform the routing
inside each level, imposing the capacity constraints on the vertices.

Part 1: Flow arriving directly to terminals Let L be the set of light agents appearing in the
last layer of each graph Gh′ (so L =

⋃
h′ L

h′
h′). For each light agent A ∈ L we have a variable xA

signifying whether or not A is satisfied by light items, or equivalently whether or not it sends flow
directly to terminals. For each terminal t ∈ T , for each light agent A ∈ L, let P(A, t) be the set of
all paths connecting A to t in Nh(I, π) (notice that each such path only uses items in Î and heavy
agents in Ĥ and there are no additional light agents on the path). We have the following constraints:

∀t ∈ T
∑

A∈L
∑

p∈P(A,t) f(p) = 1 (Each terminal receives one flow unit) (10)

∀A ∈ L
∑

t∈T
∑

p∈P(A,t) f(p) = xA (Light agent A sends xA flow units) (11)

∀i ∈ Î
∑

p:i∈p f(p) ≤ 1 (Capacity constraints) (12)

Notice that each heavy agent A ∈ Ĥ\T has only one outgoing edge connecting it to its private item,
and so it is enough to enforce the capacity constraints on the items.

This is the only part that is common to the whole graph. From now on we fix a subgraph Gh′ and
describe the constraints relevant to it. For simplicity we will omit the superscript h′.

Part 2: Routing among the light agents inside Gh′ This part will specify the amount of flow
to be routed between different light agents, while we ignore the routing itself, which will be taken
care of in the next part. For clarity of exposition, we will think of the source s as lying in layer 0,
L0 = {s}.

For each j : 0 ≤ j ≤ h′, we define a set Sj = Lh′ × Lh′−1 × · · · × Lj . For each tuple λ =
(`h′ , `h′−1, . . . , `j) ∈ Sj of light agents, where `k ∈ Lk for j ≤ k ≤ h′, we have a variable y(λ). The
meaning of this variable in the integral solution is whether or not `j sends flow to `h′ via a path
whose only light agents are `h′ , `h′−1, . . . , `j . Notice that Sh′ = Lh′ , and so we have the constraint:

∀A ∈ Lh′ y(A) = xA (Total in-flow of xA for each light agent A ∈ Lh′) (13)
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Consider now some tuple λ = (`h′ , `h′−1, . . . , `j) ∈ Sj . If y(λ) = 1, and flow is being sent from `j to
`h′ via paths corresponding to the tuple λ, then `j has to receive N`j flow units from layer (j − 1).
For λ ∈ Sj and A ∈ Lj−1, let λ ◦ A ∈ Sj−1 be the tuple obtained by concatenating A at the end of
λ. So we have the constraint:

∀1 ≤ j ≤ h′,∀λ = (`h′ , `h′−1, . . . , `j) ∈ Sj
∑

A∈Lj−1

y(λ ◦A) = N`j · y(λ) (14)

Additionally, for j ≥ 2, each A ∈ Lj−1 is only allowed to send at most y(λ) flow units via the tuple
λ (this is similar to the capacity constraint (5) from the previous LP):

∀2 ≤ j ≤ h′,∀A ∈ Lj−1

∀λ = (`h′ , `h′−1, . . . , `j) ∈ Sj
, y(λ ◦A) ≤ y(λ) (λ-flow capacity constraints for one level)

(15)

Finally, we need to add the more complex capacity constraints that will ensure that the iterative
randomized rounding procedure will go through without incurring large congestion. Consider some
tuple λ(`h′ , `h′−1, . . . , `j) ∈ Sj , and let A ∈ Lk be any light agent in some layer k, where k < j. Then
the total amount of flow that A can send via all tuples whose prefix is λ is at most y(λ). Given
λ ∈ Sj and A ∈ Lk with k < j, let Z(λ,A) ⊆ Sk be the set of all tuples whose prefix is λ and whose
last agent is A. Then we have the following capacity constraints:

∀1 ≤ k < j ≤ h′
∀A ∈ Lk,∀λ ∈ Sj

,
∑

λ′∈Z(λ,A) y(λ′) ≤ y(λ) (λ-flow capacity constraints for multiple levels)

(16)

Actually the set (16) of constraints contains the constraints in (15) as a special case, and we only
added (15) for motivating these more general constraints. Finally to complete this part we require
that each light agent sends at most one flow unit in total:

∀1 ≤ j ≤ h,∀A ∈ Lj
∑
λ∈Sj :
A∈λ

y(λ) ≤ 1 (General capacity constraints for light agents) (17)

Part 3: Routing the flow We focus on level j of graph Gh′ . Consider some tuple λ =
(`h′ , . . . , `j , `j−1) ∈ Sj−1. We will have flow fλ of type λ, and we need to send y(λ) flow units
of this type from `j−1 to `j . For any pair `j−1 ∈ Lj−1, `j ∈ Lj of agents, let P(`j−1, `j) be the set of
all paths connecting them (note that these paths are completely contained inside level j). Then:

∀1 ≤ j ≤ h′, ∀λ = (`h′ , . . . , `j , `j−1) ∈ Sj−1,
∑

p∈P(`j−1,`j)

fλ(p) = y(λ) (routing flow of each type)

(18)

We need to add the simple capacity constraints that the flow via any item is at most 1:
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∀1 ≤ j ≤ h′,∀i ∈ Ij
∑
p:i∈p

∑
λ∈Sj−1

fλ(p) ≤ 1 (General capacity constraints) (19)

Note that since each non-terminal heavy agent has exactly one out-going edge (that connects it to
its private item), the constraint above also implicitly bounds the flow through a non-terminal heavy
agent to be 1.

And finally, we need to add capacity constraints, which are very similar to (16). For a tuple
λ = (`h′ , . . . , `j) ∈ Sj , for each j ≤ q ≤ h′, we denote λq = `q. Consider some tuple λ =
(`h′ , `h′−1, . . . , `j) ∈ Sj , and let i be any item in any layer Ik, where k ≤ j. Then the total flow
that i can send via all tuples whose prefix is λ is at most y(λ). Given λ ∈ Sj and layer Lk with
k ≤ j, let Z ′(λ, k) ⊆ Sk be the set of all tuples whose prefix is λ. Then we have the following capacity
constraints:

∀1 ≤ k ≤ j ≤ h′
∀λ ∈ Sj , ∀i ∈ Ik

,
∑

λ′∈Z′(λ,k−1)

∑
p∈P(λ′

k−1
,λ′
k
):

i∈p
fλ′(p) ≤ y(λ) (multi-leveled capacity constraints)

(20)

Solving the LP: The total number of different flow types in the LP is O(|S1|) = O(mh) = nO(1/ε).
As written, the LP has exponential number of variables representing the flow-paths. For computing
a solution, we can replace it with the standard compact formulation for multi-commodity flows that
specifies flow-conservation constraints. We can then use the standard decomposition into flow-paths
to obtain a feasible solution for our LP. Therefore the overall complexity of computing the LP solution
is nO(1/ε).

3.4.3 The Rounding Algorithm

The algorithm has three parts. The first part uses the BS decomposition to take care of the direct
routing to the terminals. The output of the first part is the set P1 of vertex-disjoint elementary paths
connecting light agents to terminals in the original graph N(I, π). The second part is randomized
rounding in each sub-graph. The third part is the “clean-up” phase where we get rid of almost all
the congestion and create the set P2 of paths in N(I, π) that are used to satisfy the light agents.

Part 1: Routing to the Terminals We consider the sub-graph of Nh(I, π) induced by the set
Y = Ĥ ∪ L of agents (where L contains the light agents in the last layer of every subgraph Gh′ ,
L =

⋃
h′≤h Lh

′
h′) and the set Î of items. Recall that the items in Î are heavy items for all agents in

Y. For each agent A ∈ L we have the value xA defined by our LP-solution, while for each agent
A ∈ Ĥ we set xA = 0. Exactly like in the first part of the rounding algorithm for Section 3.3, we
can produce values yA,i for each A ∈ Y, i ∈ Î satisfying the constraints (1)–(3). We then again

apply Theorem 4 to obtain a decomposition of the bipartite graph G(Y, Î) into trees T1, . . . , Ts. Let
Tj , for 1 ≤ j ≤ s be any tree in the decomposition containing more than one edge. Recall that the
summation of values xA for agents A in tree Tj is at least 1

2 and thus it contains at least one light
agent. We select one of the agents A of Tj with probability xA/X, where X is the summation of
values xA′ for all agents A′ in Tj . Notice that this probability is at most 2xA, since X ≥ 1

2 . Once
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A is selected, we can assign the items of tree Tj to the remaining agents. Let L′ ⊆ L be the set

of light agents we have thus selected. We therefore obtain an assignment of items in Î to agents in
Y \ L′, where each agent is assigned one item. This assignment of items defines an integral flow
in the sub-graph of Nh(I, π) induced by Y ∪ Î, as follows. Every light agent in L′ sends one flow
unit to its private item. If agent A ∈ Y \ L′ is assigned item i 6= π(A), then i sends one flow unit
to A and if A 6∈ T, it sends one flow unit to π(A). This flow is a collection of disjoint elementary
paths connecting items in L′ to the terminals. Let P1 denote the corresponding collection of paths
in N(I, π), (where we replace copies of agents and items back by the corresponding agents and items
themselves). The set P1 of paths is completely vertex disjoint: it is clear that paths in P1 cannot
share heavy agents or items. It is also impossible that a light agent A has more than one path in
P1 starting at A: even though many copies of A, appearing in the last layers Lh

′
h′ for each graph Gh′

connect to Î, all these copies only connect to a single copy of h(A) in Î and so all paths starting at
copies of A have to go through this vertex.

The set P1 of paths will not change for the rest of the algorithm and will be part of the output. We
now focus on finding the set P2 of paths that supply flow to the light agents in L′.

Part 2: Randomized Rounding We focus on one subgraph Gh′ , where we have a subset L′h′ ⊆
Lh
′
h′ of light agents that have been selected in Part 1.

Our randomized rounding procedure has h′ iterations. Intuitively, iteration j produces an LP-solution
that is “integral” for levels (h′− j+1, . . . h′), and is fractional for the remaining levels. Formally, the
input to iteration (h′ − j′), for 0 ≤ j′ ≤ h′ − 1, is an LP-solution that has the following properties:

P1. For each j : j′ ≤ j ≤ h′, for each λ ∈ Sj , we have an integral value y(λ) ∈ {0, 1}, and for each
flow-path p, the value fλ(p) ∈ {0, 1} is also integral. The remaining variables (representing
flow inside levels 1, . . . , j′) may be fractional.

P2. For each agent A ∈ L′h′ , xA = 1 and y(A) = 1. For all other agents A ∈ Lh′\L′h′ , xA = y(A) = 0.

P3. Constraints (14)–(16) and constraint (20) hold for all j ≤ j′, while constraint (18) holds for all
j : 1 ≤ j ≤ h′.

P4. For for λ ∈ Sj , where j′ < j ≤ h′, constraint (14) is satisfied approximately, that is, we replace
it with the following constraint (notice that y(λ), y(λ ◦A) ∈ {0, 1}):

∀j′ < j ≤ h′, ∀λ = (`h′ , `h′−1, . . . , `j) ∈ Sj
∑

A∈Lj−1

y(λ ◦A) ≥ N`j · y(λ)/2 (21)

P5. Constraints (17) and (19) (general capacity constraints for light agents and items) are satisfied
approximately, with congestion at most (16h2 · log n)(1 + 1

h)h
′−j′ for each item and each light

agent, respectively. That is, we replace constraints (17) and (19) with the following constraints:
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∀1 ≤ j ≤ h,∀A ∈ Lj∑
λ∈Sj :
A∈λ

y(λ) ≤ (16h2 · log n)(1 +
1

h
)h
′−j′ (General capacity constraints for light agents)

(22)

∀1 ≤ j ≤ h′,∀i ∈ Ij
∑
p:i∈p

∑
λ∈Sj−1

fλ(p) ≤ (16h2·log n)(1+
1

h
)h
′−j′ (General capacity constraints)

(23)

The input to the first iteration is produced as follows. Recall that Sh′ = Lh′ , and so for each A ∈ Lh′ ,
y(A) = xA. For each j : 1 ≤ j ≤ h′, for each λ = (`h′ , . . . , `j) ∈ Sj , we proceed as follows. If A = `h′

belongs to L′h′ , then we multiply y(λ) by factor 1/x(A), and for each path p, we multiply the flow
fλ(p) by the same factor. Otherwise, if `h′ 6∈ L′h′ , then we set y(λ) = 0, and for all paths p, fλ(p)
is also set to 0. Finally, for each A ∈ L′h′ , we set xA = 1, and for A ∈ Lh′ \ L′h′ , we set xA = 0.
It is easy to see that we now have properties P1 and P2. Moreover, all constraints (14)–(16) and
constraints (18), (20) hold for all j, since we multiply both sides of each such constraint by the same
value, so we have properties P3 and P4. We will prove below that P5 holds as well.

We now consider iteration (h′ − j′), and assume that properties P1–P5 hold for the input to this
iteration. Let S ′j′ ⊆ Sj′ be the subset of tuples λ with y(λ) = 1, and let λ = (`h′ , . . . , `j′) be some
such tuple. Denote A = `j′ , and let ZA ⊆ Sj′−1 be the set of all tuples λ ◦ A′ for A′ ∈ Lj′−1. Then
due to Constraint (14),

∑
λ′∈ZA y(λ′) = NA. We randomly select each tuple λ′ ∈ ZA with probability

y(λ′).

If λ′ is selected, then we proceed as follows:

• Set y(λ′) = 1.

• Randomly sample a flow-path p with probability fλ′(p)/yλ′ . Set fλ′(p) = 1 if p is selected, and
set it to be 0 if p is not selected.

Observe that now for each λ′ ∈ Sj′−1, y(λ′) ∈ {0, 1}, and fλ′(p) ∈ {0, 1} for all p.

• For all j < j′− 1, for all tuples λ′′ ∈ Sj , such that λ′ is a prefix of λ′′, multiply the value y(λ′′)
by factor 1/y(λ′), and for each path p′, multiply the value fλ′′(p) by the same factor.

If λ′ is not selected, then for all j < j′, for all tuples λ′′ ∈ Sj , such that λ′ is a prefix of λ′′, we set
y(λ′′) = 0 and fλ′′(p

′) = 0 for all paths p′.

This completes the description of an iteration. We show that w.h.p. properties P1–P5 remain true
after the current iteration.

First observe that for all λ′ ∈ Sj′−1, the values y(λ′) become integral, and the same is true for fλ′(p)
for all paths p, thus giving us property P1. It is easy to see that property (P2) remains true, since
we did not change values xA, y(A) for A ∈ Lh′ in this iteration.
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We now consider the LP constraints one-by-one. First, fix some j ≤ j′ − 1, and consider constraints
(14)–(16) and constraint (20). For each such constraint, we have scaled both its sides by the same
value, so these constraints continue to hold. Consider now constraint (18). For j < j′, we have again
scaled both sides of such constraints by the same factor, and so they continue to hold. For j > j′,
the constraints continue to hold because they held at the beginning of the current iteration. Finally,
for j = j′, for each λ′ ∈ Sj′−1, if y(λ′) = 1, then we have selected exactly one of the corresponding
paths p and set fλ′(p) = 1, while setting fλ′(p

′) = 0 for all p 6= p′. If y(λ′) = 0, then we have set
yλ′(p) = 0 for all p. Therefore, constraint (18) holds for all j : 1 ≤ j ≤ h′. This establishes property
P3. Finally, in the next two lemmas we establish the remaining properties.

Lemma 4 If properties P1–P5 hold at the beginning of iteration (h′− j′), then property P4 holds at
the beginning of iteration (h′ − j′ + 1) w.h.p.

Proof: Recall that constraint (14) holds for j = j′ − 1. Let λ = (`h′ , . . . , `j′) ∈ S ′j′ , and denote
A = `j′ . As before, let ZA ⊆ Sj′−1 be the set of all tuples λ ◦ A′ for A′ ∈ Lj′−1. Then due to
constraint (14),

∑
λ′∈ZA y(λ′) = NA. Each such tuple λ′ = λ ◦ A is selected with probability y(λ′).

So the expected number of tuples in ZA that are selected is exactly NA. It is enough to prove that at
least NA/2 tuples are selected w.h.p. This easily follows from Chernoff bound: If Yλ′ is the indicator
for λ′ being selected, Pr[

∑
Yλ′ < NA/2] ≤ e−NA/16 ≤ O(1/n8) since NA ≥ nε/h ≥ Ω(log8 n).

Lemma 5 Property P5 holds at the beginning of the first iteration. Moreover, for each 0 ≤ j′ < h′, if
properties P1–P5 hold at the beginning of iteration (h′− j′), then property P5 holds at the beginning
of iteration (h′ − j′ + 1) w.h.p.

Proof: We start with the input to the first iteration. Let i be any item in any level i ∈ Ik.
Consider any tuple λ ∈ Sh′ (so λ ∈ Lh′)). As before, let Z ′(λ, k − 1) ⊆ Sk−1 be the set of all
tuples whose prefix is λ. Let Fλ(i) denote the total flow of types λ′ ∈ Z ′(λ, k− 1) that goes through
i, i.e., Fλ(i) =

∑
λ′∈Z′(λ,k−1)

∑
p∈P(λ′

k−1
,λ′
k
):

i∈p
fλ′(p). Constraint (20) ensures that for each λ ∈ Sh′ ,

Fλ(i) ≤ y(λ). The total flow through item i is
∑

λ∈Sh′
Fλ(i) ≤ 1 due to constraint (19). Recall that

our algorithm in Part 1 selected each agent A ∈ Lh′ with probability at most 2xA = 2y(A). If A
is selected, then the flow fλ′(p) for all λ′ ∈ Z ′(λ, k − 1) were λ = A is multiplied by factor 1/y(A).
Therefore, the expected amount of flow through item i in the input to the first iteration is bounded
by
∑

λ∈Sh′−1
2Fλ(i) ≤ 2. Using the standard Chernoff bound, it is easy to see that w.h.p. the total

flow through item i is at most O(log n).

We now consider iteration (h′ − j′), and we assume that properties P1–P5 hold for the input to
this iteration. Fix some item i ∈ Ik for some k ≤ j′ − 1 and consider some λ ∈ Sj′−1. As before,
let Z ′(λ, k − 1) ⊆ Sk−1 be the set of all tuples whose prefix is λ. Again, let Fλ(i) denote the total
flow of types λ′ ∈ Z ′(λ, k − 1) that goes through i, i.e., Fλ(i) =

∑
λ′∈Z′(λ,k−1)

∑
p∈P(λ′

k−1
,λ′
k
):

i∈p
fλ′(p).

Constraint (20) ensures that for each λ ∈ Sj′−1, Fλ(i) ≤ y(λ). The total flow through item i is∑
λ∈Sj′−1

Fλ(i) ≤ (16h2 · log n)(1 + 1
h)j
′

due to property P5.

Recall that our selected each tuple λ ∈ Sj′−1 with probability at most y(λ), and if λ is selected, then
the flow fλ′(p) for all λ′ ∈ Z ′(λ, k−1) is multiplied by factor 1/y(λ). Therefore, the expected amount
of flow through item i after iteration (h′− j′) is bounded by

∑
λ∈Sj′−1

Fλ(i) ≤ (16h2 · log n)(1 + 1
h)j
′
.
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For each λ ∈ Sj′−1, let C(λ) be the random variable whose value is Fλ(i)/y(λ) if λ is selected, and

it is 0 otherwise. Then E
[∑

λ∈Sj′−1
C(λ)

]
≤ (16h2 · log n)(1 + 1

h)h
′−j′ , and we need to show that

w.h.p. this summation is at most (16h2 · log n)(1 + 1
h)h

′−j′+1. Denote µ = (16h2 · log n)(1 + 1
h)h

′−j′ .
We again apply the standard Chernoff bound:

Pr

 ∑
λ∈Sj′−1

C(λ) ≥ µ(1 + 1/h)

 ≤ e−µ/2h2 ≤ 1/ poly(n)

since µ ≥ Ω(h2 log n).

So far we have bounded congestion on items. The proof for bounding congestion on light agents is
identical, except that now we use constraints (16) and (17).

At the end of the above procedure, we obtain a set P ′ of elementary paths. Constraint (21) ensures
that if A ∈ Lh

′
h′ or A has a elementary path leaving it in P ′, then with high probability it has at least

NA/2 paths entering it in P ′. From constraint (22), the total number of paths leaving a light agent
is bounded by O(h2 · log n), and from constraint (23), the total number of paths to which an item
can belong is bounded by O(h2 log n) with high probability. Since each heavy agent has at most one
out-going edge, that connects it to an item, the number of paths in P ′ containing a specific heavy
agent is also at most (h2 log n) w.h.p.

Getting an Almost-Feasible Solution In the last step of the algorithm, we produce a set P2 of
elementary paths, such that properties (D1)–(D4) hold for P1, P2. Let L∗ ⊆ L be the set of light
agents in the original instance from which paths in P1 originate.

Consider the flow-paths in P ′, and let P ′′ be the corresponding paths in the original graph N(I, π)
(where we replace copies of agents and items by their original counterparts). These flow-paths have
the following properties: (i) every vertex that does not correspond to a terminal may appear in at
most α′ = O(h4 log n) flow-paths in P ′′ (the additional factor of h2 is due to the at most h2 copies
of every vertex in Nh(I, π)), and (ii) for any light agent A, there are at most α′ paths in P ′′ starting
at A, and if there is a path in P ′′ ∪ P1 originating at A, then there must be at least NA/2 paths
terminating at A.

We now show how to convert the set P ′′ of paths into set P2, such that properties D1–D4 hold for
P1, P2. The next lemma will complete the proof of Theorem 3.

Lemma 6 Given the sets P1,P ′′, we can find in polynomial time a set P2 of paths, such that prop-
erties D1–D4 hold for P1, P2.

Proof: Let S be the set of agents from which paths in P ′′ originate, and let R be the set of agents
in which paths in P ′′ terminate. The agents in S are called senders, and agents in R are called
receivers.

We now build the following flow network. The set of vertices consists of vertices representing agents
in S and R (so if an agent serves both as sender and receiver, it will appear in both S and R, and
there will be two vertices representing it). Additionally, there is a vertex for each non-terminal heavy
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agent and for each item, and there is a source s and a sink t. Source s connects to every item in S and
to every sender with capacity-1 edges. Every receiver connects to t with bNA/2α

′c parallel edges of
capacity 1 each. There is an edge from every sender to its private item, and from every heavy agent
to its private item. There is an edge from item i to heavy agent A iff i ∈ ΓH(A) \ {π(A)}. There is
an edge from item i to receiver A iff i is a light item for A. The goal is to route

∑
A∈RbNA/2α

′c
flow units from s to t.

Observe that the flow-paths in P ′′ induce flow of value at least
∑

A∈RNA/2, and violate the edge
capacities by at most factor α′ (since there are at most α′ paths containing a vertex as a start or an
intermediate node). Therefore, if we scale this flow down by the factor of α′, we will obtain a feasible
flow of the desired value. From the integrality of flow, we can obtain integral flow of the same value.
It is easy to see that this flow will define the desired set P2 of paths.

4 An Õ (nε)-Approximation Algorithm

We are now ready to prove Theorem 1. We start with some notation. Let Q be a collection of
elementary paths, such that all paths in Q terminate at light agents. We say that Q α′-satisfies a
subset L′ ⊆ L of light agents iff

• the paths in Q do not share intermediate vertices,

• each light agent A ∈ L′ has at least NA/α
′ paths in Q that terminate at A and no path in Q

originates from A, and

• each light agent A ∈ L \ L′ has at most one path in Q originating from it, and if such a path
exists, then there are at least NA/α

′ paths in Q that terminate at A.

The algorithm consists of h iterations (recall that h = 9/ε). The input to iteration j is a subset Lj ⊆ L
of light agents, a set Tj ⊆ H of terminals and an assignment of private items πj : A \ (Lj ∪Tj)→ I.
We maintain the property that everu light agent A /∈ Lj is assigned its heavy item, that is, πj(A) =
h(A). Additionally, we have a collection Qj of elementary paths in the resulting flow network
N(I, πj), that αj-satisfy agents in Lj , for αj = 2jα (here α is the parameter from Theorem 3).
The output of iteration j is a valid input to iteration (j + 1), that is, sets Lj+1,Tj+1, an assignment
πj+1 : A\(Lj+1∪Tj+1)→ I of private items, and a collection Qj+1 of elementary paths in N(I, πj+1)
that αj+1-satisfy Lj+1. The size of the set Tj of terminas decreases in each iteration and after h
iterations Tj becomes empty, with πh+1 assigning a private item to each agent in A \Lh+1. The set
Qh+1 of paths in network N(I, πh+1) then gives an αh+1 = 2(h+ 1)α-approximate solution.

Initialization and Invariants: In the input to the first iteration, L1 = ∅, Q1 = ∅. Each light agent
A ∈ L is assigned its heavy item as a private item, π1(A) = h(A), and the assignment of private
items to heavy agents is performed by computing a maximum matching between the set of heavy
agents and the remaining items. Recall that H∗ is the set of heavy agents and I∗ is the set of items
directly reachable from the source s in network N(I, π1), while S is the set of items that do not serve
as private items in π1. Clearly, each agent in H∗ is assigned an item in I∗ and there are no direct
paths from s to any terminal in T1. Throughout the algorithm, the assignments πj(A) of private
items to agents A ∈ H∗ do not change, and the set S of un-assigned items remains unchanged. This
ensures that for all j, there are no direct paths from s to any terminal t ∈ Tj in N(I, πj).
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Iteration j: Iteration j, for 1 ≤ j ≤ h is performed as follows. We construct a canonical instance
Ij that is identical to I except that we remove the light agents in Lj from this instance. Let
Nj = N(Ij , πj) be the corresponding flow network. We will ensure that πj is a good assignment for
this instance. Note that we do not remove any items from the instance. Therefore, if instance I is
1-satisfiable, so is Ij . Combined with the fact that there are no direct paths from s to terminals
in Tj , we can apply Theorem 3 to obtain two sets P1, P2 of elementary paths in Nj , satisfying
properties D1–D4.

Let L′ be the subset of light agents A for which there is a path in either P1 or P2 originating from
A. Recall that for any such agent A, there are at least NA/α paths in P2 terminating at A. Let L′′

be the set of light agents A such that either A ∈ Lj , or there is a path in Qj originating from A.
Recall that there are at least NA/αj paths terminating at A in Qj . The remainder of the algorithm
consists of three steps. In Step 1, we use paths in P2 ∪ Qj to produce a new set Q∗ of paths, such
that every agent in L′∪L′′ has at least bNA/(αj +α)c paths in Q∗ terminating at it, and at most one
path leaving it. Moreover, the only light agents from which such paths originate lie in (L′ ∪L′′) \Lj .
In Step 2 we re-route paths in P1, so that each new path intersects at most one path in Q∗. Let P ′
be the resulting set. Next we obtain Q′ ⊆ Q∗ by removing from Q∗ all paths intersecting paths in
P ′. In Step 3 we use sets P ′ and Q′ to produce input to iteration (j + 1).

Step 1: Combining Qj and P2. This step is summarized in the next lemma.

Lemma 7 We can find, in polynomial time, a set of internally-disjoint elementary paths Q∗ in
N(I, πj) such that each agent A ∈ L′ ∪ L′′ has at least bNA/(αj + α)c paths terminating at A.
Moreover, only light agents in (L′ ∪ L′′) \ Lj have paths in Q∗ originating from them, with at most
one path originating from any agent.

Proof: This is done similarly to Lemma 6 – we form a network where light agents in L′ ∪ L′′ serve
as receivers and light agents in (L′∪L′′)\Lj are the senders. Note that we have two copies of agents
in L′ ∪ L′′ \ Lj . Additionally, there is a vertex for every non-terminal heavy agent and item, and a
source s and sink t. Each receiver A is connected to a sink t with bNA/(αj + α)c parallel edges of
capacity 1. The source s connects to all senders and items in S with edges of capacity 1. There is
an edge from each sender to its private item (note that the agents in Lj are not senders) and from
every heavy agent to its private item. There is an edge from item i to heavy agent A iff i ∈ ΓH(A),
and there is an edge from item i to a receiver A iff i is a light item for A. Note that all the paths in
P2 and Qj are also paths in this network.

Consider the flows defined by paths in P2 and Qj . We send α/(αj + α) flow units from s to t
along each path in P2 and αj/(αj + α) flow units along each path in Qj . The resulting flow causes
congestion of at most 1 on the edges, and each receiver A gets at least bNA/(αj + α)c flow units.
From the integrality of flow, there is a collection Q∗ of desired paths.

Step 2: Re-Routing paths in P1. We say that elementary paths p, q intersect iff they either
share intermediate vertices, or they start from the same vertex. Notice that each path in P1 may
intersect many paths in Q∗. In our next step, we re-route paths in P1 to get a set P ′ of paths, so
that, roughly speaking, each new path intersects at most one path in Q∗.

Lemma 8 We can find, in polynomial time, a set P ′ of disjoint paths, and a partition Q∗ = Q′∪Q′′,
such that each path in P ′ starts at a distinct light agent in L′ and ends at a distinct terminal in Tj,
and each terminal in Tj has one path terminating at it. Moreover, |Q′′| ≤ |P ′|, and paths in P ′ do
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not intersect paths in Q′.

Proof: We start with a path re-routing lemma. For a directed path p starting at some vertex v, we
say that path p′ is a prefix of p iff p′ is a sub-path of p containing v.

Lemma 9 Let P,Q be two collections of directed paths, such that all paths in P are completely vertex
disjoint and so are all paths in Q. We can find, in polynomial time, for each path p ∈ P ∪ Q, a
prefix γ(p), such that if C is a connected component in the graph Gγ defined by the union of prefixes
{γ(p) | p ∈ P ∪Q}, then

• either C only contains vertices belonging to a single prefix γ(p) and γ(p) = p, or

• C contains vertices of exactly two prefixes γ(p) and γ(q), where p ∈ P, q ∈ Q, and the two
prefixes have exactly one vertex in common, which is the last vertex of both γ(p) and γ(q).

We provide the proof of Lemma 9 below, and first complete the proof of Lemma 8. Recall that the
paths in P1 are completely vertex-disjoint. Paths in Q∗ may share endpoints, but for each agent A
there is at most one path in Q∗ that originates from A. In order to apply Lemma 9 however we
need to ensure that paths in Q∗ are completely vertex-disjoint. For each path q ∈ Q∗, if A is the
last vertex on q, we introduce a new dummy vertex v(q, A) that replaces A on path q. Let Q∗∗ be
the resulting set of paths. We also transform set P1 as follows. Given a directed path p, we denote
by p the path obtained by reversing the direction of all edges of p. We define P1 = {p | p ∈ P1}. In
the new set P1, the paths originate from the terminals and terminate at light agents. We now apply
Lemma 9 to P1 and Q∗∗ and obtain prefix γ(p) for each p ∈ P1 ∪Q∗∗.

We start with Q′′ = ∅. For each p ∈ P1, we construct a new path p′ in P ′ as follows. Consider the
connected component C in the graph Gγ induced by the prefixes, to which γ(p) belongs. If C only
contains vertices of γ(p), then p = γ(p) and we set p′ = p. Otherwise, C contains vertices of p and of
another path q ∈ Q∗∗. Consider the vertex v that is common to γ(p) and γ(q). If v is a light agent,
then since p and q are elementary paths, v must be the last vertex in p implying γ(p) = p. We set
p′ = p. Otherwise, we set p′ to be the concatenation of γ(q) and γ(p). In either case we add q to Q′′.

Now observe that the first vertex of q has to be some light agent: otherwise, it is the source s, and
then the path γ(q) followed by γ(p) is an elementary path from s to a terminal, which is impossible.
Therefore, in both cases above, the new path p′ has one end point a terminal and the other is a light
agent. Moreover, this light agent is the first agent on path q, and since each path in Q∗ starts from
a distinct light agent, and the connected components C are vertex-disjoint, each re-routed path p′

starts from a distinct light agent. Let P ′ be the set of the re-routed paths from P1. Each path in P ′
is responsible for adding at most one path to Q′′, therefore |Q′′| ≤ |P ′|.

Define Q′ := Q∗ \ Q′′. Note that for every q ∈ Q′, we have γ(q) = q. This is because all paths q, for
which γ(q) intersects some γ(p) have been added to Q′′. Thus, all paths in P ′ ∪Q′ are disjoint.

Proof: (of Lemma 9) We prove the lemma via the stable matching theorem. We use arguments
very similar to those used by Conforti, Hassin and Ravi [9] for re-routing flow paths.

Given the sets P and Q of paths, construct a bipartite multigraph G(P,Q, E). If paths p ∈ P and
q ∈ Q share k vertices, then we add k parallel edges between p and q. Each such edge is labeled with
the corresponding vertex common to p and q.
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Given a vertex p ∈ P, its preference order over the edges incident on it is as follows. If two edges
(possibly parallel) with labels u and v are incident on p, then p prefers edge with label u to edge
with label v iff u appears before v on p (notice that there can be several edges with identical labels
incident on p; the preference order for such edges is arbitrary). The preference order of edges incident
to a vertex q ∈ Q is determined similarly.

Consider any matching M in graph G(P,Q, E). An edge (p, q) with label v is called rogue iff:

• p does not participate in M , or an edge incident on p with some label u belongs to M , while p
prefers v to u, and

• q does not participate in M , or an edge incident on q with some label u′ belongs to M , while
q prefers v to u′.

Matching M is stable iff there are no rogue edges in G(P,Q, E). A stable matching can be found in
polynomial time (see, e.g. [9]).

Given a stable matching M , we construct the prefixes of the paths in P and Q as follows. If some
path p ∈ P ∪ Q does not participate in M , then we set γ(p) = p. Otherwise, for every pair (p, q) of
paths, such that an edge connecting p and q with label v belongs to M , we set γ(p) to be the prefix
of p ending at v, and γ(q) to be the prefix of q ending at q.

Consider now some pair of paths p ∈ P, q ∈ Q, and assume that γ(p) and γ(q) intersect at some
vertex v. Assume first that p and q are not matched together by M . Then it is easy to see that the
edge connecting p to q with label v in G(P,Q, E) is a rogue edge. Otherwise, if p is matched to q in
M , then it is easy to see that γ(p) and γ(q) only share one vertex - the last vertex on both prefixes
(otherwise, there is another, rogue edge connecting p to q in G(P,Q, E).

Since |Q′′| ≤ |P ′| = |Tj |, we can find a 1-1 mapping f : Q′′ → Tj . If f(q) = t for q ∈ Q′′ and t ∈ Tj ,
we say that t is responsible for q. Note that we now have a set Q′ ∪ P ′ of paths that almost has the
desired properties. All paths in P ′ connect light agents to terminals and are vertex disjoint; all paths
in Q′ are internally vertex disjoint. Each light agent A has at most one path in Q′ ∪ P ′ leaving it,
and if such a path is present, then Q∗ contains at least bNA/(αj +α)c paths terminating at it, while
all light agents in Lj are (αj + α)-satisfied by Q∗. The problem is that set Q′′ may contain many
paths from Q∗, and so a light agent may have a path in P ′ ∪Q′ leaving it, but not enough paths in
Q′ entering it. We take care of this problem and define the input to the next iteration in the next
step.

Step 3: Producing Input to Iteration (j + 1). We call a light agent A bad iff A ∈ Lj , or there
is a path originating at A in P ′ ∪ Q′, but there are less than NA/(αj + 2α) = NA/αj+1 paths in
Q′ terminating at A. We now perform the following procedure that will define the new set Tj+1 of
terminals. We initialize Tj+1 = ∅. While there exists a bad light agent A:

• Remove all paths entering A from Q′.

• If A 6∈ Lj , then remove from P ′ or Q′ the unique path p leaving A, and say that A is responsible
for this path. If p ∈ P ′ and t ∈ Tj is the terminal lying on p, then we add t to Tj+1 and say
that A is responsible for t.

• If A ∈ Lj , consider the item i = h(A). If there is a heavy agent A′ for which i is a private item,
we add A′ to Tj+1 (where it becomes a terminal). In either case, item i becomes the private
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item for A. We remove A from Lj .
If there is any path p containing i in P ′ ∪ Q′, then we remove p from P ′ or Q′ and say that

A is responsible for p. If p ∈ P ′ and t ∈ Tj is a terminal lying on p, then we add t to Tj+1

and say that A is responsible for t.

It is easy to see that a bad light agent can only be responsible for at most two terminals in Tj+1,
and for the removal of at most one path from P ′ ∪ Q′. Notice that once we take care of a bad light
agent A, this could result in another agent A′ becoming a bad light agent. We repeat this process
until no bad light agents remain. We now show how to produce the input to the next iteration.

Input to Iteration (j + 1): We start with set Lj+1 containing all the remaining agents in Lj .
Consider now the residual sets P ′ ∪Q′ of paths. Let p ∈ P ′, and let A be the first vertex and t ∈ Tj

be the last vertex on p. We then add A to Lj+1 and re-assign private items that lie on path p as
follows. If A′ is the agent lying immediately after item i on path p then i becomes a private item for
A′. The assignment of private items to agents not lying on any path in P ′ remains the same. Let
πj+1 be the resulting assignment of private items after we process all paths in P ′. Note that the only
agents with no private items assigned are agents in the set Lj+1 ∪Tj+1. We set Qj+1 = Q′. Since
no light agent in Lj+1 is bad, set Qj+1 ensures that every agent in Lj+1 is αj+1-satisfied.

Lemma 10 Let S be the set of items that are not assigned to any agent by π1, and let H∗ be the
set of heavy agents reachable by direct paths from s in N(I, π1). Then for each iteration j, the set
of items that are not assigned to any agent by πj is S, and for each A ∈ H∗, πj(A) = π1(A).

Proof: The proof is by induction. Assume that the lemma holds for iterations 1, . . . , j, and consider
iteration (j + 1). Recall that there are no direct paths from s to any terminal in T 1 in N(I1, π1).
Since the set of items not assigned to any agent by πj remains S, and since for every A ∈ H∗,
πj(A) = π1(A), there are no direct paths from s to any terminal in T j in N(Ij , πj).

Recall that we only change πj while constructing πj+1 in the following cases:

• For each path p ∈ P ′, we re-assign the items along the path.

• For bad agents A ∈ Lj , if h(A) = i and πj(A′) = i for some A′, then we set πj+1(A) = i and
A′ becomes a terminal in Tj+1.

Consider first some agent A ∈ H∗ and assume that πj(A) 6= πj+1(A). Then either A lies on some
path in P ′, and then A can reach a terminal t ∈ Tj directly, so there is a direct path from s to
t ∈ Tj in N(Ij , πj), a contradiction. Or πj(A) = i where i = h(A′) for some light agent A′ ∈ Lj .
But we know that π1(A) 6= i since π1 assigns i to A′, and since we assumed that πj(A) = π1(A), this
is impossible.

It is also easy to see that an item i ∈ S cannot be assigned to any agent by πj+1, since we only
re-assign items along the paths in P ′, or items i = h(A) for A ∈ Lj . Clearly, an item on a path in
P ′ cannot belong to S, as such an item has a direct path connecting it to a terminal in T j in graph
N(Ij , πj). Otherwise, if i = h(A) for A ∈ Lj , item i cannot belong to S, since it is assigned to A by
π1 and we assume that S has not changed throughout iterations 1, . . . , j. Finally we need to argue
that no new items are added to S. This is also easy to see since we only perform re-assignment of
items that have already been assigned by πj , and each item that was assigned to some agent in πj

is assigned to some agent by πj+1.
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Therefore, πj+1 is a good assignment of private items for instance Ij , and we have produced a feasible
input to iteration (j + 1). The lemma below bounds the size of Tj+1.

Lemma 11 |Tj+1| ≤
(

32h2α
nε

)
|Tj |.

Proof: Since ε ≥ 9 log log n/ log n, h = 9/ε and α = O(h5 log n), we have that nε ≥ log9 n and
so nε ≥ 16h2α. Recall that each bad light agent is responsible for at most two terminals in Tj+1.
Therefore, it is enough to prove that the number of bad light agents in iteration j is at most(

16h2α
nε

)
|Tj |. We build a graph GB whose vertices are bad light agents and the terminals in Tj .

Consider now some bad light agent A. Originally there were at least
⌊

NA
(αj+α)

⌋
≥ nε

(2j+1)α − 1 paths

entering A in Q∗. Since A is a bad light agent, eventually less than nε/((2j + 2)α) paths remained.
Therefore, at least nε

(2j+1)(2j+2)α −1 ≥ nε

8h2α
paths have been removed from Q∗. If q is a path entering

agent A that was removed, and an agent A′ is responsible for the removal of q, then we add an edge
from A to A′ in graph GB. Notice that if q is a path in Q′′, then there is some agent A′ ∈ Tj that
is responsible for its removal. Otherwise, q is a path that was removed during the processing of bad
light agents, and we had identified a unique bad light agent A′ to be responsible for its removal.

Since any bad light agent or terminal in Tj is responsible for the removal of at most one path, the
in-degree of every vertex is at most 1. Moreover by the discussion above, the out-degree of every
bad light agent is at least β = nε

8h2α
≥ 2. Note that the out-degree of terminals in Tj is 0. Let nB be

the number of bad light agents in GB. Since the sum of in-degrees equal the sum of out-degrees, we
have nB + |Tj | ≥ βnB implying the number of bad light agents nB ≤ |Tj |/(β − 1) ≤ 2|Tj |/β since
β ≥ 2.

Thus, after h iterations, |Th+1| ≤ |T|/(nε/(32h2α))h. Since h ≤ log n/ log logn, nε ≥ log9 n and
α = O(h5 log n), we have that 32h2α = O(h7 log n) = O(log8 n) = O(n8ε/9). Thus, for large enough
n, (nε/(32h2α))h > (nε/9)h = n. Therefore, Th+1 = ∅ and the algorithm terminates in h iterations.

Final Allocation: At the end of iteration (h + 1), we have an assignment πh+1 of private items
to all agents, except for those in Lh+1. Furthermore, we have a set Qh+1 of paths in the network
N(I, πh+1), which αh+1 satisfy agents in Lh+1. Thus, as in the proof of Lemma 2, we can use these
paths to find the final allocation as follows. An agent A that does not lie on any path in Qh+1

is assigned its private item. Otherwise, we assign to agent A all the items i such that (i, A) is an
arc in one of the paths of Qh+1. Since these paths are internally disjoint, this allocation is feasible.
Moreover, each heavy agent is satisfied and each light agent is αh+1-satisfied.

Approximation Factor and Running Time. Let α∗ be the approximation factor that we achieve
for the canonical instance. The final approximation factor is max {O(nε log n), O(α∗ log n)}. The
algorithm in the final section assigns NA/(2hα) items to each light agent A. So overall α∗ =
O(hα) = O(h6 log n)), and we get a max

{
O(nε log n), O(h6 log n)

}
-approximation. When ε is chosen

to be (9 log log n)/ log n, we get an O(log10 n)-approximation algorithm. The algorithm in Theorem 3
runs in nO(1/ε) time, and the algorithm presented in this section performs a poly-logarithmic number
of calls to Theorem 3. Therefore, the overall running time of the algorithm is nO(1/ε).
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5 A Quasi-Polynomial Time O(mε)-Approximation Algorithm

In this section, building on the O(log10 n)-approximation algorithm of the preceding section, we show
that it is possible to obtain an O(mε)-approximation in quasi-polynomial time for any fixed ε > 0.
We start with the following easy lemma.

Lemma 12 There exists an O(1)-approximation algorithm for Max-Min Allocation that runs in
(log n)O(m logn) time.

Proof: As shown in Section 2, we can assume all the utilities uA,i to be between 1 and 2n. By losing
another constant factor in the approximation, we round down all the utilities to the nearest power
of 2. Thus we can assume from now on that there are O(log n) distinct values of utilities.

Fix an optimal solution OPT. For every agent A, we let vj(A) be the number of items assigned to A
in OPT whose utility for A is 2j , for j = 1 . . . s = blog 2nc. Thus there exists an O(1)-approximate
solution that can be described a collection of s-dimensional vectors, one for each agent. For an
agent A, let v(A) := (v1(A), . . . , vs(A)) denote the s-dimensional vector associated with it. By losing
another factor of 2, we can further assume that each vj(A) has been rounded down to the nearest
power of 2. Therefore, for every agent there are at most (log n)s possible vectors v(A), and one of
them corresponds to the optimal solution.

We now show how, given a vector v(A) for every agent A, we can check if there is a feasible assignment
of the items respecting these vectors, so that each agent A is assigned vj(A) items with utility
uA,i = 2j . Construct a bipartite graph G(U, V,E) where U contains s copies of each agent A, say
A(1), . . . , A(s), and the vertex set V corresponds to the set of items. There is an edge from A(j) to
an item i iff uA,i = 2j . The problem of checking whether a given collection of vectors v(A) can be
realized is equivalent to testing if there exists a matching from U to V such that every vertex A(j)
in U has exactly vj(A) edges incident on it, and every vertex in V has at most one edge incident on
it. This can be done in polynomial time.

Thus in time (log n)O(m logn) (over all the choices of vectors for all agents), we can get an O(1)
approximation to Max-Min Allocation.

Proof of Corollary 1: If m < log10/ε n, then by Lemma 12, we can get a constant factor approxi-
mation in (log n)O(m logn) time, which is quasi-polynomial for any fixed ε > 0. If m ≥ log10/ε n, then
our main result gives a quasi-polynomial time O(log10 n) = O(mε)-approximation algorithm. Thus
the corollary follows.

6 The 2-Restricted Max-Min Allocation problem

In this section we focus on the restricted version of Max-Min Allocation, where each item i is
wanted by at most 2 agents Ai and Bi (not necessarily distinct), and obtain a 2-approximation for
it. We also show in Appendix B that even the Santa Claus version of the problem, where each item
has the same utility for each agent who wants it, is NP-hard to approximate to within a factor better
than 2. Such a theorem was also proved by [4] and follows from the reduction of [10]. We include
the proof for completeness.
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Given a 2-restricted Max-Min Allocation instance I = (A, I), construct a graph G(I) = (A, I)
where an item i is an edge between agents Ai and Bi. Such a graph can have self-loops and parallel
edges. An allocation of items can be represented by an orientation of the edges of this graph. The
weights on the edges are non-uniform, that is, an edge has different weights for its two endpoints.

For agent A ∈ A, let δ(A) denote the set of adjacent edges in G(I), that is, δ(A) := {i : uA,i > 0}.
Given a parameter M > 0, we define the following system LP (M) of linear inequalities.

∀i ∈ I xAi,i + xBi,i ≤ 1 (24)

∀A ∈ A,∀S ⊆ δ(A)
∑
i/∈S

ûA,ixA,i ≥M − uA(S) (25)

where uA(S) :=
∑

i∈S uA,i and ûA,i := min(uA,i,M − uA(S)). The first inequality states that each
item is allocated to at most one agent. The second states that, given any set S of items, the total
utility of items not in S allocated to agent A must be at least (M−uA(S)). Furthermore, this should
also be true if the utility of any individual item is capped to ûA,i which is the minimum of uA,i and
(M − uA(S)). This type of valid inequalities is called knapsack cover inequalities (see, for instance,
[8]).

Let M∗ be the largest value M for which the above LP is feasible, so M∗ ≥ OPT. Note that this LP
has exponentially many constraints of type (25). In general, it is sufficient to produce a separation
oracle in order to solve this LP in polynomial time by the Ellipsoid method. We do not produce such
an oracle. Rather, we show that if a solution x satisfies the inequality (25) for a single set S per agent,
the set depending on the solution x, then we can obtain an integral allocation such that each agent
gets utility at least M∗/2. Furthermore, we can check, given x, whether x satisfies these particular
inequalities, in polynomial time. Therefore, in each iteration, we either get a solution x with the
desired properties, and thus a desired integral allocation; or we obtain a separating inequality. The
ellipsoid method guarantees that in a polynomial number of steps either the former happens, or we
prove that the LP is infeasible.

Given a solution x, we now describe the set of inequalities that we need to check. We say that an
item i is integrally allocated to agent A, if xA,i = 1. For every agent A ∈ A, let I(A) denote the set
of items integrally allocated to A. An item i is said to be fractionally allocated if it is not allocated
integrally to any agent. Let I′ be the set of items allocated fractionally. For every agent A, let δ′(A)
be the set of items fractionally allocated to it, that is, δ′(A) = {i ∈ I′ : xA,i > 0}. Let i∗A be the item
in δ′(A) with maximum value uA,i. The inequality that needs to be checked for agent A is (25) with
S = (I(A) ∪ δ′(A)) \ {i∗A}. From the above discussion, we can find in polynomial time a solution x
which satisfies the constraints (24) of LP(M∗) and the following constraints

∀A ∈ A, S = (I(A) ∪ δ′(A)) \ {i∗A},
∑
i/∈S

ûA,ixA,i ≥M − uA(S) (26)

Given such an x, we allocate the items in I(A) to agent A and define MA := M −uA(I(A)). We now
focus on the sub-graph H of G(I) induced by the edges corresponding to items in I′. We remove
from H all isolated vertices. Observe that H does not contain self-loops but may contain parallel
edges. It now suffices to allocate items of I′ to agents of H such that every agent A gets a utility of
at least MA/2. We start with the following observation about H.

Claim 2 For every agent A, uA(δ′(A) \ {i∗A}) ≥MA.
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Proof: Assume otherwise, and let A be the violating agent. Then for S = (I(A) ∪ δ′(A)) \ {i∗A},
uA(S) < M . Inequality (26) is then contradicted, since its LHS is precisely ûA,i∗AxA,i

∗
A

, which is
strictly less than (M − uA(S)) if M − uA(S) > 0, because by definition xA,i∗A < 1.

The above claim implies that for every agent A ∈ V (H), the (non-uniform) weighted degree of A is
at least (MA + maxi∈δ′(A) {uA,i}). Given a graph G = (V,E), for each vertex v ∈ V , we denote by

∆(v) the set of edges incident on v, and given an orientation O of its edges, we denote by ∆−O(v)
and ∆+

O(v) the set of incoming and outgoing edges for v, respectively. The following theorem about
weighted graph orientations will complete the proof.

Theorem 5 Given a non-uniformly weighted undirected graph G(V,E) with weights wu,e and wv,e for
every edge e = (u, v) ∈ E, there exists an orientation O such that in the resulting digraph, for every

vertex v:
∑

e∈∆−O(v)wv,e ≥
1
2

(∑
e∈∆(v)wv,e −maxe∈∆(v) {wv,e}

)
. Moreover, such an orientation can

be found efficiently.

Proof: The proof is by induction on the number of edges in the graph. If the graph only contains
one edge, the theorem is clearly true. Consider now the case that there is some vertex u ∈ V with
|∆(u)| = 1. Let e = (u, v) be the unique edge incident on u. We can direct e towards v, and by
induction there is a good orientation of the remaining edges in the graph. Therefore we assume that
every vertex in the graph has at least two edges incident on it. For each vertex v ∈ V , we denote
by e1(v) ∈ ∆(v) the edge e with maximum value of wv,e and by e2(v) the edge with second largest
such value. Notice that e1(v) and e2(v) are both well defined, and it is possible that they are parallel
edges. We need the following claim.

Claim 3 We can efficiently find a directed cycle C = (v1, v2, . . . , vk = v1), where for each j : 1 ≤
j ≤ k − 1, hj = (vj , vj+1) ∈ E, and either:

1. wvj ,hj−1
≥ wvj ,hj , or

2. hj = e1(v) and hj−1 = e2(v)

We first show that the above claim finishes the proof of the theorem. Let C be the directed cycle
from the above claim. We remove the edges of C from the graph and find the orientation of the
remaining edges by induction. We then return the edges of C to the graph, with edge hj = (vj , vj+1)
oriented towards vj+1, for all j. By rearranging the inequality that we need to prove for each vertex
v we obtain the following expression:

∑
e∈∆−O(v)

wv,e + max
e∈∆(v)

{wv,e} ≥
∑

e∈∆+
O(v)

wv,e

Consider some vertex v ∈ V . If v does not lie on the cycle C, then by induction hypothesis the
inequality holds for v. Assume now that v = vj ∈ C. In the orientation of edges of E \ C the above
inequality holds by induction hypothesis. We need to consider two cases. If wvj ,hj−1

≥ wvj ,hj , then

since hj−1 is added to ∆−O(v) and hj is added to ∆+
O(v), the inequality continues to hold.

Assume now that hj = e1(v) and hj−1 = e2(v), and let e3(v) be the edge with third largest value of
wv,e. Then the RHS increases by wv,hj , while the LHS increases by wv,hj−1

+ wv,hj − wv,e3(v). Since
wv,jh−1

≥ wv,e3(v) the inequality continues to hold.
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Proof of Claim 3. We start with an arbitrary vertex v1 ∈ V and add v1 to C. In iteration j we
add one new vertex vj to C, until we add a vertex u that already appears in C. Assume that the
first appearance of u on C is u = vr. We then remove vertices v1, . . . , vr−1 from C and reverse the
orientation of C to produce the final output (so vertices appear in reverse order to that in which
they were added to C).

In the first iteration, C = {v1}. Let e1(v1) = (v1, u). We then add u as v2 to C. In general, in
iteration j, consider vertex vj and the edge hj−1 = (vj−1, vj). If hj−1 6= e1(vj), and e1(vj) = (vj , u),
then we add u as vj+1 to C. Otherwise, let e2(vj) = (vj , u

′). We then add u′ as vj+1 to C.

Let vt+r be the last vertex we add to the cycle, so vt+r = vr. Consider the cycle C ′ = (vr, vr+1, . . . , vt+r =
vr) (recall that we will reverse the ordering of vertices in C ′ in the final solution, the current ordering
reflects the order in which vertices have been added to C). We denote gj = (vj , vj+1). Consider now
some vertex vj ∈ C. Assume first that j = r. Then two cases are possible. If gr = e1(vr), then clearly
wvr,gr ≥ wvr,gr+t−1 and condition (1) will hold in the reversed cycle. Assume now that gr = e2(vr).
Then the edge e′ = (vr−1, vr) that originally belonged to C is e1(r), and so wvr,gr ≥ wvr,gr+t−1 still
holds.

Assume now that j 6= r. If gj = e1(vj) then clearly wvj ,gj ≥ wvj ,gj−1 and condition (1) holds (in the
reversed cycle). Otherwise it must be the case that gj−1 = e1(vj) and gj = e2(vj) and so condition
(2) holds. �
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A The Integrality Gap of the LP

In this section we show a lower bound of Ω(
√
m) on the integrality gap of the LP from Section 3.4.2.

We then show how the algorithm described in Section 4 overcomes this gap. The construction of the
gap example is somewhat similar to the construction used by [3] to show a lower bound of Ω(

√
n)

on the integrality gap of the configuration LP.

We describe a canonical instance together with an assignment of private items. We start by describing
a gadget G that is later used in our construction. Gadget G consists of M light agents L1, . . . , LM .
For each light agent Lj , there is a distinct collection S(Lj) of M light items for which Lj has utility
1. Let S = ∪jS(Lj), note that |S| = M2. Items in S will not be assigned as private items to any
agent.

Additionally, for each j : 1 ≤ j ≤ M , agent Lj has one heavy item h(Lj), for which Lj has utility
M . This will be Lj ’s private item. The gadget also contains M −1 heavy agents t1, . . . , tM−1. These
heavy agents are not assigned private items and hence are terminals. Each terminal is a heavy agent
that has utility M for each one of the items h(L1), . . . , h(LM ). Finally, we have a light agent L∗

that has utility 1 for each item h(L1), . . . , h(LM ). The dotted circle in Figure 1 shows the gadget
for M = 3.

We make M copies of the gadget, G1, . . . , GM . We denote the vertex L∗ in gadget Gj by L∗j . We
add a distinct heavy item h(L∗j ) for each L∗j . Item h(L∗j ) is the private item for L∗j , and gives utility
M to it. Finally, we have a heavy agent t∗ that has utility M for each h(L∗j ), 1 ≤ j ≤ M . This
agent is also a terminal since it has no private item assigned. Our set of terminals thus consists of
all the heavy agents in the instance. The total number of items is n = O(M3) and the total number
of agents is m = O(M2). Figure 1 shows the flow network N(I, π) for the case M = 3.

t1

t2

L2

L1

L3

L*

Gadget G

Item

Agent
Utility 3
Utility 1

Figure 1: The flow network N(I, π) for the gap instance with M = 3.

We start by showing that in any integral solution, some agent receives a utility of at most 1. That
is, any integral flow from S to the terminals will 1/M -satisfy some light agent. This is because
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the terminal t∗ must receive one unit of flow from L∗j for some 1 ≤ j ≤ M . Consider now the
corresponding gadget Gj . We can assume w.l.o.g. that each light agent Li ∈ Gj , 1 ≤ i ≤M receives
M flow units from its light items in S(Li). Each one of the M − 1 terminals t1, . . . , tM−1 has to
receive one flow unit. This leaves only one flow unit to satisfy L∗j , and so L∗j is assigned at most one
item for which it has utility 1.

We now argue that there is a fractional flow which 1-satisfies all agents. Consider some gadget Gi.
Each light agent Lj ∈ Gi receives M flow units from light agents in S(Lj), and sends 1 flow unit to
its private item h(Lj), which in turn sends 1/M flow units to each one of the agents t1, . . . , tM−1, L

∗
i .

Each one of the light agents L∗1, . . . , L
∗
M now receives 1 flow unit can thus send 1/M flow to terminal

t∗.

To be more precise, we have y(L∗j ) = x(L∗j ) = 1/M for all j = 1, . . . ,M and for all 1 ≤ j ≤ M ,

for all 1 ≤ i ≤ M , we have y(L∗j , L
j
i ) = 1/M , where Lji is the ith light agent in Gj . The flows

are as described in the previous paragraph. One can check that this satisfies all the constraints of
the LP described in Section 3.4.2. Thus this is a feasible fractional solution in which each agent
is 1-satisfied, and the value of the solution for the Max-Min Allocation problem is M . This
completes the description of the gap example.

Before describing how our algorithm bypasses the integrality gap, we first show how in this example
we can prove using the same LP that the integral optimum cannot be more than 1. Firstly, note that
removing any agent cannot decrease the integral optimum. Therefore, if we remove the set of light
agents {L1, . . . , LM−1} from every Gj , the integral optimum should still be at least M . However,
consider now the assignment π′ of private items defined as follows. For the remaining light agents
we still have π′(L∗j ) = h(L∗j ) and π′(LjM ) = h(LjM ) for 1 ≤ j ≤M , but now we assign a private item
for every heavy agent ti in each gadget, π′(ti) = h(Li), that is, the heavy item of agent Li (who is
not present in this instance). The only terminal in this instance is the heavy agent t∗. The resulting
flow network N(I ′, π′) for M = 3 is shown in Figure 2.

t1

t2

L2

L1

L3

L*

Gadget G

Item

Agent
Utility 3
Utility 1

t*

Figure 2: The flow network N(I ′, π′). Note that the edges between ti and h(Li) have flipped for all
1 ≤ i ≤ (M − 1).
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Note that the set S of items which are not private items in each gadget Gj is still
⋃
j S(Lj). However,

the items in S(Lj) for 1 ≤ j ≤ (M −1) do not connect to any agent (since the light agents have been

removed). Thus the flow to the terminal t∗ must come from the M sets of items of the form S(LjM ).

We now argue that the LP of Section 3.4.2 is not feasible. In fact, even if the values NL∗j
are reduced

from M to 2 for every agent L∗j , for 1 ≤ j ≤ M , the LP is still not feasible. Since t∗ receives a flow
of value 1, it must receive a flow of at least 1/M from one of the agents L∗j , for 1 ≤ j ≤ M . Thus
for this j, x(L∗j ) ≥ 1/M . This implies L∗j must receive NL∗j

·x(L∗j ) units of flow from the light agents

in the lower level. However, there is only one light agent, namely LjM , in the lower level and from
constraint (15) it can “feed” at most x(L∗j ) units of flow to L∗j . Thus, if NL∗j

> 1, the LP will be
infeasible.

Now we show how after one iteration of the algorithm we get to the instance (I ′, π′) described above.
After the rounding algorithm described in Section 3, we get set of paths P1,P2 which are as follows:

P1 = (L∗1 → h(L∗1)→ t∗) ∪ {(Lji → h(Lji )→ tji ) : ∀i = 1 . . .M − 1, 1 ≤ j ≤M}
P2 = {(v → Lji ) : v ∈ S(Lji ), 1 ≤ i ≤M − 1, 1 ≤ j ≤M} ∪ {(L1

i → h(L1
i )→ L∗1) : 1 ≤ i ≤M − 1}

that is, P1 is the set of paths from L∗1 to t∗ and the paths from Lji to tji in every gadget Gj ; and
P2 is the set of paths from S(Li) to Li in all gadgets and L1

i to L∗1 for the gadget G1. The path
decomposition procedure of Section 4 returns one bad light agent (L∗1) and the following sets of
internally disjoint paths

P ′1 = {(L1
i → h(L1

i )→ t1i ) : ∀i = 1 . . .M − 1}
Q2 = {(v → Lji ) : v ∈ S(Lji ), 1 ≤ i ≤M − 1, 1 ≤ j ≤M} ∪ {(L1

i → h(L1
i )→ L∗1) : 1 ≤ i ≤M − 1}

Subsequently, the new set of terminals is T2 = {t∗} and the set of discarded light agents are L2 =
{Lji : 1 ≤ i ≤M−1, 1 ≤ j ≤M} and thus we get the instance (I ′, π′). Hence, in the second iteration,
the algorithm will return that the optimum M is infeasible for this Max-Min Allocation instance.

B Hardness of Approximation for Uniform Graph Balancing

Given a (nonuniform/uniform) weighted graph, the (nonuniform/uniform) graph balancing problem
is to find the orientation that maximizes the minimum weighted (nonuniform/uniform) in-degree.
We show that the uniform graph balancing is NP-hard to approximate up to a factor 2 − δ for
any δ > 0. This result implies the same hardness of approximation for the Santa Claus version of
2-restricted Max-Min Allocation, since the two problems are equivalent.

Theorem 6 Uniform graph balancing is NP-hard to approximate to within a factor 2 − δ, for any
δ > 0.

Proof: This proof is similar to an NP-hardness of the min-max version of graph balancing due to
Ebenlendr et.al. [10]. A similar proof has been independently shown by [4]. We reduce from the
following variant of 3-SAT. The input is a 3CNF formula ϕ, where each clause has 3 variables, and
each literal appears in at most 2 clauses and at least 1 clause. This version is NP-hard [18]

We construct a graph G = (V,E) whose vertices correspond to the literals and clauses in the formula
ϕ. We define edges of G and the weights associated with them as follows. For every variable x we
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have two vertices x, x representing the two corresponding literals, with an edge (x, x) of weight 1.
We refer to edges of this type as variable edges. Consider now some clause C = (`1 ∨ `2 ∨ `3). We
have a vertex C and three clause edges (C, `1), (C, `2), (C, `3) associated with it. All clause edges
have weight 1

2 . Additionally, we have a self-loop of weight 1
2 for each clause C, and for each literal `

appearing in exactly one clause.

YES case: Assume that the formula is satisfiable. We show that the optimum value of the graph
balancing instance is 1. Consider any variable x. If the optimal assignment gives value T for x, then
we orient the corresponding variable edge towards x; otherwise it is oriented towards x. For each
literal ` set to F , orient all its adjacent clause edges towards it. Together with the self-loop, there
are 2 edges oriented towards `, each of which has weight 1

2 . Finally, consider clause C. Since this
clause is satisfied by the assignment, at least one of its variable has value T , and we can orient the
corresponding edge towards C. Together with the self-loop, C has 2 edges oriented towards it of
weight 1

2 each.

NO case: Suppose there is an allocation such that every vertex has weighted in-degree strictly more
than 1/2. This implies that every vertex has weighted in-degree at least 1. Consider the orientation
of the variable edges. This orientation defines an assignment to the variables: if (x, x) is oriented
towards x, the assignment is T , otherwise it is F . Consider a literal ` that does not have the variable
edge oriented towards it. Then it must have the 2 remaining edges incident on it oriented towards it
(since they have weight 1/2 each). Now consider a clause vertex C. Since its weighted in-degree is
at least 1, it must have a clause edge oriented towards it. The corresponding literal then is assigned
the value T and therefore C is satisfied. But we know at least one clause is not satisfied by the above
assignment. This proves the theorem.
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