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Consider the following classical network design problem: a set of terminals T = {ti} wishes to send

traffic to a “root” r in an n-node graph G = (V, E). Each terminal ti sends di units of traffic,

and enough bandwidth has to be allocated on the edges to permit this. However, bandwidth

on an edge e can only be allocated in integral multiples of some base capacity ue — and hence

provisioning k × ue bandwidth on edge e incurs a cost of dke times the cost of that edge. The

objective is a minimum-cost feasible solution.

This is one of many network design problems widely studied, where the bandwidth allocation

being governed by side constraints: edges may only allow a subset of cables to be purchased on

them, or certain quality-of-service requirements may have to be met.

In this work, we show that the above problem, and in fact, several basic problems in this

general network design framework, cannot be approximated better than Ω(log log n) unless NP ⊆

DTIME
�
nO(log log log n) � , where |V | = n. In particular, we show that this inapproximability

threshold holds for (i) the Priority-Steiner Tree problem (ii) the (single-sink) Cost-Distance problem

and (iii) the single-sink version of an even more fundamental problem, Fixed Charge Network Flow.

Our results provide a further breakthrough in the understanding of the level of complexity of

network design problems. These are the first non-constant hardness results known for all these

problems.

Categories and Subject Descriptors: G.2.2 [Discrete Mathematics]: Graph Theory—Network

problems; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems—Computations on discrete structures

General Terms: Theory, Algorithms

Additional Key Words and Phrases: Hardness of approximation, network design, priority Steiner

tree, fixed charge network flow, cost-distance

1. INTRODUCTION

Approximation algorithms have had much success in the area of network design,
with both combinatorial and linear-programming based techniques leading to many
constant-factor approximation algorithms. Despite these successes, several basic
network design problems in undirected graphs have eluded the quest for constant-
factor approximations, with the current best approximation guarantees being log-
arithmic or worse. Moreover, none of the previously-known hardness results pre-
cludes the possibility of constant-factor approximation algorithms for these prob-
lems. In this paper, we make progress on this front and show Ω(log log n)-hardness
results for the following problems, where n denotes the cardinality of the vertex
set:

Fixed-Charge Network Flow (FCNF). The FCNF problem and its many varia-
tions have been widely studied in the Operations Research community [Nemhauser
and Wolsey 1999; Ortega and Wolsey 2003; Carr et al. 2000; Gunluk 1999]. The
single source version considered here is a very natural and basic network design
problem. The input is an undirected graph G = (V,E) where each edge has a cost
ce and a capacity ue. Given a set T of terminals {ti} (each with a demand di)
and a designated root node r, the goal is to choose a subset of edges, such that
every terminal ti can route di flow units to the root. The edge capacities cannot
be violated, and multiple copies of each edge e can be purchased, each incurring an
additional cost of ce.

FCNF generalizes several important network design problems and hence it is of
great interest to theoreticians and practitioners alike. We show that our hardness
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On the Approximability of Some Network Design Problems · 113

result holds even for the single source version of FCNF.

Priority Steiner Tree. Motivated by the heterogeneity in Quality of Service re-
quirements in multicast (video) applications [Maxemchuk 1997; Turletti and Bolot
1994], the Priority-Steiner Tree problem was defined by Charikar et al. [Charikar
et al. 2004]; special cases of this problem have also been studied in the Operations
Research community [Current et al. 1986; Duin and Volgenant 1991; Mirchandani
1996; Pirkul et al. 1991].

In the Priority-Steiner Tree problem, given an undirected graph G = (V,E) with
edge costs ce, a set T of terminals and a root node r, we want to find a minimum
cost Steiner tree T ⊆ G spanning T ∪ {r}. An additional constraint on T is that
each terminal t ∈ T desires a certain Quality of Service (or priority) level Q(t) ∈
{1, 2, . . . , k} — here 1 is the highest level and k is the lowest level. Furthermore,
each edge e offers a certain Quality of Service level Q(e) ∈ {1, 2, . . . , k}, and we
want the path in T from t ∈ T to the root r to consist only of edges e with Quality
of Service at least as good as Q(t); i.e., Q(e) ≤ Q(t).

The best upper bound currently known for the Priority-Steiner Tree problem is
a min{2 ln |T |, 1.55 k}-approximation algorithm [Charikar et al. 2004]; the above
paper also showed that the problem is NP-hard even when T = V . However, no
Ω(1) approximation hardness was previously known for the problem.

Cost-Distance:. This problem was introduced as a common generalization of sev-
eral problems in network design and facility location [Meyerson et al. 2000]. The
problem is identical to FCNF, except that there are no edge capacities, and each
edge e has a length `e; the costs and lengths of edges may be unrelated to each
other. The goal is to find a Steiner tree T spanning T ∪ {r} that minimizes the
objective function

∑

e∈T

ce +
∑

i:ti∈T

di `T(ti, r);

i.e., the sum of edge costs of the tree together with the weighted distances in the
tree from the terminals to the root.

Building on the basic techniques from [Marathe et al. 1998], an O(log |T |) ran-
domized approximation algorithm for the problem was given in [Meyerson et al.
2000]; this algorithm was subsequently derandomized [Chekuri et al. 2001]. An
O(log4 n)-competitive online algorithm for the problem is also known [Meyerson
2004]. The best hardness result previously known for this problem was an Ω(1)-
hardness via facility location.

1.1 Our Results and Related Work

We show that it is hard to approximate the above problems to better than a factor
of Ω(log log n), where |V | = n. In particular, the technical heart of the paper is the
following theorem:

Theorem 1.1 There is no efficient c log log n approximation algorithm for the
Priority-Steiner Tree problem (for some constant c), unless NP ⊆ DTIME

(

nO(log log log n)
)

.
This holds even for instances of Priority-Steiner Tree where all edges have unit cost.
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We then give approximation-preserving reductions from the Priority-Steiner Tree
problem to the FCNF and the Cost-Distance problems, which imply similar hardness
results for these problems.

As mentioned above, these are the first non-constant inapproximability thresh-
olds for these network design problems. In fact, all these problems are single-sink
problems on undirected graphs; non-constant hardness results that were known
previously made crucial use of either (actual or simulated) directedness, such as
the recent work on poly-logarithmic inapproximability [Halperin and Krauthgamer
2003] of directed Steiner and group Steiner trees, or of the fact that there were
multiple sinks (and hence multiple commodities) in the system [Andrews 2004].

An inapproximability threshold of 5601
5600 for the basic undirected Steiner tree prob-

lem was shown in [Clementi and Trevisan 1999], which immediately implies the same
threshold to all the problems we consider. A 1.46 inapproximability threshold for
facility location [Guha and Khuller 1999] extends to Cost-Distance, as shown in
[Meyerson et al. 2000]. To the best of our knowledge, these were the only inap-
proximability results known for any of the problems we consider. Hence, our work
represents a substantial leap in showing that several basic network design problems
are unlikely to admit constant-factor approximations.

Note that two of the three problems we consider in this paper have O(log n)
approximation algorithms ([Charikar et al. 2004] for Priority-Steiner Tree and [Mey-
erson et al. 2000] for Cost-Distance). Therefore, our results show the existence
of an intermediate class of network design problems which are neither constant-
approximable nor poly-logarithmic-inapproximable. At one extreme are the undi-
rected single-source network design problems with homogeneous cost functions on
edges such as single-source buy-at-bulk, which admit constant factor approxima-
tions [Guha et al. 2000; Talwar 2002; Gupta et al. 2003]. At the other extreme
lie the directed Steiner tree problem (whose current inapproximability threshold is
Ω(log2−ε n) [Halperin and Krauthgamer 2003]), and the multi-commodity buy-at-

bulk network design problem (with an inapproximability bound of Ω(log
1
4−ε n) [An-

drews 2004]).
Our problems therefore occupy a middle ground of those problems which admit

logarithmic approximations (to date) but have been shown to have super-constant
inapproximability. Indeed, the Priority-Steiner Tree problem generalizes the undi-
rected Steiner tree problem, but can be implemented as a special case of the directed
Steiner tree problem.

Related Work in Network Design. There has been much research in the area of
approximation algorithms for network design, with many new techniques developed
and problem areas explored. A partial list includes [Awerbuch and Azar 1997;
Andrews and Zhang 2002; Even et al. 2002; Jain 2001; Goemans and Williamson
1997; Salman et al. 2000; Garg et al. 2001; Guha et al. 2000; Guha et al. 2001;
Gupta et al. 2003; Gupta et al. 2003; Kumar et al. 2002; Marathe et al. 1998;
Melkonian and Tardos 1999; Meyerson et al. 2000; Karger and Minkoff 2000; Ravi
and Salman 1999; Ravi and Sinha 2002; Salman et al. 2000; Swamy and Kumar
2002; Talwar 2002]; see the many references therein for more pointers.

To place our results in a better context, we focus on concave-cost network de-
sign, where the cost of using an edge is a concave function of the flow on the edge.
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If the cost function is the same per unit length in all edges (or uniform), then
the problem is constant-approximable in the single-sink case [Guha et al. 2001;
Talwar 2002] and O(log n)-approximable in the multi-commodity case [Awerbuch

and Azar 1997; Fakcharoenphol et al. 2003], with an Ω(log
1
4−ε n)-inapproximability

threshold known for the multi-commodity case [Andrews 2004]. Constant approx-
imations exist for special cases of multi-commodity concave cost network design,
such as the rent-or-buy cost function [Kumar et al. 2002; Gupta et al. 2003]. Cost-
Distance and FCNF are special cases of single-sink concave cost network design with
non-uniform costs on edges; for these problems, our Ω(log log n)-inapproximability

results complement the Ω(log
1
2−ε)-inapproximability of the multi-commodity ver-

sion in [Andrews 2004]. We hope that our results will help in providing further
understanding of the factors determining the degree of difficulty of approximating
the different types of network design problems.

Paper Outline. We achieve our goal of showing the inapproximability of these
network design problems by using one of them (Priority-Steiner Tree) to encode an
instance of the Set Cover problem, which itself is shown to be hard to approximate
using a reduction from MAX 3SAT(5). To this end, we begin by explicitly con-
structing this set cover instance in the next section. In Section 3, we go on to show
the hardness of Priority-Steiner Tree using this set system construction. We finally
demonstrate the hardness of the other two network design problems in Section 4,
using the hardness of Priority-Steiner Tree.

2. CONSTRUCTION OF THE SET SYSTEM

Naturally enough, the hardness reduction for Priority-Steiner Tree involves starting
from a 3SAT(5) formula ϕ and producing an instance of Priority-Steiner Tree. As
a crucial building block for our reduction, we use a construction used by Lund
and Yannakakis [Lund and Yannakakis 1994] to prove the hardness of the set cover
problem. The construction we present in this section is a slight variant of their
construction; we give it here both for the sake of completeness, as well as to un-
derscore some properties of the construction that are not explicitly proved in their
paper (even though they easily follow from the arguments therein).

The reduction is performed from the gap version of the 3SAT(5) problem (or
more precisely, the Exact MAX 3SAT(5) problem) which is defined as follows. We
are given a CNF formula ϕ with n variables and m = 5n/3 clauses, where each
clause contains exactly 3 literals and each variable appears in exactly 5 different
clauses. The goal is to find a boolean assignment for the variables which maximizes
the number of satisfied clauses. Given some constant ε with 0 < ε < 1, a formula
ϕ is called a yes-instance if it is satisfiable, and it is called a no-instance if the
maximum fraction of clauses that can be satisfied simultaneously is at most (1− ε).
Arora et al. showed the following useful corollary of the PCP theorem.

Theorem 2.1 ([Arora et al. 1998]) There exists a constant ε ∈ (0, 1) such that
it is NP-hard to distinguish between the yes-instances and no-instances of 3SAT(5).
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2.1 Parallel Repetition: the Raz Verifier

Starting with such a 3SAT(5) formula ϕ, we now construct a two-prover proof
system with ` = Θ(log log log n) repetitions. The verifier (or the Raz verifier) in
this system receives as an input a 3SAT(5) formula ϕ, and proceeds as follows.

—As the first step, the verifier chooses a sequence of ` clauses C1, C2, . . . , C` inde-
pendently and uniformly at random from the set of 5n/3 clauses of ϕ. It then
chooses a sequence of ` variables x1, . . . , x`, where each xi is chosen indepen-
dently and uniformly from the three variables participating in Ci; the variable xi

is called the distinguished variable of the clause Ci.

—The indices of the clauses C1, . . . , C`/2 and of the variables x`/2+1, . . . , x` are sent
to the first prover, while the indices of remaining variables x1, . . . , x`/2 and of
the clauses C`/2+1, . . . , C` are sent to the second prover. (Here we are assuming
that ` is even.)

—Each prover answers with an assignment to all the variables that appear in its
query, both as distinguished variables and as variables belonging to the query
clauses.

—The verifier checks that for each clause Ci (for 1 ≤ i ≤ `/2), the assignment
sent by the first prover satisfies the clause, and also that for each clause Ci (for
`/2 + 1 ≤ i ≤ `), the assignment sent by the second prover satisfies the clause.
Furthermore, the verifier checks that for each i ∈ {1, 2, . . . , `}, the assignments
of both provers to the distinguished variable xi are identical. If any of these tests
fail, the verifier rejects, else it accepts if all the tests succeed.

The next theorem follows from the Raz Parallel Repetition Theorem [Raz 1998],
and it shows that asking each of the two provers ` questions in one round (instead
of having ` rounds with a single independent random question in each round) still
causes the verifier’s error probability to go down exponentially in `.

Theorem 2.2 If ϕ is a yes-instance of 3SAT(5), then there is a strategy of the two
provers that makes the verifier always accept. Else if ϕ is a no-instance, then for
any strategy of the provers, the acceptance probability of the verifier in the above
scheme is at most 2−α`, for some universal constant α.

Let X and Y be the sets of all possible queries to provers 1 and 2 respectively;
since each query is an ordered sequence, these sets are disjoint—and furthermore,
given a query q, one can infer whether q belongs to X or to Y . Note that each
such query contains an `/2-tuple of clauses and an `/2-tuple of variables, and hence
|X| = |Y | ≤ (5n/3)`/2 · n`/2 < (2n)`.

Given a query q ∈ X ∪ Y , let A(q) be the set of all the possible answers to this
query that satisfy all the clauses appearing in q; clearly, |A(q)| ≤ 7`/2 · 2`/2 < 8`.

We denote by R the set of all the random strings of the verifier; thus |R| ≤ (5n)`.
For a random string r ∈ R, let q1(r) ∈ X and q2(r) ∈ Y be the queries sent to the
two provers when the verifier chooses r. Clearly, r defines a constraint between the
answers to q1(r) and q2(r). In what follows, we refer to r as both a random string
and a constraint, interchangeably.
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2.2 The Set System

We are now in a position to specify the set system S corresponding to the 3SAT(5)
formula ϕ. We will define a universe of elements U , and the set system S ⊆ 2U will
consist of subsets of U .

—The Sets. The set system S contains a set S(q, a) for each query q ∈ X ∪Y and
for each answer a ∈ A(q); i.e.,

S = {S(q, a) | q ∈ X ∪ Y, a ∈ A(q)}

Hence the number of sets is bounded by 2 · (2n)` · 8` < (32n)`.

—The Elements. Consider a random string r ∈ R, and let x1, . . . , x` be the
sequence of distinguished variables that correspond to r. Let A be the set of all
the possible assignments to these variables, and thus |A| = 2`. For each A′ ⊆ A,
we define a new element E(r,A′); the universe U consists of all these elements.

Since |R| ≤ (5n)`, and since for each r ∈ R there are 22`

elements, the total

number of elements in U is bounded by (5n)` · 22`

.

—Element-Set Inclusions. An element E(r,A′) ∈ U is defined to belong to all
the sets S(q1(r), a) ∈ S such that the answer a is consistent with some assignment
in A′; in other words, the projection of the bits in a onto the distinguished
variables belongs to the set A′.
Furthermore, E(r,A′) belongs to all the sets S(q2(r), a

′) ∈ S such that a′ is
consistent with some assignment in A′; i.e., the projection of a′ onto the distin-
guished variables does not lie in A′.

Now that we have described the set system, let us delineate some of the important
properties that will be used in the rest of the reduction.

Lemma 2.3 (Set Sizes) The size of any set in S is z = 1
2 · 15`/2 · 22`

.

Proof. Let us figure out the size of any set S(q, a) for some q ∈ X. (The size
for sets with q ∈ Y will be the same.) Observe that for any query q ∈ X, there
are 15`/2 random strings r ∈ R such that q = q1(r); indeed, given the query q, one
can infer the identity of the string r by guessing the distinguished variables for the
clauses in q (for which there are 3`/2 choices), and the clauses to which the variables
in q belong (for which there are 5`/2 choices).

Now, there are 22`

elements E(r,A′) that correspond to any fixed random string
r, and given an assignment a ∈ A(q), exactly half of these elements belong to set

S(q, a). Hence, the size of any set S(q, a) ∈ S is equal to z = 1
2 · 15`/2 · 22`

.

Lemma 2.4 (Element Degrees) Each element e = E(r,A′) ∈ U belongs to de ≤
22` sets in S.

Proof. Given an element e = E(r,A′), let A be the set of all the assignments to
the distinguished variables corresponding to random string r (and hence A′ ⊆ A).
Given an assignment â ∈ A to the distinguished variables, let A1(â) and A2(â) be
the subsets of answers to queries q1(r) and q2(r), respectively, which are consistent
with â. Notice that |A1(â)|, |A2(â)| ≤ 2`: there are exactly 4`/2 = 2` answers a of
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Prover 1 to query q1(r), and of Prover 2 to query q2(r), that are consistent with
assignment â—though some of them may not satisfy all the query clauses. Indeed,
the projection of a on the distinguished variables must correspond to â, which leaves
us with 2 · (`/2) = ` variables that appear in query clauses of q1(r), or of q2(r), that
are not distinguished.

If â ∈ A′ then e = E(r,A′) belongs to all the sets S(q1(r), a) for all a ∈ A1(â), and
if â ∈ A′, then e belongs to all the sets S(q2(r), a), where a ∈ A2(â). Furthermore,
these are the only sets in S that contain e. As |A| = 2`, we have that de ≤ 2` · |A| =
22`.

Let the degree de of an element in e ∈ U be the number of sets in S that contain
e. If we let d = maxe{ de} denote the maximum degree of an element in U , then
d ≤ 22` by Lemma 2.4, and thus number of elements is |U | ≥ (|S|z)/d.

2.3 The Set Cover Gap

We want to show that if ϕ is a yes-instance, then there is a set cover for U of size at
most |X| + |Y |, whereas if ϕ is a no-instance, then even “large” covers must leave
many elements in U uncovered.

Lemma 2.5 If ϕ is a yes-instance, then there exists a set cover containing at most
|X| + |Y | sets.

Proof. Since ϕ is a yes-instance, there is a strategy of the provers which makes
the verifier always accept. For instance, they can choose some satisfying assign-
ment asat for ϕ in a consistent matter (say the lexicographically first satisfying
assignment), and then answer queries according to the settings in asat.

We now use this strategy to choose the set cover: for each query q ∈ X ∪ Y ,
choose the set S(q, a), where a is the answer to query q under this strategy. To
see that this is a cover, consider any element E(r,A′): let â be the projection of
asat on the ` distinguished variables that correspond to this random string r, let a1

be the projection of asat on the variables in q1(r), and let a2 be its projection on
variables in q2(r). By its very construction, â is consistent with both a1 and a2.

Finally, note that both S(q1(r), a1) and S(q2(r), a2) belong to the set cover we
have picked. Furthermore, if â ∈ A′, then the set S(q1(r), a1) covers this element,
Else if â 6∈ A′, set S(q2(r), a2) covers this element.

The proof of the other case is more involved: if we assume that ϕ is a no-instance,
we need to show that even if we choose a “large” number of sets, there is still a
substantial fraction of elements not covered by these sets.

Theorem 2.6 Consider any sub-family S ′ ⊆ S containing less than (|X|+ |Y |) · h
sets for some integer h > 1, where 64h2 < 2α`. Then, at least a fraction 1

4·28h of
the elements in U are not covered by sets in S ′.

Proof. Let Q ⊆ X ∪Y be the subset of queries q, such that for each q ∈ Q, the
number of sets S(q, a) ∈ S ′ is at least 4h. Since the size of S ′ is at most h times
|X ∪ Y |, a simple averaging argument shows that Q contains at most a quarter of
X ∪ Y .
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Let R′ ⊂ R be the subset of random strings for which both the queries q1(r) 6∈ Q
and q2(r) 6∈ Q. Since each query participates in the same number of constraints,
|R′| ≥ 1

2 |R|. In other words, each query in X ∪Y has the same probability of being
generated, and hence the chance that we hit Q ⊆ X ∪ Y is at most Pr[q1(r) ∈
Q] + Pr[q2(r) ∈ Q] ≤ 2|Q|/|X ∪ Y | ≤ 1/2.

Let R′′ ⊆ R′ be a further subset of these random strings such that there exist
sets S(q1(r), a) and S(q2(r), a

′) in S ′, where a and a′ are consistent. We prove the
following claim.

Claim 2.7 |R′′| ≤ 1
2 |R

′|.

Proof of Claim 2.7. To prove this, we assume the converse, and use this to
show a strategy that makes the verifier accept the no-instance ϕ with high proba-
bility; this gives the desired contradiction. Indeed, consider the following strategy:
on receiving a query q ∈ (X ∪ Y ) \Q, the prover in question chooses randomly one
of its assignments a (at most 4h) that correspond to the sets in S(q, a) ∈ S ′.

Since we assumed that |R′′| ≥ 1
2 |R

′| ≥ 1
4R, the probability that the verifier

chooses a random string in R′′ is at least 1
4 ; moreover, if a string in R′′ is chosen,

the probability that the answers of the provers are consistent is at least 1/(16h2).
Hence, the verifier accepts with probability at least 1/(64h2) > 2−αl, contradicting
Theorem 2.2.

Let us now consider some random string r ∈ R′ \R′′: recall that since r ∈ R′, the
cover S ′ contains fewer than 4h sets from the family {S(q1(r), a) | a ∈ A(q1(r))},
as well as fewer than 4h sets from the family {S(q2(r), a

′) | a′ ∈ A(q2(r))}; further-
more, since r 6∈ R′′, there is no pair of sets S(q1(r), a) and S(q2(r), a

′) in S ′ where
a and a′ are consistent.

Consider the distinguished variables corresponding to r, and let A′
1 be the subset

of assignments to these distinguished variables so that for each a ∈ A′
1, there is

some set S(q1(r), a
′) ∈ S ′ where a′ is consistent with a. Define A′

2 similarly. Note
that the properties of R′′ ensure that both |A′

1|, |A
′
2| ≤ 4h, and furthermore that

A′
1 ∩ A′

2 = ∅.
Let e = E(r,A′) be some element in U : it is covered by some set in S ′ if and

only if either A′ ∩ A′
1 6= ∅, or A′ ∩ A′

2 6= ∅. Now, for each assignment a to the
distinguished variables, exactly half the sets A′ contain this assignment and half
the sets A′ do not contain it. Hence, if we consider the assignments in A′

1 and A′
2

(at most 8h), the fraction of elements corresponding to random string r, and are
not covered, is at least 2−8h. Finally, since the size of R′ \ R′′ is at least 1

4 |R| (by
Claim 2.7), the total fraction of elements not covered by S ′ is at least (1/4) · 2−8h,
completing the proof of Theorem 2.6.

While one can use the construction given above to prove hardness results for the
Set Cover problem, recall that our goal is to use this to prove hardness results for
the Priority-Steiner Tree problem, which is the subject of the next section.

3. HARDNESS OF THE PRIORITY STEINER TREE PROBLEM

To begin, let us recall the Priority-Steiner Tree problem. In this, we are given an
undirected graph G = (V,E) with edge costs (or lengths) ce ∈ R≥0 and edge prior-
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ities Q(e) ∈ {1, 2, . . . , k}. We use the terms “priority” and “level” interchangeably;
it is useful to remember that level 1 is the highest priority and level k is the lowest,
and hence a higher priority corresponds to a lower number. We are also given a
set T of terminals and a root node r, with each terminal t ∈ T desiring a certain
priority Q(t) ∈ {1, 2, . . . , k}. The goal is to build a Steiner tree T of minimum cost
that spans the root r and all the terminals in T , and where each edge e on the
unique path in T from each t ∈ T to r has a priority Q(e) ≤ Q(t).

The hardness result will proceed along standard lines: given a 3SAT(5) instance
ϕ, we want to define a graph which is an instance of the Priority-Steiner Tree problem;
to this end, we will use the set system S over the universe U which we constructed
previously in Section 2.2.

3.1 The Reduction from ϕ: Constructing the Graph

The graph Gϕ consists of a root vertex r and a collection of |S| disjoint sets of
non-terminal vertices V1, V2, . . . , V|S|, with each set having cardinality M + 1; here
M is a large integer whose value will be determined later. The vertices in each such
set Vi will be denoted by vi

0, . . . , v
i
M . For each i in the set {1, 2, . . . , |S|} and for

each pair of successive vertices (vi
j , v

i
j+1) (with 0 ≤ j < M), there are k parallel

edges connecting vi
j and vi

j+1, each with a different priority level from 1 to k. The

costs (or lengths) of all these edges is set to 1
|S|M .

In other words, for each i : 1 ≤ i ≤ |S|, there is a path of length 1
|S| representing

the set Si ∈ S. This path is denoted Pi and it consists of many (in particular, M)
small edges. Since the cost (or length) of each edge in path Pi is 1

|S|M , the total

length of all these edges is 1. Finally, for each path Pi, each edge belonging to Pi

is replaced by k parallel edges, each having a different priority level.
Apart from these edges and non-terminal vertices described above, there is a set

Tj of level-j terminal vertices and a set Ej of level-j edges for each priority level
j ≤ k; the cost of each edge in Ej will be 0. The terminal sets Tj and edge sets Ej

are recursively defined using the set system S, starting from the highest priority
level 1.

Level-1 Terminals: For every element e ∈ U in the set system, we define a
level 1 terminal t1(e) belonging to T1.

Level-1 Edges: For 1 ≤ i ≤ |S|, consider the path Pi corresponding to set
Si ∈ S. Recall that |Si| = z, and let Si = {ei1 , ei2 , . . . , eiz

}. Let us subdivide
Pi into 2z subpaths of equal length, and denote the endpoints of these subpaths
by p0, p1, . . . , p2z. (See Figure 1 for an illustration.) Connect each one of the
vertices p2, p4, . . . , p2z−2 to the root; moreover, for each value of a : 1 ≤ a ≤ z,
connect the vertex p2a−1 to the terminal t1(eia

). All these newly added edges
belong to E1, and hence have priority level 1; recall that all these edges have cost
(length) 0.

Note that each path Pi has been divided into 2z subpaths: these subpaths will
be called the level-1 subpaths of Pi. Each one of these paths will, in turn, be
divided into 2z equal-length subpaths, which will be called the level-2 subpaths
of Pi. Continuing this recursively, the path Pi is divided into nj = (2z)j level-j
subpaths for each priority level j ≤ k. Let us now define the construction for level-j
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. . .

. . .

. . .

p0 p1 p2 p3 p4 p2z−2 p2z−1 p2z

t1(ei1) t1(ei2) t1(eiz)

root r

Fig. 1. Level 1 construction for path Pi.

edges Ej and terminal sets Tj .

Level-j Terminals: Recall that each path Pi was divided into nj−1 = (2z)j−1

level-(j − 1) subpaths. For the level-j construction, we use nj−1 copies of the set
system S: for each i ∈ [|S|] and b ∈ [nj−1], the bth level-(j − 1) subpath of Pi

will represent the set Si in the bth set system.
To define the set Tj of level-j terminals, we create a terminal tj

b(e) for each
element e in the bth set system for 1 ≤ b ≤ nj−1. Of course, each of these
terminals is at priority level j, and there are nj−1|U | terminals in Tj .

Level-j Edges: Given some i ∈ [|S|] and b ∈ [nj−1], consider the bth level-(j−1)
subpath of Pi. Much as in the level-1 case, let us divide this subpath into 2z
level-j subpaths of equal length, and denote the endpoints of these subpaths by
p0, p1, . . . , p2z. Connect the vertices p2, p4, . . . , p2z−2 to the root and for each
a : 1 ≤ a ≤ z, connect the vertex p2a−1 to the terminal tjb(eia

). The newly added
edges all have priority level-j and zero cost.

This completes the reduction of the 3SAT(5) instance ϕ (via the set system S) to
the instance Gϕ of Priority-Steiner Tree. The following sections will give the analysis
of this reduction, and also indicate how to set the parameters including the number
of levels k, the length M of the paths, and the parameter ` of the set-system S.

3.2 Analyzing the Gap

Before we begin the formal analysis of the above construction, it bears repeating
that the only edges with non-zero cost are the edges that lie within the paths
P1, . . . , P|S|. Furthermore, all these edges have the same cost 1/(M |S|), including
the parallel edges which have different priority levels, and thus an optimal solution
will obviously buy only level-1 edges on these paths. However, any such solution
will also use some zero-cost edges in E1, . . . , Ek of priority levels 1, . . . , k, and it is
the structure of these edge sets that we intend to exploit.

Indeed, the basic idea underlying the construction is the following. For any yes-
instance ϕ, the optimal solution to the instance Gϕ can just buy a small fraction of
the edges on paths P1, P2, . . . , P|S|: for each set Si in the optimal set cover solution
to S, it can just buy all the level-1 edges on path Pi. However, in the case of a
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no-instance, any solution for Priority-Steiner Tree on Gϕ will end up buying a much
larger fraction of edges on the paths P1, . . . , P|S|, giving us the desired gap.

3.2.1 Analysis for Yes-instances ϕ. Let us first show the easy half of the result:
there is a low-cost solution for instances corresponding to yes-instances.

Theorem 3.1 (Cost for yes-instances) If ϕ is a yes-instance, then there is a
solution of the corresponding Priority-Steiner Tree problem instance Gϕ with cost at

most |X|+|Y |
|S| .

Proof. Since ϕ is a yes-instance, Lemma 2.5 guarantees a sub-family S ′ ⊂ S
with |S ′| = |X| + |Y | that covers all the elements of U . Now we can define a
solution to the Priority-Steiner Tree instance Gϕ: for each Si ∈ S ′, we take all the
priority level-1 edges on the path Pi, and also all the edges in E1, E2, . . . , Ek that
are adjacent to some vertex on path Pi.

To see that this solution is a feasible one, consider a priority level j ∈ [k] and
any value b ∈ [nj−1]: since the family S ′ is a feasible set cover, all the elements of
the bth-set system are connected to the root r by the chosen edges. Finally, since
we buy |X|+ |Y | paths Pi, each of length 1/|S|, the cost of the solution is bounded

by |X|+|Y |
|S| .

3.2.2 Analysis for No-instances ϕ. For the case of no-instances, we will prove
the following theorem:

Theorem 3.2 (Cost for no-instances) Given a no-instance ϕ, if the number of
priority levels k in the above construction is 16 · 28h · 22`, then the cost of any
solution is at least h

2|S| (|X| + |Y |).

The rest of Section 3.2.2 will be devoted to proving Theorem 3.2. But before we dive
into the proof, note that there is a gap of h/2 in the costs promised by Theorems 3.1
and 3.2, and if we set the parameters h = Θ(log log n) and ` = Θ(log log log n), we
get a Ω(log log n) hardness result. (The details appear in Section 3.2.3.)

Let us fix a solution T of minimum cost to the instance Gϕ: it is easy to check that
any solution of minimum cost contains no cycles. To simplify the analysis further,
we make the following assumptions on the structure of T; these assumptions can
be made without loss of generality.

—The solution T uses the edges with the lowest possible priority levels. In other
words, if the solution contains edge e of priority level j, then using the priority
level (j + 1) edge parallel to e, instead of the edge e itself, makes the solution
infeasible.

—Each level-j terminal t ∈ Tj is connected to the root r via a level-j subpath of
one of the paths P1, P2, . . . , P|S|; recall that each such level-j subpath has length
1/(nj ×|S|) = 1/(|S|(2z)j). Furthermore, different terminals of the same priority
level are connected via disjoint subpaths: for example, the path from terminal
tjb(eia

) goes from the terminal via p2a−1 and then p2a−2 or p2a to the root, where
the segments (p2a−1, p2a) and (p2a−2, p2a−1) are level-j subpaths.
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Therefore, given a path Pi with i ∈ [|S|], for each level-j subpath p of Pi (with
j ∈ [k]) and for each level j′ ≤ j, either all the edges of level-j ′ on subpath p are
in the solution, or none of them is.

For any j ∈ [k], let cj denote the cost of all the edges in the solution T whose pri-
ority levels lie in {1, 2, . . . , j}. The following lemma captures the crucial properties
of the reduction.

Lemma 3.3 Suppose ϕ is a no-instance of 3SAT(5). Set h = Θ(log log n) and
` = Θ(log log log n), so that 2α` > 64h2 holds. If the cost cj−1 < h

2|S| (|X| + |Y |)

for some priority level j : 1 < j ≤ k, then the cost of priority level-j edges in the
solution is at least 1

16·28h·22` .

Proof. Consider a path Pi for some i ∈ [|S|], and let p be the bth level-(j − 1)
subpath of Pi for some b ∈ [nj−1]. Recall that this subpath p represents set Si in
the bth set system of priority level j: we say that this set is pre-chosen if and only if
all the edges of p of priority level j ′ are in the Priority-Steiner Tree solution for some
priority level j′ < j. Note that by our assumptions above, if this set is not pre-
chosen, the Priority-Steiner Tree solution contains no edge of levels in {1, . . . , j − 1}
on the path p.

Since the cost cj−1 < h
2|S| (|X|+ |Y |), and the cost of the path representing each

such set is 1
|S| (2z)j−1 = 1

|S|nj−1
, the total number of level-j sets that are pre-chosen

by the solution is at most h
2 (|X| + |Y |) · nj−1. Hence, in at least half of the nj−1

level-j set cover instances, fewer than h(|X| + |Y |) sets are pre-chosen. In each
one of these instances, Theorem 2.6 implies that a fraction of at least 1

4·28h of the
elements do not belong to the sets pre-chosen by the solution. Now each one of the
corresponding level-j terminals must be connected to the root by a level-j subpath
of one of the paths P1, . . . , P|S|, and these subpaths are disjoint; moreover, the cost

of each such subpath is 1
|S|(2z)j . As the number of elements in the set cover instance

is at least |S|z
d and the number of level-j set-cover instances is (2z)j−1, the cost of

priority level j edges used by the solution must be at least:

(2z)j−1

2
·
|S|z

d
·

1

4 · 28h
·

1

|S|(2z)j
=

1

16 · 28h · d

≥
1

16 · 28h · 22`
.

This completes the proof of the lemma.

We can now use this lemma to prove that any solution for Gϕ has cost at least
h
2 · |X|+|Y |

|S| when ϕ is a no-instance, as claimed in Theorem 3.2.

Proof of Theorem 3.2. Suppose a solution for Gϕ has cost less than C =
h
2 · |X|+|Y |

|S| . Then, for each priority level j : 1 < j ≤ k, the cost cj−1 < C, and

hence by Lemma 3.3 the cost of the priority level-j edges in the solution is at least
1/(16 · 28h · 22`) = 1/k.

But, we have k = 16 · 28h · 22` priority levels, and if the edges at each of these
levels cost at least 1/k, the total cost is 1 � C, which is a contradiction. Hence,
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the total cost of any solution for Gϕ must be at least C = h
2|S| (|X| + |Y |), proving

the theorem.

3.2.3 Setting the Parameters. It is easy to see that parameter M should be at
least (2z)k and that the construction size is bounded by N = O(|S|(2z)k). Recall
that k = 16 · 28h · 22` and that in the set cover construction, 2α` ≥ 64h2 is required
(α < 1 is a constant). We choose h = Θ(log log n) and ` = Θ(log log log n), so that
the above inequality holds. Therefore, we can bound k by 2O(h), and

N ≤ 32`n`(15`22`

)2
O(h)

≤ n` · 22O(h)

Since we set h = Θ(log log n), we have that N ≤ nO(log log log n)22log log n

holds,
and thus h = Θ(log log N) as well. Observing that the yes and the no instances
differ by a factor of h

2 = Θ(log log N), we have proved the following theorem:

Theorem 3.4 There is no c log log n approximation for the priority Steiner tree
problem (for some constant c), unless NP ⊆ DTIME(nO(log log log n)).

Note that the above theorem can be extended to show an Ω(log log n) -hardness
for the special case of the priority Steiner tree problem where all edges have unit
costs, as follows. The construction remains the same, except that every edge e on
paths P1, . . . , P|S| is replaced by a path of |T | edges, whose priority levels are the
same as that of e (recall that |T | is the number of terminals). The costs of all
the edges are unit. It is not hard to see that the gap between the yes and the no
instances is Ω(log log N ′), where N ′ ≤ N2 is the size of the new construction.

4. HARDNESS OF OTHER NETWORK DESIGN PROBLEMS

In this section, we show that the Ω(log log n) hardness result of the priority Steiner
problem can be extended to prove identical inapproximability of two popular net-
work design problems: fixed charge network flow, and cost-distance network design.

4.1 Fixed charge network flow

The single source fixed charge network flow problem is defined on an undirected
graph G with a specified root vertex r. Each vertex v has demand dv and each edge
e has capacity ue and unit cost. A feasible solution specifies an integral number
of copies xe of each edge e that must be purchased so that the demand from each
vertex can be simultaneously routed to the root. The total cost of the solution is
therefore

∑

e xe, and the objective is to find x to minimize it.1

Suppose we are given an instance of priority Steiner tree, where the costs of all
the edges are unit. We convert it into an instance of fixed charge network flow
as follows. Let k be the total number of priority levels. The underlying graph is
unchanged. For each vertex v of priority i, we set the demand to be dv = n5(k−i),
and for each edge e of priority i the capacity is ue = n5(k−i)+2.

1Note that the general version of FCNF also incorporates an incremental cost le for each edge,

so that the cost of sending fe units of flow on edge e is cedfe/uee + lefe. We show that even
with le = 0 our inapproximability result holds. Also, while the classical version of FCNF has

xe ∈ {0, 1}, this can easily be incorporated by replacing each edge by a multi-edge.
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Given a solution TP for the priority Steiner tree instance, we can construct a
solution TF for the fixed charge network flow instance of no greater cost, as follows.
Consider some edge e. If it belongs to the solution TP , then set xe = 1, otherwise
set xe = 0. Clearly, the costs of the two solutions are identical. It remains to show
that TF is a feasible solution for the fixed charge network flow problem. Consider
an edge e of priority i, and let U(e) be the set of terminals whose paths to the root
in TP use edge e. Clearly, the priority of all terminals in U(e) is in {i, i+1, . . . , k}.
Since there are at most n terminals of each priority level, the total demand of all
the vertices in U(e) is at most n ·n5(k−i) +n ·n5(k−i−1) + · · ·+n ·n5 +n ≤ n5(k−i)+2,
so the capacity of edge e is sufficient to serve all the vertices in U(e).

The other direction is also true. Suppose we are given an optimal solution TF

to the fixed charge network flow problem. We can construct a solution TP to the
priority Steiner tree problem of no greater cost, as follows. TP is also defined to be
identical to TF , except that for every edge e with xe ≥ 1, we use a single edge in
TP . Therefore, the cost of TP is no greater than that of TF . It now suffices to show
the feasibility of TP . First, observe that since there are at most n terminal vertices
and each terminal vertex has a path of length at most n to the root, and since TF

is an optimal solution, its cost cannot exceed n2. Now, suppose for contradiction
that TP is infeasible. That is, for some terminal t of priority i, there is a cut that
separates it from the root such that all the edges of this cut belonging to TP have
priorities in {i + 1, i + 2, . . . , k}.

Note that the demand of t is n5(k−i), whereas the capacities of these edges are at
most n5(k−i)−3. But then, in order to supply the demand of t, the number of edges
in this cut that belong to TF must be at least n3, contradicting the fact that the
solution cost is at most n2.

The next theorem follows from the above discussion and Theorem 3.4.

Theorem 4.1 The Fixed-Charge Network Flow problem is Ω(log log n)-hard to ap-
proximate, even in the single-source case, unless NP ⊆ DTIME(nO(log log log n)).

Note that the demands and the capacities in the above reduction could be as
large as nO(n). However, in our construction for the priority Steiner tree problem,
the number of priority levels is Θ(log n). Therefore, we have shown Ω(log log n)-
hardness for fixed charge network flow unless NP ⊆ DTIME(nO(log n)), even if
the demands and the capacities are given in unary.

Furthermore, note that there are only O(log n) different values of ue used in the
instance IF . This brings our result into the realm of modern-day telecommunica-
tions network design, where only a few cable types are used to design networks to
serve massive numbers of nodes.

4.2 Cost-distance network design

An instance of the Cost-Distance network design problem is defined on an undirected
graph rooted at r, as follows. Each edge e has a length le and a cost ce, and
each vertex v has demand dv. A feasible solution consists of a tree TC spanning
all vertices with positive demand and the root. Let V (e) be the set of vertices
whose paths to the root use edge e. The total cost of the solution is given by
c(TC) =

∑

e(ce + le
∑

v∈V (e) dv). The objective is a minimum cost feasible solution.
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Cost-Distance is also a special case of the general FCNF problem. To show the
inapproximability of Cost-Distance, we use a standard reduction of single-source
zero-incremental cost FCNF to Cost-Distance. Given an instance IF of FCNF, we
convert it to an instance IC of Cost-Distance by defining the length le of edge e to be
le = ce/ue. The costs of the edges and the demands at the vertices are unchanged.

Theorem 4.2 The Cost-Distance problem cannot be approximated to better than
an Ω(log log n) factor unless NP ⊆ DTIME(nlog log log n).

Proof. Let T be an underlying tree rooted at r, with its counterparts in IF

and IC denoted as TF and TC respectively. It was shown in [Meyerson et al. 2000;
Garg et al. 2001] (among others) that the following relationship holds between their
costs: c(TF ) ≤ c(TC) ≤ 2c(TF ). We briefly prove this for expositionary clarity.

Consider an edge e with flow fe. Since the tree is the same in both IF and IC , the
flow is the same in both cases. The cost of this edge in IF and IC is, respectively,
cedfe/uee and ce + fele, where le = ce/ue. We therefore have fele = fece/ue ≤
cedfe/uee. The claim now follows by observing that either the edge has zero flow
(and hence zero cost) or positive flow (and hence cost at least ce in IF ).

Since solutions to FCNF and Cost-Distance are within constant factors of each
other, we can apply Theorem 4.1 and this theorem follows.

At this point, it is worth considering the relationship of Cost-Distance to the
single-source buy-at-bulk problem, which is known to have a constant factor ap-
proximation [Guha et al. 2001; Talwar 2002]. The fundamental difference is that
in the buy-at-bulk problem, edge costs and lengths are uniform; that is, they are
proportional to edge lengths and universally available. In other words, the same
set of cables is available for installation on every edge. In contrast, the FCNF prob-
lem and Cost-Distance are non-uniform, so that each edge may have its own set
of available costs, lengths and capacities, with no relation whatsoever with other
edges. Our results point to the fact that this non-uniformity plays a fundamental
role in separating the approximability of such problems from homogenous network
design problems like single-source buy-at-bulk. A similar distinction was pointed
out by Andrews, who proved stronger inapproximability results for non-uniform
multi-commodity buy-at-bulk network design [Andrews 2004].

5. CONCLUSIONS

Designing networks in practice often involves various levels of complexity and re-
quirements, and an understanding of precisely what characteristics of the problem
govern their level of approximability is critical. While our work makes some progress
in this quest, several important questions remain. For instance, the gap between
the approximability of Cost-Distance and Priority-Steiner Tree (both O(log n)) and
their inapproximability remains to be closed. The class of problems that can be
modeled via FCNF-type constructions is vast, and the approximability of FCNF as
defined in this paper is still open. Finally, designing networks on directed graphs
presents several challenges which are as yet poorly understood.
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