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Abstract. We consider profit maximization pricing problems, where we
are given a set of m customers and a set of n items. Each customer c
is associated with a subset S. C [n] of items of interest, together with
a budget B., and we assume that there is an unlimited supply of each
item. Once the prices are fixed for all items, each customer ¢ buys a
subset of items in S, according to its buying rule. The goal is to set the
item prices so as to maximize the total profit.

We study the unit-demand min-buying pricing (UDPmin) and the single-
minded pricing (SMP) problems. In the former problem, each customer
¢ buys the cheapest item ¢ € S,, if its price is no higher than the budget
B, and buys nothing otherwise. In the latter problem, each customer ¢
buys the whole set S. if its total price is at most B., and buys nothing
otherwise. Both problems are known to admit O(min {log(m + n),n})-
approximation algorithms. We prove that they are log'™¢(m 4 n) hard

s
to approximate for any constant ¢, unless NP C DTIME(n'°" ™), where §

is a constant depending on €. Restricting our attention to approximation

-5
factors depending only on n, we show that these problems are glog’ ™ n_

hard to approximate for any § > 0 unless NP C ZPTIME(nlOg& ™), where
¢’ is some constant depending on . We also prove that restricted versions
of UDPmiv and SMP, where the sizes of the sets S. are bounded by k,
are k'/?~“_hard to approximate for any constant e.

We then turn to the Tollbooth Pricing problem, a special case of SMP,
where each item corresponds to an edge in the input graph, and each set
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Sc is a simple path in the graph. We show that Tollbooth Pricing is at least
as hard to approximate as the Unique Coverage problem, thus obtaining
an {2(log® n)-hardness of approximation, assuming NP Z BPTIME(2"6)7
for any constant ¢, and some constant € depending on .

1 Introduction

We study profit maximization pricing problems in the unlimited supply model.
In these problems, we are given a set of m customers and a set of n items, where
each customer c is associated with a budget B, and a subset S, C [n] of items
it is interested in. Our goal is to set a price p(7) for each item i € [n], so as to
maximize the total revenue. Once the prices for the items are set, each customer
¢ chooses a subset of items in S, to buy, using its buying rule. We assume that
we are given an unlimited supply of each item.

One of the most natural buying rules is the unit-demand min-buying rule, where
each customer ¢ € [m] buys the cheapest item ¢ € S, (breaking ties arbitrar-
ily), provided that the price p(i) < B.. We refer to the corresponding pricing
problem as UDPyn. This problem was first introduced by Rusmevichientong et
al. [18,19], and subsequently Aggarwal et al. [1] have shown an O(log m +logn)-
approximation algorithm for it.

The second problem that we consider is Single-Minded Pricing (SMP). Here,
each customer ¢ buys the whole set S, of items if its total price does not exceed
its budget B., and buys nothing otherwise. This problem was introduced by
Guruswami et al. [14], who also show that the techniques of [1] can be used
to obtain an O(logm + logn)-approximation algorithm for SMP. Hartline and
Koltun [15] gave a (1 + €)-approximation algorithm for both UDPyny and SMP
when the number of items n is constant.

We remark that for pricing problems, it is natural to assume that the number
of customers is much higher than the number of items, that is, m >> n. Even
though both UDPyny and SMP admit logarithmic approximation algorithms in
terms of (m + n), if we restrict ourselves to approximation factors depending
only on n, nothing better than the trivial O(n)-approximation is known.

On the negative side, Briest [3] has shown that both UDPyy and SMP are

max{n5,log5(m+n)}—hard to approximate for some (small) § > 0, assum-

ing that no randomized polynomial-time algorithms can approximate constant-
degree Balanced Bipartite Independent Set to within arbitrarily small constant
factors. He also showed similar results under an assumption that slightly strength-
ens Feige’s Random 3SAT hypothesis [11].

In this paper, we show that both UDPyn and SMP are loglfe(m + n) hard to

approximate for any constant e, unless NP C DTIME(nlOgE ™) for some constant
¢ depending only on e. If we restrict our attention to approximation factors as



a function of n, then we show that both these problems are 218"’ n hard to ap-

proximate for any constant §, under the assumption that NP < ZPTIME(nlOgé "),
for some constant ¢’ depending only on 4.

We next turn to restricted versions of UDPyn and SMP, denoted by kUDPyn
and kSMP respectively, where the sizes of the sets S, are bounded by k. The
kSMP problem is known to be APX-hard even for k = 2 [14], and Balcan and
Blum [2] have shown an O(k)-approximation for kUDPyy, improving on an in-
dependent work of Briest and Krysta [4], who achieved an O(k?)-approximation
for the problem. As for negative results, Briest [3] has proved that kSMP is
kc-hard to approximate for some constant ¢, assuming Feige’s random 3SAT hy-
pothesis [11], and Khandekar et al. [16] showed that the problem is {2(k) hard to
approximate for constant k, assuming the Unique Games Conjecture of Khot [17].
We show that both kUDPyy and kSMP are k'/2~¢-hard to approximate for any
constant € unless P = NP.

Finally, we consider a special case of the SMP problem called the Tollbooth Pric-
ing problem, where we are given a graph G, and items correspond to the edges of
G. The item set S. of every customer c is some simple path in graph G, and the
goal is to set the prices of the edges, so as to maximize the revenue. Since the
Tollbooth Pricing problem is a special case of SMP, it admits an O(logm +logn)
approximation [14]. The problem is APX-hard [14], and from the results of Khan-
dekar et al. [16], it is (2 — €) hard to approximate even on star graphs, assuming
the Unique Games Conjecture. We show that the Tollbooth Pricing problem is
at least as hard to approximate as the Unique Coverage problem (to within a
constant factor). In the Unique Coverage problem, we are given a collection U
of n elements, and a family S of subsets of elements of U. The goal is to find a
family S’ C S of element subsets, maximizing the number of elements that are
covered by exactly one subset in §’. The problem was introduced and studied
by Demaine et al. [8], who showed that for any arbitrarily small constant ¢, if
NP & BPTIME(2"5)7 then Unique Coverage is hard to approximate to within a
factor of 2(log®n), where € is some constant depending on §. They also showed
that the problem is hard to approximate to within Q(logl/ 37¢n) for any € assum-
ing the Random 3SAT Hypothesis of Feige [11], and proved additional hardness
results using a hypothesis about Balanced Bipartite Independent Set. Our re-
duction immediately implies similar hardness results for the Tollbooth Pricing
problem.

Related Work. Briest and Krysta [4] considered a more general version of UDPyn;,
where customers are allowed to have different budgets (valuations) for different
items. They show an {2(log®n)-hardness for this problem for some constant e,
unless NP C DTIME (no(log log ")), and an n®-hardness for some constant € > 0,

unless NP C DTIME (QOW)) for all § > 0.

A special case of the Tollbooth Pricing problem, called the Highway Problem,
where the input graph is restricted to be a path, has received a significant



amount of attention. Elbassioni et al. [9] showed that the problem is strongly
NP-hard. On the algorithmic side, Balcan and Blum [2] have shown an O(log n)-
approximation algorithm, and Elbassioni et al. [10] have proposed a QPTAS.
Subsequently, Grandoni and Rothvoss [13] have shown a PTAS for the problem.
For the special case of the Tollbooth Pricing problem where the input graph is
a tree, the best known approximation ratio is O(logn/loglogn), due to Gamzu
and Segev [12]. However, when the number of leaves in the tree is bounded by a
constant, the problem admits a PTAS [13].

Pricing problems with limited supply have also received a considerable amount
of attention; Please refer to, e.g., [5,7,6] and references therein.

Our Results. We start by formally stating the pricing problems we consider. We
are given a set of m customers and a set of n items, where each customer ¢ € [m)
is associated with a set S. C [n] of items and a budget B.. Given a setting
{p(i)};cpn of item prices, every customer selects a subset Si, C S; of items to
buy according to its buying rule, and our goal is to maximize the total profit,
Ece[m] Ziesg p(i). In the UDPyy problem, the buying rule of the customers
is defined as follows. Each customer ¢ € [m] buys the cheapest item i € S,
breaking ties arbitrarily, if p(i) < B., and buys nothing otherwise.

In the SMP problem, each customer ¢ € [m] purchases the whole set S, if
> ics, P(i) < Bc, and purchases nothing otherwise. Our main result is sum-
marized in the following theorem.

Theorem 1. UDPyy and SMP are log'~“(m + n)-hard to approzimate for any
constant € > 0, unless NP C DTIME(n(1°8™) ) where ¢ is some constant depend-

ing only on €. Moreover, assuming that NP ¢ ZPTIME(n(IOg")Sl), both problems

are hard to approximate to within a factor of glog' " for any constant §, where
0" is some constant depending only on §.

We next turn to special cases of both problems, denoted by kUDPyn and kSMP
respectively, where the sizes of the sets S. are bounded by k and prove the
following theorem.

Theorem 2. Let € > 0 be any constant. Then for infinitely many constants k,
both KUDPwin and kKSMP are kY/2=<-hard to approzimate unless P = NP.

Finally we turn to the Tollbooth Pricing problem. In this problem, we are given
a graph G = (V, E), and a set of m simple paths Py,..., P, where each path
P, is associated with a customer ¢ and a budget B.. Once the price function
p: E — R on the edges is set, each customer ¢ buys all edges on the path P. if
ZGGPC p(e) < B., and buys nothing otherwise. The goal is to compute the edge
prices p(e) so as to maximize the total profit. It is clear that Tollbooth Pricing is
a special case of SMP, and notice that the number of items is n = |E(G)|.



We perform a reduction from the Unique Coverage problem to the Tollbooth
Pricing. In the Unique Coverage problem, we are given a set U of elements and
a family S of subsets of U as input. A solution is a sub-collection &’ C S of the
input sets. We say that element u € U is satisfied by the solution if and only if
it belongs to exactly one set in S’. Our goal is to choose &’ so as to maximize
the number of satisfied elements. Demaine et. al. [8] have shown that for any
arbitrarily small constant ¢, if NP & BPTIME(2”5), then Unique Coverage is hard
to approximate to within a factor of 2(log®n), for some constant ¢ depending
on 0. They also showed that, under the assumption of Feige [11] that refuting
random instances of 3SAT is hard, Unique Coverage is hard to approximate to
within a factor of £2(log/®~¢n) for any € > 0. We prove the following theorem:

Theorem 3. If there is a factor a-approximation algorithm for the Tollbooth
Pricing problem, for any approzimation factor o < O(logn), then there is a
randomized O(«)-approzimation algorithm for the Unique Coverage problem.

Combining this with the result of [8], we obtain the following corollary.

Corollary 1. For any arbitrarily small constant §, if NP £ BPTIME(2"5), Toll-
booth Pricing is hard to approzimate to within a factor of £2(log®n) for some
constant € depending on §. Moreover, under Feige’s random 3SAT assumption,
this problem is hard to approzimate to within a factor of 2(log*>~¢n) for any
e>0.

2 Hardness of UDPyy and SMP

In this section we prove Theorems 1 and 2. We focus here on the UDPyyn problem
only. The hardness results for SMP are obtained using similar ideas and appear
in the full version of the paper.

We start with the following theorem, due to Trevisan [20]. Since we use slightly
different parameters, we provide the proof in the full version.

Theorem 4. Given an n-variable 8SAT formula o, any sufficiently small con-

stant € > 0 and any integer X > 0, there is a randomized algorithm to construct
1

a graph G with mazimum degree at most A = 2 P°Y(<) such that w.h.p.:

— (YES-INSTANCE:) If ¢ is satisfiable, then G has an independent set of size
V(@)

— (NO-INSTANCE:) If ¢ is not satisfiable, then G has no independent set of
size |[V(G)| /A=<,

The construction size is |V (G)| = n*P°%() | and the reduction runs in time

pAPoly(2) Moreover, the algorithm can be made deterministic with running time
90(A) A poly(3)



We remark that this theorem allows us to adjust parameter A. To prove Theo-
rem 1, we will use A = O(loglogn), while we set A = O(1) for Theorem 2.

2.1 The Construction

Let G = (V,E) be the instance of Maximum Independent Set obtained from
Theorem 4, where the value of A (and A) will be fixed later. We first define an
intermediate instance of UDPyn, which is then converted into a final instance.

The intermediate instance is defined as follows. The set of items contains, for
each vertex v € V, for each index y € [4], an item i(v,y). That is, the set of
items is Z = {i(v,y) | v € V,y € [A]}.

Similarly, the set of customers contains, for each vertex v € V, for each index x €
[4], a customer ¢(v, ). That is, the set of customers is C = {c(v,z) | v € V,z € [A]}.

The item set S, ) for the customer c(v, x), contains the item i(v,z), and ad-
ditionally, for each neighbor w of vertex v in graph G, for each index y € [4],
item 4(u, y) belongs to S(y ). Formally, Sc(, 2) = {i(w,y) | (u,v) € E,y € [A]}U
{i(v,z)}. Notice that S, 4| < A% + 1 for all customers c(v,z) € C. Moreover
for each item i(v,y) € Z, there are at most A% + 1 customers ¢ € C such that
i(v,y) € Ser.

We partition the set C of customers into A subsets Cy, ...,Ca, such that for each
1 < h < A, set Cp contains customers c(v, h) for all v € V. Finally, for each
1 < h < A, each customer ¢ € Cp, is assigned budget B, = 1/2h.

This finishes the definition of the intermediate instance. For convenience, we call
the customers in set C wvirtual customers. In our final instance, we replace each
virtual customer with a number of new customers.

In order to define the final instance, for each 1 < h < A, we replace each
virtual customer ¢ € C, with a set G(c) = {c(1),...,¢(2")} of 2" identical new
customers. Each new customer c(h/), for 1 < b’ < 2" has budget Behy = Be
and S.(py = Se. The final set of customers is C' = |J . G(c) and the final set of
items remains unchanged, Z' = Z. The number of customers in the final instance
ism =|C'| =022 |C|) = |V]-A-20(4) = |V]-29(4) while the number of items
is 7. = |V| - A. Moreover, for each customer ¢ € C’, we have |S.| < A% + 1. This
completes the construction description.

2.2 Analysis
We analyze the construction in the following two lemmas.

Lemma 1. In the YES-INSTANCE, there is a solution to the UDPwun problem
instance whose value is at least |V|A €.



Proof. Let U C V be a maximum independent set of size |V|/A€ in G. We set
the prices of the items i(u,y) € Z' as follows. If u & U, then the price of i(u,y)
is set to co. Otherwise, if u € U, then we set the price of i(u,y) to 1/2¥. Notice
that, since [U|- A > |V]- Al7¢ there are V|- A7 items of finite prices. We
now show that this solution has value at least |V| - A'=€.

Indeed, for each vertex u € U and an index y € [A], consider the virtual customer
¢ = c¢(v,y) € Cy. Notice that S contains item i(v,y) whose price is 1/2¥, but
all other items in S have price oco. Therefore, each customer ¢ € G(c’) buys
the item i(v,y), and pays 1/2¥ for it. The total profit collected from customers
in G() is 1, and so the total profit collected from all customers is at least
|UIA > V] Al=e.

Lemma 2. In the NO-INSTANCE, the value of the optimal solution is at most
o(|V] - A¢).

Proof. Let p* be an optimal solution, and let r* be its revenue. We first ar-
gue that we can assume w.l.o.g. that for each item ¢ € Z’, either p*(i) €
{1/2" |1 < h < A}, or p*(i) = .

Indeed, suppose there is an item i € Z’ with p*(i) € (1/2",1/2"71). Then
any customer who buys item i must have budget at least 1/2"~! so increas-
ing p*(i) to 1/2"~1 does not affect these customers, and may only increase

the revenue. Therefore, from now on we assume that for each item i € Z',
p*(i) € {1/2" |1 < h < A} U {oo}.

Notice that for each virtual customer ¢ € C, all customers in G(c) contribute
the same amount to the total revenue. Let k. denote this amount. We now let
C* C C be the set of virtual customers for which k. = B.. Equivalently,

¢ = {eeComin @) - 5.}

Claim. The customers in (J G(c') contribute at least 7*/2 to the total rev-

enue.

ceC*

Due to space limitation, the proof of this claim appears in the full version. Notice
that |C*| > r*/2, since for each virtual customer ¢ € C*, the total budget of all
customers in G(c) is 1.

From now on, we focus on finding an independent set U in graph G of size at
least (r*/2—|V])/A from C*. Since in the NO-INSTANCE, G does not contain an
independent set of size more than |V|/A'~¢, this implies that (r*/2 —|V|)/A <
[V JAY=€, and hence r* < O(|V| A°).

We construct an independent set U C V(G), together with a partition (C',C?)
of C*, as follows. Start with U,C!,C? = (). We then perform A iterations, where
in iteration y, we consider each virtual customer ¢(v,y) in C* N C,, and do the
following:



— If vertex v is already in U, we add virtual customer c(v,y) into C*.

— If vertex v is not in U and U U {v} remains an independent set, we add
vertex v to set U and add c(v,y) to C1. We say that c(v,y) is responsible for
adding vertex v into U.

— Otherwise, v € U, but there is a vertex u € U such that (u,v) € E(G). We
add c(v,y) to C? in this case and say that vertex u prevents the algorithm
from adding v into U.

In the end, when all customers in C* are processed, each virtual customer in C*
is added to either C! or C?, so C* = C' UC2. Moreover, for each virtual customer
c(v,y) in C', the corresponding vertex v belongs to U, so |U| > [C!|/A. The
following claim will complete the proof of the lemma.

Claim. |C?| < |V|, and so |U| > |C* \ C2|/A > (r*/2 — |V|)/A.

Proof. 1t is sufficient to show that for each vertex v € V, no two virtual cus-
tomers c(v,y),c(v,y’) with y # v’ belong to C2. Assume otherwise, and let
c(v,y),c(v,y') € C%. By our construction, we have c(v,y) € C, and ¢(v,y’) € Cy.
Assume w.l.o.g. that y < ¢/, so ¢(v,y) was processed before c(v, /).

Let uw € U be a vertex such that (u,v) € E(G), and vertex u prevents the
algorithm from adding v to set U. Let ¢(u,x) be the customer responsible for
adding u to U. Then ¢(u,x) was processed before c¢(v,y), and so z <y < ¢’

Notice that the item i(v,3’) belongs to S.(, 4. The price of i(v,y’) then must be
set to at least Bey,q) = 1/2% > 1/29/ = Be(v,y), since otherwise the customers in
G(c(u,x)) would have paid below B, ) for item i(v,y’), contradicting the fact
that ¢(u,z) € C*. But then customer ¢(v,y’) must buy some item i’ # i(v,y’).
Assume that " = i(w, z). Then w must be a neighbor of v in G, w # v, and so
i" € Se(v,y) must hold. But the price of 4" must be B, ,) = 1/23/ < 1/2v =
Be(y,y), and so the customers in G(c(v,y)) should have paid below B, ) for
item 4, contradicting the fact that c(v,y) € C*.

Hardness factors: The gap between YES-INSTANCE and NO-INSTANCE costs is
A'~2¢ while the number of customers in the instance is i = |V(G)|-2°(4), and
the number of items is 7 = |V(G)| - A.

We first prove Theorem 1. We choose the parameter A = O(loglogn) such that
A = (logn)®, where b > -. The hardness factor then becomes g = A!=2¢ >
log?~' n, while m + i = [V(G)[20(4) < 20(Alogn) < glog"n < 99" "myi
ing logarithm on both sides will give g = log'~?(® (7 + 7). The deterministic
reduction takes time 20(4) = g™’ fo1 some function £, so we have proved
the first part of Theorem 1.

To prove the second part, we use the randomized version of Theorem 4, and
choose A = (log n)® for some large constant b, while € is set to be any small enough



constant for which Theorem 4 works. In this case, we have A = 20((og ™) and
i < [V(G)|A < 2008m" while g = Al72¢ > 20((oen)’) [ is easy to check
that g > glog!~ /Y 7 as desired. Since we use the randomized reduction, the
running time of the reduction is 20108 ")om, and so the result holds under the
assumption that NP ¢ ZPTIME(n(l"g”)O(b)).

To prove Theorem 2, we choose A in Theorem 4 to be any sufficiently large
constant. Denote by k = max.cc |S¢|. Since the construction guarantees that
k < 2A2, we have the hardness factor of Al=2¢ > k1/2=¢ In this case, the
deterministic reduction only takes polynomial time, so this hardness result holds
under the assumption that P # NP.

3 Tollbooth Pricing

In this section we prove Theorem 3. It will be useful to introduce the notion of
fractional coverage and show how to convert fractional coverage to an integral
one. Given an instance of Unique Coverage and a fractional solution that assigns
a non-negative weight w(S) to every set S € S, we say that an element u € U
is fractionally covered if and only if 1/4 < 3 g sw(S) < 1. We argue that any
good fractional coverage can be converted into a good integral coverage with a
constant loss in the solution value. The proof of the following lemma appears in
the full version of the paper.

Lemma 3. There is an efficient randomized algorithm, that, given a fractional
solution of value fn to any instance of the Unique Coverage problem, w.h.p. finds
an integral solution of value 2(Bn) to the Unique Coverage instance.

3.1 Construction

Let (U,S) be an instance of Unique Coverage, where |U| = n and [S| = m.
We construct an instance of Tollbooth Pricing as follows. Graph G = (V, E)
consists of m + 1 vertices v, ..., Un. Let h = [logm]. For each consecutive pair
(vi—1,v;) of vertices, 0 < i < m, we add h + 1 parallel edges €}, ...,e,. These
edges are viewed as representing the set S; € S. We now define the set of paths
(or customers) in the graph. All paths start from vy and end at v,,. For each
element u € U, for each j : 1 < j < h, we have a set P(u,j) of 27 paths. The
budget of each path in P(u, j) is 27, the source vertex is vy, and the sink is v,,.
Each path in P(u, j) consists of edges e] ,ef ,...,el" , where for all 1 < ¢ < m,
if u € Sy then iy = j, or otherwise ¢, = 0. This completes the description of the
construction. Notice that the total budget is B = nh2". Let m and 7 denote the
number of customers (i.e. the number of paths) and items, respectively. Notice
that m < O(nmlogm), and i < nh < O(nlogm) < O(n?), since we can assume
w.l.o.g. that |S] < 2".



3.2 Analysis

The analysis consists of two parts. First we show that if there is a solution
to Unique Coverage that satisfies a S-fraction of the elements, then there is a
solution to Tollbooth Pricing of value at least 8- B. In the second part, we show
an efficient randomized algorithm, that, given any solution to Tollbooth Pricing
instance G of value - B, w.h.p. finds a solution to the Unique Coverage problem
that satisfies {2(an) elements.

Lemma 4. If there is a solution to the Unique Coverage instance (U,S) that
satisfies at least Pn-elements, then there is a solution to the Tollbooth Pricing
instance of value BB.

Proof. Let 8’ C S be a solution to the Unique Coverage problem, and let U’ C U
be the set of elements uniquely covered by S’ |U’'| > pn. For each S; € &',
for each j : 1 < j < h, we set the price of the edge e} to 27. The prices of all
other edges (including the edges e} for all i) are set to 0. For each u € U’ and
J 1< j < h, we consider the revenue collected from the paths in P(u, j). Let .S;
be the set that uniquely covers u in the solution. Then for each path in P(u, j),
exactly one edge e§- on the path has a non-zero price. This price is 2/ - the same
as the budget of the path, while all other edges have price 0. Therefore, each
such path contributes 27 to the solution value, and the total contribution of the
paths in P(u, ) is 2". This implies the lemma.

Lemma 5. There is an efficient randomized algorithm, that, given any solution
to the Tollbooth Pricing instance G of value aB, w.h.p. finds a solution to the
Unique Coverage instance (U, S) that satisfies £2(an) of the elements.

Proof. Let p* : E — R>( be any solution of value aB to the Tollbooth Pricing
problem. Let P; be the set of paths, such that each P € P; contributes at least
half of its budget to the solution. Our first observation is that the profit collected
from the paths in P; must be at least a3/2 (otherwise, we can multiply the price
of each edge by a factor of two and get a better solution). From now on, we will
only focus on paths in P; and we will discard all other paths. We say that a
path P € P; is of type 1 if at least half the cost it pays goes to edges in set
Ey = {ef:1<i<m}, and it is of type 2 otherwise. Let P’ and P” denote the
set of paths of type 1 and 2 respectively. We distinguish between two cases.

Case 1: Paths of type 1 contribute at least al3/4 to the solution value. We
claim that in this case the solution value is at most O(B/logm), and therefore
it is sufficient to find a solution to Unique Coverage instance that satisfies a
£2(1/log m)-fraction of the elements. We then show an algorithm to find such a
solution.

Indeed, consider some element u € U. Recall that, for all j, every path in the
sets P(u,j) traverses all edges in the set Eo(u) = {ef) : u & S;}, and these are



the only edges from Fj traversed by these paths. Let C, = ZeeEO(u) p*(e) be
the total price of these edges. A path P € P(u,j) can belong to P’ only if
27 /4 < C, < 27. This means that there are at most 3 values of j : 1 < j < h
for which P(u, j) NP’ # 0, so for each u € U, the paths in set U?:1 P(u,j) only
contribute at most an O(1/h) = O(1/log m)-fraction of their total budget to the
solution. Therefore, the solution value is at most O(B/h) = O(B/logm). Now
we show an algorithm for the Unique Coverage problem instance that satisfies an
£2(1/log m)-fraction of the elements. From Lemma 3, it is enough to construct a
fractional solution of value £2(n/logm). For each element u € U, let §(u) be the
number of sets in S to which element u belongs. We partition the elements into
h = [logm] classes C1,...,C}, where class C; contains elements v with 21 <
d(u) < 29+ Let j* be the class containing the maximum number of elements, so
|Cj+| > 2(n/logm). We set the weight of every set S to be w(S) = 1/27"+1. This
ensures that all elements in Cj- are fractionally covered. Applying Lemma 3, we
obtain an integral solution of value £2(n/logm).

Case 2: Assume now that the paths in P’ contribute at least al3/4 to the
solution value. Let "/ denote the total revenue collected from these paths by
edges in £y = E\ Ey. Then we have that 7"/ > 2(aB) = 2(anh2"). Notice that
by the definition of set P”, each path P € P” pays at least 1/4 of its budget for
the edges in set F; that lie on path P.

We now partition the paths in P into sets P{,..., P} where set P} contains
all type-2 paths whose budget is 27. Let j* be the index for which the profit
contributed by the paths in PJ’»’* is maximized. This profit is at least an2”.

We say that element u is good if 27" /4 < 3. o p*(€i.) < 27°. From the
above arguments, for each path P € P if P € P(u,7*), then the corresponding
element u must be good. Moreover, if u is good, then all paths in P(u,j*)
belong to P}.. Therefore, at least £2(an) of the elements in U must be good. We
now define a fractional solution to the Unique Coverage problem, where every
the weight of every set S; € S is set to w(S;) = p(e§*)/2j*. Notice that all
good elements are fractionally covered, thus giving us a fractional solution where
£2(an) elements are satisfied. We finally invoke Lemma 3 to complete the proof.
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