
Degree-3 Treewidth Sparsifiers∗

Chandra Chekuri† Julia Chuzhoy‡

Abstract

We study treewidth sparsifiers. Informally, given a graph

G of treewidth k, a treewidth sparsifier H is a minor of

G, whose treewidth is close to k, |V (H)| is small, and

the maximum vertex degree in H is bounded. Treewidth

sparsifiers of degree 3 are of particular interest, as routing

on node-disjoint paths, and computing minors seems easier

in sub-cubic graphs than in general graphs. In this paper

we describe an algorithm that, given a graph G of treewidth

k, computes a topological minor H of G such that (i) the

treewidth of H is Ω(k/polylog(k)); (ii) |V (H)| = O(k4); and

(iii) the maximum vertex degree in H is 3. The running time

of the algorithm is polynomial in |V (G)| and k. Our result is

in contrast to the known fact that unless NP ⊆ coNP/poly,

treewidth does not admit polynomial-size kernels. One of

our key technical tools, which is of independent interest, is a

construction of a small minor that preserves node-disjoint

routability between two pairs of vertex subsets. This is

closely related to the open question of computing small

good-quality vertex-cut sparsifiers that are also minors of

the original graph.

1 Introduction

Given a large graph G, the goal in graph sparsification
is to compute a “small” graph H that retains, exactly
or approximately, some key properties of G. Two such
standard regimes are when V (H) = V (G) but H is a
sparse graph, or when |V (H)| � |V (G)|. Sparsifiers
for basic properties such as connectivity, distances, cuts
and flows have been extensively studied. For instance,
cut sparsifiers were introduced by Benczur and Karger
[4], and were more recently generalized to spectral
sparsifiers [3], and to cut and flow sparsifiers for vertex
subsets [32, 28]. Graph sparsifiers are closely related
to the notion of kernelization used in fixed-parameter
tractable algorithms, where an input instance is first
reduced to a much smaller instance (called a kernel),

∗A full version of the paper is available on the ArXiv [10].
†Dept. of Computer Science, University of Illinois, Urbana, IL

61801. chekuri@illinois.edu. Supported in part by NSF grant

CCF-1319376.
‡Toyota Technological Institute, Chicago, IL 60637. Email:

cjulia@ttic.edu. Supported in part by NSF grant CCF-1318242.

whose size is ideally polynomial in the parameter k,
and then the problem is solved on the smaller instance.
Sparsification and sparse representations are also of
great importance for other objects such as signals,
matrices, and geometric objects to name just a few.

We say that a graph H is a strong sparsifier for the given
graph G, if additionally H is a minor of G. Strong
sparsifiers are of particular interest, since they retain
some of the structure of G. For example, if H contains
some graphH ′ as a minor, then so doesG; a collection P
of disjoint paths (or cycles) in H immediately translates
to a collection of disjoint paths (or cycles) in G, and so
on.

In this paper we study sparsifiers for treewidth, a
fundamental graph parameter with a wide variety of
applications in graph theory and algorithms. The
treewidth of a graph G = (V,E) is typically defined
via tree decompositions. A tree-decomposition of G
consists of a tree T = (V (T), E(T)) and a collection
of vertex subsets {Xv ⊆ V }v∈V (T) called bags, such
that: (i) for each edge (a, b) ∈ E, there is some node
v ∈ V (T) with both a, b ∈ Xv and (ii) for each vertex
a ∈ V , the set of all nodes of T whose bags contain a
form a non-empty connected subtree of T . The width
of a given tree decomposition is maxv∈V (T) |Xv| − 1,
and the treewidth of a graph G, denoted by tw(G),
is the width of a minimum-width tree decomposition
for G. Treewidth is known to be NP-hard to compute
[2]. The best known polynomial-time approximation
algorithm, given a graph G of treewidth k, computes a
tree decomposition of width O(k

√
log k) [18]. It is also

known that treewidth is fixed-parameter-tractable [5]:
for every fixed k, there is a linear-time algorithm, that,
given G, decides whether tw(G) ≤ k; the dependence of
the running time on k is exponential in poly(k). There
are many important results on the structure of large-
treewidth graphs. Perhaps the most well-known of these
is the Grid-Minor Theorem of Robertson and Seymour
that we discuss in more detail later.

Informally, graph H is a treewidth sparsifier for a given
graph G, if H is sparse, |V (H)| is small, and tw(H) is
(approximately) the same as tw(G). For H to be useful
as a replacement for G, it needs to be a strong sparsifier

— that is, H should be a minor of G1. The notion of
treewidth sparsifiers is closely related to the notion of
kernels for treewidth. A polynomial kernel for treewidth
is a map f , that, given an instance (G, k), returns an
instance (G′, k′), with the property that tw(G) ≤ k iff
tw(G′) ≤ k′, while ensuring that the size of the graph
G′ is polynomial in k. Unless NP ⊆ coNP/poly there is
no polynomial kernel for treewidth which follows from
the results of Bodlaender et al. [6] and Drucker [16].
Super-linear lower bounds for more general forms of
kernelization are also known [21].

Our main result shows that if one is willing to settle for a
poly-logarithmic factor approximation in the treewidth,
then there exist sparsifiers with very strong properties.
To state our main result we need a definition. A graph
H is a topological minor of G if H is obtained from G
by edge and node deletions, and by suppressing degree-
2 nodes2. Equivalently, H is a topological minor of G iff
a subdivision of H is a subgraph of G. Our main result
is summarized in the following theorem.

Theorem 1.1. There is a randomized algorithm, that,
given a graph G of treewidth at least k, with high
probability computes a topological minor H of G, such
that:

• the treewidth of H is Ω(k/ poly log k);

• the maximum vertex degree in H is 3; and

• |V (H)| = O(k4).

The running time of the algorithm is polynomial in
|V (G)| and k.

Our result is close to optimal: degree 3 cannot be
reduced, and the best one can hope for in terms of
the size of the sparsifier is O(k2/poly log k) (when G is
a k × k grid). We also recall that the best currently
known polynomial-time approximation algorithm can
only certify treewidth to within an O(

√
log k)-factor.

We conjecture a strengthening of the theorem to almost
optimal parameters.

1Note that if all we wanted is a graph H that has similar

treewidth as G then it suffices to (approximately) compute tw(G)
and let H be any graph from a well-known class such as grids,

cliques or expanders with the same treewidth.
2Note that H is a minor of G if it can be obtained by edge

and node deletions and edge contractions. A minor H of a graph
G need not be a topological minor G, however, if the maximum

vertex degree in H is at most 3, then H is also a topological minor
of G.

Conjecture 1.1. For every graph G with treewidth at
least k, there exists a topological minor H of G such
that tw(H) = Ω(k/ poly log k), |V (H)| = O(k2) and
maximum vertex degree in H is 3.

The existence of sparsifiers of size poly(k) that preserve
the treewidth to within a constant factor remains a very
interesting open question.

1.1 Treewidth Sparsifiers and Grid Minors A
fundamental result in Graph Minor Theory is the Grid-
Minor Theorem of Robertson and Seymour [37]. The
theorem states that there is an integer-valued function
f , such that any graph G with treewidth at least f(g)
contains a g × g grid as a minor. The theorem is
equivalent to showing that tw(G) ≥ f(g) implies that G
contains a wall of height and width Θ(g) as a subgraph;
see Figure 1.

Figure 1: An elementary wall of height and width 5. A
wall is a subdivision of an elementary wall.

We observe that a wall has maximum vertex degree 3.
Thus, one way to obtain a degree-3 treewidth sparisfier
is via the Grid-Minor Theorem. The original proof
of Robertson and Seymour [37] showed the existence
of f with an iterated exponential dependence on g.
Very recently, the first polynomial bound on f was
shown in [9]: namely, every graph of treewidth k
contains a wall of size kδ as a topological minor, where
δ = 1/98 − o(1). This result implies a degree-3
treewidth sparsifier, whose treewidth is k1/98−o(1). In
contrast, the sparsifier from Theorem 1.1 has treewidth
Ω(k/polylog(k)). Moreover, there are graphs with
treewidth k, such that the size of the largest wall they
contain is O(

√
k/ log k) [36]. Therefore, one cannot

hope to obtain small sparsifiers that preserve treewidth
to within polylogarithmic factors via the Grid-Minor
Theorem. Our construction bypasses this limitation.

One of our motivations for studying treewidth sparsifiers
is improving the bounds for the Grid-Minor Theorem.
Theorem 1.1 allows us to focus on subcubic graphs with
the additional property that |V (G)| is polynomial in
tw(G). Degree-3 sparsifiers have particular advantages:
in such a graph, for several applications of interest, one

can replace node-disjoint routing with the easier edge-
disjoint routing. We anticipate that using Theorem 1.1
as a starting point, the bounds on the Grid-Minor
Theorem from [9] can be improved. We also mention
that the fact that |V (H)| = poly(k) simplifies some
technical parts in the current proof of [9].

A related application is to the notion of graph immer-
sions (see [38, 39]). A graph G admits a strong im-
mersion of a graph H iff there is an injective mapping
τ : V (H) → V (G) and a mapping π : E(H) → PG,
where PG is a set of paths in G, such that (i) for each
f = (a, b) ∈ E(H) the path π(f) connects τ(a) and
τ(b); (ii) for any two edges f, f ′ ∈ E(H) the paths π(f)
and π(f ′) are edge-disjoint; and (iii) for every f ∈ E(H)
the path π(f) intersects τ(V (H)) only at its endpoints.
Note that G admits H as a topological minor if addi-
tionally the paths π(f) and π(f ′) are internally node-
disjoint for any distinct pair f, f ′ ∈ E(H). If G is a
sub-cubic graph, then G contains H as a topological
minor iff G contains H as a strong immersion. There-
fore, G contains a wall W iff it contains it as an immer-
sion. In recent work, Wollan [39] defined the notion of
tree-cut width of a graph and showed, using the Grid-
Minor Theorem, that there is a function g, such that
every graph with tree-cut width at least g(r) admits an
r-wall as a weak immersion. Motivated by this connec-
tion, he raised the question of the existence of degree-3
treewidth sparsifiers. Theorem 1.1 answers his question
(Question 18 in [39]) in a near-optimal fashion and we
refer the reader to [39] for the quantitative and qualita-
tive implications to immersions.

Our result can be viewed as providing an approximate
kernel for treewidth, and we hope that it will find
applications in preprocessing graphs for fixed-parameter
tractable (FPT) algorithms, and in constructive aspects
of Erdos-Pösa type theorems.

We now briefly discuss our techniques. We use a com-
binatorial object, called a path-of-sets system, that was
defined in [9] (see also Figure 2). Using the construc-
tion of the Path-of-Sets system from [9], together with
the Cut-Matching Game of Khandekar, Rao and Vazi-
rani [24], we can immediately obtain a strong degree-4
treewidth sparsifier H, with tw(H) = Ω(k/polylog(k)).
However, the size of V (H) can be arbitrarily large.
Our main technical contribution is two-fold. First, we
lower the degree of the sparsifier to 3, by carefully sub-
sampling the edges of H. Second, we reduce the size of
the sparsifier to poly(k). For the second part, we cru-
cially need a new technical ingredient, that is related to
strong vertex-cut sparsifiers, that we discuss below.

1.2 Sparsifiers Preserving Vertex Cuts Suppose
we are given any graph G = (V,E) and a pair S, T ⊆ V
of vertex subsets, containing k vertices each. We say
that the pair (S, T) is routable in G iff there is a set P
of k disjoint paths connecting the vertices of S to the
vertices of T in G, and we say that the set P of paths
routes the pair (S, T). Assume now that we have two
pairs of vertex subsets: S1, T1, containing k1 vertices
each, and S2, T2 containing k2 vertices each. We say
that both pairs (S1, T1), (S2, T2) are separately routable,
or just routable, in G iff there is a set P of paths routing
(S1, T1), and there is a set Q paths routing (S2, T2) in
G. Note that a vertex of G may belong to a path in P
and a path in Q. Our second main result is summarized
in the following theorem.

Theorem 1.2. Assume that we are given a graph G,
two sets S1, T1 ⊆ V (G) of k1 vertices each, and two
sets S2, T2 ⊆ V (G) of k2 vertices each, such that k1 ≥
k2, and the pairs (S1, T1) and (S2, T2) are (separately)
routable in G. Then there are two sets P,Q of paths
routing (S1, T1) and (S2, T2) respectively, such that, if H
is the graph obtained by the union of the paths in P and
Q, then τ(H) ≤ 8k4

1 + 8k1, where τ(H) is the number
of nodes of degree more than two in H. Moreover, we
can find P and Q in time polynomial in n and k1.

The preceding theorem gives an upper bound on the
size of a topological minor of G that preserves the
vertex connectivity between S1, T1 and S2, T2. There
are results in the literature on reduction operations that
preserve edge connectivity [29, 30] (and also element
connectivity [20, 12]), however no such nice operations
are available for preserving vertex connectivity. We
briefly discuss some related work on cut sparsifiers and
an open problem on a generalization of Theorem 1.2
that would yield strong sparsifiers that preserve vertex
cuts.

There has been a large amount of work in the re-
cent past on graph sparsifiers that preserve cuts and
flows for subsets of vertices [32, 28, 8, 31, 17, 13].
We discuss some closely related work. Given an edge-
capacitated graph G and a terminal set T ⊆ V (G),
a graph H is a quality-q cut-sparsifier for T if (i)
T ⊆ V (H) and (ii) for any partition (A,B) of T ,
MinCutG(A,B) ≤ MinCutH(A,B) ≤ qMinCutG(A,B)
where MinCutF (A,B) is the minimum edge-cut sep-
arating A from B in a graph F . Quality-1 sparsi-
fiers have also been called mimicking networks in prior
work [19, 26, 23, 7]. Leighton and Moitra [28] have
shown that for any graph G, there is a quality-q sparsi-
fier H for G with q = O(log k/ log log k) and V (H) = T
(here k = |T |); in other words the sparsifier does not

use any non-terminal (or Steiner) vertices. There are
instances on which the best quality one can achieve is
Ω(
√

log k) if H does not have Steiner vertices [31]. Even
a relatively small number of Steiner vertices can help
substantially in improving the quality of the sparsifier
as shown in [13].

To simplify the discussion, we restrict our attention to
the case where the terminals in T have degree 1 and all
edge capacities are 1. In this case constant quality cut-
sparsifiers are known with V (H) = O(k3) [13, 25]. The
result of Kratsch and Wahlström [25], in fact, applies
in the more general setting of vertex-cuts, and yields a
quality-1 sparsifier; we call such a sparsifier a vertex-cut
sparsifier to distinguish it from an edge-cut sparsifier.

However, the sparsifer of [25] is not a minor of the
original graph G. Sparsifiers that are minors of the
original graph have an advantage that they allow flows
(fractional or integral) and minors in the sparsifier to
be transferred back to the original graph G without any
loss. Theorem 1.2 gives us a small-sized minor that
preserves the vertex connectivity between two pairs of
vertex subsets. A natural open question is to generalize
this result to a larger number of pairs of vertex subsets.

Question 1.2. Assume that we are given a graph G,
and h pairs of vertex subsets (S1, T1), . . . , (Sh, Th), such
that for each i: (1) Si, Ti ⊆ V (G), (2) |Si| = |Ti| =
ki ≤ k, and (3) (Si, Ti) are routable in G. What is
the smallest function f(k, h), such that, given any graph
G and (S1, T1), . . . , (Sh, Th) as above, there is always a
(topological) minor H of G with the property that each
(Si, Ti) is routable in H and |V (H)| ≤ f(k, h)?

The case when h = polylog(k) is of particular interest.
We believe that a bound on f(k, h) from the preceding
question can be used to obtain a vertex-cut sparsifier H
for any graph G and a set T of k terminals, such that H
is a minor ofG, |V (H)| ≤ f(poly k, h) for h = poly log k,
and the quality of H is polylog(k).

Organization We prove Theorem 1.2 in Section 2.
Section 3 provides the necessary background on
treewidth and the path-of-sets system. Theorem 1.1
is proved in two steps. Section 4 gives the proof of a
weaker result, a degree-4 sparsifier. Section 5 gives the
proof for the degree-3 sparsifier.

In this extended abstract we omit some proofs. For
these we refer the reader to a full version of the paper
[10].

2 Routing Two Pairs of Vertex Subsets

In this section we prove Theorem 1.2. Recall that a
graph H is a minor of a graph G, iff H can be obtained
from G by a series of edge deletion, vertex deletion, and
edge contraction operations. Equivalently, H is a minor
of G iff there is a map f : V (H) → 2V (G) assigning
to each vertex v ∈ V (H) a subset f(v) of vertices of
G, such that: (a) for each v ∈ V (H), the sub-graph
of G induced by f(v) is connected; (b) if u, v ∈ V (H)
and u 6= v, then f(u) ∩ f(v) = ∅; and (c) for each
edge e = (u, v) ∈ E(H), there is an edge in E(G) with
one endpoint in f(v) and the other endpoint in f(u).
A map f satisfying these conditions is called a model
of H in G. Given any subset X ⊆ V of vertices of
G, we say that H is an X-respecting minor of G, iff
X ⊆ V (H). More formally, there is a model f of H,
where for each vertex x ∈ X, there is a distinct vertex
vx ∈ V (H) with f(vx) = {x}. For each x ∈ X, we will
usually identify such vertex vx with x. In particular,
every subset S ⊆ X of vertices of X corresponds to a
subset S′ = {vx | x ∈ X} of vertices in H, and we will
not distinguish between S and S′.

Assume that we are given a graph G and two pairs
(S′1, T

′
1), (S′2, T

′
2) of vertex subsets, with |S′1| = |T ′1| and

|S′2| = |T ′2|, that are separately routable in G. We say
that a minor H of G is (S′1, T

′
1, S
′
2, T

′
2)-good, iff H is

an X-respecting minor for X = S′1 ∪ S′2 ∪ T ′1 ∪ T ′2, and
(S′1, T

′
1), (S′2, T

′
2) are each routable in H. We say that it

is (S′1, T
′
1, S
′
2, T

′
2)-minimal, iff it is (S′1, T

′
1, S
′
2, T

′
2)-good,

and for every edge e of H, both the graph obtained from
H by deleting e, and the graph obtained from H by
contracting e, are not (S′1, T

′
1, S
′
2, T

′
2)-good. The main

result of this section is the following theorem.

Theorem 2.1. Assume that we are given a graph G,
and sets S′1, T

′
1, S
′
2, T

′
2 ⊆ V (G) of k vertices each,

such that the pairs (S′1, T
′
1) and (S′2, T

′
2) are (sepa-

rately) routable in G. Assume further that vertices in
S′1, T

′
1, S
′
2, T

′
2 are distinct, and have degree 1 each in G.

Let H be any (S′1, T
′
1, S
′
2, T

′
2)-minimal minor of G. Then

|V (H)| ≤ 4k4 + 4k.

Theorem 1.2 easily follows from Theorem 2.1; see [10].

In the rest of this section, we focus on the proof of
Theorem 2.1. For simplicity, we denote S′1, S

′
2, T

′
1, T

′
2

by S1, S2, T1 and T2, respectively. Let H be a
(S1, T1, S2, T2)-minimal minor of G. Let R be a set of
paths routing (S1, T1) in H. We will often refer to the
paths in R as red paths, and we will think of these paths
as directed from S1 towards T1 (even though in general
the graph is undirected). Similarly, let B be the set of

paths routing (S2, T2) in H. We refer to the paths in
B as blue paths, and view them as directed from S2 to
T2. Notice that a vertex in S1 ∪ T1 cannot participate
in a blue path, since its degree is 1, and all vertices in
S1, T1, S2, T2 are distinct. Similarly, a vertex in S2 ∪ T2

cannot participate in a red path. An edge e ∈ E(H)
may belong to a red path, or to a blue path, but not
both, since otherwise we could contract e and obtain
a minor that is still (S1, T1, S2, T2)-good, contradicting
the minimality of H; this is possible since e is not in-
cident on S1 ∪ S2 ∪ T1 ∪ T2. The edges that belong to
the paths in R are called red edges, and the edges that
belong to the paths in B are called blue edges. From
the minimality of H, every edge is either red or blue.
We will refer to the vertices in S1 ∪ S2 ∪ T1 ∪ T2 as
the terminals of H. From the minimality of H, every
non-terminal vertex belongs to one red path and one
blue path, and is incident on exactly two red edges and
exactly two blue edges. Assume now that there is an-
other set R′ 6= R of paths in H routing (S1, T1). Then
there must be some red edge in H that does not belong
to any path of R′, contradicting the minimality of H.
Therefore, R is the unique set of paths routing (S1, T1)
in H, and similarly, B is the unique set of paths routing
(S2, T2) in H. We prove the following theorem.

Theorem 2.2. We can efficiently compute an assign-
ment of labels in L = {`1, `2, . . . , `2k} to the vertices of
V (H), such that each vertex in V (H) is assigned one
label, and for every pair R ∈ R, B ∈ B of paths, if
two vertices v and v′ belong to both R and B, and are
assigned the same label, then they appear in the same
order on R and on B.

Before we prove Theorem 2.2, let us first complete the
proof of Theorem 2.1 assuming it. Let ` : V (H) → L
be the labeling computed by Theorem 2.2. Next, we
switch S1 and T1, so that the directions of the paths in
R are reversed. We apply Theorem 2.2 again to this new
setting, and obtain another labeling `′ : V (H) → L′,
where L′ = {`′1, `′2, . . . , `′2k}.
Assume for contradiction that |V (H)| ≥ 4k4 + 4k + 1.
Every non-terminal vertex v can be associated with a
quadruple (R,B, `i, `

′
j), where R and B are the red and

the blue paths on which v lies, `i is the label assigned
to v by `, and `′j is the label assigned to v by `′. Since

the total number of such quadruples is 4k4, there is a
pair u, v of non-terminal vertices that have the same
quadruple (R,B, `i, `

′
j). As u and v are assigned the

same label by `, they must appear in the same order on
R and B. Assume w.l.o.g. that u appears before v on
both these paths. However, since both these vertices are

assigned the same label by `′, and since the red paths
were reversed when computing `′, the order of u and v
on paths R and B must be reversed, a contradiction. In
order to complete the proof of Theorem 2.1, it now only
remains to prove Theorem 2.2.

Proof of Theorem 2.2 Let H̃ be the directed coun-
terpart of the graph H, where we direct all red edges
along the direction of the red paths from S1 to T1, and
we direct the blue edges similarly along the blue paths
from S2 to T2. The main combinatorial object that we
use in the proof is a chain. A chain Z is a directed (not
necessarily simple) path in graph H̃, such that the edges
of Z are alternating red and blue edges. In other words,
if the edges of Z are e1, e2, . . . , er in this order, then all
odd-indexed edges are red and all even-indexed edges
are blue, or vice versa. The rest of the proof consists
of three steps. First, we show that every chain must
be a simple path, so no vertex may appear twice on a
chain. If this is not the case, we will show that R is not
a unique set of paths routing (S1, T1), or that B is not a
unique set of paths routing (S2, T2), leading to a contra-
diction. In the second step, we construct a collection of
2k chains using a natural greedy algorithm: start from
some source, and then follow alternatively red and blue
edges, while possible. We will show that every vertex of
H belongs to at least one chain (but may belong to more
than one). We then associate a separate label with each
chain, and assign all vertices that belong to a chain the
same label. If a vertex belongs to several chains, then
one of the corresponding labels is assigned arbitrarily.
Finally, we prove that for every path P ∈ R ∪ B and
every chain Z, if v and v′ are two vertices that belong
to both P and Z, then they must appear in the same
order on P and on Z.

Before we proceed, we define two auxiliary structures:
red and blue cycles. Let C be a directed simple cycle
in the graph H̃ (so every vertex may appear at most
once on C). We say that it is a blue cycle iff we
can partition C into an even number of edge-disjoint
consecutive segments σ1, σ2, . . . , σ2r, where r > 0; for
all 1 ≤ i ≤ r, σ2i consists of a single red edge, and
σ2i−1 is a non-empty path that only consists of blue
edges. Every edge of C belongs to exactly one segment,
and every consecutive pair of segments shares one vertex
(if r = 1 then the two segments share two vertices —
the endpoints of the segments). A red cycle is defined
similarly, with the roles of the red and the blue segments
reversed. We start by showing that H̃ cannot contain a
red or a blue cycle. Proofs of several claims in the rest
of the section are omitted and can be found in [10].

Lemma 2.1. Graph H̃ cannot contain a red cycle or a
blue cycle.

The claim below essentially follows from the preceding
lemma.

Claim 2.2. If Z is a chain, then every vertex of V (H)
may appear on Z at most once.

We define a collection Z of 2k chains in H̃, and prove
that every vertex of H̃ belongs to at least one chain.
Let s ∈ S1 ∪ S2, and let e be the unique edge leaving s.
We start building the chain by adding e to the chain.
If the last edge added to the chain e′ = (u, v) is a red
edge, and there is a blue edge leaving v in H̃, then we
add the unique blue edge leaving v in H̃ to the chain; if
no such edge exists, we complete the construction of the
chain — in this case, v ∈ T1 ∪ T2 must hold. Similarly,
if the last edge added to the chain e′ = (u, v) is a blue
edge, and there is a red edge leaving v in H̃, then we
add the unique red edge leaving v in H̃ to the chain;
if no such edge exists, we complete the construction of
the chain. Overall, we construct one chain starting from
each vertex in S1∪S2, obtaining 2k chains. Let Z denote
the resulting collection of the chains.

Claim 2.3. Every vertex of H̃ belongs to at least one
chain.

Our final step is the following claim.

Claim 2.4. Let Z be a chain, and assume that it
contains two vertices v, v′ ∈ V (P), where P ∈ R ∪ B.
Assume further that v appears before v′ on Z. Then v
appears before v′ on P .

We are now ready to assign labels to the vertices of H.
Let Z = {C1, C2, . . . , C2k}. Fix any vertex v ∈ H, and
let Ci ∈ Z be any chain that contains v. We then assign
to v the label `i.

Consider now any pair R ∈ R, B ∈ B of paths, and
let v, v′ be two vertices that have the same label `i
and appear on both R and B. Assume w.l.o.g. that v
appears before v′ on chain Ci. Then from Claim 2.4, v
must appear before v′ on both R and B. This completes
the proof of Theorem 2.2, and hence of Theorem 2.1 and
Theorem 1.2.

3 Background on Treewidth and Path-of-Sets
System

In this section we define some graph-theoretic notions
and summarize some previous results that we use in the

proof of Theorem 1.1. We also define a combinatorial
object that plays a central role in the proof — the path-
of-sets system from [9].

Given a graph G = (V,E) and a set A ⊆ V of
vertices, we denote by EG(A) the set of edges with both
endpoints in A, and by outG(A) the set of edges with
exactly one endpoint in A. For disjoint sets of vertices
A and B, the set of edges with one end point in A and
the other in B is denoted by EG(A,B). For a vertex
v in a graph G we use dG(v) to denote its degree. We
may omit the subscript G if it is clear from the context.
Given a set P of paths in G, we denote by V (P) the set
of all vertices participating in paths in P, and similarly,
E(P) is the set of all edges that participate in paths in
P. We sometimes refer to sets of vertices as clusters. A
path P in a graph G is a 2-path iff every inner vertex
v in P has dG(v) = 2. It is a maximal 2-path iff the
degrees of the endpoints of P are both different from 2.
Given a set P of paths, we denote by J(P) the graph
obtained by the union of all the paths in P. Given a
graph H, let τ(H) denote the number of vertices of H
whose degree is more than 2 in H.

We now define the notion of linkedness and the different
notions of well-linkedness that we use.

Definition 1. We say that a set T of vertices
is α-well-linked3 in G, iff for any partition (A,B) of
the vertices of G into two subsets, |E(A,B)| ≥ α ·
min {|A ∩ T |, |B ∩ T |}.

Definition 2. We say that a set T of vertices is
node-well-linked in G, iff for any pair (T1, T2) of equal-
sized subsets of T , there is a collection P of |T1| node-
disjoint paths, connecting the vertices of T1 to the
vertices of T2. (Note that T1, T2 are not necessarily
disjoint, and we allow empty paths).

The two different notions of well-linkedness are closely
related. In particular, suppose T is α-well-linked in a
graph G of maximum degree ∆. Then there is a large
subset T ′ ⊆ T of vertices that is node-well-linked in G,
as shown in the following theorem.

Theorem 3.1. (Theorem 2.2 in [9]) Suppose we are
given a connected graph G = (V,E) with maximum
vertex degree ∆, and a subset T of κ vertices called

3This notion of well-linkedness is based on edge-cuts and we

distinguish it from node-well-linkedness that is directly related to
treewidth. For technical reasons it is easier to work with edge-
cuts and hence we use the term well-linked to mean edge-well-

linkedness, and explicitly use the term node-well-linkedness when
necessary.

S1 S2 Sr. . .

P1 P2

Si . . .

Pi−1 Pi Pr−1

Ai Bi

Figure 2: Path-of-Sets System

terminals, such that T is α-well-linked in G, for some
α < 1. Then there is a subset T ′ ⊂ T of Ω

(
ακ
∆

)
terminals, such that T ′ is node-well-linked in G.

The following well-known lemma summarizes an im-
portant connection between treewidth and node-well-
linkedness.

Lemma 3.1. ([35]) Let k be the size of the largest node-
well-linked set in G. Then k ≤ tw(G) ≤ 4k.

Combining Theorem 3.1 with Lemma 3.1, we obtain the
following theorem.

Theorem 3.2. Let G be any graph with maximum
vertex degree ∆, and T a subset of κ vertices, such that
T is α-well-linked in G, for α < 1. Then the treewidth
of G is Ω(ακ/∆).

A notion closely related to well-linkedness is that of
linkedness, where we require good connectivity between
a pair of disjoint vertex subsets.

Definition 3. We say that two disjoint vertex subsets
A and B are linked in G iff for any pair of equal-sized
subsets A′ ⊆ A, B′ ⊆ B there is a set P of |A′| node-
disjoint paths connecting A′ to B′ in G.

Path-of-Sets System A central combinatorial object
that we use in the proof of Theorems 1.1 is a path-
of-sets system, that was introduced in [9] (a somewhat
similar object, called a grill, was introduced by Leaf and
Seymour [27]). See Figure 2.

Definition 4. A path-of-sets system (S,⋃r−1
i=1 Pi) of

width r and height h consists of:

• A sequence S = (S1, . . . , Sr) of r disjoint vertex
subsets of G, where for each i, G[Si] is connected;

• For each 1 ≤ i ≤ r, two disjoint sets Ai, Bi ⊆ Si of
h vertices each, such that Ai and Bi are linked in
G[Si];

• For each 1 ≤ i < r, a set Pi of h disjoint paths,
routing (Bi, Ai+1), such that all paths in

⋃
i Pi are

mutually disjoint, and do not contain the vertices
of
⋃
Si∈S Si as inner vertices,

We say that it is a strong path-of-sets system, if
additionally for each 1 ≤ i ≤ r, Ai is node-well-linked
in G[Si], and the same holds for Bi.

The following theorem, that was proved in [9], is the
starting point of the proof of Theorem 1.1.

Theorem 3.3. (Theorem 3.2 in [9]) Let G be any
graph of treewidth k, and let h, r > 1 be integral
parameters, such that for some large enough constants

c and c′, k/ logc
′
k > chr48. Then there is an efficient

randomized algorithm, that, given G, h and r, w.h.p.
computes a strong path-of-sets system of height h and
width r in G.

Expanders and the Cut-Matching Game. We say
that a (multi)-graph G = (V,E) is an α-expander, iff

min S⊆V :

|S|≤|V |/2

{
|E(S,S)|
|S|

}
≥ α. We use the cut-matching

game of Khandekar, Rao and Vazirani [24] to construct
an expander that can be appropriately embedded in
a graph. In this game, we are given a set V of N
vertices, where N is even, and two players: a cut player,
whose goal is to construct an expander X on the set
V of vertices, and a matching player, whose goal is to
delay its construction. The game is played in iterations.
We start with the graph X containing the set V of
vertices, and no edges. In each iteration j, the cut
player computes a bi-partition (Aj , Bj) of V into two
equal-sized sets, and the matching player returns some
perfect matching Mj between the two sets. The edges of

Mj are then added to X. Khandekar, Rao and Vazirani
have shown that there is a strategy for the cut player,
guaranteeing that after O(log2N) iterations, no matter
the strategy of the matching player, the resulting graph
is a 1

2 -expander w.h.p. Subsequently, Orecchia et al. [33]
have shown the following improved bound:

Theorem 3.4. ([33]) There is a probabilistic algo-
rithm for the cut player, such that, no matter how the
matching player plays, after γCMG(N) = O(log2N) it-
erations, graph X is an αCMG(N) = Ω(logN)-expander,
with constant probability.

Our algorithms work by embedding an expander X into
a sub-graph of G. The embedding of the expander is
then used to certify the treewidth. We use the following
notion of embedding.

Definition 5. Let G,X be graphs. An embedding ϕ
of X into G maps every vertex v ∈ X to a connected
subgraph Cv ⊆ G, and every edge e = (u, v) ∈ E(X)
to a path Pe in graph G, whose endpoints belong to Cv
and Cu, respectively. We say that the congestion of the
embedding is at most c, iff every edge of G belongs to
at most c−1 paths in {Pe | e ∈ E(X)} and at most one
graph {Cv | v ∈ V (X)}.

In the next simple claim, we show that if we can
embed a κ-vertex expander with congestion at most c
into a graph H with bounded vertex degree, then the
treewidth of H is large.

Claim 3.2. Let X be an α-expander on κ vertices for
α < 1, with maximum vertex degree ∆′, and let H be a
graph with maximum vertex degree at most ∆, such that
that there is an embedding of X into H with congestion

η. Then tw(H) = Ω
(

ακ
η∆∆′

)
.

4 A Small Treewidth-Preserving Degree-4
Minor

In this section we prove the following theorem which
gives a degree-4 sparsifier.

Theorem 4.1. There is a randomized algorithm, that,
given a graph G of treewidth at least k, w.h.p. computes
a minor H of G, such that:

• the treewidth of H is Ω(k/ poly log k);

• every vertex has degree at most 4 in H; and

• |V (H)| = O(k4).

The running time of the algorithm is polynomial in
|V (G)| and k.

In order to prove Theorem 4.1, it is sufficient to find a
subgraph H of G, with τ(H) = O(k4), such that the
maximum vertex degree in H is at most 4, and the
treewidth of H is Ω(k/ poly log k). Indeed, by replacing
every maximal 2-path in H with an edge connecting its
endpoints, we obtain the desired minor.

We start by applying Theorem 3.3 with r = γCMG(k)
and h = Ω(k/ poly log k), so that h is an even integer,
and k

logc
′
k
> chr48 holds, where c, c′ are the constants

from Theorem 3.3. Let (S,⋃r−1
i=1 Pi) be the resulting

path-of-sets system.

Our next step is to construct an expander graph X
on h vertices, and to embed it into a sub-graph H
of G. Following the previous work on routing prob-
lems [34, 1, 14, 15, 11], we will embed X into G us-
ing the cut-matching game, and the path-of-sets system
(S,⋃r−1

i=1 Pi). We start with an intuitive high-level de-
scription of the algorithm. For each 1 ≤ i ≤ r, let Qi
be any set of node-disjoint paths connecting Ai to Bi in
G[Si] (this set exists due to the linkedness of (Ai, Bi)
in G[Si]). Let H be the set of h paths, obtained by
concatenating Q1,P1,Q2,P2, . . . ,Pr−1,Qr. We denote
H = {P1, . . . , Ph}. The high-level idea is to construct
an expander X over a set V = {v1, . . . , vh} of h ver-
tices, and to embed it into G using the cut-matching
game, as follows. For each 1 ≤ i ≤ h, we embed vi
into Pi, that is, Cvi = Pi. We construct the edges of
the expander, and embed them into G, using the cut-
matching game, where for each 1 ≤ j ≤ r, we use clus-
ter Sj ∈ S to route the jth matching, as follows. A
partition (Y,Z) of the vertices of X computed by the
cut player naturally defines a partition (HY ,HZ) of the
paths in H into two equal-sized subsets, which in turn
defines a partition (A′j , A

′′
j) of Aj into two equal-sized

subset. Using the fact that Aj is node-well-linked in-
side G[Sj], we can find a set Bj of node-disjoint paths
in G[Sj] connecting A′j to A′′j . This set of paths defines
a matching Mj between the paths in HY and HZ , and
hence between the vertices of Y and Z in X. We view
this matching as the response of the matching player.
After γCMG(h) ≤ γCMG(k) = r iterations, we obtain an
expander X and its embedding with congestion 2 into
G. Intuitively, we would like to define H as the set of
all edges and vertices of G used in this embedding, that
is, the union of the paths in H and

⋃r
j=1 Bj . It is easy

to see that the maximum vertex degree in H is at most
4, since in each cluster Sj we only route 2 sets of node-

disjoint paths: Qj and Bj . However, τ(H) may not be
bounded by O(k4). In particular, the paths in Qj and
Bj may intersect at many vertices. In order to overcome
this difficulty, we can use Theorem 1.2 to find new sets
Q′j and B′j of paths, routing the same pairs of vertex sub-

sets, such that, if J = J(Q′j ∪ B′j), then τ(J) = O(h4).
However, this re-routing changes the paths in H, and
therefore the mapping between the vertices in sets Aj′

for j′ 6= j and the vertices in X may be changed. There-
fore, we need to execute this procedure more carefully.
In particular, we apply Theorem 1.2 in the graph G[Sj]
after each iteration j of the cut-matching game; for it-
eration j + 1 we exploit the node-well-linkedness of the
set Aj+1 in G[Sj+1] to maintain consistency in the map-
ping of paths in H to the vertices of the expander. The
formal description of the embedding procedure can be
found in [10].

5 Building a Degree-3 Minor

In this section we complete the proof of Theorem 1.1.
We start with an informal overview to help understand
the high-level plan.

5.1 Overview We use an algorithm, similar to the
one used in Section 4, in order to embed an expander
into G, using the path-of-sets system. The main differ-
ence is that, instead of embedding a single expander
X, we will embed N expanders X1, . . . , XN where
N = Θ(log k). For this purpose we start with a

longer path-of-sets system (S,⋃r−1
i=1 Pi) with parame-

ters h = k/ poly log k and r = O(log3 k) and partition
it into N = O(log k) smaller path-of-sets systems with
parameters r∗ = γCMG(h) and h (hence r ' Nr∗). For
1 ≤ i ≤ N , we embed an expander Xi into the i’th
path-of-sets system using the approach in the preceding
section. Recall that for each cluster Si, we construct
two sets of paths contained in G[Si]: one set, Ri, that
we call red paths, routes (Ai, Bi), and another set, Bi,
that we call blue paths, routes (A′i, A

′′
i), where (A′i, A

′′
i)

is the partition of Ai defined by the cut player. Let Hi

be the topological minor of G[Si] obtained by taking
the union of the paths in Ri and Bi, and suppressing all
degree-2 vertices, except for Ai∪Bi. We assume that Hi

is minimal in the following sense: for each edge e of Hi,
either (Ai, Bi) or (A′i, A

′′
i) is not routable in Hi \ {e}.

Abusing the notation, we assume that Ri and Bi are
the sets of the red and the blue paths, routing (Ai, Bi)
and (A′i, A

′′
i), respectively in Hi. Notice that every ver-

tex of Hi must lie on some red path. Let H be the
set of h paths obtained by concatenating the paths in
R1,P1, . . . ,PNr∗−1,RNr∗ , and let H be the topological

minor of G obtained by taking the union of the graphs

Hi and the paths
⋃Nr∗−1
i=1 Pi. We say that an edge of

H is a red edge if it belongs to a red path and no blue
paths; it is a blue edge if it belongs to a blue path and
no red paths; and it is a red-blue edge if it belongs to
both a red and a blue path. We can view the N differ-
ent expanders as sharing the same vertex set, where the
vertices correspond to the paths in H. Consider a ver-
tex v of degree 4 in graph H; it must be incident to two
red edges and two blue edges. In order to reduce the
degree to 3, we use random sampling to pick one of the
two blue edges incident to v and eliminate it. After this
step the degree of every vertex is at most 3. Let H∗ be
this final topological minor of G. The heart of the anal-
ysis is to show that H∗ has treewidth Ω(k/ poly log k).
This is done by showing that the set A = A1 of vertices
remains α-well-linked in H∗, for α = Ω(1/ poly log k),
and applying Theorem 3.2.

We start by observing that the set A of vertices is αWL-
well-linked in H, for some constant αWL. This is shown
by using the embeddings of the expanders X1, . . . , XN

into H. Next, we carefully partition each path in H
into a collection of disjoint segments. Intuitively, each
segment of a path P ∈ H is a sub-path of P of length
Θ(poly log h). We then contract each such segment σ
into a super-node vσ. Let F be this contracted graph,
and let F ∗ be the corresponding contracted graph of
H∗. Equivalently, F ∗ is obtained from F by deleting all
the edges in E(H) \ E(H∗).

Each vertex of A belongs to a distinct contracted seg-
ment, and is associated with the corresponding super-
node in F . We do not distinguish between the vertices
of A and their corresponding super-nodes. It is easy to
see that A remains αWL-well linked in F since we only
contracted edges. The most crucial property of the con-
tracted graph F is that the value of the minimum cut
in F is at least Ω(log |V (F)|). This allows us to use
arguments similar to those used in Karger’s sampling
technique [22] to show that all cuts are approximately
preserved in F ∗. In particular, the vertices of A remain
αWL/32-well-linked in F ∗. Since the length of every seg-
ment used in the construction of the contracted graph
F is O(poly log h), this implies that the vertices of A are
α-well-linked in H∗, for α = Ω(1/poly log k). The most
challenging part of the proof is to set up the partition
of the paths in H into segments, so that in the result-
ing contracted graph F , the value of the minimum cut is
Ω(log |V (F)|). At a high-level, the proof proceeds as fol-
lows. Assume for contradiction, that there is a partition
(X,Y) of V (F) with X,Y 6= ∅, and |EF (X,Y)| < N .
Let X ′ ⊆ V (H) be obtained from X by un-contracting
all super-nodes in X, and let Y ′ ⊆ V (H) be obtained

from Y similarly. Then (X ′, Y ′) is a partition of V (H),
and |EH(X ′, Y ′)| < N . Assume first that there are
two paths P, P ′ ∈ H, such that P ⊆ H[X ′] and P ′ ⊆
H[Y ′]. We then use the embeddings of the expanders
X1, . . . , XN to argue that |EH(X ′, Y ′)| ≥ N , reaching
a contradiction. Therefore, we can assume w.l.o.g. that
no path of H is contained in H[X ′]. We next show
that for some 1 ≤ i∗ ≤ Nr∗, partition (X ′, Y ′) of
V (H) defines a partition (X∗, Y ∗) of V (Hi∗), such that
|X∗|, |Y ∗| > 200N4, while |EHi∗ (X∗, Y ∗)| < N . We
then consider the segments of the red paths in Ri∗ and
the blue paths in Bi∗ that are contained in Hi∗ [X

∗]. Let
R∗ denote the corresponding segments of the red paths,
and B∗ the corresponding segments of the blue paths.
Using Theorem 2.1, we show that there is some edge
e ∈ H[X∗], such that we can still route the endpoints
of the paths in R∗ to each other, and the endpoints of
the paths in B∗ to each other, even after deleting e from
H[X∗]. This new routing implies that we can route both
(Ai∗ , Bi∗) and (A′i∗ , A

′′
i∗) in Hi∗ \ {e}, contradicting the

minimality of Hi∗ .

5.2 Proof of Theorem 1.1 We set r = 215 log k ·
γCMG(k) = Θ(log3 k), and h = Ω(k/ poly log k), so that

h is an even integer, and k/ logc
′
k > chr48, where c

and c′ are the constants from Theorem 3.3. We assume
w.l.o.g. that k is large enough, so h > 72 log k and
h > γCMG(h). We then apply Theorem 3.3 to graph G,
with parameters r and h, to obtain a strong path-of-sets
system (S,⋃r−1

i=1 Pi) of height h and width r.

Let r∗ = γCMG(h), and let N =
⌈
3072 log(10h4 · r∗)

⌉
; it

is easy to see thatN = Θ(log h). We will assume w.l.o.g.
that h is large enough, so N > 1536 log(10h4 · r∗ · N)
holds. Finally, we let r′ = N · r∗. Note that r′ =
r∗ ·

⌈
3072 log(10h4 · r∗)

⌉
≤ 215γCMG(h) log h < r.

We construct a new, smaller, path-of-sets system,
of height h and width r′, using the clusters S ′ =
(S1, . . . , Sr′), and the sets Pi of paths, for 1 ≤ i ≤ r′−1;
in other words we restrict attention to the first r′ clus-
ters from the initial path-of-sets system. Abusing nota-
tion, we denote r′ by r and S ′ by S.

We denote by G′ the following minor of G: start with
the union of G[Si] for all 1 ≤ i ≤ r; for each path

P ∈ ⋃r−1
i=1 Pi, add an edge connecting the endpoints of P

toG′. We denote by Ei the set of edges corresponding to
the paths in Pi. Equivalently, we obtain G′ from graph(⋃

Si∈S G[Si]
)
∪
(⋃r−1

j=1 Pj
)

by suppressing degree-2

internal nodes on the paths in
⋃r−1
i=1 Pi. It is now enough

to find a topological minor H∗ of G′ whose treewidth
is Ω(k/ poly log k), maximum vertex degree is 3, and

|V (H∗)| = O(k4). We do so via the following theorem:

Theorem 5.1. There is an efficient randomized algo-
rithm, that finds a topological minor H∗ of G′, such
that w.h.p.:

• |V (H∗)| = O(h4 · r);

• The maximum vertex degree in H∗ is 3;

• A1 ⊆ V (H∗); and

• The set A1 of vertices is α-well-linked in H∗, for
α = Ω(1/ log7 k).

Theorem 1.1 follows easily from Theorem 5.1. The de-
sired topological minor of G is H∗. The only property
that is left to verify is that tw(H) = Ω(k/polylog(k))
which follows from α-well-linkedness of A1 in H∗. In-
deed, Theorem 3.2 implies that tw(H) = Ω(α|A1|/3) =
Ω(k/polylog(k)) since |A1| = h = Ω(k/polylog(k)),
α = Ω(1/ log7 k) and H∗ has maximum degree 3. From
now on we focus on proving Theorem 5.1.

In order to simplify the notation, we refer to the graph
G′ as G. Recall that we are given a path-of-sets system
(S = (S1, . . . , Sr),

⋃r−1
i=1 Pi) of height h and width r =

Nr∗ in G, where for each 1 ≤ i < r, each path in Pi
consists of a single edge, and the corresponding set of
edges is denoted by Ei. Let E′ =

⋃r−1
i=1 Ei. We denote

A1 by A. Our goal is to construct a topological minor
H∗ of G, such |V (H∗)| = O(h4r), the maximum vertex
degree of H∗ is 3, while ensuring that A ⊆ V (H∗) and
it is α-well-linked in H∗, w.h.p.

The rest of the proof consists of three steps. In the first
step, we define the sets Bi,Ri of paths for 1 ≤ i ≤ r by
playing the cut-matching games; in the second step we
partition the resulting red paths into segments; and in
the third step we complete the proof of the theorem.

Step 1: Cut-Matching Games In this step we
construct N expanders X1, . . . , XN , and embed each
of them separately into G. For each 1 ≤ i ≤ N , let

Si = (S(i−1)r∗+1, . . . , Sir∗), let Ei =
⋃ir∗−1
j=(i−1)r∗+1Ej ,

and let Êi = Eir∗ (for i = N , Êi = ∅). Let Gi be the
graph obtained from the union of G[Sj] for all Sj ∈ Si
and the edges in Ei. For each 1 ≤ i ≤ N , we embed the
expander Xi into Gi, using the cut-matching game, as
follows. For convenience, we denote (i− 1)r∗ by z.

We will gradually construct a set Hi of paths over the
course of r∗ iterations. For each 1 ≤ j ≤ r∗, at the
beginning of the jth iteration, we are given a set Hj of
h disjoint paths, connecting the vertices of Az+1 to the

vertices of Az+j , and a bijection f : Hj → V (Xi). At
the beginning, H1 consists of h paths, each of which
consists of a single distinct vertex of Az+1, and the
mapping f : H1 → V (Xi) is an arbitrary bijection. We
also start with a graph Xi on h vertices, and E(Xi) = ∅.
For 1 ≤ j ≤ r∗, the jth iteration is executed as follows.

We use the cut player on the current graph Xi to find a
partition (Yj , Zj) of V (Xi) into two equal-sized subsets.

This naturally defines a partition (HjY ,HjZ) ofHj where

HjY contains all paths P ∈ Hj , such that f(P) ∈ Yj .
In turn, this gives a partition (A′z+j , A

′′
z+j) of Az+j ,

where a vertex v ∈ Az+j belongs to A′z+j iff the path

P on which v lies belongs to HjY . Since the set Az+j
of vertices is node-well-linked in G[Sz+j], there is a
collection of node-disjoint paths routing (A′z+j , A

′′
z+j)

in G[Sz+j]. Since Az+j and Bz+j are linked in G[Sz+j],
there is a collection of node-disjoint paths routing
(Az+j , Bz+j) in G[Sz+j]. From Theorem 1.2, we can
find a set B′z+j of paths routing (A′z+j , A

′′
z+j) , and a

set R′z+j of paths routing (Az+j , Bz+j) in G[Sz+j], such
that, if J = J(B′z+j ∪R′z+j), then the maximum vertex
degree in J is bounded by 4, the degree of every vertex in
Az+j ∪Bz+j is at most 3, and τ(J) ≤ 8h4 + 8h. We will
assume that J is a minimal graph in which (A′z+j , A

′′
z+j)

and (Az+j , Bz+j) are both routable: that is, for every
edge e ∈ E(J), either (A′z+j , A

′′
z+j), or (Az+j , Bz+j)

are not routable in J \ {e}. We let Hz+j be the graph
obtained from J by replacing every maximal 2-path that
does not contain the vertices of Az+j ∪ Bz+j as inner
vertices, by an edge connecting its two endpoints. Then
|V (Hz+j)| ≤ 8h4 + 8h ≤ 10h4, every vertex of Hz+j has
degree at most 4, while the vertices in Az+j ∪ Bz+j
have degree at most 3; there is a set Bz+j of paths
routing (A′z+j , A

′′
z+j) , and a set Rz+j of paths routing

(Az+j , Bz+j) in Hz+j , and for every edge e ∈ E(Hz+j),
either (A′z+j , A

′′
z+j), or (Az+j , Bz+j) are not routable

in Hz+j \ {e}. We call the paths in Rz+j red paths,
and the paths in Bz+j blue paths. An edge that belongs
to a red path, but no blue paths is called a red edge.
An edge the belongs to a blue path but no red paths
is called a blue edge. An edge that lies on a red and a
blue path is called a red-blue edge. Notice that a vertex
of Hz+j has degree 4 only if it is incident on two blue
edges. Each vertex in Az+j serves as a source of a red
path and a source or a destination of a blue path, so it
can only be incident on at most two edges in Hz+j . A
vertex v ∈ Bz+j serves as a destination of a red path;
its degree is at most 3, and it is equal to 3 only if v is
incident on two blue edges.

We let Hj+1 be the concatenation of the paths in
Hj , Rz+j , and Ez+j . In order to define the mapping
f : Hj+1 → V (Xi), for each P ∈ Hj+1, let P ′ ∈ Hj be

the sub-path of P . Then we set f(P) = f(P ′). Notice
that the set Bz+j of paths defines a matching between

the paths in HjY and HjZ , which in turn naturally
defines a matching Mj between Yj and Zj in Xi. We
add the edges of the matching Mj to X. Each edge
e = (vi, vi′) ∈Mj is mapped to the corresponding path
in Bz+j , that connects the unique vertex in Aj∩f−1(vi)
to the unique vertex in Aj ∩ f−1(vi′).

Finally, we set Hi = Hr∗ . Let H̃i be the union of
the graphs Hz+1, . . . ,Hz+r∗ , and the edges Ei. Then
we have defined an αCMG(h)-expander Xi on h vertices
with maximum vertex degree γCMG(h), and embedded it
with congestion 2 into H̃i, where each vertex of Xi is
embedded into a distinct path in Hi.
Let H be the union of the graphs H̃i, for 1 ≤ i ≤
N and

⋃N−1
i=1 Êi, and let H be the concatenation of

H1, Ê1, . . . , ÊN−1,HN . We will sometimes refer to the
paths in H as red paths. All vertices in H have degree
at most 4, and, as observed before, a vertex of H may
have degree 4 only if it is incident on exactly two blue
edges. Every vertex in A has degree at most 2. Our
final graph H∗ is obtained from H as follows: for each
vertex v ∈ (H) that is incident on two blue edges, we
independently choose one of these two blue edges at
random. Each blue edge that has been chosen by at
least one vertex is then deleted from the graph. This
final graph is denoted by H∗. Notice that each edge
e = (u, v) may be deleted fromH due to the choice made
by u, or the choice made by v; the overall probability
that e is not deleted is at least 1/4. Moreover, if e and e′

do not share endpoints, then the events that e is deleted
and that e′ is deleted are independent.

It is immediate to see that |V (H∗)| ≤ Nr∗ · O(h4) =
O(rh4); the vertices of A are contained in V (H∗), and
the maximum vertex degree in H∗ is 3. It now only
remains to prove that w.h.p. the vertices of A are α-
well-linked in H∗, for some α = Ω(1/ log7 k). We do so
in the next two steps, using the following claim whose
proof can be found in [10].

Claim 5.1. The set A of vertices is αWL-well-linked in

H, where αWL = min
{

1
2 ,

N ·αCMG(h)
4γCMG(h)

}
= Ω(1).

Step 2: Partitioning the Red Paths In this step,
we will define a collection ΣP of disjoint segments for
every path P ∈ H.

Consider any such path P ∈ H. A sub-path P ′ of P
is called a heavy sub-path iff for some 1 ≤ i ≤ Nr∗,
P ′ contains at least 200N4 = Θ(log4 h) vertices that
belong to Hi.

If P contains no heavy sub-paths, then ΣP = {P}.
Notice that P contains at most Nr∗ · O(log4 h) =
O(log7 h) vertices in this case. Otherwise, we perform
a number of iterations. In each iteration, we start with
some heavy sub-path P ′ of P , where at the beginning
of the first iteration, P ′ = P . Let P ′′ be the minimum-
length heavy sub-path of P ′ containing the first vertex
of P ′. If P ′ \P ′′ is a heavy path, then we add P ′′ to ΣP ,
delete all vertices of P ′′ from P ′, and continue to the
next iteration. Otherwise, we add P ′ to ΣP and finish
the algorithm. Notice that in any case, the length of
every path added to ΣP is at most Nr∗ · O(log4 h) =
O(log7 h). Overall, for each path P ∈ H, we obtain a
partition of P into disjoint sub-paths of length at most
O(log7 h) each. Moreover, if |ΣP | > 1, then each path
in ΣP is a heavy sub-path of P . Let Σ =

⋃
P∈HΣP .

We obtain a contracted graph F from H by contracting,
for each σ ∈ Σ, the vertices of σ into a single super-node
vσ. For every vertex u ∈ A, let g(u) be the super-node
vσ such that u ∈ V (σ). Notice that for u 6= u′, g(u) 6=
g(u′). Let U = {g(u) | u ∈ A}. Since, from Claim 5.1,
the vertices of A are αWL-well-linked in H, the vertices
of U are αWL-well-linked in F . Since every vertex of H
must belong to some red path, V (F) = {vσ | σ ∈ Σ}.
We define a graph F ∗ from H∗, by similarly contract-
ing all segments in

⋃
P∈HΣP into super-nodes. Equiv-

alently, graph F ∗ is obtained from F , by deleting all
edges in E(H) \ E(H∗). We prove the following claim.

Claim 5.2. Set U is αWL/32-well-linked in F ∗ w.h.p.

From the above claim we can easily show that A is α-
well-linked in H∗ since each node in H∗ corresponds to
the contraction of O(poly log h) nodes in the graph F ∗;
see [10] for details.

Step 3: Finishing the Proof In this step we prove
Claim 5.2. We will sometimes refer to a subset S ⊆
V (F) of the vertices of F , with S, V (F) \ S 6= ∅, as a
cut. The value of the cut S is | out(S)|. The crucial part
of the proof is the following claim whose proof can be
found in [10].

Claim 5.3. The value of the minimum cut in graph F
is at least N .

Let n′ = |V (H)|. Then |V (F)| ≤ n′ ≤ 10h4 · r∗ · N ,
and since N > 1536 log(10h4 · r∗ ·N) ≥ 1536 log n′, the
value of the minimum cut in F is at least 1536 log n′.
The number of edges in F is bounded by m ≤ 4n′ ≤
40h4r∗N = O(h4 log3 h). We use the following theorem
of Karger:

Theorem 5.2. (Corollary A.6 in [22]) Let G be
any n-vertex graph, and assume that the value of the
minimum cut in G is C. Then for any half-integral β,
the number of cuts of value at most βC in G is bounded
by n2β.

Since in graph F , the set U of vertices is αWL-well-
linked, it is enough to show that w.h.p., for any subset
S of vertices of F , | outF∗(S)| ≥ | outF (S)|/32. We
partition the cuts S ⊆ V (F) into dlogme collections
C1, . . . , Cdlogme, where for each 1 ≤ i ≤ dlogme, Ci
contains all cuts S with 2i−1N < | outF (S)| ≤ 2iN ;
set C1 also contains all cuts S with | outF (S)| =
N . Consider now some such collection Ci. From
Theorem 5.2, |Ci| ≤ (n′)2i+1

. Consider some set S ∈ Ci.
Let S′ ⊆ V (H) be obtained by un-contracting all
super-nodes in S, that is, S′ =

⋃
vσ∈S V (σ). Notice

that outH(S′) = outF (S), and outH∗(S
′) = outF∗(S).

Let E1(S) ⊆ outH(S′) contain all red and red-blue
edges of outH(S′), and let E2(S) = outH(S′) \ E1(S).
If |E1(S)| ≥ | outH(S′)|/8, then, since all edges of
E1(S) belong to F ∗, | outF∗(S)| ≥ | outF (S)|/8. We
assume from now on that this is not the case, and so
|E2(S)| ≥ 7| outF (S)|/8. Next, we construct a maximal
set E′ ⊆ E2(S) of edges, such that the edges in E′

do not share endpoints in graph H. This is done
by a simple greedy algorithm: while E2(S) 6= ∅, let
e ∈ E2(S) be any edge. Add e to E′, and delete from
E2(S) edge e and all edges sharing endpoints with e in
graph H. Since all edges in E2(S) are blue, and each
vertex may be incident on at most two blue edges, for
every edge added to E′, we delete at most three edges
from E2(S). Therefore, eventually |E′| ≥ |E2(S)|/3 ≥
7| outH(S′)|/24 ≥ | outH(S′)|/4 = | outF (S)|/4 holds.

Each edge of E′ belongs to outF∗(S) independently with
probability at least 1/4. The expected number of the
edges of E′ that belong to outF∗(S) is therefore at least
|E′|/4 ≥ | outF (S)|/16 ≥ N · 2i−5.

We use the following standard Chernoff bound: let
X1, . . . , Xn be independent random variables in {0, 1},
and let µ = E [

∑n
i=1Xi]. Then Pr [

∑n
i=1Xi < µ/2] ≤

e−µ/12. Therefore, the probability that | outF∗(S)| <
| outF (S)|/32 is at most e−N ·2

i−5/12. Overall, the prob-
ability that for some S ∈ Ci, | outF∗(S)| < | outF (S)|/32
is at most:

(n′)2i+1 · e−2i−5N/12 < 1/(n′)2

since N > 1536 log n′. Using the union bound over

all 1 ≤ i ≤ dlogme, with probability at least dlogme
(n′)2 ,

for every set S ⊆ V , | outF∗(S)| ≥ | outF (S)|/32. In

particular, set U is αWL/32-well-linked in F ∗ w.h.p. This
concludes the proof of Claim 5.2. As observed above,
this implies that A is α-well-linked in graph H∗, thus
completing the proof of Theorem 5.1.

Acknowledgement: We thank Paul Seymour for pos-
ing the question of the existence of degree-3 treewidth
sparsifiers to us.

References

[1] Matthew Andrews. Approximation algorithms for the
edge-disjoint paths problem via Raecke decomposi-
tions. In Proceedings of IEEE FOCS, pages 277–286,
2010.

[2] S. Arnborg, D. Corneil, and A. Proskurowski. Com-
plexity of finding embeddings in a k-tree. SIAM Jour-
nal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[3] Joshua D. Batson, Daniel A. Spielman, Nikhil Sri-
vastava, and Shang-Hua Teng. Spectral sparsification
of graphs: theory and algorithms. Commun. ACM,
56(8):87–94, 2013.

[4] András A. Benczúr and David R. Karger. Approximat-
ing s-t minimum cuts in Õ(n2) time. In Proceedings of
the Twenty-eighth Annual ACM Symposium on Theory
of Computing, STOC ’96, pages 47–55, New York, NY,
USA, 1996. ACM.

[5] H. Bodlaender. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM Journal
on Computing, 25(6):1305–1317, 1996.

[6] Hans L. Bodlaender, Rodney G. Downey, Michael R.
Fellows, and Danny Hermelin. On problems without
polynomial kernels. Journal of Computer and System
Sciences, 75(8):423 – 434, 2009.

[7] Erin W. Chambers and David Eppstein. Flows in one-
crossing-minor-free graphs. In Otfried Cheong, Kyung-
Yong Chwa, and Kunsoo Park, editors, ISAAC (1),
volume 6506 of Lecture Notes in Computer Science,
pages 241–252. Springer, 2010.

[8] Moses Charikar, Tom Leighton, Shi Li, and Ankur
Moitra. Vertex sparsifiers and abstract rounding al-
gorithms. In Proceedings of the 2010 IEEE 51st An-
nual Symposium on Foundations of Computer Science,
FOCS ’10, pages 265–274, Washington, DC, USA,
2010. IEEE Computer Society.

[9] Chandra Chekuri and Julia Chuzhoy. Polyno-
mial bounds for the grid-minor theorem. CoRR,
abs/1305.6577, 2013. Extended abstract in Proc. of
ACM STOC, 2014.

[10] Chandra Chekuri and Julia Chuzhoy. Degree-3
treewidth sparsifiers. CoRR, abs/xxx, 2014.

[11] Chandra Chekuri and Alina Ene. Poly-logarithmic
approximation for maximum node disjoint paths with
constant congestion. In Proc. of ACM-SIAM SODA,
2013.

[12] Chandra Chekuri and Nitish Korula. A graph reduc-
tion step preserving element-connectivity and applica-
tions. In Proc. of ICALP, pages 254–265, 2009.

[13] Julia Chuzhoy. On vertex sparsifiers with steiner
nodes. In Proceedings of the 44th symposium on Theory
of Computing, STOC ’12, pages 673–688, New York,
NY, USA, 2012. ACM.

[14] Julia Chuzhoy. Routing in undirected graphs with
constant congestion. In Proc. of ACM STOC, pages
855–874, 2012.

[15] Julia Chuzhoy and Shi Li. A polylogarithimic approx-
imation algorithm for edge-disjoint paths with conges-
tion 2. In Proc. of IEEE FOCS, 2012.

[16] Andrew Drucker. New limits to classical and quantum
instance compression. In Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Symposium
on, pages 609–618. IEEE, 2012.

[17] Matthias Englert, Anupam Gupta, Robert
Krauthgamer, Harald Räcke, Inbal Talgam-Cohen,
and Kunal Talwar. Vertex sparsifiers: new results
from old techniques. In Proceedings of the 13th in-
ternational conference on Approximation, and 14 the
International conference on Randomization, and com-
binatorial optimization: algorithms and techniques,
APPROX/RANDOM’10, pages 152–165, Berlin,
Heidelberg, 2010. Springer-Verlag.

[18] U. Feige, M.T. Hajiaghayi, and J.R. Lee. Improved
approximation algorithms for minimum weight vertex
separators. SIAM Journal on Computing, 38:629–657,
2008.

[19] Torben Hagerup, Naomi Nishimura, Jyrki Katajainen,
and Prabhakar Ragde. Characterizing multiterminal
flow networks and computing flows in networks of
bounded treewidth. J. Comput. Syst. Sci., 57, 1998.

[20] H. R. Hind and O. Oellermann. Menger-type results
for three or more vertices. Congressus Numerantium,
113:179–204, 1996.

[21] Bart M. P. Jansen. On sparsification for computing
treewidth. In Proceedings of IPEC, pages 216–229,
2013.

[22] David R. Karger. Random sampling in cut, flow, and
network design problems. Mathematics of Operations
Research, 24:383–413, 1999.

[23] Arindam Khan, Prasad Raghavendra, Prasad Tetali,
and László A. Végh. On mimicking networks represent-
ing minimum terminal cuts. CoRR, abs/1207.6371,
2012.

[24] Rohit Khandekar, Satish Rao, and Umesh Vazirani.
Graph partitioning using single commodity flows. J.
ACM, 56(4):19:1–19:15, July 2009.

[25] Stefan Kratsch and Magnus Wahlström. Representa-
tive sets and irrelevant vertices: New tools for kernel-
ization. In Proceedings of the 53rd Annual IEEE Sym-
posium on Foundations of Computer Science, FOCS
’12, 2012.

[26] Robert Krauthgamer and Inbal Rika. Mimicking net-
works and succinct representations of terminal cuts. In
Proceedings of the Twenty-Fourth Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1789–1799.
SIAM, 2013.

[27] Alexander Leaf and Paul Seymour. Treewidth
and planar minors. Manuscript, available at
https://web.math.princeton.edu/ pds/papers/treewidth/paper.pdf,
2012.

[28] F. Thomson Leighton and Ankur Moitra. Extensions
and limits to vertex sparsification. In Proceedings of the
42nd ACM symposium on Theory of computing, STOC
’10, pages 47–56, New York, NY, USA, 2010. ACM.

[29] L. Lovász. On some connectivity properties of eulerian
graphs. Acta Mathematica Academiae Scientiarum
Hungarica, 28(1-2):129–138, 1976.

[30] W. Mader. A reduction method for edge connectivity
in graphs. Ann. Discrete Math., 3:145–164, 1978.

[31] Konstantin Makarychev and Yury Makarychev. Metric
extension operators, vertex sparsifiers and lipschitz ex-
tendability. In FOCS, pages 255–264. IEEE Computer
Society, 2010.

[32] Ankur Moitra. Approximation algorithms for
multicommodity-type problems with guarantees inde-
pendent of the graph size. In FOCS, pages 3–12. IEEE
Computer Society, 2009.

[33] Lorenzo Orecchia, Leonard J. Schulman, Umesh V.
Vazirani, and Nisheeth K. Vishnoi. On partitioning
graphs via single commodity flows. In Proceedings
of the 40th annual ACM symposium on Theory of
computing, STOC ’08, pages 461–470, New York, NY,
USA, 2008. ACM.

[34] Satish Rao and Shuheng Zhou. Edge disjoint paths
in moderately connected graphs. SIAM J. Comput.,
39(5):1856–1887, 2010.

[35] Bruce Reed. Surveys in Combinatorics, chapter
Treewidth and Tangles: A New Connectivity Measure
and Some Applications. London Mathematical Soci-
ety Lecture Note Series. Cambridge University Press,
1997.

[36] N Robertson, P Seymour, and R Thomas. Quickly
Excluding a Planar Graph. Journal of Combinatorial
Theory, Series B, 62(2):323–348, November 1994.

[37] Neil Robertson and P D Seymour. Graph minors. V.
Excluding a planar graph. Journal of Combinatorial
Theory, Series B, 41(1):92–114, August 1986.

[38] Neil Robertson and Paul Seymour. Graph minors
XXIII: Nash-williams’ immersion conjecture. Journal
of Combinatorial Theory, Series B, 100(2):181 – 205,
2010.

[39] P. Wollan. The structure of graphs not admitting a
fixed immersion. ArXiv e-prints, February 2013.

	Introduction
	Treewidth Sparsifiers and Grid Minors
	Sparsifiers Preserving Vertex Cuts

	Routing Two Pairs of Vertex Subsets
	Background on Treewidth and Path-of-Sets System
	A Small Treewidth-Preserving Degree-4 Minor
	Building a Degree-3 Minor
	Overview
	Proof of Theorem 1.1

