
Degree-3 Treewidth Sparsifiers∗

Chandra Chekuri† Julia Chuzhoy‡

October 3, 2014

Abstract

We study treewidth sparsifiers. Informally, given a graph G of treewidth k, a treewidth sparsifier
H is a minor of G, whose treewidth is close to k, |V (H)| is small, and the maximum vertex degree in
H is bounded. Treewidth sparsifiers of degree 3 are of particular interest, as routing on node-disjoint
paths, and computing minors seems easier in sub-cubic graphs than in general graphs.

In this paper we describe an algorithm that, given a graph G of treewidth k, computes a
topological minor H of G such that (i) the treewidth of H is Ω(k/polylog(k)); (ii) |V (H)| = O(k4);
and (iii) the maximum vertex degree in H is 3. The running time of the algorithm is polynomial in
|V (G)| and k. Our result is in contrast to the known fact that unless NP ⊆ coNP/poly, treewidth
does not admit polynomial-size kernels. One of our key technical tools, which is of independent
interest, is a construction of a small minor that preserves node-disjoint routability between two
pairs of vertex subsets. This is closely related to the open question of computing small good-
quality vertex-cut sparsifiers that are also minors of the original graph.

1 Introduction

Given a large graph G, the goal in graph sparsification is to compute a “small” graph H that retains,
exactly or approximately, some key properties of G. Two such standard regimes are when V (H) =
V (G) but H is a sparse graph, or when |V (H)| � |V (G)|. Sparsifiers for basic properties such as
connectivity, distances, cuts and flows have been extensively studied. For instance, cut sparsifiers were
introduced by Benczur and Karger [BK96], and were more recently generalized to spectral sparsifiers
[BSST13], and to cut and flow sparsifiers for vertex subsets [Moi09, LM10]. Graph sparsifiers are
closely related to the notion of kernelization used in fixed-parameter tractable algorithms, where an
input instance is first reduced to a much smaller instance (called a kernel), whose size is ideally
polynomial in the parameter k, and then the problem is solved on the smaller instance. Sparsification
and sparse representations are also of great importance for other objects such as signals, matrices, and
geometric objects to name just a few.

We say that a graph H is a strong sparsifier for the given graph G, if additionally H is a minor of G.
Strong sparsifiers are of particular interest, since they retain some of the structure of G. For example,
if H contains some graph H ′ as a minor, then so does G; a collection P of disjoint paths (or cycles)
in H immediately translates to a collection of disjoint paths (or cycles) in G, and so on.

∗An extended abstract is to appear in SODA 2015
†Dept. of Computer Science, University of Illinois, Urbana, IL 61801. chekuri@illinois.edu. Supported in part by

NSF grant CCF-1319376.
‡Toyota Technological Institute, Chicago, IL 60637. Email: cjulia@ttic.edu. Supported in part by NSF grant

CCF-1318242.

1

In this paper we study sparsifiers for treewidth, a fundamental graph parameter with a wide variety
of applications in graph theory and algorithms. The treewidth of a graph G = (V,E) is typically
defined via tree decompositions. A tree-decomposition of G consists of a tree T = (V (T), E(T)) and
a collection of vertex subsets {Xv ⊆ V }v∈V (T) called bags, such that: (i) for each edge (a, b) ∈ E,
there is some node v ∈ V (T) with both a, b ∈ Xv and (ii) for each vertex a ∈ V , the set of all
nodes of T whose bags contain a form a non-empty connected subtree of T . The width of a given
tree decomposition is maxv∈V (T) |Xv| − 1, and the treewidth of a graph G, denoted by tw(G), is the
width of a minimum-width tree decomposition for G. Treewidth is known to be NP-hard to compute
[ACP87]. The best known polynomial-time approximation algorithm, given a graph G of treewidth
k, computes a tree decomposition of width O(k

√
log k) [FHL08]. It is also known that treewidth is

fixed-parameter-tractable [Bod96]: for every fixed k, there is a linear-time algorithm, that, given G,
decides whether tw(G) ≤ k; the dependence of the running time on k is exponential in poly(k). There
are many important results on the structure of large-treewidth graphs. Perhaps the most well-known
of these is the Grid-Minor Theorem of Robertson and Seymour that we discuss in more detail later.

Informally, graph H is a treewidth sparsifier for a given graph G, if H is sparse, |V (H)| is small, and
tw(H) is (approximately) the same as tw(G). For H to be useful as a replacement for G, it needs to be
a strong sparsifier — that is, H should be a minor of G1. The notion of treewidth sparsifiers is closely
related to the notion of kernels for treewidth. A polynomial kernel for treewidth is a map f , that,
given an instance (G, k), returns an instance (G′, k′), with the property that tw(G) ≤ k iff tw(G′) ≤ k′,
while ensuring that the size of the graph G′ is polynomial in k. Unless NP ⊆ coNP/poly there is no
polynomial kernel for treewidth which follows from the results of Bodlaender et al. [BDFH09] and
Drucker [?]. Super-linear lower bounds for more general forms of kernelization are also known [Jan13].

Our main result shows that if one is willing to settle for a poly-logarithmic factor approximation in the
treewidth, then there exist sparsifiers with very strong properties. To state our main result we need a
definition. A graph H is a topological minor of G if H is obtained from G by edge and node deletions,
and by suppressing degree-2 nodes2. Equivalently, H is a topological minor of G iff a subdivision of
H is a subgraph of G. Our main result is summarized in the following theorem.

Theorem 1.1 There is a randomized algorithm, that, given a graph G of treewidth at least k, with
high probability computes a topological minor H of G, such that:

• the treewidth of H is Ω(k/ poly log k);

• the maximum vertex degree in H is 3; and

• |V (H)| = O(k4).

The running time of the algorithm is polynomial in |V (G)| and k.

Our result is close to optimal: degree 3 cannot be reduced, and the best one can hope for in terms
of the size of the sparsifier is O(k2/ poly log k) (when G is a k × k grid). We also recall that the best
currently known polynomial-time approximation algorithm can only certify treewidth to within an
O(
√

log k)-factor. We conjecture a strengthening of the theorem to almost optimal parameters.

1Note that if all we wanted is a graph H that has similar treewidth as G then it suffices to (approximately) compute
tw(G) and let H be any graph from a well-known class such as grids, cliques or expanders with the same treewidth.

2Note that H is a minor of G if it can be obtained by edge and node deletions and edge contractions. A minor H of
a graph G need not be a topological minor G, however, if the maximum vertex degree in H is at most 3, then H is also
a topological minor of G.

2

Conjecture 1.2 For every graph G with treewidth at least k, there exists a topological minor H of G
such that tw(H) = Ω(k/ poly log k), |V (H)| = O(k2) and maximum vertex degree in H is 3.

The existence of sparsifiers of size poly(k) that preserve the treewidth to within a constant factor
remains a very interesting open question.

1.1 Treewidth Sparsifiers and Grid Minors

A fundamental result in Graph Minor Theory is the Grid-Minor Theorem of Robertson and Seymour
[RS86]. The theorem states that there is an integer-valued function f , such that any graph G with
treewidth at least f(g) contains a g × g grid as a minor. The theorem is equivalent to showing that
tw(G) ≥ f(g) implies that G contains a wall of height and width Θ(g) as a subgraph; see Figure 1.

Figure 1: An elementary wall of height and width 5. A wall is a subdivision of an elementary wall.

We observe that a wall has maximum vertex degree 3. Thus, one way to obtain a degree-3 treewidth
sparisfier is via the Grid-Minor Theorem. The original proof of Robertson and Seymour [RS86]
showed the existence of f with an iterated exponential dependence on g. Very recently, the first
polynomial bound on f was shown in [CC13]: namely, every graph of treewidth k contains a wall
of size kδ as a topological minor, where δ = 1/98 − o(1). This result implies a degree-3 treewidth
sparsifier, whose treewidth is k1/98−o(1). In contrast, the sparsifier from Theorem 1.1 has treewidth
Ω(k/polylog(k)). Moreover, there are graphs with treewidth k, such that the size of the largest wall
they contain is O(

√
k/ log k) [RST94]. Therefore, one cannot hope to obtain small sparsifiers that

preserve treewidth to within polylogarithmic factors via the Grid-Minor Theorem. Our construction
bypasses this limitation.

One of our motivations for studying treewidth sparsifiers is improving the bounds for the Grid-Minor
Theorem. Theorem 1.1 allows us to focus on subcubic graphs with the additional property that |V (G)|
is polynomial in tw(G). Degree-3 sparsifiers have particular advantages: in such a graph, for several
applications of interest, one can replace node-disjoint routing with the easier edge-disjoint routing.
We anticipate that using Theorem 1.1 as a starting point, the bounds on the Grid-Minor Theorem
from [CC13] can be improved. We also mention that the fact that |V (H)| = poly(k) simplifies some
technical parts in the current proof of [CC13].

A related application is to the notion of graph immersions (see [RS10, Wol13]). A graph G admits a
strong immersion of a graph H iff there is an injective mapping τ : V (H) → V (G) and a mapping
π : E(H) → PG, where PG is a set of paths in G, such that (i) for each f = (a, b) ∈ E(H) the
path π(f) connects τ(a) and τ(b); (ii) for any two edges f, f ′ ∈ E(H) the paths π(f) and π(f ′) are
edge-disjoint; and (iii) for every f ∈ E(H) the path π(f) intersects τ(V (H)) only at its endpoints.
Note that G admits H as a topological minor if additionally the paths π(f) and π(f ′) are internally
node-disjoint for any distinct pair f, f ′ ∈ E(H). If G is a sub-cubic graph, then G contains H as
a topological minor iff G contains H as a strong immersion. Therefore, G contains a wall W iff it
contains it as an immersion. In recent work, Wollan [Wol13] defined the notion of tree-cut width of a
graph and showed, using the Grid-Minor Theorem, that there is a function g, such that every graph

3

with tree-cut width at least g(r) admits an r-wall as a weak immersion. Motivated by this connection,
he raised the question of the existence of degree-3 treewidth sparsifiers. Theorem 1.1 answers his
question (Question 18 in [Wol13]) in a near-optimal fashion and we refer the reader to [Wol13] for the
quantitative and qualitative implications to immersions.

Our result can be viewed as providing an approximate kernel for treewidth, and we hope that it
will find applications in preprocessing graphs for fixed-parameter tractable (FPT) algorithms, and in
constructive aspects of Erdos-Pösa type theorems.

We now briefly discuss our techniques. We use a combinatorial object, called a path-of-sets system,
that was defined in [CC13] (see also Figure 2). Using the construction of the Path-of-Sets system
from [CC13], together with the Cut-Matching Game of Khandekar, Rao and Vazirani [KRV09], we
can immediately obtain a strong degree-4 treewidth sparsifier H, with tw(H) = Ω(k/polylog(k)).
However, the size of V (H) can be arbitrarily large. Our main technical contribution is two-fold. First,
we lower the degree of the sparsifier to 3, by carefully sub-sampling the edges of H. Second, we reduce
the size of the sparsifier to poly(k). For the second part, we crucially need a new technical ingredient,
that is related to strong vertex-cut sparsifiers, that we discuss below.

1.2 Sparsifiers Preserving Vertex Cuts

Suppose we are given any graph G = (V,E) and a pair S, T ⊆ V of vertex subsets, containing k vertices
each. We say that the pair (S, T) is routable in G iff there is a set P of k disjoint paths connecting
the vertices of S to the vertices of T in G, and we say that the set P of paths routes the pair (S, T).
Assume now that we have two pairs of vertex subsets: S1, T1, containing k1 vertices each, and S2, T2

containing k2 vertices each. We say that both pairs (S1, T1), (S2, T2) are separately routable, or just
routable, in G iff there is a set P of paths routing (S1, T1), and there is a set Q paths routing (S2, T2)
in G. Note that a vertex of G may belong to a path in P and a path in Q. Our second main result is
summarized in the following theorem.

Theorem 1.3 Assume that we are given a graph G, two sets S1, T1 ⊆ V (G) of k1 vertices each, and
two sets S2, T2 ⊆ V (G) of k2 vertices each, such that k1 ≥ k2, and the pairs (S1, T1) and (S2, T2)
are (separately) routable in G. Then there are two sets P,Q of paths routing (S1, T1) and (S2, T2)
respectively, such that, if H is the graph obtained by the union of the paths in P and Q, then τ(H) ≤
8k4

1 + 8k1, where τ(H) is the number of nodes of degree more than two in H. Moreover, we can find
P and Q in time polynomial in n and k1.

The preceding theorem gives an upper bound on the size of a topological minor of G that preserves
the vertex connectivity between S1, T1 and S2, T2. There are results in the literature on reduction
operations that preserve edge connectivity [Lov76, Mad78] (and also element connectivity [HO96,
CK09]), however no such nice operations are available for preserving vertex connectivity. We briefly
discuss some related work on cut sparsifiers and an open problem on a generalization of Theorem 1.3
that would yield strong sparsifiers that preserve vertex cuts.

There has been a large amount of work in the recent past on graph sparsifiers that preserve cuts
and flows for subsets of vertices [Moi09, LM10, CLLM10, MM10, EGK+10, Chu12a]. We discuss
some closely related work. Given an edge-capacitated graph G and a terminal set T ⊆ V (G), a
graph H is a quality-q cut-sparsifier for T if (i) T ⊆ V (H) and (ii) for any partition (A,B) of T ,
MinCutG(A,B) ≤ MinCutH(A,B) ≤ qMinCutG(A,B) where MinCutF (A,B) is the minimum edge-
cut separating A from B in a graph F . Quality-1 sparsifiers have also been called mimicking networks
in prior work [HNKR98, KR13, KRTV12, CE10]. Leighton and Moitra [LM10] have shown that for
any graph G, there is a quality-q sparsifier H for G with q = O(log k/ log log k) and V (H) = T

4

(here k = |T |); in other words the sparsifier does not use any non-terminal (or Steiner) vertices.
There are instances on which the best quality one can achieve is Ω(

√
log k) if H does not have Steiner

vertices [MM10]. Even a relatively small number of Steiner vertices can help substantially in improving
the quality of the sparsifier as shown in [Chu12a].

To simplify the discussion, we restrict our attention to the case where the terminals in T have degree 1
and all edge capacities are 1. In this case constant quality cut-sparsifiers are known with V (H) = O(k3)
[Chu12a, KW12]. The result of Kratsch and Wahlström [KW12], in fact, applies in the more general
setting of vertex-cuts, and yields a quality-1 sparsifier; we call such a sparsifier a vertex-cut sparsifier
to distinguish it from an edge-cut sparsifier.

However, the sparsifer of [KW12] is not a minor of the original graph G. Sparsifiers that are minors
of the original graph have an advantage that they allow flows (fractional or integral) and minors in
the sparsifier to be transferred back to the original graph G without any loss. Theorem 1.3 gives us
a small-sized minor that preserves the vertex connectivity between two pairs of vertex subsets. A
natural open question is to generalize this result to a larger number of pairs of vertex subsets.

Question 1 Assume that we are given a graph G, and h pairs of vertex subsets (S1, T1), . . . , (Sh, Th),
such that for each i: (1) Si, Ti ⊆ V (G), (2) |Si| = |Ti| = ki ≤ k, and (3) (Si, Ti) are routable in G.
What is the smallest function f(k, h), such that, given any graph G and (S1, T1), . . . , (Sh, Th) as above,
there is always a (topological) minor H of G with the property that each (Si, Ti) is routable in H and
|V (H)| ≤ f(k, h)?

The case when h = polylog(k) is of particular interest. We believe that a bound on f(k, h) from the
preceding question can be used to obtain a vertex-cut sparsifier H for any graph G and a set T of k
terminals, such that H is a minor of G, |V (H)| ≤ f(poly k, h) for h = poly log k, and the quality of H
is polylog(k).

Organization We prove Theorem 1.3 in Section 2. Section 3 provides the necessary background on
treewidth and the path-of-sets system. Theorem 1.1 is proved in two steps. Section 4 gives the proof
of a weaker result, a degree-4 sparsifier. Section 5 gives the proof for the degree-3 sparsifier.

2 Routing Two Pairs of Vertex Subsets

In this section we prove Theorem 1.3. Recall that a graph H is a minor of a graph G, iff H can
be obtained from G by a series of edge deletion, vertex deletion, and edge contraction operations.
Equivalently, H is a minor of G iff there is a map f : V (H) → 2V (G) assigning to each vertex
v ∈ V (H) a subset f(v) of vertices of G, such that: (a) for each v ∈ V (H), the sub-graph of G induced
by f(v) is connected; (b) if u, v ∈ V (H) and u 6= v, then f(u) ∩ f(v) = ∅; and (c) for each edge
e = (u, v) ∈ E(H), there is an edge in E(G) with one endpoint in f(v) and the other endpoint in f(u).
A map f satisfying these conditions is called a model of H in G. Given any subset X ⊆ V of vertices
of G, we say that H is an X-respecting minor of G, iff X ⊆ V (H). More formally, there is a model f
of H, where for each vertex x ∈ X, there is a distinct vertex vx ∈ V (H) with f(vx) = {x}. For each
x ∈ X, we will usually identify such vertex vx with x. In particular, every subset S ⊆ X of vertices of
X corresponds to a subset S′ = {vx | x ∈ X} of vertices in H, and we will not distinguish between S
and S′.

Assume that we are given a graph G and two pairs (S′1, T
′
1), (S′2, T

′
2) of vertex subsets, with |S′1| = |T ′1|

and |S′2| = |T ′2|, that are separately routable in G. We say that a minor H of G is (S′1, T
′
1, S
′
2, T

′
2)-good,

iff H is an X-respecting minor for X = S′1 ∪ S′2 ∪ T ′1 ∪ T ′2, and (S′1, T
′
1), (S′2, T

′
2) are each routable in

5

H. We say that it is (S′1, T
′
1, S
′
2, T

′
2)-minimal, iff it is (S′1, T

′
1, S
′
2, T

′
2)-good, and for every edge e of H,

both the graph obtained from H by deleting e, and the graph obtained from H by contracting e, are
not (S′1, T

′
1, S
′
2, T

′
2)-good. The main result of this section is the following theorem.

Theorem 2.1 Assume that we are given a graph G, and sets S′1, T
′
1, S
′
2, T

′
2 ⊆ V (G) of k vertices each,

such that the pairs (S′1, T
′
1) and (S′2, T

′
2) are (separately) routable in G. Assume further that vertices in

S′1, T
′
1, S
′
2, T

′
2 are distinct, and have degree 1 each in G. Let H be any (S′1, T

′
1, S
′
2, T

′
2)-minimal minor

of G. Then |V (H)| ≤ 4k4 + 4k.

We start by showing that Theorem 1.3 follows from Theorem 2.1. Let G be the input graph, and
(S1, T1), (S2, T2) the given pairs of vertex subsets. We denote k1 = k, and add ∆ = k1 − k2 new edges
e1 = (a1, b1), . . . , e∆ = (a∆, b∆), whose endpoints are distinct, to the graph. The vertices {a1, . . . , a∆}
are then added to S2, and the vertices b1, . . . , b∆ are added to T2, so |S2| = |T2| = |S1| = |T1| = k.
The new graph then contains a set of paths routing (S1, T1), and a set of paths routing (S2, T2).

We add a new set S′1 of k vertices to the graph, and connect each vertex in S′1 to a distinct vertex in
S1 with an edge. We construct sets S′2, T

′
1, T

′
2 of vertices and connect them to the vertices in S2, T1, T2,

respectively, in a similar manner. Let G′ be this final graph. Then G′ contains a set of paths routing
(S′1, T

′
1), and a set of paths routing (S′2, T

′
2). The vertices in S′1, T

′
1, S
′
2, T

′
2 are distinct, and have degree

1 each in G′. We now compute any (S′1, T
′
1, S
′
2, T

′
2)-minimal minor H of G′. Let f : V (H) → 2V (G′)

be a map to cerfity that H is a minor of G′. Let P ′ be the set of paths routing (S′1, T
′
1), and Q′ a

set of paths routing (S′2, T
′
2) in H. We use the sets of paths P ′,Q′ to define the sets P,Q of paths

routing (S1, T1) and (S2, T2), respectively, in G. This mapping is the natural one; we extend a path
P ′ ∈ P ′ ∪ Q′ in H to a path P in G by replacing each vertex v ∈ P ′ by a path contained in G[f(v)]
(the connected sub-graph of G corresponding to v) that connects the two edges e, e′ of P ′ incident
on v. Since only two paths from P ′ ∪ Q′ can contain a node v ∈ V (H), it is not hard to find paths
through f(v) for them with at most 2 nodes of degree 3 or more in f(v); this will ensure that the
number of vertices whose degree is more than 2 in the resulting graph is at most twice their number
in H. The formal argument is given below.

Consider any path P ′ ∈ P ′, and assume that P ′ = (s = v0, v1, v2, . . . , vr, vr+1 = t), so s ∈ S′1, t ∈ T ′1.
For each 0 ≤ i ≤ r, we denote the edge (vi, vi+1) by eP

′
i . The new path P contains the edges

eP
′

1 , . . . , eP
′

r−1. Additionally, for each vertex vi, for 1 ≤ i ≤ r, it contains an arbitrary path Rvi(P),

connecting the endpoints of eP
′

i−1 and eP
′

i that are contained in f(vi), such that Rvi(P) ⊆ G[f(vi)].
Notice that since G[f(vi)] is connected, such a path exist. Let P = {P | P ′ ∈ P ′} be the resulting set
of paths. Since the paths in P ′ are node-disjoint, so are the paths in P. It is then immediate to see
that P routes (S1, T1) in G.

Consider now some path Q′ ∈ Q′, and assume that Q′ = (s = v0, v1, v2, . . . , vr, vr+1 = t), so s ∈
S′2, t ∈ T ′2. If v1 = aj for some 1 ≤ j ≤ ∆, then v2 = bj must hold, since ej is the only edge incident
on aj in G′, in addition to (s, aj). Therefore, r = 2, and Q′ = (s, aj , bj , t). We discard Q′ from Q′.
Otherwise, Q′ cannot contain any vertices in {a1, b1, . . . , a∆, b∆}. For each 0 ≤ i ≤ r, we denote the

edge (vi, vi+1) by eQ
′

i . The new path Q contains the edges eQ
′

1 , . . . , eQ
′

r−1. Additionally, for each vertex

vi, for 1 ≤ i ≤ r, it contains some path Rvi(Q), connecting the endpoints of eQ
′

i−1 and eQ
′

i that are
contained in f(vi), such that Rvi(Q) ⊆ G[f(vi)]. The path Rvi(Q) is constructed as follows. If vi does

not belong to any path in P ′, then Rvi(Q) is any path connecting the endpoints of eQ
′

i−1 and eQ
′

i that
are contained in f(vi), such that Rvi(Q) ⊆ G[f(vi)]. Otherwise, let P ′ ∈ P ′ be the path containing
v. Let R1 be the intersection of the corresponding path P ∈ P with G[f(vi)] (which must be a path),

and let R2 be any path contained in G[f(vi)], that connects the endpoints of eQ
′

i−1 and eQ
′

i that belong
to f(vi). If R1 and R2 are disjoint, then we let Rvi(Q) = R2. Otherwise, let u be the first vertex on
R2 that belongs to R1, and let v be the last vertex on R2 that belongs to R1. Let R′2 ⊆ R2 be the

6

segment of R2 from its beginning until the vertex u, and R′′2 ⊆ R2 the segment of R2 from v to its
end. Let R′1 ⊆ R1 be the segment of R1 between u and v. We then let Rvi(Q) be the concatenation
of R′2, R

′
1 and R′′2 . Notice that in the graph obtained by the union of R1 and Rvi(Q), there are at

most two vertices whose degree is more than 2 — the vertices u and v. For each vertex z that serves
as an endpoint of the paths R1 and Rvi(Q), if z 6= u, v, then the degree of z is 1 in this graph. Let
Q be the final set of paths obtained after processing all the paths in Q′. Then it is immediate to see
that Q routes the original pair (S2, T2) of vertex subsets in G. Let H ′ be the graph obtained from
the union of all paths in P ∪Q. Then for each v ∈ V (H), f(v) ∩ V (H ′) contains at most two vertices
whose degree in H ′ is more than 2, so τ(H ′) ≤ 2|V (H)| ≤ 8k4

1 + 8k1. This completes the proof of
Theorem 1.3.

In the rest of this section, we focus on the proof of Theorem 2.1. For simplicity, we denote S′1, S
′
2, T

′
1, T

′
2

by S1, S2, T1 and T2, respectively. Let H be a (S1, T1, S2, T2)-minimal minor of G. Let R be a set of
paths routing (S1, T1) in H. We will often refer to the paths in R as red paths, and we will think of
these paths as directed from S1 towards T1 (even though in general the graph is undirected). Similarly,
let B be the set of paths routing (S2, T2) in H. We refer to the paths in B as blue paths, and view
them as directed from S2 to T2. Notice that a vertex in S1 ∪ T1 cannot participate in a blue path,
since its degree is 1, and all vertices in S1, T1, S2, T2 are distinct. Similarly, a vertex in S2 ∪ T2 cannot
participate in a red path. An edge e ∈ E(H) may belong to a red path, or to a blue path, but not both,
since otherwise we could contract e and obtain a minor that is still (S1, T1, S2, T2)-good, contradicting
the minimality of H; this is possible since e is not incident on S1∪S2∪T1∪T2. The edges that belong
to the paths in R are called red edges, and the edges that belong to the paths in B are called blue
edges. From the minimality of H, every edge is either red or blue. We will refer to the vertices in
S1 ∪S2 ∪T1 ∪T2 as the terminals of H. From the minimality of H, every non-terminal vertex belongs
to one red path and one blue path, and is incident on exactly two red edges and exactly two blue
edges. Assume now that there is another set R′ 6= R of paths in H routing (S1, T1). Then there must
be some red edge in H that does not belong to any path of R′, contradicting the minimality of H.
Therefore, R is the unique set of paths routing (S1, T1) in H, and similarly, B is the unique set of
paths routing (S2, T2) in H. We prove the following theorem.

Theorem 2.2 We can efficiently compute an assignment of labels in L = {`1, `2, . . . , `2k} to the
vertices of V (H), such that each vertex in V (H) is assigned one label, and for every pair R ∈ R,
B ∈ B of paths, if two vertices v and v′ belong to both R and B, and are assigned the same label, then
they appear in the same order on R and on B.

Before we prove Theorem 2.2, let us first complete the proof of Theorem 2.1 assuming it. Let ` :
V (H) → L be the labeling computed by Theorem 2.2. Next, we switch S1 and T1, so that the
directions of the paths in R are reversed. We apply Theorem 2.2 again to this new setting, and obtain
another labeling `′ : V (H)→ L′, where L′ = {`′1, `′2, . . . , `′2k}.
Assume for contradiction that |V (H)| ≥ 4k4 + 4k + 1. Every non-terminal vertex v can be associated
with a quadruple (R,B, `i, `

′
j), where R and B are the red and the blue paths on which v lies, `i

is the label assigned to v by `, and `′j is the label assigned to v by `′. Since the total number of

such quadruples is 4k4, there is a pair u, v of non-terminal vertices that have the same quadruple
(R,B, `i, `

′
j). As u and v are assigned the same label by `, they must appear in the same order on

R and B. Assume w.l.o.g. that u appears before v on both these paths. However, since both these
vertices are assigned the same label by `′, and since the red paths were reversed when computing `′,
the order of u and v on paths R and B must be reversed, a contradiction. In order to complete the
proof of Theorem 2.1, it now only remains to prove Theorem 2.2.

7

Proof of Theorem 2.2

Let H̃ be the directed counterpart of the graph H, where we direct all red edges along the direction
of the red paths from S1 to T1, and we direct the blue edges similarly along the blue paths from S2 to
T2. The main combinatorial object that we use in the proof is a chain. A chain Z is a directed (not
necessarily simple) path in graph H̃, such that the edges of Z are alternating red and blue edges. In
other words, if the edges of Z are e1, e2, . . . , er in this order, then all odd-indexed edges are red and
all even-indexed edges are blue, or vice versa. The rest of the proof consists of three steps. First, we
show that every chain must be a simple path, so no vertex may appear twice on a chain. If this is not
the case, we will show that R is not a unique set of paths routing (S1, T1), or that B is not a unique
set of paths routing (S2, T2), leading to a contradiction. In the second step, we construct a collection
of 2k chains using a natural greedy algorithm: start from some source, and then follow alternatively
red and blue edges, while possible. We will show that every vertex of H belongs to at least one chain
(but may belong to more than one). We then associate a separate label with each chain, and assign
all vertices that belong to a chain the same label. If a vertex belongs to several chains, then one of
the corresponding labels is assigned arbitrarily. Finally, we prove that for every path P ∈ R ∪ B and
every chain Z, if v and v′ are two vertices that belong to both P and Z, then they must appear in the
same order on P and on Z.

Before we proceed, we define two auxiliary structures: red and blue cycles. Let C be a directed simple
cycle in the graph H̃ (so every vertex may appear at most once on C). We say that it is a blue cycle
iff we can partition C into an even number of edge-disjoint consecutive segments σ1, σ2, . . . , σ2r, where
r > 0; for all 1 ≤ i ≤ r, σ2i consists of a single red edge, and σ2i−1 is a non-empty path that only
consists of blue edges. Every edge of C belongs to exactly one segment, and every consecutive pair of
segments shares one vertex (if r = 1 then the two segments share two vertices — the endpoints of the
segments). A red cycle is defined similarly, with the roles of the red and the blue segments reversed.
We start by showing that H̃ cannot contain a red or a blue cycle.

Lemma 2.3 Graph H̃ cannot contain a red cycle or a blue cycle.

Proof: We prove for blue cycles; the proof for red cycles is similar. Let C be a blue cycle in H̃,
and let σ1, σ2, . . . , σ2r be the corresponding segments of C. Let H ′ be the graph obtained from H by
deleting all edges participating in the segments σ2i−1, for 1 ≤ i ≤ r (that is, the blue segments). We
claim that both (S1, T1) and (S2, T2) remain routable in H ′, contradicting the minimality of H. Since
we only deleted blue edges, it is clear that (S1, T1) remains routable via the paths in R. We now show
that H ′ contains a collection of paths routing (S2, T2).

Let A denote the set of all vertices a, such that a is the last vertex of some blue segment σ2i−1 of C,
for 1 ≤ i ≤ r, and let B denote the set of all vertices b, such that b is the first vertex of some blue
segment σ2i−1 of C. Then |A| = |B| = r, and the red edges of C define a complete matching between
A and B. Let Σ be the collection of paths obtained from B, by deleting all blue edges that participate
in the cycle C (we do not include 0-length paths in Σ). Then Σ is a collection of disjoint paths, that
only contain blue edges, which route the pair (S2 ∪ A) and (T2 ∪ B). Notice that every path in Σ
contains at least two vertices: this is since the terminals cannot belong to C as their degrees are 1,
and every vertex appears on C at most once. Therefore, all vertices in S1, S2, A,B, T1, T2 are distinct.

We now construct the following directed graph F : the vertices of F are S2 ∪ A ∪ T2 ∪ B. There is a
directed edge (u, v), for u 6= v, in F iff there is a (directed) red edge (v, u) in C (in which case we say
that (u, v) is a red edge), or there is some path in Σ that starts at u and terminates at v (in which
case we say that (u, v) is a blue edge). Notice that in the graph F , every vertex in S2 has one outgoing
edge and no other incident edges; every vertex in T2 has one incoming edge and no other incident

8

edges; every vertex in A has one outgoing edge (blue), and one incoming edge (red); and every vertex
in B has one incoming edge (blue) and one outgoing edge (red). It is then easy to see that F contains
k directed disjoint paths connecting S2 to T2, and this gives a set of paths routing (S2, T2) in H ′,
contradicting the minimality of H.

The claim below essentially follows from the preceding lemma.

Claim 2.4 If Z is a chain, then every vertex of V (H) may appear on Z at most once.

Proof: Assume otherwise, and let Z be any chain, such that some vertex appears more than once
on Z. Then there is a segment Z ′ of Z, such that both endpoints of Z ′ are the same vertex v, but
every other vertex appears at most once on Z ′, and v is not an inner vertex of Z ′. Notice that Z ′

must contain at least two edges. Then Z ′ defines a simple directed cycle in H̃. Moreover, if both
edges incident on v in Z ′ are blue, then Z ′ is a blue cycle; if both edges are red then Z ′ is a red cycle;
otherwise it is both a red and a blue cycle. Since H̃ cannot contain a red or a blue cycle, every vertex
appears on Z at most once.

We define a collection Z of 2k chains in H̃, and prove that every vertex of H̃ belongs to at least one
chain. Let s ∈ S1 ∪ S2, and let e be the unique edge leaving s. We start building the chain by adding
e to the chain. If the last edge added to the chain e′ = (u, v) is a red edge, and there is a blue edge
leaving v in H̃, then we add the unique blue edge leaving v in H̃ to the chain; if no such edge exists,
we complete the construction of the chain — in this case, v ∈ T1 ∪ T2 must hold. Similarly, if the last
edge added to the chain e′ = (u, v) is a blue edge, and there is a red edge leaving v in H̃, then we add
the unique red edge leaving v in H̃ to the chain; if no such edge exists, we complete the construction
of the chain. Overall, we construct one chain starting from each vertex in S1∪S2, obtaining 2k chains.
Let Z denote the resulting collection of the chains.

Claim 2.5 Every vertex of H̃ belongs to at least one chain.

Proof: We prove a slightly stronger claim: that every edge of H̃ belongs to at least one chain.

Let e be any edge of H̃, and assume w.l.o.g. that it is a blue edge. We construct a chain P from the
end to the beginning, and we start by adding the edge e to P as the last edge of P . Assume that
the last edge added to P was e′ = (u, v). If u ∈ S1 ∪ S2, then we terminate the construction of P ;
otherwise, there must be a red edge entering u and a blue edge entering u. If e′ is a red edge, then we
add the unique blue edge entering u to P , and otherwise we add the unique red edge entering u to P ,
and continue to the next iteration. Since at every step, the current path P is a valid chain, and no
vertex may appear twice on a chain, this process will eventually stop at some vertex s ∈ S1∪S2. Then
the unique chain Z ∈ Z that starts from s must contain P as a sub-path, and hence must contain the
edge e.

Our final step is the following claim.

Claim 2.6 Let Z be a chain, and assume that it contains two vertices v, v′ ∈ V (P), where P ∈ R∪B.
Assume further that v appears before v′ on Z. Then v appears before v′ on P .

Proof: Assume otherwise. Then there must be two vertices u, u′ that appear on both Z and P , such
that no other vertex of P appears between u and u′ on Z, u appears before u′ on Z, and it appears
after u′ on P . Indeed, consider the segment Z∗ of Z between v and v′. If this segment contains no
other vertex of P , then we are done. Otherwise, assume w.l.o.g. that v appears before v′ on Z, and
let v0 = v, v1, . . . , vx = v′ be the vertices of P ∩ Z, that appear on Z∗ in this order. Since v appears

9

after v′ on P , there must be a consecutive pair vi, vi+1 of vertices, such that vi appears after vi+1 on
P . We then set u = vi and u′ = vi+1.

Let Z ′ be the segment of the chain Z between u and u′, and let P ′ be the segment of P between u′ and
u. Observe that P ′ ∩ Z ′ = {u′, u}, and Z ′ contains at least one edge whose color is opposite from the
color of P . If P is a blue path, then Z ′ ∪P ′ is a blue cycle; otherwise it is a red cycle, a contradiction.

We are now ready to assign labels to the vertices of H. Let Z = {C1, C2, . . . , C2k}. Fix any vertex
v ∈ H, and let Ci ∈ Z be any chain that contains v. We then assign to v the label `i.

Consider now any pair R ∈ R, B ∈ B of paths, and let v, v′ be two vertices that have the same label
`i and appear on both R and B. Assume w.l.o.g. that v appears before v′ on chain Ci. Then from
Claim 2.6, v must appear before v′ on both R and B. This completes the proof of Theorem 2.2, and
hence of Theorem 2.1 and Theorem 1.3.

3 Background on Treewidth and Path-of-Sets System

In this section we define some graph-theoretic notions and summarize some previous results that we
use in the proof of Theorem 1.1. We also define a combinatorial object that plays a central role in the
proof — the path-of-sets system from [CC13].

Given a graph G = (V,E) and a set A ⊆ V of vertices, we denote by EG(A) the set of edges with
both endpoints in A, and by outG(A) the set of edges with exactly one endpoint in A. For disjoint
sets of vertices A and B, the set of edges with one end point in A and the other in B is denoted by
EG(A,B). For a vertex v in a graph G we use dG(v) to denote its degree. We may omit the subscript
G if it is clear from the context. Given a set P of paths in G, we denote by V (P) the set of all vertices
participating in paths in P, and similarly, E(P) is the set of all edges that participate in paths in P.
We sometimes refer to sets of vertices as clusters. A path P in a graph G is a 2-path iff every inner
vertex v in P has dG(v) = 2. It is a maximal 2-path iff the degrees of the endpoints of P are both
different from 2. Given a set P of paths, we denote by J(P) the graph obtained by the union of all
the paths in P. Given a graph H, let τ(H) denote the number of vertices of H whose degree is more
than 2 in H.

We now define the notion of linkedness and the different notions of well-linkedness that we use.

Definition 1. We say that a set T of vertices is α-well-linked3 in G, iff for any partition (A,B) of
the vertices of G into two subsets, |E(A,B)| ≥ α ·min {|A ∩ T |, |B ∩ T |}.

Definition 2. We say that a set T of vertices is node-well-linked in G, iff for any pair (T1, T2) of
equal-sized subsets of T , there is a collection P of |T1| node-disjoint paths, connecting the vertices
of T1 to the vertices of T2. (Note that T1, T2 are not necessarily disjoint, and we allow empty paths).

The two different notions of well-linkedness are closely related. In particular, suppose T is α-well-
linked in a graph G of maximum degree ∆. Then there is a large subset T ′ ⊆ T of vertices that is
node-well-linked in G, as shown in the following theorem.

Theorem 3.1 (Theorem 2.2 in [CC13]) Suppose we are given a connected graph G = (V,E) with
maximum vertex degree ∆, and a subset T of κ vertices called terminals, such that T is α-well-linked in

3This notion of well-linkedness is based on edge-cuts and we distinguish it from node-well-linkedness that is directly
related to treewidth. For technical reasons it is easier to work with edge-cuts and hence we use the term well-linked to
mean edge-well-linkedness, and explicitly use the term node-well-linkedness when necessary.

10

G, for some α < 1. Then there is a subset T ′ ⊂ T of Ω
(
ακ
∆

)
terminals, such that T ′ is node-well-linked

in G.

The following well-known lemma summarizes an important connection between treewidth and node-
well-linkedness.

Lemma 3.2 ([Ree97]) Let k be the size of the largest node-well-linked set in G. Then k ≤ tw(G) ≤
4k.

Combining Theorem 3.1 with Lemma 3.2, we obtain the following theorem.

Theorem 3.3 Let G be any graph with maximum vertex degree ∆, and T a subset of κ vertices, such
that T is α-well-linked in G, for α < 1. Then the treewidth of G is Ω(ακ/∆).

A notion closely related to well-linkedness is that of linkedness, where we require good connectivity
between a pair of disjoint vertex subsets.

Definition 3. We say that two disjoint vertex subsets A and B are linked in G iff for any pair of
equal-sized subsets A′ ⊆ A, B′ ⊆ B there is a set P of |A′| node-disjoint paths connecting A′ to B′ in
G.

Path-of-Sets System A central combinatorial object that we use in the proof of Theorems 1.1 is
a path-of-sets system, that was introduced in [CC13] (a somewhat similar object, called a grill, was
introduced by Leaf and Seymour [LS12]). See Figure 2.

Definition 4. A path-of-sets system (S,⋃r−1
i=1 Pi) of width r and height h consists of:

• A sequence S = (S1, . . . , Sr) of r disjoint vertex subsets of G, where for each i, G[Si] is connected;

• For each 1 ≤ i ≤ r, two disjoint sets Ai, Bi ⊆ Si of h vertices each, such that Ai and Bi are
linked in G[Si];

• For each 1 ≤ i < r, a set Pi of h disjoint paths, routing (Bi, Ai+1), such that all paths in
⋃
i Pi

are mutually disjoint, and do not contain the vertices of
⋃
Si∈S Si as inner vertices,

We say that it is a strong path-of-sets system, if additionally for each 1 ≤ i ≤ r, Ai is node-well-linked
in G[Si], and the same holds for Bi.

S1 S2 Sr. . .

P1 P2

Si . . .

Pi−1 Pi Pr−1

Ai Bi

Figure 2: Path-of-Sets System

The following theorem, that was proved in [CC13], is the starting point of the proof of Theorem 1.1.

11

Theorem 3.4 (Theorem 3.2 in [CC13]) Let G be any graph of treewidth k, and let h, r > 1 be
integral parameters, such that for some large enough constants c and c′, k/ logc

′
k > chr48. Then there

is an efficient randomized algorithm, that, given G, h and r, w.h.p. computes a strong path-of-sets
system of height h and width r in G.

Expanders and the Cut-Matching Game. We say that a (multi)-graph G = (V,E) is an α-

expander, iff min S⊆V :

|S|≤|V |/2

{
|E(S,S)|
|S|

}
≥ α. We use the cut-matching game of Khandekar, Rao and

Vazirani [KRV09] to construct an expander that can be appropriately embedded in a graph. In this
game, we are given a set V of N vertices, where N is even, and two players: a cut player, whose goal
is to construct an expander X on the set V of vertices, and a matching player, whose goal is to delay
its construction. The game is played in iterations. We start with the graph X containing the set V
of vertices, and no edges. In each iteration j, the cut player computes a bi-partition (Aj , Bj) of V
into two equal-sized sets, and the matching player returns some perfect matching Mj between the two
sets. The edges of Mj are then added to X. Khandekar, Rao and Vazirani have shown that there is a
strategy for the cut player, guaranteeing that after O(log2N) iterations, no matter the strategy of the
matching player, the resulting graph is a 1

2 -expander w.h.p. Subsequently, Orecchia et al. [OSVV08]
have shown the following improved bound:

Theorem 3.5 ([OSVV08]) There is a probabilistic algorithm for the cut player, such that, no matter
how the matching player plays, after γCMG(N) = O(log2N) iterations, graph X is an αCMG(N) =
Ω(logN)-expander, with constant probability.

Our algorithms work by embedding an expander X into a sub-graph of G. The embedding of the
expander is then used to certify the treewidth. We use the following notion of embedding.

Definition 5. Let G,X be graphs. An embedding ϕ of X into G maps every vertex v ∈ X to
a connected subgraph Cv ⊆ G, and every edge e = (u, v) ∈ E(X) to a path Pe in graph G, whose
endpoints belong to Cv and Cu, respectively. We say that the congestion of the embedding is at
most c, iff every edge of G belongs to at most c− 1 paths in {Pe | e ∈ E(X)} and at most one graph
{Cv | v ∈ V (X)}.

In the next simple claim, we show that if we can embed a κ-vertex expander with congestion at most
c into a graph H with bounded vertex degree, then the treewidth of H is large.

Claim 3.6 Let X be an α-expander on κ vertices for α < 1, with maximum vertex degree ∆′, and let
H be a graph with maximum vertex degree at most ∆, such that that there is an embedding of X into

H with congestion η. Then tw(H) = Ω
(

ακ
η∆∆′

)
.

Proof: For each vertex v ∈ V (X), let tv be an arbitrary vertex in Cv, and let T = {tv | v ∈ V (X)}.
Since |X| = κ, from Theorem 3.3, it is enough to show that T is α

2η∆′ -well-linked in H. Let (A,B) be

any partition of V (H), denote TA = A ∩ T , TB = B ∩ T , and E′ = E(A,B). Assume w.l.o.g. that
|TA| ≤ |TB|. Then it is enough to show that |E′| ≥ |TA| · α

2η∆′ .

We partition TA into two subsets, T ′A and T ′′A , as follows. For each vertex tv ∈ TA, if Cv ⊆ A, then
we add tv to T ′′A , and otherwise we add it to T ′A. We partition TB into two subsets, T ′B and T ′′B
similarly. Let κ′ = |TA|. Assume first that |T ′A| ≥ κ′/2. Then for each vertex tv ∈ T ′A, at least one
edge of Cv belongs to E′. Since every edge of H may belong to at most one graph in {Cu | u ∈ V (X)},
|E′| ≥ |T ′A| ≥ κ′/2 must hold. Similarly, if |T ′B| ≥ κ′/2, |E′| ≥ κ′/2.

12

Therefore, we assume from now on that |T ′A|, |T ′B| < κ′/2, and so |T ′′A |, |T ′′B | ≥ κ′/2. Let UA =
{v ∈ V (X) | tv ∈ T ′′A}, and UB = {v ∈ V (X) | tv ∈ T ′′B}. Since X is an α-expander, there is a set P
of at least κ′/2 paths connecting the vertices of UA to the vertices of UB in X, such that the edge-
congestion of P is at most 1/α. Since the maximum vertex degree in X is ∆′, by sending α/∆′ flow
units along each path in P, we obtain a flow from the vertices in UA to the vertices of UB of value at
least κ′α

2∆′ , where the flow across each vertex is at most 1. From the integrality of flow, there is a set P ′
of at least κ′α

2∆′ node-disjoint paths in X, where each path connects a vertex of UA to a vertex of UB.

We now build a new set P∗ of κ′α
2∆′ paths in graph H, connecting the vertices of T ′′A to the vertices of

T ′′B , as follows.

Consider some path P ∈ P ′, and assume that its endpoints are v and u, so tv ∈ T ′′A and tu ∈ T ′′B . We
build a new graph HP , that includes, for every edge e ∈ P , the path Pe into which e is embedded, and
for every vertex v′ ∈ P , the sub-graph Cv′ , where v′ is embedded into Cv′ . It is easy to see that HP

contains a path connecting tv to tu. Let P ∗ be any such path. We then set P∗ = {P ∗ | P ∈ P ′}. Since
the paths in P ′ are node-disjoint, and the embedding of X into H has congestion η, every edge of H
belongs to at most η paths in P∗. Since every path in P∗ must contain an edge in E′, |E′| ≥ κ′α

2η∆′ .

We conclude that T is α
2η∆′ -well-linked, and from Theorem 3.3, the treewidth of H is Ω

(
ακ
η∆∆′

)
.

4 A Small Treewidth-Preserving Degree-4 Minor

In this section we prove the following theorem which gives a degree-4 sparsifier.

Theorem 4.1 There is a randomized algorithm, that, given a graph G of treewidth at least k, w.h.p.
computes a minor H of G, such that:

• the treewidth of H is Ω(k/ poly log k);

• every vertex has degree at most 4 in H; and

• |V (H)| = O(k4).

The running time of the algorithm is polynomial in |V (G)| and k.

In order to prove Theorem 4.1, it is sufficient to find a subgraph H of G, with τ(H) = O(k4), such
that the maximum vertex degree in H is at most 4, and the treewidth of H is Ω(k/ poly log k). Indeed,
by replacing every maximal 2-path in H with an edge connecting its endpoints, we obtain the desired
minor.

We start by applying Theorem 3.4 with r = γCMG(k) and h = Ω(k/ poly log k), so that h is an even
integer, and k

logc
′
k
> chr48 holds, where c, c′ are the constants from Theorem 3.4. Let (S,⋃r−1

i=1 Pi) be

the resulting path-of-sets system.

Our next step is to construct an expander graph X on h vertices, and to embed it into a sub-graph H
of G. Following the previous work on routing problems [RZ10, And10, Chu12b, CL12, CE13], we will
embed X into G using the cut-matching game, and the path-of-sets system (S,⋃r−1

i=1 Pi). We start
with an intuitive high-level description of the algorithm. For each 1 ≤ i ≤ r, let Qi be any set of
node-disjoint paths connecting Ai to Bi in G[Si] (this set exists due to the linkedness of (Ai, Bi) in
G[Si]). LetH be the set of h paths, obtained by concatenatingQ1,P1,Q2,P2, . . . ,Pr−1,Qr. We denote
H = {P1, . . . , Ph}. The high-level idea is to construct an expander X over a set V = {v1, . . . , vh} of
h vertices, and to embed it into G using the cut-matching game, as follows. For each 1 ≤ i ≤ h, we

13

embed vi into Pi, that is, Cvi = Pi. We construct the edges of the expander, and embed them into
G, using the cut-matching game, where for each 1 ≤ j ≤ r, we use cluster Sj ∈ S to route the jth
matching, as follows. A partition (Y, Z) of the vertices of X computed by the cut player naturally
defines a partition (HY ,HZ) of the paths in H into two equal-sized subsets, which in turn defines a
partition (A′j , A

′′
j) of Aj into two equal-sized subset. Using the fact that Aj is node-well-linked inside

G[Sj], we can find a set Bj of node-disjoint paths in G[Sj] connecting A′j to A′′j . This set of paths
defines a matching Mj between the paths in HY and HZ , and hence between the vertices of Y and Z
in X. We view this matching as the response of the matching player. After γCMG(h) ≤ γCMG(k) = r
iterations, we obtain an expander X and its embedding with congestion 2 into G. Intuitively, we
would like to define H as the set of all edges and vertices of G used in this embedding, that is, the
union of the paths in H and

⋃r
j=1 Bj . It is easy to see that the maximum vertex degree in H is at

most 4, since in each cluster Sj we only route 2 sets of node-disjoint paths: Qj and Bj . However,
τ(H) may not be bounded by O(k4). In particular, the paths in Qj and Bj may intersect at many
vertices. In order to overcome this difficulty, we can use Theorem 1.3 to find new sets Q′j and B′j of

paths, routing the same pairs of vertex subsets, such that, if J = J(Q′j ∪ B′j), then τ(J) = O(h4).
However, this re-routing changes the paths in H, and therefore the mapping between the vertices in
sets Aj′ for j′ 6= j and the vertices in X may be changed. Therefore, we need to execute this procedure
more carefully. In particular, we apply Theorem 1.3 in the graph G[Sj] after each iteration j of the
cut-matching game; for iteration j + 1 we exploit the node-well-linkedness of the set Aj+1 in G[Sj+1]
to maintain consistency in the mapping of paths in H to the vertices of the expander. We now provide
a formal description of the embedding procedure.

We will gradually construct the set H of paths over the course of γCMG(h) iterations. For each 1 ≤ j ≤
γCMG(h), at the beginning of the jth iteration, we are given a set Hj of h disjoint paths, connecting the
vertices of A1 to the vertices of Aj , and a bijection f : Hj → V (X). At the beginning, H1 consists of h
paths, where each path consists of a single distinct vertex of A1, and the mapping f : H1 → V (X) is an
arbitrary bijection. We also start with a graph X on h vertices, and E(X) = ∅. For 1 ≤ j ≤ γCMG(h),
the jth iteration is executed as follows.

We use the cut player on the current graph X to compute a partition (Yj , Zj) of V (X) into two

equal-sized subsets. This naturally defines a partition (HjY ,H
j
Z) of Hj where HjY contains all paths

P ∈ Hj , such that f(P) ∈ Yj . In turn, this gives a partition (A′j , A
′′
j) of Aj , where a vertex v ∈ Aj

belongs to A′j iff the path P ∈ Hj on which v lies belongs to HjY . Since the set Aj of vertices is
node-well-linked in G[Sj], there is a collection of node-disjoint paths routing (A′j , A

′′
j) in G[Sj]. Since

Aj and Bj are linked in G[Sj], there is a collection of node-disjoint paths routing (Aj , Bj) in G[Sj].
From Theorem 1.3, we can find a set Bj of paths routing (A′j , A

′′
j), and a set Qj of paths routing

(Aj , Bj) in G[Sj], such that, if J = J(Bj ∪ Qj), then the maximum vertex degree in J is bounded
by 4, the degree of every vertex in Aj ∪ Bj is at most 3, and τ(J) ≤ O(h4). We let Hj+1 be the
concatenation of the paths in Hj , Qj , and Pj . In order to define the mapping f : Hj+1 → V (X), for
each P ∈ Hj+1, let P ′ ∈ Hj be the sub-path of P . Then we set f(P) = f(P ′). Notice that the set Bj
of paths defines a complete matching between the vertices in A′j and A′′j , and by extension, a complete

matching between the paths in HjY and HjZ , which in turn naturally defines a matching Mj between
Yj and Zj in X. We add the edges of the matching Mj to X. Each edge e = (vi, vi′) ∈Mj is mapped
to the corresponding path in Pe ∈ Bj , that connects the unique vertex of Pi ∩Aj to the unique vertex
of Pi′ ∩Aj .

Let graph H be the union of all paths in HγCMG(h) and
⋃γCMG(h)
j=1 Bj . Then it is easy to see that the

maximum vertex degree in H is at most 4, and τ(H) ≤ O(h4γCMG(h)) = O(k4). Moreover, every

edge of H belongs to at most one path in H, and at most one path in
⋃γCMG(h)
j=1 Bj . Therefore, we

have constructed an embedding of an h-vertex αCMG(h)-expander X, whose maximum vertex degree is

14

γCMG(h), intoH with congestion 2, and so from Claim 3.6, the treewidth ofH is at least Ω(h/γCMG(h)) =
Ω(k/poly log k).

5 Building a Degree-3 Minor

In this section we complete the proof of Theorem 1.1. We start with an informal overview to help
understand the high-level plan. A reader may wish to skip it and go directly to the formal proof.

5.1 Overview

We use an algorithm, similar to the one used in Section 4, in order to embed an expander into G,
using the path-of-sets system. The main difference is that, instead of embedding a single expander X,
we will embed N expanders X1, . . . , XN where N = Θ(log k). For this purpose we start with a longer
path-of-sets system (S,⋃r−1

i=1 Pi) with parameters h = k/poly log k and r = O(log3 k) and partition it
into N = O(log k) smaller path-of-sets systems with parameters r∗ = γCMG(h) and h (hence r ' Nr∗).
For 1 ≤ i ≤ N , we embed an expander Xi into the i’th path-of-sets system using the approach in the
preceding section. Recall that for each cluster Si, we construct two sets of paths contained in G[Si]:
one set, Ri, that we call red paths, routes (Ai, Bi), and another set, Bi, that we call blue paths, routes
(A′i, A

′′
i), where (A′i, A

′′
i) is the partition of Ai defined by the cut player. Let Hi be the topological

minor of G[Si] obtained by taking the union of the paths in Ri and Bi, and suppressing all degree-2
vertices, except for Ai ∪ Bi. We assume that Hi is minimal in the following sense: for each edge e
of Hi, either (Ai, Bi) or (A′i, A

′′
i) is not routable in Hi \ {e}. Abusing the notation, we assume that

Ri and Bi are the sets of the red and the blue paths, routing (Ai, Bi) and (A′i, A
′′
i), respectively in

Hi. Notice that every vertex of Hi must lie on some red path. Let H be the set of h paths obtained
by concatenating the paths in R1,P1, . . . ,PNr∗−1,RNr∗ , and let H be the topological minor of G
obtained by taking the union of the graphs Hi and the paths

⋃Nr∗−1
i=1 Pi. We say that an edge of H

is a red edge if it belongs to a red path and no blue paths; it is a blue edge if it belongs to a blue
path and no red paths; and it is a red-blue edge if it belongs to both a red and a blue path. We can
view the N different expanders as sharing the same vertex set, where the vertices correspond to the
paths in H. Consider a vertex v of degree 4 in graph H; it must be incident to two red edges and
two blue edges. In order to reduce the degree to 3, we use random sampling to pick one of the two
blue edges incident to v and eliminate it. After this step the degree of every vertex is at most 3. Let
H∗ be this final topological minor of G. The heart of the analysis is to show that H∗ has treewidth
Ω(k/poly log k). This is done by showing that the set A = A1 of vertices remains α-well-linked in H∗,
for α = Ω(1/ poly log k), and applying Theorem 3.3.

We start by observing that the set A of vertices is αWL-well-linked in H, for some constant αWL. This
is shown by using the embeddings of the expanders X1, . . . , XN into H. Next, we carefully partition
each path in H into a collection of disjoint segments. Intuitively, each segment of a path P ∈ H is a
sub-path of P of length Θ(poly log h). We then contract each such segment σ into a super-node vσ.
Let F be this contracted graph, and let F ∗ be the corresponding contracted graph of H∗. Equivalently,
F ∗ is obtained from F by deleting all the edges in E(H) \ E(H∗).

Each vertex of A belongs to a distinct contracted segment, and is associated with the corresponding
super-node in F . We do not distinguish between the vertices of A and their corresponding super-
nodes. It is easy to see that A remains αWL-well linked in F since we only contracted edges. The
most crucial property of the contracted graph F is that the value of the minimum cut in F is at
least Ω(log |V (F)|). This allows us to use arguments similar to those used in Karger’s sampling
technique [Kar99] to show that all cuts are approximately preserved in F ∗. In particular, the vertices

15

of A remain αWL/32-well-linked in F ∗. Since the length of every segment used in the construction of
the contracted graph F is O(poly log h), this implies that the vertices of A are α-well-linked in H∗,
for α = Ω(1/poly log k). The most challenging part of the proof is to set up the partition of the paths
in H into segments, so that in the resulting contracted graph F , the value of the minimum cut is
Ω(log |V (F)|). At a high-level, the proof proceeds as follows. Assume for contradiction, that there is a
partition (X,Y) of V (F) with X,Y 6= ∅, and |EF (X,Y)| < N . Let X ′ ⊆ V (H) be obtained from X by
un-contracting all super-nodes in X, and let Y ′ ⊆ V (H) be obtained from Y similarly. Then (X ′, Y ′)
is a partition of V (H), and |EH(X ′, Y ′)| < N . Assume first that there are two paths P, P ′ ∈ H, such
that P ⊆ H[X ′] and P ′ ⊆ H[Y ′]. We then use the embeddings of the expanders X1, . . . , XN to argue
that |EH(X ′, Y ′)| ≥ N , reaching a contradiction. Therefore, we can assume w.l.o.g. that no path of H
is contained in H[X ′]. We next show that for some 1 ≤ i∗ ≤ Nr∗, partition (X ′, Y ′) of V (H) defines
a partition (X∗, Y ∗) of V (Hi∗), such that |X∗|, |Y ∗| > 200N4, while |EHi∗ (X∗, Y ∗)| < N . We then
consider the segments of the red paths in Ri∗ and the blue paths in Bi∗ that are contained in Hi∗ [X

∗].
Let R∗ denote the corresponding segments of the red paths, and B∗ the corresponding segments of
the blue paths. Using Theorem 2.1, we show that there is some edge e ∈ H[X∗], such that we can still
route the endpoints of the paths in R∗ to each other, and the endpoints of the paths in B∗ to each
other, even after deleting e from H[X∗]. This new routing implies that we can route both (Ai∗ , Bi∗)
and (A′i∗ , A

′′
i∗) in Hi∗ \ {e}, contradicting the minimality of Hi∗ .

5.2 Proof of Theorem 1.1

We set r = 215 log k · γCMG(k) = Θ(log3 k), and h = Ω(k/ poly log k), so that h is an even integer,
and k/ logc

′
k > chr48, where c and c′ are the constants from Theorem 3.4. We assume w.l.o.g. that

k is large enough, so h > 72 log k and h > γCMG(h). We then apply Theorem 3.4 to graph G, with
parameters r and h, to obtain a strong path-of-sets system (S,⋃r−1

i=1 Pi) of height h and width r.

Let r∗ = γCMG(h), and let N =
⌈
3072 log(10h4 · r∗)

⌉
; it is easy to see that N = Θ(log h). We will

assume w.l.o.g. that h is large enough, so N > 1536 log(10h4 · r∗ ·N) holds. Finally, we let r′ = N · r∗.
Note that r′ = r∗ ·

⌈
3072 log(10h4 · r∗)

⌉
≤ 215γCMG(h) log h < r.

We construct a new, smaller, path-of-sets system, of height h and width r′, using the clusters S ′ =
(S1, . . . , Sr′), and the sets Pi of paths, for 1 ≤ i ≤ r′ − 1; in other words we restrict attention to the
first r′ clusters from the initial path-of-sets system. Abusing notation, we denote r′ by r and S ′ by S.

We denote by G′ the following minor of G: start with the union of G[Si] for all 1 ≤ i ≤ r; for each
path P ∈ ⋃r−1

i=1 Pi, add an edge connecting the endpoints of P to G′. We denote by Ei the set of edges

corresponding to the paths in Pi. Equivalently, we obtain G′ from graph
(⋃

Si∈S G[Si]
)
∪
(⋃r−1

j=1 Pj
)

by suppressing degree-2 internal nodes on the paths in
⋃r−1
i=1 Pi. It is now enough to find a topological

minor H∗ of G′ whose treewidth is Ω(k/ poly log k), maximum vertex degree is 3, and |V (H∗)| = O(k4).
We do so via the following theorem:

Theorem 5.1 There is an efficient randomized algorithm, that finds a topological minor H∗ of G′,
such that w.h.p.:

• |V (H∗)| = O(h4 · r);

• The maximum vertex degree in H∗ is 3;

• A1 ⊆ V (H∗); and

• The set A1 of vertices is α-well-linked in H∗, for α = Ω(1/ log7 k).

16

Theorem 1.1 follows easily from Theorem 5.1. The desired topological minor of G is H∗. The only
property that is left to verify is that tw(H) = Ω(k/polylog(k)) which follows from α-well-linkedness of
A1 in H∗. Indeed, Theorem 3.3 implies that tw(H) = Ω(α|A1|/3) = Ω(k/polylog(k)) since |A1| = h =
Ω(k/polylog(k)), α = Ω(1/ log7 k) and H∗ has maximum degree 3. From now on we focus on proving
Theorem 5.1.

In order to simplify the notation, we refer to the graph G′ as G. Recall that we are given a path-of-sets
system (S = (S1, . . . , Sr),

⋃r−1
i=1 Pi) of height h and width r = Nr∗ in G, where for each 1 ≤ i < r,

each path in Pi consists of a single edge, and the corresponding set of edges is denoted by Ei. Let
E′ =

⋃r−1
i=1 Ei. We denote A1 by A. Our goal is to construct a topological minor H∗ of G, such

|V (H∗)| = O(h4r), the maximum vertex degree of H∗ is 3, while ensuring that A ⊆ V (H∗) and it is
α-well-linked in H∗, w.h.p.

The rest of the proof consists of three steps. In the first step, we define the sets Bi,Ri of paths for
1 ≤ i ≤ r by playing the cut-matching games; in the second step we partition the resulting red paths
into segments; and in the third step we complete the proof of the theorem.

Step 1: Cut-Matching Games In this step we construct N expanders X1, . . . , XN , and embed
each of them separately into G. For each 1 ≤ i ≤ N , let Si = (S(i−1)r∗+1, . . . , Sir∗), let Ei =⋃ir∗−1
j=(i−1)r∗+1Ej , and let Êi = Eir∗ (for i = N , Êi = ∅). Let Gi be the graph obtained from the union

of G[Sj] for all Sj ∈ Si and the edges in Ei. For each 1 ≤ i ≤ N , we embed the expander Xi into Gi,
using the cut-matching game, as follows. For convenience, we denote (i− 1)r∗ by z.

We will gradually construct a set Hi of paths over the course of r∗ iterations. For each 1 ≤ j ≤ r∗, at
the beginning of the jth iteration, we are given a set Hj of h disjoint paths, connecting the vertices
of Az+1 to the vertices of Az+j , and a bijection f : Hj → V (Xi). At the beginning, H1 consists of h
paths, each of which consists of a single distinct vertex of Az+1, and the mapping f : H1 → V (Xi) is
an arbitrary bijection. We also start with a graph Xi on h vertices, and E(Xi) = ∅. For 1 ≤ j ≤ r∗,
the jth iteration is executed as follows.

We use the cut player on the current graph Xi to find a partition (Yj , Zj) of V (Xi) into two equal-sized

subsets. This naturally defines a partition (HjY ,H
j
Z) of Hj where HjY contains all paths P ∈ Hj , such

that f(P) ∈ Yj . In turn, this gives a partition (A′z+j , A
′′
z+j) of Az+j , where a vertex v ∈ Az+j belongs

to A′z+j iff the path P on which v lies belongs to HjY . Since the set Az+j of vertices is node-well-
linked in G[Sz+j], there is a collection of node-disjoint paths routing (A′z+j , A

′′
z+j) in G[Sz+j]. Since

Az+j and Bz+j are linked in G[Sz+j], there is a collection of node-disjoint paths routing (Az+j , Bz+j)
in G[Sz+j]. From Theorem 1.3, we can find a set B′z+j of paths routing (A′z+j , A

′′
z+j) , and a set

R′z+j of paths routing (Az+j , Bz+j) in G[Sz+j], such that, if J = J(B′z+j ∪R′z+j), then the maximum
vertex degree in J is bounded by 4, the degree of every vertex in Az+j ∪ Bz+j is at most 3, and
τ(J) ≤ 8h4 + 8h. We will assume that J is a minimal graph in which (A′z+j , A

′′
z+j) and (Az+j , Bz+j)

are both routable: that is, for every edge e ∈ E(J), either (A′z+j , A
′′
z+j), or (Az+j , Bz+j) are not

routable in J \ {e}. We let Hz+j be the graph obtained from J by replacing every maximal 2-path
that does not contain the vertices of Az+j ∪ Bz+j as inner vertices, by an edge connecting its two
endpoints. Then |V (Hz+j)| ≤ 8h4 + 8h ≤ 10h4, every vertex of Hz+j has degree at most 4, while the
vertices in Az+j ∪Bz+j have degree at most 3; there is a set Bz+j of paths routing (A′z+j , A

′′
z+j) , and a

set Rz+j of paths routing (Az+j , Bz+j) in Hz+j , and for every edge e ∈ E(Hz+j), either (A′z+j , A
′′
z+j),

or (Az+j , Bz+j) are not routable in Hz+j \ {e}. We call the paths in Rz+j red paths, and the paths in
Bz+j blue paths. An edge that belongs to a red path, but no blue paths is called a red edge. An edge
the belongs to a blue path but no red paths is called a blue edge. An edge that lies on a red and a
blue path is called a red-blue edge. Notice that a vertex of Hz+j has degree 4 only if it is incident on

17

two blue edges. Each vertex in Az+j serves as a source of a red path and a source or a destination of
a blue path, so it can only be incident on at most two edges in Hz+j . A vertex v ∈ Bz+j serves as a
destination of a red path; its degree is at most 3, and it is equal to 3 only if v is incident on two blue
edges.

We let Hj+1 be the concatenation of the paths in Hj , Rz+j , and Ez+j . In order to define the mapping
f : Hj+1 → V (Xi), for each P ∈ Hj+1, let P ′ ∈ Hj be the sub-path of P . Then we set f(P) = f(P ′).
Notice that the set Bz+j of paths defines a matching between the paths in HjY and HjZ , which in turn
naturally defines a matching Mj between Yj and Zj in Xi. We add the edges of the matching Mj

to X. Each edge e = (vi, vi′) ∈ Mj is mapped to the corresponding path in Bz+j , that connects the
unique vertex in Aj ∩ f−1(vi) to the unique vertex in Aj ∩ f−1(vi′).

Finally, we set Hi = Hr∗ . Let H̃i be the union of the graphs Hz+1, . . . ,Hz+r∗ , and the edges Ei.
Then we have defined an αCMG(h)-expander Xi on h vertices with maximum vertex degree γCMG(h),
and embedded it with congestion 2 into H̃i, where each vertex of Xi is embedded into a distinct path
in Hi.
Let H be the union of the graphs H̃i, for 1 ≤ i ≤ N and

⋃N−1
i=1 Êi, and let H be the concatenation of

H1, Ê1, . . . , ÊN−1,HN . We will sometimes refer to the paths in H as red paths. All vertices in H have
degree at most 4, and, as observed before, a vertex of H may have degree 4 only if it is incident on
exactly two blue edges. Every vertex in A has degree at most 2. Our final graph H∗ is obtained from
H as follows: for each vertex v ∈ V (H) that is incident on two blue edges, we independently choose
one of these two blue edges at random. Each blue edge that has been chosen by at least one vertex
is then deleted from the graph. This final graph is denoted by H∗. Notice that each edge e = (u, v)
may be deleted from H due to the choice made by u, or the choice made by v; the overall probability
that e is not deleted is at least 1/4. Moreover, if e and e′ do not share endpoints, then the events that
e is deleted and that e′ is deleted are independent.

It is immediate to see that |V (H∗)| ≤ Nr∗ ·O(h4) = O(rh4); the vertices of A are contained in V (H∗),
and the maximum vertex degree in H∗ is 3. It now only remains to prove that w.h.p. the vertices
of A are α-well-linked in H∗, for some α = Ω(1/ log7 k). We do so in the next two steps, using the
following claim.

Claim 5.2 The set A of vertices is αWL-well-linked in H, where αWL = min
{

1
2 ,

N ·αCMG(h)
4γCMG(h)

}
= Ω(1).

Proof: Let (Y, Z) be any partition of V (H), AY = A∩Y , AZ = A∩Z, and assume that |AY | ≤ |AZ |.
We denote |AY | by κ. The it is enough to show that |EH(Y,Z)| ≥ αWLκ. We partition the set AY
of vertices into subsets: A′′Y contains all vertices v ∈ A, such that the unique path P ∈ H on which
v lies is contained in Y , and A′Y contains the remaining vertices. We partition AZ into A′Z and A′′Z
similarly. Assume first that |A′Y | ≥ κ/2. Then |EH(Y,Z)| ≥ κ/2, since for every vertex v ∈ A′Y , the
corresponding path P ∈ H contributes at least one edge to EH(Y, Z). Similarly, if |A′Z | ≥ κ/2, then
|EH(Y,Z)| ≥ κ/2. From now on we assume that |A′Y |, |A′Z | < κ/2, and so |A′′Z | ≥ |A′′Y | ≥ κ/2.

Let Y ⊆ H be the set of all the paths P , such that the first vertex of P belongs to A′′Y . Define Z ⊆ H
similarly for A′′Z .

Fix some 1 ≤ i ≤ N , and consider the expanderXi. We define two subsets of vertices ofXi: Y
∗ contains

all vertices v that are embedded into the sub-paths of Y, and Z∗ contains all vertices that are embedded
into the sub-paths of Z. Since Xi is an αCMG(h)-expander, there are αCMG(h) · |Y ∗| ≥ αCMG(h) · κ/2
edge-disjoint paths connecting the vertices of Y ∗ to the vertices of Z∗ in Xi. Since the maximum
vertex degree in Xi is γCMG(h), there is a collection Li of at least αCMG(h)

γCMG(h) · κ2 node-disjoint paths in Xi

connecting the vertices of Y ∗ to the vertices of Z∗. We construct a collection L′i of paths, connecting

18

the vertices of V (Y) to the vertices of V (Z), such that L′i ⊆ H̃i, and each edge of H̃i participates
in at most two such paths. For each path P ∈ Li, we build a graph GP as follows: for each edge
e ∈ E(P), the graph includes the blue path of H̃i into which the edge e is embedded, and, for each
vertex v ∈ E(P), the graph includes the red path Pv ∈ Hi into which v is embedded. It is then easy
to see that GP contains a path P ′ ⊆ H̃i connecting a vertex on some path Q ∈ Y to a vertex on some
path Q′ ∈ Z. We let L′i = {P ′ | P ∈ L}. Since each edge of H̃i belongs to at most one red path and
at most one blue path, and the paths of Li are node-disjoint, each edge of H̃i is contained in at most
two paths of L′i. Let L =

⋃N
i=1 L′i. Then L contains N ·αCMG(h)

γCMG(h) · κ2 paths, where each path connects

a vertex in V (Y) to a vertex in V (Z), and each edge of H belongs to at most two such paths. Each

path of L connects a vertex of X to a vertex of Y , and so |EH(X,Y)| ≥ N ·αCMG(h)
4γCMG(h) · κ.

Step 2: Partitioning the Red Paths In this step, we will define a collection ΣP of disjoint
segments for every path P ∈ H.

Consider any such path P ∈ H. A sub-path P ′ of P is called a heavy sub-path iff for some 1 ≤ i ≤ Nr∗,
P ′ contains at least 200N4 = Θ(log4 h) vertices that belong to Hi.

If P contains no heavy sub-paths, then ΣP = {P}. Notice that P contains at most Nr∗ ·O(log4 h) =
O(log7 h) vertices in this case. Otherwise, we perform a number of iterations. In each iteration, we
start with some heavy sub-path P ′ of P , where at the beginning of the first iteration, P ′ = P . Let P ′′

be the minimum-length heavy sub-path of P ′ containing the first vertex of P ′. If P ′ \ P ′′ is a heavy
path, then we add P ′′ to ΣP , delete all vertices of P ′′ from P ′, and continue to the next iteration.
Otherwise, we add P ′ to ΣP and finish the algorithm. Notice that in any case, the length of every
path added to ΣP is at most Nr∗ ·O(log4 h) = O(log7 h). Overall, for each path P ∈ H, we obtain a
partition of P into disjoint sub-paths of length at most O(log7 h) each. Moreover, if |ΣP | > 1, then
each path in ΣP is a heavy sub-path of P . Let Σ =

⋃
P∈HΣP .

We obtain a contracted graph F from H by contracting, for each σ ∈ Σ, the vertices of σ into a single
super-node vσ. For every vertex u ∈ A, let g(u) be the super-node vσ such that u ∈ V (σ). Notice
that for u 6= u′, g(u) 6= g(u′). Let U = {g(u) | u ∈ A}. Since, from Claim 5.2, the vertices of A are
αWL-well-linked in H, the vertices of U are αWL-well-linked in F . Since every vertex of H must belong
to some red path, V (F) = {vσ | σ ∈ Σ}.
We define a graph F ∗ from H∗, by similarly contracting all segments in

⋃
P∈HΣP into super-nodes.

Equivalently, graph F ∗ is obtained from F , by deleting all edges in E(H) \ E(H∗). We prove the
following claim.

Claim 5.3 Set U is αWL/32-well-linked in F ∗ w.h.p.

Assume first that the above claim is correct. We claim that A is α-well-linked in H∗, for α =
Ω(1/ log7 h). Indeed, let (X,Y) be any partition of vertices of H∗. Let AX = A ∩ X, AY = A ∩ Y ,
and E∗ = EH∗(X,Y). Assume w.l.o.g. that |AX | ≤ |AY |. It is enough to prove that |E∗| ≥ α|AX |.
In order to prove this, we show that there is a set Q′ of |AX | paths in H∗ connecting the vertices of
AX to the vertices of AY with edge-congestion at most 1/α.

Let UX = {g(v) | v ∈ AX} and UY = {g(v) | v ∈ YX}. Since set U is αWL/32-well-linked in F ∗, there is
a set Q of |UX | = |AX | paths in F ∗, such that each path connects a distinct vertex of UX to a distinct
vertex of UY , and each edge of F ∗ participates in at most 32/αWL such paths. We use the paths in Q in
a natural way, in order to define the set Q′ of paths in graph H∗. Let P ∈ Q be any such path. Assume
that the endpoints of P are s and t, and let s′ ∈ AX , t′ ∈ A′Y be such that g(s′) = s and g(t′) = t.
Consider the following sub-graph HP of H∗: start with all the edges that belong to P ; for each vertex
vσ on P , add the path σ to HP . It is easy to see that graph HP contains a path connecting s′ to t′.

19

Let P ′ be any such path. We then set Q′ = {P ′ | P ∈ Q}. Since every vertex vσ of F corresponds to a
path σ of length O(log7 h) in graph H, the degree of each such vertex vσ is O(log7 h). Since the paths
in Q cause edge-congestion at most 32/αWL = O(1) in F ∗, each vertex vσ may belong to O(log7 h) such
paths. Therefore, the paths in Q′ cause edge-congestion O(log7 h) in H∗, and |E∗| ≥ Ω(|AX |/ log7 h).
We conclude that A is α-well-linked in H∗, for α = Ω(1/ log7 h) = Ω(1/ log7 k).

Step 3: Finishing the Proof In this step we prove Claim 5.3. We will sometimes refer to a subset
S ⊆ V (F) of the vertices of F , with S, V (F) \S 6= ∅, as a cut. The value of the cut S is | out(S)|. The
crucial part of the proof is the following claim.

Claim 5.4 The value of the minimum cut in graph F is at least N .

We prove Claim 5.4 below, and first complete the proof of Claim 5.3 using it. Let n′ = |V (H)|.
Then |V (F)| ≤ n′ ≤ 10h4 · r∗ · N , and since N > 1536 log(10h4 · r∗ · N) ≥ 1536 log n′, the value of
the minimum cut in F is at least 1536 log n′. The number of edges in F is bounded by m ≤ 4n′ ≤
40h4r∗N = O(h4 log3 h). We use the following theorem of Karger:

Theorem 5.5 (Corollary A.6 in [Kar99]) Let G be any n-vertex graph, and assume that the value
of the minimum cut in G is C. Then for any half-integral β, the number of cuts of value at most βC
in G is bounded by n2β.

Since in graph F , the set U of vertices is αWL-well-linked, it is enough to show that w.h.p., for any
subset S of vertices of F , | outF ∗(S)| ≥ | outF (S)|/32. We partition the cuts S ⊆ V (F) into dlogme
collections C1, . . . , Cdlogme, where for each 1 ≤ i ≤ dlogme, Ci contains all cuts S with 2i−1N <
| outF (S)| ≤ 2iN ; set C1 also contains all cuts S with | outF (S)| = N . Consider now some such
collection Ci. From Theorem 5.5, |Ci| ≤ (n′)2i+1

. Consider some set S ∈ Ci. Let S′ ⊆ V (H) be
obtained by un-contracting all super-nodes in S, that is, S′ =

⋃
vσ∈S V (σ). Notice that outH(S′) =

outF (S), and outH∗(S
′) = outF ∗(S). Let E1(S) ⊆ outH(S′) contain all red and red-blue edges of

outH(S′), and let E2(S) = outH(S′) \E1(S). If |E1(S)| ≥ | outH(S′)|/8, then, since all edges of E1(S)
belong to F ∗, | outF ∗(S)| ≥ | outF (S)|/8. We assume from now on that this is not the case, and so
|E2(S)| ≥ 7| outF (S)|/8. Next, we construct a maximal set E′ ⊆ E2(S) of edges, such that the edges
in E′ do not share endpoints in graph H. This is done by a simple greedy algorithm: while E2(S) 6= ∅,
let e ∈ E2(S) be any edge. Add e to E′, and delete from E2(S) edge e and all edges sharing endpoints
with e in graph H. Since all edges in E2(S) are blue, and each vertex may be incident on at most
two blue edges, for every edge added to E′, we delete at most three edges from E2(S). Therefore,
eventually |E′| ≥ |E2(S)|/3 ≥ 7| outH(S′)|/24 ≥ | outH(S′)|/4 = | outF (S)|/4 holds.

Each edge of E′ belongs to outF ∗(S) independently with probability at least 1/4. The expected number
of the edges of E′ that belong to outF ∗(S) is therefore at least |E′|/4 ≥ | outF (S)|/16 ≥ N · 2i−5.

We use the following standard Chernoff bound: let X1, . . . , Xn be independent random variables in
{0, 1}, and let µ = E [

∑n
i=1Xi]. Then Pr [

∑n
i=1Xi < µ/2] ≤ e−µ/12. Therefore, the probability that

| outF ∗(S)| < | outF (S)|/32 is at most e−N ·2
i−5/12. Overall, the probability that for some S ∈ Ci,

| outF ∗(S)| < | outF (S)|/32 is at most:

(n′)2i+1 · e−2i−5N/12 < 1/(n′)2

since N > 1536 log n′. Using the union bound over all 1 ≤ i ≤ dlogme, with probability at least
dlogme
(n′)2 , for every set S ⊆ V , | outF ∗(S)| ≥ | outF (S)|/32. In particular, set U is αWL/32-well-linked

20

in F ∗ w.h.p. This concludes the proof of Claim 5.3. As observed above, this implies that A is α-
well-linked in graph H∗, thus completing the proof of Theorem 5.1. It now only remains to prove
Claim 5.4.

Proof of Claim 5.4. We prove that the value of the minimum cut in F is at least N . Assume
otherwise. Let (X,Y) be a partition of V (F), such that X,Y 6= ∅, and |EF (X,Y)| < N . Let
X ′ ⊆ V (H) be obtained from X, by un-contracting all vertices vσ: that is, X ′ =

⋃
vσ∈X V (σ). We

construct Y ′ from Y similarly. Observe that (X ′, Y ′) is a partition of V (H), and |EH(X ′, Y ′)| < N .

Assume first that there are two paths P, P ′ ∈ H, such that P is contained in H[X ′], and P ′ is contained
in H[Y ′]. We claim that |EH(X ′, Y ′)| ≥ N in this case, leading to a contradiction. Indeed, recall that
we have constructed N expanders X1, . . . , XN . For each 1 ≤ i ≤ N , expander Xi contains some
path Pi connecting a pair v, v′ of vertices of Xi, where v is embedded into a sub-path of P , and v′ is
embedded into a sub-path of P ′. Using the embedding of Xi into H̃i, path Pi naturally defines a path
P ′i ⊆ H̃i, connecting a vertex of P to a vertex of P ′. It is immediate to see that paths {Pi}Ni=1 are
completely disjoint, as each such path is contained in a distinct graph H̃i. Therefore, H contains N
edge-disjoint paths connecting the vertices of P to the vertices of P ′. Each such path must contribute
an edge to EH(X ′, Y ′), and so |EH(X ′, Y ′)| ≥ N , a contradiction.

Therefore, for one of the vertex sets X ′, Y ′, no path P ∈ H is contained in the sub-graph of H induced
by that set. We assume w.l.o.g. that this set is X ′.

Let R be the set of paths, obtained from H, by deleting the edges of EH(X ′, Y ′) from them. Each
path in R is contained in either H[X ′] or H[Y ′], and we let R′ ⊆ R be the set of paths contained
in H[X ′]. We claim that |R′| < N . Indeed, since no path of H is contained in H[X ′], every path
P ∈ R′ contributes at least one edge to EH(X ′, Y ′). Consider now any path P ′ ∈ R′, and let P ∈ H
be the path such that P ′ is a sub-path of P . Let σ be any segment of P ′, such that vσ ∈ X. Since
no path of H is contained in H[X ′], σ must be a heavy segment of P . Therefore, there is some index
1 ≤ i ≤ Nr∗, such that the path σ ∩Hi contains at least 200N4 vertices. We fix any such index i∗.

We define a new set R∗ of paths as follows: for each path P ∈ R′, we add the path P ∩Hi∗ to R∗, if
P ∩Hi∗ 6= ∅. From the above discussion, |R∗| < N , and |V (R∗)| ≥ 200N4.

Recall that Ri∗ is the set of the red paths in Hi∗ , connecting Ai∗ to Bi∗ , and Bi∗ is the set of the blue
paths in Hi∗ , connecting A′i∗ to A′′i∗ that we have constructed during the first step of the algorithm.
Clearly, each path in R∗ is a subpath of a path in Ri∗ .
Let B be the set of paths, obtained from Bi∗ , by deleting all edges of EH(X ′, Y ′) from them. Let
B∗ ⊆ B be the set of paths contained in H[X ′]. We claim that |B∗| ≤ 2N . Indeed, recall that the
paths of Bi∗ originate and terminate at the vertices of Ai∗ . Since |R′| < N , at most N such vertices
a ∈ Ai∗ belong to X ′. Therefore, at most N paths of Bi∗ may be contained in H[X ′]. Every other
path of B∗ must contribute one edge to EH(X ′, Y ′), and so in total |B∗| ≤ 2N .

Observe that for every vertex v ∈ V (R∗), if v belongs to any blue path, then it belongs to a path in
B∗. Similarly, for v ∈ V (B∗), if v belongs to any red path, then it belongs to a path in R∗.
We will view the paths in Ri∗ as directed from Ai∗ to Bi∗ , and we will view the paths in Bi∗ as directed
from A′i∗ to A′′i∗ . Let S1 be the set of all vertices v, such that v is the first vertex on some path in
R∗, and let T1 be the set of all vertices v, such that v is the last vertex on some path in R∗. We
define the sets S2, T2 of vertices for B∗ similarly. Let J = J(R∗ ∪ B∗). Then |S1| = |T1| ≤ N , and
|S2| = |T2| ≤ 2N , while |V (J)| ≥ 200N4. Since every vertex in V (Hi∗)\ (Ai∗ ∪Bi∗) has degree at least
3 in Hi∗ , τ(J) ≥ 200N4 − |S1 ∪ S2 ∪ T1 ∪ T2| ≥ 200N4 − 6N .

From Theorem 1.3, there are sets R′ and B′ of paths, routing (S1, T1) and (S2, T2), respectively, in J ,
such that, if J ′ = J(R′ ∪ B′), then τ(J ′) < 8(2N)4 + 16N + 1 < 200N4 − 6N . Since every vertex in

21

J \ (S1 ∪S2 ∪T1 ∪T2) has degree more than 2 in J , this means that there is some edge e ∈ E(J), such
that (S1, T1) and (S2, T2) are still routable in J \ {e}, via the sets R′ and B′ of paths.

We will now show that both (Ai∗ , Bi∗), and (A′i∗ , A
′′
i∗) remain routable in Hi∗ \ {e}, contradicting the

minimality of Hi∗ . We show this for (Ai∗ , Bi∗); the proof for (A′i∗ , A
′′
i∗) is similar.

We start with a directed graph containing the original set Ri∗ of paths routing (Ai∗ , Bi∗), where the
edges on these paths are oriented from Ai∗ towards Bi∗ . We then delete from this graph all edges
whose both endpoints are contained in J . Notice that the edge e does not belong to the new graph.
Also, for each vertex v:

• If v ∈ Ai∗ \ S1, then there is one edge leaving v and no edges entering v;

• If v ∈ S1 ∩Ai∗ , then there is no edge entering or leaving v;

• If v ∈ S1 \Ai∗ , then there is one edge entering v, and no edges leaving v;

• if v ∈ Bi∗ \ T1, then there is one edge entering v and no edges leaving v;

• If v ∈ T1 ∩Bi∗ , then there is no edge entering or leaving v;

• If v ∈ T1 \Ai∗ , then there is one edge leaving v, and no edges entering v;

• for all other vertices v, either there is one edge entering and one edge leaving v, or there is no
edge incident on v.

Finally, we add all edges lying on the paths in R′ to the resulting graph. In this final graph, every
vertex in Ai∗ has one outgoing and no incoming edges, and every vertex in Bi∗ has one incoming and
no outgoing edges. Every other vertex either has exactly one incoming and one outgoing edge, or it
has no edges incident on it. It is then easy to see that (Ai∗ , Bi∗) is routable in this graph. Since this
final graph is contained in Hi∗ \ {e}, this contradicts the minimality of Hi∗ .

Acknowledgement: We thank Paul Seymour for posing the question of the existence of degree-3
treewidth sparsifiers to us.

References

[ACP87] S. Arnborg, D. Corneil, and A. Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

[And10] Matthew Andrews. Approximation algorithms for the edge-disjoint paths problem via
Raecke decompositions. In Proceedings of IEEE FOCS, pages 277–286, 2010.

[BDFH09] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On
problems without polynomial kernels. Journal of Computer and System Sciences, 75(8):423
– 434, 2009.

[BK96] András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’96, pages 47–55, New York, NY, USA, 1996. ACM.

22

[Bod96] H. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996.

[BSST13] Joshua D. Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral
sparsification of graphs: theory and algorithms. Commun. ACM, 56(8):87–94, 2013.

[CC13] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem.
CoRR, abs/1305.6577, 2013. Extended abstract in Proc. of ACM STOC, 2014.

[CE10] Erin W. Chambers and David Eppstein. Flows in one-crossing-minor-free graphs. In Otfried
Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, ISAAC (1), volume 6506 of Lecture
Notes in Computer Science, pages 241–252. Springer, 2010.

[CE13] Chandra Chekuri and Alina Ene. Poly-logarithmic approximation for maximum node
disjoint paths with constant congestion. In Proc. of ACM-SIAM SODA, 2013.

[Chu12a] Julia Chuzhoy. On vertex sparsifiers with steiner nodes. In Proceedings of the 44th sym-
posium on Theory of Computing, STOC ’12, pages 673–688, New York, NY, USA, 2012.
ACM.

[Chu12b] Julia Chuzhoy. Routing in undirected graphs with constant congestion. In Proc. of ACM
STOC, pages 855–874, 2012.

[CK09] Chandra Chekuri and Nitish Korula. A graph reduction step preserving element-
connectivity and applications. In Proc. of ICALP, pages 254–265, 2009.

[CL12] Julia Chuzhoy and Shi Li. A polylogarithimic approximation algorithm for edge-disjoint
paths with congestion 2. In Proc. of IEEE FOCS, 2012.

[CLLM10] Moses Charikar, Tom Leighton, Shi Li, and Ankur Moitra. Vertex sparsifiers and abstract
rounding algorithms. In Proceedings of the 2010 IEEE 51st Annual Symposium on Founda-
tions of Computer Science, FOCS ’10, pages 265–274, Washington, DC, USA, 2010. IEEE
Computer Society.

[EGK+10] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke, Inbal Talgam-
Cohen, and Kunal Talwar. Vertex sparsifiers: new results from old techniques. In Pro-
ceedings of the 13th international conference on Approximation, and 14 the International
conference on Randomization, and combinatorial optimization: algorithms and techniques,
APPROX/RANDOM’10, pages 152–165, Berlin, Heidelberg, 2010. Springer-Verlag.

[FHL08] U. Feige, M.T. Hajiaghayi, and J.R. Lee. Improved approximation algorithms for minimum
weight vertex separators. SIAM Journal on Computing, 38:629–657, 2008.

[HNKR98] Torben Hagerup, Naomi Nishimura, Jyrki Katajainen, and Prabhakar Ragde. Character-
izing multiterminal flow networks and computing flows in networks of bounded treewidth.
J. Comput. Syst. Sci., 57, 1998.

[HO96] H. R. Hind and O. Oellermann. Menger-type results for three or more vertices. Congressus
Numerantium, 113:179–204, 1996.

[Jan13] Bart M. P. Jansen. On sparsification for computing treewidth. In Proceedings of IPEC,
pages 216–229, 2013.

[Kar99] David R. Karger. Random sampling in cut, flow, and network design problems. Mathe-
matics of Operations Research, 24:383–413, 1999.

23

[KR13] Robert Krauthgamer and Inbal Rika. Mimicking networks and succinct representations of
terminal cuts. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1789–1799. SIAM, 2013.

[KRTV12] Arindam Khan, Prasad Raghavendra, Prasad Tetali, and László A. Végh. On mimicking
networks representing minimum terminal cuts. CoRR, abs/1207.6371, 2012.

[KRV09] Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single com-
modity flows. J. ACM, 56(4):19:1–19:15, July 2009.

[KW12] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices: New
tools for kernelization. In Proceedings of the 53rd Annual IEEE Symposium on Foundations
of Computer Science, FOCS ’12, 2012.

[LM10] F. Thomson Leighton and Ankur Moitra. Extensions and limits to vertex sparsification.
In Proceedings of the 42nd ACM symposium on Theory of computing, STOC ’10, pages
47–56, New York, NY, USA, 2010. ACM.

[Lov76] L. Lovász. On some connectivity properties of eulerian graphs. Acta Mathematica
Academiae Scientiarum Hungarica, 28(1-2):129–138, 1976.

[LS12] Alexander Leaf and Paul Seymour. Treewidth and planar minors. Manuscript, available
at https://web.math.princeton.edu/ pds/papers/treewidth/paper.pdf, 2012.

[Mad78] W. Mader. A reduction method for edge connectivity in graphs. Ann. Discrete Math.,
3:145–164, 1978.

[MM10] Konstantin Makarychev and Yury Makarychev. Metric extension operators, vertex sparsi-
fiers and lipschitz extendability. In FOCS, pages 255–264. IEEE Computer Society, 2010.

[Moi09] Ankur Moitra. Approximation algorithms for multicommodity-type problems with guar-
antees independent of the graph size. In FOCS, pages 3–12. IEEE Computer Society,
2009.

[OSVV08] Lorenzo Orecchia, Leonard J. Schulman, Umesh V. Vazirani, and Nisheeth K. Vishnoi. On
partitioning graphs via single commodity flows. In Proceedings of the 40th annual ACM
symposium on Theory of computing, STOC ’08, pages 461–470, New York, NY, USA, 2008.
ACM.

[Ree97] Bruce Reed. Surveys in Combinatorics, chapter Treewidth and Tangles: A New Connec-
tivity Measure and Some Applications. London Mathematical Society Lecture Note Series.
Cambridge University Press, 1997.

[RS86] Neil Robertson and P D Seymour. Graph minors. V. Excluding a planar graph. Journal
of Combinatorial Theory, Series B, 41(1):92–114, August 1986.

[RS10] Neil Robertson and Paul Seymour. Graph minors XXIII: Nash-williams’ immersion con-
jecture. Journal of Combinatorial Theory, Series B, 100(2):181 – 205, 2010.

[RST94] N Robertson, P Seymour, and R Thomas. Quickly Excluding a Planar Graph. Journal of
Combinatorial Theory, Series B, 62(2):323–348, November 1994.

[RZ10] Satish Rao and Shuheng Zhou. Edge disjoint paths in moderately connected graphs. SIAM
J. Comput., 39(5):1856–1887, 2010.

24

[Wol13] P. Wollan. The structure of graphs not admitting a fixed immersion. ArXiv e-prints,
February 2013.

25

	Introduction
	Treewidth Sparsifiers and Grid Minors
	Sparsifiers Preserving Vertex Cuts

	Routing Two Pairs of Vertex Subsets
	Background on Treewidth and Path-of-Sets System
	A Small Treewidth-Preserving Degree-4 Minor
	Building a Degree-3 Minor
	Overview
	Proof of Theorem 1.1

