
On Vertex Sparsifiers with Steiner Nodes

Julia Chuzhoy
∗

Toyota Technological Institute
Chicago, IL 60637
cjulia@ttic.edu

ABSTRACT
Given an undirected graph G = (V,E) with edge capacities
ce ≥ 1 for e ∈ E and a subset T of k vertices called terminals,
we say that a graph H is a quality-q cut sparsifier for G iff
T ⊆ V (H), and for any partition (A,B) of T , the values
of the minimum cuts separating A and B in graphs G and
H are within a factor q from each other. We say that H
is a quality-q flow sparsifier for G iff T ⊆ V (H), and for
any set D of demands over the terminals, the values of the
minimum edge congestion incurred by fractionally routing
the demands in D in graphs G and H are within a factor q
from each other.

So far vertex sparsifiers have been studied in a restricted
setting where the sparsifier H is not allowed to contain any
non-terminal vertices, that is V (H) = T . For this set-
ting, efficient algorithms are known for constructing quality-
O(log k/ log log k) cut and flow vertex sparsifiers, as well as

a lower bound of Ω̃(
√

log k) on the quality of any flow or cut
sparsifier.

We study flow and cut sparsifiers in the more general
setting where Steiner vertices are allowed, that is, we no
longer require that V (H) = T . We show algorithms to
construct constant-quality cut sparsifiers of size O(C3) in
time poly(n) · 2C , and constant-quality flow sparsifiers of

size CO(log logC) in time nO(logC) · 2C , where C is the total
capacity of the edges incident on the terminals.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems, Routing and Layout .

General Terms
Theory, Algorithms

∗Supported in part by NSF CAREER grant CCF-0844872
and Sloan Research Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOCÕ12, May 19–22, 2012, New York, New York, USA.
Copyright 2012 ACM 978-1-4503-1245-5/12/05 ...$10.00.

Keywords
Vertex sparsifiers

1. INTRODUCTION
Suppose we are given an undirected graph G = (V,E)

with edge capacities ce ≥ 1 for e ∈ E, and a subset T ⊆ V
of k vertices called terminals. Assume further that we are
interested in routing traffic across G between the terminals
in T . While the size of the graph G may be very large, the
specific structure of G is largely irrelevant to our task, ex-
cept where it affects our ability to route flow between the
terminals. A natural question is whether we can build a
smaller graph H = (V ′, E′), with T ⊆ V ′, that approx-
imately preserves the routing properties of graph G with
respect to T . In this case, we say that H is a vertex sparsi-
fier for G. Two types of vertex sparsifiers have been studied
so far: cut sparsifiers, which preserve the minimum cuts be-
tween any partition of the terminals, and flow sparsifiers,
which preserve the minimum edge congestion required for
routing any set D of demands over T .

More formally, given any graph G with capacities ce ≥ 1
for the edges e ∈ E, a subset T of vertices called terminals,
and a partition (TA, TB) of the terminals, let MinCutG(TA, TB)
denote the capacity of the minimum cut separating the ver-
tices of TA from the vertices of TB in G. We say that a graph
H = (V ′, E′) is a quality-q vertex cut sparsifier, or just cut
sparsifier, for graph G with terminal set T , iff T ⊆ V ′,
and for every partition (TA, TB) of T , MinCutG(TA, TB) ≤
MinCutH(TA, TB) ≤ q ·MinCutG(TA, TB).

Given a graph G with capacities ce ≥ 1 for every edge
e ∈ E, and a subset T ⊆ V of vertices called terminals,
a set D of demands over the terminals specifies, for every
unordered pair (t, t′) of terminals, a demand D(t, t′). A flow
F is a routing of the set D of demands, iff for every pair (t, t′)
of terminals, t and t′ send D(t, t′) flow units to each other.
The congestion of F is the maximum, over all edges e ∈ E,
of F (e)/ce, where F (e) is the flow sent along e. Given a set
D of demands over the set T of terminals, let η(G,D) denote
the minimum congestion required for routing the demands in
D in graph G. We say that a graph H is a flow sparsifier of
quality q for G, iff T ⊆ V (H), and for any set D of demands
over the set T of terminals, η(H,D) ≤ η(G,D) ≤ q·η(H,D).

For a vertex sparsifier H, we say that the vertices in
V (H) \ T are Steiner vertices. Vertex cut sparsifiers were
first introduced by Moitra [Moi09], and later Leighton and
Moitra [LM10] defined flow sparsifiers and showed that they
generalize cut sparsifiers. The main motivation in both pa-
pers was designing improved approximation algorithms for

graph partitioning and routing problems. Specifically, if the
solution value of some combinatorial optimization problem
only depends on the values of the minimum cuts separating
terminal subsets, then given any approximation algorithm
for the problem, we can first compute a cut sparsifier H for
graph G, and then run this algorithm on H, thus obtaining
an algorithm whose performance guarantee is independent
of the size of G, and only depends on the size of the sparsifier
H. Flow sparsifiers can be similarly used for combinatorial
optimization problems whose solution value only depends
on the congestion required for routing various demand sets
over the terminals in G. The definitions of the cut and the
flow sparsifiers of [Moi09, LM10] however required that the
sparsifier H does not contain any Steiner vertices, that is,
V (H) = T .

Moitra [Moi09] showed that there exist cut sparsifiers of
quality O(log k/ log log k) even when no Steiner vertices are
allowed, and Leighton and Moitra [LM10] proved the ex-
istence of quality-O(log k/ log log k) flow sparsifiers for the
same setting, and obtained an efficient algorithm to con-
struct quality-O(log2 k/ log log k) flow and cut sparsifiers.
Recently, Charikar et al. [CLLM10], Englert et al. [EGK+10]
and Makarychev and Makarychev [MM10] have shown effi-
cient algorithms to construct quality-O(log k/ log log k) flow
and cut sparsifiers that do not contain Steiner vertices. On
the negative side, Leighton and Moitra [LM10] have shown
a lower bound of Ω(log log k) on the quality of flow spar-
sifiers when no Steiner vertices are allowed. This bound
was later improved to Ω(

√
log k/ log log k) by Makarychev

and Makarychev [MM10]. Englert et al. [EGK+10] have
shown a lower bound of Ω(

√
log k/ log log k) on the quality

of flow sparsifiers when no Steiner vertices are allowed, and
all edge capacities of the sparsifier are bounded from below
by a constant. As for cut vertex sparsifiers with no Steiner
nodes, [CLLM10] and [MM10] have shown a lower bound

of Ω(log1/4 k), and the results of [MM10] together with the
results of [FJS88] give a lower bound of Ω(

√
log k/ log log k)

on their quality.
It is therefore natural to ask whether we can obtain bet-

ter quality vertex sparsifiers by allowing Steiner vertices. In
particular, an interesting question is: what is the smallest
size S(k), such that for any graph G with a set T of k termi-
nals, there is a constant-quality cut or flow sparsifier of size
at most S(k). Notice that if our goal is to obtain better and
faster approximation algorithms via graph sparsifiers, then
the presence of Steiner nodes may actually lead to improved
performance if we can construct better quality sparsifiers,
while keeping the graph size sufficiently low.

For simplicity, we first consider a special case where all
edge capacities in the input graph G are unit, and every
terminal in T has degree 1 in G. In this case we show
that there exist constant-quality cut sparsifiers of size O(k3),

and constant-quality flow sparsifiers of size kO(log log k). We
also show algorithms to construct these sparsifiers in time
poly(n)·2k for cut sparsifiers and in time nO(log k) ·2k for flow
sparsifiers. We then generalize these algorithms to arbitrary
edge capacities. Let C be the total capacity of edges inci-
dent on the terminals, assuming that for each edge e ∈ E,
ce ≥ 1. We show that there exist constant-quality cut spar-
sifiers of size O(C3), and constant-quality flow sparsifiers

of size CO(log logC), and show algorithms to construct such
sparsifiers, with running time poly(n) · 2C for cut sparsifiers

and nO(logC) · 2C for flow sparsifiers.

We say that a graph H is a restricted sparsifier for graph
G, if H is a sparsifier that is associated with a collection C of
disjoint subsets of non-terminal vertices, and H is obtained
from G by contracting every cluster S ∈ C into a vertex. All
sparsifiers that we construct are restricted sparsifiers. Inter-
estingly, Charikar et al. [CLLM10] showed that when Steiner
vertices are not allowed, the ratio of the quality of the best
possible restricted flow sparsifier to the quality of an opti-
mal flow sparsifier is super-constant. Moreover, Englert et
al. [EGK+10] have shown an Ω(

√
log k) lower bound on the

quality of sparsifiers that do not contain Steiner vertices, and
can be obtained from convex combinations of 0-extensions
in graph G.

We note that our techniques are very different from the
techniques of [MM10, CLLM10, EGK+10], who exploited
the connection between vertex sparsifiers and 0-extensions.
Instead, we use well-linked decompositions and other tech-
niques that are often employed in the context of graph rout-
ing.

Our Results and Techniques.
We start with a simple construction of cut sparsifiers with

Steiner vertices, which is summarized in the following theo-
rem.

Theorem 1 Let G = (V,E) be any n-vertex graph with ca-
pacities ce ≥ 1 on edges e ∈ E, and a set T ⊆ V of termi-
nals. Let C denote the total capacity of the edges incident on
the terminals, and let 0 < ε ≤ 1 be any constant. Then there
is a quality-(3 + ε) vertex cut sparsifier H = (V ′, E′) for G,
with |V ′| = O(C3). Moreover, graph H can be constructed
in time poly(n) · 2C .

For simplicity, we give an outline of the construction for
the special case where all edge capacities are unit, and the
degree of every terminal is 1. Our algorithm relies on the
notion of well-linkedness, and on a new procedure to com-
pute a well-linked decomposition. Given any subset S of
vertices, let out(S) denote the set of edges with exactly one
endpoint in S. We say that S is α-well-linked, iff for any par-
tition (A,B) of S, if we denote TA = out(S) ∩ out(A) and
TB = out(S)∩out(B), then |E(A,B)| ≥ α ·min {|TA|, |TB |}.
Informally, we can set up an instance of the sparsest cut
problem, on graph G[S]∪ out(S), where the edges of out(S)
serve as terminals. Set S being α-well-linked is roughly
equivalent to the value of sparsest cut in this new graph
being at least α. The notion of well-linkedness1 has been
used extensively in graph routing e.g. in [Räc02, CKS04,
CKS05, RZ10, And10], and one of the useful tools for design-
ing algorithms for routing problems is a well-linked decompo-
sition: a procedure that, given any subset S of vertices with
| out(S)| = z, produces a partition W of S into well-linked
subsets. In all standard well-linked decompositions, we can
ensure that |W| is small (less than z), while each set X ∈ W
is guaranteed to be α-well-linked, where α = 1/ poly log z.
We show a different well-linked decomposition, that instead
ensures that every set X ∈ W is 1/3-well-linked, and we
can still bound the number of clusters in W by O(z3). An

1Our definition of well-linkedness is very similar to what
was called bandwidth property in [Räc02], and cut well-
linkedness in [CKS05], where we use the graph G[S]∪out(S),
and the set of terminals is the edges of out(S).

algorithm for constructing a cut sparsifier then simply com-
putes a well-linked decomposition W of the set V (G) \ T of
vertices, and contracts every cluster X ∈ W. Since every
cluster X ∈ W is 1/3-well-linked, it is easy to verify that we
obtain a constant-quality cut sparsifier.

We now turn to the more challenging task of constructing
flow sparsifiers. We again first consider a special case where
all edge capacities are unit, and each terminal t ∈ T has
exactly one edge incident to it in G. We show that for this
special case, there is a flow sparsifier H of quality 68 and
size kO(log log k), where k = |T |. Recall that a sparsifier
H is called a restricted sparsifier iff it is associated with
a collection C of disjoint subsets of non-terminal vertices,
and graph H is obtained from G by contracting each cluster
S ∈ C into a vertex.

Theorem 2 Let G = (V,E) be any n-vertex (multi-)graph
with unit edge capacities and a set T ⊆ V of k terminals.
Assume further that each terminal in T has exactly one edge
incident to it in G. Then there is an algorithm that finds, in
time nO(log k) ·2k, a quality-q restricted vertex flow sparsifier
H for G, with |V (H)| = kO(log log k) and q = 68.

It is then fairly easy to obtain the following corollary that
extends the results of Theorem 2 to general graphs.

Corollary 1 Let G = (V,E) be any n-vertex graph with
edge capacities ce ≥ 1 for e ∈ E, and a set T ⊆ V of termi-
nals. Let C denote the total capacity of all edges incident on
the terminals, and let 0 < ε < 1 be any constant. Then there
is an algorithm that finds, in time nO(logC) · 2C , a quality-q
vertex flow sparsifier H for G, with |V (H)| = CO(log logC)

and q = 68 + ε.

We now outline our algorithm for constructing flow spar-
sifiers for the special case where all edge capacities are unit,
and the degree of every terminal is 1. Let us assume for sim-
plicity that the setR = V (G)\T of vertices is 1/3-well-linked
(we perform a well-linked decomposition as a pre-processing
step to ensure this). One of the central notions in our algo-
rithm is that of good routers. We say that a subset S ⊆ R of
vertices is a good router iff it is 1/3-well-linked, and more-
over, every pair of edges in out(S) can simultaneously send
1/z flow units to each other with constant congestion inside
S, where z = | out(S)|. We say that a graph H is a legal
contracted graph for G iff there is a collection C of disjoint
good routers in graph G, and H is obtained from G by con-
tracting every cluster S ∈ C. It is easy to verify that if H is
a legal contracted graph, then it is a constant quality flow
sparsifier, since contracting the good routers in C may only
affect the congestion of any routing by a constant factor.
Our goal is then to find a legal contracted graph whose size
is small enough.

Notice that we have assumed that R = V (G) \ T is 1/3-
well-linked. However, this is not sufficient to ensure that R
is a good router, as the ratio between the minimum spars-
est cut and the maximum concurrent flow, known as the
flow-cut gap, can be as large as logarithmic in undirected
graphs. To overcome this difficulty, we define several special
structures that we call witnesses. If graph G contains such
a witness, then we are guaranteed that R is a good router.
For example, suppose that for some value 0 < α < 1, graph
G contains r = log k/α disjoint subsets S1, . . . , Sr of non-
terminal vertices, where for each 1 ≤ j ≤ r, subset Sj is

α-well-linked, and there is a set Pj of edge-disjoint paths in
G, connecting every terminal in T to some edge in out(Sj).
For each 1 ≤ j ≤ r, let Ej ⊆ out(Sj) be the set of k edges
where the paths of Pj terminate. Since the flow-cut gap in
undirected graphs is bounded by O(log k), and the set Sj is
α-well-linked, every pair of edges in Ej can simultaneously
send α

k log k
= 1

rk
flow units to each other with constant

congestion inside Sj . If graph G contains such a witness
{S1, . . . , Sr}, it is easy to verify that R must be a good
router, since we can send, for each 1 ≤ j ≤ r, 1/r flow units
along each path in Pj , so that each edge e ∈ out(Sj) receives
at most 1/r flow units, and then send 1

rk
flow units between

every pair of edges in Ej , with constant congestion inside
Sj . In this way, every pair of terminals sends 1/k flow units
to each other with constant congestion in G.

Our algorithm proceeds as follows. Throughout the algo-
rithm, we maintain a legal contracted graph G′ of G, where
at the beginning G′ = G. As long as the number of vertices
in G′ is large enough, we perform an iteration, whose output
is either a witness for set R being a good router, or another
legal contracted graph G′′ that contains fewer vertices than
G′. In the former case, we stop the algorithm and output a
sparsifier H obtained from G by contracting the set R, and
in the latter case we proceed to the next iteration. In fact,
we can efficiently check whether R is a good router before-
hand, by computing an appropriate multicommodity flow in
G[R], to ensure that the former case never happens. Once
the size of the current graph G′ becomes small enough, we
output it as our final sparsifier.

Organization: We start with preliminaries and notation
in Section 2. We construct cut sparsifiers in Section 3 and
flow sparsifiers in Section 4.

2. PRELIMINARIES AND NOTATION
In all our results, we start with a special case where all

edges in G have unit capacities, and then extend our results
to the general setting. Therefore, all definitions and results
presented in this section are for graphs with unit edge ca-
pacities.

General Notation.
For a graph G = (V,E), and subsets V ′ ⊆ V , E′ ⊆ E of its

vertices and edges respectively, we denote by G[V ′], G \ V ′,
and G \E′ the sub-graphs of G induced by V ′, V \ V ′, and
E \ E′, respectively. For any subset S ⊆ V of vertices, we
denote by outG(S) = EG(S, V \ S) the subset of edges with
one endpoint in S and the other endpoint in V \ S. When
clear from context, we omit the subscript G. All logarithms
are to the base of 2.

Let P be any collection of paths in graph G. We say
that paths in P cause congestion η in G, iff for each edge
e ∈ E(G), the number of paths in P containing e is at most
η.

Given a graph G = (V,E), and a subset T ⊆ V of vertices
called terminals, a set D of demands is a function D : T ×
T → R+, that specifies, for each pair t, t′ ∈ T of terminals,
a demand D(t, t′). For simplicity, we assume that the pairs
t, t′ of terminals are unordered, that is D(t, t′) = D(t′, t)
for all t, t′ ∈ T . We say that the set D of demands is γ-
restricted, iff for each terminal t ∈ T , the total demand∑
t′∈T D(t, t′) ≤ γ.
Given any set D of demands, a routing of D is a flow F ,

where for each unordered pair t, t′ ∈ T , the amount of flow

sent from t to t′ (or from t′ to t) is D(t, t′). The congestion
of the flow is the maximum, over all edges e ∈ E, of F (e) —
the amount of flow sent via the edge e.

Given any two subsets V1, V2 of vertices, we denote by
F : V1 ;η V2 a flow that causes congestion at most η in
G, where each vertex in V1 sends one flow unit, and each
flow-path starts at a vertex of V1 and terminates at a vertex

of V2. We denote by F : V1
1:1
;η V2 a flow with the above

properties, where additionally each vertex in V2 receives at
most one flow unit. Similarly, we denote by P : V1 ;η V2 a
collection of paths P = {Pv | v ∈ V1} in graph G, where each
path Pv originates at v and terminates at some vertex of V2,
and the paths in P cause congestion at most η. We denote

P : V1
1:1
;η V2 if additionally each vertex of V2 serves as an

endpoint of at most one path in P. Similarly, we define flows
and paths between subsets of edges. For example, given two
collections E1, E2 of edges of G, we denote by F : E1 ;η E2

a flow that causes congestion at most η in G, where each
flow-path has an edge in E1 as its first edge, and an edge
in E2 as its last edge, and moreover each edge in E1 sends
one flow unit. (Notice that it is then guaranteed that each
edge in E2 receives at most η flow units due to the bound on
congestion). If additionally each edge in E2 receives at most

one flow unit, we denote this by F : E1
1:1
;η E2. Collections

of paths connecting subsets of edges to each other are defined
similarly. We will often be interested in a scenario where
we are given a subset S ⊆ V (G) of vertices, and E1, E2 ⊆
out(S). In this case, we say that a flow F : E1 ;η E2 is
contained in S, iff for each flow-path P in F , all edges of P
belong to G[S], except for the first and the last edges that
belong to out(S). Similarly, we say that a set P : E1 ;η E2

of paths is contained in S, iff all inner edges on paths in P
belong to G[S].

Sparsest Cut and the Flow-Cut Gap.
Suppose we are given a graph G = (V,E), with non-

negative weights wv on vertices v ∈ V , and a subset T ⊆ V
of k terminals, such that for all v 6∈ T , wv = 0. Given
any partition (A,B) of V , the sparsity of the cut (A,B)

is |E(A,B)|
min{W (A),W (B)} , where W (A) =

∑
v∈A wv and W (B) =∑

v∈B wv. In the sparsest cut problem, the input is a graph
G with non-negative weights on vertices, and the goal is
to find a cut of minimum sparsity. Arora, Rao and Vazi-
rani [ARV09] have shown an O(

√
log k)-approximation al-

gorithm for the sparsest cut problem. We denote by AARV

this algorithm and by αARV(k) = O(
√

log k) its approxima-
tion factor. We will usually work with a special case of the
sparsest cut problem, where for each t ∈ T , wt = 1. We
denote such an instance by (G, T).

The dual of the sparsest cut problem is the maximum con-
current flow problem, where the goal is to find the maximum
possible value λ, such that each pair (t, t′) of terminals can
simultaneously send λ/k flow units to each other with unit
congestion (we assume that in the sparsest cut problem in-
stance the weights wt = 1 for all t ∈ T). The flow-cut gap
is the maximum possible ratio, in any graph, between the
value of the minimum sparsest cut and the value λ of the
maximum concurrent flow. The flow-cut gap in undirected
graphs, that we denote by βFCG(k) throughout the paper, is
Θ(log k) [LR99, GVY95, LLR94, AR98]. In particular, if the
value of the sparsest cut in graph G is α, then every pair
of terminals can send at least α

kβFCG(k)
flow units to each

other simultaneously with no congestion. It is also easy to
see that any 1-restricted set D of demands on set T of ter-
minals can be routed with congestion at most 2βFCG(k)/α.
In order to find this routing, let F be the flow where ev-
ery pair of terminals sends α

kβFCG(k)
flow units to each other

with no congestion, and let F ′ be the same flow scaled up
by factor βFCG(k)/α, so the flow in F ′ causes congestion at
most βFCG(k)/α, and every pair of terminals sends 1/k flow
units to each other. For each pair (t, t′) of terminals, ver-
tex t sends D(t, t′)/k flow units to each terminal in T using
the flow F ′ (scaled by factor D(t, t′)), and vertex t′ collects
D(t, t′)/k flow units from each terminal in T . It is easy to
verify that, since the set D of demands is 1-restricted, the
total congestion of this flow is bounded by 2βFCG(k)/α.

Well-Linked Decompositions.

Definition 1 Given a graph G, a subset S of its vertices,
and a parameter α > 0, we say that S is α-well-linked, iff for
any partition (A,B) of S, if we denote by TA = out(A) ∩
out(S), and by TB = out(B) ∩ out(S), then |E(A,B)| ≥
α ·min {|TA|, |TB |}.

Given a subset S of vertices of G, we define a graph GS
associated with S, and a corresponding instance (GS , T ′S) of
the sparsest cut problem, that we use throughout the paper.
We start by sub-dividing every edge e ∈ outG(S) by a vertex
te, and let T ′S = {te | e ∈ outG(S)} be the set of these new
vertices. We then let GS be the sub-graph of the resulting
graph, induced by S ∪T ′S . Notice that set S is α-well-linked
in G iff the value of the sparsest cut in instance (GS , T ′S) is
at least α (for α < 1). In particular, if S is α-well-linked,
and | out(S)| = z, then we have the following two properties:

P1. Any set D of 1-restricted demands on the edges of
out(S) can be routed inside S with congestion at most
2βFCG(z)/α.

P2. For any two subsets E1, E2 ⊆ out(S), where |E1| =

|E2|, there is a collection P : E1
1:1
;d1/αe E2 of paths

contained in S.

In order to obtain the latter property, we set up a single-
source single-sink max-flow instance in graph GS , where the
edges of E1 serve as the source and the edges of E2 serve

as the sink. The existence of the flow F : E1
1:1
;1/α E2

follows from the max-flow/min-cut theorem, and the exis-

tence of the set P : E1
1:1
;d1/αe E2 of paths follows from the

integrality of flow.
A well-linked decomposition of an arbitrary subset S of

vertices, is a partition of S into a collection of well-linked
subsets. We use two different types of well-linked decom-
position, that give slightly different guarantees. We start
with a standard decomposition, that we refer to as the weak
well-linked decomposition, and it is similar to the one used
in [CKS05, Räc02]. The proof of the next theorem appears
in the Appendix.

Theorem 3 (Weak well-linked decomposition) Given any
graph G = (V,E), and any subset S ⊆ V of vertices with
| out(S)| = z, there is an efficient algorithm, that finds a
partition W of S, such that for each set R ∈ W, | out(R)| ≤
| out(S)|, R is αW (z)-well-linked for αW (z) = Ω

(
1

log3/2 z

)
,

and
∑
R∈W | out(R)| ≤ 1.2| out(S)|.

The next theorem gives what we call a strong well-linked
decomposition. This decomposition gives a better guarantee
for the well-linkedness of the resulting sets in the partition.
The drawback is that the running time of the algorithm is
exponential in | out(S)|, and the number of edges adjacent
to the subsets in the partition is higher. The proof of the
next theorem appears in the Appendix.

Theorem 4 (Strong well-linked decomposition) Given
any n-vertex graph G = (V,E), and any subset S ⊆ V of its
vertices, where G[S] is connected and | out(S)| = z, there
is an algorithm running in time 2z · poly(n), that finds a
partition S of S, such that:

• For each R ∈ S, | out(R)| ≤ | out(S)|, and R is 1/3-
well-linked;

•
∑
R∈S | out(R)| = O(z3); and

• For each i : 1 ≤ i ≤ 2blog zc, if Si ⊆ S denotes the
collection of subsets R ∈ S with z/2i < | out(R)| ≤
z/2i−1, then |Si| ≤ 23i+3 for all i.

We will sometimes use the notion of well-linkedness in
a slightly different setting. Suppose we are given a graph
G = (V,E), and a subset T ⊆ V of vertices called terminals.
We say that G is α-well-linked with respect to T , iff for any
partition (A,B) of V , if we denote TA = T ∩ A and TB =
T ∩ B, then |E(A,B)| ≥ α ·min {|TA|, |TB |}. A convenient
way of viewing this consistently with the previous definition
of well-linkedness is to augment the graph G, by adding an
edge connecting each terminal t ∈ T to a new vertex vt.
Saying that G is α-well-linked for T is then equivalent to
saying that the subset V of vertices of the new graph is
α-well-linked.

3. CUT SPARSIFIERS
In this section we prove Theorem 1. We fist consider a

simpler special case where all edge capacities are unit (but
parallel edges are allowed), in the following theorem.

Theorem 5 Let G = (V,E) be any n-vertex (multi-)graph
with unit edge capacities, and a set T ⊆ V of terminals. Let
k =

∑
t∈T dt be the sum of degrees of all terminals. Then

there is a quality-3 vertex cut sparsifier H = (V ′, E′) for G,
with |V ′| = O(k3). Moreover, graph H can be constructed
in time poly(n) · 2k.

Proof. We assume w.l.o.g. that G is a connected graph:
otherwise, we construct a sparsifier for each of its connected
components separately. Let S = V \T . Notice that | out(S)| =
k. In order to construct the sparsifier H, we compute a
strong well-linked decomposition S of S, given by Theo-
rem 4. Recall that the decomposition can be found in time
2k · poly(n), and |S| = O(k3). We now contract each set
R ∈ S into a single super-node vR. The resulting graph
is the sparsifier H. Notice that H is an unweighted multi-
graph, and |V (H)| = O(k3).

Assume that we are given any partition (TA, TB) of the set
T of terminals. It is easy to see that MinCutG(TA, TB) ≤
MinCutH(TA, TB): let (X ′, Y ′) be the minimum cut, sepa-
rating TA from TB in graph H. Since H is obtained from G
by contracting some subsets of its vertices, the cut (X ′, Y ′)
naturally induces a cut (X,Y) separating TA from TB in G:

YX

R
EX EY

EXY

EY X

Figure 1: Illustration for Theorem 5

for each cluster R ∈ S, if vR ∈ X ′, then we add all vertices of
R to X, and otherwise we add them to Y . The value of the
cut, |EG(X,Y)| = |EH(X ′, Y ′)|, and so MinCutG(TA, TB) ≤
MinCutH(TA, TB).

We now prove that MinCutH(TA, TB) ≤ 3 MinCutG(TA, TB).
Let (X,Y) be the minimum cut separating TA from TB in
G. We define a cut (X ′, Y ′), separating TA from TB in H,
with |EH(X ′, Y ′)| ≤ 3|EG(X,Y)|, as follows. we start with
the cut (X,Y) in graph G, and we gradually change this
cut, so that eventually, for each set R ∈ S, all vertices of R
are completely contained in either X or in Y . The resulting
partition will then naturally define the cut (X ′, Y ′) in graph
H.

We process the sets R ∈ S one-by-one. Let R be any
such set. Partition the edges of out(R) into four subsets:
EX , EY , EXY , EYX , as follows. Let e = (u, v) ∈ out(R),
where u ∈ R, v 6∈ R. If both u and v belong to X, then e is
added to EX . If both vertices belong to Y , then e is added
to EY . If u belongs to X and v to Y , then e is added to
EXY . Otherwise, it is added to EYX (see Figure 1). Let
E′R = EG(R ∩X,R ∩ Y). If |EX |+ |EXY | ≤ |EY |+ |EYX |,
then we move all vertices of R to Y ; otherwise we move them
to X.

Assume w.l.o.g. that |EX |+|EXY | ≤ |EY |+|EYX |, and so
we have moved the vertices of R to Y . The only new edges
that we have added to the cut are the edges of EX . On the
other hand, the edges of E′R, that belonged to the cut before
the current iteration, do not belong to the cut anymore. We
charge the edges of E′R for the edges of EX . Since set R is
1/3-well-linked, |E′R| ≥ |EX |/3 must hold, and so the charge
to each edge of E′R is at most 3. Moreover, since the edges of
E′R are the inner edges of the set R (that is, both endpoints
of each such edge belong to R), we will never charge these

edges again. Therefore, if (X̃, Ỹ) denotes the final cut, after

all clusters R ∈ S have been processed, then |EG(X̃, Ỹ)| ≤
3|EG(X,Y)|. Finally, the cut (X̃, Ỹ) in graph G naturally
defines a cut (X ′, Y ′) in graph H: for each cluster R ∈ S, if

R ⊆ X̃, then we add vR to X ′; otherwise we add it to Y ′.
Clearly, |EH(X ′, Y ′)| = |EG(X̃, Ỹ)| ≤ 3|EG(X,Y)|. We
conclude that MinCutH(TA, TB) ≤ 3 MinCutG(TA, TB).

We now complete the proof of Theorem 1. Suppose we
are given a graph G with arbitrary edge capacities ce ≥ 1.
For notational convenience, we denote the input parame-
ter ε by ε′, and we set ε = ε′/3. We perform the fol-
lowing transformation in graph G. Let C be the sum of
the capacities of all edges incident on the terminals. For
each edge e ∈ E, if the capacity ce > C, then we set
it to be C. Notice that this does not change the values
MinCutG(TA, TB) for any partition (TA, TB) of the set T of
the terminals, since MinCutG(TA, TB) ≤ C always holds.

Finally, we replace each edge e ∈ E with dce/εe parallel
unit-capacity edges. Let G′ be the resulting graph. We now
apply Theorem 5 to graph G′, to obtain a sparsifier H ′ of
size O((C/ε)3) = O(C3). We obtain a sparsifier H for graph
G, by setting the capacity of every edge in H ′ to ε. We now
show that H is a quality-(3 + 3ε) = (3 + ε′)-sparsifier for G.

Notice that for each partition (TA, TB) of T , MinCutG(TA,TB)
ε

≤
MinCutG′(TA, TB) ≤ MinCutH′(TA, TB) = MinCutH (TA,TB)

ε
,

and so MinCutG(TA, TB) ≤ MinCutH(TA, TB). On the other

hand, MinCutG′(TA, TB) ≤ MinCutG(TA,TB)
ε

(1 + ε), since all
original edge capacities ce ≥ 1, and so d ce

ε
e ≤ ce

ε
(1 +

ε). Therefore, MinCutH(TA, TB) = ε ·MinCutH′(TA, TB) ≤
3εMinCutG′(TA, TB) ≤ 3(1 + ε) MinCutG(TA, TB).

4. FLOW SPARSIFIERS
In this section we prove Theorem 2 and Corollary 1. We

start with the following definition.

Definition 2 Let S ⊆ V \ T be any subset of non-terminal
vertices, and let | out(S)| = z. We say that S is a good
router iff S is 1/3-well-linked, and every pair (e, e′) ∈ out(S)
of edges can simultaneously send 1/z flow units to each other
inside S, with congestion at most η∗ = 34.

Notice that we can efficiently check whether S is a good
router by computing an appropriate multicommodity flow
in the graph GS . Notice also that if S is a good router, then
any 1-restricted set D of demands on the edges of out(S)
can be routed with congestion at most 2η∗ inside S. Indeed,
let F be the flow, where each pair (e, e′) ∈ out(S) of edges
sends 1/z flow units to each other with congestion at most
η∗ inside S. In order to route the set D of demands, consider
any pair (e, e′) ∈ out(S) of edges. Edge e sends D(e, e′)/z
flow units to each edge e′′ ∈ out(S), using the flow F (scaled
by factorD(e, e′)), while edge e′ collectsD(e, e′)/z flow units
from each edge e′′ ∈ out(S), using the flow F . In the end,
we have D(e, e′) flow units sent from e to e′, and since the
set D of demands is 1-restricted, the total congestion of this
routing is bounded by 2η∗.

Definition 3 We say that a graph G′ is a legal contracted
graph for G iff there is a collection C of disjoint good routers,
where the clusters S ∈ C do not contain any terminals, and
G′ is obtained from G by contracting every cluster S ∈ C into
a super-node vS. (We remove self-loops, but leave parallel
edges).

It is easy to see that if G′ is a legal contracted graph for
G, then it is a quality-2η∗ flow sparsifier, as the next claim
shows.

Claim 1 If G′ is a legal contracted graph for G, then it is
a quality-2η∗ restricted flow sparsifier.

Proof. Given any set D of demands on the terminals in
T , it is immediate to see that η(G′, D) ≤ η(G,D), since G′

is obtained from G by contracting some vertex subsets into
super-nodes.

Assume now that we are given some set D of demands on
T , and η(G′, D) = η. For simplicity, we scale the demands in
D down by the factor of η, to obtain a new set D′ of demands
with η(G′, D′) = 1. It is now enough to show that we can
route the demands in D′ in graph G with congestion at most

2η∗. Let F be the routing of D′ in G′ with congestion 1. For
each cluster S ∈ C, for each pair (e, e′) ∈ out(S) of edges, let
DS(e, e′) be the total amount of flow in F sent on flow-paths
that enter vS through edge e, and leave it through edge e′.
We have thus obtained a set DS of 1-restricted demands on
the edges of out(S). Since S is a good router, these demands
can be routed inside S with congestion at most 2η∗. Let FS
denote this routing. In order to obtain the final routing
F ′ of the set D′ of demands in G, we start with the flow
F , and we augment it with the routings FS that we have
computed in each cluster S ∈ C. Therefore, η(G,D′) ≤ 2η∗.
It is immediate to see that G′ is a restricted sparsifier for G,
from the definition of a legal contracted graph.

Most of this section is devoted to proving the following
theorem, which gives a construction of a flow sparsifier for
the special case where the set V \ T is 1/3-well-linked.

Theorem 6 Assume that we are given any (multi-)graph
G = (V,E), with unit edge capacities and a subset T ⊆ V
of k terminals, where every vertex in T has degree 1. Let
R = V \ T , and assume further that R is 1/3-well-linked.

Then there is an algorithm that finds, in time 2k · nO(log k),
a restricted flow sparsifier H of quality q = 2η∗ for (G, T),

such that |V (H)| = kO(log log k), and H is a legal contracted
graph for G.

We defer the proof of Theorem 6 to Section 4.1, and com-
plete the proof of Theorem 2 here. We assume w.l.o.g that
G is a connected graph: otherwise, we compute a sparsifier
for each of its connected components separately. Our first
step is to compute a strong well-linked decomposition S of
the set V \ T of vertices, given by Theorem 4. Recall that
each set X ∈ S is 1/3-well-linked, |S| = O(k3), and the
decomposition can be computed in time 2k · poly(n). For
each edge e in set

⋃
X∈S out(X), we sub-divide e by a new

vertex ve, and we let G′ denote the resulting graph. For
each cluster X ∈ S, let TX = {ve | e ∈ outG(X)}, and let
GX = G′[X ∪ TX]. Notice that |TX | ≤ k, and all vertices in
TX have degree 1 in GX . For each cluster X ∈ S, we use
Theorem 6 on graph GX and the set TX of terminals, to find
a restricted flow sparsifier HX . Let CX be the corresponding
collection of disjoint subsets of V (GX) \ TX , such that HX
is obtained from GX by contracting every cluster in CX . Let
C =

⋃
X∈S CX . We obtain our final sparsifier H by contract-

ing every cluster S ∈ C into a super-node vS . Notice that
since, for each cluster X ∈ S, graph HX is a legal contracted
graph for GX , each cluster S ∈ C is a good router, and so
H is a legal contracted graph for G. From Claim 1, H is
a quality-(2η∗) restricted sparsifier for G. It is easy to see

that the running time of the algorithm is 2k · nO(log k). It
now only remains to bound |V (H)|.

Recall that |S| ≤ O(k3), and for each X ∈ S, | out(X)| ≤
|T | = k. Therefore, |V (HX)| = kO(log log k), and |V (H)| =

O(k3)·kO(log log k) = kO(log log k). This completes the proof of
Theorem 2. The proof of Corollary 1 follows from Theorem 2
using standard techniques, and it appears in Section B of the
Appendix. We now focus on the proof of Theorem 6, which
is the main technical contribution of this section.

4.1 Proof of Theorem 6
We prove the theorem by induction on the value of k.

Throughout the proof, we use two parameters: r = O(log3 k),

and k∗ = 2kr log r = k poly log k. We set the value r to be a
large enough integer, so that the following inequality holds:

r > 24βFCG(k∗)/αW (k∗) (1)

Notice that βFCG(k∗)/αW (k∗) = O(log5/2(2kr log r)) =
O(log3 k) +O(log3(r log r)), so r = O(log3 k) is sufficient.

Next, we define a function F : R+ → R+, where F (k′) will
roughly serve as an upper bound on the size of the sparsifier
for any graph G with k′ terminals. Function F is defined
recursively, as follows. For k′ ≤ 4, F (k′) = 1. If k′ > 4 is
an integral power of 2, then F (k′) = 216 · r3 log r ·F (k′/2) =
O(log9 k log log k) · F (k′/2). Otherwise, F (k′) = F (k′′),
where k′′ is the smallest integral power of 2 with k′′ ≥ k′.
Notice that for any integer k′ > 4, F (k′/2) = F (dk′/2e),
and we will sometimes use these values interchangeably.

Notice that for all values k′, F (k′) = (log k′)O(log k′), so

F (k) = kO(log log k) as required. From now on, we focus
on proving that if G = (V,E) is a graph as in the theo-
rem statement with k terminals, then we can find, in time
nO(log k) · 2k, a restricted quality-(2η∗) sparsifier H for G,
such that |V (H) \ T | ≤ F (k), and H is a legal contracted
graph for G.

The proof is by induction on the values of k. If k ≤ 4,
then the set R = V \ T is a good router, so we can let
C = {R}, and return the corresponding contracted graph H
as our sparsifier, so |V (H) \ T | = 1. Assume now that the
claim holds for values k′ < k, and we now prove it for k.

Notice that if the set R = V \ T of vertices is a good
router, then we can set C = {R}, and output a sparsifier
H, obtained from G, after we contract the cluster R into a
super-node vR. Therefore, we can assume from now on that
R is not a good router. The main idea of the algorithm is as
follows. Throughout the algorithm, we maintain a collection
C of disjoint good routers in graph G and the corresponding
legal contracted graph G′. At the beginning, C = ∅, and
G′ = G. While the number of vertices in V (G′) \ T is
greater than F (k), we perform an iteration, in which we
obtain a new collection C′ of disjoint good routers, such that
the corresponding graph G′′ contains strictly fewer vertices
than G′. Once the number of vertices in V (G′) \ T falls
below F (k), we stop and output G′ as our sparsifier.

Notice that if G′ is a legal contracted graph for G, then
each edge of G′ corresponds to some edge of G. We do not
distinguish between these edges. For example, if S ⊆ V (G′)
is any subset of vertices, and S′ ⊆ V (G) is obtained from S
by replacing each super-node vC ∈ S by the vertices of C,
then we view outG′(S) = outG(S′). We need the following
definition.

Definition 4 Let G′ be the current legal contracted graph,
and let S ⊆ V (G′)\T be any subset of non-terminal vertices,
such that G′[S] is connected. We say that S is a contractible
set iff | out(S)| ≤ dk/2e, and |S| > 128F (| outG′(S)|).

Let G′ be the current contracted graph, and let C be the
corresponding collection of good routers. Suppose we can
find a contractible set S of vertices in the current graph G′,
with | out(S)| = k′. We show that in this case we can com-
pute a smaller legal contracted graph G′′. We denote this
procedure by Contract(G′, S). Procedure Contract(G′, S) is
executed as follows. Let CS ⊆ C contain all clusters C with
vC ∈ S, and let S′ be the subset of vertices of the origi-
nal graph G obtained from S by replacing each super-node
vC ∈ CS with the vertices of C. Clearly, |S′| > 128F (k′)

still holds, G[S′] is a connected graph, and | outG(S′)| = k′.
Let S be the strong well-linked decomposition of S′ given by
Theorem 4. We now process the clusters in S one by one.
Consider some cluster Z ∈ S. We construct a new graph GZ
from graph G, by first sub-dividing every edge e ∈ outG(Z)
by a vertex ve, setting TZ = {ve | e ∈ outG(Z)}, and we
let GZ be the sub-graph of the resulting graph induced by
Z ∪ TZ . Let kZ = |TZ | = | outG(Z)|, and observe that
kZ ≤ k′ ≤ dk/2e < k. Recall that GZ is 1/3-well-linked
for TZ , so by the induction hypothesis, we can find a spar-
sifier HZ for (GZ , TZ), with |V (HZ) \ TZ | ≤ F (kZ). Let
CZ be the collection of the good routers corresponding to
HZ . Recall that each cluster C ∈ CZ only contains vertices
of Z. Let C′ = (C \ CS) ∪

(⋃
Z∈S CZ

)
be the new collec-

tion of good routers in graph G, and let G′′ be the con-
tracted graph corresponding to C′. Graph G′′ is the output
of procedure Contract(G′, S). In the next claim we show
that |V (G′′)| < |V (G′)|.

Claim 2 Let G′′ be the output of Procedure Contract(G′, S).
Then |V (G′′)| < |V (G′)|.

Proof. From the definition of G′′,

V (G′′) = |V (G′)| − |S|+
∑
Z∈S

|HZ \ TZ |

≤ |V (G′)| − |S|+
∑
Z∈S

F (kZ).

Let k′ = | outG′(S)|, and let k′′ be the smallest power of 2,
such that k′′ ≥ k′. Recall that |S| > 128F (k′) = 128F (k′′),
so in order to show that |V (G′′)| < |V (G′)|, it is enough to
show that

∑
Z∈S F (kZ) ≤ 128F (k′′). For each i : 1 ≤ i ≤

log k′′+1, let Si ⊆ S be the collection of subsets Z ∈ S with
k′′/2i < kZ ≤ k′′/2i−1. Then from Theorem 4, |Si| ≤ 23i+3

for all i. Therefore,

∑
Z∈S

F (kZ) ≤
log k′′+1∑
i=1

|Si| · F (k′′/2i−1)

≤
log k′′+1∑
i=1

23i+3 · F (k′′/2i−1)

Let T (i) = 23i−3F (k′′/2i−1). Then

T (i) = 8·23i−6F (k′′/2i−1) <
1

2
·23i−6F (k′′/2i−2) =

1

2
T (i−1).

Therefore, values T (i) form a geometrically decreasing

sequence, and
∑log k′′+1
i=1 23i+3 · F (k′′/2i−1) < 27 · T (1) =

27F (k′′).

We now proceed to define two structures, that we call a
type-1 and a type-2 witnesses. We show that if G′ is a legal
contracted graph for G, and G′ contains either a type-1 or a
type-2 witness, then R = V (G) \ T must be a good router.
Finally, we show an algorithm, that, given a legal contracted
graph G′ with |V (G′)\T | > F (k), either finds a contractible
subset S ⊆ V (G′) \ T of vertices in G′, or returns a type-
1 or a type-2 witness in G′. Since we have assumed that
R is not a good router, whenever we apply this algorithm
to the current legal contracted graph G′, we will obtain a
contractible subset S of vertices, and by using procedure

Contract(G′, S), we can obtain a new legal contracted graph
G′′ with |V (G′′)| < |V (G′)|. We continue this process until
|V (G′) \ T | ≤ F (k) holds, and output G′ as our sparsifier
then. We now proceed to define the two types of witnesses.

Definition 5 Let G′ be a legal contracted graph, and let
F = {S′1, . . . , S′r} be a family of disjoint subsets of V (G′) \
T . We say that F is a type-1 witness, iff for each 1 ≤
j ≤ r, S′j is αW (k∗)-well-linked in graph G′, and there is a
collection P ′j of dk/2e edge-disjoint paths in graph G′, where
each path connects a distinct terminal in T to a distinct edge
in outG′(S

′
j).

Definition 6 Let Ã ⊆ V (G′) \ T be any subset of non-

terminal vertices. We say that Ã is a type-2 witness iff we
are given a subset Ẽ ⊆ outG′(Ã) of r · dk/4e edges, such

that Ã is αW (r · dk/4e)-well linked for Ẽ, and we are given

a partition E1, . . . , Er of Ẽ into r disjoint subsets of size
dk/4e each, and a subset T ∗ ⊆ T of dk/4e terminals, such

that for each 1 ≤ j ≤ r, there is a collection P ′j : T ∗ 1:1
;2 Ej

of paths in graph G′.

(Here we say that Ã is α-well-linked for Ẽ ⊆ outG′(Ã)

iff for any partition (X,Y) of Ã, if we denote TX = Ẽ ∩
outG′(X), and TY = Ẽ ∩ outG′(Y), then |EG′(X,Y)| ≥
α ·min {|TX |, |TY |}.)

We start by showing that if a legal contracted graph G′

contains a type-1 witness or a type-2 witness, then the set
R is good router.

Theorem 7 If any legal contracted graph G′ contains a type-
1 witness F , or a type-2 witness Ã, then R = V (G) \ T is a
good router.

Proof. Recall that R is 1/3-well-linked. So we only need
to prove that if G′ contains a type-1 or a type-2 witness,
then every pair of terminals can simultaneously send 1/k
flow units to each other with congestion at most η∗. We
need the following two simple claims, whose proofs appear
in the Appendix.

Claim 3 Let G′ be a legal contracted graph, S′ ⊆ V (G′)\T ,
and E′ ⊆ outG′(S

′), such that S′ is α-well-linked for E′, for
any α < 1. Let S ⊆ V (G) \ T be the set of vertices obtained
from S′, after we replace every super-node vC ∈ S′ with the
set C of vertices. Then S is α/3-well-linked for E′ in graph
G.

Claim 4 Let G′ be a legal contracted graph for G, S′ ⊆
V (G′) \ T any subset of non-terminal vertices in G′, and
E′ ⊆ outG′(S

′) any subset of edges, and assume further that
we are given a subset T ′ ⊆ T of terminals with |T ′| = |E′|,
such that there is a collection P ′ : T ′ 1:1

;η E
′ of paths in G′.

Let S ⊆ V (G)\T be the set of vertices obtained from S′ after
we replace every super-node vC by the set C of vertices, and
consider the same subset E′ ⊆ outG(S) of edges. Then there

is a set P : T ′ 1:1
;3η E

′ of paths in graph G.

Type-1 Witnesses.
Assume first that graph G′ contains a type-1 witness F =
{S′1, . . . , S′r}. Fix some 1 ≤ j ≤ r, and consider the subset S′j
of vertices. Let Sj be the corresponding subset of vertices
of the original graph G, after we un-contract each super-
node vC ∈ Sj , replacing it with the corresponding set C of
vertices. Let Tj ⊆ T be the subset of dk/2e terminals that
serve as endpoints of the paths in P ′j , and let Ej ⊆ outG′(S

′
j)

be the subset of dk/2e edges where these paths terminate.
From Claim 3, set Sj is αW (k∗)/3-well-linked. Therefore,
every pair (e, e′) ∈ Ej of edges can simultaneously send to

each other at least 1
dk/2e ·

αW (k∗)
3βFCG(k∗) ≥

8
kr

flow units with no

congestion in G[Sj]. (We have used Equation 1). Denote

this flow by Fj . From Claim 4, there is a set Pj : Tj
1:1
;3 Ej

of paths in graph G. Let T ′j = T \ Tj . Then |T ′j | ≤ |Tj | ≤
k/2. Since graph G is 1/3-well-linked for T , there is a set

P∗j : T ′j
1:1
;3 Tj of paths in graph G. We now define a flow

F ∗j , as follows: each terminal t ∈ T ′j sends 1/r flow units to
some terminal in Tj , along the path in P∗j that originates

at t. Next, each terminal t′ ∈ Tj sends 2−1/k
r

flow units
to some edge in Ej , using the path in Pj that originates

at t′. Each edge in Ej now receives 2−1/k
r

flow units, and
uses the flow Fj to spread this flow evenly among the edges
of Ej . This defines the flow F ∗j , where every pair (t, t′) of
terminals sends 1

kr
flow units to each other. The congestion

of the flow F ∗j is computed as follows: the congestion due
to flow on paths in P∗j is at most 3/r; the congestion due to
flow on paths in Pj is at most 6/r, and the congestion due
to the flow Fj is at most 1. Notice that flow Fj is entirely
contained inside G[Sj].

The final flow F ∗ is simply the union of flows Fj for 1 ≤
j ≤ r. Clearly, in F ∗, every pair of terminals sends 1/k flow
units to each other. It is easy to see that the flow congestion
is bounded by 10.

Type-2 Witnesses.
Assume now that we are given a type-2 witness Ã, and

let A ⊆ V (G) \ T be the subset of vertices obtained from

Ã, after we replace each super-node vC with the set C of
vertices. From Claim 3, set A is 1

3
αW (r dk/4e)-well-linked

for the subset Ẽ ⊆ outG(A) of edges. Therefore, every pair

(e, e′) ∈ Ẽ of edges can send 1
r·dk/4e ·

αW (r·dk/4e)
3βFCG(r·dk/4e) >

16
kr2

flow units to each other with no congestion in graph G. (We
have used Equation 1 and the fact that k∗ > r · dk/4e). Let
F denote this flow. Recall that for each 1 ≤ j ≤ r, we have

a collection P ′j : T ∗ 1:1
;2 Ej of paths in graph G′. From

Claim 4, there is a set Pj : T ∗ 1:1
;6 Ej of paths in graph

G. Finally, partition T \ T ∗ into three subsets, T1, T2, T3 of
size at most dk/4e each. Since graph G is 1/3-well-linked,

for each 1 ≤ i ≤ 3, there is a set Qi : Ti
1:1
;3 T ∗ of paths

in G. Let Q denote the following set of paths: start with
Q1 ∪Q2 ∪Q3, and add, for each terminal t ∈ T ∗, an empty
path Qt connecting t to itself. Then set Q contains, for each
terminal t ∈ T , a path Qt, connecting t to some terminal
t′ ∈ T ∗, such that for each terminal t′ ∈ T ∗, there are
exactly four terminals in T whose path Qt terminates at t′.
Notice that the paths in Q cause congestion at most 9 in
G. We are now ready to define our final flow F ∗. First,
every terminal in T sends one flow unit to some terminal in
T ∗, along the path Qt ∈ Q. Next, for each 1 ≤ j ≤ r, each

terminal t ∈ T ∗, sends 4
r

flow units along the path in Pj that

originates at t. Notice that each edge in Ẽ now receives 4
r

flow units. Finally, we use the flow F , to spread the flow
that every edge receives evenly among the edges in Ẽ, so
every pair of edges in Ẽ needs to send 4

r
· 1
r·dk/4e ≤

16
kr2

flow

units to each other. This finishes the definition of the flow
F ∗. Clearly, every pair of terminals sends 1/k flow units
to each other. We now analyze the congestion due to this
flow. The paths in Q cause congestion 9, and the paths in
P1, . . . ,Pr cause congestion at most 24 altogether (each set
Pj of paths originally caused congestion 6, and we send 4/r
flow units along each path in Pj). Finally, flow F causes
congestion at most 1. Altogether, flow F ∗ causes congestion
at most 34.

The next theorem provides an algorithm that, given any
legal contracted graph G′, either finds a contractible subset
of vertices in G′, or finds a witness of type 1 or 2 in G′.

Theorem 8 Let G′ be any legal contracted graph, and as-
sume that |V (G′) \ T | > F (k). Then there is an efficient
algorithm that finds either a contractible subset S′ of ver-
tices, or a type-1 witness F , or a type-2 witness Ã in graph
G′.

Proof. Since we only work with graph G′ in this proof,
we omit the sub-script G′ in our notation, and use out(S)
to denote outG′(S). Let S ⊆ V (G′) \ T be any subset of
non-terminal vertices. We say that a partition (X,Y) of S
is balanced, iff |X|, |Y | ≥ |S|/4. We start with the following
lemma.

Lemma 1 Let S ⊆ V (G′)\T be any subset of non-terminal
vertices with |S| > 29 · F (k/2). Then there is an efficient

algorithms that either finds a type-2 witness Ã, or a con-
tractible set S′ of vertices in G′, or a balanced partition
(X,Y) of S with |E(X,Y)| ≤ rk.

Proof. Let (X,Y) be any balanced partition of S, and
assume w.l.o.g. that |X| ≥ |Y |. If |E(X,Y)| ≤ rk, then
we stop and output the partition (X,Y). Otherwise, we
perform a number of iterations. In each iteration, we are
given as input a balanced partition (X,Y) of S with |X| ≥
|Y | and |E(X,Y)| > rk, and we try to establish whether
X is a type-2 witness. If this is not the case, then we will
either find a contractible subset S′ of vertices in G′, or we
will produce a new balanced partition (X ′, Y ′) of S, with
|E(X ′, Y ′)| < |E(X,Y)|. Therefore, after at most |E(G′)|
steps, we are guaranteed to find a type-2 witness Ã, or a
contractible set S′ of vertices, or a balanced partition (X,Y)
of S with |E(X,Y)| ≤ rk.

We now proceed to describe each iteration. Suppose we
are given a balanced partition (X,Y) of S with |X| ≥ |Y |
and |E(X,Y)| > rk. Throughout the iteration execution,
we denote Γ = E(X,Y). An iteration consists of three
steps. In the first step, we try to find a collection P1 of
dk/4e edge-disjoint paths in graph G′ connecting dk/4e dis-
tinct terminals in T to a subset E1 of dk/4e edges in Γ.
In the second step, we identify additional (r − 1) subsets
E2, . . . , Er of edges of Γ of size dk/4e each, and try to find,
for each 1 ≤ j ≤ r, a collection Pj of paths connecting ter-
minals in T to the edges in Ej with congestion at most 2.
Finally, in the third step, we set Ẽ =

⋃r
j=1Ej , and we try

to establish whether X is αW (r · dk/4e)-well-linked for Ẽ. If
all three steps succeed, then we output X as a type-2 wit-
ness. If any of the three steps fails, then we will either find
a contractible set S′ of vertices in G′, or a new balanced
partition (X ′, Y ′) of S with |E(X ′, Y ′)| < |E(X,Y)|. In the
latter case, we continue to the next iteration with the new
partition (X ′, Y ′) replacing the partition (X,Y). We now
turn to describe each of the three steps.

Step 1.
In this step we try to find a set P1 of edge-disjoint paths

in graph G′ connecting dk/4e distinct terminals in T to the
edges of Γ. In order to do so, we set up the following flow
network N . We sub-divide each edge e ∈ Γ by a vertex ze,
and set T ′ = {ze | e ∈ Γ}. We then contract the vertices
of T into a source s, and the vertices of T ′ into a sink t.
Assume first that there is an s-t flow of value at least dk/2e
in the resulting network N . This flow defines a collection P ′
of dk/2e paths, where each path connects a distinct terminal
in T to some edge in Γ (since each terminal in T has exactly
one adjacent edge in G′). These paths are completely edge-
disjoint, except that each edge in Γ may serve as an endpoint
of up to two such paths. We select a subset P1 ⊆ P ′ of dk/4e
paths, such that each edge in Γ now participates in at most
one path in P1, that is, the paths in P1 are edge-disjoint.

Assume now that the value of the maximum s-t flow in N
is less than dk/2e. We show that in this case, we can either
find a contractible set S′ of vertices, or a balanced partition
(X ′, Y ′) of S with |E(X ′, Y ′)| ≤ dk/2e < rk. Since the value
of the maximum s-t flow in N is less than dk/2e, there is an
s-t cut (A′, B′) with s ∈ A′, t ∈ B′, and |E(A′, B′)| < dk/2e
in N . Let A = A′ \ {s} and B = B′ \ {t}. Then (A,B) is a
partition of V (G′) \ T . Denote XA = X ∩A, XB = X ∩B,
YA = Y ∩ A, and YB = Y ∩ B. Let Γ′ ⊆ Γ be the subset of
edges e = (u, v) where either u ∈ A, v ∈ B, or both u, v ∈ A
(see Figure 2). Notice that every edge in Γ′ contributes
at least 1 to the cut EN (A′, B′), and since EG′(A,B) ⊆
EN (A,B) ∪ Γ′, we get that |EG′(A,B)| < dk/2e.

A B

X

Y

XA XB

YBYA

Figure 2: Illustration for Lemma 1. Edges in Γ′ are
shown in red.

Assume first that |XA| ≥ |XB |. In this case, we define a
new partition (X ′, Y ′) of S, where X ′ = XA and Y ′ = Y ∪
XB . It is immediate to see that (X ′, Y ′) is a balanced cut,
since |X ′| ≥ |X|/2 ≥ |S|/4. In order to bound E(X ′, Y ′),
observe that

EG′(X
′, Y ′) = EG′(XA, XB)∪EG′(XA, Y) ⊆ EG′(XA, XB)∪Γ′.

Therefore, |EG′(X ′, Y ′)| ≤ |EG′(XA, XB)|+|Γ′| < dk/2e <
kr.

From now on we assume that |XB | ≥ |XA|, so |XB | ≥
|S|/4 > 27F (k/2). Let C1 be the set of all connected com-
ponents of G′[B]. If for any component C ∈ C1, |C| >
27F (k/2), then we stop the algorithm, and output C as a
contractible set. Indeed, |C| > 27F (k/2), while | out(C)| ≤
|E′G(A,B)| < dk/2e. We now assume that for all compo-
nents C ∈ C1, |C| ≤ 27F (k/2) < |S|/4.

Let C2 be the set of all connected components of G′[XB ∪
YB]. Notice that each connected component C ∈ C2 must be
contained in some connected component C′ ∈ C1, so |C| <
|S|/4 must hold. We construct a new partition (X ′, Y ′) of S,
as follows. Start with X ′ = ∅, and add components C ∈ C2
to X ′ one-by-one, until |X ′| ≥ |S|/4 holds. Since the size of
each such component is less than |S|/4, while |XB | ≥ |S|/4,
in the end, |S|/4 ≤ |X ′| ≤ |S|/2. Let Y ′ = S \ X ′. Then
(X ′, Y ′) is a balanced partition of S, and EG′(X

′, Y ′)| ⊆
EG′(A,B), so |EG′(X ′, Y ′)| ≤ |EG′(A,B)| ≤ dk/2e < kr.

Step 2.
From now on, we assume that we have successfully found

a set P1 of dk/4e edge-disjoint paths connecting a subset
T ∗ ⊆ T of dk/4e terminals to the edges in Γ. Let Γ1 be the
subset of dk/4e edges of Γ that serve as endpoints of these

paths, so P1 : T ∗ 1:1
;1 Γ1.

We select arbitrary (r − 1) disjoint subsets Γ2, . . . ,Γr of
Γ\Γ1 , containing dk/4e edges of each. For each 2 ≤ j ≤ Γj ,
we will try to find a collection P ′j of edge-disjoint paths, con-
necting the edges of Γ1 to the edges of Γj . We will show that
if such set of paths cannot be found, then we can find an-
other balanced partition (X ′, Y ′) of S with |EG′(X ′, Y ′)| <
|EG′(X,Y)|. For simplicity, we provide and analyze the
procedure for j = 2, and the procedure is similar for all
2 ≤ j ≤ r.

We set up the following flow network. Start with the graph
G′[X]∪Γ1 ∪Γ2. Let V1 be the set of the endpoints of edges
of Γ1 that do not belong to X, V1 = {v | (v, u) ∈ Γ1, v 6∈ X},
and we define V2 similarly for Γ2. We then unify all vertices
of V1 into a source s, and all vertices of V2 into a sink t. Let
N ′ be the resulting network. Assume first that there is an s-t
flow in N ′ of value dk/4e. Then this flow defines a collection
P ′2 of dk/4e edge-disjoint paths, connecting the edges of Γ1

to the edges of Γ2. Concatenating the paths in P1 with the

paths in P ′2, we obtain a collection P2 : T ∗ 1:1
;2 Γ2 of paths

in G′.
Assume now that such flow does not exist. Then there is

an s-t cut (A,B) in N ′, with s ∈ A, t ∈ B, and |E(A,B)| <
dk/4e. We partition the edges of Γ1 into two subsets: set TA
denotes the edges that do not belong to the cut EN′(A,B)
(that is, for each edge e = (s, v) ∈ TA, v ∈ A), and set
TB denotes edges that belong to the cut (for each edge e =
(s, v) ∈ TB , v ∈ B). Similarly, we partition the set Γ2 of
edges as follows: set T ′A contains all edges that belong to the
cut EN′(A,B), and T ′B contains all edges that do not belong
to the cut. The set Γ \ (Γ1 ∪ Γ2) of edges is also partitioned
into two subsets: ΥA denotes all edges (u, v) ∈ Γ with u ∈ Y
and v ∈ A, and ΥB denotes all edges (u, v) ∈ Γ with u ∈ Y
and v ∈ B. Finally, let E′ = EG′(A,B) (See Figure 3).

The set of edges that belong to the cut EN′(A,B) is E′ ∪
TB ∪ T ′A, and the value of this cut is less than dk/4e. In
particular, since |TA ∪ TB | = dk/4e and |T ′A ∪ T ′B | = dk/4e,
it follows that |E′| < |TA|, and |E′| < |T ′B |. Assume first
that |A| ≤ |B|. We then define a new partition (X ′, Y ′) of

s t

A

B

E′

ΥA

ΥB

TA

TB T ′
B

T ′
A

Figure 3: Illustration for Lemma 1

S, where X ′ = B and Y ′ = Y ∪ A. It is easy to see that
(X ′, Y ′) is a balanced cut. Notice that EG′(X,Y) = TA ∪
T ′A∪TB∪T ′B∪ΥA∪ΥB , while E(X ′, Y ′) = TB∪T ′B∪ΥB∪E′.
In order to show that |E(X ′, Y ′)| < |E(X,Y)|, it is enough
to prove that |E′| < |TA|+ |T ′A|, which follows from the fact
that |E′| < |TA|.

Otherwise, if |A| > |B|, we define a new partition (X ′, Y ′)
of S where X ′ = A and Y ′ = Y ∪B. Again, it is easy to see
that (X ′, Y ′) is a balanced cut. Notice that E(X,Y) = TA∪
T ′A∪TB∪T ′B∪ΥA∪ΥB , while E(X ′, Y ′) = TA∪T ′A∪ΥA∪E′.
In order to show that |E(X ′, Y ′)| < |E(X,Y)|, it is enough
to prove that |E′| < |TB |+ |T ′B |, which follows from the fact
that |E′| < |TA|.

We say that steps 1 and 2 are successful iff we have found r
disjoint subsets Γ1, . . . ,Γr of Γ containing dk/4e edges each,
and for each 1 ≤ j ≤ r, we have found a set Pj of dk/4e
edge-disjoint paths, Pj : T ∗ 1:1

;2 Γj . We assume from now
on that steps 1 and 2 have been successful. We now proceed
to describe step 3.

Step 3.
Let Γ′ =

⋃r
j=1 Γj . In this step, we try to verify that

X is αW (r · dk/4e)-well-linked for Γ′. If this is not the
case, then we return a balanced partition (X ′, Y ′) of S with
|EG′(X ′, Y ′)| < |EG′(X,Y)|. We set up an instance of the
sparsest cut problem, as follows. Start with the graph G′

and sub-divide every edge e ∈ Γ′ by a vertex ve. Let T ′ =
{ve | e ∈ Γ′}, and let G′′ be the sub-graph of the resulting
graph induced by X∪T ′. We run algorithm AARV on the in-
stance (G′′, T ′) of the sparsest cut problem. Let A,B be the
resulting partition of X, and assume w.l.o.g. that |A| ≤ |B|.
Denote TA = outG′(A)∩Γ′ and TB = outG′(B)∩Γ′. Assume
first that |EG′(A,B)| < min {|TA|, |TB |}. We then define a
new partition (X ′, Y ′) of S, where X ′ = B and Y ′ = A∪Y .
It is easy to see that (X ′, Y ′) is a balanced partition, since
|B| ≥ |A|. Moreover, |EG′(X ′, Y ′)| ≤ |EG′(X,Y)| − |TA| +
|EG′(A,B)| < |EG′(X,Y)| as required.

Assume now that |EG′(A,B)| ≥ min {|TA|, |TB |}. Then
we are guaranteed that X is (1/αARV(r · dk/4e)) ≥ αW (r ·
dk/4e)-well-linked for Γ′. We then declare that X is a type-
2 witness and terminate the algorithm. Indeed, we have
established that X is αW (r ·dk/4e)-well-linked for Γ′, and we

have found, for each 1 ≤ j ≤ r, a collection Pj : T ∗ 1:1
;2 Γj

of paths in G′.

We are now ready to complete the proof of Theorem 8.
The algorithm consists of two phases. In the first phase we
have dlog re iterations. In each iteration i, we start with a
family Si of 2i−1 disjoint subsets of vertices of V (G′) \ T ,

where for each S ∈ Si |S| > 29F (k/2), and produce a family
Si+1 of 2i subsets, that become an input to the next itera-
tion. In the input to the first iteration, S1 = {V (G′) \ T }.
Iteration i is executed as follows. Consider some set S ∈ Si.
We apply the algorithm from Lemma 1 to set S. If the
output is a type-2 witness Ã, or a contractible set S′ of
vertices, we stop the algorithm and output this set. Oth-
erwise, we obtain a balanced partition (X,Y) of S, with
|E(X,Y)| ≤ rk. In this case, we add X and Y to Si+1.
Notice that | out(X)|, | out(Y)| ≤ | out(S)|+rk. We let Si+1

be the set obtained after we process all sets S ∈ Si. Observe
that since we find balanced cuts in each iteration, for each

1 ≤ i ≤ dlog re + 1, for each S ∈ Si, |S| ≥ |V (G′)\T |
4i−1 ≥

F (k)

4dlog re ≥
F (k)

4r2
> 29 · F (k/2), and so we can indeed apply

Lemma 1 to all sets in Si.
Consider now the output of the last iteration Sdlog re, and

let S1, . . . , Sr be any r sets in Sdlog re+1. Fix some j : 1 ≤ j ≤
r, and consider the set Sj . From the above discussion, Sj ⊆
V (G′)\T . Moreover, since | out(V (G′)\T)| = k, and in each
iteration, if we start with a set S and produce a partition
(X,Y) of S, then | out(X)|, | out(Y)| ≤ | out(S)|+rk, we get
that | out(Sj)| ≤ k+ rk · dlog re ≤ 2kr log r = k∗. Moreover,

as observed above, |Sj | ≥ F (k)

16r2
≥ 212r log r · F (k/2).

LetWj be the weak well-linked decomposition of Sj , given
by Theorem 3. Notice that from the definition of well-
linkedness, for every cluster C ∈ Wj , G

′[C] is connected.
If any set R′ ∈ Wj , with | out(R′)| ≤ dk/2e is contractible,
then we simply output R′ as a contractible set. From now
on assume that all sets in Wj are non-contractible. Notice
that for each R′ ∈ Wj , set R′ is αW (k∗)-well-linked. Let
S′j ∈ Wj be the set of maximum cardinality. We need the
following claim.

Claim 5 |S′j | > 27 · F (k/2).

Proof. Recall that from Theorem 3,
∑
R′∈Wj

| out(R′)| ≤
1.2| out(Sj)| ≤ 2.4kr log r. We partition the setWj into two
subsets: W1 contains all sets R′ ∈ Wj with | out(R′)| ≥ k/2,
and W2 contains all remaining sets. Further, we partition
the set W2 into subsets Ri, for 2 ≤ i ≤ log k+ 1, as follows:
Ri contains all sets R′ with k/2i < | out(R′)| ≤ k/2i−1.

Fix some 2 ≤ i ≤ log k + 1. Since
∑
R′∈Wj

| out(R′)| ≤
2.4kr log r, we get that |Ri| ≤ 3r log r · 2i, and since each
set R′ ∈ Ri is non-contractible, |R′| ≤ 27 · F (k/2i−1) must
hold. We therefore obtain the following bound:

∑
R′∈W2

|R′| ≤
log k+1∑
i=2

3 · 2i · r log r · 27 · F (k/2i−1)

= 3 · 27 · r log r

log k+1∑
i=2

2iF (k/2i−1)

Denote T (i) = 2iF (k/2i−1). By the recursive definition

of F (k′), T (i) < 2i

8
F (k/2i−2) = T (i − 1)/4. Therefore,

the values T (i) form a geometric series, and
∑log k+1
i=2 T (i) <

4T (2)/3. We conclude that
∑
R′∈W2 |R′| < 211r log r·F (k/2) ≤

|Sj |/2, and so
∑
R′∈W1 |R′| > |Sj |/2 ≥ 211r log r · F (k/2).

Finally, observe that set W1 may contain at most 5r log r
sub-sets, since for each subset R′ ∈ W1, | out(R′)| > k/2,
while

∑
R′∈Wj

| out(R′)| ≤ 2.4rk log r. Therefore, at least

one subset in W1 contains more than 211r log r·F (k/2)
5r log r

> 27 ·
F (k/2) vertices.

Next, we try to route the terminals in T to the edges in
out(S′j), as follows. We build a flow network, starting from
the graph G′, contracting all terminals in T into a source s,
and all vertices in S′j into a sink t. We try to find an s-t flow
in this network of value at least dk/2e. Assume first that we
are unable to find such flow. Then we can find a minimum s-
t cut (A,B), with s ∈ A, t ∈ B, and the cut value is less than
dk/2e in this network. Let B′ = (B \ {t}) ∪ S′j . Then B′ ⊆
V (G′) \ T ′, and it is a contractible set, since | outG′(B

′)| ≤
dk/2e, while S′j ⊆ B′, so |B′| > 27 · F (k/2). Moreover,
G′[B′] is a connected graph, since G′[Sj] is connected.

Assume now that we have managed to find a flow of value
at least dk/2e in this network. Then this defines a collection
P ′j of dk/2e edge-disjoint paths, connecting distinct termi-
nals in T to distinct edges of out(S′j).

Overall, our algorithm may terminate early, in which case
it is guaranteed to produce either a type-2 witness Ã, or
a contractible set. Otherwise, the algorithm finds a family
F = {S′1, . . . , S′r} of vertex subsets that are αW (k∗)-well-
linked, with the collections P ′1, . . . ,P ′r of paths as required,
thus giving a type-1 witness.

We are now ready to complete the proof of Theorem 6. If
the set R = V (G)\T is a good router, then we let C = {R},
and the sparsifier H is the corresponding contracted graph
(a star graph, where the star center is vR, and the leaves are
the terminals). Assume now that R is not a good router. We
then start with G′ = G, and repeatedly apply Theorem 8
to G′. From Theorem 7, graph G′ cannot contain type-
1 or type-2 witnesses, so the output of the theorem will
always be a contractible set S of vertices in G′. We then
apply Procedure Contract(G′, S) to obtain a new contracted
graph G′′, with |V (G′′)| < |V (G′)|, and continue. We are
guaranteed to obtain, after at most |V (G)| iterations, a legal
contracted graph G′ with |V (G′) \ T | ≤ F (k), which we
output as the final sparsifier. From Claim 1, G′ is indeed a
quality-(2η∗)-sparsifier.

In order to bound the running time of the algorithm,
we prove that for any n-vertex graph with a set T of k
terminals, the running time of the algorithm is T (n, k) =

nO(log k) · 2k. The proof is by induction on the values of k.
For k ≤ 4, the running time of the algorithm is poly(n).
Assume that the claim holds for all values k′ < k, and we
now prove it for k. Recall that our algorithm performs at
most n iterations. Each iteration involves a call to procedure
Contract(G′, S), and takes an additional time of poly(n).
Let k′ = | out(S)|, and recall that k′ ≤ dk/2e. Proce-
dure Contract(G′, S) computes a strong well-linked decom-
position S of the set S, and then computes a sparsifier
for each set Z ∈ S recursively. For each set Z ∈ S, let
kZ = outG(Z), and let nZ = |Z|. Then kZ ≤ k′ ≤ dk/2e,
and

∑
Z∈S nZ ≤ n. Therefore, by the induction hypoth-

esis, the running time of the recursive procedure for each
set Z ∈ S is at most T (nZ , kZ) ≤ T (nZ , dk/2e), and the
total running time of procedure Contract(G′, S) is at most
2k poly(n)+

∑
Z∈S T (nZ , dk/2e) ≤ 2k poly(n)+T (n, dk/2e).

Overall, the running time of the algorithm is then bounded
by n · (poly(n) + 2k poly(n) + T (n, dk/2e)) ≤ 2k poly(n) +

n · (nO(logdk/2e) · 2k) ≤ nO(log k) · 2k = T (n, k).

Acknowledgements.
The author thanks Yury Makarychev and Konstantin

Makarychev for many interesting discussions about vertex
sparsifiers.

5. REFERENCES
[And10] Matthew Andrews. Approximation algorithms

for the edge-disjoint paths problem via raecke
decompositions. In Proceedings of the 2010
IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pages 277–286,
Washington, DC, USA, 2010. IEEE Computer
Society.

[AR98] Yonatan Aumann and Yuval Rabani. An
O(log k) approximate min-cut max-flow
theorem and approximation algorithm. SIAM J.
Comput., 27(1):291–301, 1998.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh V.
Vazirani. Expander flows, geometric
embeddings and graph partitioning. J. ACM,
56(2), 2009.

[CKS04] Chandra Chekuri, Sanjeev Khanna, and
F. Bruce Shepherd. The all-or-nothing
multicommodity flow problem. In Proceedings
of the thirty-sixth annual ACM symposium on
Theory of computing, STOC ’04, pages
156–165, New York, NY, USA, 2004. ACM.

[CKS05] Chandra Chekuri, Sanjeev Khanna, and
F. Bruce Shepherd. Multicommodity flow,
well-linked terminals, and routing problems. In
STOC ’05: Proceedings of the thirty-seventh
annual ACM symposium on Theory of
computing, pages 183–192, New York, NY,
USA, 2005. ACM.

[CLLM10] Moses Charikar, Tom Leighton, Shi Li, and
Ankur Moitra. Vertex sparsifiers and abstract
rounding algorithms. In Proceedings of the 2010
IEEE 51st Annual Symposium on Foundations
of Computer Science, FOCS ’10, pages 265–274,
Washington, DC, USA, 2010. IEEE Computer
Society.

[EGK+10] Matthias Englert, Anupam Gupta, Robert
Krauthgamer, Harald Räcke, Inbal
Talgam-Cohen, and Kunal Talwar. Vertex
sparsifiers: new results from old techniques. In
Proceedings of the 13th international conference
on Approximation, and 14 the International
conference on Randomization, and
combinatorial optimization: algorithms and
techniques, APPROX/RANDOM’10, pages
152–165, Berlin, Heidelberg, 2010.
Springer-Verlag.

[FJS88] T. Figiel, W. B. Johnson, and F. Schechtman.
Factorizations of natural embeddings of lnp into
Lr. I. Studia Math., 89:79–103, 1988.

[GVY95] N. Garg, V.V. Vazirani, and M. Yannakakis.
Approximate max-flow min-(multi)-cut
theorems and their applications. SIAM Journal
on Computing, 25:235–251, 1995.

[LLR94] N. Linial, E. London, and Y. Rabinovich. The
geometry of graphs and some of its algorithmic
applications. Proceedings of 35th Annual IEEE

Symposium on Foundations of Computer
Science, pages 577–591, 1994.

[LM10] F. Thomson Leighton and Ankur Moitra.
Extensions and limits to vertex sparsification.
In Proceedings of the 42nd ACM symposium on
Theory of computing, STOC ’10, pages 47–56,
New York, NY, USA, 2010. ACM.

[LR99] F. T. Leighton and S. Rao. Multicommodity
max-flow min-cut theorems and their use in
designing approximation algorithms. Journal of
the ACM, 46:787–832, 1999.

[MM10] Konstantin Makarychev and Yury Makarychev.
Metric extension operators, vertex sparsifiers
and lipschitz extendability. In FOCS, pages
255–264. IEEE Computer Society, 2010.

[Moi09] Ankur Moitra. Approximation algorithms for
multicommodity-type problems with guarantees
independent of the graph size. In FOCS, pages
3–12. IEEE Computer Society, 2009.

[Räc02] Harald Räcke. Minimizing congestion in general
networks. In In Proceedings of the 43rd IEEE
Symposium on Foundations of Computer
Science (FOCS), pages 43–52, 2002.

[RZ10] Satish Rao and Shuheng Zhou. Edge disjoint
paths in moderately connected graphs. SIAM J.
Comput., 39(5):1856–1887, 2010.

APPENDIX
A. PROOFS OMITTED FROM SECTION 2

A.1 Proof of Theorem 3
We use the αARV(z)-approximation algorithm AARV for

the sparsest cut problem. We set αW (z) = 1
27αARV(z) log z

=

Ω
(

1

log3/2 z

)
.

Throughout the algorithm, we maintain a partition W
of the input set S of vertices, where for each R ∈ W,
| out(R)| ≤ | out(S)|. At the beginning, W consists of the
subsets of S defined by the connected components of G[S].

Let R ∈ W be any set in the current partition, and let
(GR, T ′R) be the instance of the sparsest cut problem cor-
responding to R, as defined in Section 2. We say that
a cut (A′, B′) in GR is sparse, iff its sparsity is less than
1/(27 log z). We apply the algorithm AARV to the instance
(GR, T ′R) of sparsest cut. If the algorithm returns a cut
(A′, B′), that is a sparse cut, then let A = A′ \ T ′R, and
B = B′ \ T ′R. We remove R from W, and add A and
B to it instead. Let TA = out(R) ∩ out(A), and TB =
out(R)∩out(B), and assume w.l.o.g. that |TA| ≤ |TB |. Then
|E(A,B)| < |TA|/(27 log z) must hold, and in particular,
| out(A)| ≤ | out(B)| ≤ | out(R)| ≤ | out(S)|. For accounting
purposes, each edge in set TA is charged 1/(27 log z) for the
edges in E(A,B). Notice that the total charge to the edges
in TA is |TA|/(27 log z) ≥ |E(A,B)|. Notice also that since
|TA| ≤ | out(R)|/2 and |E(A,B)| ≤ |TA|/27, | out(A)| ≤
0.51| out(R)|.

The algorithm stops when for each set R ∈ W, the pro-
cedure AARV returns a cut that is not sparse. We argue
that this means that each set R ∈ W is αW (z)-well-linked.
Assume otherwise, and let R ∈ W be a set that is not αW (z)-
well-linked. Then, by the definition of well-linkedness, the
corresponding instance of the sparsest cut problem must

have a cut of sparsity less than αW (z) = 1/(27αARV(z) log z).
The algorithm AARV should then have returned a cut whose
sparsity is less than αW (z) ·αARV(z) = 1/(27 log z), that is a
sparse cut.

Finally, we need to bound
∑
R∈W | out(R)|. We use the

charging scheme defined above. Consider some iteration
where we partition the set R into two subsets A and B,
with |TA| ≤ |TB |. Recall that each edge in TA is charged
1/(27 log z) in this iteration, while | out(A)| ≤ 0.51| out(R)|
holds. Consider some edge e = (u, v). Whenever e is charged
via the vertex u, the size of the set out(R), where u ∈ R ∈ W
goes down by a factor of at least 0.51. Therefore, e can be
charged at most 2 log z times via each of its endpoints. The
total charge to e is then at most 4 log z/(27 log z) = 1/25.
This however only accounts for the direct charge. For ex-
ample, some edge e′ 6∈ out(S), that was first charged to
the edges in out(S), can in turn be charged for some other
edges. We call such charging indirect. If we sum up the
indirect charge for every edge e ∈ out(S), we obtain a ge-
ometric series, and so the total direct and indirect amount
charged to every edge e ∈ out(S) is at most 1/24 < 0.1.
Therefore,

∑
R∈W | out(R)| ≤ 1.2| out(S)| (we need to count

each edge e ∈
(⋃

R∈W out(R)
)
\ out(S) twice: once for each

its endpoint).

A.2 Proof of Theorem 4
The algorithm is very similar to the algorithm used in the

proof of Theorem 3, but the analysis is different. We start
by describing the algorithm.

Throughout the algorithm, we maintain a partition S of
the input set S of vertices, where for each R ∈ S, | out(R)| ≤
| out(S)|. At the beginning, S = {S}.

Let R ∈ S be any set in the current partition, and let
(GR, T ′R) be the corresponding instance of the sparsest cut
problem. We say that a cut (A′, B′) in GR is sparse, iff its
sparsity is less than 1/3. Notice that the set R is 1/3-well-
linked iff there is no sparse cut in R

Our algorithm proceeds as follows. Whenever there is
a set R ∈ S, such that the sparsity of the sparsest cut
(A′, B′) in the corresponding instance (GR, T ′R) is less than
1/3, we set A = A′ \ T ′R and B = B′ \ T ′R. We then re-
move R from S, and add A and B to it instead. Since
| out(R)| ≤ | out(S)| ≤ z, the sparsest cut problem instance
can be solved in time 2z poly(n): we simply go over all bi-
partitions (T1, T2) of the set T ′R of terminals, and for each
such bi-partition, compute the minimum cut separating the
vertices in T1 from the vertices in T2. The algorithm termi-
nates when for every set R ∈ S, the value of the sparsest cut
in the corresponding instance is at least 1/3. From the above
discussion, the running time of the algorithm is 2z poly(n).
It is also clear that when the algorithm terminates, for every
set R ∈ S, | out(R)| ≤ | out(S)|, and R is 1/3-well-linked.
It now only remains to analyze the sizes of the collections
Si of vertex subsets in the resulting partition, and to bound∑
R∈S | out(R)|.
Let C be the set of all cuts that we produce throughout this

algorithm (that is, C contains all sets R that belonged to S at
any stage of the algorithm), and let T be the corresponding
partitioning tree, whose vertices represent the sets in C, and
every inner vertex vR has exactly two children vA, vB , where
(A,B) is the partition that our procedure computed for the
set R.

For the sake of the analysis of the algorithm, we define

a new graph G′, as follows. We start with the graph G,
and the final partition S of S. Let R,R′ ∈ S be any pair
of distinct vertex subsets, and let e = (u, v) be any edge
with u ∈ R, v ∈ R′. We subdivide the edge e by adding two
vertices ue, ve to it, so that now we have a path (u, ue, ve, v)
instead of the edge e. Additionally, for every edge e = (u, v)
with u ∈ S, v 6∈ S, we subdivide edge e by adding a new
vertex ue to it.

All the newly added vertices are called terminals and the
set of all such terminals is denoted by Γ. The resulting
graph is denoted by G′. For each subset X ⊆ S of ver-
tices, we will still denote by out(X) = outG(X). Consider
now some subset R ∈ C of vertices. We now define the
subset Γ(R) ⊆ Γ of terminals associated with R, as fol-
lows: Γ(R) = {ue | e = (u, v) ∈ out(R), u ∈ R}, so |Γ(R)| =
| out(R)|. Moreover,

∑
R∈S | out(R)| =

∑
R∈S |Γ(R)| = |Γ|.

We define a charging scheme that will help us bound the
number of terminals, and the number of sets in each collec-
tion Si.

We say that a set R ∈ C belongs to level i iff z

2i/2
<

| out(R)| ≤ z

2(i−1)/2 . In particular, S is a level-1 set, and
we have at most 2 log z + 1 levels. We also partition all ter-
minals into levels, and within each level, we have two types
of terminals: regular and special. Intuitively, special termi-
nals at level i are the terminals that have been created by
partitioning some sets from levels 1, . . . , i − 1, while regu-
lar terminals are created by partitioning sets that belong to
level i.

The terminals in set Γ(S) are called special terminals, and
they belong to level 1. Let R be some level-i set, and let A,B
be its children, with | out(R)∩ out(A)| ≤ | out(R)∩ out(B)|.
Then |E(A,B)| ≤ | out(R) ∩ out(A)|/3 = |Γ(R) ∩ Γ(A)|/3,
and so |Γ(A)| = |Γ(R)∩Γ(A)|+|E(A,B)| ≤ |Γ(R)|(1

2
+ 1

6
) <

|Γ(R)|/
√

2. Let i′ and i′′ be the levels to which sets A and
B belong, respectively. Then i′ ≥ i + 1 must hold. We call
all terminals in set Γ(A) \ Γ(R) special terminals for level
i′ (to indicate that they were created from partitioning a
lower-level set). If i′′ ≥ i + 1 holds as well, then we call all
terminals in set Γ(B) \ Γ(R) special terminals at level i′′.
Otherwise, they are regular terminals, that belong to level
i′′ = i.

Notice that both sets Γ(A)\Γ(R) and Γ(B)\Γ(R) of new
terminals come from subdivisions of the edges in E(A,B), so
each such edge gives rise to one terminal in Γ(A) and one in
Γ(B). We stress that for each i, a level-i terminal continues
to be a level-i terminal throughout the algorithm, even if
its corresponding subset of vertices in S becomes further
subdivided and stops being a level-i set. So for example, if
R is a level-i set, the terminals in Γ(R) may belong to levels
1, . . . , i. The next lemma bounds the number of terminals at
each level, and it is central to the analysis of the algorithm.

Lemma 2 For each 1 < i ≤ 2 log z + 1, there are at most
2i−2z special terminals, and at most 2i−1z regular level-i
terminals. For i = 1, there are z level-1 special terminals,
and at most z/2 regular level-1 terminals.

Proof. For each level i, let ni be the number of special
terminals, and n′i the number of regular terminals. Let Si
be the total number of terminals at levels 1, . . . , i. We use
the following two simple claims.

Claim 6 For each i > 1, ni ≤ Si−1/3.

Proof. Recall that a level-i special terminal can only be
created when partitioning some cluster R ∈ C that belongs
to levels 1, . . . , i − 1. Suppose that the partition of R is
(A,B), and assume that |Γ(A) ∩ Γ(R)| ≤ |Γ(B) ∩ Γ(R)|.
Let X ∈ {A,B} be the cluster that belongs to level-i (it is
possible that both A and B belong to level i - the analysis
for this case is similar and is carried out for each one of
the clusters separately). Then the terminals in Γ(X)∩Γ(R)
belong to levels 1, . . . , i − 1, and the terminals in Γ(X) \
Γ(R) become special terminals at level i. We charge the
terminals in Γ(X) ∩ Γ(R) for the terminals in Γ(X) \ Γ(R),
where the charge to every terminal in Γ(X)∩Γ(R) is at most
1/3. Moreover, since X now becomes a level-i cluster, the
terminals in Γ(X) will never be charged for special level-
i terminals again. Therefore, the number of special level-i
terminals is at most Si−1/3.

Claim 7 For every level i, n′i ≤ (Si−1 + ni)/2.

Proof. The proof uses a charging scheme, that is de-
fined as follows. Let Γ′ be the set of all terminals at levels
1, . . . , i − 1, together with the special terminals at level i.
We charge the regular level-i terminals to the terminals in
Γ′, and show that n′i ≤ |Γ′|/2.

Recall that regular level-i terminals are only created by
partitioning level-i clusters R ∈ C. Let R be any such level-
i cluster, that we have partitioned into (A,B). Assume
w.l.o.g. that |TA| ≤ |TB |, and recall that A must belong
to some level i′ > i. This partition only creates level-i ter-
minals if B belongs to level i. The number of the newly cre-
ated level-i terminals, |Γ(B)\Γ(R)| = |E(A,B)| ≤ |TA|/3 =
|Γ(A) ∩ Γ(R)|/3. We charge the terminals in |Γ(A) ∩ Γ(R)|
for the newly created terminals in Γ(B) \ Γ(R), where each
terminal in |Γ(A) ∩ Γ(R)| is charged 1/3. Observe that the
terminals in |Γ(A)∩Γ(R)| must belong to levels 1, . . . , i, and
moreover, since A does not belong to level i, these terminals
will never be charged again for level-i terminals. But we
may charge them indirectly - by charging the terminals in
Γ(B)\Γ(R) for some new terminals. However, since a direct
charge to every terminal is bounded by 1/3, the total direct
and indirect charge to any terminal in Γ′ forms a geomet-
rically decreasing sequence, and its sum is bounded by 1/2.
Therefore, n′i ≤ |Γ′|/2.

The number of special level-1 terminals is z, and the num-
ber of regular level-1 terminals is at most z/2 by Claim 7,
so S1 ≤ 3z/2. In general, we now have that for any i > 1,
ni ≤ Si−1/3, and n′i ≤ (Si−1 + ni)/2 ≤ 2Si−1/3. Therefore,
Si = Si−1+ni+n

′
i ≤ 2Si−1. We conclude that Si ≤ 3 ·2i−2z

for all i, and so ni ≤ 2i−2z, and n′i ≤ 2i−1z for all i > 1.

Consider now the final partition S. We can now bound∑
R∈S | out(R)| = |Γ| = |S2 log z+1| ≤ 3z · 22 log z = O(z3).
Let R ∈ S, and assume that R belongs to level i. Then all

terminals of Γ(R) must belong to levels 1, . . . , i. The total
number of such terminals is bounded by 3z · 2i−2, and set R
uses at least z/2i/2 of them. It follows that the number of

level-i sets in S is bounded by 23i/2.
Recall that Si contains all setsR ∈ S with z/2i < | out(R)| ≤

z/2i−1, and so Si only contains sets R ∈ S that belong to
levels 2i or 2i− 1. From the above discussion |Si| ≤ 23i+3.

B. PROOF OF COROLLARY 1

Assume first that all edge capacities are integral and bounded
by C. For each terminal t ∈ T , let Ct be the total capacity
of all edges incident on t. We replace every edge e ∈ E with
ce parallel edges of unit capacity. For each terminal t ∈ T ,
we sub-divide each edge e incident on t with a vertex ve,
and we let St be the set of these new vertices. Let G̃ be the
resulting graph, and let G′ = G̃\T . We let T ′ =

⋃
t∈T St be

the set of terminals for the new graph G′. Then |T ′| = C,
and each vertex in T ′ has exactly one edge incident to it.
We now apply Theorem 2 to (G′, T ′) to obtain a sparsifier
H ′. In our final step, for each t ∈ T , we unify all vertices
in the set St in graph H ′ into a single vertex t. Let H be
this final sparsifier. Clearly, |V (H)| = CO(log logC). We now
show that H is a quality-(2η∗) sparsifier for G.

Let D be any set of demands on T , and let F be the
routing of these demands in graph G with congestion η =
η(G,D). Then the routing F naturally defines a set D′ of
demands over the vertices of T ′. For each pair (ve, ve′) ∈ T ′
of vertices, the demand D′(ve, ve′) is the total flow on all
flow-paths in F that start at e and terminate at e′. Flow F
also gives a routing of this new set D′ of demands in graph
G′ with congestion η. Since H ′ is a flow sparsifier for G′,
there is a routing F ′ of the demands in D′ in graph H ′ with
congestion at most η. This routing induces a routing of the
set D of demands in graph H with congestion at most η.

The other direction is proved similarly: if D is any set
of demands in T , and F is the routing of these demands in
H with congestion η = η(H,D), then F defines a set D′ of
demands on the vertices of T ′ exactly as before. Flow F then
induces a routing of the set D′ of demands in graph H ′ with
congestion at most η. Since H ′ is a quality-(2η∗) sparsifier
for G′, there is a routing F ′ of the set D′ of demands in
graph G′ with congestion at most η · 2η∗. Flow F ′ then
induces a routing of the set D of demands in graph G with
congestion at most η · 2η∗.

Finally, consider the general case, where the edge capac-
ities ce ≥ 1 are no longer required to be integral, and may
not be bounded by C. For each edge e ∈ E, if ce > C, then
we set ce = C. It is easy to see that this transformation does
not affect the values η(G,D) for demand sets D, since all
flow in the network must traverse one of the edges incident
to the terminals. Next, we define new edge capacities, by

setting c′e =
⌈

2η∗

ε
ce
⌉
. Let G′ be the resulting graph. Notice

that for each edge e, 2η∗

ε
ce ≤ c′e ≤ 2η∗

ε
ce + 1 ≤ 2η∗+ε

ε
ce.

Consider some set D of demands defined over the set T
of terminals. Let F be the routing of D in graph G′, whose
congestion is η(G′, D). Consider the same flow F in graphG.
The congestion caused by F on each edge e of G is bounded

by F (e)
ce
≤ F (e)

c′e
· 2η
∗+ε
ε

. Therefore, η(G,D) ≤ η(G′, D)· 2η
∗+ε
ε

for all D.
Similarly, given any set D of demands, let F be the rout-

ing of D in graph G, whose congestion is η(G,D). Con-
sider the same flow F in graph G′. The congestion on each

edge e in G′ is bounded by F (e)
c′e
≤ F (e)

ce
· ε

2η∗ . Therefore,

η(G′, D) ≤ η(G,D) · ε
2η∗ for all D. We conclude that for all

D, ε
2η∗+εη(G,D) ≤ η(G′, D) ≤ ε

2η∗ η(G,D).

Let H ′ be a quality-(2η∗) sparsifier for graph G′, and let
H be the graph obtained from H ′ by multiplying all edge
capacities by the factor of ε

2η∗ . Then for any set D of de-
mands:

η(H,D) =
2η∗

ε
η(H ′, D) ≤ 2η∗

ε
η(G′, D) ≤ η(G,D);

and

η(H,D) =
2η∗

ε
η(H ′, D)

≥ 1

2η∗
2η∗

ε
η(G′, D)

≥ 1

2η∗ + ε
η(G,D).

We conclude that H is a quality-(2η∗+ ε)-sparsifier for G,

and |V (H)| = CO(log logC).

C. PROOF OMITTED FROM SECTION 4.1

C.1 Proof of Claim 3
For simplicity, we build two new graphs H and H ′, as

follows. Sub-divide every edge e ∈ E′ with a vertex ve in
both G and G′, and let T ′ = {ve | e ∈ E′}. Let H be the
sub-graph of the resulting graph obtained from G, induced
by S ∪T ′, and let H ′ be the sub-graph of the corresponding
graph obtained from G′, induced by S′ ∪ T ′. Clearly, H ′ is
a legal contracted graph for H, and from the definition of
well-linkedness, H ′ is α-well-linked for T ′. We only need to
prove that H is α/3-well-linked for T ′. For any subset Z of
vertices in either H or H ′, let TZ = Z ∩ T ′.

Assume for contradiction that H ′ is not α-well-linked for
T ′, and let (X,Y) be the violating partition of V (H), that
is, |EH(X,Y)| < α

3
min {|TX |, |TY |}. We construct a par-

tition (X ′, Y ′) of V (H ′), such that |EH′(X ′, Y ′)| < α ·
min {|TX′ |, |TY ′ |}, contradicting the fact that H ′ is α-well-
linked for T ′.

Let CS ⊆ C be the collection of all clusters C, with vC ∈
S′. In order to construct the partition (X ′, Y ′) of V (H ′),
we start with the partition (X,Y) of V (H), and process
all clusters C ∈ CS one-by-one. For each such cluster, we
move all vertices of C either to X or to Y . Once we process
all clusters in CS , we will obtain obtain a partition (X̃, Ỹ)
of V (H), that will naturally define a partition (X ′, Y ′) of
V (H ′).

Consider some cluster C ∈ CS , and partition the edges in
outH(C) into four subsets, EX , EY , EXY , EYX , as follows.
For each edge e = (u, v) ∈ outH(C), with u ∈ C, v 6∈ C, if
both u, v ∈ X, then we add e to EX ; if both u, v ∈ Y , we
add e to EY ; if u ∈ X, v ∈ Y , then we add e to EXY , and
otherwise we add it to EYX . If |EX |+|EXY | ≤ |EY |+|EYX |,
then we move all vertices of C to Y , and otherwise we move
them to X. Let EC ⊆ EH(X,Y) be the subset of the edges
in the cut (X,Y), with both endpoints in C, that is, EC =
EH(X ∩ C, Y ∩ C).

Assume w.l.o.g. that |EX |+|EXY | ≤ |EY |+|EYX |, and so
we have moved the vertices of C to Y . The only new edges
that have been added to the cut are the edges of EX . Since
set C is 1/3-well-linked in H, |EX | ≤ 3|EC |. We charge the
edges in EC for the edges in EX . The charge to every edge
of EC is at most 3, and since the edges of EC have both
endpoints inside the cluster C, we will never charge them
again.

Once we process all super-nodes vC in this fashion, we
obtain a partition (X̃, Ỹ) of V (H), where for every cluster

C ∈ CS , all vertices of C belong to either X̃ or Ỹ . This
cut naturally defines a partition (X ′, Y ′) of the vertices of

V (H ′), where vC ∈ X ′ iff C ⊆ X̃. From the above dis-

cussion, |EH′(X ′, Y ′)| = |EH(X̃, Ỹ)| ≤ 3|EH(X,Y)|. More-
over, since the terminals in T ′ do not belong to any cluster
C ∈ CS , the partitions of the terminals of T ′ induced by the
cuts (X,Y) in H and (X ′, Y ′) in H ′ are identical. Therefore,
|EH′(X ′, Y ′)| < αmin {|TX′ |, |TY ′ |}, a contradiction.

C.2 Proof of Claim 4
We set up the following two flow networks. For the first

flow network, we start with the graph G. We add a source s,
and connect it with a directed edge to every vertex v ∈ T ′.
For every edge e ∈ E′, we sub-divide e by adding a vertex
ze to it, and connect ze to the sink t with a directed edge.
We set the capacity of every edge in this network to be 3η,
except for the edges leaving s or entering t, whose capacities
are set to 1. Let N1 denote the resulting flow network. In
order to show the existence of the set P of paths, it is enough
to show that the value of the maximum flow in network N1

is |T ′|. For each edge e ∈ E(N1), we denote by c(e) its
capacity, and for each cut (X,Y) in the network, we denote
by c(X,Y) the total capacity of edges connecting the vertices
of X to the vertices of Y .

The second network, N2, is constructed similarly, except
that we use the contracted graph G′, instead of the graph
G. Specifically, we start with graph G′, add a source s and
a sink t. Source s connects with a directed edge to every
vertex v ∈ T ′. As before, we sub-divide every edge e ∈ E′
with a vertex ze, and connect ze to the sink t. The capacities
of all edges in N2 are η, except for the edges that leave the
source s or enter the sink t, whose capacities are set to 1.
Observe that the existence of the set P ′ of paths in graph G′

guarantees that there is a flow of value |T ′| in network N2.
For each edge e ∈ E(N2), we denote by c′(e) its capacity in
N2, and for each cut (X,Y) in the network, we denote by
c′(X,Y) the total capacity of edges connecting the vertices
of X to the vertices of Y .

It is now enough to prove that there is a flow of value |T ′|
in network N1. Assume this is not the case. Then there is
an s-t cut (X,Y) in network N1, with c(X,Y) < |T ′|. We
show that there is an s-t cut (X ′, Y ′) in network N2, with
c′(X ′, Y ′) < |T ′|, contradicting the existence of the set P of
paths.

We consider the super-nodes vC ∈ V (G′) one-by-one. For
each such super-node vC , we move all vertices of C either
to X or to Y . The final cut, (X̃, Ỹ) will naturally define an
s-t cut (X ′, Y ′) in network N2, and we will show that its
capacity is less than |T ′|.

Consider some super-node vC ∈ V (G′). Recall that we
are guaranteed that T ′ ∩ C = ∅, so outN1(C) = outG(C).
Let EC = EG(C ∩ X,C ∩ Y). We partition the edges of
outG(C) into four subsets, EX containing edges with both
endpoints in X, EY containing edges with both endpoints
in Y , EXY containing edges e = (u, v) with u ∈ X ∩ C,
v ∈ Y \ C, and EYX containing the remaining edges. If
|EX |+ |EXY | ≤ |EY |+ |EYX |, then we move all vertices of
C to Y , and otherwise we move them to X.

Assume w.l.o.g. that |EX | + |EXY | ≤ |EY | + |EYX |, so
we have moved the vertices of C to Y . Since cluster C is
1/3-well-linked in graph G, |EC | ≥ |EX |/3. We charge the
edges of EC for the edges of EX , with the charge to every

edge of EC being at most 3. Observe that none of the edges
in EC ∪ EX is incident on the source s or the sink t.

Let (X̃, Ỹ) be the cut obtained after processing all super-
nodes vC ∈ V (G′). Let E1(X,Y) ⊆ E(X,Y) be the subset
of edges incident on the source s or on the sink t in the orig-
inal cut, and let E1(X̃, Ỹ) be the subset of edges incident
on the source s or on the sink t in the new cut. Since none
of the clusters C we have considered contained vertices of
T , or vertices ze for e ∈ E′, |E1(X,Y)| = |E1(X̃, Ỹ)|. Let

E2(X,Y) = E(X,Y)\E1(X,Y), and similarly, let E2(X̃, Ỹ) =

E(X̃, Ỹ)\E1(X̃, Ỹ). From the above discussion, |E2(X̃, Ỹ)| ≤
3|E2(X,Y)|. Recall that the capacities of all edges inE2(X,Y)

and E2(X̃, Ỹ) are 3η, while the capacities of edges inE1(X,Y)
are 1, and we have assumed that c(X,Y) = |E1(X,Y)| +
3η|E2(X,Y)| < |T ′|.

Cut (X̃, Ỹ) naturally defines an s-t cut (X ′, Y ′) in network
N2. The capacity of this cut in network N2 is c′(X ′, Y ′) =

|E1(X,Y)| + η|E2(X̃, Ỹ)| ≤ |E1(X,Y)| + 3η|E2(X,Y)| <
|T ′|, a contradiction.

