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Node-Disjoint Paths (NDP)
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Goal: Route as many pairs as possible via node-
disjoint paths
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Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,t,),...,(S.,ty )

Goal: Route as many pairs as possible via node-
disjoint paths
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PR p— Complexity of NDP
pairs
* Constant k: efficiently solvable [Robertson, Seymour ’90]
* Running time: f(k)®n? [Kawarabayashi, Kobayashi, Reed]

k

fk) =2"



Complexity of NDP

* Constant k: efficiently solvable [Robertson, Seymour ’90]
* Running time: f(k)®n? [Kawarabayashi, Kobayashi, Reed]

 NP-hard when k is part of input [Knuth, Karp '72]

Approximation
Algorithm?




Best Current Approximation Algorithm
[Kolliopoulos, Stein ‘98]

Choose a path P of minimum length connecting

some demand pair
Add P to the solution

Delete vertices of P from the graph

Repeat

/Until recently: nothing
better even for planar
kgraphs and grids!

~

O(+/n)-approximation



NDP in Grids
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NDP in Grids
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Approximation Status of NDP from 2015

*O(+/n) -approximation algorithm
— Even on planar graphs

— Even on grid graphs

. Q(logl/z_e n)-hardness of approximation for any € [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]



Approximation Status of NDP from 2015

Plan:
*O(y/n) -approximation algorithm |, oet polylog(n)-approximation

— Even on planar graphs for grids

— Even on grid graphs e extend to planar graphs

* |look into general graphs

. Q(logl/Q_e n)-hardness of approximation for any € [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]
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Almost polynomial Hardness

unless
Hardness of NDP on grids: [C, Kim NP C RTIME(nP°Y 8 ™)

o 9(087)" "_hardness for any constant ¢

o nf2(1/(loglog n)")_hardness




Almost polynomial Hardness

unless every problem in

Hardness of NDP on grids: [c, + NP has randomized quasi-
poly-time algorithm

o 9(0sn) ""_hardness for any constant e

e n2(1/(loglogn)®) _hardness

under randomized ETH

(need almost exponential time to
solve SAT by randomized alg)




Almost polynomial Hardness

unless

Hardness of NDP on grids: [C, NP C RTIME(n°Y o8™)

o 9(0sn) ""_hardness for any constant ¢

o nf2(1/(loglog n)")_hardness

unless for every o
NP C RTIME(2"")



Edge-Disjoint Paths (EDP)

* Like NDP, only the paths must be disjoint in their edges, may
share vertices.

» Same upper/lower bounds as NDP

— O(+/n) -approximation algorithm [Chekuri, Khanna, Shepherd ‘06]

— Q(logl/Q_e n) -hardness of approximation for any € [Andrews, Zhang
‘05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang "10]

* But: constant approximation on grids [Aumann, Rabani ‘95],
[Kleinberg Tardos ‘95], [Kleinberg, Tardos ‘98]



A Wall
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All current upper/lower bounds for NDP in grids carry over

to EDP in walls
N Y,




What if we allow paths to share
edges/vertices?

routing with congestion



Routing with Congestion

Congestic

. Ifup to 2 paths are allowed to
approxim

share a vertex/an edge, can get

Congestic  y5lylog(k)-approximation

[Baveja, Srini

gev '01],

Congestion poly(log log n): polylog(n)-approx
[Andrews ‘1(
Congestic Big difference between routing , .

Kobayashi '1 with congestion 1 and 2.
COngEStiOn 1=t. puUlytug\nJ-appruantauurnr [C, 11]
Congestion 2: polylog(k)-approximation [c, Li"12]

polylog(k)-approximation for NDP with congestion
2 [Chekuri, Ene ’12], [Chekuri, C ‘16]



Node-Disjoint Paths in Grid Graphs:
Hardness of Approximation



Main Idea 1

* Define an intermediate graph partitioning problem

“ Weird Graph -
Partitioning Problem
N (WGP) -




Main Idea 1

* Define an intermediate graph partitioning problem

“ Weird Graph -
Partitioning Problem
N (WGP) -

* Prove that NDP in grids is at least as hard as WGP
* Prove hardness of WGP



Weird Graph Partitioning Problem (WGP)



Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
— partition G into p vertex-induced subgraphs.

pieces

m—) -
e



Weird Graph Partitioning Problem (WGP)

g Intuition: h
 Want to maximize the total number of edges that are not cut
 Don’t want one piece to contain all the edges; want a balanced

N distribution of edges.

4 )

Solution:
* Will count at most L edges from each piece towards the solution
\_ J
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Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
— partition G into p vertex-induced subgraphs.

— for each subgraph G, select a subset E; of at most L
edges

m—) -
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* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
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Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
— partition G into p vertex-induced subgraphs.

— for each subgraph G, select a subset E; of at most L
edges

— Goal: maximize Z Ei]

I~
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Weird Graph Partitioning Problem (WGP)

/ 1 F R P 1% L.~ I =\ ° 1 \

Intuitive View 1: Balanced Cut

Except:
Partition into p and not 2 pieces
\- Maximize # of surviving edges. /
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Weird Graph Partitioning Problem (WGP)

. 1_ - a°a 1 ~ I\ 1 ™\ ° '

Intuitive View 2: Densest k-Subgraph

~

GUAT. TTTAOATITITZT £ ;| vl

Densest k-subgraph:
Input: graph G, integer k
Output: subgraph G’ of G on k vertices
Goal: maximize |E(G’)|




On Densest k-Subgraph

e O(nY4)-approximation [shaskara, Charikar, Chlamtac, Feige,
Vijayaraghavan ‘10]

* Notoriously hard to prove hardness of approximation
— APX-hardness [Khot, ‘06]

— Constant hardness assuming small-set-expansion
conjecture [Raghavendra, Steurer "10]

— Hardness results based on average-case
complexity assumption of SAT of Feige [Alon,
Arora, Manokaran, Moshkovitz, Weinstein ‘11]

— Almost polynomial hardness using Exponential
Time Hypothesis [Manurangsi ‘16]



Weird Graph Partitioning Problem (WGP)

. 1_ - a°a 1 ~ I\ 1 ™\ ° '

a | | O
Intuitive View 2: Densest k-Subgraph
Except:
 Want p dense subgraphs and not one
- /
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Weird Graph Partitioning Problem (WGP)

Plan:

1.NDP in grids is at least as hard as WGP
2. Prove hardness of WGP




Part 1: NDP in Grids is at Least as Hard as WGP

(up to polylog n factor)



The Reduction




The Reduction
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The Redu

for every vertex, choose a
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The Reduction

all blocks must be far from
each other and from the grid
boundary
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The Reduction

if too large, can

°1 432 1S3 route all pairs
0. Q @ 5 —m—
zx‘_’Y"’*\\ 1 /]
| \i P I
distances between "

sources chosen (==
: if too small, won’t
strategically! ’

1 ‘\Gii be able to route

. what we need to
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The Reduction
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The Reduction

Claim: the reduction preserves solution value to
within polylog(n) factor!

L If true, then NDP in grids is at least as hard as WGP }

s B
could use an algorithm for

NDP to solve WGP




Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!
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suppose we route many

demand pairs
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Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!




Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!




Claim: the reduction

D| recti()n 1 preserves solution value to

within polylog(n) factor!

To get the drawing “contract”
each block

)

RSy

Can get a drawing of the graph

with few crossings
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Claim: the reduction
preserves solution value to
within polylog(n) factor!
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Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!
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Claim: the reduction

D| rection ]_ preserves solution value to
within polylog(n) factor!




Direction 1

Why?

Claim: the reduction
preserves solution value to
within polylog(n) factor!

Claim: this drawing of G’
has few crossings.




Direction 1

So far: we obtain a drawing of a
large subgraph of G with few
crossings.

Claim: the reduction
preserves solution value to
within polylog(n) factor!

enough

B ——

1 \j:listances within a block small
~ —_— |
crossings only introduced when a

path goes through a block

GI




Claim: the reduction

D| rectign 1 preserves solution value to

within nolylog(n) factor!

Planar graphs have very small balanced cut

VA - a 1

graphs with few crossings behave like planar graphs

\ | N \ 7/

o

can cut into p balanced pieces by cutting few edges

/
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Claim: the reduction

preserves solution value to Direction 2
within polylog(n) factor!

/

suppose we have a high-value

solution to WGP
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Plan:

1.NDP in grids is at least as hard as WGP v/
2. Prove hardness of WGP




Hardness of WGP



Starting Point: 3COL(5)

Input: 5-regular graph G.

3-coloring: assigning Red, Blue or
Green color to each vertex




Starting Point: 3COL(5)

Input: 5-regular graph G.
3-coloring: assigning Red, Blue or
Green color to each vertex

Edge is happy iff both endpoints
have different colors




Starting Point: 3COL(5)

Input: 5-regular graph G.
* Gis Yes-Instance if there is a coloring where every edge is happy

* Gis No-Instance if in every coloring at least 0.01-fraction of
edges are unhappy

Thm: NP-hard to tell if G is
a Yes or a No instance.




If there is a coloring that makes all edges
happy, then there are 6 such colorings!



> <R
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* For every edge, each legal coloring appears exactly once



* For every edge, each legal coloring appears exactly once
* For each vertex, every coloring appears exactly twice



Bonus property of 3COL

[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]

§9

* For every edge, each legal coloring appears exactly once
* For each vertex, every coloring appears exactly twice



Next Steps

4 .
D Constraint
{ 3COL(5) instance G > Satisfaction Problem
J - instance ¢(G)

)

2-prover protocol +

parallel repetition

~

\

WGP problem

\

instance H(G)

J




r — number of
{ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
X; @ P 3COL(5)
X
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X, @
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r —number of
repetitions

“edge”-variables

@ _
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m" variables

} A CSP Instance ¢(G)

“vertex”-variables

/
For every sequence of r

edges of G, there is a

®
N

variable on the left

~

e
An assignment to the

variable is a legal
coloring of the edges




r — number of
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r —number of
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“edge”-variables

} A CSP Instance ¢(G)

“vertex”-variables

o (For every sequence of r

need not be
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across edges
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An assignment to the
variable is a legal
coloring of the edges




r — number of
{ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
;- _ N
(e ® @ (For every sequence of r
( > ® need notbe  edges of G, thereis a
» - — consistent variable on the left
| — ) ® across edges <
@ ® ~ An assignment to the
\ / variable is a legal
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r —number of
repetitions

“edge”-variables

} A CSP Instance ¢(G)

“vertex”-variables

o (For every sequence of r

O ®

| ® need not be

- - - consistent

| — ) ¢ across edges

(s, ) _ a e
\ / 6" possible

assignments

per variable

edges of G, there is a

variable on the left

~

An assignment to the
variable is a legal
coloring of the edges




r — number of
{ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables

& =

For every sequence of r

vertices of G, there is a @
variable on the right ®
-
(e _
-

An assignment to the
variable is a coloring of

the vertices
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r — number of
[ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
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r — number of
[ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
% N
For every sequence of r\ 9 -
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put a constraint iff Vi,
V. is an endpoint of e..



[ r — number of
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we don’t check A
consistency across
different

—

coordinates <
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} A CSP Instance ¢(G)

put a constraint iff Vi,
v, is an endpoint of e..

constraint is satisfied
iff Vi, both

assighments to v. are
the same
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r —number of
repetitions

a perfect
solution

o

} A CSP Instance ¢(G)

"IfGisa Yes-Instance, there is

-

an assignment to variables
satisfying all constraints
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r — number of
{ repetitions } A CSP Instance CI)(G)

" 1fGis a Yes-Instance, there is

an assignment to variables
. satisfying all constraints |

4 N

If G is a No-Instance, any
assignment satisfies < 1/29(-
. fraction of constraints |




r — number of
{ repetitions } A CSP Instance CI)(G)

"IfGisa Yes-Instance, there is

an assignment to variables

P — /\ satisfying all constraints

NP-hard to distinguish

4 N

If G is a No-Instance, any
ra A assignm.ent satisfies s.l/ZQ(r)-
. fraction of constraints |
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} Bonus Property for Yes Instance!

Perfect
Solution
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r —number of
repetitions

} Bonus Property for Yes Instance!

6" possible
assignments

assignment 1
assignment 2 Solution 1

Solution 3

‘\f

assignment 3 w‘ Solution 2

p

assighment 6
ﬁ‘ Solution 6'

Each assignment appears in
exactly 1 solution!
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L r — number of

repetitions

} Bonus Property for Yes Instance!

3" possible
assignments

/1

o

Each assignment in exactly 2"
solutions!

\

—
od | /1

/ Solution 1

olution 2

olution 3

Solution 6"

/
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Bonus property of 3COL

[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]

§9

* For every edge, each legal coloring appears exactly once
* For each vertex, every coloring appears exactly twice



Next Steps

-

scoem

-

Constraint
Satisfaction Problem
instance ¢(G)

/

2-prover protocol +
parallel repetition

-~

~

WGP problem

-

instance H(G)

/




A CSP Problem Instance ¢

Nz

NP-hard to distinguish

7

N
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+ the bonus property

— o

an assignment to variables
. satisfying all constraints

" ¢ is a Yes-Instance, if there is

~

/

" ¢isaNo-Instance, if any
assignment satisfies < 1,/29(1-

fraction of constraints

\
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Bonus Property

4 N

¢ is a Yes-Instance, there are
6" perfect solutions ,
& y Solution 1
. ) i
for each var on left each / Solution 2
assignment appearsin 1 / Solution 3
N solution - /
s . N
for each var on right each / ST o

assignment appears in 2’
N solution -




Next Steps
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Constraint
Satisfaction Problem
instance ¢(G)
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2-prover protocol +
parallel repetition
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WGP problem
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instance H(G)
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2 Graphs for CSP

1 vertex for each
assignment

assignment
graph

constraint graph}




2 Graphs for CSP

1 vertex for each
assignment

assignment
graph

constraint graph}

2" vertices for
each assignment




2 Graphs for CSP clouds

A

O —
put an edge iff the ™
assignments —
satisfy the
assignment constraint
graph

constraint graph}




assignment
graph

constraint graph}




2 Graphs for CSP

graph

L assignment

Ql
constraint graph}




Reduction to WGP

6" vertices

graph

L assignment

constraint graph}




Reduction to WGP

6" vertices

Input to WGP problem
° p=6r
* L=#constraints




Yes Case Analysis
Solution 1
/ Solution 2
6" vertices
/ Solution 3
/ Solution 6f

Input to WGP problem
° p=6r
* L=#constraints




Yes Case Analysis

Solution 1

Solution 2

Solution 3

- —T——

Solution 6"

Input to WGP problem
° p=6r
* L=#constraints




Yes Case Analysis

Solution 1

Solution 2

Solution 3

- —T——

Solution 6f

Each solution defines a
piece in the partition




Yes Case Analysis
/ Solution 1 /
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Yes Instance Analysi
Solution 1

will collect 1 edge
per constraint




] Yes Instance Anal%

Solut”™

In No-Instance p and L stay ,
* p=6"pieces

the same. o U
Want to show: solution each piece contributes L=|C|
edges
value is low

 total solution value: 67| C|

?

X\

= =




No Instance Analysis

o | [

Can only satisfy few constraints, so
#edges in each piece very low!

~
N\

In ideal solution, each piece defines
assignment to variables

~1

ldeal solution: each piece contains
exactly 1 vertex from each cloud




No Instance Analysis

-

Problem: No-Instance
solution does not

€
; have to look this
Ggr

|
N way!
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No Instance Analysis




Two Extreme Solutions

ldeal solution: each
piece contains
exactly 1 vertex
from each cloud

canhonical honest
solution

canonical cheating
solution: each
cloud is contained

In some piece




Two Extreme Solutions

|deal solution: each

i ntain \ —
piece contains >f‘ \

exactly 1 vertex . .
£ eyach cloud * Any solution can be turned into a
solution that behaves like one of these

two extreme solutions, with a small
loss
* Enough to analyze the cheating

canonical solution

canonical cheatirg
solution: each
cloud is contained
In some piece




A Technical Issue



Canonical Cheating Solution




Canonical Cheating Solution




Canonical Cheating Solution

B
Re

N

) ¢

Yes—Case solution: constraint will contribute 6"
edges to solution.




Canonical Cheating Solution

(A—

unfair advantage to
cheating solutions!

] —_—

cheating solution may collect a lot more per
constraint!

\ I

Yes—Case solution: constraint will contribute 6"
edges to solution.




Solution: Cheat




Hardness Proof Plan

4 .
D Constraint
{ 3COL(5) instance G > Satisfaction Problem
J - instance ¢(G)

)

2-prover protocol +

parallel repetition

~

\

instance H(G)

\

WGP problem

J

h 4

-

NDP in grids

~

)




Even Weirder Graph
Partitioning Problem

~
A & Constraint A EV\{)?P
{ 3COL(5) instance G > Satisfaction Problem ) Probiem
Y instance (I)(G) Instance H(G)
- . \_ » -
2-prover protocol +
parallel repetition p A 4 -

NDP in grids
< /




EWGP

~

Main ldea: define the problem
so that this kind of cheating
won’t happen

~

VoSe— 7V

-

i

Will collect at most 6" edges per

constraint as before

)
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Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* Output:
— partition G into p vertex-induced subgraphs.

— for each subgraph G, select a subset E; of at most L
edges

— Goal: maximize Z Ei]

1

> o—o



Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L. Extra:
* For every vertex,
* Output: incident edges are
— partition G into p vertex-induced subgraphs. partitioned into
— for each subgraph G, select a subset E; of at most L bundles
edges

— Goal: maximize Z Ei]
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Weird Graph Partitioning Problem (WGP)

* Input: bipartite graph G=(V,E), integers p, L. Extra:
* For every vertex,
* Output: incident edges are
— partition G into p vertex-induced subgraphs. partitioned into
— for each subgraph G, select a subset E; of at most L bundles
edges * may only take 1
— Goal: maximize Z \Ez\ edge per bundle




Canonical Cheating Solution

/\
(? O’ \ So far: cheating solution
| /' may collect at most 6
- Y] edges per constraint
’Xi \ J -
YV oN— Y
/A A but till don’t k
. ... but we s on’t know
Define the bundles so that at most 6" :
. how to prove that its
edges can be collected per constraint .
| _ , value is low

p (ll l\'l\

For each vertex, all edges leading to the G —
same cloud are a bundle 7% Y




End of the Technical Issue



Main Idea 2: Cook not Karp



Standard Karp Reduction

CSP ) WGP
Instance

Instance

* If CSP is a Yes-Instance, WGP has a solution of large value
°£ CSP is a No-Instance, every solution to WGP has low value

we don’t know how
to prove this...




Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance

WGP WGP WGP WGP WGP

Instance Instance Instance Instance Instance

If CSP is a Yes-Instance, each WGP instance has a high-value solution

{ prescribed value J




Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance

WGP WGP WGP WGP WGP

Instance Instance Instance Instance Instance

f CSP is a Yes-Instance, each WGP instance has a high-value solution

If CSP is a No-Instance, some WGP instance only has low-value solutions




Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance Can distinguish
/ My, between the two by
/ 1 \ applying the approx.
WGP WGP WGP wc alg to each instance
Instance Instance Instance Instance Instance

f CSP is a Yes-Instance, each WGP instance has a high-value solution

If CSP is a No-Instance, some WGP instance only has low-value solutions




Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance

WGP WGP WGP WGP WGP

Instance Instance Instance Instance Instance

\ AW AW LA 4

Construction of each instance depends on solution produced by A to previous
instances!



Reduction Overview

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

will use the algorithm to distinguish
ves and no instances of CSP
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assignment

constraint graph
B } graph/WGP

\f input

—
will always assume that the solution ><Z_

is canonical honest or cheating

»
i Approx solution }




constraint graph}

Solution value too
low?

[ No Instance! }

“ assignment
graph/WGP
\f input
G, _ %
%: GGr .

\

Approx solution }




constraint graph}

High solution
value + canonical
honest solution?

[ Yes Instance! }

“ assignment
graph/WGP
\f input
G, _ %
g GGr z

\

Approx solution }




constraint graph}

-~

High solution value +
canonical cheating
solution?

!
—

assignment
graph/WGP

input

\

Approx solution }




constraint graph}

-~

High solution value
+ canonical cheating
solution?

!
—

assignment
graph/WGP
input

/" Solution partitions

\

the constraint graph
into many small
pieces; keeps most
constraints ~ /




@
>

Apply same
reduction to each

piece!

-
)h

N

assignment
graph/WGP
input

N\

~ L[

, N\
( e Build assighment graph for each

' piece separately

e apply approx. algorithm to each

,\. —
e - -

-

-

|

\

10NS

Jraph
into many small
pieces; keeps most
constraints




The Big Picture

iconstraint graphw

Will either:

correctly determine
that it’'s a Yes or a No
Instance

or cut into much
smaller pieces,
preserving many
constraints



v

@ o

The Big Picture

\

Reduce each piece to WGP

instance separately
Apply approx. algorithm to
each WGP instance

/
relatively to
Hconstraints in
- plece

Solution value in
any plece too low?

No Instance! }




The Big Picture

 Reduce each piece to WGP

instance separately
* Apply approx. algorithm to
each WGP instance

a piece w high solution
value and honest solution

becomes inactive
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The Big Picture

 Reduce each piece to WGP

instance separately
* Apply approx. algorithm to
each WGP instance

l a piece w high solution
value and honest solution

becomes inactive

\ each piece w high solution
Q O value and cheating solution
IS cut again




The Big Picture

If for any resulting cluster we get a solution of
low cost, we know it’s a No-Instance.

Assume this never happens

'/ l \ Can’t cut forever

when we stop cutting, every current
cluster is inactive, so we can satisfy many
\ of its constraints




The Big Picture

If for any resulting cluster we get a solution of
low cost, we know it’s a No-Instance.

Assume this never happens

l Can’t cut forever

when we stop cutting, every current

cluster is inactive, so we can satisfy many
\ of its constraints

many constraints are preserved, SO We Can

Yes Instance! . .
satisfy many constraints overall




Summary: Main Ideas

* Introduce intermediate problem WGP
e Can modify it to suit our reduction
* Cook not Karp reduction.



Single-Shot vs Multi-shot Reductions

* |ntuitively, it feels like multi-shot reductions should be more
powerful

* Butin almost all cases, single-shot reductions are sufficient

of embedding metrics

Exception: NP-hardness
into L, [Karzanov]




Single-Shot vs Multi-shot Reductions

* Intuitively, it feels like multi-shot reductions should be more
powerful

* Butin almost all cases, single-shot reductions are sufficient

* |tis possible that one can construct a single-shot reduction

from 3-Coloring to NDP a bug, not a
feature?



Conclusions

* We showed: almost polynomial hardness of NDP in grids
— tradeoffs between hardness factor and complexity assumption.
* Congestion minimization:
— O(log n/log log n)-approximation algorithm
— Q(log log n)-hardness of approximation

Thank youl!



