Almost Polynomial Hardness for
Node-Disjoint Paths in Grids

Julia Chuzhoy David Kim Rachit Nimavat
TTIC U. of Chicago TTIC

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,t,),...,(S.,ty)
Goal: Route as many pairs as possible via node-
disjoint paths

i1
S1

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,t,),...,(S.,ty)-
Goal: Route as many pairs as possible via node-
disjoint paths

i1
S1

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s,t,),...,(S.,ty)

Goal: Route as many pairs as possible via node-
disjoint paths

1 .
S1 Solution value: 2

PR p— Complexity of NDP
pairs
* Constant k: efficiently solvable [Robertson, Seymour ’90]
* Running time: f(k)®n? [Kawarabayashi, Kobayashi, Reed]

k

fk) =2"

Complexity of NDP

* Constant k: efficiently solvable [Robertson, Seymour ’90]
* Running time: f(k)®n? [Kawarabayashi, Kobayashi, Reed]

 NP-hard when k is part of input [Knuth, Karp '72]

Approximation
Algorithm?

Best Current Approximation Algorithm
[Kolliopoulos, Stein ‘98]

Choose a path P of minimum length connecting

some demand pair
Add P to the solution

Delete vertices of P from the graph

Repeat

/Until recently: nothing
better even for planar
kgraphs and grids!

~

O(+/n)-approximation

NDP in Grids

o o Q Q Q Q
@, o, o, Q © Q
S S
1 S, 3
o o @ o o Q
o o o o o Q
o o Q) Q o Q
4y
t @ ®, .t @, o, Q
2 3
o, ®, ®, ®, Q ®)

NDP in Grids

Q o, o, @ Q

Approximation Status of NDP from 2015

*O(+/n) -approximation algorithm
— Even on planar graphs

— Even on grid graphs

. Q(logl/z_e n)-hardness of approximation for any € [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

Approximation Status of NDP from 2015

Plan:
*O(y/n) -approximation algorithm |, oet polylog(n)-approximation

— Even on planar graphs for grids

— Even on grid graphs e extend to planar graphs

* |look into general graphs

. Q(logl/Q_e n)-hardness of approximation for any € [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

Approximation Status of NDP from 2015

’O(\/ﬁ) -approximation aﬁé(ng/lg) -approximation [C, Kim, Li ‘16] }

— Even on planar graphs
— Even on grid graphs % O(n'/*)-approximation [C, kim ‘15] }

90(vlogn)_gpproximation for grids with sources on
boundary [C, Kim, Nimavat ‘17]

. Q(log'/?7¢ n)-hardness of approximation for any € [Andrews, Zhang "Us],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

Approximation Status of NDP from 2015

’O(\/ﬁ) -approximation aﬁé(ng/lg) -approximation [C, Kim, Li ‘16] }
— Even on planar graphs
— Even on grid graphs % O(n'/*)-approximation [C, kim ‘15] }

90(vlogn)_gpproximation for grids with sources on
boundary [C, Kim, Nimavat ‘17]

. Q(log'/?7¢ n)-hardness of approximation for any € [Andrews, Zhang "Us],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

« 20(v1ogn) _hardness of approximation for subgraphs of grids with all sources
on boundary [C, Kim, Nimavat ‘17]

* Almost polynomial hardness for grids [C, Kim, Nimavat ‘18]

Approximation Status of NDP from 2015

‘O(\/ﬁ) -approximation aﬁé(ng/lg) -approximation [C, Kim, Li ‘16] }
— Even on planar graphs
— Even on grid graphs % O(n'/*)-approximation [C, kim ‘15] }

90(vlogn)_gpproximation for grids with sources on
boundary [C, Kim, Nimavat ‘17]

. Q(log'/?7¢ n)-hardness of approximation for any € [Andrews, Zhang "Us],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

« 20(v1ogn) _hardness of approximation for subgraphs of grids with all sources
on boundary [C, Kim, Nimavat ‘17]

* Almost polynomial hardness for grids [C, Kim, Nimavat ‘18]

Almost polynomial Hardness

unless
Hardness of NDP on grids: [C, Kim NP C RTIME(nP°Y 8 ™)

o 9(087)" "_hardness for any constant ¢

o nf2(1/(loglog n)")_hardness

Almost polynomial Hardness

unless every problem in

Hardness of NDP on grids: [c, + NP has randomized quasi-
poly-time algorithm

o 9(0sn) ""_hardness for any constant e

e n2(1/(loglogn)®) _hardness

under randomized ETH

(need almost exponential time to
solve SAT by randomized alg)

Almost polynomial Hardness

unless

Hardness of NDP on grids: [C, NP C RTIME(n°Y o8™)

o 9(0sn) ""_hardness for any constant ¢

o nf2(1/(loglog n)")_hardness

unless for every o
NP C RTIME(2"")

Edge-Disjoint Paths (EDP)

* Like NDP, only the paths must be disjoint in their edges, may
share vertices.

» Same upper/lower bounds as NDP

— O(+/n) -approximation algorithm [Chekuri, Khanna, Shepherd ‘06]

— Q(logl/Q_e n) -hardness of approximation for any € [Andrews, Zhang
‘05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang "10]

* But: constant approximation on grids [Aumann, Rabani ‘95],
[Kleinberg Tardos ‘95], [Kleinberg, Tardos ‘98]

A Wall

Ssse
%ngijzl

All current upper/lower bounds for NDP in grids carry over

to EDP in walls
N Y,

What if we allow paths to share
edges/vertices?

routing with congestion

Routing with Congestion

Congestic

. Ifup to 2 paths are allowed to
approxim

share a vertex/an edge, can get

Congestic y5lylog(k)-approximation

[Baveja, Srini

gev '01],

Congestion poly(log log n): polylog(n)-approx
[Andrews ‘1(
Congestic Big difference between routing , .

Kobayashi '1 with congestion 1 and 2.
COngEStiOn 1=t. puUlytug\nJ-appruantauurnr [C, 11]
Congestion 2: polylog(k)-approximation [c, Li"12]

polylog(k)-approximation for NDP with congestion
2 [Chekuri, Ene ’12], [Chekuri, C ‘16]

Node-Disjoint Paths in Grid Graphs:
Hardness of Approximation

Main Idea 1

* Define an intermediate graph partitioning problem

“ Weird Graph -
Partitioning Problem
N (WGP) -

Main Idea 1

* Define an intermediate graph partitioning problem

“ Weird Graph -
Partitioning Problem
N (WGP) -

* Prove that NDP in grids is at least as hard as WGP
* Prove hardness of WGP

Weird Graph Partitioning Problem (WGP)

Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
— partition G into p vertex-induced subgraphs.

pieces

m—) -
e

Weird Graph Partitioning Problem (WGP)

g Intuition: h
 Want to maximize the total number of edges that are not cut
 Don’t want one piece to contain all the edges; want a balanced

N distribution of edges.

4)

Solution:
* Will count at most L edges from each piece towards the solution
_ J

= —_ =

Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
— partition G into p vertex-induced subgraphs.

— for each subgraph G, select a subset E; of at most L
edges

m—) -
e

Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
— partition G into p vertex-induced subgraphs.

— for each subgraph G, select a subset E; of at most L
edges

m—) -
e

Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* QOutput:
— partition G into p vertex-induced subgraphs.

— for each subgraph G, select a subset E; of at most L
edges

— Goal: maximize Z Ei]

I~
> :/0
g—=

Weird Graph Partitioning Problem (WGP)

/ 1 F R P 1% L.~ I =\ ° 1 \

Intuitive View 1: Balanced Cut

Except:
Partition into p and not 2 pieces
\- Maximize # of surviving edges. /

GUAT. TTTAOATITITZT £ ;| vl

1

> *o—o

Weird Graph Partitioning Problem (WGP)

. 1_ - a°a 1 ~ I\ 1 ™\ ° '

Intuitive View 2: Densest k-Subgraph

~

GUAT. TTTAOATITITZT £ ;| vl

Densest k-subgraph:
Input: graph G, integer k
Output: subgraph G’ of G on k vertices
Goal: maximize |E(G’)|

On Densest k-Subgraph

e O(nY4)-approximation [shaskara, Charikar, Chlamtac, Feige,
Vijayaraghavan ‘10]

* Notoriously hard to prove hardness of approximation
— APX-hardness [Khot, ‘06]

— Constant hardness assuming small-set-expansion
conjecture [Raghavendra, Steurer "10]

— Hardness results based on average-case
complexity assumption of SAT of Feige [Alon,
Arora, Manokaran, Moshkovitz, Weinstein ‘11]

— Almost polynomial hardness using Exponential
Time Hypothesis [Manurangsi ‘16]

Weird Graph Partitioning Problem (WGP)

. 1_ - a°a 1 ~ I\ 1 ™\ ° '

a | | O
Intuitive View 2: Densest k-Subgraph
Except:
 Want p dense subgraphs and not one
- /

GUAT. TTTAOATITITZT £ ;| vl

1

Weird Graph Partitioning Problem (WGP)

Plan:

1.NDP in grids is at least as hard as WGP
2. Prove hardness of WGP

Part 1: NDP in Grids is at Least as Hard as WGP

(up to polylog n factor)

The Reduction

The Reduction

p

disjoint endpoints

B

Edge Demfamd
B Pair

The Redu

for every vertex, choose a

ction

continuous area on

—

source/dest row

Sources

|
I .

LT T T T T T s

-

destinations }

The Reduction

all blocks must be far from
each other and from the grid
boundary

- . -

The Reduction

The Reduction

tl

The Reduction

S1 .15

¢ @ |
-

|

[

I

|

[

I

I b

7 A‘-\G

? |

t, L

The Reduction

Sl | SZ S3
¢ < @ o
Q@ &
\l
| N
[\\ -
< ~
[\. SL
N
] *\
| Ien
I 2 s\l\
5 S
~ "~/\
@ ¢ -’

The Reduction

if too large, can

°1 432 1S3 route all pairs
0. Q @ 5 —m—
zx‘_’Y"’*\\ 1 /]
| \i P I
distances between "

sources chosen (==
: if too small, won’t
strategically! ’

1 ‘\Gii be able to route

. what we need to

t, b ‘3

The Reduction

P o\ r (
\ ' /
S 4 7 I
| S, '/
| K | ‘. [
\A‘ v
' \)/ /i I
\ RN SN ~ Yy
a y 4
[ANV,
i '/ i)\‘
[I
W 4 ~ J\
PN A *Q ~ S
~ —/ N ~ /

The Reduction

Claim: the reduction preserves solution value to
within polylog(n) factor!

L If true, then NDP in grids is at least as hard as WGP }

s B
could use an algorithm for

NDP to solve WGP

Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!

() () () ()

‘\ ‘*\ 7’

Ly N 7

a o

suppose we route many

demand pairs

il A Pl

_\ 7

O--

@ ¢

O

Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!

Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!

Claim: the reduction

D| recti()n 1 preserves solution value to

within polylog(n) factor!

To get the drawing “contract”
each block

)

RSy

Can get a drawing of the graph

with few crossings

Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!

O)

GI

Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!

GI

Direction 1

Claim: the reduction
preserves solution value to
within polylog(n) factor!

GI

Claim: the reduction

D| rection]_ preserves solution value to
within polylog(n) factor!

Direction 1

Why?

Claim: the reduction
preserves solution value to
within polylog(n) factor!

Claim: this drawing of G’
has few crossings.

Direction 1

So far: we obtain a drawing of a
large subgraph of G with few
crossings.

Claim: the reduction
preserves solution value to
within polylog(n) factor!

enough

B ——

1 \j:listances within a block small
~ —_— |
crossings only introduced when a

path goes through a block

GI

Claim: the reduction

D| rectign 1 preserves solution value to

within nolylog(n) factor!

Planar graphs have very small balanced cut

VA - a 1

graphs with few crossings behave like planar graphs

\ | N \ 7/

o

can cut into p balanced pieces by cutting few edges

/

R —-

Claim: the reduction

preserves solution value to Direction 2
within polylog(n) factor!

/

suppose we have a high-value

solution to WGP

2\ e

N
\ . T,
£ I

1 I I I I I I I AN I
I I I ﬂ

I I I I I I 4 I I I I I

the pieces break the NDP problem into much smaller

problems that can be routed independently

,' v\b‘ }’ V\l~ !
4 AR Vi 'S j\
A Y ~ S
Q @ @ ¢ @ @ ‘5/

Plan:

1.NDP in grids is at least as hard as WGP v/
2. Prove hardness of WGP

Hardness of WGP

Starting Point: 3COL(5)

Input: 5-regular graph G.

3-coloring: assigning Red, Blue or
Green color to each vertex

Starting Point: 3COL(5)

Input: 5-regular graph G.
3-coloring: assigning Red, Blue or
Green color to each vertex

Edge is happy iff both endpoints
have different colors

Starting Point: 3COL(5)

Input: 5-regular graph G.
* Gis Yes-Instance if there is a coloring where every edge is happy

* Gis No-Instance if in every coloring at least 0.01-fraction of
edges are unhappy

Thm: NP-hard to tell if G is
a Yes or a No instance.

If there is a coloring that makes all edges
happy, then there are 6 such colorings!

> <R
> > K

* For every edge, each legal coloring appears exactly once

* For every edge, each legal coloring appears exactly once
* For each vertex, every coloring appears exactly twice

Bonus property of 3COL

[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]

§9

* For every edge, each legal coloring appears exactly once
* For each vertex, every coloring appears exactly twice

Next Steps

4 .
D Constraint
{ 3COL(5) instance G > Satisfaction Problem
J - instance ¢(G)

)

2-prover protocol +

parallel repetition

~

\

WGP problem

\

instance H(G)

J

r — number of
{ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
X; @ P 3COL(5)
X
» @ ®
X; @
®
X, @

XN @ @ Vv

r —number of
repetitions

“edge”-variables

@ _

o—C

\Q_QJ

/

m" variables

} A CSP Instance ¢(G)

“vertex”-variables

/
For every sequence of r

edges of G, there is a

®
N

variable on the left

~

e
An assignment to the

variable is a legal
coloring of the edges

r — number of
[repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
: _ e N
(e ® @ rorevery sequence of r
| 8 ® edges of G, there is a
- o S variable on the left
e) o
a _ N
® ® An assignment to the

variable is a legal
coloring of the edges

r —number of
repetitions

“edge”-variables

 —— ®
| — ®
- e @) ®

()
0) ®
o

} A CSP Instance ¢(G)

“vVertex”-variables

o (For every sequence of r

need not be
consistent
across edges

-

edges of G, there is a

variable on the left

~

An assignment to the
variable is a legal
coloring of the edges

r —number of
repetitions

“edge”-variables

} A CSP Instance ¢(G)

“vertex”-variables

o (For every sequence of r

need not be
consistent

edges of G, there is a

variable on the left

~

across edges

—

TR

An assignment to the
variable is a legal
coloring of the edges

r — number of
{ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
;- _ N
(e ® @ (For every sequence of r
(> ® need notbe edges of G, thereis a
» - — consistent variable on the left
| —) ® across edges <
@ ® ~ An assignment to the
\ / variable is a legal
coloring of the edges >

r —number of
repetitions

“edge”-variables

} A CSP Instance ¢(G)

“vertex”-variables

o (For every sequence of r

O ®

| ® need not be

- - - consistent

| —) ¢ across edges

(s,) _ a e
\ / 6" possible

assignments

per variable

edges of G, there is a

variable on the left

~

An assignment to the
variable is a legal
coloring of the edges

r — number of
{ repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables

& =

For every sequence of r

vertices of G, there is a @
variable on the right ®
-
(e _
-

An assignment to the
variable is a coloring of

the vertices
\

o <+ 0 -
®
p
© ©
\

r — number of
[repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
% N
For every sequence of r\ 9 s
vertices of G, there is a neeo pol oe @
variable on the right SR
across vertices O
4 ® O
An assignment to the
variable is a coloring of : W _
- the vertices =

r — number of
[repetitions } A CSP Instance CI)(G)

“edge”-variables “vertex”-variables
% N
For every sequence of r\ 9 -
. . need not be
vertices of G, there is a .
variable on the right Sl
across vertices O
I -
4 | ® | O
An assignment to the

variable is a coloring ofJ 3" possible @

the vertices assighments
@ pervariable

p

{ r — number of

repetitions

/@_O
—0
— 0

\é

%
5P

_{D

@ v

OO’O

°
@ @ V2
® O :

@ v

N

\

} A CSP Instance ¢(G)
%2 § G

put a constraint iff Vi,
V. is an endpoint of e..

[r — number of

repetitions

/@_U

—)
Ot)
\g

%
5P

_{D

OOJ’O

=

g

we don’t check A
consistency across
different

—

coordinates <
. F\j

} A CSP Instance ¢(G)

put a constraint iff Vi,
v, is an endpoint of e..

constraint is satisfied
iff Vi, both

assighments to v. are
the same

|

r —number of
repetitions

a perfect
solution

o

} A CSP Instance ¢(G)

"IfGisa Yes-Instance, there is

-

an assignment to variables
satisfying all constraints

~

)

r — number of
{ repetitions } A CSP Instance CI)(G)

" 1fGis a Yes-Instance, there is

an assignment to variables
. satisfying all constraints |

4 N

If G is a No-Instance, any
assignment satisfies < 1/29(-
. fraction of constraints |

r — number of
{ repetitions } A CSP Instance CI)(G)

"IfGisa Yes-Instance, there is

an assignment to variables

P — /\ satisfying all constraints

NP-hard to distinguish

4 N

If G is a No-Instance, any
ra A assignm.ent satisfies s.l/ZQ(r)-
. fraction of constraints |

r —number of
repetitions

} Bonus Property for Yes Instance!

Perfect
Solution

|

r —number of
repetitions

} Bonus Property for Yes Instance!

e

ution 1

So

ution 2

So

ution 3

Solution 6"

|

r —number of
repetitions

} Bonus Property for Yes Instance!

e

ution 1

So

ution 2

So

ution 3

Solution 6"

r —number of
repetitions

} Bonus Property for Yes Instance!

6" possible
assignments

assignment 1
assignment 2 Solution 1

Solution 3

‘\f

assignment 3 w‘ Solution 2

p

assighment 6
ﬁ‘ Solution 6'

Each assignment appears in
exactly 1 solution!

r —number of
repetitions

O

} Bonus Property for Yes Instance!

e

ution 1

So

ution 2

So

ution 3

Solution 6"

L r — number of

repetitions

} Bonus Property for Yes Instance!

3" possible
assignments

/1

o

Each assignment in exactly 2"
solutions!

\

—
od | /1

/ Solution 1

olution 2

olution 3

Solution 6"

/

4

Bonus property of 3COL

[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]

§9

* For every edge, each legal coloring appears exactly once
* For each vertex, every coloring appears exactly twice

Next Steps

-

scoem

-

Constraint
Satisfaction Problem
instance ¢(G)

/

2-prover protocol +
parallel repetition

-~

~

WGP problem

-

instance H(G)

/

A CSP Problem Instance ¢

Nz

NP-hard to distinguish

7

N

«—

+ the bonus property

— o

an assignment to variables
. satisfying all constraints

" ¢ is a Yes-Instance, if there is

~

/

" ¢isaNo-Instance, if any
assignment satisfies < 1,/29(1-

fraction of constraints

\

)

Bonus Property

4 N

¢ is a Yes-Instance, there are
6" perfect solutions ,
& y Solution 1
.) i
for each var on left each / Solution 2
assignment appearsin 1 / Solution 3
N solution - /
s . N
for each var on right each / ST o

assignment appears in 2’
N solution -

Next Steps

-

scoem

-

Constraint
Satisfaction Problem
instance ¢(G)

/

2-prover protocol +
parallel repetition

-~

~

WGP problem

-

instance H(G)

/

2 Graphs for CSP

1 vertex for each
assignment

assignment
graph

constraint graph}

2 Graphs for CSP

1 vertex for each
assignment

assignment
graph

constraint graph}

2" vertices for
each assignment

2 Graphs for CSP clouds

A

O —
put an edge iff the ™
assignments —
satisfy the
assignment constraint
graph

constraint graph}

assignment
graph

constraint graph}

2 Graphs for CSP

graph

L assignment

Ql
constraint graph}

Reduction to WGP

6" vertices

graph

L assignment

constraint graph}

Reduction to WGP

6" vertices

Input to WGP problem
° p=6r
* L=#constraints

Yes Case Analysis
Solution 1
/ Solution 2
6" vertices
/ Solution 3
/ Solution 6f

Input to WGP problem
° p=6r
* L=#constraints

Yes Case Analysis

Solution 1

Solution 2

Solution 3

- —T——

Solution 6"

Input to WGP problem
° p=6r
* L=#constraints

Yes Case Analysis

Solution 1

Solution 2

Solution 3

- —T——

Solution 6f

Each solution defines a
piece in the partition

Yes Case Analysis
/ Solution 1 /

“«
(_,,
U

Yes Instance Analysi
Solution 1

will collect 1 edge
per constraint

] Yes Instance Anal%

Solut”™

In No-Instance p and L stay ,
* p=6"pieces

the same. o U
Want to show: solution each piece contributes L=|C|
edges
value is low

 total solution value: 67| C|

?

X\

= =

No Instance Analysis

o | [

Can only satisfy few constraints, so
#edges in each piece very low!

~
N\

In ideal solution, each piece defines
assignment to variables

~1

ldeal solution: each piece contains
exactly 1 vertex from each cloud

No Instance Analysis

-

Problem: No-Instance
solution does not

€
; have to look this
Ggr

|
N way!
T _

No Instance Analysis

Two Extreme Solutions

ldeal solution: each
piece contains
exactly 1 vertex
from each cloud

canhonical honest
solution

canonical cheating
solution: each
cloud is contained

In some piece

Two Extreme Solutions

|deal solution: each

i ntain \ —
piece contains >f‘ \

exactly 1 vertex . .
£ eyach cloud * Any solution can be turned into a
solution that behaves like one of these

two extreme solutions, with a small
loss
* Enough to analyze the cheating

canonical solution

canonical cheatirg
solution: each
cloud is contained
In some piece

A Technical Issue

Canonical Cheating Solution

Canonical Cheating Solution

Canonical Cheating Solution

B
Re

N

) ¢

Yes—Case solution: constraint will contribute 6"
edges to solution.

Canonical Cheating Solution

(A—

unfair advantage to
cheating solutions!

] —_—

cheating solution may collect a lot more per
constraint!

\ I

Yes—Case solution: constraint will contribute 6"
edges to solution.

Solution: Cheat

Hardness Proof Plan

4 .
D Constraint
{ 3COL(5) instance G > Satisfaction Problem
J - instance ¢(G)

)

2-prover protocol +

parallel repetition

~

\

instance H(G)

\

WGP problem

J

h 4

-

NDP in grids

~

)

Even Weirder Graph
Partitioning Problem

~
A & Constraint A EV\{)?P
{ 3COL(5) instance G > Satisfaction Problem) Probiem
Y instance (I)(G) Instance H(G)
- . _ » -
2-prover protocol +
parallel repetition p A 4 -

NDP in grids
< /

EWGP

~

Main ldea: define the problem
so that this kind of cheating
won’t happen

~

VoSe— 7V

-

i

Will collect at most 6" edges per

constraint as before

)

Q_#—

Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L.
* Output:
— partition G into p vertex-induced subgraphs.

— for each subgraph G, select a subset E; of at most L
edges

— Goal: maximize Z Ei]

1

> o—o

Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L. Extra:
* For every vertex,
* Output: incident edges are
— partition G into p vertex-induced subgraphs. partitioned into
— for each subgraph G, select a subset E; of at most L bundles
edges

— Goal: maximize Z Ei]
i

Weird Graph Partitioning Problem (WGP)

* |nput: bipartite graph G=(V,E), integers p, L. Extra:
* For every vertex,
* Output: incident edges are
— partition G into p vertex-induced subgraphs. partitioned into
— for each subgraph G, select a subset E; of at most L bundles
edges * may only take 1

— Goal: maximize Z \Ez\ edge per bundle

Weird Graph Partitioning Problem (WGP)

* Input: bipartite graph G=(V,E), integers p, L. Extra:
* For every vertex,
* Output: incident edges are
— partition G into p vertex-induced subgraphs. partitioned into
— for each subgraph G, select a subset E; of at most L bundles
edges * may only take 1
— Goal: maximize Z \Ez\ edge per bundle

Canonical Cheating Solution

/\
(? O’ \ So far: cheating solution
| /' may collect at most 6
- Y] edges per constraint
’Xi \ J -
YV oN— Y
/A A but till don’t k
. ... but we s on’t know
Define the bundles so that at most 6" :
. how to prove that its
edges can be collected per constraint .
| _ , value is low

p (ll l\'l\

For each vertex, all edges leading to the G —
same cloud are a bundle 7% Y

End of the Technical Issue

Main Idea 2: Cook not Karp

Standard Karp Reduction

CSP) WGP
Instance

Instance

* If CSP is a Yes-Instance, WGP has a solution of large value
°£ CSP is a No-Instance, every solution to WGP has low value

we don’t know how
to prove this...

Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance

WGP WGP WGP WGP WGP

Instance Instance Instance Instance Instance

If CSP is a Yes-Instance, each WGP instance has a high-value solution

{ prescribed value J

Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance

WGP WGP WGP WGP WGP

Instance Instance Instance Instance Instance

f CSP is a Yes-Instance, each WGP instance has a high-value solution

If CSP is a No-Instance, some WGP instance only has low-value solutions

Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance Can distinguish
/ My, between the two by
/ 1 \ applying the approx.
WGP WGP WGP wc alg to each instance
Instance Instance Instance Instance Instance

f CSP is a Yes-Instance, each WGP instance has a high-value solution

If CSP is a No-Instance, some WGP instance only has low-value solutions

Our Reduction (Cook)

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

CSP Instance

WGP WGP WGP WGP WGP

Instance Instance Instance Instance Instance

\ AW AW LA 4

Construction of each instance depends on solution produced by A to previous
instances!

Reduction Overview

Assume for contradiction that there is an a-
approximation algorithm A for WGP.

will use the algorithm to distinguish
ves and no instances of CSP

-~

assignment

constraint graph
B } graph/WGP

\f input

—
will always assume that the solution ><Z_

is canonical honest or cheating

»
i Approx solution }

constraint graph}

Solution value too
low?

[No Instance! }

“ assignment
graph/WGP
\f input
G, _ %
%: GGr .

\

Approx solution }

constraint graph}

High solution
value + canonical
honest solution?

[Yes Instance! }

“ assignment
graph/WGP
\f input
G, _ %
g GGr z

\

Approx solution }

constraint graph}

-~

High solution value +
canonical cheating
solution?

!
—

assignment
graph/WGP

input

\

Approx solution }

constraint graph}

-~

High solution value
+ canonical cheating
solution?

!
—

assignment
graph/WGP
input

/" Solution partitions

\

the constraint graph
into many small
pieces; keeps most
constraints ~ /

@
>

Apply same
reduction to each

piece!

-
)h

N

assignment
graph/WGP
input

N\

~ L[

, N\
(e Build assighment graph for each

' piece separately

e apply approx. algorithm to each

,\. —
e - -

-

-

|

\

10NS

Jraph
into many small
pieces; keeps most
constraints

The Big Picture

iconstraint graphw

Will either:

correctly determine
that it’'s a Yes or a No
Instance

or cut into much
smaller pieces,
preserving many
constraints

v

@ o

The Big Picture

\

Reduce each piece to WGP

instance separately
Apply approx. algorithm to
each WGP instance

/
relatively to
Hconstraints in
- plece

Solution value in
any plece too low?

No Instance! }

The Big Picture

 Reduce each piece to WGP

instance separately
* Apply approx. algorithm to
each WGP instance

a piece w high solution
value and honest solution

becomes inactive

The Big Picture

 Reduce each piece to WGP

instance separately
* Apply approx. algorithm to
each WGP instance

a piece w high solution
value and honest solution

becomes inactive

each piece w high solution
value and cheating solution
IS cut again

The Big Picture

 Reduce each piece to WGP

instance separately
* Apply approx. algorithm to
each WGP instance

l a piece w high solution
value and honest solution

becomes inactive

\ each piece w high solution
Q O value and cheating solution
IS cut again

The Big Picture

If for any resulting cluster we get a solution of
low cost, we know it’s a No-Instance.

Assume this never happens

'/ l \ Can’t cut forever

when we stop cutting, every current
cluster is inactive, so we can satisfy many
\ of its constraints

The Big Picture

If for any resulting cluster we get a solution of
low cost, we know it’s a No-Instance.

Assume this never happens

l Can’t cut forever

when we stop cutting, every current

cluster is inactive, so we can satisfy many
\ of its constraints

many constraints are preserved, SO We Can

Yes Instance! . .
satisfy many constraints overall

Summary: Main Ideas

* Introduce intermediate problem WGP
e Can modify it to suit our reduction
* Cook not Karp reduction.

Single-Shot vs Multi-shot Reductions

* |ntuitively, it feels like multi-shot reductions should be more
powerful

* Butin almost all cases, single-shot reductions are sufficient

of embedding metrics

Exception: NP-hardness
into L, [Karzanov]

Single-Shot vs Multi-shot Reductions

* Intuitively, it feels like multi-shot reductions should be more
powerful

* Butin almost all cases, single-shot reductions are sufficient

* |tis possible that one can construct a single-shot reduction

from 3-Coloring to NDP a bug, not a
feature?

Conclusions

* We showed: almost polynomial hardness of NDP in grids
— tradeoffs between hardness factor and complexity assumption.
* Congestion minimization:
— O(log n/log log n)-approximation algorithm
— Q(log log n)-hardness of approximation

Thank youl!

