
Almost Polynomial Hardness for
Node-Disjoint Paths in Grids

Julia Chuzhoy
TTIC

David Kim
U. of Chicago

Rachit Nimavat
TTIC

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s1,t1),…,(sk,tk).
Goal: Route as many pairs as possible via node-
disjoint paths

s1
t1

s2

t2

s3
t3

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s1,t1),…,(sk,tk).
Goal: Route as many pairs as possible via node-
disjoint paths

s1
t1

s2

t2

s3
t3

Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s1,t1),…,(sk,tk).
Goal: Route as many pairs as possible via node-
disjoint paths

s1
t1

s2

t2

s3
t3

Solution value: 2

Complexity of NDP

• Constant k: efficiently solvable [Robertson, Seymour ’90]

• Running time: f(k)�n2 [Kawarabayashi, Kobayashi, Reed]

f(k) = 22
2

.

.

.

k

demand
pairs

Complexity of NDP

• Constant k: efficiently solvable [Robertson, Seymour ’90]

• Running Yme: f(k)�n2 [Kawarabayashi, Kobayashi, Reed]

• NP-hard when k is part of input [Knuth, Karp ’72]

Approximation
Algorithm?

Best Current Approximation Algorithm
[Kolliopoulos, Stein ‘98]

• Choose a path P of minimum length connecting
some demand pair

• Add P to the solution
• Delete vertices of P from the graph
• Repeat

-approximationO(
p
n)Until recently: nothing

better even for planar
graphs and grids!

s1

t1

s2

t2

s3

t3

NDP in Grids

s1

t1

s2

t2

s3

t3

NDP in Grids

• -approximation algorithm
– Even on planar graphs
– Even on grid graphs

• -hardness of approximation for any [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

O(
p
n)

�(log1/2�� n) ✏

Approximation Status of NDP from 2015

• -approximation algorithm
– Even on planar graphs
– Even on grid graphs

• -hardness of approximation for any [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

O(
p
n)

�(log1/2�� n) ✏

ApproximaYon Status of NDP from 2015
Plan:

• get polylog(n)-approximaYon
for grids

• extend to planar graphs
• look into general graphs

• -approximation algorithm
– Even on planar graphs
– Even on grid graphshs

• -hardness of approximation for any [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

O(
p
n)

�(log1/2�� n) ✏

-approximation [C, Kim ‘15]Õ(n1/4)

-approximation [C, Kim, Li ‘16]Õ(n9/19)

-approximation for grids with sources on
boundary [C, Kim, Nimavat ‘17]
2O(

p
logn)

Approximation Status of NDP from 2015

• -approximation algorithm
– Even on planar graphs
– Even on grid graphshs

• -hardness of approximation for any [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

• -hardness of approximation for subgraphs of grids with all sources
on boundary [C, Kim, Nimavat ‘17]

• Almost polynomial hardness for grids [C, Kim, Nimavat ‘18]

O(
p
n)

�(log1/2�� n) ✏

-approximaYon [C, Kim ‘15]Õ(n1/4)

-approximaYon [C, Kim, Li ‘16]Õ(n9/19)

-approximation for grids with sources on
boundary [C, Kim, Nimavat ‘17]
2O(

p
logn)

2⌦(
p
logn)

Approximation Status of NDP from 2015

• -approximation algorithm
– Even on planar graphs
– Even on grid graphshs

• -hardness of approximation for any [Andrews, Zhang ‘05],
[Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

• -hardness of approximation for subgraphs of grids with all sources
on boundary [C, Kim, Nimavat ‘17]

• Almost polynomial hardness for grids [C, Kim, Nimavat ‘18]

O(
p
n)

�(log1/2�� n) ✏

-approximation [C, Kim ‘15]Õ(n1/4)

-approximation [C, Kim, Li ‘16]Õ(n9/19)

-approximation for grids with sources on
boundary [C, Kim, Nimavat ‘17]
2O(

p
logn)

2⌦(
p
logn)

ApproximaYon Status of NDP from 2015

Hardness of NDP on grids: [C, Kim, Nimavat ‘17]

• -hardness for any constant

• -hardnessn⌦(1/(log logn)2)

2(logn)1�✏
✏

Almost polynomial Hardness
unless

NP ✓ RTIME(npoly log n)

Hardness of NDP on grids: [C, Kim, Nimavat ‘17]

• -hardness for any constant

• -hardnessn⌦(1/(log logn)2)

2(logn)1�✏
✏

Almost polynomial Hardness
unless every problem in

NP has randomized quasi-
poly-time algorithm

under randomized ETH
(need almost exponential time to

solve SAT by randomized alg)

Hardness of NDP on grids: [C, Kim, Nimavat ‘17]

• -hardness for any constant

• -hardnessn⌦(1/(log logn)2)

2(logn)1�✏
✏

Almost polynomial Hardness
unless

NP ✓ RTIME(npoly log n)

unless for every
NP ✓ RTIME(2n

�

)

�

Edge-Disjoint Paths (EDP)

• Like NDP, only the paths must be disjoint in their edges, may
share vertices.

• Same upper/lower bounds as NDP
– -approximation algorithm [Chekuri, Khanna, Shepherd ‘06]
– -hardness of approximation for any [Andrews, Zhang

‘05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

• But: constant approximation on grids [Aumann, Rabani ‘95],
[Kleinberg Tardos ‘95], [Kleinberg, Tardos ‘98]

O(
p
n)

�(log1/2�� n) ✏

A Wall

All current upper/lower bounds for NDP in grids carry over
to EDP in walls

What if we allow paths to share
edges/verYces?

rouYng with congesYon

Routing with Congestion
• Congestion O(log n/log log n): constant

approximation [Raghavan, Thompson ’87]

• Congestion c: -approximation [Azar, Regev ’01],
[Baveja, Srinivasan ’00], [Kolliopoulos, Stein ‘04]

• Congestion poly(log log n): polylog(n)-approx
[Andrews ‘10]

• Congestion 2: -approximation [Kawarabayashi,
Kobayashi ’11]

• Congestion 14: polylog(k)-approximation [C, ‘11]

• Congestion 2: polylog(k)-approximation [C, Li ’12]

• polylog(k)-approximation for NDP with congestion
2 [Chekuri, Ene ’12], [Chekuri, C ‘16]

O(n1/c)

O(n3/7)Big difference between routing
with congestion 1 and 2.

If up to 2 paths are allowed to
share a vertex/an edge, can get

polylog(k)-approximation

Node-Disjoint Paths in Grid Graphs:
Hardness of Approximation

Main Idea 1

• Define an intermediate graph parYYoning problem

Weird Graph
ParYYoning Problem

(WGP)

Main Idea 1

• Define an intermediate graph partitioning problem

• Prove that NDP in grids is at least as hard as WGP
• Prove hardness of WGP

Weird Graph
Partitioning Problem

(WGP)

Weird Graph Partitioning Problem (WGP)

Weird Graph Partitioning Problem (WGP)

• Input: biparYte graph G=(V,E), integers p, L.
• Output:
– parYYon G into p vertex-induced subgraphs.
– for each i, subset of edges, with |Ei|≤ h

• Goal: maximize pieces

Weird Graph Partitioning Problem (WGP)

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each i, subset of edges, with |Ei|≤ h

• Goal: maximize

Intuition:
• Want to maximize the total number of edges that are not cut
• Don’t want one piece to contain all the edges; want a balanced

distribution of edges.

Solution:
• Will count at most L edges from each piece towards the solution

Weird Graph Partitioning Problem (WGP)

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges

• Input: biparYte graph G=(V,E), integers p, L.
• Output:
– parYYon G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges

Weird Graph ParYYoning Problem (WGP)

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph Partitioning Problem (WGP)

X

i

|Ei|

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph Partitioning Problem (WGP)

X

i

|Ei|

Intuitive View 1: Balanced Cut
Except:
• Partition into p and not 2 pieces
• Maximize # of surviving edges.

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

IntuiYve View 2: Densest k-Subgraph

Densest k-subgraph:
Input: graph G, integer k
Output: subgraph G’ of G on k vertices
Goal: maximize |E(G’)|

On Densest k-Subgraph
• O(n1/4)-approximation [Bhaskara, Charikar, Chlamtac, Feige,

Vijayaraghavan ‘10]

• Notoriously hard to prove hardness of approximation
– APX-hardness [Khot, ‘06]
– Constant hardness assuming small-set-expansion

conjecture [Raghavendra, Steurer ’10]
– Hardness results based on average-case

complexity assumption of SAT of Feige [Alon,
Arora, Manokaran, Moshkovitz, Weinstein ‘11]

– Almost polynomial hardness using Exponential
Time Hypothesis [Manurangsi ‘16]

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph Partitioning Problem (WGP)

X

i

|Ei|

Intuitive View 2: Densest k-Subgraph
Except:
• Want p dense subgraphs and not one

• Input: biparYte graph G=(V,E), integers p, L.
• Output:
– parYYon G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

Plan:
1. NDP in grids is at least as hard as WGP
2. Prove hardness of WGP

Part 1: NDP in Grids is at Least as Hard as WGP
(up to polylog n factor)

The Reduction

G

The Reduction

Edge Demand
Pair

disjoint endpoints

G

The Reduction
sources

destinations

for every vertex, choose a
continuous area on

source/dest row

G

The ReducYon

G
all blocks must be far from

each other and from the grid
boundary

The Reduction

G

The Reduction

s1

t1

G

The Reduction

s1

t1

s2

t2

G

The ReducYon

s1

t1

s2

t2

s3

t3

G

The ReducYon

s1

t1

s2

t2

s3

t3

distances between
sources chosen

strategically!

if too large, can
route all pairs

if too small, won’t
be able to route
what we need to

G

The Reduction

G

The Reduction

Claim: the reduction preserves solution value to
within polylog(n) factor!

If true, then NDP in grids is at least as hard as WGP

could use an algorithm for
NDP to solve WGP

DirecYon 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

suppose we route many
demand pairs

G

Direction 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

G

DirecYon 1
Claim: the reducYon
preserves soluYon value to
within polylog(n) factor!

G

Direction 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

Can get a drawing of the graph
with few crossings

G’

To get the drawing “contract”
each block

DirecYon 1
Claim: the reducYon
preserves soluYon value to
within polylog(n) factor!

G’

Direction 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

G’

Direction 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

G’

DirecYon 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

G’

Direction 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

G’

Claim: this drawing of G’
has few crossings.

Why?

DirecYon 1
Claim: the reduction
preserves solution value to
within polylog(n) factor!

crossings only introduced when a
path goes through a block

G’

distances within a block small
enough

So far: we obtain a drawing of a
large subgraph of G with few

crossings.

Direction 1
Claim: the reducYon
preserves soluYon value to
within polylog(n) factor!

Planar graphs have very small balanced cut

graphs with few crossings behave like planar graphs

can cut into p balanced pieces by cutting few edges

Direction 2
Claim: the reduction
preserves solution value to
within polylog(n) factor!

suppose we have a high-value
solution to WGP

G

G1 G2

the pieces break the NDP problem into much smaller
problems that can be routed independently

Plan:
1. NDP in grids is at least as hard as WGP ✔
2. Prove hardness of WGP

Hardness of WGP

Starting Point: 3COL(5)

Input: 5-regular graph G.
3-coloring: assigning Red, Blue or

Green color to each vertex

StarYng Point: 3COL(5)

Input: 5-regular graph G.

Edge is happy iff both endpoints
have different colors

3-coloring: assigning Red, Blue or
Green color to each vertex

Starting Point: 3COL(5)

Input: 5-regular graph G.
• G is Yes-Instance if there is a coloring where every edge is happy
• G is No-Instance if in every coloring at least 0.01-fraction of

edges are unhappy

Thm: NP-hard to tell if G is
a Yes or a No instance.

If there is a coloring that makes all edges
happy, then there are 6 such colorings!

• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice

• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice

• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice

Bonus property of 3COL
[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]

Next Steps

3COL(5) instance G WGP problem
instance H(G)

2-prover protocol +
parallel repetition

Constraint
SaYsfacYon Problem

instance φ(G)

A CSP Instance φ(G)
G

3COL(5)

r – number of
repetitions

“edge”-variables “vertex”-variables

y1

…

y2

y3

yM

x1

x2

x3

x4

xN

…

A CSP Instance φ(G)
G

r – number of
repetitions

“edge”-variables “vertex”-variables

……
r

For every sequence of r
edges of G, there is a
variable on the left

An assignment to the
variable is a legal

coloring of the edges
mr variables

A CSP Instance φ(G)
G

r – number of
repetitions

“edge”-variables “vertex”-variables

……
r

For every sequence of r
edges of G, there is a
variable on the left

An assignment to the
variable is a legal

coloring of the edges

A CSP Instance φ(G)
G

r – number of
repeYYons

“edge”-variables “vertex”-variables

……
r

For every sequence of r
edges of G, there is a
variable on the left

An assignment to the
variable is a legal

coloring of the edges

need not be
consistent

across edges

A CSP Instance φ(G)
G

r – number of
repetitions

“edge”-variables “vertex”-variables

……
r

For every sequence of r
edges of G, there is a
variable on the left

An assignment to the
variable is a legal

coloring of the edges

need not be
consistent

across edges

need not be
consistent

across edges

A CSP Instance φ(G)
G

r – number of
repeYYons

“edge”-variables “vertex”-variables

……
r

For every sequence of r
edges of G, there is a
variable on the left

An assignment to the
variable is a legal

coloring of the edges

need not be
consistent

across edges

A CSP Instance φ(G)
G

r – number of
repeYYons

“edge”-variables “vertex”-variables

……
r

For every sequence of r
edges of G, there is a
variable on the lez

An assignment to the
variable is a legal

coloring of the edges

need not be
consistent

across edges

6r possible
assignments
per variable

A CSP Instance φ(G)
G

r – number of
repetitions

“edge”-variables “vertex”-variables

……
r

r

For every sequence of r
vertices of G, there is a

variable on the right

An assignment to the
variable is a coloring of

the vertices

A CSP Instance φ(G)
G

r – number of
repetitions

“edge”-variables “vertex”-variables

……
r

r

need not be
consistent

across verYces

For every sequence of r
vertices of G, there is a

variable on the right

An assignment to the
variable is a coloring of

the verYces

A CSP Instance φ(G)
G

r – number of
repetitions

“edge”-variables “vertex”-variables

……
r

r

need not be
consistent

across vertices

For every sequence of r
vertices of G, there is a

variable on the right

An assignment to the
variable is a coloring of

the vertices
3r possible

assignments
per variable

A CSP Instance φ(G)
G

r – number of
repeYYons

……
e1

e2

er

…
v1

v2

vr

…

put a constraint iff ∀i,
vi is an endpoint of ei.

A CSP Instance φ(G)
G

r – number of
repeYYons

……
e1

e2

er

…
v1

v2

vr

…

put a constraint iff ∀i,
vi is an endpoint of ei.

constraint is satisfied
iff ∀i, both

assignments to vi are
the same

we don’t check
consistency across

different
coordinates

A CSP Instance φ(G)
G

r – number of
repeYYons

……
If G is a Yes-Instance, there is

an assignment to variables
satisfying all constraints

a perfect
solution

A CSP Instance φ(G)
G

r – number of
repeYYons

……
If G is a Yes-Instance, there is

an assignment to variables
saYsfying all constraints

If G is a No-Instance, any
assignment satisfies ≤ 1/2Ω(r)-

fraction of constraints

A CSP Instance φ(G)
G

r – number of
repetitions

……
If G is a Yes-Instance, there is

an assignment to variables
satisfying all constraints

If G is a No-Instance, any
assignment saYsfies ≤ 1/2Ω(r)-

fracYon of constraints

NP-hard to distinguish

Bonus Property for Yes Instance!r – number of
repetitions

……

Perfect
SoluYon

Solution 6r

…

Bonus Property for Yes Instance!r – number of
repetitions

……
SoluYon 3

SoluYon 2

Solution 1

SoluYon 6r

…

Bonus Property for Yes Instance!r – number of
repetitions

……
SoluYon 3

Solution 2

SoluYon 1

Bonus Property for Yes Instance!r – number of
repetitions

……

SoluYon 6r

…

Solution 3

SoluYon 2

Solution 1

6r possible
assignments

assignment 1

assignment 2

assignment 3

…

assignment 6r

Each assignment appears in
exactly 1 soluYon!

Solution 6r

…

Bonus Property for Yes Instance!r – number of
repetitions

……
Solution 3

SoluYon 2

Solution 1

r

Solution 6r

…

Bonus Property for Yes Instance!r – number of
repeYYons

……
Solution 3

Solution 2

Solution 1

r3r possible
assignments

Each assignment in exactly 2r

soluYons!

• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice

Bonus property of 3COL
[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]

Next Steps

3COL(5) instance G WGP problem
instance H(G)

2-prover protocol +
parallel repetition

Constraint
SaYsfacYon Problem

instance φ(G)

✔

A CSP Problem Instance φ

……

φ is a Yes-Instance, if there is
an assignment to variables

satisfying all constraints

φ is a No-Instance, if any
assignment satisfies ≤ 1/2Ω(r)-

fraction of constraints

NP-hard to distinguish

+ the bonus property

Bonus Property

……

Solution 6r

…

Solution 3

Solution 2

SoluYon 1

φ is a Yes-Instance, there are
6r perfect soluYons

for each var on left each
assignment appears in 1

solution

for each var on right each
assignment appears in 2r

soluYon

Next Steps

3COL(5) instance G WGP problem
instance H(G)

2-prover protocol +
parallel repetition

Constraint
SaYsfacYon Problem

instance φ(G)

✔

2 Graphs for CSP

……

constraint graph

assignment
graph

6r
1 vertex for each

assignment

2 Graphs for CSP

……

constraint graph

assignment
graph

6r
1 vertex for each

assignment 6r

2r verYces for
each assignment

2 Graphs for CSP

……

constraint graph

assignment
graph

put an edge iff the
assignments
satisfy the
constraint

clouds

2 Graphs for CSP

……

constraint graph

assignment
graph

2 Graphs for CSP

……

constraint graph

assignment
graph

ReducYon to WGP

……

constraint graph

assignment
graph

6r verYces

ReducYon to WGP

6r vertices

Input to WGP problem
• p=6r

• L=#constraints

Yes Case Analysis

6r vertices

Input to WGP problem
• p=6r

• L=#constraints

Solution 6r

…

SoluYon 3

Solution 2

SoluYon 1

Yes Case Analysis

Input to WGP problem
• p=6r

• L=#constraints

Solution 6r

…

SoluYon 3

SoluYon 2

Solution 1

Yes Case Analysis

Solution 6r

…

Solution 3

Solution 2

SoluYon 1

Each soluYon defines a
piece in the parYYon

Yes Case Analysis

SoluYon 1

Yes Instance Analysis

Solution 1

will collect 1 edge
per constraint

G1

Yes Instance Analysis

G1

Solution 6r

…
Solution 3
Solution 2
Solution 1

G2

…

G6r

• p=6r pieces
• each piece contributes L=|C|

edges
• total solution value: 6r|C|

In No-Instance p and L stay
the same.

Want to show: soluYon
value is low

No Instance Analysis

G1

G2 …

G6r

Ideal soluYon: each piece contains
exactly 1 vertex from each cloud

In ideal solution, each piece defines
assignment to variables

Can only saYsfy few constraints, so
#edges in each piece very low!

No Instance Analysis

G1

G2 …

G6r

Problem: No-Instance
soluYon does not
have to look this

way!

No Instance Analysis

Two Extreme SoluYons
Ideal solution: each
piece contains
exactly 1 vertex
from each cloud

canonical honest
solution

canonical cheating
solution: each
cloud is contained
in some piece

Two Extreme Solutions

…

Ideal soluYon: each
piece contains
exactly 1 vertex
from each cloud

canonical cheating
solution: each
cloud is contained
in some piece

• Any soluYon can be turned into a
soluYon that behaves like one of these
two extreme soluYons, with a small
loss

• Enough to analyze the cheaYng
canonical soluYon

A Technical Issue

Canonical Cheating Solution

Canonical Cheating Solution

xi

yj

G1

Canonical Cheating Solution

xi

yj

Yes—Case solution: constraint will contribute 6r

edges to solution.

Canonical Cheating Solution

xi

yj

Yes—Case soluYon: constraint will contribute 6r

edges to soluYon.

cheating solution may collect a lot more per
constraint!

unfair advantage to
cheaYng soluYons!

Solution: Cheat

xi

yj

Hardness Proof Plan

3COL(5) instance G WGP problem
instance H(G)

2-prover protocol +
parallel repetition

Constraint
SaYsfacYon Problem

instance φ(G)

NDP in grids

Hardness Proof Plan

3COL(5) instance G WGP problem
instance H(G)

2-prover protocol +
parallel repeYYon

Constraint
SaYsfacYon Problem

instance φ(G)

EWGP
problem

instance H(G)

Even Weirder Graph
ParYYoning Problem

NDP in grids

EWGP

xi

yj

Main Idea: define the problem
so that this kind of cheaYng

won’t happen

Will collect at most 6r edges per
constraint as before

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph Partitioning Problem (WGP)

X

i

|Ei|

Extra:
• For every vertex,

incident edges are
partitioned into
bundles

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

Extra:
• For every vertex,

incident edges are
parYYoned into
bundles

• may only take 1
edge per bundle

• Input: bipartite graph G=(V,E), integers p, L.
• Output:
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

Extra:
• For every vertex,

incident edges are
partitioned into
bundles

• may only take 1
edge per bundle

Canonical Cheating Solution

xi

yj

So far: cheaYng soluYon
may collect at most 6r

edges per constraint

… but we sYll don’t know
how to prove that its

value is low

Define the bundles so that at most 6r

edges can be collected per constraint

For each vertex, all edges leading to the
same cloud are a bundle

End of the Technical Issue

Main Idea 2: Cook not Karp

Standard Karp Reduction

CSP
Instance

WGP
Instance

• If CSP is a Yes-Instance, WGP has a solution of large value
• If CSP is a No-Instance, every solution to WGP has low value

we don’t know how
to prove this…

Our Reduction (Cook)
Assume for contradiction that there is an α-
approximation algorithm A for WGP.

WGP
Instance

WGP
Instance

WGP
Instance

WGP
Instance

WGP
Instance

CSP Instance

If CSP is a Yes-Instance, each WGP instance has a high-value solution

prescribed value

Our Reduction (Cook)
Assume for contradiction that there is an α-
approximation algorithm A for WGP.

WGP
Instance

WGP
Instance

WGP
Instance

WGP
Instance

WGP
Instance

CSP Instance

If CSP is a Yes-Instance, each WGP instance has a high-value solution

If CSP is a No-Instance, some WGP instance only has low-value solutions

Our ReducYon (Cook)
Assume for contradicYon that there is an α-
approximaYon algorithm A for WGP.

WGP
Instance

WGP
Instance

WGP
Instance

WGP
Instance

WGP
Instance

CSP Instance Can disYnguish
between the two by
applying the approx.
alg to each instance

If CSP is a No-Instance, some WGP instance only has low-value soluYons

If CSP is a Yes-Instance, each WGP instance has a high-value solution

Our ReducYon (Cook)
Assume for contradiction that there is an α-
approximation algorithm A for WGP.

WGP
Instance

WGP
Instance

WGP
Instance

WGP
Instance

CSP Instance

Construction of each instance depends on solution produced by A to previous
instances!

WGP
Instance

Reduction Overview

Assume for contradiction that there is an α-
approximation algorithm A for WGP.

will use the algorithm to distinguish
yes and no instances of CSP

constraint graph assignment
graph/WGP

input

G1

G2 …

G6r

Approx solution

will always assume that the solution
is canonical honest or cheating

constraint graph assignment
graph/WGP

input

G1

G2 …

G6r

Approx solution

Solution value too
low?

No Instance!

constraint graph assignment
graph/WGP

input

G1

G2 …

G6r

Approx solution

High solution
value + canonical
honest solution?

Yes Instance!

constraint graph assignment
graph/WGP

input

G1

G2 …

G6r

Approx solution

?

High soluYon value +
canonical cheaYng

soluYon?

constraint graph assignment
graph/WGP

input

High solution value
+ canonical cheating

solution?

?

Solution partitions
the constraint graph

into many small
pieces; keeps most

constraints

constraint graph assignment
graph/WGP

input

SoluYon parYYons
the constraint graph

into many small
pieces; keeps most

constraints

Apply same
reduction to each

piece!

• Build assignment graph for each
piece separately

• apply approx. algorithm to each

The Big Picture

constraint graph

Will either:
• correctly determine

that it’s a Yes or a No
Instance

• or cut into much
smaller pieces,
preserving many
constraints

The Big Picture
• Reduce each piece to WGP

instance separately
• Apply approx. algorithm to

each WGP instance

SoluYon value in
any piece too low?

No Instance!

relaYvely to
#constraints in

piece

The Big Picture
• Reduce each piece to WGP

instance separately
• Apply approx. algorithm to

each WGP instance

a piece w high solution
value and honest solution

becomes inactive

The Big Picture
• Reduce each piece to WGP

instance separately
• Apply approx. algorithm to

each WGP instance

a piece w high soluYon
value and honest soluYon

becomes inacYve

each piece w high solution
value and cheating solution

is cut again

The Big Picture
• Reduce each piece to WGP

instance separately
• Apply approx. algorithm to

each WGP instance

a piece w high solution
value and honest solution

becomes inactive

each piece w high solution
value and cheating solution

is cut again

The Big Picture
If for any resulYng cluster we get a soluYon of
low cost, we know it’s a No-Instance.

Assume this never happens

Can’t cut forever

when we stop cu~ng, every current
cluster is inacYve, so we can saYsfy many
of its constraints

The Big Picture
If for any resulting cluster we get a solution of
low cost, we know it’s a No-Instance.

Assume this never happens

Can’t cut forever

when we stop cu~ng, every current
cluster is inacYve, so we can saYsfy many
of its constraints

many constraints are preserved, so we can
saYsfy many constraints overallYes Instance!

Summary: Main Ideas

• Introduce intermediate problem WGP
• Can modify it to suit our reduction
• Cook not Karp reduction.

Single-Shot vs Multi-shot Reductions

• Intuitively, it feels like multi-shot reductions should be more
powerful

• But in almost all cases, single-shot reductions are sufficient

Exception: NP-hardness
of embedding metrics

into L1 [Karzanov]

Single-Shot vs MulY-shot ReducYons

• IntuiYvely, it feels like mulY-shot reducYons should be more
powerful

• But in almost all cases, single-shot reducYons are sufficient
• It is possible that one can construct a single-shot reducYon

from 3-Coloring to NDP a bug, not a
feature?

Conclusions

• We showed: almost polynomial hardness of NDP in grids
– tradeoffs between hardness factor and complexity assumption.

• Congestion minimization:
– O(log n/log log n)-approximation algorithm
– Ω(log log n)-hardness of approximation

Thank you!

