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Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s1,t1),…,(sk,tk).
Goal: Route as many pairs as possible via node-
disjoint paths
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Node-Disjoint Paths (NDP)

Input: Graph G, demand pairs (s1,t1),…,(sk,tk).
Goal: Route as many pairs as possible via node-
disjoint paths
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Solution value: 2



Complexity of NDP

• Constant k: efficiently solvable [Robertson, Seymour ’90]

• Running time:  f(k)�n2 [Kawarabayashi, Kobayashi, Reed]
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Complexity of NDP

• Constant k: efficiently solvable [Robertson, Seymour ’90]

• Running Yme:  f(k)�n2 [Kawarabayashi, Kobayashi, Reed]

• NP-hard when k is part of input [Knuth, Karp ’72]

Approximation 
Algorithm?



Best Current Approximation Algorithm
[Kolliopoulos, Stein ‘98]

• Choose a path P of minimum length connecting 
some demand pair

• Add P to the solution
• Delete vertices of P from the graph
• Repeat

-approximationO(
p
n)Until recently: nothing 

better even for planar 
graphs and grids!
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• -approximation algorithm
– Even on planar graphs
– Even on grid graphs

• -hardness of approximation for any     [Andrews, Zhang ‘05], 
[Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

O(
p
n)

�(log1/2�� n) ✏

Approximation Status of NDP from 2015



• -approximation algorithm
– Even on planar graphs
– Even on grid graphs

• -hardness of approximation for any     [Andrews, Zhang ‘05], 
[Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

O(
p
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�(log1/2�� n) ✏

ApproximaYon Status of NDP from 2015
Plan:

• get polylog(n)-approximaYon 
for grids

• extend to planar graphs
• look into general graphs



• -approximation algorithm
– Even on planar graphs
– Even on grid graphshs

• -hardness of approximation for any     [Andrews, Zhang ‘05], 
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-approximation [C, Kim ‘15]Õ(n1/4)

-approximation [C, Kim, Li ‘16]Õ(n9/19)

-approximation for grids with sources on 
boundary [C, Kim, Nimavat ‘17]
2O(
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Hardness of NDP on grids: [C, Kim, Nimavat ‘17]

• -hardness for any constant

• -hardnessn⌦(1/(log logn)2)

2(logn)1�✏
✏

Almost polynomial Hardness
unless

NP ✓ RTIME(npoly log n)



Hardness of NDP on grids: [C, Kim, Nimavat ‘17]

• -hardness for any constant

• -hardnessn⌦(1/(log logn)2)

2(logn)1�✏
✏

Almost polynomial Hardness
unless every problem in 

NP has randomized quasi-
poly-time algorithm

under randomized ETH 
(need almost exponential time to 

solve SAT by randomized alg)



Hardness of NDP on grids: [C, Kim, Nimavat ‘17]

• -hardness for any constant

• -hardnessn⌦(1/(log logn)2)

2(logn)1�✏
✏

Almost polynomial Hardness
unless

NP ✓ RTIME(npoly log n)

unless for every 
NP ✓ RTIME(2n

�

)
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Edge-Disjoint Paths (EDP)

• Like NDP, only the paths must be disjoint in their edges, may 
share vertices.

• Same upper/lower bounds as NDP
– -approximation algorithm [Chekuri, Khanna, Shepherd ‘06]
– -hardness of approximation for any    [Andrews, Zhang 

‘05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang ’10]

• But: constant approximation on grids [Aumann, Rabani ‘95], 
[Kleinberg Tardos ‘95], [Kleinberg, Tardos ‘98]

O(
p
n)

�(log1/2�� n) ✏



A Wall

All current upper/lower bounds for NDP in grids carry over 
to EDP in walls



What if we allow paths to share 
edges/verYces?

rouYng with congesYon



Routing with Congestion
• Congestion O(log n/log log n): constant 

approximation [Raghavan, Thompson ’87]

• Congestion c: -approximation [Azar, Regev ’01], 
[Baveja, Srinivasan ’00], [Kolliopoulos, Stein ‘04]

• Congestion poly(log log n): polylog(n)-approx
[Andrews ‘10]

• Congestion 2: -approximation [Kawarabayashi, 
Kobayashi ’11]

• Congestion 14: polylog(k)-approximation [C, ‘11]

• Congestion 2: polylog(k)-approximation [C, Li ’12]

• polylog(k)-approximation for NDP with congestion 
2 [Chekuri, Ene ’12], [Chekuri, C ‘16]

O(n1/c)

O(n3/7)Big difference between routing 
with congestion 1 and 2.

If up to 2 paths are allowed to 
share a vertex/an edge, can get 

polylog(k)-approximation



Node-Disjoint Paths in Grid Graphs:
Hardness of Approximation



Main Idea 1

• Define an intermediate graph parYYoning problem

Weird Graph 
ParYYoning Problem 

(WGP)



Main Idea 1

• Define an intermediate graph partitioning problem

• Prove that NDP in grids is at least as hard as WGP
• Prove hardness of WGP

Weird Graph 
Partitioning Problem 

(WGP)



Weird Graph Partitioning Problem (WGP)



Weird Graph Partitioning Problem (WGP)

• Input: biparYte graph G=(V,E), integers p, L.
• Output: 
– parYYon G into p vertex-induced subgraphs.
– for each i, subset                         of edges, with |Ei|≤ h

• Goal: maximize pieces



Weird Graph Partitioning Problem (WGP)

• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each i, subset                         of edges, with |Ei|≤ h

• Goal: maximize

Intuition:
• Want to maximize the total number of edges that are not cut
• Don’t want one piece to contain all the edges; want a balanced 

distribution of edges.

Solution:
• Will count at most L edges from each piece towards the solution



Weird Graph Partitioning Problem (WGP)

• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
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• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
– Goal: maximize

Weird Graph Partitioning Problem (WGP)
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• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
– Goal: maximize

Weird Graph Partitioning Problem (WGP)

X

i

|Ei|

Intuitive View 1: Balanced Cut
Except:
• Partition into p and not 2 pieces
• Maximize # of surviving edges.



• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

IntuiYve View 2: Densest k-Subgraph

Densest k-subgraph:
Input: graph G, integer k
Output: subgraph G’ of G on k vertices
Goal: maximize |E(G’)|



On Densest k-Subgraph
• O(n1/4)-approximation [Bhaskara, Charikar, Chlamtac, Feige, 

Vijayaraghavan ‘10]

• Notoriously hard to prove hardness of approximation
– APX-hardness [Khot, ‘06]
– Constant hardness assuming small-set-expansion 

conjecture [Raghavendra, Steurer ’10]
– Hardness results based on average-case 

complexity assumption of SAT of Feige [Alon, 
Arora, Manokaran, Moshkovitz, Weinstein ‘11]

– Almost polynomial hardness using Exponential 
Time Hypothesis [Manurangsi ‘16]



• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
– Goal: maximize

Weird Graph Partitioning Problem (WGP)

X

i

|Ei|

Intuitive View 2: Densest k-Subgraph
Except:
• Want p dense subgraphs and not one



• Input: biparYte graph G=(V,E), integers p, L.
• Output: 
– parYYon G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

Plan:
1. NDP in grids is at least as hard as WGP
2. Prove hardness of WGP



Part 1: NDP in Grids is at Least as Hard as WGP
(up to polylog n factor)



The Reduction

G



The Reduction

Edge Demand 
Pair

disjoint endpoints

G



The Reduction
sources

destinations

for every vertex, choose a 
continuous area on 

source/dest row

G



The ReducYon

G
all blocks must be far from 

each other and from the grid 
boundary



The Reduction
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The ReducYon

s1

t1

s2

t2

s3

t3

distances between 
sources chosen 

strategically!

if too large, can 
route all pairs

if too small, won’t 
be able to route 
what we need to

G



The Reduction

G



The Reduction

Claim: the reduction preserves solution value to 
within polylog(n) factor!

If true, then NDP in grids is at least as hard as WGP

could use an algorithm for 
NDP to solve WGP



DirecYon 1
Claim: the reduction 
preserves solution value to 
within polylog(n) factor!

suppose we route many 
demand pairs

G



Direction 1
Claim: the reduction 
preserves solution value to 
within polylog(n) factor!

G



DirecYon 1
Claim: the reducYon 
preserves soluYon value to 
within polylog(n) factor!

G



Direction 1
Claim: the reduction 
preserves solution value to 
within polylog(n) factor!

Can get a drawing of the graph 
with few crossings

G’

To get the drawing “contract” 
each block



DirecYon 1
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Direction 1
Claim: the reduction 
preserves solution value to 
within polylog(n) factor!

G’

Claim: this drawing of G’ 
has few crossings.

Why?



DirecYon 1
Claim: the reduction 
preserves solution value to 
within polylog(n) factor!

crossings only introduced when a 
path goes through a block

G’

distances within a block small 
enough

So far: we obtain a drawing of a 
large subgraph of G with few 

crossings.



Direction 1
Claim: the reducYon 
preserves soluYon value to 
within polylog(n) factor!

Planar graphs have very small balanced cut

graphs with few crossings behave like planar graphs

can cut into p balanced pieces by cutting few edges



Direction 2
Claim: the reduction 
preserves solution value to 
within polylog(n) factor!

suppose we have a high-value 
solution to WGP

G

G1 G2

the pieces break the NDP problem into much smaller 
problems that can be routed independently



Plan:
1. NDP in grids is at least as hard as WGP ✔
2. Prove hardness of WGP



Hardness of WGP



Starting Point: 3COL(5)

Input: 5-regular graph G.
3-coloring: assigning Red, Blue or 

Green color to each vertex



StarYng Point: 3COL(5)

Input: 5-regular graph G.

Edge is happy iff both endpoints 
have different colors

3-coloring: assigning Red, Blue or 
Green color to each vertex



Starting Point: 3COL(5)

Input: 5-regular graph G.
• G is Yes-Instance if there is a coloring where every edge is happy
• G is No-Instance if in every coloring at least 0.01-fraction of 

edges are unhappy

Thm: NP-hard to tell if G is
a Yes or a No instance.



If there is a coloring that makes all edges 
happy, then there are 6 such colorings!



• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice



• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice



• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice

Bonus property of 3COL
[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]



Next Steps

3COL(5) instance G WGP problem 
instance H(G)

2-prover protocol + 
parallel repetition

Constraint 
SaYsfacYon Problem 

instance φ(G)



A CSP Instance φ(G)
G

3COL(5)

r – number of 
repetitions

“edge”-variables “vertex”-variables

y1

…

y2

y3

yM

x1

x2

x3

x4

xN

…



A CSP Instance φ(G)
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r – number of 
repetitions

“edge”-variables “vertex”-variables

……
r

For every sequence of r 
edges of G, there is a 
variable on the left

An assignment to the 
variable is a legal

coloring of the edges
mr variables
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A CSP Instance φ(G)
G

r – number of 
repeYYons

“edge”-variables “vertex”-variables

……
r

For every sequence of r 
edges of G, there is a 
variable on the lez

An assignment to the 
variable is a legal

coloring of the edges

need not be 
consistent 

across edges

6r possible 
assignments 
per variable



A CSP Instance φ(G)
G

r – number of 
repetitions

“edge”-variables “vertex”-variables

……
r

r

For every sequence of r 
vertices of G, there is a 

variable on the right

An assignment to the 
variable is a coloring of 

the vertices



A CSP Instance φ(G)
G

r – number of 
repetitions

“edge”-variables “vertex”-variables

……
r

r

need not be 
consistent 

across verYces

For every sequence of r 
vertices of G, there is a 

variable on the right

An assignment to the 
variable is a coloring of 

the verYces



A CSP Instance φ(G)
G

r – number of 
repetitions

“edge”-variables “vertex”-variables

……
r

r

need not be 
consistent 

across vertices

For every sequence of r 
vertices of G, there is a 

variable on the right

An assignment to the 
variable is a coloring of 

the vertices
3r possible 

assignments 
per variable



A CSP Instance φ(G)
G

r – number of 
repeYYons

……
e1

e2

er

…
v1

v2

vr

…

put a constraint iff ∀i, 
vi is an endpoint of ei.



A CSP Instance φ(G)
G

r – number of 
repeYYons

……
e1

e2

er

…
v1

v2

vr

…

put a constraint iff ∀i, 
vi is an endpoint of ei.

constraint is satisfied 
iff ∀i, both 

assignments to vi are 
the same

we don’t check 
consistency across 

different 
coordinates



A CSP Instance φ(G)
G

r – number of 
repeYYons

……
If G is a Yes-Instance, there is 

an assignment to variables 
satisfying all constraints

a perfect
solution



A CSP Instance φ(G)
G

r – number of 
repeYYons

……
If G is a Yes-Instance, there is 

an assignment to variables 
saYsfying all constraints

If G is a No-Instance, any 
assignment satisfies ≤ 1/2Ω(r)-

fraction of constraints



A CSP Instance φ(G)
G

r – number of 
repetitions

……
If G is a Yes-Instance, there is 

an assignment to variables 
satisfying all constraints

If G is a No-Instance, any 
assignment saYsfies ≤ 1/2Ω(r)-

fracYon of constraints

NP-hard to distinguish



Bonus Property for Yes Instance!r – number of 
repetitions

……

Perfect 
SoluYon



Solution 6r

…

Bonus Property for Yes Instance!r – number of 
repetitions

……
SoluYon 3

SoluYon 2

Solution 1



SoluYon 6r

…

Bonus Property for Yes Instance!r – number of 
repetitions

……
SoluYon 3

Solution 2

SoluYon 1



Bonus Property for Yes Instance!r – number of 
repetitions

……

SoluYon 6r

…

Solution 3

SoluYon 2

Solution 1

6r possible 
assignments

assignment 1

assignment 2

assignment 3

…

assignment 6r

Each assignment appears in 
exactly 1 soluYon!



Solution 6r

…

Bonus Property for Yes Instance!r – number of 
repetitions

……
Solution 3

SoluYon 2

Solution 1

r



Solution 6r

…

Bonus Property for Yes Instance!r – number of 
repeYYons

……
Solution 3

Solution 2

Solution 1

r3r possible 
assignments

Each assignment in exactly 2r

soluYons!



• For every edge, each legal coloring appears exactly once
• For each vertex, every coloring appears exactly twice

Bonus property of 3COL
[Feige, Halldorsson, Kortsarz, Srinivasan ‘03]



Next Steps

3COL(5) instance G WGP problem 
instance H(G)

2-prover protocol + 
parallel repetition

Constraint 
SaYsfacYon Problem 

instance φ(G)

✔



A CSP Problem Instance φ

……

φ is a Yes-Instance, if there is 
an assignment to variables 

satisfying all constraints

φ is a No-Instance, if any 
assignment satisfies ≤ 1/2Ω(r)-

fraction of constraints

NP-hard to distinguish

+ the bonus property



Bonus Property

……

Solution 6r

…

Solution 3

Solution 2

SoluYon 1

φ is a Yes-Instance, there are 
6r perfect soluYons

for each var on left each 
assignment appears in 1 

solution

for each var on right each 
assignment appears in 2r

soluYon



Next Steps

3COL(5) instance G WGP problem 
instance H(G)

2-prover protocol + 
parallel repetition

Constraint 
SaYsfacYon Problem 

instance φ(G)

✔



2 Graphs for CSP

……

constraint graph

assignment 
graph

6r
1 vertex for each 

assignment



2 Graphs for CSP

……

constraint graph

assignment 
graph

6r
1 vertex for each 

assignment 6r

2r verYces for 
each assignment



2 Graphs for CSP

……

constraint graph

assignment 
graph

put an edge iff the 
assignments 
satisfy the 
constraint

clouds



2 Graphs for CSP

……

constraint graph

assignment 
graph



2 Graphs for CSP

……

constraint graph

assignment 
graph



ReducYon to WGP

……

constraint graph

assignment 
graph

6r verYces



ReducYon to WGP

6r vertices

Input to WGP problem
• p=6r

• L=#constraints



Yes Case Analysis

6r vertices

Input to WGP problem
• p=6r

• L=#constraints

Solution 6r

…

SoluYon 3

Solution 2

SoluYon 1



Yes Case Analysis

Input to WGP problem
• p=6r

• L=#constraints

Solution 6r

…

SoluYon 3

SoluYon 2

Solution 1



Yes Case Analysis

Solution 6r

…

Solution 3

Solution 2

SoluYon 1

Each soluYon defines a 
piece in the parYYon



Yes Case Analysis

SoluYon 1



Yes Instance Analysis

Solution 1

will collect 1 edge 
per constraint

G1



Yes Instance Analysis

G1

Solution 6r

…
Solution 3
Solution 2
Solution 1

G2

…

G6r

• p=6r pieces
• each piece contributes L=|C| 

edges
• total solution value: 6r|C|

In No-Instance p and L stay 
the same.

Want to show: soluYon 
value is low



No Instance Analysis

G1

G2 …

G6r

Ideal soluYon: each piece contains 
exactly 1 vertex from each cloud

In ideal solution, each piece defines 
assignment to variables

Can only saYsfy few constraints, so 
#edges in each piece very low!



No Instance Analysis

G1

G2 …

G6r

Problem: No-Instance 
soluYon does not 
have to look this 

way!



No Instance Analysis



Two Extreme SoluYons
Ideal solution: each 
piece contains 
exactly 1 vertex 
from each cloud

canonical honest 
solution

canonical cheating 
solution: each 
cloud is contained 
in some piece



Two Extreme Solutions

…

Ideal soluYon: each 
piece contains 
exactly 1 vertex 
from each cloud

canonical cheating 
solution: each 
cloud is contained 
in some piece

• Any soluYon can be turned into a 
soluYon that behaves like one of these 
two extreme soluYons, with a small 
loss

• Enough to analyze the cheaYng 
canonical soluYon



A Technical Issue



Canonical Cheating Solution



Canonical Cheating Solution

xi

yj

G1



Canonical Cheating Solution

xi

yj

Yes—Case solution: constraint will contribute 6r

edges to solution.



Canonical Cheating Solution

xi

yj

Yes—Case soluYon: constraint will contribute 6r

edges to soluYon.

cheating solution may collect a lot more per 
constraint!

unfair advantage to 
cheaYng soluYons!



Solution: Cheat

xi

yj



Hardness Proof Plan

3COL(5) instance G WGP problem 
instance H(G)

2-prover protocol + 
parallel repetition

Constraint 
SaYsfacYon Problem 

instance φ(G)

NDP in grids



Hardness Proof Plan

3COL(5) instance G WGP problem 
instance H(G)

2-prover protocol + 
parallel repeYYon

Constraint 
SaYsfacYon Problem 

instance φ(G)

EWGP 
problem 

instance H(G)

Even Weirder Graph 
ParYYoning Problem

NDP in grids



EWGP

xi

yj

Main Idea: define the problem 
so that this kind of cheaYng 

won’t happen 

Will collect at most 6r edges per 
constraint as before



• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|
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• Input: bipartite graph G=(V,E), integers p, L.
• Output: 
– partition G into p vertex-induced subgraphs.
– for each subgraph Gi, select a subset Ei of at most L 

edges
– Goal: maximize

Weird Graph ParYYoning Problem (WGP)

X

i

|Ei|

Extra:
• For every vertex, 

incident edges are 
partitioned into 
bundles

• may only take 1 
edge per bundle



Canonical Cheating Solution

xi

yj

So far: cheaYng soluYon 
may collect at most 6r

edges per constraint

… but we sYll don’t know 
how to prove that its 

value is low

Define the bundles so that at most 6r

edges can be collected per constraint

For each vertex, all edges leading to the 
same cloud are a bundle



End of the Technical Issue



Main Idea 2: Cook not Karp 



Standard Karp Reduction

CSP 
Instance

WGP 
Instance

• If CSP is a Yes-Instance, WGP has a solution of large value
• If CSP is a No-Instance, every solution to WGP has low value

we don’t know how 
to prove this…



Our Reduction (Cook)
Assume for contradiction that there is an α-
approximation algorithm A for WGP.

WGP 
Instance

WGP 
Instance

WGP 
Instance

WGP 
Instance

WGP 
Instance

CSP Instance

If CSP is a Yes-Instance, each WGP instance has a high-value solution

prescribed value



Our Reduction (Cook)
Assume for contradiction that there is an α-
approximation algorithm A for WGP.

WGP 
Instance

WGP 
Instance

WGP 
Instance

WGP 
Instance

WGP 
Instance

CSP Instance

If CSP is a Yes-Instance, each WGP instance has a high-value solution

If CSP is a No-Instance, some WGP instance only has low-value solutions



Our ReducYon (Cook)
Assume for contradicYon that there is an α-
approximaYon algorithm A for WGP.

WGP 
Instance

WGP 
Instance

WGP 
Instance

WGP 
Instance

WGP 
Instance

CSP Instance Can disYnguish 
between the two by 
applying the approx. 
alg to each instance

If CSP is a No-Instance, some WGP instance only has low-value soluYons

If CSP is a Yes-Instance, each WGP instance has a high-value solution



Our ReducYon (Cook)
Assume for contradiction that there is an α-
approximation algorithm A for WGP.

WGP 
Instance

WGP 
Instance

WGP 
Instance

WGP 
Instance

CSP Instance

Construction of each instance depends on solution produced by A to previous 
instances!

WGP 
Instance



Reduction Overview

Assume for contradiction that there is an α-
approximation algorithm A for WGP.

will use the algorithm to distinguish 
yes and no instances of CSP



constraint graph assignment 
graph/WGP 

input

G1

G2 …

G6r

Approx solution

will always assume that the solution 
is canonical honest or cheating



constraint graph assignment 
graph/WGP 

input

G1

G2 …

G6r

Approx solution

Solution value too 
low?

No Instance!



constraint graph assignment 
graph/WGP 

input

G1

G2 …

G6r

Approx solution

High solution 
value + canonical 
honest solution?

Yes Instance!



constraint graph assignment 
graph/WGP 

input

G1

G2 …

G6r

Approx solution

?

High soluYon value + 
canonical cheaYng 

soluYon?



constraint graph assignment 
graph/WGP 

input

High solution value 
+ canonical cheating 

solution?

?

Solution partitions 
the constraint graph 

into many small 
pieces; keeps most 

constraints



constraint graph assignment 
graph/WGP 

input

SoluYon parYYons 
the constraint graph 

into many small 
pieces; keeps most 

constraints

Apply same 
reduction to each 

piece!

• Build assignment graph for each 
piece separately

• apply approx. algorithm to each 



The Big Picture

constraint graph

Will either:
• correctly determine 

that it’s a Yes or a No 
Instance

• or cut into much 
smaller pieces, 
preserving many 
constraints



The Big Picture
• Reduce each piece to WGP 

instance separately
• Apply approx. algorithm to 

each WGP instance

SoluYon value in 
any piece too low?

No Instance!

relaYvely to 
#constraints in 

piece
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a piece w high solution 
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value and cheating solution 

is cut again



The Big Picture
If for any resulYng cluster we get a soluYon of 
low cost, we know it’s a No-Instance.

Assume this never happens

Can’t cut forever

when we stop cu~ng, every current 
cluster is inacYve, so we can saYsfy many 
of its constraints



The Big Picture
If for any resulting cluster we get a solution of 
low cost, we know it’s a No-Instance.

Assume this never happens

Can’t cut forever

when we stop cu~ng, every current 
cluster is inacYve, so we can saYsfy many 
of its constraints

many constraints are preserved, so we can 
saYsfy many constraints overallYes Instance!



Summary: Main Ideas

• Introduce intermediate problem WGP
• Can modify it to suit our reduction
• Cook not Karp reduction.



Single-Shot vs Multi-shot Reductions

• Intuitively, it feels like multi-shot reductions should be more 
powerful

• But in almost all cases, single-shot reductions are sufficient

Exception: NP-hardness 
of embedding  metrics 

into L1 [Karzanov]



Single-Shot vs MulY-shot ReducYons

• IntuiYvely, it feels like mulY-shot reducYons should be more 
powerful

• But in almost all cases, single-shot reducYons are sufficient
• It is possible that one can construct a single-shot reducYon 

from 3-Coloring to NDP a bug, not a 
feature?



Conclusions

• We showed: almost polynomial hardness of NDP in grids
– tradeoffs between hardness factor and complexity assumption.

• Congestion minimization:
– O(log n/log log n)-approximation algorithm
– Ω(log log n)-hardness of approximation

Thank you!


