
Graph	Routing	Problems:	
Approximation,	Hardness,	and	

Graph-Theoretic	Insights

Julia	Chuzhoy
Toyota	Technological	Institute	at	

Chicago

Graph	Routing	Problems

maximum	s-t	flow

maximum	
multicommodity flow

maximum													
node-disjoint	paths	

(NDP)

Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Solution	value:	2

OPT:	value	of	best	
possible	solution

Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Solution	value:	2

Edge-disjoint	Paths	(EDP):	
paths	must	be	edge-disjoint

Graph	
Routing	
Problems

VLSI	design Optical	
Networks

Graph	
Routing	
Problems

VLSI	design Optical	
Networks

Graph	
Minor	
theory

Graph	
Routing	
Problems

VLSI	design Optical	
Networks

Graph	
Decomposition Network	Flows

Graph	
Minor	
theory

Graph	
Sparsifiers

Excluded	
Grid	

Theorem

Graph	
Crossing	
Number Fixed	

Parameter	
Tractability

…

Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

terminals

Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Assumption: All	terminals	are	distinct

n	– number	of	graph	vertices
k	– number	of	demand	pairs

Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Can	we	solve	it	
efficiently?

k=1? ✔

k=2?

NDP	with	k=2
• NP-hard	in	directed	graphs	[Fortune,	Hopcroft,	
Wyllie	'80]

• Efficiently	solvable	in	undirected	graphs [Jung	‘70,	
Shiloach ’80,	Thomassen ‘80,	Robertson-Seymour	
’90]

s1

t1

s2

t2
G

Larger	k?

flat	
graph

Larger	k?

• Constant	k:	efficiently	solvable [Robertson,	Seymour	’90]

– Running	time:		f(k)�n2 [Kawarabayashi,	Kobayashi,	Reed	‘12]

f(k) = 22
2

.

.

.

k

Larger	k?

• Constant	k:	efficiently	solvable [Robertson,	Seymour	’90]

– Running	time:		f(k)�n2 [Kawarabayashi,	Kobayashi,	Reed	‘12]
• NP-hard	when	k	is	part	of	input	[Knuth,	Karp	’74]

Example

G

S T

s t

• Set	of	demand	pairs	is	SxT:	can	solve	efficiently
• Demand	pairs	are	a	specific	matching	between	S	
and	T:	NP-hard

Max	s-t	
flow

Example

G

S T

• Set	of	demand	pairs	is	SxT:	can	solve	efficiently
• Demand	pairs	are	a	specific	matching	between	S	
and	T:	NP-hard

Dealing	with	NP-Hardness
An	α-approximation	algorithm:

• efficient	algorithm
• always	produces	solutions	routing	at	least	
OPT/α	demand	pairs.

Dealing	with	NP-Hardness
An	α-approximation	algorithm:

• efficient	algorithm
• always	produces	solutions	routing	at	least	
OPT/α	demand	pairs.

Dealing	with	NP-Hardness
An	α-approximation	algorithm:

• efficient	algorithm
• always	produces	solutions	routing	at	least	
OPT/α	demand	pairs.

optimum	
solution	
value

On	Approximation	Factors

• A	simple	way	to	compare	algorithms
– α=1+ε
– α=2
– α=O(log	n)
– α=O(√n)
– …

On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Hardness	of	
approximation	results

On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Hardness	of	
approximation	results

On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Goal:	powerful,	simple	
algorithmic	techniques	
with	provable	bounds

On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Understanding	what	
makes	a	problem	difficult

Better	models	for	
real-life	problems

On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Dealing	with	NP-Hardness

Multicommodity Flow	relaxation:	send	as	much	flow	as	
possible	between	the	si-ti pairs.

An	α-approximation	algorithm:
• efficient	algorithm
• always	produces	solutions	routing	at	least	
OPT/α	demand	pairs.

Example

s1

t1

t2

s2
t3

s3

Example

s1

t1

t2

s2

s3

t3

Total	flow	
through	a	vertex	

at	most	1

Example

s1

t1

t2

s2
t3

• send	½	flow	unit	on	each	of	the	3	paths
• solution	value:	3/2

s3

NDP	solution	
value:	1

Multicommodity Flows

• Can	be	computed	efficiently

• OPTflow ≥	OPT

fractional	
solution

multicommodity
flow	LP-relaxation

integral	
solution

Multicommodity Flows

• Can	be	computed	efficiently

• OPTflow ≥	OPT

• Use	the	flow	to	find	integral	routing	of	at	least	
OPTflow/α		demand	pairs

α-approximation	
algorithm

multicommodity
flow	LP-relaxation

LP-rounding	technique

Approximation	Algorithm	[Kolliopoulos,	Stein	‘98]
While	there	is	a	path	P	with	f(P)>0:
• Add	such	shortest	path	P	to	the	solution
• For	each	path	P’	sharing	vertices	with	P,	set	f(P’)	to	0

Approximation	Algorithm	[Kolliopoulos,	Stein	‘98]
While	there	is	a	path	P	with	f(P)>0:
• Add	such	shortest	path	P	to	the	solution
• For	each	path	P’	sharing	vertices	with	P,	set	f(P’)	to	0

-approximationO(
p
n)

Can	We	Do	Better?

• Not	if	we	use	the	maximum	multicommodity
flow	approach!

Bad	Example
s1 s2 sk…

tk t1t2…

s3

t3

Bad	Example
s1 s2 sk…

tk t1t2…

s3

t3

Bad	Example
s1 s2 sk…

tk t1t2…

s3

t3

Bad	Example
s1 s2 sk…

tk t1t2…

s3

t3

Bad	Example
s1 s2 sk…

tk t1t2…

s3

t3

OPTflow=k/3
OPT=1
gap:	

�(k) = �(
p
n)

Bad	Example
s1 s2 sk…

tk t1t2…

s3

t3

OPTflow=k/3
OPT=1
gap:	

�(k) = �(
p
n)

Integrality	gap	
of	the	flow	
relaxation

Can	We	Do	Better?

• Not	if	we	use	the	maximum	multicommodity
flow	approach!

• -hardness	of	approximation	for	
any				[Andrews,	Zhang	‘05],	[Andrews,	C,	
Guruswami,	Khanna,	Talwar,	Zhang	’10]

�(log1/2�� n)
✏

Approximation	Status	of	NDP

• -approximation	algorithm
Until	recently:
– even	on	planar	graphs
– even	on	grid	graphshs

• -hardness	of	approximation	for	any		
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]

O(
p
n)

�(log1/2�� n) ✏

Only	NP-hardness	
known	for	planar	
graphs	and	grids

s1

t1

s2

t2

s3

t3

NDP	in	Grids

s1

t1

s2

t2

s3

t3

NDP	in	Grids

Approximation	Status	of	NDP

• -approximation	algorithm
Until	recently:
– even	on	planar	graphs
– even	on	grid	graphshs

• -hardness	of	approximation	for	any		
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]

O(
p
n)

�(log1/2�� n) ✏

[C,	Kim	’15]
-approximationÕ(n1/4)

Only	NP-hardness	
known	for	planar	
graphs	and	grids

Approximation	Status	of	NDP

• -approximation	algorithm
Until	recently:
– even	on	planar	graphs
– even	on	grid	graphshs

• -hardness	of	approximation	for	any		
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]

O(
p
n)

�(log1/2�� n) ✏

[C,	Kim,	Li	’16]
-approximationÕ(n9/19)

[C,	Kim	’15]
-approximationÕ(n1/4)

Approximation	Status	of	NDP

• -approximation	algorithm
Until	recently:
– even	on	planar	graphs
– even	on	grid	graphshs

• -hardness	of	approximation	for	any		
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]

O(
p
n)

�(log1/2�� n) ✏

[C,	Kim,	Li	’16]
-approximationÕ(n9/19)

[C,	Kim	’15]
-approximationÕ(n1/4)

[C,	Kim,	Nimavat ’16]
-hardness	of	approximation	

for	subgraphs of	grids	
2⌦(

p
logn)

Approximation	Status	of	NDP

• -approximation	algorithm
Until	recently:
– even	on	planar	graphs
– even	on	grid	graphshs

• -hardness	of	approximation	for	any		
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]

O(
p
n)

�(log1/2�� n) ✏

[C,	Kim,	Li	’16]
-approximationÕ(n9/19)

[C,	Kim	’15]
-approximationÕ(n1/4)

[C,	Kim,	Nimavat ’16]
-hardness	of	approximation	

for	subgraphs of	grids	
2⌦(

p
logn)

Work	in	Progress:
Almost	polynomial	hardness	for	NDP	in	
grid	graphs	[C,	Kim,	Nimavat ‘17]

Approximation	Status	of	EDP

• -approximation	algorithm	[Chekuri,	Khanna,	
Shepherd	’06]

• -hardness	of	approximation	even	for	
subgraphs of	wall	graphs	[C,	Kim,	Nimavat ’16]

O(
p
n)

2⌦(

p
logn)

A	Wall

Approximation	Status	of	EDP

• -approximation	algorithm	[Chekuri,	Khanna,	
Shepherd	’06]

• -hardness	of	approximation	even	for	
subgraphs of	wall	graphs	[C,	Kim,	Nimavat ’16]

• Work	in	progress:	almost	polynomial	hardness	
for	EDP	on	wall	graphs	[C,	Kim,	Nimavat ‘17]

O(
p
n)

2⌦(

p
logn)

Summary	so	Far

EDP and NDP do not have reasonable
approximation algorithms, even on planar graphs

What	if	we	allow	
some	congestion?

EDP/NDP	with	Congestion

An				-approximation	algorithm	with	congestion	c	
routes												.	 demand	pairs	with	congestion	at	
most	c.

up	to	c	paths	can	share	an	
edge	or	a	vertex

↵
OPT/�

EDP/NDP	with	Congestion

An				-approximation	algorithm	with	congestion	c	
routes												.	 demand	pairs	with	congestion	at	
most	c.

optimum	number	of	pairs	
with	no	congestion	allowed

↵
OPT/�

EDP	with	Congestion
• Congestion	O(log	n/log	log	n):	constant	
approximation	[Raghavan,	Thompson	’87]

• Congestion	c: -approximation	[Azar,	Regev ’01],	
[Baveja,	Srinivasan ’00],	[Kolliopoulos,	Stein	‘04]

• Congestion	poly(log	log	n): polylog(n)-approx
[Andrews	‘10]

• Congestion	2: -approximation [Kawarabayashi,	
Kobayashi	’11]

• Congestion	14:	polylog(k)-approximation	[C,	‘11]
• Congestion	2:	polylog(k)-approximation	[C,	Li	’12]
• polylog(k)-approximation	for	NDP with	congestion	

2 [Chekuri,	Ene ’12],	[Chekuri,	C	‘16]

O(n1/c)

O(n3/7)

EDP	with	Congestion
• Congestion	O(log	n/log	log	n):	constant	
approximation	[Raghavan,	Thompson	’87]

• Congestion	c: -approximation	[Azar,	Regev ’01],	
[Baveja,	Srinivasan ’00],	[Kolliopoulos,	Stein	‘04]

• Congestion	poly(log	log	n): polylog(n)-approx
[Andrews	‘10]

• Congestion	2: -approximation [Kawarabayashi,	
Kobayashi	’11]

• Congestion	14:	polylog(k)-approximation	[C,	‘11]
• Congestion	2:	polylog(k)-approximation	[C,	Li	’12]
• polylog(k)-approximation	for	NDP with	congestion	

2 [Chekuri,	Ene ’12],	[Chekuri,	C	‘16]

O(n1/c)

O(n3/7)

All	these	results	are	based	
on	the	multicommodity

flow	relaxation

“Tight”	due	to	known	
hardness	results

EDP	with	Congestion
• Congestion	O(log	n/log	log	n):	constant	
approximation	[Raghavan,	Thompson	’87]

• Congestion	c: -approximation	[Azar,	Regev ’01],	
[Baveja,	Srinivasan ’00],	[Kolliopoulos,	Stein	‘04]

• Congestion	poly(log	log	n): polylog(n)-approx
[Andrews	‘10]

• Congestion	2: -approximation [Kawarabayashi,	
Kobayashi	’11]

• Congestion	14:	polylog(k)-approximation	[C,	‘11]
• Congestion	2:	polylog(k)-approximation	[C,	Li	’12]
• polylog(k)-approximation	for	NDP with	congestion	

2 [Chekuri,	Ene ’12],	[Chekuri,	C	‘16]

O(n1/c)

O(n3/7) Structural	results	
about	graphs

new	results	in	
graph	theory!

EDP	with	Congestion
• Congestion	O(log	n/log	log	n):	constant	
approximation	[Raghavan,	Thompson	’87]

• Congestion	c: -approximation	[Azar,	Regev ’01],	
[Baveja,	Srinivasan ’00],	[Kolliopoulos,	Stein	‘04]

• Congestion	poly(log	log	n): polylog(n)-approx
[Andrews	‘10]

• Congestion	2: -approximation [Kawarabayashi,	
Kobayashi	’11]

• Congestion	14:	polylog(k)-approximation	[C,	‘11]
• Congestion	2:	polylog(k)-approximation	[C,	Li	’12]
• polylog(k)-approximation	for	NDP with	congestion	

2 [Chekuri,	Ene ’12],	[Chekuri,	C	‘16]

O(n1/c)

O(n3/7)

Edge-Disjoint	Paths	with	Constant	
Congestion

EDP	on	Expanders

In	a	strong	enough	expander,	if	the	set	of	demand	
pairs	is	not	too	large,	can	route	almost	all	of	them	
on	Node-Disjoint	Paths!	

A B

E0

|E0| � min{|A|, |B|}
2

Main	Idea:	Exploit	Algorithms	for	
Expanders!

But	our	graph	is	nothing	like	an	
expander

Find	expander-like	structure	in	the	
graph	and	use	it	for	routing!

G

Well-Linkedness
[Robertson,Seymour],	[Chekuri,	Khanna,	Shepherd],	[Raecke]

terminals

G

Well-Linkedness
[Robertson,Seymour],	[Chekuri,	Khanna,	Shepherd],	[Raecke]

Set	T	of	terminals	is	well-linked	in	G,	iff for	
any	partition	(A,B)	of	V(G),	 A B

|E(A,B)| � min{|A ⇥ T |, |B ⇥ T |}

terminals

G

Well-Linkedness
[Robertson,Seymour],	[Chekuri,	Khanna,	Shepherd],	[Raecke]

Set	T	of	terminals	is	well-linked	in	G,	iff for	
any	partition	(A,B)	of	V(G),	 A B

|E(A,B)| � min{|A ⇥ T |, |B ⇥ T |}

edge/node-
disjoint

EDP:	Well-Linked	Instances

• Terminals:	vertices	participating	in	the	
demand	pairs

• An	instance	is	well-linked	iff the	set	of	
terminals	is	well-linked	in	G.

Theorem [Chekuri,	Khanna Shepherd	‘04]:	an	α	-
approximation	algorithm	on	well-linked	
instances	gives	an	O(α	log2k)-approximation	on	
any	instance.

EDP:	Well-Linked	Instances

• Terminals:	vertices	participating	in	the	
demand	pairs

• An	instance	is	well-linked	iff the	set	of	
terminals	is	well-linked	in	G.

Theorem [Chekuri,	Khanna Shepherd	‘04]:	an	α	-
approximation	algorithm	on	well-linked	
instances	gives	an	O(α	log2k)-approximation	on	
any	instance.

Only	true	if	the	
algorithm	rounds	
the	flow	relaxation	

G

Main	Idea
[Chekuri,	Khanna,	Shepherd],	[Rao,	Zhou]

X

Embed	an	expander	over	the	terminals	into	G!

terminals	of	G

G

Main	Idea
[Chekuri,	Khanna,	Shepherd],	[Rao,	Zhou]

X

Embed	an	expander	over	the	terminals	into	G!

An	edge	of	G	may	belong	to	at	most	2	clusters/paths

G
X

1.	Embed	an	expander	over	the	terminals	into	G

An	edge	of	G	may	belong	to	at	most	2	clusters/paths

2.	Find	a	routing	on	node-disjoint	paths	in	the	
expander

3.	Translate	it	into	congestion-2	routing	in	G

Main	Idea
[Chekuri,	Khanna,	Shepherd],	[Rao,	Zhou]

G

Embedding	an	Expander	into	G

Routing	on	vertex-disjoint	paths	in	X	gives	a	good	
routing	in	G!

X
s ts

t

G

Main	Idea

X

1.	Embed	an	expander	over	the	terminals	into	G

An	edge	of	G	may	belong	to	at	most	2	clusters/paths

2.	Find	a	routing	on	node-disjoint	paths	in	the	
expander

3.	Translate	it	into	congestion-2	routing	in	G

G

Main	Idea

X

1.	Embed	an	expander	over	the	terminals	into	G

An	edge	of	G	may	belong	to	at	most	2	clusters/paths

2.	Find	a	routing	on	node-disjoint	paths	in	the	
expander

3.	Translate	it	into	congestion-2	routing	in	G

Cut-Matching	Game	[Khandekar,	Rao,	
Vazirani ’06]

Cut	Player:	wants	to	build	an	expander
Matching	Player:	wants	to	delay	its	construction

B3A3B2A2B1A1

Cut-Matching	Game	[Khandekar,	Rao,	
Vazirani ’06]

Cut	Player:	wants	to	build	an	expander
Matching	Player:	wants	to	delay	its	construction

There	is	a	strategy	for	cut	player,	s.t.	
after	O(log2n)	iterations,	we	get	an	
expander!

Embedding	Expander	into	Graph
G

Embedding	Expander	into	Graph
G

After	O(log2k)	iterations,	we	get	an	expander	embedded	
into	G.

Problem:	congestion	Ω(log2k)

Path-of-Sets	System

C2 C3 … CL

…
w

C1

A	Path-of-Sets	System

• L disjoint	connected	clusters
• Two	disjoint	sets	Ai,	Bi of	w	vertices	in	each	cluster	Ci
• Ai Bi is	well-linked	in	Ci
• For	all	i,	set	Pi of	w	disjoint	paths	connecting	Bi to	Ai+1
• All	paths	are	disjoint	from	each	other	and	internally	
disjoint	from	clusters

[

A1 B1

width	w
length	L

A2 B2 A3 B3 AL BL

From	Well-Linkedness to	Path-of-Sets
C2 C3 … CL

…w

C1

A1 B1 A2 B2 A3 B3 AL BL

Theorem	[C,	’11],	[C,	Li	’12],	[Chekuri,	C	’13]:
Suppose	G	has	a	set	of	k	well-linked	vertices.	
Then	we	can	efficiently	construct	a	path-of-sets	system	in	
G	with	parameters	L	and	w,	if:	 w · L48 < Õ(k)

From	Well-Linkedness to	Path-of-Sets
C2 C3 … CL

…w

C1

A1 B1 A2 B2 A3 B3 AL BL

Theorem	[C,	’11],	[C,	Li	’12],	[Chekuri,	C	’13]:
Suppose	G	has	a	set	of	k	well-linked	vertices.	
Then	we	can	efficiently	construct	a	path-of-sets	system	in	
G	with	parameters	L	and	w,	if:	

Extras:	
• Can	connect	w	terminals	to	A1 by	disjoint	paths
• Can	make	sure	they	form	demand	pairs!

We’ll	use:	
L=O(log2k)	
w=k/polylog k

w · L48 < Õ(k)

From	Well-Linkedness to	Path-of-Sets
C2 C3 … CL

…
w

C1

A1 B1 A2 B2 A3 B3 AL BL

The	paths	are	disjoint	
from	each	other	and	the	

PoS system

The	terminals	form	
demand	pairs

Given	the	PoS,	can	embed	an	
expander!

C2 C3 … CL

…
w

C1

Embedding	the	Expander

Ci

Ai Bi is	well-
linked	inside	Ci

[

Ai Bi

C2 C3 … CL

…
w

C1

Embedding	the	Expander

X

C2 C3 … CL

…
w

C1

Embedding	the	Expander

XExpander	vertex the	path	
containing	the	terminal

C2 C3 … CLC1

Embedding	the	Expander

XExpander	vertex the	path	
containing	the	terminal

C2 C3 … CLC1

Embedding	the	Expander

Expander	edges?										 cut-matching	
game!

C2 C3 … CLC1

Embedding	the	Expander

Expander	edges?										 cut-matching	
game!

C2 C3 … CLC1

Embedding	the	Expander

Expander	edges?										 cut-matching	
game!

node-disjoint	
paths

C2 C3 … CLC1

Embedding	the	Expander

C2 C3 … CLC1

Embedding	the	Expander

After	O(log2k)	iterations,	we	obtain	
an	expander	embedded	into	G	
with	congestion	2.…

Algorithm	for	EDPwC in	Well-Linked	
Instances

Find	a	Path-of-Sets	System

Find	vertex-disjoint	routing	in	the	expander

Transform	into	routing	in	G

Embed	an	expander	into	G

Structural	Result

If	G	contains	a	large	well-linked	set	of	vertices,	
then	it	contains	a	large	Path-of-Sets	System

Excluded	grid	
theorem

Large-treewidth
graph	

decompositions

Treewidth
sparsifiers

Vertex	flow	
sparsifiers

Excluded	Grid	Theorem
[Robertson,	Seymour]

Excluded	Grid	Theorem
[Robertson,	Seymour]

Simple	graphs

Excluded	Grid	Theorem
[Robertson,	Seymour]

Complicated	graphsSimple	graphs

Excluded	Grid	Theorem
[Robertson,	Seymour]

Complicated	graphsSimple	graphs

Treewidth k	è DP-based	
algorithms	with	running	

time	2O(k)poly(n).

Treewidth:	measures	how	
complex	the	graph	is.

Excluded	Grid	Theorem
[Robertson,	Seymour]

Complicated	graphsSimple	graphs

Treewidth:	measures	how	
complex	the	graph	is.

Original	definition:
Treewidth is	the	smallest	“width”	of	a	tree-like	structure	
that	correctly	“simulates”	the	graph.

(Almost)	Equivalent	definition:
Treewidth is	the	cardinality	of	the	largest	well-linked	set	of	
vertices	in	the	graph.

Treewidth

Trees Low-Treewidth
Graphs

High-Treewidth
Graphs

Treewidth

Trees Low-Treewidth
Graphs

High-Treewidth
Graphs

Excluded	Grid	Theorem
[Robertson,	Seymour	‘86]

If	the	treewidth of	G	is	large,	then	G	contains	a	
large	grid	as	a	minor.

Can	embed	a	large	
grid	into	G	with	no	

congestion

Excluded	Grid	Theorem
[Robertson,	Seymour]

If	the	treewidth of	G	is	large,	then	it	contains	a	
large	grid	minor,	so:
• G	contains	many	disjoint	cycles
• G	contains	many	disjoint	cycles	of	length	0	
mod	m

• G	contains	a	convenient	routing	structure
• The	size	of	the	vertex	cover	in	G	is	large
• …

Applications

• Fixed	parameter	tractability
• Erdos-Posa type	results
• Graph	minor	theory
– Algorithm	for	NDP	where	k	is	small

• Algorithms	for	graph	crossing	number
• …

Excluded	Grid	Theorem
[Robertson,	Seymour	‘86]

If	the	treewidth of	G	is	k,	then	G	contains	a	grid	
of	size	f(k)xf(k)	as	a	minor.

• [Robertson,	Seymour	‘94]:
–

• Conjecture	[Robertson,	Seymour	‘94]: This	is	tight.

f(k) = O
⇣p

k/ log k
⌘

Excluded	Grid	Theorem
[Robertson,	Seymour	‘86]

If	the	treewidth of	G	is	k,	then	G	contains	a	grid	
of	size	f(k)xf(k)	as	a	minor.

How	large	is	f(k)?

Excluded	Grid	Theorem
• [Robertson,	Seymour,	Thomas	‘89]:
• [Diestel,	Gorbunov,	Jensen,	Thomassen ‘99] – simpler	proof
• [Kawarabayashi,	Kobayashi	‘12],	[Leaf,	Seymour	‘12]:

• [Chekuri,	C	‘13]:
• [C,	‘16]:

f(k) = �
⇣
log1/5 k

⌘

f(k) = �

 s
log k

log log k

!

f(k) = �̃
⇣
k1/98

⌘

f(k) = ⌦̃
⇣
k1/19

⌘

C2 C3 … CL

…
w

C1

Main	Idea width	w
length	L

Thm: If	G	contains	a	path-of-sets	system	of	width	and	
length	Θ(g2),	then	there	is	a	(gxg)-grid	minor	in	G.

[Leaf,	Seymour	‘12]
[Chekuri,	C	’13]

C2 C3 … CL

…
w

C1

Main	Idea width	w
length	L

Thm: If	G	contains	a	path-of-sets	system	of	width	and	
length	Θ(g2),	then	there	is	a	(gxg)-grid	minor	in	G.

G	has	large	
treewidth

large	well-
linked	set	
of	vertices

large	Path-
of-Sets	
system

Excluded	Grid	
Theorem

Node	Disjoint	
Paths

[Robertson-Seymour	‘90]

[C,	Chekuri ‘13]

Excluded	Grid	
Theorem

Node	Disjoint	
Paths

[Robertson-Seymour	‘90]

[C,	Chekuri ‘13]

Historical	Note
• Work	on	routing	gave	slightly	weaker	structure	
than	Path-of-Sets	System,	called	Tree-of-Sets	
System

• We	later	modified	it	to	get	the	Path-of-Sets	
system	for	the	Excluded	Grid	theorem.

• This	in	turn	helped	improve	results	for	routing	
problems.

Approximation	
Algorithms

Hardness	of	
Approximation

Graph	
Theory

Fixed	
Parameter	
Tractability

Routing	
Problems

Graph	
Theory

Open	Problems

• Getting	tight	bounds	for	the	Excluded	Grid	
Theorem.

• Simpler	algorithms	for	NDP	with	constant	k
• Congestion	minimization:
– O(log	n/log	log	n)-approximation	algorithm
– Ω(log	log	n)-hardness	of	approximation
– Integrality	gap	of	the	multicommodity LP	
relaxation	open

Open	Problems

• Getting	tight	bounds	for	the	Excluded	Grid	
Theorem.

• Simpler	algorithms	for	NDP	with	constant	k
• Congestion	minimization:
– O(log	n/log	log	n)-approximation	algorithm
– Ω(log	log	n)-hardness	of	approximation
– Integrality	gap	of	the	multicommodity LP	
relaxation	open

Thank	you!

Planar	
graphs?

