Graph Routing Problems:
Approximation, Hardness, and Graph-Theoretic Insights

Julia Chuzhoy
Toyota Technological Institute at Chicago

Graph Routing Problems

maximum s-t flow

maximum multicommodity flow

maximum node-disjoint paths (NDP)

Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs $\left(s_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$. Goal: Route as many pairs as possible via nodedisjoint paths

Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs $\left(s_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$. Goal: Route as many pairs as possible via nodedisjoint paths

Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs $\left(s_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$. Goal: Route as many pairs as possible via nodedisjoint paths

Solution value: 2

OPT: value of best possible solution

Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$. Goal: Route as many pairs as possible via nodedisjoint paths

Solution value: 2

Edge-disjoint Paths (EDP): paths must be edge-disjoint

Graph
Minor theory

Graph
Routing
Problems

Optical
Networks

Optical Networks

Graph Minor theory

Graph Routing Problems

Graph
Decomposition

Network Flows

Graph Sparsifiers

Excluded Grid
Theorem

Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs $\left(s_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$. Goal: Route as many pairs as possiblf via nodedisjoint paths

Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs $\left(s_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$. Goal: Route as many pairs as possible via nodedisjoint paths

Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs $\left(s_{1}, \mathrm{t}_{1}\right), \ldots,\left(\mathrm{s}_{\mathrm{k}}, \mathrm{t}_{\mathrm{k}}\right)$. Goal: Route as many pairs as possible via nodedisjoint paths

Can we solve it efficiently?

$$
\begin{aligned}
& \mathrm{k}=1 ? \\
& \mathrm{k}=2 ?
\end{aligned}
$$

NDP with k=2

- NP-hard in directed graphs [Fortune, Hopcroft, Wyllie '80]
- Efficiently solvable in undirected graphs [Jung '70, Shiloach '80, Thomassen '80, Robertson-Seymour '90]

Larger k?

Larger k?

- Constant k: efficiently solvable [Robertson, Seymour '90]
- Running time: $\mathrm{f}(\mathrm{k}) \bullet{ }^{\bullet}{ }^{2}$ [Kawarabayashi, Kobayashi, Reed '12]

$$
f(k)=2^{2^{2}}
$$

Larger k?

- Constant k: efficiently solvable [Robertson, Seymour '90]
- Running time: $\mathrm{f}(\mathrm{k}) \bullet \mathrm{n}^{2}$ [Kawarabayashi, Kobayashi, Reed '12]
- NP-hard when k is part of input [Knuth, Karp '74]

Example

- Set of demand pairs is SxT: can solve efficiently

Example

- Set of demand pairs is SxT: can solve efficiently
- Demand pairs are a specific matching between S and T: NP-hard

Dealing with NP-Hardness

An α-approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/a demand pairs.

Dealing with NP-Hardness

An α-approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/a demand pairs.

Dealing with NP-Hardness

An α-approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/a demand pairs.
optimum
solution value

On Approximation Factors

- A simple way to compare algorithms
$-\alpha=1+\varepsilon$
$-\alpha=2$
$-\alpha=O(\log n)$
$-\alpha=O(V n)$
- ...

On Approximation Factors

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible approximation factor α for a given problem

Hardness of
approximation results

On Approximation Factors

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible approximation factor α for a given problem

Hardness of
approximation results

On Approximation Factors

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible a for a given problem

Goal: powerful, simple algorithmic techniques
with provable bounds

On Approximation Factors

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible a for a given problem

Better models for real-life problems

Understanding what makes a problem difficult

On Approximation Factors

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible approximation factor α for a given problem

Dealing with NP-Hardness

An α-approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/a demand pairs.

Multicommodity Flow relaxation: send as much flow as possible between the $s_{i}-t_{i}$ pairs.

Example

- send $1 / 2$ flow unit on each of the 3 paths
- solution value: $3 / 2$

Multicommodity Flows

- Can be computed efficiently
- $\mathrm{OPT}_{\text {flow }} \geq$ OPT
fractional
solution
integral solution
multicommodity
flow LP-relaxation

Multicommodity Flows

- Can be computed efficiently
- $\mathrm{OPT}_{\text {flow }} \geq \mathrm{OPT}$ multicommodity
flow LP-relaxation
- Use the flow to find integral routing of at least $\mathrm{OPT}_{\text {flow }} / \alpha$ demand pairs
α-approximation algorithm

LP-rounding technique

Approximation Algorithm [Kolliopoulos, Stein '98]

 While there is a path P with $f(P)>0$:- Add such shortest path P to the solution
- For each path P^{\prime} sharing vertices with P, set $f\left(P^{\prime}\right)$ to 0

Approximation Algorithm [Kolliopoulos, Stein ‘98]

 While there is a path P with $f(P)>0$:- Add such shortest path P to the solution
- For each path P^{\prime} sharing vertices with P, set $f\left(P^{\prime}\right)$ to 0
$O(\sqrt{n})$-approximation

Can We Do Better?

- Not if we use the maximum multicommodity flow approach!

Bad Example

Can We Do Better?

- Not if we use the maximum multicommodity flow approach!
- $\Omega\left(\log ^{1 / 2-\epsilon} n\right)$-hardness of approximation for any ϵ [Andrews, Zhang '05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

Approximation Status of NDP

- $O(\sqrt{n})$-approximation algorithm
- even on planar graphs
- even on grid graphs
- $\Omega\left(\log ^{1 / 2-\epsilon} n\right)$-hardness of approximation for any ϵ [Andrews, Zhang '05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

Only NP-hardness
known for planar
graphs and grids

NDP in Grids

NDP in Grids

Approximation Status of NDP

- $O(\sqrt{n})$-approximation algorithm

Until recently:

- even on planar graphs
- even on grid graphs
- $\Omega\left(\log ^{1 / 2-\epsilon} n\right)$-hardness o $\tilde{O}\left(n^{1 / 4}\right)$-approximation
[Andrews, Zhang '05], [Andrews, C, GuruswamI, Khanna, Talwar, Zhang '10]

Only NP-hardness
known for planar graphs and grids

Approximation Status of NDP

- $O(\sqrt{n})$-approximation alg-.int...

Until recently:

- even on planar graphs $<\tilde{O}\left(n^{9 / 19}\right)$-approximation
- even on grid graphs
- $\Omega\left(\log ^{1 / 2-\epsilon} n\right)$-hardness o $\tilde{O}\left(n^{1 / 4}\right)$-approximation [Andrews, Zhang '05], [Andrews, C, GuruswamI, Khanna, Talwar, Zhang '10]

Approximation Status of NDP

- $O(\sqrt{n})$-approximation alg-.int...

Until recently:

- even on planar graphs
- even on grid graphs
- $\Omega\left(\log ^{1 / 2-\epsilon} n\right)$-hardness o $\tilde{O}\left(n^{1 / 4}\right)$-approximation [Andrews, Zhang '05], [Andrews, C, GuruswamI, Khanna, Talwar, Zhang '10]
[C, Kim, Nimavat '16]
$2^{\Omega(\sqrt{\log n})}$-hardness of approximation
for subgraphs of grids

Approximation Status of NDP

- $O(\sqrt{n})$-approximation alg -ith

Until recently:
[C, Kim, Li '16]

- eve
- eve Almost polynomial hardness for NDP in grid graphs [C, Kim, Nimavat '17]
- $\Omega(\log$
[Andrews, Zhang '05], [Andrews, C, GuruswamI, Khanna, Talwar, Zhang '10] [C, Kim, Nimavat '16]
$2^{\Omega(\sqrt{\log n})}$-hardness of approximation for subgraphs of grids

Approximation Status of EDP

- $O(\sqrt{n})$-approximation algorithm [Chekuri, Khanna, Shepherd '06]
- $2^{\Omega(\sqrt{\log n})}$-hardness of approximation even for subgraphs of wall graphs [C, Kim, Nimavat '16]

A Wall

Approximation Status of EDP

- $O(\sqrt{n})$-approximation algorithm [Chekuri, Khanna, Shepherd '06]
- $2^{\Omega(\sqrt{\log n})}$-hardness of approximation even for subgraphs of wall graphs [C, Kim, Nimavat '16]
- Work in progress: almost polynomial hardness for EDP on wall graphs [C, Kim, Nimavat '17]

Summary so Far

EDP and NDP do not have reasonable approximation algorithms, even on planar graphs

What if we allow some congestion?

EDP/NDP with Congestion

An α-approximation algorithm with congestion c routes OPT/ α demand pairs with congestion at most c.
up to c paths can share an edge or a vertex

EDP/NDP with Congestion

An α-approximation algorithm with congestion c routes OPT/ α demand pairs with congestion at most c .
optimum number of pairs
with no congestion allowed

EDP with Congestion

- Congestion $\mathrm{O}(\log \mathrm{n} / \log \log \mathrm{n})$: constant approximation [Raghavan, Thompson '87]
- Congestion c: $O\left(n^{1 / c}\right)$-approximation [Azar, Regev ${ }^{\prime} 01$], [Baveja, Srinivasan ’00], [Kolliopoulos, Stein ‘04]
- Congestion poly(log $\log \mathrm{n})$: polylog(n)-approx [Andrews '10]
- Congestion 2: $O\left(n^{3 / 7}\right)$-approximation [Kawarabayashi, Kobayashi '11]
Congestion 14: polylog(k)-approximation [c, '11]
Congestion 2: polylog(k)-approximation [c, Li' 12$]$
- polylog(k)-approximation for NDP with congestion 2 [Chekuri, Ene '12], [Chekuri, C '16]

EDP with Congestion

- Congestion $O(\log n / \log \log n)$: constant approximation [Raghava All these results are based
- Congestion c: $O\left(n^{1 / c}\right)$ - on the multicommodity [Baveja, Srinivasan '00], [Kolli

flow relaxation

- Congestion poly(log log n): polylog(n)-approx [Andrews '10]
- Congestion 2: $O\left(n^{3 / 7}\right)$-appro>
"Tight" due to known hardness results Kobayashi '11]
Congestion 14: polylog(k)-app rimation [C, '11]
Congestion 2: polylog(k)-approximation [C, Li '12]
- polylog(k)-approximation for NDP with congestion

2 [Chekuri, Ene '12], [Chekuri, C '16]

EDP with Congestion

- Congestion $\mathrm{O}(\log \mathrm{n} / \log \log \mathrm{n})$: constant approximation [Raghavan, Thompson '87]
- Congestion c: $O\left(n^{1 / c}\right)$-approximation [Azar, Regev ${ }^{\prime} 01$], [Baveja, Srinivasan ’00], [Kolliopoulos, Stein ‘04]
- Congestion poly(log $\log \mathrm{n}):$ polylog(n)-approx [Andrews '10]
- Congestion 2: $O\left(n^{3 / 7}\right)$ Kobayashi '11]

Structural results about graphs

 rabayashi,Congestion 14: polylog(k) approximation [c, '11] new results in (م) 1 K)-approximation [C, Li' $\left.{ }^{\prime} 12\right]$ graph theory! imation for NDP with congestion 2 [Chekuri, Ene '12], CChekuri, C '16]

EDP with Congestion

- Congestion $\mathrm{O}(\log \mathrm{n} / \log \log \mathrm{n})$: constant approximation [Raghavan, Thompson '87]
- Congestion c: $O\left(n^{1 / c}\right)$-approximation [Azar, Regev '01], [Baveja, Srinivasan ’00], [Kolliopoulos, Stein ‘04]
- Congestion poly(log $\log \mathrm{n})$: polylog(n)-approx [Andrews '10]
- Congestion 2: $O\left(n^{3 / 7}\right)$-approximation [Kawarabayashi, Kobayashi '11]

Congestion 14: polylog(k)-approximation [c, '11]

Congestion 2: polylog(k)-approximation [c, Li' 12$]$

- polylog(k)-approximation for NDP with congestion 2 [Chekuri, Ene '12], [Chekuri, C '16]

Edge-Disjoint Paths with Constant Congestion

EDP on Expanders

$$
\left|E^{\prime}\right| \geq \frac{\min \{|A|,|B|\}}{2}
$$

In a strong enough expander, if the set of demand pairs is not too large, can route almost all of them on Node-Disjoint Paths!

Main Idea: Exploit Algorithms for Expanders!

But our graph is nothing like an expander

Find expander-like structure in the graph and use it for routing!

Well-Linkedness

[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

Well-Linkedness

[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

Set T of terminals is well-linked in G, iff for any partition (A, B) of $V(G)$,

$$
|E(A, B)| \geq \min \{|A \cap T|,|B \cap T|\}
$$

Well-Linkedness

[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

Set T of terminals is well-linked in G, iff for any partition (A, B) of $V(G)$,

$$
|E(A, B)| \geq \min \{|A \cap T|,|B \cap T|\}
$$

EDP: Well-Linked Instances

- Terminals: vertices participating in the demand pairs
- An instance is well-linked iff the set of terminals is well-linked in G.

Theorem [Chekuri, Khanna Shepherd '04]: an α approximation algorithm on well-linked instances gives an $\mathrm{O}\left(\alpha \log ^{2} \mathrm{k}\right)$-approximation on any instance.

EDP: Well-Linked Instances

- Terminals: vertices participating in the demand pairs
- An instance is well-linked iff terminals is well-linked in G .

Only true if the algorithm rounds the flow relaxation

Theorem [Chekuri, Khanna Shepherd '04]: an α approximation algorithm on well-linked instances gives an $\mathrm{O}\left(\alpha \log ^{2} \mathrm{k}\right)$-approximation on any instance.

Main Idea

[Chekuri, Khanna, Shepherd], [Rao, Zhou]

Embed an expander over the terminals into G!

Main Idea

[Chekuri, Khanna, Shepherd], [Rao, Zhou]

Embed an expander over the terminals into G!

An edge of G may belong to at most 2 clusters/paths

Main Idea

[Chekuri, Khanna, Shepherd], [Rao, Zhou]

1. Embed an expander over the terminals into G
2. Find a routing on node-disjoint paths in the expander

3. Translate it into congestion- 2 routing in G

An edge of G may belong to at most 2 clusters/paths

Embedding an Expander into G

Routing on vertex-disjoint paths in X gives a good routing in G!

Main Idea

1. Embed an expander over the terminals into G
2. Find a routing on node-disjoint paths in the expander

3. Translate it into congestion- 2 routing in G

An edge of G may belong to at most 2 clusters/paths

Main Idea

1. Embed an expander over the terminals into G
2. Find a routing on node-disjoint paths in the expander

3. Translate it into congestion- 2 routing in G

An edge of G may belong to at most 2 clusters/paths

Cut-Matching Game [Khandekar, Rao, Vazirani '06]

Cut Player: wants to build an expander Matching Player: wants to delay its construction

Cut-Matching Game [Khandekar, Rao,

 Vazirani '06]Cut Player: wants to build an expander Matching Player: wants to delay its construction

There is a strategy for cut player, s.t. after $O\left(\log ^{2} n\right)$ iterations, we get an expander!

Embedding Expander into Graph

Embedding Expander into Graph

After $\mathrm{O}\left(\log ^{2} \mathrm{k}\right)$ iterations, we get an expander embedded into G.

Problem: congestion $\Omega\left(\log ^{2} k\right)$

Path-of-Sets System

A Path-of-Sets System

width w length L

- L disjoint connected clusters
- Two disjoint sets A_{i}, B_{i} of w vertices in each cluster C_{i}
- $A_{i} \cup B_{i}$ is well-linked in C_{i}
- For all i, set P_{i} of w disjoint paths connecting B_{i} to A_{i+1}
- All paths are disjoint from each other and internally disjoint from clusters

From Well-Linkedness to Path-of-Sets

Theorem [C, '11], [C, Li'12], [Chekuri, C '13]:
Suppose G has a set of k well-linked vertices.
Then we can efficiently construct a path-of-sets system in
G with parameters L and w, if: $w \cdot L^{48}<\tilde{O}(k)$

From Well-Linkedness to Path-of-Sets

Theorem [C, '11], [C, Li '12], [Chekuri, C '13]:
Suppose G has a set of k well-linked vertices.
Then we can efficiently construct a path-of-sets system in
G with parameters L and w, if: $w \cdot L^{48}<\tilde{O}(k)$

Extras:

- Can connect w terminals to A_{1} by disjoint paths
- Can make sure they form demand pairs!

From Well-Linkedness to Path-of-Sets

The paths are disjoint from each other and the PoS system

The terminals form demand pairs

Given the PoS, can embed an expander!

Embedding the Expander

Embedding the Expander

Embedding the Expander

Expander vertex \longrightarrow the path containing the terminal

Embedding the Expander

Expander vertex \longrightarrow the path containing the terminal

Embedding the Expander

Expander edges?
 cut-matching game!

Embedding the Expander

Expander edges?
 cut-matching game!

Embedding the Expander

Expander edges? \square cut-matching game!

Embedding the Expander

Embedding the Expander

$$
\mathrm{C}_{1}
$$

$$
\mathrm{C}_{2}
$$

C_{3}
C_{L}

After $O\left(\log ^{2} k\right)$ iterations, we obtain an expander embedded into G with congestion 2.

Algorithm for EDPwC in Well-Linked Instances

Find a Path-of-Sets System

Embed an expander into G

Find vertex-disjoint routing in the expander

Transform into routing in G

Structural Result

If G contains a large well-linked set of vertices, then it contains a large Path-of-Sets System

Treewidth
 sparsifiers

Large-treewidth graph

Vertex flow sparsifiers
decompositions

Excluded Grid Theorem [Robertson, Seymour]

Excluded Grid Theorem [Robertson, Seymour]

Simple graphs

Excluded Grid Theorem [Robertson, Seymour]

Simple graphs

Complicated graphs

Excluded Grid Theorem [Robertson, Seymour]

Simple graphs

Complicated graphs
Treewidth: measures how complex the graph is.

Treewidth $\mathrm{k} \rightarrow$ DP-based algorithms with running time $2^{0(k)}$ poly(n).

Excluded Grid Theorem [Robertson, Seymour]

Simple graphs

Complicated graphs
Treewidth: measures how complex the graph is.

Original definition:
Treewidth is the smallest "width" of a tree-like structure that correctly "simulates" the graph.
(Almost) Equivalent definition:
Treewidth is the cardinality of the largest well-linked set of vertices in the graph.

Treewidth

Treewidth

High-Treewidth
Graphs

Excluded Grid Theorem
 [Robertson, Seymour '86]

If the treewidth of G is large, then G contains a large grid as a minor.

Can embed a large grid into G with no congestion

Excluded Grid Theorem [Robertson, Seymour]

If the treewidth of G is large, then it contains a large grid minor, so:

- G contains many disjoint cycles
- G contains many disjoint cycles of length 0 $\bmod m$
- G contains a convenient routing structure
- The size of the vertex cover in G is large

Applications

- Fixed parameter tractability
- Erdos-Posa type results
- Graph minor theory
- Algorithm for NDP where k is small
- Algorithms for graph crossing number

Excluded Grid Theorem
 [Robertson, Seymour '86]

If the treewidth of G is k, then G contains a grid of size $f(k) x f(k)$ as a minor.

Excluded Grid Theorem
 [Robertson, Seymour '86]

If the treewidth of G is k, then G contains a grid of size $f(k) x f(k)$ as a minor.

How large is $f(k)$?

-

f(k)=O(\sqrt{k / \log k})
\]

- Conjecture [Robertson, Seymour '94](%5B): This is tight.

Excluded Grid Theorem

- [Robertson, Seymour, Thomas '89]: $f(k)=\Omega\left(\log ^{1 / 5} k\right)$
- [Diestel, Gorbunov, Jensen, Thomassen ‘99] - simpler proof
- [Kawarabayashi, Kobayashi '12], [Leaf, Seymour '12]:

$$
f(k)=\Omega\left(\sqrt{\frac{\log k}{\log \log k}}\right)
$$

- [Chekuri, C'13]: $f(k)=\tilde{\Omega}\left(k^{1 / 98}\right)$
- [C, '16]: $f(k)=\tilde{\Omega}\left(k^{1 / 19}\right)$

Main Idea

width w length L

Thm: If G contains a path-of-sets system of width and length $\Theta\left(\mathrm{g}^{2}\right)$, then there is a (gxg)-grid minor in G .
[Leaf, Seymour '12] [Chekuri, C '13]
C_{2}
C_{3}
C_{L}

Thm: If G contains a path-of-sets system of width and length $\Theta\left(\mathrm{g}^{2}\right)$, then there is a (gxg)-grid minor in G.

Excluded Grid

 TheoremNode Disjoint Paths
[C, Chekuri '13]

Historical Note

- Work on routing gave slightly weaker structure than Path-of-Sets System, called Tree-of-Sets System
- We later modified it to get the Path-of-Sets system for the Excluded Grid theorem.
- This in turn helped improve results for routing problems.

Approximation
Hardness of Algorithms Approximation

Graph Theory

Open Problems

- Getting tight bounds for the Excluded Grid Theorem.
- Simpler algorithms for NDP with constant k
- Congestion minimization:
- O(logn/log $\log n)$-approximation algorithm
$-\Omega(\log \log n)$-hardness of approximation
- Integrality gap of the multicommodity LP relaxation open

Open Problems

- Getting tight bounds for the Excluded Grid Theorem.
- Simpler algorithms for NDP wit
- Congestion minimization:

Planar

- O(log $n / \log \log n)$-approximation algorithm
$-\Omega(\log \log n)$-hardness of approximation
- Integrality gap of the multicommodity LP relaxation open

