Graph Routing Problems: Approximation, Hardness, and Graph-Theoretic Insights

Julia Chuzhoy Toyota Technological Institute at Chicago

Graph Routing Problems

maximum s-t flow

maximum multicommodity flow

maximum node-disjoint paths (NDP)

Input: Graph G, source-sink pairs $(s_1,t_1),...,(s_k,t_k)$. Goal: Route as many pairs as possible via nodedisjoint paths

terminals

NDP with k=2

- NP-hard in directed graphs [Fortune, Hopcroft, Wyllie '80]
- Efficiently solvable in undirected graphs [Jung '70, Shiloach '80, Thomassen '80, Robertson-Seymour '90]

Larger k?

Constant k: efficiently solvable [Robertson, Seymour '90]
– Running time: f(k)•n² [Kawarabayashi, Kobayashi, Reed '12]

$$f(k) = 2^{2^{2^{\cdot}}}$$

Larger k?

- Constant k: efficiently solvable [Robertson, Seymour '90]
 Running time: f(k)•n² [Kawarabayashi, Kobayashi, Reed '12]
- NP-hard when k is part of input [Knuth, Karp '74]

Example

- Set of demand pairs is SxT: can solve efficiently
- Demand pairs are a specific matching between S and T: NP-hard

An α -approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/α demand pairs.

An α -approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/α demand pairs.

An α -approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/α demand pairs.

optimum solution value

- A simple way to compare algorithms
 - α=1+ε
 - *–* α=2
 - $-\alpha = O(\log n)$
 - α=O(√n)
 - ...

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible approximation factor α for a given problem

Hardness of approximation results

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible approximation factor α for a given problem

Hardness of approximation results

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible a for a given problem

Goal: powerful, simple algorithmic techniques with provable bounds

- A simple way to compare algorithms
- Design algorithms with good approximation factors $\boldsymbol{\alpha}$
- Establish best possible a for a given problem

Better models for real-life problems

tor α

Understanding what makes a problem difficult

- A simple way to compare algorithms
- Design algorithms with good approximation factors α
- Establish best possible approximation factor $\boldsymbol{\alpha}$ for a given problem

An α -approximation algorithm:

- efficient algorithm
- always produces solutions routing at least OPT/α demand pairs.

Multicommodity Flow relaxation: send as much flow as possible between the s_i - t_i pairs.

- send ½ flow unit on each of the 3 paths
- solution value: 3/2

Multicommodity Flows

• Can be computed efficiently

multicommodity flow LP-relaxation

Multicommodity Flows

- Can be computed efficiently
- OPT_{flow} ≥ OPT

multicommodity flow LP-relaxation

• Use the flow to find integral routing of at least OPT_{flow}/α demand pairs

α-approximation algorithm

LP-rounding technique

Approximation Algorithm [Kolliopoulos, Stein '98]

While there is a path P with f(P)>0:

- Add such shortest path P to the solution
- For each path P' sharing vertices with P, set f(P') to 0

Approximation Algorithm [Kolliopoulos, Stein '98]

While there is a path P with f(P)>0:

- Add such shortest path P to the solution
- For each path P' sharing vertices with P, set f(P') to 0

 $O(\sqrt{n})$ -approximation
Can We Do Better?

• Not if we use the maximum multicommodity flow approach!

Can We Do Better?

- Not if we use the maximum multicommodity flow approach!
- Ω(log^{1/2-ε} n)-hardness of approximation for any ε [Andrews, Zhang '05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

- • $O(\sqrt{n})$ -approximation algorithm
 - even on planar graphs
 - even on grid graphs
- $\Omega(\log^{1/2-\epsilon} n)$ -hardness of approximation for any ϵ [Andrews, Zhang '05], [Andrews, C, Guruswami, Khanna, Talwar, Zhang '10]

Only NP-hardness known for planar graphs and grids

NDP in Grids

NDP in Grids

- • $O(\sqrt{n})$ -approximation algorithm Until recently:
 - even on planar graphs
 - even on grid graphs,
- $\Omega(\log^{1/2-\epsilon} n)$ -hardness o $\tilde{O}(n^{1/4})$ -approximation [Andrews, Zhang '05], [Andrews, C, Guruswamı, Khanna, Talwar, Zhang '10]

Only NP-hardness known for planar graphs and grids

- $O(\sqrt{n})$ -approximation algorithm [Chekuri, Khanna, Shepherd '06]
- $2^{\Omega(\sqrt{\log n})}$ -hardness of approximation even for subgraphs of wall graphs [C, Kim, Nimavat '16]

A Wall

- $O(\sqrt{n})$ -approximation algorithm [Chekuri, Khanna, Shepherd '06]
- $2^{\Omega(\sqrt{\log n})}$ -hardness of approximation even for subgraphs of wall graphs [C, Kim, Nimavat '16]
- Work in progress: almost polynomial hardness for EDP on wall graphs [C, Kim, Nimavat '17]

Summary so Far

EDP and NDP do not have reasonable approximation algorithms, even on planar graphs

What if we allow some congestion?

An α -approximation algorithm with congestion c routes OPT/ α demand pairs with congestion at most c.

up to c paths can share an edge or a vertex

An α -approximation algorithm with congestion c routes OPT/ α demand pairs with congestion at

optimum number of pairs with no congestion allowed

most c

- Congestion O(log n/log log n): constant approximation [Raghavan, Thompson '87]
- Congestion c: $O(n^{1/c})$ -approximation [Azar, Regev '01], [Baveja, Srinivasan '00], [Kolliopoulos, Stein '04]
- Congestion poly(log log n): polylog(n)-approx [Andrews '10]
- Congestion 2: $O(n^{3/7})$ -approximation [Kawarabayashi, Kobayashi '11]
- Congestion 14: polylog(k)-approximation [C, '11]
- Congestion 2: polylog(k)-approximation [C, Li '12]
- polylog(k)-approximation for NDP with congestion
 2 [Chekuri, Ene '12], [Chekuri, C '16]

- Congestion O(log n/log log n): constant approximation [Raghava All these results are based
- Congestion c: O(n^{1/c})-[Baveja, Srinivasan '00], [Kolli
 On the multicommodity flow relaxation
- Congestion poly(log log n): polylog(n)-approx
 [Andrews '10]
- Congestion 2: O(n^{3/7})-approx
 Kobayashi '11]
 "Tight" due to known hardness results
- Congestion 14: polylog(k)-app , imation [C, '11]
- Congestion 2: polylog(k)-approximation [C, Li '12]
- polylog(k)-approximation for NDP with congestion
 2 [Chekuri, Ene '12], [Chekuri, C '16]

- Congestion O(log n/log log n): constant approximation [Raghavan, Thompson '87]
- Congestion c: $O(n^{1/c})$ -approximation [Azar, Regev '01], [Baveja, Srinivasan '00], [Kolliopoulos, Stein '04]
- Congestion poly(log log n): polylog(n)-approx
 [Andrews '10]
- Congestion 2: O(n^{3/7})
 Structural results about graphs
 rabayashi,
- Congestion 14: polylog(k) approximation [C, '11]
 - new results in graph theory! imation for NDP with congestion 2 [Chekuri, Ene '12], [Chekuri, C '16]

- Congestion O(log n/log log n): constant approximation [Raghavan, Thompson '87]
- Congestion c: $O(n^{1/c})$ -approximation [Azar, Regev '01], [Baveja, Srinivasan '00], [Kolliopoulos, Stein '04]
- Congestion poly(log log n): polylog(n)-approx [Andrews '10]
- Congestion 2: $O(n^{3/7})$ -approximation [Kawarabayashi, Kobayashi '11]
- Congestion 14: polylog(k)-approximation [C, '11]
- Congestion 2: polylog(k)-approximation [C, Li '12]
- polylog(k)-approximation for NDP with congestion
 2 [Chekuri, Ene '12], [Chekuri, C '16]

Edge-Disjoint Paths with Constant Congestion

EDP on Expanders

In a strong enough expander, if the set of demand pairs is not too large, can route almost all of them on Node-Disjoint Paths!

Main Idea: Exploit Algorithms for Expanders!

But our graph is nothing like an expander

Find expander-like structure in the graph and use it for routing!

Well-Linkedness

[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

Well-Linkedness

[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

Set T of terminals is well-linked in G, iff for any partition (A,B) of V(G),

 $|E(A,B)| \ge \min\{|A \cap T|, |B \cap T|\}$

Well-Linkedness

[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

Set T of terminals is well-linked in G, iff for any partition (A,B) of V(G),

 $|E(A,B)| \ge \min\{|A \cap T|, |B \cap T|\}$

EDP: Well-Linked Instances

- Terminals: vertices participating in the demand pairs
- An instance is well-linked iff the set of terminals is well-linked in G.

Theorem [Chekuri, Khanna Shepherd '04]: an α - approximation algorithm on well-linked instances gives an O($\alpha \log^2 k$)-approximation on any instance.

EDP: Well-Linked Instances

- Terminals: vertices participating in the demand pairs
- An instance is well-linked iff terminals is well-linked in G.

Only true if the algorithm rounds the flow relaxation

Theorem [Chekuri, Khanna Shepherd '04]: an α approximation algorithm on well-linked instances gives an O($\alpha \log^2 k$)-approximation on any instance.

An edge of G may belong to at most 2 clusters/paths

An edge of G may belong to at most 2 clusters/paths
Embedding an Expander into G

Routing on vertex-disjoint paths in X gives a good routing in G!

Main Idea

1. Embed an expander over the terminals into G

An edge of G may belong to at most 2 clusters/paths

Main Idea

1. Embed an expander over the terminals into G

An edge of G may belong to at most 2 clusters/paths

Cut-Matching Game [Khandekar, Rao, Vazirani '06]

Cut Player: wants to build an expander

Matching Player: wants to delay its construction

Cut-Matching Game [Khandekar, Rao, Vazirani '06]

Cut Player: wants to build an expander

Matching Player: wants to delay its construction

There is a strategy for cut player, s.t. after O(log²n) iterations, we get an expander!

Embedding Expander into Graph

Embedding Expander into Graph

After O(log²k) iterations, we get an expander embedded into G.

Problem: congestion $\Omega(\log^2 k)$

Path-of-Sets System

- L disjoint connected clusters
- Two disjoint sets A_i, B_i of w vertices in each cluster C_i
- $A_i \cup B_i$ is well-linked in C_i
- For all i, set P_i of w disjoint paths connecting B_i to A_{i+1}
- All paths are disjoint from each other and internally disjoint from clusters

From Well-Linkedness to Path-of-Sets

Theorem [C, '11], [C, Li '12], [Chekuri, C '13]: Suppose G has a set of k well-linked vertices. Then we can efficiently construct a path-of-sets system in G with parameters L and w, if: $w \cdot L^{48} < \tilde{O}(k)$

From Well-Linkedness to Path-of-Sets

Theorem [C, '11], [C, Li '12], [Chekuri, C '13]: Suppose G has a set of k well-linked vertices. Then we can efficiently construct a path-of-sets system in G with parameters L and w, if: $w \cdot L^{48} < \tilde{O}(k)$

Extras:

- Can connect w terminals to A₁ by disjoint paths
- Can make sure they form demand pairs!

From Well-Linkedness to Path-of-Sets

$A_i \cup B_i$ is welllinked inside C_i

Expander vertex the path containing the terminal

Expander vertex the path containing the terminal

After O(log²k) iterations, we obtain an expander embedded into G with congestion 2.

Algorithm for EDPwC in Well-Linked Instances

Structural Result

If G contains a large well-linked set of vertices, then it contains a large Path-of-Sets System

Excluded Grid Theorem [Robertson, Seymour] Excluded Grid Theorem [Robertson, Seymour]

Simple graphs

Original definition:

Treewidth is the smallest "width" of a tree-like structure that correctly "simulates" the graph.

(Almost) Equivalent definition:

Treewidth is the cardinality of the largest well-linked set of vertices in the graph.

Treewidth

Trees

Low-Treewidth Graphs

High-Treewidth Graphs

Treewidth

Trees

Low-Treewidth Graphs

High-Treewidth Graphs

Excluded Grid Theorem [Robertson, Seymour '86] If the treewidth of G is large, then G contains a large grid as a minor.

> Can embed a large grid into G with no congestion

Excluded Grid Theorem [Robertson, Seymour]

If the treewidth of G is large, then it contains a large grid minor, so:

- G contains many disjoint cycles
- G contains many disjoint cycles of length 0 mod m
- G contains a convenient routing structure
- The size of the vertex cover in G is large

Applications

- Fixed parameter tractability
- Erdos-Posa type results
- Graph minor theory
 - Algorithm for NDP where k is small
- Algorithms for graph crossing number

Excluded Grid Theorem [Robertson, Seymour '86] If the treewidth of G is k, then G contains a grid of size f(k)xf(k) as a minor. Excluded Grid Theorem [Robertson, Seymour '86] If the treewidth of G is k, then G contains a grid of size f(k)xf(k) as a minor.

How large is f(k)?

- [Robertson, Seymour '94]: $f(k) = O\left(\sqrt{k/\log k}\right)$
- Conjecture [Robertson, Seymour '94]: This is tight.

Excluded Grid Theorem

- [Robertson, Seymour, Thomas '89]: $f(k) = \Omega\left(\log^{1/5} k\right)$
- [Diestel, Gorbunov, Jensen, Thomassen '99] simpler proof
- [Kawarabayashi, Kobayashi '12], [Leaf, Seymour '12]:

$$f(k) = \Omega\left(\sqrt{\frac{\log k}{\log\log k}}\right)$$

- [Chekuri, C '13]: $f(k) = \tilde{\Omega}\left(k^{1/98}\right)$ [C, '16]: $f(k) = \tilde{\Omega}\left(k^{1/19}\right)$

Thm: If G contains a path-of-sets system of width and length $\Theta(g^2)$, then there is a (gxg)-grid minor in G.

Thm: If G contains a path-of-sets system of width and length $\Theta(g^2)$, then there is a (gxg)-grid minor in G.

Historical Note

- Work on routing gave slightly weaker structure than Path-of-Sets System, called Tree-of-Sets System
- We later modified it to get the Path-of-Sets system for the Excluded Grid theorem.

Exc

• This in turn helped improve results for routing problems.

Open Problems

- Getting tight bounds for the Excluded Grid Theorem.
- Simpler algorithms for NDP with constant k
- Congestion minimization:
 - O(log n/log log n)-approximation algorithm
 - $\Omega(\log \log n)$ -hardness of approximation
 - Integrality gap of the multicommodity LP relaxation open

Open Problems

- Getting tight bounds for the Excluded Grid Theorem.
- Simpler algorithms for NDP wit
- Congestion minimization:
 - O(log n/log log n)-approximation algorithm
 - $\Omega(\log \log n)$ -hardness of approximation
 - Integrality gap of the multicommodity LP relaxation open

Thank you!

k

Planar

graphs?