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Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2
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s3
t3

Solution	value:	2

Edge-disjoint	Paths	(EDP):	
paths	must	be	edge-disjoint
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Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Assumption: All	terminals	are	distinct

n	– number	of	graph	vertices
k	– number	of	demand	pairs



Node-Disjoint	Paths	(NDP)

Input:	Graph	G,	source-sink	pairs	(s1,t1),…,(sk,tk).
Goal:	Route	as	many	pairs	as	possible	via	node-
disjoint	paths

s1
t1

s2

t2

s3
t3

Can	we	solve	it	
efficiently?

k=1? ✔

k=2?



NDP	with	k=2
• NP-hard	in	directed	graphs	[Fortune,	Hopcroft,	
Wyllie	'80]

• Efficiently	solvable	in	undirected	graphs [Jung	‘70,	
Shiloach ’80,	Thomassen ‘80,	Robertson-Seymour	
’90]

s1

t1

s2

t2
G

Larger	k?

flat	
graph



Larger	k?

• Constant	k:	efficiently	solvable [Robertson,	Seymour	’90]

– Running	time:		f(k)�n2 [Kawarabayashi,	Kobayashi,	Reed	‘12]

f(k) = 22
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Larger	k?

• Constant	k:	efficiently	solvable [Robertson,	Seymour	’90]

– Running	time:		f(k)�n2 [Kawarabayashi,	Kobayashi,	Reed	‘12]
• NP-hard	when	k	is	part	of	input	[Knuth,	Karp	’74]



Example

G

S T

s t

• Set	of	demand	pairs	is	SxT:	can	solve	efficiently
• Demand	pairs	are	a	specific	matching	between	S	
and	T:	NP-hard

Max	s-t	
flow



Example

G

S T

• Set	of	demand	pairs	is	SxT:	can	solve	efficiently
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Dealing	with	NP-Hardness
An	α-approximation	algorithm:

• efficient	algorithm
• always	produces	solutions	routing	at	least	
OPT/α	demand	pairs.
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Dealing	with	NP-Hardness
An	α-approximation	algorithm:

• efficient	algorithm
• always	produces	solutions	routing	at	least	
OPT/α	demand	pairs.

optimum	
solution	
value



On	Approximation	Factors

• A	simple	way	to	compare	algorithms
– α=1+ε
– α=2
– α=O(log	n)
– α=O(√n)
– …
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• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Hardness	of	
approximation	results
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On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Goal:	powerful,	simple	
algorithmic	techniques	
with	provable	bounds



On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem

Understanding	what	
makes	a	problem	difficult

Better	models	for	
real-life	problems



On	Approximation	Factors

• A	simple	way	to	compare	algorithms

• Design	algorithms	with	good	approximation	
factors	α

• Establish	best	possible	approximation	factor	α	
for	a	given	problem



Dealing	with	NP-Hardness

Multicommodity Flow	relaxation:	send	as	much	flow	as	
possible	between	the	si-ti pairs.

An	α-approximation	algorithm:
• efficient	algorithm
• always	produces	solutions	routing	at	least	
OPT/α	demand	pairs.
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Total	flow	
through	a	vertex	

at	most	1



Example

s1

t1

t2

s2
t3

• send	½	flow	unit	on	each	of	the	3	paths
• solution	value:	3/2

s3

NDP	solution	
value:	1



Multicommodity Flows

• Can	be	computed	efficiently

• OPTflow ≥	OPT

fractional	
solution

multicommodity
flow	LP-relaxation

integral	
solution



Multicommodity Flows

• Can	be	computed	efficiently

• OPTflow ≥	OPT

• Use	the	flow	to	find	integral	routing	of	at	least	
OPTflow/α		demand	pairs

α-approximation	
algorithm

multicommodity
flow	LP-relaxation

LP-rounding	technique



Approximation	Algorithm	[Kolliopoulos,	Stein	‘98]
While	there	is	a	path	P	with	f(P)>0:
• Add	such	shortest	path	P	to	the	solution
• For	each	path	P’	sharing	vertices	with	P,	set	f(P’)	to	0



Approximation	Algorithm	[Kolliopoulos,	Stein	‘98]
While	there	is	a	path	P	with	f(P)>0:
• Add	such	shortest	path	P	to	the	solution
• For	each	path	P’	sharing	vertices	with	P,	set	f(P’)	to	0

-approximationO(
p
n)



Can	We	Do	Better?

• Not	if	we	use	the	maximum	multicommodity
flow	approach!
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gap:	
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Bad	Example
s1 s2 sk…

tk t1t2…

s3

t3

OPTflow=k/3
OPT=1
gap:	

�(k) = �(
p
n)

Integrality	gap	
of	the	flow	
relaxation



Can	We	Do	Better?

• Not	if	we	use	the	maximum	multicommodity
flow	approach!

• -hardness	of	approximation	for	
any				[Andrews,	Zhang	‘05],	[Andrews,	C,	
Guruswami,	Khanna,	Talwar,	Zhang	’10]

�(log1/2�� n)
✏



Approximation	Status	of	NDP

• -approximation	algorithm
Until	recently:
– even	on	planar	graphs
– even	on	grid	graphshs

• -hardness	of	approximation	for	any		
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]

O(
p
n)

�(log1/2�� n) ✏

Only	NP-hardness	
known	for	planar	
graphs	and	grids
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[C,	Kim,	Nimavat ’16]
-hardness	of	approximation	

for	subgraphs of	grids	
2⌦(

p
logn)



Approximation	Status	of	NDP

• -approximation	algorithm
Until	recently:
– even	on	planar	graphs
– even	on	grid	graphshs

• -hardness	of	approximation	for	any		
[Andrews,	Zhang	‘05],	[Andrews,	C,	Guruswami,	
Khanna,	Talwar,	Zhang	’10]
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[C,	Kim,	Li	’16]
-approximationÕ(n9/19)

[C,	Kim	’15]
-approximationÕ(n1/4)

[C,	Kim,	Nimavat ’16]
-hardness	of	approximation	

for	subgraphs of	grids	
2⌦(

p
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Work	in	Progress:
Almost	polynomial	hardness	for	NDP	in	
grid	graphs	[C,	Kim,	Nimavat ‘17]



Approximation	Status	of	EDP

• -approximation	algorithm	[Chekuri,	Khanna,	
Shepherd	’06]

• -hardness	of	approximation	even	for	
subgraphs of	wall	graphs	[C,	Kim,	Nimavat ’16]

O(
p
n)

2⌦(

p
logn)



A	Wall



Approximation	Status	of	EDP

• -approximation	algorithm	[Chekuri,	Khanna,	
Shepherd	’06]

• -hardness	of	approximation	even	for	
subgraphs of	wall	graphs	[C,	Kim,	Nimavat ’16]

• Work	in	progress:	almost	polynomial	hardness	
for	EDP	on	wall	graphs	[C,	Kim,	Nimavat ‘17]

O(
p
n)

2⌦(

p
logn)



Summary	so	Far

EDP and NDP do not have reasonable
approximation algorithms, even on planar graphs

What	if	we	allow	
some	congestion?



EDP/NDP	with	Congestion

An				-approximation	algorithm	with	congestion	c	
routes												.	 demand	pairs	with	congestion	at	
most	c.

up	to	c	paths	can	share	an	
edge	or	a	vertex

↵
OPT/�



EDP/NDP	with	Congestion

An				-approximation	algorithm	with	congestion	c	
routes												.	 demand	pairs	with	congestion	at	
most	c.

optimum	number	of	pairs	
with	no	congestion	allowed

↵
OPT/�



EDP	with	Congestion
• Congestion	O(log	n/log	log	n):	constant	
approximation	[Raghavan,	Thompson	’87]

• Congestion	c: -approximation	[Azar,	Regev ’01],	
[Baveja,	Srinivasan ’00],	[Kolliopoulos,	Stein	‘04]

• Congestion	poly(log	log	n): polylog(n)-approx
[Andrews	‘10]

• Congestion	2: -approximation [Kawarabayashi,	
Kobayashi	’11]

• Congestion	14:	polylog(k)-approximation	[C,	‘11]
• Congestion	2:	polylog(k)-approximation	[C,	Li	’12]
• polylog(k)-approximation	for	NDP with	congestion	

2 [Chekuri,	Ene ’12],	[Chekuri,	C	‘16]

O(n1/c)

O(n3/7)
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All	these	results	are	based	
on	the	multicommodity

flow	relaxation

“Tight”	due	to	known	
hardness	results
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O(n1/c)

O(n3/7) Structural	results	
about	graphs

new	results	in	
graph	theory!
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Edge-Disjoint	Paths	with	Constant	
Congestion



EDP	on	Expanders

In	a	strong	enough	expander,	if	the	set	of	demand	
pairs	is	not	too	large,	can	route	almost	all	of	them	
on	Node-Disjoint	Paths!	

A B

E0

|E0| � min{|A|, |B|}
2



Main	Idea:	Exploit	Algorithms	for	
Expanders!

But	our	graph	is	nothing	like	an	
expander

Find	expander-like	structure	in	the	
graph	and	use	it	for	routing!
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terminals



G

Well-Linkedness
[Robertson,Seymour],	[Chekuri,	Khanna,	Shepherd],	[Raecke]

Set	T	of	terminals	is	well-linked	in	G,	iff for	
any	partition	(A,B)	of	V(G),	 A B

|E(A,B)| � min{|A ⇥ T |, |B ⇥ T |}
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G

Well-Linkedness
[Robertson,Seymour],	[Chekuri,	Khanna,	Shepherd],	[Raecke]

Set	T	of	terminals	is	well-linked	in	G,	iff for	
any	partition	(A,B)	of	V(G),	 A B

|E(A,B)| � min{|A ⇥ T |, |B ⇥ T |}

edge/node-
disjoint



EDP:	Well-Linked	Instances

• Terminals:	vertices	participating	in	the	
demand	pairs

• An	instance	is	well-linked	iff the	set	of	
terminals	is	well-linked	in	G.

Theorem [Chekuri,	Khanna Shepherd	‘04]:	an	α	-
approximation	algorithm	on	well-linked	
instances	gives	an	O(α	log2k)-approximation	on	
any	instance.



EDP:	Well-Linked	Instances

• Terminals:	vertices	participating	in	the	
demand	pairs

• An	instance	is	well-linked	iff the	set	of	
terminals	is	well-linked	in	G.

Theorem [Chekuri,	Khanna Shepherd	‘04]:	an	α	-
approximation	algorithm	on	well-linked	
instances	gives	an	O(α	log2k)-approximation	on	
any	instance.

Only	true	if	the	
algorithm	rounds	
the	flow	relaxation	



G

Main	Idea
[Chekuri,	Khanna,	Shepherd],	[Rao,	Zhou]

X

Embed	an	expander	over	the	terminals	into	G!

terminals	of	G



G

Main	Idea
[Chekuri,	Khanna,	Shepherd],	[Rao,	Zhou]

X

Embed	an	expander	over	the	terminals	into	G!

An	edge	of	G	may	belong	to	at	most	2	clusters/paths



G
X

1.	Embed	an	expander	over	the	terminals	into	G

An	edge	of	G	may	belong	to	at	most	2	clusters/paths

2.	Find	a	routing	on	node-disjoint	paths	in	the	
expander

3.	Translate	it	into	congestion-2	routing	in	G

Main	Idea
[Chekuri,	Khanna,	Shepherd],	[Rao,	Zhou]



G

Embedding	an	Expander	into	G

Routing	on	vertex-disjoint	paths	in	X	gives	a	good	
routing	in	G!

X
s ts

t
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Main	Idea

X

1.	Embed	an	expander	over	the	terminals	into	G

An	edge	of	G	may	belong	to	at	most	2	clusters/paths

2.	Find	a	routing	on	node-disjoint	paths	in	the	
expander

3.	Translate	it	into	congestion-2	routing	in	G



Cut-Matching	Game	[Khandekar,	Rao,	
Vazirani ’06]

Cut	Player:	wants	to	build	an	expander
Matching	Player:	wants	to	delay	its	construction



B3A3B2A2B1A1

Cut-Matching	Game	[Khandekar,	Rao,	
Vazirani ’06]

Cut	Player:	wants	to	build	an	expander
Matching	Player:	wants	to	delay	its	construction

There	is	a	strategy	for	cut	player,	s.t.	
after	O(log2n)	iterations,	we	get	an	
expander!



Embedding	Expander	into	Graph
G



Embedding	Expander	into	Graph
G

After	O(log2k)	iterations,	we	get	an	expander	embedded	
into	G.

Problem:	congestion	Ω(log2k)



Path-of-Sets	System



C2 C3 … CL

…
w

C1

A	Path-of-Sets	System

• L disjoint	connected	clusters
• Two	disjoint	sets	Ai,	Bi of	w	vertices	in	each	cluster	Ci
• Ai Bi is	well-linked	in	Ci
• For	all	i,	set	Pi of	w	disjoint	paths	connecting	Bi to	Ai+1
• All	paths	are	disjoint	from	each	other	and	internally	
disjoint	from	clusters

[

A1 B1

width	w
length	L

A2 B2 A3 B3 AL BL



From	Well-Linkedness to	Path-of-Sets
C2 C3 … CL

…w

C1

A1 B1 A2 B2 A3 B3 AL BL

Theorem	[C,	’11],	[C,	Li	’12],	[Chekuri,	C	’13]:
Suppose	G	has	a	set	of	k	well-linked	vertices.	
Then	we	can	efficiently	construct	a	path-of-sets	system	in	
G	with	parameters	L	and	w,	if:	 w · L48 < Õ(k)



From	Well-Linkedness to	Path-of-Sets
C2 C3 … CL

…w

C1

A1 B1 A2 B2 A3 B3 AL BL

Theorem	[C,	’11],	[C,	Li	’12],	[Chekuri,	C	’13]:
Suppose	G	has	a	set	of	k	well-linked	vertices.	
Then	we	can	efficiently	construct	a	path-of-sets	system	in	
G	with	parameters	L	and	w,	if:	

Extras:	
• Can	connect	w	terminals	to	A1 by	disjoint	paths
• Can	make	sure	they	form	demand	pairs!

We’ll	use:	
L=O(log2k)	
w=k/polylog k

w · L48 < Õ(k)



From	Well-Linkedness to	Path-of-Sets
C2 C3 … CL

…
w

C1

A1 B1 A2 B2 A3 B3 AL BL

The	paths	are	disjoint	
from	each	other	and	the	

PoS system

The	terminals	form	
demand	pairs

Given	the	PoS,	can	embed	an	
expander!



C2 C3 … CL

…
w

C1

Embedding	the	Expander

Ci

Ai Bi is	well-
linked	inside	Ci

[

Ai Bi
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Embedding	the	Expander

X
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C1

Embedding	the	Expander

XExpander	vertex the	path	
containing	the	terminal



C2 C3 … CLC1

Embedding	the	Expander

XExpander	vertex the	path	
containing	the	terminal



C2 C3 … CLC1

Embedding	the	Expander

Expander	edges?										 cut-matching	
game!
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Expander	edges?										 cut-matching	
game!



C2 C3 … CLC1

Embedding	the	Expander

Expander	edges?										 cut-matching	
game!

node-disjoint	
paths



C2 C3 … CLC1

Embedding	the	Expander



C2 C3 … CLC1

Embedding	the	Expander

After	O(log2k)	iterations,	we	obtain	
an	expander	embedded	into	G	
with	congestion	2.…



Algorithm	for	EDPwC in	Well-Linked	
Instances

Find	a	Path-of-Sets	System

Find	vertex-disjoint	routing	in	the	expander

Transform	into	routing	in	G

Embed	an	expander	into	G



Structural	Result

If	G	contains	a	large	well-linked	set	of	vertices,	
then	it	contains	a	large	Path-of-Sets	System

Excluded	grid	
theorem

Large-treewidth
graph	

decompositions

Treewidth
sparsifiers

Vertex	flow	
sparsifiers



Excluded	Grid	Theorem
[Robertson,	Seymour]



Excluded	Grid	Theorem
[Robertson,	Seymour]

Simple	graphs



Excluded	Grid	Theorem
[Robertson,	Seymour]

Complicated	graphsSimple	graphs



Excluded	Grid	Theorem
[Robertson,	Seymour]

Complicated	graphsSimple	graphs

Treewidth k	è DP-based	
algorithms	with	running	

time	2O(k)poly(n).

Treewidth:	measures	how	
complex	the	graph	is.



Excluded	Grid	Theorem
[Robertson,	Seymour]

Complicated	graphsSimple	graphs

Treewidth:	measures	how	
complex	the	graph	is.

Original	definition:
Treewidth is	the	smallest	“width”	of	a	tree-like	structure	
that	correctly	“simulates”	the	graph.

(Almost)	Equivalent	definition:
Treewidth is	the	cardinality	of	the	largest	well-linked	set	of	
vertices	in	the	graph.



Treewidth

Trees Low-Treewidth
Graphs

High-Treewidth
Graphs



Treewidth

Trees Low-Treewidth
Graphs

High-Treewidth
Graphs



Excluded	Grid	Theorem
[Robertson,	Seymour	‘86]

If	the	treewidth of	G	is	large,	then	G	contains	a	
large	grid	as	a	minor.

Can	embed	a	large	
grid	into	G	with	no	

congestion



Excluded	Grid	Theorem
[Robertson,	Seymour]

If	the	treewidth of	G	is	large,	then	it	contains	a	
large	grid	minor,	so:
• G	contains	many	disjoint	cycles
• G	contains	many	disjoint	cycles	of	length	0	
mod	m

• G	contains	a	convenient	routing	structure
• The	size	of	the	vertex	cover	in	G	is	large
• …



Applications

• Fixed	parameter	tractability
• Erdos-Posa type	results
• Graph	minor	theory
– Algorithm	for	NDP	where	k	is	small

• Algorithms	for	graph	crossing	number
• …



Excluded	Grid	Theorem
[Robertson,	Seymour	‘86]

If	the	treewidth of	G	is	k,	then	G	contains	a	grid	
of	size	f(k)xf(k)	as	a	minor.



• [Robertson,	Seymour	‘94]:
–

• Conjecture	[Robertson,	Seymour	‘94]: This	is	tight.

f(k) = O
⇣p

k/ log k
⌘

Excluded	Grid	Theorem
[Robertson,	Seymour	‘86]

If	the	treewidth of	G	is	k,	then	G	contains	a	grid	
of	size	f(k)xf(k)	as	a	minor.

How	large	is	f(k)?



Excluded	Grid	Theorem
• [Robertson,	Seymour,	Thomas	‘89]:
• [Diestel,	Gorbunov,	Jensen,	Thomassen ‘99] – simpler	proof
• [Kawarabayashi,	Kobayashi	‘12],	[Leaf,	Seymour	‘12]:

• [Chekuri,	C	‘13]:
• [C,	‘16]:

f(k) = �
⇣
log1/5 k

⌘

f(k) = �

 s
log k

log log k

!

f(k) = �̃
⇣
k1/98

⌘

f(k) = ⌦̃
⇣
k1/19

⌘



C2 C3 … CL

…
w

C1

Main	Idea width	w
length	L

Thm: If	G	contains	a	path-of-sets	system	of	width	and	
length	Θ(g2),	then	there	is	a	(gxg)-grid	minor	in	G.

[Leaf,	Seymour	‘12]
[Chekuri,	C	’13]



C2 C3 … CL

…
w

C1

Main	Idea width	w
length	L

Thm: If	G	contains	a	path-of-sets	system	of	width	and	
length	Θ(g2),	then	there	is	a	(gxg)-grid	minor	in	G.

G	has	large	
treewidth

large	well-
linked	set	
of	vertices

large	Path-
of-Sets	
system



Excluded	Grid	
Theorem

Node	Disjoint	
Paths

[Robertson-Seymour	‘90]

[C,	Chekuri ‘13]



Excluded	Grid	
Theorem

Node	Disjoint	
Paths

[Robertson-Seymour	‘90]

[C,	Chekuri ‘13]

Historical	Note
• Work	on	routing	gave	slightly	weaker	structure	
than	Path-of-Sets	System,	called	Tree-of-Sets	
System

• We	later	modified	it	to	get	the	Path-of-Sets	
system	for	the	Excluded	Grid	theorem.

• This	in	turn	helped	improve	results	for	routing	
problems.



Approximation	
Algorithms

Hardness	of	
Approximation

Graph	
Theory

Fixed	
Parameter	
Tractability

Routing	
Problems

Graph	
Theory



Open	Problems

• Getting	tight	bounds	for	the	Excluded	Grid	
Theorem.

• Simpler	algorithms	for	NDP	with	constant	k
• Congestion	minimization:
– O(log	n/log	log	n)-approximation	algorithm
– Ω(log	log	n)-hardness	of	approximation
– Integrality	gap	of	the	multicommodity LP	
relaxation	open



Open	Problems

• Getting	tight	bounds	for	the	Excluded	Grid	
Theorem.

• Simpler	algorithms	for	NDP	with	constant	k
• Congestion	minimization:
– O(log	n/log	log	n)-approximation	algorithm
– Ω(log	log	n)-hardness	of	approximation
– Integrality	gap	of	the	multicommodity LP	
relaxation	open

Thank	you!

Planar	
graphs?


