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Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs (s;,t;),...,(S,t)-
Goal: Route as many pairs as possible via node-
disjoint paths
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Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs (s;,t;),...,(S,t)-

Goal: Route as many pairs as possible via node-
disjoint paths

1 .
S1 Solution value: 2
2 Edge-disjoint Paths (EDP):
S5 paths must be edge-disjoint
S3
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Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs (s;,t;),...,(S,t)-

Goal: Route as many pairs as possibl¢ via node-
disjoint paths
terminals
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Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs (s;,t;),...,(S,t)-

Goal: Route as many pairs as possible via node-
disjoint paths

t{Assumption: All terminals are distinct}
S1

to
n — number of graph vertices
k — number of demand pairs

S3



Node-Disjoint Paths (NDP)

Input: Graph G, source-sink pairs (s;,t;),...,(S,t)-

Goal: Route as many pairs as possible via node-
disjoint paths

4 I
i1 Can we solve it
51 efficiently?
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NDP with k=2

* NP-hard in directed graphs [Fortune, Hopcroft,
Wyllie '80]

 Efficiently solvable in undirected graphs [Jung ‘70,
Shiloach 80, Thomassen ‘80, Robertson-Seymour

90] S, flat

S graph
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Larger k?

* Constant k: efficiently solvable [Robertson, Seymour ’90]
— Running time: f(k)®n? [Kawarabayashi, Kobayashi, Reed ‘12]

k

F(k) = 2%



Larger k?

* Constant k: efficiently solvable [Robertson, Seymour ’90]
— Running time: f(k)®n? [Kawarabayashi, Kobayashi, Reed ‘12]
 NP-hard when k is part of input [Knuth, Karp '74]
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* Set of demand pairs is SxT: can solve efficiently




Example

* Set of demand pairs is SxT: can solve efficiently
 Demand pairs are a specific matching between S
and T: NP-hard




Dealing with NP-Hardness

 An a-approximation algorithm: A
 efficient algorithm

* always produces solutions routing at least
\_ OPT/a demand pairs. Y.
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Dealing with NP-Hardness

 An a-approximation algorithm: A
 efficient algorithm

* always produces solutions routing at least
\_ OPT/a demand pairs. Y.

optimum
solution
value



On Approximation Factors

* A simple way to compare algorithms
—o=1+¢
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On Approximation Factors

* A simple way to compare algorithms

* Design algorithms with good approximation
factors a

_ _ Goal: powerful, simple
* Establish best possible a 3i5orithmic techniques

for a given problem with provable bounds



On Approximation Factors

* A simple way to compare algorithms

* Design algorithms with good approximation
factors a

e Establish best possible ¢ Better modelsfor qp o
, real-life problems
for a given problem

Understanding what
makes a problem difficult



On Approximation Factors

* A simple way to compare algorithms

* Design algorithms with good approximation
factors a

* Establish best possible approximation factor a
for a given problem



Dealing with NP-Hardness

 An a-approximation algorithm: A
 efficient algorithm

* always produces solutions routing at least
\_ OPT/a demand pairs. Y.

Multicommodity Flow relaxation: send as much flow as
possible between the s.-t. pairs.






Total flow o
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Example

S3
i1
I
y NDP solution
2 .
e value: 1
S1

* send % flow unit on each of the 3 paths
* solution value: 3/2



Multicommodity Flows

* Can be computed efficiently

multicommodity
* OPTq,,, 2 OPT flow LP-relaxation
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Multicommodity Flows

* Can be computed efficiently

multicommodity
* OPTq,,, 2 OPT flow LP-relaxation

e Use the flow to find integral routing of at least
OPT,.,/0 demand pairs

a-approximation L LP-rounding technique }
algorithm




Approximation Algorithm [Kolliopoulos, Stein ‘98]

While there is a path P with f(P)>0:
* Add such shortest path P to the solution
* For each path P’ sharing vertices with P, set f(P’) to O




Approximation Algorithm [Kolliopoulos, Stein ‘98]

While there is a path P with f(P)>0:
* Add such shortest path P to the solution
* For each path P’ sharing vertices with P, set f(P’) to O

O(+/n)-approximation




Can We Do Better?

* Not if we use the maximum multicommodity
flow approach!
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Can We Do Better?

* Not if we use the maximum multicommodity
flow approach!

. Q(logl/Q_6 n)-hardness of approximation for

any e [Andrews, Zhang ‘05], [Andrews, C,
Guruswami, Khanna, Talwar, Zhang "10]



Approximation Status of NDP
*O(+/n) -approximation algorithm

— even on planar graphs
— even on grid graphs

. Q(logl/2_6 n)-hardness of approximation for any ¢
[Andrews, Zhang ‘05], [Andrews, C, Guruswami,
Khanna, Talwar, Zhang "10]

Only NP-hardness
known for planar
graphs and grids



NDP in Grids
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Approximation Status of NDP

*O(+/n) -approximation algorithm
Until recently:
— even on planar graphs
— even on grid graphs

[C, Kim "15]
. Q(log!/?~¢ n)-hardness o O(n'/*)-approximation

[Andrews, Zhang ‘05], [Andrews, C, Guruswami,
Khanna, Talwar, Zhang "10]

Only NP-hardness
known for planar
graphs and grids
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Approximation Status of NDP

*O(+/n) -approximation al

Until recently:

[C, Kim, Li"16]

= O /10

tion

— eve : J

Work in Progress:

Almost polynomial hardness for NDP in \

grid graphs [C, Kim, Nimavat ‘17]

« Q(lo S on
[Andrews, Zhang ‘05], [Andrews, C, Guruswami,

Khanna, Talwar, Zhang '10]
[C, Kim, Nimavat '16]
29U vlogn)_hardness of approximation
for subgraphs of grids -
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Approximation Status of EDP

* O(y/n)-approximation algorithm [Chekuri, Khanna,
Shepherd '06]

. 29V1oe 1) _pardness of approximation even for
subgraphs of wall graphs [c, Kim, Nimavat ’16]






Approximation Status of EDP

* O(y/n)-approximation algorithm [Chekuri, Khanna,
Shepherd '06]

. 29V1oe 1) _pardness of approximation even for
subgraphs of wall graphs [c, Kim, Nimavat ’16]

* Work in progress: almost polynomial hardness
for EDP on wall graphs [c, kim, Nimavat ‘17]



Summary so Far

EDP and NDP do not have reasonable
approximation algorithms, even on planar graphs

What if we allow
some congestion?




EDP/NDP with Congestion

An o-approximation algorithm with congestion c
routes OPT /« demand pairs with congestion at
most c.

up to c paths can share an
edge or a vertex



EDP/NDP with Congestion

An o-approximation algorithm with congestion c
routes OPT /« demand pairs with congestion at

most C.
optimum number of pairs

with no congestion allowed



EDP with Congestion
Congestion O(log n/log log n): constant
approximation [Raghavan, Thompson ’87]

Congestion c: O(nl/C)-approximation [Azar, Regev '01],
[Baveja, Srinivasan ’00], [Kolliopoulos, Stein ‘04]

Congestion poly(log log n): polylog(n)-approx
[Andrews ‘10]

Congestion 2: O(n*' 7)-approximation [Kawarabayashi,
Kobayashi "11]

Congestion 14: polylog(k)-approximation [c, ‘11]
Congestion 2: polylog(k)-approximation [c, Li"12]

polylog(k)-approximation for NDP with congestion
2 [Chekuri, Ene "12], [Chekuri, C ‘16]



EDP with Congestion

Congestion O(log n/lo

approximation [Raghava All these results are based
Congestion ¢c: O(n!/c)-  ON the multicommodity
[Baveja, Srinivasan ’00], [KoIIi<K flow relaxation

)

Congestion poly(log log n): ponIog(n) -approx

[Andrews ‘10] ) ) )
Tight” due to known

Congestion 2: O(n*/")-appro» hardness results
Kobayashi '11] -

Congestion 14: polylog(k)-ap mation [C, ‘11]
Congestion 2: polylog(k)-approximation [c, Li'12]

polylog(k)-approximation for NDP with congestion
2 [Chekuri, Ene ’12], [Chekuri, C ‘16]
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Congestion O(log n/log log n): constant
approximation [Raghavan, Thompson ’87]

Congestion c: O(nl/C)-approximation [Azar, Regev '01],
[Baveja, Srinivasan ’00], [Kolliopoulos, Stein ‘04]

Congestion poly(log log n): polylog(n)-approx
[Andrews ‘10] 7 ™

Congestion 2: O(n®/7)- Structuralresults | .
Kobayashi ’11] about graphs

Congestion 14: polylog(
p

J
pproximation [c, ‘11]

new results in )-approximation [c, Li’12]

graph theory! imation for NDP with congestion
\2 [Chekuri, Ene "12], [Chekuri, C ‘16]
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Edge-Disjoint Paths with Constant
Congestion



EDP on Expanders

min{|Al, |B|}

| >

In a strong enough expander, if the set of demand
pairs is not too large, can route almost all of them
on Node-Disjoint Paths!




Main ldea: Exploit Algorithms for
Expanders!

But our graph is nothing like an
expander

Find expander-like structure in the
graph and use it for routing!



Well-Linkedness
[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]
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Well-Linkedness
[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

~ termina s

Set T of terminals is well-linked in G, iff for
any partition (A,B) of V(G),

E(A, B)| = min{|[ANT]|,|[BNT]}




Well-Linkedness
[Robertson,Seymour], [Chekuri, Khanna, Shepherd], [Raecke]

edge/node-
disjoint

Set T of terminals is well-linked in G, iff for
any partition (A,B) of V(G), é ﬂ
E(A, B)| > min{|ANT|,[BNT|} —




EDP: Well-Linked Instances

* Terminals: vertices participating in the
demand pairs

e An instance is well-linked iff the set of
terminals is well-linked in G.

Theorem [Chekuri, Khanna Shepherd ‘04]: an a -
approximation algorithm on well-linked
instances gives an O(a log?k)-approximation on
any instance.




EDP: Well-Linked Instances

* Terminals: vertices participating in the
demand pairs

Only true if the

. . i . algorithm rounds
e Aninstance is well-linked iff1 2" un
the flow relaxation

terminals is well-linked in G.

Theorem [Chekuri, Khanna Shepherd ‘04]: an a -
approximation algorithm on well-linked
instances gives an O(a log?k)-approximation on
any instance.




Main ldea
[Chekuri, Khanna, Shepherd], [Rao, Zhou]

Embed an expander over the terminals into G!

[terminals of G
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Embed an expander over the terminals into G!

[ An edge of G may belong to at most 2 clusters/paths }




Main ldea
[Chekuri, Khanna, Shepherd], [Rao, Zhou]

1. Embed an expander over the terminals into G

2. Find a routing on node-disjoint paths in the
< expander

3. Translate it into congestion-2 routing in G

o

~—

[ An edge of G may belong to at most 2 clusters/paths }




Embedding an Expander into G

Routing on vertex-disjoint paths in X gives a good
routing in G!




Main ldea

1. Embed an expander over the terminals into G

- 2. Find a routing on node-disjoint paths in the

expander
<' = . | A —~m

3. Translate it into congestion-2 routing in G

\\/ —— -
\

[ An edge of G may belong to at most 2 clusters/paths }




Main ldea

4 N

1. Embed an expander over the terminals into G

- /

- 2. Find a routing on node-disjoint paths in the
< expander

3. Translate it into congestion-2 routing in G

-

~~—

[ An edge of G may belong to at most 2 clusters/paths }




Cut-Matching Game [Khandekar, Rao,
Vazirani '06]}

Cut Player: wants to build an expander
Matching Player: wants to delay its construction



Cut-Matching Game [Khandekar, Rao,
Vazirani '06]}

Cut Player: wants to build an expander
Matching Player: wants to delay its construction

There is a strategy for cut player, s.t.
after O(log?n) iterations, we get an
expander!




Embedding Expander into Graph

=



Embedding Expander into Graph
G

After O(log?k) iterations, we get an expander embedded
into G.

Problem: congestion Q(log?k)




Path-of-Sets System



width w
A Path-of-Sets System ength L
C, C, G

L disjoint connected clusters

Two disjoint sets A, B. of w vertices in each cluster C,
A.UB. is well-linked in C.

For all i, set P, of w disjoint paths connecting B. to A,
All paths are disjoint from each other and internally
disjoint from clusters



From Well-Linkedness to Path-of-Sets

Theorem [C, '11], [C, Li’12], [Chekuri, C "13]:
Suppose G has a set of k well-linked vertices.

Then we can efficiently construct a path-of-sets system in
G with parameters Land w, if: w - L*® < O(k)




From Well-Linkedness to Path-of-Sets
C,

We'll use:
L=0(log?k)
w=k/polylog k

Theorem [C, '11], [C, Li’12], [Chekuri, C "13]:
Suppose G has a set of k well-linked vertices.

Then we can efficiently construct a path-of-sets system in
G with parameters Land w, if: w - L*® < O(k)

Extras:

* (Can connect w terminals to A, by disjoint paths
 Can make sure they form demand pairs!




From Well-Linkedness to Path-of-Sets
C, C,

The paths are disjoint
e o O from each other and the
PoS system

The terminals form Given the PoS, can embed an
demand pairs expander!




Embedding the Expander

C1 Cz C3
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linked inside C.




Embedding the Expander
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Embedding the Expander

C, C Cs

o

*—@

=

<?

Expander vertex m==) the path
containing the terminal




Embedding the Expander
C, C,

Expander vertex =) the path o
containing the terminal




Embedding the Expander
Cs

CL

Expander edges? m==) cut-matching ©

/r—)
© O
game!




Embedding the Expander

C;

CL

Expander edges? m==) cut-matching
game!




Embedding the Expander

G, C;

o990
L B J

node-disjoint
paths

Expander edges? m==) cut-matching
game!




Embedding the Expander
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Embedding the Expander

C1 Cz C3

After O(log?k) iterations, we obtain
an expander embedded into G
with congestion 2.




Algorithm for EDPwC in Well-Linked
Instances

Find a Path-of-Sets System

|

Embed an expander into G J

|
[ |
|
|

Find vertex-disjoint routing in the expander

|

Transform into routing in G




Structural Result

If G contains a large well-linked set of vertices,
then it contains a large Path-of-Sets System

Treewidth
sparsifiers
Excluded grid
theorem
Large-treewidth Vertex flow
graph sparsifiers

decompositions



Excluded Grid Theorem
[Robertson, Seymour]



Excluded Grid Theorem
[Robertson, Seymour]
Simple graphs
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Excluded Grid Theorem
[Robertson, Seymour]

Simple graphs

2 ‘

@

Complicated graphs

&



Excluded Grid Theorem
[Robertson, Seymour]

Simple graphs ‘ Complicated graphs

Treewidth: measures how
complex the graph is.

ZIN

[

" Treewidth k = DP-based
algorithms with running

- time 2°%Kpoly(n).
oo
Vo




Excluded Grid Theorem
[Robertson, Seymour]

Simple graphs ‘ Complicated graphs

Treewidth: measures how
complex the graph is.
N\

/ \ SV
R
AWy, S

Original definition:
Treewidth is the smallest “width” of a tree-like structure

that correctly “simulates” the graph.

A
A\
W AY,

RS,
Nt m’l(//;:i::‘:“‘- ':!:':'li‘:\'\\&\‘“w

(Almost) Equivalent definition:
Treewidth is the cardinality of the largest well-linked set of
vertices in the graph.

| -



Treewidth
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Graphs Graphs
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Excluded Grid Theorem
[Robertson, Seymour ‘86]

If the treewidth of G is large, then G contains a
large grid as a minor.

~

Can embed a large
grid into G with no
congestion

- /




Excluded Grid Theorem
[Robertson, Seymour]

If the treewidth of G is large, then it contains a
large grid minor, so:
* G contains many disjoint cycles

* G contains many disjoint cycles of length O
mod m

* G contains a convenient routing structure
* The size of the vertex cover in G is large



Applications

Fixed parameter tractability
Erdos-Posa type results

Graph minor theory
— Algorithm for NDP where k is small

Algorithms for graph crossing number



Excluded Grid Theorem
[Robertson, Seymour ‘86]

If the treewidth of G is k, then G contains a grid
of size f(k)xf(k) as a minor.




Excluded Grid Theorem
[Robertson, Seymour ‘86]

If the treewidth of G is k, then G contains a grid
of size f(k)xf(k) as a minor.

How large is f(k)?

* [Robertson, Seymour ‘94]:

f(k) =0 (\/k/ log k)

* Conjecture [Robertson, Seymour ‘94]: This is tight.



Excluded Grid Theorem

Robertson, Seymour, Thomas ‘89]: f(k) = (2 (log1/5 k)

* [Diestel, Gorbunov, Jensen, Thomassen ‘99] — simpler proof

'Kawarabayashi, Kobayashi ‘12], [Leaf, Seymour ‘12]:

log k
f(k) =1 (\/log logk)

[Chekuri, C 13]: f(k) = (k1/98)
[C,‘16]: f(k) =Q (k1/19)




Main Idea .
ength L

C, C, Cs C,

Thm: If G contains a path-of-sets system of width and
length O(g?), then there is a (gxg)-grid minor in G.

[Leaf, Seymour ‘12]
[Chekuri, C’13]




Main Idea .
ength L

C, C, Cs C,

Thm: If G contains a path-of-sets system of width and
length O(g?), then there is a (gxg)-grid minor in G.

large well- large Path-

Ghaslarge o linked set [  oOf-Sets

treewidth :
of vertices system




MOn-Seym

Excluded Grid Node Disjoint
Theorem Paths

\C,Chekuri y
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Historical Note
* Work on routing gave slightly weaker structure
than Path-of-Sets System, called Tree-of-Sets
EX(  System
* We later modified it to get the Path-of-Sets
system for the Excluded Grid theorem.
* Thisin turn helped improve results for routing

Kproblems. /

T




Routing

Problems
xed

. Parameter

Tractability
Approximation
Algorithms

Hardness of
Approximation




Open Problems

* Getting tight bounds for the Excluded Grid
Theorem.

* Simpler algorithms for NDP with constant k

* Congestion minimization:
— O(log n/log log n)-approximation algorithm
— Q(log log n)-hardness of approximation

— Integrality gap of the multicommodity LP
relaxation open



Open Problems

* Getting tight bounds for the Excluded Grid
Theorem.

* Simpler algorithms for NDP wit'  pjanar K
e Congestion minimization: 2lanies

— O(log n/log log n)-approximation algorithm

— Q(log log n)-hardness of approximation

— Integrality gap of the multicommodity LP

relaxation open
Thank you!



