Case-Factor Diagrams
for Structured Probabilistic Modeling

David McAllester
TTI at Chicago
mcallester@tti-c.org

Michael Collins
CSAIL
Massachusetts Institute of Technology
mcollins@ai.mit.edu

Fernando Pereira
CIS
University of Pennsylvania
pereira@cis.upenn.edu

April 11, 2005

Abstract

We introduce a probabilistic formalism subsuming Markov random
fields of bounded tree width and probabilistic context free grammars.
Our models are based on a representation of Boolean formulas that we
call case-factor diagrams (CFDs). CFDs are similar to binary decision
diagrams (BDDs) but are more concise than BDDs for circuits of bounded
tree width and can concisely represent the set of parse trees over a given
string under a given context free grammar (unlike BDDs). A probabilistic
model consists of a CFD defining a feasible set of Boolean assignments
and a weight (or cost) for each individual Boolean variable. We give
an inside-outside algorithm for simultaneously computing the marginal of
each Boolean variable, and a Viterbi algorithm for finding the minimum
cost variable assignment. Both algorithms run in time proportional to the
size of the CFD.

1 Introduction

In this paper, we investigate efficient representations for structured probabilistic
models. Informally, a structured model defines a distribution on structured
objects such as sequences, parse trees, or assignments of values to variables.
The number of possible structured objects typically grows exponentially in a
natural measure of problem size. For example, the number of possible parse
trees grows exponentially in the length of the string being parsed. Structured
statistical models include Markov random fields (MRFs), probabilistic context
free grammars (PCFGs), hidden Markov models (HMMs), conditional random
fields (CRFs) [17], dynamic Bayes nets [16], probabilistic Horn abduction [20],
and probabilistic relational models (PRMs) [14].

For each of these model types one can define a corresponding structured
classification problem. In HMMs, for example, the problem is to recover the
hidden state sequence from the observable sequence. For PCFGs, the problem
is to recover a parse tree from a given word string. In PRMs, the problem is to
recover latent entity labels and relations for a given set of observed entities and
relations. We follow an approach where the statistical model defines P(y|z) and
structured classification finds the most likely y for a given . (Other approaches
are possible — for example, maximum margin classifiers are discussed below.)

The structured statistical models discussed above are intuitively similar.
They all involve local probability tables or local cost functions. It is widely
believed that many, if not all, of the above modeling formalisms can be viewed
as special cases of MRFs (undirected graphical models). More specifically, in
a structured classification problem one should be able to represent P(y|z) as
an MRF. By assuming P(y|z) is modeled as an MRF one can prove theorems
and design algorithms and software at an abstract level which simultaneously
applies to all of the modeling formalisms discussed above.

Unfortunately, for some of the above models the representation of P(y|z) as
an MRF is problematic. The most problematic case is perhaps PCFGs. It is
fairly easy to construct an MRF representing P(y|z) where y is a parse tree and
z is a word string. Unfortunately, standard MRF algorithms take exponential
time when applied to the natural MRF representation. This is a somewhat
surprising outcome, given that there are well-known inference algorithms for
PCFGs which run in cubic time in the length of the word string x.

This paper presents a modeling formalism which handles both MRFs of
bounded tree width and PCFGs. First we define a linear Boolean model (LBM).
An LBM consists of three parts: a set of boolean variables; a formula defining a
set of possible assignments to these variables (a “feasible set”); and an assign-
ment of a weight to each variable. The weight for a complete variable assignment
is then the sum of weights for those variables in the assignment that are true.
The weight associated with a truth assignment can be written as a linear func-

tion of the bits in the assignment — hence the term “linear”. We show how to
encode both standard MRFs and PCFGs, as LBMs.

The main problem we solve is how to encode compactly the set of possi-
ble assignments to the variables in an LBM in a single formalism handling both
MRFs of bounded tree width and PCFGs. The case-factor diagrams (CFDs) we
introduce for that purpose are similar to binary-decision diagrams (BDDs) [6].
CFDs differ from BDDs in two ways. First, CFDs are similar to zero-suppressed
BDDs (ZBDDs) [19]. ZBDDs are designed for sparse truth assignments — truth
assignments where most of the Boolean variables are false. Sparseness is im-
portant for representing PCFGs. In addition to being zero-suppressed, CFDs
have “factor nodes” which allow a concise representation of problems that factor
into independent subproblems. Factoring is important for representing MRFs
of bounded tree width. We describe algorithms for CFDs that compute parti-
tion functions under Gibbs distributions for P(y|x), that select the maximum
likelihood (Viterbi) structure, and an inside-outside algorithm for computing
the marginal distributions of all of the Boolean variables. These algorithms all
run in time linear in the number of nodes in the CFD. We demonstrate that
PCFG models can be encoded in a CFD which has O(n?3) size where n is the
length of the input string. We also show that MRF's of bounded tree width can
be represented by a CFD with a polynomial number of nodes.

There are various lines of related work. A variant of BDDs for circuits of
bounded tree width was introduced by McMillan [18]. Although McMillan’s
formalism is more elaborate, it turns out that simply extending BDDs with
“and” nodes suffices for representing MRF's of bounded width. But representing
PCFGs seems to require a zero-suppressed formalism. Case-factor diagrams
combine zero suppression with factoring — a combination that seems essential
to efficient representation of PCFG parsing problems.

CFDs are closely related to the to the recursive conditioning algorithm in-
troduced by Darwiche [8, 1]. Recursive conditioning cases on the value of a
variables; factors the remaining problem into independent subproblems; and
then solves the subproblems recursively. The nodes of a CFD correspond to the
“subproblems” that arise in recursive conditioning. Darwiche has also defined a
data structure for representing the subproblems of recursive conditioning based
on arithmetic expressions [9]. The differences between CFGs and Darwiche’s
expressions involve the generalization to the problem of parsing PCFGs — a
problem not addressed by Darwiche. CFDs and recursive conditioning can both
exploit context-sensitive independence [5] where two variables are independent
under some values of a third variable but not independent in general. Con-
text sensitive independence is particularly important for PCFGs where the tree
width of the natural MRF representation is large. However, as is explained in
section 8, getting O(n3) time behavior rather than O(n®) time behavior seems to
require handling context sensitive variable existence as well as context sensitive
independence. In parsing, although there are Q(n?) possible substrings of the

given input string, only O(n) of those substrings represent phrases in any single
parse and a parse is determined by the value of only O(n) choices. This is very
much unlike a Bayesian network where all variables are used in all assignments.
In CFDs context sensitive variable existence is handled with zero suppression.
Boolean variables that are forced to be false need not be mentioned — in certain
contexts these variables essentially cease to exist.

Rina Dechter has given an and-or graph data structure similar to CFDs
and to Darwiche’s expression graphs for representing Bayesian networks [10].
Another closely related formalism has been given by Jaeger [15] and related
algorithms similar to recursive conditioning have been given by Bacchus, Dalmo
and Pitassi [3, 4]. As with Darwiche’s formalism, however, these formalisms do
not address the need for context sensitive variable existence in the PCFG parsing
problem.

It is also important to note that CFDs are similar to BDDs in that they
carry a semantics independent of the way in which they were constructed. An
independent semantics allows one to treat CFDs as first class models. One of the
fundamental properties of BDDs is that one can define Boolean and projection
operations on BDDs allowing them to be built up in a compositional way. CFDs,
as a form of BDD, can also support compositional operations although we do
not explore such operations here.

Developing a common language for structured modeling has potential ap-
plications to maximum-margin structured classification [22, 7, 2]. A maxi-
mum margin model is trained using an objective function stated in terms of
margins rather than in terms of P(y|z). However, the model parameters can
still be viewed as defining an log-linear or maxent probabilistic representation.
CFDs provide a formalism for structured modeling that allows these algorithms
and others to be formulated at a level of generality that covers both MRFs of
bounded tree width and weighted grammar formalisms like PCFGs.

2 Linear Boolean Models

A linear Boolean model (LBM) is a triple (V, F, ¥) where V is a set of Boolean
variables with values in {0,1}, F is a subset of the set of all assignments to V/,
and U is an energy function ¥ : V — R. We call the elements of F' the feasible
configurations of the model. We extend ¥ to configurations p € F with the
following “linear” definition:

U(p) = 3 U()p(2) (1)

zeV

If we view U as a vector in RV and p as a vector in BIVI then U(p) is simply
the inner product of ¥ and p. A LBM M defines a probability distribution

P(-| F,¥) on feasible configurations p € F as follows.

P(p|F,¥) = 72(;7\11)&“’” (2)
Z(F0) = Y 0 (3)
peEF

Given equation (2) we have that an LBM is really just a log-linear or maxent
model [11] on a set F' under the restrictions that all features are Boolean and
that each element of F' is uniquely determined by its feature values. A critical
issue is how to represent the feasible set F'. Before discussing the representation
of I, however, we give two examples of representing structured models with
LBMs.

3 Markov Random Fields

We first introduce some notation. We consider a set of variables V and domains
D(x) for each x € V, an assignment p maps x € V to p(x) € D(z); a partial
assignment o maps a subset of the variables dom(c) C V to appropriate values.
We write p’ C p if dom(p’) C dom(p) and p'(z) = p(z) Va € dom(p’). If p is a
(possibly partial) assignment on V' and V' C V| p|y+ is the unique assignment
such that p|y+ C p and dom(p|y+) = dom(p)NV". If all the variables are Boolean,
that is D(z) =B = {0,1} Vz € V, the assignment is a truth assignment. If p
is a (possibly partial) assignment, € V a variable, and v € D(z), plx := v] is
the assignment identical to p except that plx := v](z) = v.

A Markov random field (MRF) consists of variables and energy terms on
configurations of those variables. More precisely, we assume a finite set of
variables y1, ... ye with associated domains D(y1), ..., D(y¢). We take the
domains D(y;) to be finite sets with |D(y;)| > 2. We define a configuration to
be an assignment p of values to the variables. An MRF is a set of such variables
plus a set of energy terms ¥y, ..., Uy each of which maps a configuration
to a real number. Any such set of energy terms defines a hypergraph on the
variables. More specifically, we say that ¥; depends on variable y; if there
exists configurations p and p’ which agree on all variables except y; and such
that Wy (p) # Ui(p'). Let Vi denote the set of variables on which ¥y depends.
The sets Vj, define a hypergraph on the variables. If |[V| = 2 for all k then these
sets define a graph.

An MRF M defines a probability distribution over configurations P(p|M)

by the following equations:

1
Z(M)

Z(M) = Zef‘l/(ﬁ)

V) = 3 Wilp)
k

P(plM) e V)

To represent an MRF as a LBM we must represent a configuration of M as
a truth assignment on Boolean variables and represent the energy terms by an
energy function on Boolean variables. Given an MRF M we construct Boolean
variables of the form "y; = v" with y; a variable of M and with v € D(y;). For
each energy term ¥y with Vi, = {y1,...,ym} and each tuple of values vy, ..., vy
with v; € D(y;) we also introduce the Boolean variable "k, y; = v1 A+ Ay, =
Um". Of course not all truth assignments to these Boolean variables correspond
to configurations of the random field M. In order for a Boolean assignment to
be feasible we must have that for each y exactly one of "y = v1", ..., "y = v,"
is true and furthermore "k,y1 = v1 A -+ A Yy = v,," is true if and only if
each of "y; = v1", ..., "Ym = v," is true. Section 5 discusses a method for
representing this feasible set of truth assignments. Finally we define the variable
energy function as follows.

\IJ("y:’U") :0
\IJ("kayl =1 AREE /\ym = Um") = \I’k(vla .. 'avm)

4 Parse Distributions as LBMs

A CFG in Chomsky normal form is a set of productions of the following form
where X, Y and Z are nonterminal symbols and «a is a terminal symbol.

X — YZ
X — a

A parse tree is a tree each node of which is labeled by a production of the
grammar in the standard way. In a weighted CFG each production X — ~ is
assigned an energy (weight) W(X — «). For any parse tree y we write yield(y)
for the yield of y, i.e., the sequence of terminal symbols at the leaves of the
parse tree. We write U(y) for the total energy of the parse tree y — U(y) is the
sum over all nodes of y of the energy of the production used at that node. For
a given string = of terminal symbols we have a probability distribution on parse

trees y with yield(y) = x defined as follows.

P(ylz) = %e‘“y) (4)

Z(xz) = Z e YW (5)

y: yield(y)=x

To construct an LBM representation of P(y|z) we first define a set of Boolean
variables. Let n be the length of x. First we have a phrase variable "X; ;" for
each nonterminal X in the grammar and 1 < i < j < n-+1. This phrase variable
represents the statement that the parse contains a phrase with nonterminal
X spanning the string from 7 to j — 1 inclusive. Second we have a branch
variable "X, — Y; ;Z; " for each production X — Y Z in the grammar and
1 <i<j<k<n+1. A branch variable represents the statement that the parse
contains a node labeled with the given production where the left child of the
node spans the string from 7 to j —1 and the right child spans j to k—1. Finally,
we have a terminal variable "X, ;11 — a" for each terminal production X — a
and position 7 in the input string. A terminal variable represents the statement
that the parse tree produces terminal symbol a from nonterminal X at position
1. We take V to be the set of all such phrase, branch, and terminal variables.
Each parse tree determines a truth assignment to the variables in V and we
take F' to be the set of assignments corresponding to parse trees. Finally, we
must define the energy of each Boolean variable. The variable energy function
¥ is given by the following equations.

\P(IlXi’j n) — 0
V("X —Yi;Z;1") = ¥(X—-Y2Z)
\IJ(HXi,'H-l — a") = \I’(X — Cl)

5 Case Factor Diagrams (CFDs)

We first introduce some notation. If F' is a set of assignments of values to
variables then Fz := v] = {p[z :=v] : p € F}. If p and o are truth assignments,
pVo is the assignment such that (pVo)(z) = 1if and only if p(z) = lor o(x) = 1.
If Fy and Fy are sets of truth assignments, Fi1 V Fo = {pVo:p € Fyand o €
Fy}. The support of a truth assignment is the set of variables set to 1 by the
assignment.

A case-factor diagram represents the feasible set by a search tree over the set
of possible truth assignments. The search tree cases on the value of individual
variables and factors the feasible set into a product of independent feasible sets
when possible. We represent this case-factor search tree by an expression.

Definition 1 A case-factor diagram (CFD) D is an expression generated by the
following grammar where is a Boolean variable; a case expression case(x, D1, D)
must satisfy the constraint that x does not appear in D1 or Ds; and a factor
expression factor(Dy, Do) must satisfy the constraint that no variable occurs in

both D1 and D.

D ::= case(z, D1, Ds) | factor(D1, D3) | unit | empty

We denote by V(D) the set of variables occurring in D.

To define the meaning of CFDs, it is convenient to see all CFD variables as
members of a common countably infinite set of variables V. The interpretation
F(D) of a CFD D is then a finite set of finite support assignments to V. We use
0 for the totally false assignment (the zero vector). F(D) is defined as follows.

F(unit) = {0}
F(empty) = 0
F(case(z,D1,D3)) = F(Dy)[z:=1]UF(Dy)
F(factor(D1,D3)) = F(Dy)V F(D3)

— —

Note that, as with ZBDDs, variables that are false in all assignments in F'(D)
need not be mentioned. In contrast, a BDD must mention any variable required
to be false. In contrast to BDDS, ZBDDs give sparse representations of sparse
assignments (assignments that are mostly false).

An an example consider variables z1, s, ... and consider the CFD A; defined
as follows.
Ag = unit
Aiy1 = case(wiq1, Aiy Ay)

Under the semantics stated above we have that F(A;) is the set of all the 2¢
truth assignments p satisfying the constraint that p(z;) = 0 for all j > i. As
another example, consider B; defined as follows.
By = unit
B;y1 = factor(case(x; 1, unit, unit), B;)
We leave it to the reader to verify that F'(B;) = F(A;). As a third example
consider C; defined as follows.
Co = unit
Ci+1 = case(xiﬂ, Ci, empty)

We have that F(C;) contains only the single truth assignment p such that
p(zj) = 1for j < i and p(z;) = 0 for j > i. In general this semantics has

the property that if 2 does not occur in D then p(z) = 0 for any assignment
p € F(D). Because the two arguments of a factor expression cannot share vari-
ables, we have that the number of assignments in F'(factor(D1, D)) equals the
number of assignments in (D) times the number of assignments in F(D5).
We leave it to the reader to verify that any feasible set on any finite set of
variables can be represented by a CFD.

The meaning of CFD expressions is independent of their representation as
data structures. However, the running time of algorithms depends crucially on
that representation. For all the algorithms we discuss, we assume that CFD
expressions are represented as diagrams, which are DAGs with one node for
each distinct subexpression, and edges from the node for an expression to the
nodes for its immediate subexpressions. That is, common subexpressions are
represented uniquely. For example, the CFD A; defined above viewed as a tree
has 2¢ leaves. Viewed as a diagram, however, A; has only i + 1 nodes but
2¢ different paths from the root node to the leaf node. The size of a CFD
D, denoted |D|, is defined to be the number of distinct subexpressions of D
(including D itself). In other words, |D| is the number of nodes in the diagram
view of D. We will often use the word “node” as a synonym for “expression”.
We will also use the standard DAG notions of parent, child, and (directed) path
for CFDs.

6 CFDs for MRFs

Here we define a CFD representation of the feasible set for the LBM constructed
in section 3. Consider the problem of computing Z(M) for an MRF M. We
assume that the variables of M have been given in a fixed order y1,¥y2, ..., Yn-
The assignments to these variables form a tree whose root has a branch for
each value of y;, the next level branches for each value of y» and so on. As
variables are assigned, however, the residual hypergraph defined by the energy
terms often factors into disjoint sets of terms on disjoint sets of variables. So
one can compute Z(M) by factoring the residual problem when possible and,
if no factoring is possible, casing out on the value of the next variable (after
which more factoring may be possible). This “case-factor process” determines
a set of subproblems. The nodes (subexpressions) in the CFD representation
of the MRF correspond to the subproblems that arise in this way. Each such
subproblem is defined by a subset X of the energy terms and a partial assignment
p to (some of) the variables occurring in X.

More formally, consider a subset ¥ of the energy terms of M. Let V(X) be the
set of variables on which some energy term in ¥ depends, i.e., V(3) = UgesVi.
Let p be a partial assignment of values to (some of) the variables in V(X). Note
that p is defined on the general variables of M rather than the Boolean variables
of M’. For each pair of such a subset ¥ and partial assignment p we now define

a CFD D(X, p). The CFD for the full feasible constraint is D(X(M),) where
(M) is the set of all energy terms in M and () is the empty partial assignment.
For a given partial assignment p we define a graph structure on the energy
terms in X by saying that there is an edge between two energy terms if there is
a variable not assigned a value by p on which both terms depend. The key to
concise representation is to factor the problem when ¥ becomes disconnected.
We use the notation case({(z1, D1), (22, Da), ..., {2m, Dn,)) as an abbreviation for
case(z1, Dy, case({z2, D), ..., (2n, Dy))) where case((z, D)) is case(z, D, empty).
The CFD D(Z, p) is defined as follows.

1. If ¥ is disconnected under partial assignment p we have

D(X, p) = factor(D(X1, plv(sy))s - - » D(Zm, plv(s,)))

where ¥4, ..., ¥, are the connected components of ¥ and factor(D1, Do, ..., Dy,)
abbreviates factor(Dy,factor(Ds, ..., Dy,)).

2. Otherwise, if 3 consists of a single constraint ¥ and p assigns values to
all of V(X), we have the following where Vi, = {y1,...,ym} and v; = p(y;).

D(X, p) = case("k,y1 = V1, - -, Ym = V", unit, empty)

3. Otherwise, let y be the earliest variable (under the given variable order)
in V(X) that is not in dom(p). In this case we have the following where
D(y) =A{v1, ..., Un}.

("y =v1", D(Z, ply == v1])),
D(%, p) = case :

("y = v, D(E, ply := v2]))

We now show that MRFs of small tree width have concise CFD representa-
tions. First we define the notion of tree width.

Definition 2 We consider a fized variable order y; ... y,. Consider i with
1<i<n+1. We say that a variable y; is past at i if j < i and is future at
iif 7 > i. We define G; to be the graph whose nodes are the energy terms of
M and where two energy terms are connected by an edge if they both depend on
the same future variable (ati). A connected component of G; (which is a set of
energy terms) will be called active if it contains at least one future variable (at
i). The tree width of M under the given variable ordering is the mazimum over
all i of the maximum over all active connected components of G; of the number
of past variables in that component (ati). The tree width of M is the minimum
over all orderings of the tree width relative to that ordering.

10

Note that an energy term in which all variables are past is not connected
to any other energy term. This implies that the inactive components of G; are
singletons in which all variables are past. It also implies that every energy term
in an active component must contain at least one future variable.

The above definition of tree width matches standard definitions. Rather
than state standard definitions and prove the equivalence we will simply show
that under the above definition we have that the tree width of a tree is 1.
Suppose that every energy term involves two variables and the graph formed
by the energy terms is a tree. Pick a root of the tree and consider a variable
ordering that orders parents before children. Now suppose that 3 is an active
connected component of GG;. Every energy term in an active ¥ must contain
a future variable. So in this case the energy terms in an active ¥ form a tree
every edge of which contains a future variable. In such a tree only the root
variable can be past in an ordering that orders parents before children. So the
number of past variables in an active component is at most one. We now have
the following theorem.

Theorem 1 Let w be the tree width of M under the given variable ordering.
Then |D(M)| is O(Nd“*1) where N is the number of energy terms in M and
d = max;|D(y;)].

Proof: The definition of D(X, p) can be viewed as a set of rules for generating
pairs (X, p) such that the CFD contains D(X, p). We will call a pair (¥, p) an
anchor pair if there exists an ¢ such that ¥ is an active connected component
of G; and p assigns values to the past variables of ¥. We assume that (M) is
a connected component of G; (where all variables are future) and that (M)
contains variables so that (3(M), @) is an anchor pair. The set of ¥ such that
there exists an ¢ such that ¥ is a connected component of GG; form a tree —
as ¢ increases connected components split ultimately terminating in inactive
singleton sets. The number of nodes in a tree is not more than twice the number
of leaves minus one. Therefore the number of ¥ that can appear in anchor pairs
is at most 2N — 1. For a given anchor pair (X, p), let i(X) be the greatest index
such that ¥ is a connected component of G;. There are at most w variables
in ¥ that are past at time i(X). In any anchor pair (X, p) we have that there
exists a 7 < i(X) such that p assigns values to the variables in ¥ that are before
j. The set of p satisfying this property forms a tree with at most d¥ leaves.
Again, since the number of nodes is no larger than twice the number of leaves
we have that the number of such assignments p is O(d™). Therefore the total
number of anchor pairs in the CFD is O(Nd"). But each anchor pair generates
a certain set of intermediate nodes in the CFD before generating other anchor
pairs. The number of intermediate nodes is bounded by the number of triples of
the form (X, ply = v],¥’) where (X, p) is an anchor pair and ¥’ is a component
of ¥ under ply = v]. In each such triple we either have that ¥’ = ¥ or we have
that ¥ and ¥’ form an edge in the graph of possible sets ¥. The number of

11

edges in a tree is no larger than twice the number of leaves. Hence we have that
the number of pairs (3, %’) appearing in these triples is O(N). For a given X,
the number of assignments of the form ply = v] is O(d¥*!). So the number of
such triples is O(Nd¥*1). "

7 CFDs for Parsing

Here we construct a CFD for the feasible set of the LBM defined in Section 4
for a grammar G. We define the CFD D("X; ") such that the assignments
in F(D("X; ")) are in one-to-one correspondence with the parse trees of the
span from i to k — 1 with root nonterminal X. The CFD representing the full
feasible set of parses is D("S1,n+1"). First we define D("X; ;") as follows where
B("X; ") represents the consequences of making "X, " true.

D(IlXi7kll) — case("le,k", B("Xi,k")y empty)

For k > i+ 1 we define the consequences B("X; ;") as follows using the multi-
branch case notation defined in section 6.

B("X: ") = case((by, B(b1)),. .., (b, B(bn)))

where the variables b, are all possible branch variables of the form "X, —
Y;’ij_’k", and B("Xi’k — Yviijj’k") = factor(D("Ym- "),D("ijk")).

Finally, if a; is the ith input symbol, we have

case("X; ;11 — a;", unit,empt ifX —a;,€G
B("Xii+1") = { ("L Pty)

empty otherwise

This construction has the property that |D("S; ,+1")| is O(|G|n?) where |G|
is the number of productions in the grammar.

8 The Importance of Zero Suppression

We can define the feasible set of parse trees for a given grammar and given input
string directly as an MRF on the Boolean variables introduced in section 4. In
particular, we can define an MRF with hard constraint energy terms (energy
terms that either have infinite energy or zero energy) expressing the following
constraints.

1. "SI,n-i-l" is true.

12

2. If "X; " is true for k > ¢ 4 1 then there exists "Y; ;" and "Z; ;" where
the grammar contains X — Y Z and "X, — Y; ;Z; 1" is true.

3. If "X, — Y, ;Z; 1" is true then "Y; ;" and "Y} ;" are both true.

4. If "X; ;41" is true then the grammar must contain X — a where a is the
nth symbol in the input string and "X, ;41 — a" is true.

5. If "X — Y, ;7Z; " is true then no other variable of the form "X, ; —
Wi,j’Uj’,k" is true.

6. If "Y; ;" is true, and is different from "S; ,,11", then either some variable
of the form "X, — Y; ;Z; 1" is true or some variable of the form "X}, ; —
ZyqYs ;" is true.

Constraints 5 and 6 are not implied by 1, 2, 3 and 4. These constraints can
be expressed with a SAT problem (a set of disjunctive clauses) where constraint
5 requires O(G?n?) clauses. We can then take the resulting MRF and compile it
into an and/or graph [10] or an algebraic expression [9]. But in this approach
both the MRF representation and the compiled form are too large. In the
and/or graph representation we have or nodes representing the choice points
corresponding to constraint 2 above. Each branch of an or node produces
an and node. However, without zero suppression (without context-sensitive
variable existence), each and node must list all the variables that become false
at that node. For each of the O(n®) and nodes a cubic number of variables
become false giving O(n®) edges in the and/or graph.

9 CFDs for Edit Distance

Pair HMMs [12] and weighted finite-state machines [21, 13] have been used
to represent trainable weighted edit distance models in text processing and
computational biology. As another example of the expressive power of CFDs,
we show here how to construct a CFD for the weighted edit distance problem.
We will start with a simple context-independent edit cost model, and then
indicate how to extend it for context-sensitive edit costs. Consider two strings
a=ay - ay and b = by ---b, over a given alphabet V. We view b as being
derived from a by insertions, deletions and substitutions. We use the Boolean
variable X; ;, with 0 < ¢ < mand 0 < j < n, to represent the statement that the
j-long prefix of 4b; was derived by editing the i-long prefix of ga;. We require
the to level statement X, ,, to be true — the string b is derived by editing the
string a. In addition, we define the following edit variables:

o A; ;» states that gb; is derived from ga; by first deleting the symbol z € V'
at position ¢ in a and then deriving ¢b; from ga;—;.

13

e B; ;. states that ob; is derived from ga; by first inserting the symbol z € V'
at position j in b and then deriving ¢b;_; from ga;.

o S; jx,y states that ¢b; is derived from ga; by substituting € V' at position
jin b for y € V' at position ¢ in @ and then deriving gb;_1 from ga;—1.

Then we define the CFD D("X; ;") as follows:

case(" X, ;", E("X;;"),empty) ifi+j>0

D('lXi,j ||) —])
unit otherwise
BOXiy") = case(len, B(ea))ueys (s B yers (50ys E@ay))acyyer)
where e, = "A; 52", fy = "Bijy", and szy = "Si j2y"

Finally, we define

D("Xi—l,j") if 4 > 0,r=aq;

E(4iia") = empty otherwise
E("Bij,y") D(“Xiyjflu) lf.j > q;y:bj
’ empty otherwise
E("Sijmy") _ D("Xi—l,j—ln) ifi>00,j>0,x:ai,y:bj
e empty otherwise

It is easy to see that |D(" X, ,")| = O(|V|*mn), in agreement with the standard
dynamic program for computing the best alignment. From this CFD, we can
immediately build an LBM for weighted edit distance by setting

WOX,) = 0
U("A; ;") = « deletion cost
U("B; ;") = vy insertion cost
U("S, zy") = costof substituting « for y

Context-dependent edits can be implemented by subscripting variables with
different classes of edit contexts, and enforcing context class constraints appro-
priate in the CFD.

10 Inference on CFD Models

A CFD model (D,%¥) is an LBM whose feasible set is defined by a CFD D
and whose energy function U assigns costs to the variables of D. We will now
present the main inference algorithms on CFDs.

14

The Inside Algorithm. We first consider the problem of computing Z(F (D), ¥)
as defined by equation (3). Here we write Z(D, ¥) as an abbreviated form of
Z(F(D),¥). It turns out that Z(D,¥) can be computed by recursive descent
on subexpressions of D using the following equations.

Z(case(x, D1, Ds),

W) = e Y@ Z(Dy, V) + Z(Dy, V)
Z(factor(D1q, Ds), V)

)

v)

Z(D17)Z(D27\II)

Z(unit, ¥
Z(empty,

The correctness of these equations can be proved by induction on the size of
D. By caching these computations for each subexpression of D, these equations
give a way of computing Z(D, ¥) in time proportional to |D|. These equations
are analogous to the inside algorithm used in statistical parsing.

The Viterbi Algorithm. Next we consider the problem of computing min-
imum energy over the elements of F/(D). In particular we define ¥*(D, ¥) as
follows.

U*(D,¥) =)
()= /Jergl(%))

We can compute ¥*(D, ¥) using the following equations.
U(z) + U*(Dy,9), >
(D, V)
U*(factor(Dy, D3), ¥) = U*(Dy, V) + ¥* (Do, V)
U*(unit, ¥) =0
U*(empty, ¥) = 400

U*(case(z, D1, D3), ¥) = min (

Again the correctness of these equations can be proved by a direct induction on
the size of D. These equations can easily be modified to also compute a truth
assignment that achieves the minimum energy. This is a truth assignment of
highest probability.

Marginals. Next we consider the problem of computing marginal probabilities
of the form P(z = 1| D, ¥, o) where o is a partial truth assignment that fixes the
values of some of the CFD model variables. We will show that these marginals
can be computed in time proportional to |D||dom(a)|.

The marginal P(z = 1| D,¥,0) can be written as follows:

Z(D,¥,0[z:=1])

P(z|D,¥,0) =

(2| D,¥,0) Z(D.0,0)

Z(D,W,0)= > '@
pEF(D): oCp

15

So it suffices to be able to compute Z(D,¥,c). We now define the auxiliary
quantity Z'(D,¥,0) = Z(D,¥, 0|y (p)). Our procedure computes Z(D, ¥, o)
by computing Z'(D’, ¥, o) for all subnodes D’ of D. Note that the number of
such values is |D|. The Z’ values satisfy the following equations for factor, unit
and empty expressions.

Z/(factor(Dl,Dg), \I/,O') = Z/(Dl, \P’U)Z,(DQ,\IJ7U)
Z'(unit, ¥,0) =1
Z'(empty, ¥,0) =0

Computing Z' on case expressions is more subtle. We now have the following
equation where Z(v, D, D', ¥, o) is defined below.

e VA Z(2,D,Dy,¥,0) ifo(z)=1

Z(z,D, Dy, W if =0
Z'(case(z, D1, Dy), V¥, 0) = (2D, D2, ¥, 0) if o(2)

e VA Z(2,D,Dy,,0)
+ Z(2,D,D5,¥,0) otherwise

Z(z,D, D' U, o) expresses the constraint that omitted variables default to 0 in
CFDs. If there exists 2’ # z with o(2’) = 1 where 2z’ occurs in D but not in D’
then Z(z,D,D’, ¥, o) =0, otherwise Z(z,D, D', V,0) = Z'(D’,¥,0).

To analyze the running time of computing Z (D, ¥, o) we first note that there
are a linear number of values needed of the form Z(z, D', D", ¥ o). Assuming
unit time hash table operations, it is possible to cache the answer to all queries of
the form z € D', for 2’ € dom(o) and D’ a node in D, in O(|D||o]|) time. Given
this cache, each call to Z(z, D, D’, ¥, 0) can be computed in time proportional
to |o| . So the overall computation takes time proportional to |D||o].

The Inside-Outside Algorithm. Using the above conditional probability
algorithm to compute P(z = 1 | D,¥) for all variables z can take Q(|D|?)
time. However, a generalization of the inside-outside algorithm can be used
to simultaneously compute P(z = 1 | D, V) for all variables z in D in O(|D|)
time. The value Z(D, ¥) is the “inside” value associated with D. Intuitively,
the outside value of a node in a CFD is the total weight of the “contexts” in
which that node appears. We write D’ < D to state that node D’ occurs in
D where we take a node to occur in itself (D =< D). For a given top level
CFD Dyop and for D < Dy, we define the outside value O(D, Dyop, ¥) of D
(in Dyop) as follows. First define O(Dyop, Diop, ¥) = 1. For D # Dy, we define
O(D, Dyop,) as follows.

16

O(D7Dtopa\11) = Z O(Case(Z7D7D,)aDt0p7\Il)eiql(Z) (6)

case(z,D,D’') =X Dyop

+ Z O(case(z, D', D), Dyop, ¥)
case(z,D’,D")=<Dyop

+ Z O(factor(D, D"), Dyop, W) Z(D',)
factor(D’,D’) =< Dyop

+ Z O(factor(D', D), Dyop, W) Z(D', V)
factor(D’,D)=<Dqop

Once the inside value of every node has been computed, these equations
allows the outside values to be computed from the top down, i.e., starting from
O(Drop, Diop, ¥) = 1. Note that in this recursion the top level CFD Dy,
does not change. We will write O(D, ¥) for O(D, Dyp, ¥) when Dy, is clear
from context. Since Di,p, does not change, this top-down calculation can be
done in time proportional to the number of nodes. Finally we can compute
P(z = 1|Dyop, ¥) as follows.

Theorem 2

Z(Dyop, ¥, 0z :=1])
Z(Dtop,\I/)

P(z =1|Diop, ¥) =

O(case(z, D, D’), ¥)
ef\Il(z)

case(z,D,D")=<Dyop Z(D, \I/)

Z(Dyop, ¥, 0]z :=1])

Proof: First we introduce a slight change of notation so as to put the equations
in a more standard form for exponential models. Recall that the energy of an
assignment p is defined as follows.

U(p) = W(x)p()

We can think of p as a vector & with components z1, ..., z, and we can rewrite
U(p) as ¥(Z) as follows.

i=1

Here we should think of ¥ as a weight vector with components ¥;. We can

17

write Z(Dyop, V) as follows.

Z(Diop, ¥) = Z o= 2 Vizi
ZEF (Dtop)
aZ(Dtop;\II) >, Y,
oy, - Z —men S
ZEF (Dxop)

= _Z(Dt0p7\117®[$i = 1])

So to compute Z(Dyop, ¥, 0[z; = 1]) it now suffices to compute 9Z/0¥;. We
now compute 0Z/0W; by application of the chain rule to the inside rules for
calculating Z(Dyop, ¥). This is analogous to the use of the chain rule in com-
puting partial derivatives in backpropagation for tuning the weights of a neural
network. We can think of Z(Dyep, ¥) as a function of Z(D, V) — we expand
the indside equation for Z(D’, ¥) at every node D’ # D with D < D' < Dyqp.
This function from Z(D, ¥) to Z(Dyep, ¥) can be differentiated yielding a well
defined value for 0Z(Dsop, ¥)/0Z (D, V). We will now show the following.

O(D, Dyop, W) = W (7)

The proof is by induction on the maximum depth at which D occurs in Dyp. For
the base case we have D = Dy,p, and (7) follows from 0Z(Dsep, ¥)/0Z (Diop, ¥) =
1. For the induction case we can assume (7) for all shallower nodes. We then
have the following where W ranges over all the parents of D

0Z(Diop,) 0Z(Dyop,)\ (DZ(W,)
9Z(D, V) Z(9Z(W,) > (0Z(D,‘P)>

w

Equation (6) lists the four possible types of parents of D. We consider the case
where W is case(z, D, D). In this case we have the following.

0Z(Diop, V))
oy) D,D'), U
ZW,0) = e Y@ Z(D, V) + Z(D', D)
ozW,v) e
dZ(D, W)

These equations imply the the first line in (6) covers this form of parent W.
The second line (6) similarly covers parents of the form case(z, D, D’). Now
suppose that the parent W has the form factor(D, D’). In this case we have the
following.

W = Offactor(D,D’), D)
Z(W,¥) = Z(D,V)Z(D', V)
oZ(W,¥) '
2T = Z(D',)

18

These equations imply that the third line in (6) properly handles parents of the
form factor(D, D'). The analysis of the last line in (6) is similar.

Finally, it suffices to show that the right hand side of the second equation
in theorem 2 equals —0Z/9¥(z). We have the following where W now ranges
over all parents of the variable z.

e) (B

w

The parents of the variable z are exactly the nodes of the form case(z, D, D’)
for which we have the following.

Z(case(z, D, D"), ¥)

(aZ(casegfp, (zz) D", \p)>

e YA Z(D, W) + Z(D', V)

= — Y@ Z(D,v)

These equations imply that the right hand side of the second equation in theo-
rem 2 equals —0Z/0¥(z) as desired.

11 Conclusions

We have described a class of structured probabilistic models based on case-factor
diagrams. We have also shown that for a given a weighted context free grammar
G and input string x the conditional probability P(y|xz) can be represented by a
CFD model with O(|G|n?®) nodes. We have also shown that any MRF with tree
width w in which variables have V' possible values and with N energy terms can
be represented by a CEFD model with O(NV™) nodes. We have shown that for
an arbitrary CFD model, computing the partition function, most likely variable
assignment, and the probability of each Boolean variable, can all be done in
time linear in the number of nodes. We believe that CFD models will provide a
common language for specifying algorithms and stating theorems that can play
for structured probabilistic models a similar role to that of BDDs in Boolean
inference problems.

Acknowledgments Michael Collins and Fernando Pereira were supported in this
work by the National Science Foundation under grants 0347631 and EIA-0205456,
respectively.

19

References

[1]
2]

3]

[14]

[15]

[16]

[17]

David Allen and Adnan Darwiche. New advances in inference by recursive con-
ditioning. In UAI03, 2003.

Yasemin Altun and Thomas Hofmann. Large margin methods for label sequence
learning. In 8th European Conference on Speech Communication and Technology
(EuroSpeech), 2003.

F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for
#sat and bayesian inference. In FOCS, pages 340-351, 2003.

F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination: Bayesian inference via
backtracking search. In UAI, pages 20-28, 2003.

Craig Boutilier, Nir Friedman, Moises Goldszmidt, and Daphne Koller. Context-
specific independence in bayesian networks. In UAI96, 1996.

Randal E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677-691, 1986.

M. Collins. Parameter estimation for statistical parsing models: Theory and
practice of distribution-free methods. In Harry Bunt, John Carroll, and Giorgio
Satta, editors, New Developments in Parsing Technology. Kluwer, 2004. Revised
version of the paper that appeared at IWPT 2001.

Adnan Darwiche. Recursive conditioning. Artificial Intelligence, 125(1-2):5-41,
2001.

Adnan Darwiche. A differential approach to inference in bayesian networks. Jour-
nal of the ACM, pages 280-305, May 2003.

Rina Dechter. And/or search spaces for graphical models. ICS Technical Report,
March 2004.

Stephen Della Pietra, Vincent Della Pietra, and John Lafferty. Inducing features
of random fields. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 19(4):380-393, 1997.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic models of proteins and nucleic acids. Cambridge University Press,
1998.

Jason Eisner. Parameter estimation for probabilistic finite-state transducers. In
Proceedings of the 40th Annual Meeting of the Association for Computational
Linguistics, 2002.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic rela-

tional models. In S. Dzeroski and N. Lavrac, editors, Relational Data Mining.
Springer-Verlag, 2001.

Manfred Jaeger. Probabilistic decision graphs: Combining verification and ai
techniques for probabilistic inference. International Journal of Uncertainty Fuzzy-
ness and Knowledge Based Systems, 12, 2004.

Keiji Kanazawa, Daphne Koller, and Stuart Russell. Stochastic simulation algo-
rithms for dynamic probabilistic networks. In UAI95, 1995.

John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Pro-
ceedings of ICML-01, 2001.

20

18]

[19]

[20]
21]

[22]

K. L. McMillan. Hierarchical representation of discrete functions, with application
to model checking. In Computer Aided Verification, 6th International Conference,
1994.

Shin-ichi Minato. Zero-suppressed BDDs for set manipulation in combinatorial
problems. In Proc. of 30th ACM/IEEE Design Automation Conference (DAC’93),
pages 272—-277. ACM Press, 1993.

David Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64(1), 1993.

E. S. Ristad and P. N. Yianilos. Learning string edit distance. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 20(5):522-532, 1998.

B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Neural
Information Processing Systems Conference (NIPS03), 2003.

21

