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Abstract

We examine the communication required for generating random variables remotely. One
party Alice will be given a distribution D, and she has to send a message to Bob, who is then
required to generate a value with distribution exactly D. Alice and Bob are allowed to share
random bits generated without the knowledge of D. There are two settings based on how the
distribution D provided to Alice is chosen.

Average case: D is itself chosen randomly from some set (the set and distribution are known
in advance) and we wish to minimize the expected communication in order for Alice to
generate a value y, with distribution D. We characterize the communication required in
this case based on the mutual information between the input to Alice and the output Bob
is required to generate.

Worst case: D is chosen from a set of distributions D, and we wish to devise a protocol so that
the expected communication (the randomness comes from the shared random string and
Alice’s coin tosses) is small for each D € D. We characterize the communication required
in this case in terms of the channel capacity associated with the set D.

Prior to this work, only the limit (or asymptotic) versions of these results were known, where
Alice is given a sequence of distributions (D1, D, ..., D,), and Bob is required to generate n
values (y1,¥2, - - -, Yn), where y; has distribution D;. Here the amortized cost (per D;) is studied
as n tends to infinity. In the case, when the D,’s are i.i.d. and some error is allowed Winter [Win|
characterized the cost in terms of mutual information. In the case where D;’s are only known
to come from some set D and we require worst case bounds, the Reverse Shannon Theorem of
Bennett et al. [BSST] characterizes the limiting amortized cost in terms of the channel capacity.

Our results are for the one-shot case, and immediately imply the limit versions shown earlier.
We use our one-shot protocol to derive a direct sum result in communication complexity, for
which the asymptotic versions do not seem to help. Our result substantially improves the
previous such result shown by Jain et al. [JRSD].

An essential ingredient in our proofs is an improved rejection sampling procedure that relates
the relative entropy between two distributions to the communication complexity of generating
one distribution from the other.

*A preliminary version of this paper appeared in Proc. 22nd IEEE Conference on Computational Complexity,
2007 [7].
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1 Introduction

Let X and ) be finite non-empty sets, and let (X,Y) be a pair of (correlated) random variables
taking values in X x ). Consider the following communication problem between two parties, Alice
and Bob. Alice is given a random input x € X, sampled according to the distribution X. (We
use the same symbol to refer to a random variable and its distribution.) Alice needs to transmit
a message M to Bob so that Bob can generate a value y € ), that is distributed according to the
conditional distribution Y'|x—, (i.e., the pair (z,y) has joint distribution (X,Y")). How many bits
must Alice send Bob in any protocol that accomplishes this? It follows from the data-processing
inequality in information theory that this minimum, which we shall call T(X :Y), is at least the
mutual information between, X and Y, that is,

I[X : Y] 2 H[X] + H[Y] - H[X,Y],

where H[Z] denotes the Shannon entropy of the random variable Z (This lower bound is implied
by the following sequence of inequalities: T(X :Y) > H[M] > I[X : M| > I[X : Y], where the
last inequality is the data-processing inequality (cf. [CT, Page 32, Theorem 2.8.1]) applied to the
Markov chain X — M — Y.) We can also consider a slightly relaxed version of this problem
which allows for some error. More formally, let T)(X : Y') denote the minimum expected number
of bits Alice needs to send Bob so that the joint distribution generated by the protocol, which we
call (X,TI(X)), to be A-close in total variation distancd|to the joint distribution (X,Y).

How good is I[X : Y] as a lower bound for T(X : Y) (or T\(X : Y))? Does the complexity
of this communication problem provide us a functional interpretation of the information theoretic
notion of mutual information?

This problem was first studied by Wyner [Wyn|, who considered its asymptotic version (with
error), where Alice is given several independently drawn samples (z1,. .., Z,,) from the distribution
X™ and Bob needs to generate (y1, . .., ¥m ) such that the output distribution of ((z1,y1),- .., (Tm, Ym))
is A-close to the distribution (X,Y)™. Wyner referred to the amortized minimum expected number
of bits Alice needs to send Bob as the common information C(X :Y) of the random variables X
and Y, i.e.,

m . m
C(X :Y) 2 liminf | lim NSRS

A—0 m— 00 m

(1)

He then obtained the following remarkable information theoretic characterization of common in-
formation.

Theorem 1.1 (Wyner’s Theorem [Wyn, Theorem 1.3]).
CX:Y)= mv[i/nI[XY : W,

where the minimum is taken over all random wvariables W such that X and Y are conditionally
independent given W.

It can easily be verified that T(X : V) > C(X : Y) > I[X : Y] (See Section [6] for a proof of
these inequalities). However, both these inequalities can be very loose. To demonstrate how weak
these inequalities can be, in Section @, we give examples of joint distributions (X,Y") that satisfy
T(X:Y)=w(C(X :Y)and C(X :Y) =w([X :Y]). Thus, this seemingly natural problem does
not offer us the functional characterization for I[X : Y| we were initially hoping for.

!The total variation distance between two distribution P and @ is defined as maxgcx |P(S) — Q(S)|, which is
also equal to 3||P — Q|1 where || - |1 is the £'-norm



1.1 A characterization of mutual information

Our first result shows that there is such a characterization if Alice and Bob are allowed to share
random information, generated independently of Alice’s input. In fact, then Alice need send no
more than approximately I[X : Y] bits to Bob. In order to state our result precisely, let us first
define the kind of communication protocol Alice and Bob are expected to use.

Definition 1.2 (one-way protocol). In a one-way protocol, the two parties Alice and Bob share
a random string R, and also have private random strings R4 and Rp respectively. Alice receives
an input x € X. Based on the shared random string R and her own private random string R4,
she sends a message M (z, R, R4) to Bob. On receiving the message M, Bob computes the output
y =y(M, R, Rp). The protocol is thus specified by the two functions M (z, R, R4) and y(M, R, Rp)
and the distributions for the random strings R, R4 and Rp. For such a protocol II, let II(x) denote
its (random) output when the input given to Alice is . Let Ti(x) be the expected length of
the message transmitted by Alice to Bob, that is, E[|M (z, R, Ra)|]. Note that the private random
strings can be considered part of the shared random string if we are not concerned about minimizing
the amount of shared randomness.

Definition 1.3. Given random variables (X,Y), let

[

Tf(X 1Y) min E [Ti(z)],

r—X

where II ranges over all one-way protocols where (X, II(X)) is A-close in total variation distance to
the distribution (X,Y’). For the special case when A = 0, we define TH(X : Y) = TR(X :Y).

As in the case of T(X :Y), it again follows from the data processing inequality that T%(X : Y) is
bounded below by the mutual information I[X : Y]. This lower bound is implied by the following
sequence of inequalities: TH(X :Y) > HM] > HM | R > I[X : M | R] = I|[X : M |
R+ I[X : Rl = I[X : MR] > I[X : Y]. We have used the fact that I[X : R] = 0 since X
and R are independent. The last inequality is the data-processing inequality (cf. [CT, Page 32,
Theorem 2.8.1]) applied to the Markov chain X — (M,R) — Y.

Our first result shows that this lower bound is essentially tight, giving a characterization of
mutual information (modulo some lower order logarithmic termsﬂ).

Result 1 (characterization of mutual information).
IX:Y]<THX:Y)<IX:Y]+2lg(I[X:Y]+1)+0().

We have an additive 21g I[X : Y] term in the upper bound because our proof of the result
employs a prefix-free encoding of integers that requires Inn + 21glgn bits to encode the integer n.
By using an encoding that requires Inn + (1 + ¢) lglgn bits, the constant 2 can be improved to
(1+¢) for any € > 0.

The above result does not place any bound on the amount of randomness that Alice and Bob
need to share. In fact, there exist distributions (X, Y") for which our proof of Result |1 requires Alice
and Bob to share a random string of unbounded length. However, using technique from network
flows, we can bound the amount of shared randomness by O(lg|X| + lg|Y]) if we are allowed to
increase the expected communication by an additive factor of O(lglg(|X|+Y)|)) (proof not included
in paper for want of space).

2All logarithms (denoted by lg) in this paper are with respect to base 2.



1.2 Generating one distribution from another

The main tool in our proof of Result [I]is a sampling procedure for generating one distribution from
another. This sampling procedure is of independent interest because it relates the relative entropy
between two distributions and the communication complexity of generating one distribution from
the other.

Definition 1.4 (relative entropy). The relative entropy or Kullback-Leibler divergence between
two probability distributions P and @ on a finite set X is

P(z)
Q(z)

S(PIQ) = Pla)lg

zeEX

Observe that S(P||Q) is finite if and only if the support of distribution P (i.e., the set of points
x € X such that P(x) > 0) is contained in the support of the distribution @; in that case it is zero
iff P = (@, but otherwise always positive.

Let P and @ be two distributions such that the relative entropy S(P||@) is finite. We consider
the problem of generating a sample according to P from a sequence of samples drawn according to
Q. Let (z1,z9,...,2;,...) be a sequence of samples, drawn independently, each with distribution
Q. The idea is to generate an index ¢* (a random variable depending on the sample) so that the
sample z;+ has distribution P. For example, if P and () are identical, then we can set * = 1 and
be done. It is easy to show that for any such procedure

E[((")] = S(PQ) -1,

where £(i*) is the length of the binary encoding of i*. We show that there, in fact, exists a procedure
that almost achieves this lower bound. More formally, we have

Lemma 1.5 (rejection sampling lemma). Let P and Q be two distributions such that S(P||Q)
is finite. There exists a sampling procedure P which on input a sequence (r1,%2,...,Ti,...) of
independently drawn samples from the distribution @) outputs an index i* such that the sample x;
1s distributed according to the distribution P and the expected encoding length of the index i* is at
most

S(PIQ) +21g(S(P|Q) +1) + O(1),

where the expectation is taken over the sample sequence and the internal random coins of the
procedure P.

As in the case of Result |1} the constant 2 can be improved to any constant (1+4¢) for any € > 0.

1.3 Reverse Shannon theorem

In Result [1} we considered the communication cost averaged over x € X, chosen according to the
distribution of X. We now consider the worst-case communication over all z € X (but we still
average over the random choices of the protocol). The setting is similar to the earlier section. Let
X and Y be finite non-empty sets as before. Let Py be the set of all probability distributions on
the set Y. A channel with input alphabet X and output alphabet ) is a function E : X — Py.
The Shannon capacity of such a channel is



where (X,Y) is a pair of random variables taking values in X x ) such that for all x € X and
ye W, PrlY =y | X =] = E(zx)(y). A simulator for this channel (using a noiseless communication
channel and shared randomness) is a one-way protocol II such that for all z € X', Bob’s output
II(z) has distribution F(z). The goal is to minimize the worst-case communication; let

T(E) = mﬁnl&&)}gTH(aj),
where the minimum is taken over all valid simulators II of E. The following relationship between
T(E) and C(E) is easy to show and well known.

Proposition 1.6. T'(E) > C(E).

Using the rejection sampling lemma (Lemma [I.5), we can show that this lower bound is es-
sentially tight (modulo some lower order logarithmic terms). A result of this nature is called the
Reverse Shannon Theorem as it gives an (optimal) simulation of noisy channels using noiseless
channels and shared randomness.

Result 2 (one-shot reverse Shannon theorem). T'(E) < C(E) +21g(C(E) + 1) + O(1).

We call this result, the “one-shot Reverse Shannon Theorem”, since asymptotic versions of this
result was previously known (See Section for a discussion of these asymptotic results).

1.4 A direct-sum result in communication complexity

To present our next result, we need to recall some standard definitions from two-party communi-
cation complexity. We refer the reader to the book by Kushilevitz and Nisan [KN] for an excellent
introduction to communication complexity. Let X, Y and Z be finite non-empty sets, and let
f:X x)Y — Z be a function. A two-party protocol for computing f consists of two parties, Alice
and Bob, who get inputs x € X and y € ) respectively, and exchange messages in order to compute
f(x,y) € Z. A protocol is said to be k-round, if the two parties exchange at most k messages.

For a distribution g on X x Y, let the e-error k-round distributional communication complexity
of f under p (denoted by DY*(f)), be the number of bits communicated (for the worst-case
input) by the best deterministic k-round protocol for f with average error at most € under p. Let
REUb’k( f), the public-coins k-round randomized communication complexity of f with worst case
error ¢, be the number of bits communicated (for the worst-case input) by the best k-round public-
coins randomized protocol, that for each input (x,y) computes f(x,y) correctly with probability
at least 1 — ¢. Randomized and distributional complexity are related by the following celebrated
result of Yao [Yaol.

Theorem 1.7 (Yao’s minmax principle [Yao]). RE"™F(f) = max, DLF(f)

For function f : X x Y — Z, the t-fold direct sum of f, f& : X' x Y — Z!, is defined by

FO Uz, ), (s ue) 2 (f(x1,91)s- -+, f(ze,90)). Tt is natural to ask if the communication
complexity of f¥ is at least ¢ times that of f. This is commonly known as the direct sum question.
The direct sum question is a very basic question in communication complexity and had been studied
for a long time. Several results were known for this question in restricted settings for deterministic
and randomized protocols [KN]. Recently Chakrabarti, Shi, Wirth and Yao [CSWY] studied this
question in the Simultaneous message passing (SMP) model in which instead of Alice and Bob
communicating among themselves send a message each to a third party Referee who then outputs
a z such that f(z,y) = z. They showed that in this model, the Fquality function EQ satisfies the



direct sum property. Their result also holds for any function that satisfies a certain robustness
requirement. This result was then extended by Jain, Radhakrishnan and Sen [JRSd|] to hold for
all functions and relations, not necessarily satisfying the robustness requirement, both in the one-
way and the SMP model of communication. In another work Jain et al. [JRSb] showed, a weaker
direct sum result for bounded-round two-way protocols. Their result was the following (here p is a
product distribution on X x ) and k represents the number of rounds):

¢ 52 k
DI 2 1 (G D) —2)
Using the rejection sampling lemma (Lemma , we obtain a considerable strengthening of
the above result.

Result 3 (direct sum result). For any function f : X x Y — Z, and a product distribution p
on X X Y, we have

DEK(7) > - (5DEK() — O))

Applying Yao’s minmaz principle (Theorem , we have:

RPUWDH(fEt) > max (; (5D5f5(f) - O(k:))) .

where the mazrimum above is taken over all product distributions y on X X Y.

1.5 Related work

Asymptotic versions of our Results [1| and [2| were independently shown by Winter [Win] and Ben-
nett et al. [BSST] respectively.

Theorem 1.8 ([Win, Theorem 9 and Remark 10]). For every pair of distributions (X,Y)
and A > 0 and n, there exists a one-way protocol II,, such that the distribution (X™, IL,(X™)) is
A-close in total variation distance to the joint distribution (X™,Y™) and furthermore,

1
max 17, (T) < nl[X : Y]+ O <> V.
TEX™ A

Theorem 1.9 (reverse Shannon Theorem [BSST]). Let E be a discrete memoryless channel
with Shannon capacity C' and € > 0. Then, for each block size n there is a deterministic simulation
protocol 11,, for E™ which makes use of a noiseless channel and prior random information R shared
between sender and receiver. The simulation is exactly faithful in the sense that for all n, and for
all T € X™, the output 11,(T) has the distribution E™(T), and it is asymptotically efficient in the
sense that

lim max Pr[Cr,, (Z) > n(C(E) +¢)] =0.

n—oo reX ™

It is to be noted that the asymptotic result of [Win| is slightly stronger than what is stated

above in that Winter’s result actually bounds the worst case number of bits communicated while
our results (and the above statement) bound the expected number of bits communicated. Despite
this, these asymptotic results (and their stronger counterparts) follow immediately from our results
by routine applications of the law of large numbers.



One-shot vs. asymptotic results In the light of the above, it might seem natural to ask why
would one be interested in one-shot versions of known asymptotic results. Our motivation for the
one-shot versions is two-fold.

e The asymptotic equipartition property (cf. [CT), Chapter 3|) for distributions states that for
sufficiently large n, n independently drawn samples from a distribution X almost always fall
in what are called “typical sets”. Typical sets have the property that all elements in it are
nearly equiprobable and the size of the typical set is approximately 2"7X]1. Any property
that is proved for typical sets will then be true with high probability for a large sequence
of independently drawn samples. Thus, to prove the asymptotic results, it suffices to prove
the same for typical sets. Thus, one might contend that these asymptotic results are in fact
properties of typical sets and it could be the case that the results are in fact, not true for the
one-shot case. Our results show that this is not the case and one need not resort to typical
sequences to prove them.

e Second, our results provide tools for certain problems in communication complexity (e.g., our
improved direct sum result). For such communication complexity applications, the asymptotic
versions do not suffice and we require the one-shot versions.

Bounding shared randomness As mentioned earlier, we can bound the shared randomness
in Result [I| by O(lg |X| + 1g|Y]) if we are allowed to increase the expected communication by an
additive factor of O(lglg(|X| + Y|)). This raises the natural question of tradeoffs between shared
randomness and expected communication. The asymptotic version of this problem was recently
solved by Bennett and Winter (Personal Communication [BW]).

Substate Theorem Jain, Radhakrishnan and Sen [JRSa] prove the following result relating the
relative entropy between two distributions P and ) to how well a distribution is contained in
another.

Theorem 1.10 (classical substate Theorem, [JRSa]). Let P and Q be two distributions such
that k = S(P||Q) is finite. For all £ > 0 there exists a distribution P’ such that ||P' — P|jy < e and
Q = aP' + (1 — a)P" where P" is some other distribution and o = 2-OK/2),

The rejection sampling lemma (Lemma is a strengthening of the above theorem (the above
theorem follows from Lemma by an application of Markov’s inequality). In fact, the classical
substate theorem can then be used to prove a weaker version of Result (1| which allows for error.
More precisely, one can infer (from Theorem that TH(X : V) < O(I[X : Y])/A). Tt is to
be noted that the fundamental contribution of Jain, Radhakrishnan and Sen [JRSal is actually a
quantum analogue of the above substate theorem. It is open if there exist quantum analogues of
our results.

Lower Bounds using message compression Chakrabarti and Regev [CR] prove that any
randomized cell probe algorithm that solves the approximate nearest search problem on the Ham-
ming cube {0,1}% using polynomial storage and word size d9M) requires a worst case query time
of Q(lglgd/lglglgd). An important component in their proof of this lower bound is the message
compression technique of Jain, Radhakrishnan and Sen [JRSh]. The rejection sampling lemma
(Lemma can be used to improve message compression of [JRSb|], which in turn simplifies the
lower bound argument of Chakrabarti and Regev. It is likely that there are other similar applica-
tions.



Organization

The rest of the paper is organized as follows: We first prove Results [I] and [2] assuming the rejection
sampling lemma (Lemma in Sections [2[ and |3| respectively. We then proceed to prove the
rejection sampling lemma in Section The Direct Sum Result (Result [3) is then proved in Section
Finally, in Section[6] we give examples of joint distributions (X, Y) that satisfy T'(X : YV) = w(C(X :
Y))and C(X :Y) =w([X : Y)).

2 Proof of Result [1]

Result follows easily from the rejection sampling lemma (Lemma and the following well-known
relationship between relative entropy and mutual information.

Fact 2.1. I[X : V] = Eoe x[S(Y |x—s||Y)].

In other words, the mutual information between any two random variables X and Y is the
average relative entropy between the conditional distribution Y|x—, and the marginal distribution
Y.

Proof of Result[]. We may assume that the random string shared by Alice and Bob is a sequence
of independently drawn samples (yi,¥2,...) according to the marginal distribution Y. On in-
put x € X drawn according to the distribution X, Alice uses the sampling procedure P (from
Lemma to sample the conditional distribution Y|x—, from the marginal distribution Y in
order to generate the index ¢*. (Note that the conditional and marginal distribution always satisfy
S(Y|x=z||Y) < o0). Alice transmits the index ¢* to Bob, who then outputs the sample y;+ which
has the required distribution. The expected number of bits transmitted in this protocol is at most
E, x[S(Y|x=:||Y)+21g(S(Y|x=2|Y) + 1) + O(1)] which (by Fact and Jensen’s inequality)
is at most I[X : Y] +21g(I[X : Y]+ 1)+ O(1). O

3 Proof of the one-shot reverse Shannon theorem (Result

Fix the channel E, and let (X,Y’) be the random variables that realize its channel capacity. Let Q
be the marginal distribution of Y.

Claim 3.1. For allz € X, S(E(x)||Q) < C(E).

The existence of a distribution @) with the above property was also shown by Jain [Jai] using a
different argument.

Note that the result follows immediately from this claim by invoking the rejection sampling
lemma (Lemma . The resulting protocol uses samples drawn according to Q as shared random-
ness and on input z € X’ generates a symbol in ) whose distribution is E(x). The communication
required is bounded by lg S(E(2)||Q) + 21g(S(E(X)||Q) + 1) + O(1); by Claim this is at most
lgC(E) +21g(C(FE)+ 1) + O(1).

Proof of Claim[3.1. For contradiction assume that for some zy € X', we have S(E(z)||Q) > C(E).
We will show that by assigning greater probability to x¢ than it receives in X, we can obtain a
pair of random variables (X', Y”) whose distribution is compatible with the channel, but whose
mutual information is strictly more than C(E)—a contradiction. Formally, for o € [0, 1], consider
a new random variable X, obtained by picking xy with probability o« and X with probability



(1 — a). Let Y, be a random variable correlated with X, such that for all x € & and y € ),
Pr[Yy, =y | Xo = 2] = E(x)(y); let Qq be the marginal distribution of Y,. A direct calculation
yields:

Qy)

I[Xo : Yo —I[X Y] = a(S(E()||Q) —I[X:Y])+ (1 —a)S(QIIQa)+aZE($)(y)lgm
yeY @

= a(S(E@)|Q) — I[X : Y]) + (1 - a)S(QlQa) + O(a?).

Since, S(E(z)||Q) — I[X : Y] > 0, for some small enough o > 0, we have I[X, : Y] > I[X : Y]
C(E)—a contradiction.

0o ol

This completes the proof of Result

4 The rejection sampling procedure

Let P and @ be two distributions on the set X such that the relative entropy S(P||Q) is finite.
Recall that we need to design a rejection sampling procedure that on input, a sequence of samples
{x1,x9,...,} independently drawn from the distribution @, outputs an index ¢* such that x;+ is
distributed according to P and the expected encoding length of the index ¢* is as small as possible.

A natural approach to this would be the greedy method: at each iteration, we fill the distribution
P with the best possible sub-distribution of ), while maintaining that our sum is always less
then the distribution P (note that since we are doing rejection sampling, we can only create sub-
distributions of @) at each iteration). This greedy approach will generate the required distribution
P, but it is not guaranteed to perform well with respect to expected index length. For instance,
suppose there exists a z* € X such that P(z*) > Q(z*) and are both very small while for all
other z € X we have Q(z) > 0 and P(x) < Q(z). Then, with high probability, the first sample is
unlikely to be z* (since Q(x*) is small), while at the same time the first sample suffices to satisfy
the probability requirements of all values x € X but «*. We would then have to wait for at least
1/Q(x*) samples, on average, to see the value z* before fulfilling its probability requirement. Thus,
the average length of the index of the greedy method can be as large as P(z*)1g(1/Q(x*)) which
can be much larger than the relative entropy S(P||Q).

We show that a variant of the greedy algorithm overcomes this problem and in fact achieves
expected index length roughly S(P||@). This variant works in several phases and within each phase,
the algorithm proceeds greedily to fill the distribution P/2 instead of P. Filling P/2 instead of P
in each phase guarantees that there is significant probability (at least 1/2 in this case) of seeing
samples with low probability (like z* in the above example). The factor 2 is arbitrary and we could
have as well worked with any other constant bounded away from 1. In the following lemma, we
describe the behavior of the algorithm within each phase.

Lemma 4.1. Let P and Q be two distributions on the set X such that their relative entropy S(P||Q)
is finite. Then there exists a procedure P with the following properties:

Random Input: A random string R which is a sequence (x1,x2,...), of independent samples each
with distribution Q;

Output: The procedure either aborts (which happens with probability 1/2) or outputs an index j*
that satisfies Pr[xj» = x] = P(x)/2 for all x € X. Here the probability is taken over the
random string R and the internal random coins of the procedure.



Expected length: The expected length of the index j*, conditioned on the fact that the procedure
P does not abort, is at most

S(P[Q) +21g(S(PQ) +1) + O(1).

We defer the construction of P to the latter part of this section and first show how the procedure
P claimed in Lemma can be constructed given the procedure P specified in Lemma

Proof of Lemmall.5 For notational convenience, we will assume that the sequence of samples for
P is indexed by a pair of indices (i, j) instead of a single index i. P repeatedly invokes P in each
phase till P does not abort in which case P outputs both the phase number and the output of P.
More formally, we have:

REJECTION SAMPLING PROCEDURE P(P, Q)

RaNDOM INPUT: {x;;|i,j € N} a sequence of samples independently drawn from the distri-
bution Q.

1. For i+ 1 to oo do

PHASE 1

(a) Run procedure P on the subsequence of samples {z; ;|j € N}.

(b) If P does not abort, set i* = (4, j) where j is the output of P and go to Step
2. Output ¢*

Clearly, the sample z;+ is distributed according to the distribution P. Since P aborts with probabil-
ity exactly 1/2, P invokes P twice on average. The expected length of the index i* is the expected
length the index j and the expected length of the phase number ¢, which is at most a constant.
This completes the proof of Lemma O

It remains to justify Lemma

Proof of Lemmal[{.1 The idea is as follows. The procedure P will examine the samples (xj:jeN)
sequentially; after examining x; it either accepts (by returning the value j for j*) or moves on to
the next sample x;;1. The key is to assign acceptance probabilities for each step so that x;« has
the right distribution. These acceptance probabilities are given by a function a; : X — [0,1],
with the natural interpretation that when the procedure examines z; and finds that its value is z,
then it accepts it with probability a;(z). We now define (a; : j € N) precisely, then show how the
procedure uses them. It will be convenient to inductively define two other sequences along with a;:

(sj:=0,1,...) , where each s; € [0,1]; later we will show that s; is the probability that the
procedure halts before it examines the sample x;;

(pj:j=0,1,...) , where p; : X — [0,1]; it will turn out that p;(z) is the probability that = = z
and j* > j.
The three sequences are defined as follows.

Definition 4.2 (acceptance probabilities). Let P and @ be distributions on X such that
S(P|Q) < oc.

1. L = max;ecy {ggfcﬂ, sp =0, and po(x) = P(z)/2 for all x € X.



2. For j e {1,...,L}, let

e a;(z) = min (1, 7(1_2:11()%(1)),

e pj(z) =pj_1(x) — (1 —s-1) Q(x) - aj(x), and
© 55 =15~ Y,expi(z)

We now turn to the construction of P. As mentioned before P tries to greedily fill the sub-
distribution P/2 and aborts with probability 1/2.

PROCEDURE P(P, Q)

RANDOM INPUT: (z; : j € N) a sequence of samples independently drawn from the distribu-
tion Q.

1. Compute L and the sequence (a; : j € N) as given in Definition

2. For j «—1to L do

ITERATION ()
(a) Examine sample z;,
(b) With probability a;(x;), output j and halt.
3. Abort (this happens if the procedure does not accept in any of the L iterations).

"The following claim relates the quantities defined in Definition to the halting probabilities
of P.
Claim 4.3. For every j € {0,...,L},
(a) the probability that P halts within j iterations is ezactly sj, which is at most 1/2 for all j;

(b) for each x € X, the probability that P halts within j iterations and outputs j* such that
xj+ = x is exactly P(x)/2 — pj(z).

Proof. We will prove the two parts simultaneously by induction on j. At the very beginning (i.e.,
end of iteration 0), we have sg = 0 and po(x) = P(x)/2. Thus, the claim holds at the end of
iteration O. B

Suppose the claim holds at the end of j iterations. Then the probability that P halts within
(j+1) iterations and outputs j* such that z;+ = z is exactly P(x)/2—p;(x)+(1—s5;)-Q(z)-aj(z) =
P(x)/2 — pj41(x). This shows part (b); part (a) then follows immediately from part (b). O

For each z € X, the pj(x)’s decreases monotonically from P(z)/2 to 0 and does not change
after it has attained the value 0. The following claim describes the rate at which this sequence falls.
Claim 4.4. For each x € X and j € {1,..., L}, either pj(z) =0 or p;j(z) < pj_1(x) — Q(x)/2.
Proof. Fix some j and . We have that p;j(z) = pj—1(z) — min ((1 — sj—1) - Q(z),pj—1(z)). If the

minimum is p;_1(z), then p;(z) = 0. Otherwise, the decrease is (1 — s771) - Q(z) which is at least

Q(z)/2. O

10



Thus, by the end of j = [Sgg < L iterations, p;j(z) = 0. This implies that s;, = 1/2. It
then follows from Claims and that P either aborts (which happens with probability 1/2) or
outputs an index j that satisfies Pr[z; = z] = P(z)/2 for all x € X.

We now bound the expected encoding length of the index j conditioned on P not aborting.
Suppose the index j output by P satisfies xj = x for some x € X. It follows from Claim |4.4] that

j< {ngﬂ However this event happens with probability exactly P(z). It then follows that

. P(x)
2,7 l({@@b

We now fix some prefix-free encoding of the integers such that the encoding of every integer n > 2
requires no more than £(n) = Ign + 2lglgn + O(1) bits. Let X(psoq) be the set of z € X' that
satisfy P(x) > 2Q(x). We now have the following sequence of inequalites.

E[£(5)] < Z P(x)- <lg {ggﬂ +21glg {gggw —1—0(1)) + Z P(z)-0O(1)

TEX(P>2Q) ¢ X (ps2q)

. 2P(z) . 2P(x)
< xeXZ ORI xEXZ P(e)1gls G,y +O()
(P>2Q) (P>2Q)
_ 210 L@ . P(z)
T X Parlkgg 2 3 P@lkligey ol
(P>2Q) (P>2Q)
) e P@)
< xGXZ P(x) ng(x)-i-ng 1+x€XZ P( )ng(x) +0(1)
(P>2Q) (P>2Q)

[By Jensen’s inequality]

P(x P(x
— sl - Y P@ et o115l - Y P@ie o) | +oq)
Q(z) Q(z)
z¢X(p>2Q) ¢ X(p>2q)
1
< S(PIQ) + 25 +21g <1 L S(PQ) + > +0(1)
= S(PQ) +21g(S(P|Q) + 1)+ O(1)
where in the penultimate step we have used the fact that for any X’ C X, we have
P 1
> Pla)lg ) , lse,
TzeX’ Q(x) €
A proof of this statement can be found in the Appendix [A] This completes the proof of Lemma [4.]

O]

5 Proof of Direct Sum Result (Result

Below we present our result in the two-party model for computing functions f : X x Y — Z.
However, the result also holds for protocols computing relations R C X x ) x Z in which Alice and
Bob given x € X and y € ) respectively, need to output a z € Z such that (x,y, z) € R.

11



Our proof uses the notion of information cost defined by Chakrabarti et al. [CSWY], and refined
in several subsequent works [BJKS, [JRSD, [JRSc, [JRSd].

Definition 5.1 (information cost). Let II be a private coins protocol taking inputs from the set
X x Y, and let u be a distribution on the input set X x Y. Then, the information cost of II under
W is

ICH(II) = I[XY : M],
where (X,Y) represent the input to the two parties (chosen with distribution p) and M is the
transcript of the messages exchanged by the protocol on this input. For a function f: X x Y — Z,
let

ICL(f) = min IC*(ID),

where II ranges over all k-round private-coins protocols for f with error at most € under pu.
We immediately have the following relationship between ICg’k and D&F.

Proposition 5.2. Let ju be a product distribution on X x Y. Then, ICF(f) < Dé"k(f)

Proof. Let II be a protocol whose communication is ¢ = DY k( f). Let M denote the message
transcript of II. Then we have, ¢ > H(M) > I[XY : M] > ICE*(f). O

A key insight of Chakrabarti et al. [CSWY] was that one could show (approximately) a rela-
tionship in the opposite direction when the inputs are being drawn from the uniform distribution.
They showed this for SMP protocols using a kind of message compression. Their result was then
extended using different techniques involving the (classical) substate theorem (Theorem by
Jain et al. [JRSDL [JRSd]. Using this they showed that messages could be compressed to the amount
of information they carry about the inputs, under all distributions for one-way and SMP proto-
cols and under product distributions for two-way protocols. These message compression results
then lead to corresponding direct sum results. Using the rejection sampling lemma (Lemma ,
we can considerably strengthen the result of Jain et al. [JRSD] for two-way protocols as follows.
The dependence on k, the number of rounds, in their result was much worse as mentioned in the
Introduction section.

Lemma 5.3. Let €,0 > 0. Let p be a distribution (not necessarily product) on the X x Y and
f:XxY— Z. Then,

D) < 5 [2-1C8k () + 0k

The second ingredient in our proof of Result [3]|is the direct sum property of information cost,
originally observed by Chakrabarti et al. [CSWY] for the uniform distribution.

Lemma 5.4. Let p be a product distribution on X x ). Then, IC’gt’k(f@) >t ICHR(f).
Before proving these lemmas, let us show that they immediately imply our theorem.

Proof of Result[3. Let u be a product distribution on X x ). Then we have

DEE(E) 21CE (1) 2 £ 1C(f) = 5 (DLf5 ()~ OW))

where the first inequality follows from Proposition the second from Lemma [5.4] and the last
from Lemma 5.3l O
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Proof of Lemma[5.3 Let u be a distribution on X x ). Fix a private-coins protocol II that achieves
the optimum information cost IC**(f). Let (X,Y) be the random variables representing the inputs
of Alice and Bob distributed according to u. We will use the following notation: M = M(X,Y)
will be the transcript of the protocol; for i = 1,2,...,k, M; will denote the i-th message of the
transcript M and M; ; will denote the first ¢ messages in M. Now, we have from the chain rule for
mutual information (cf. [CT]).

k
IXY : M] =) I[XY : M; | My ). (2)
i=1
We now construct another protocol IT" as follows. The idea is as follows. For ¢ = 1,2,...,k, the

party that sent M; in II, will now instead use Result [1| to generate the message M; for the other
party by sending about I[XY : M; | My ;1] bits on the average. Suppose, we have managed to
generate the first ¢ — 1 messages in I" with distribution exactly as that of M ;_1, and the (partial)
transcript so far is m. For the rest of this paragraph we condition on M ;_1 = m, and describe how
the next message is to be generated. Assume that it is Alice’s turn to send the next message. We
have two observations concerning the distributions involved. First, the prefix m of the transcript
has already been generated and hence both parties can condition on this information. In particular,
the conditional distribution (M; | M; ;-1 = m) is known to both Alice and Bob and (pre-generated)
samples from it can be used as shared randomness. Second, since II is a private-coins protocol, for
each z € X, the conditional random variable (M;(z,Y) | My —1(x,Y) = m), is independent of Y.
Hence on input z, Alice knows the distribution of (M;(z,Y") | M1 ,—1(x,Y) = m).
The second observation in particular implies (using chain rule for information),

I[XY : Ml | Ml,i—l = m] = I[X : Ml ’ Ml,i—l = m]

Thus, by Result |1} Alice can arrange for (M;|M; ;—1 = m) to be generated on Bob’s side by sending
at most
2I[X : M; | Ml,ifl = m] + O(l)

bits on the average; the overall communication in the i-th round is the average of this quantity over
all choices m, that is, at most
QI[XY s M; ’ Ml,i—l] + O(l)

By applying this strategy for all rounds, we note from that we obtain a public-coins k-round
protocol IT'; with expected communication 2I[XY : M|+ O(k) bits, and error at most € as in II.
Using Markov’s inequality, we conclude that the number of bits sent by the protocol is at least %
times this quantity with probability at most §. By truncating the long runs and then fixing the
private random sequences suitably, we obtain a deterministic protocol II” with error at most € + 4
and communication at most 3(2I[XY : M] + O(k)) = (2~ IC*(f) 4 O(k)). The lemma now
follows from this and definition of Dé]’fé( f)- O

Proof of Lemmal5.4 Let ube a product distribution on X' xY. Fix a k-round private-coins protocol
II for f% that achieves ICgt’k (f®"). For this protocol II the input is chosen according to p'. We
denote this input by (X,Y) = (X1 X2--- X, Y1Y2---Y};) and note that the 2¢ random variables
involved are mutually independent. Let M denote the transcript of this protocol when run the
input (X,Y). Now, we have from chain rule for mutual information and independence of the 2t
random variables as above,

t
ICEYR(f) = I[XY - M] > Y I[X;Y; : M)
=1

13



We claim that each term in the sum of the form I[X;Y; : M] is at least IC#*. Indeed, consider
the following protocol II' for f derived from II. In IT’, on receiving the input (z,y) € X x Y, Alice
and Bob simulate II as follows. They insert x and y as the i-th component of their respective
inputs for II, and generate the remaining components based on the product distribution y. They
can do so using private coins since p is a product distribution. This results in a k-round private
coins protocol II' for f with error at most € under j, since the error of IT was at most ¢ under p*.

Clearly, IC#(IT) = I[X;Y; : M]. O

6 Separating 7(X :Y), C(X :Y) and I[X : Y]

For any pair of random variables (X,Y’), it easily follows from the definitions that T'(X : Y) >
C(X :Y). Furthermore, by Wyner’s theorem (Theorem [1.1)

CX:Y)= mv[i/nI[XY : W1,
where W is such that X and Y are independent when conditioned on W. Note, however, that
IXY - W]=>1IX:W|>IX:Y].

The last inequality is the data-proceesing inequality applied to the Markov chain X — W — Y.
Thus, we have T(X : Y) > C(X : Y) > I[X : Y]. In this section, we will show that both these
inequalities are strict for (X,Y") defined as follows.

Definition 6.1. Let W = (i,b) be a random variable uniformly distributed over the set [n] x {0,1}.
Now, let X and Y be random variables taking values in {0, 1}", such that

(a) PrlX =2 | W= (b)) Py == | W =(i,p) = { 270" 2lil=b
B I N S0 otherwise
(b) X and Y are independent when conditioned on W.

Proposition 6.2. For (X,Y) defined as above, we have:
(a) X :Y] =0 (n—%).
(b) C(X:Y)=2—1I[X:Y] :2—O<n7%>.

(c) T(X:Y)=0(gn).

Note that in the above example, though C(X :Y) and I[X : Y] differ by a super-constant
multiplicative factor, they only differ by a constant additive factor. We can construct another
joint distribution (X’,Y”) by taking m-wise independent copies of the joint distribution (X,Y)
(e, (X,Y') = (X,Y)™). We then have I[X' : Y] = I[X™ : Y™] = mI[X : Y] = o(m) while
CX':Y)=C(X™:Y")=mC(X:Y) = @(m)ﬂ This implies, that C(X’ : Y’) and I[X’ : Y]
differ by a super-constant factor both multiplicatively as well as additively.

3C’(Xm :Y™) = liminfy—o limp— oo (T(X™" : Y™")/n) = m - liminfa_o limp—oo (T (X" : Y™™) /mn) = mC(X :
Y) where the first and third equalities follow from Eq.

14



Proof of part (a). Given X = x for some n-bit string z, the conditional distribution Y|x—, is given

by

agr(z,y)

where agr(x, y) is the number of bit positions x and y agree on. We can now compute the conditional

entropy H[Y | X] as follows:

HY | X] =

p>

k41
k=0
o1\ 1
k=0
1

> 1 (1_9-0m3) . n =
> ntlgn—1 (12 )lg21+
_ n—l—lgn—1—<1—2O(n1/3)>.<lgn—1+

- o

Thus, I[X : Y] = H[Y] — H[Y

1 <= /n\ 2k . 2k
il SV e 2
7 D (k> n2n © pan

1
e
1

| X]=0(n"3).

Proof of part (b). By Wyner’s theorem (Theorem |[1.1),

C(X:Y)

= minI[XY : W]
W/

= H[XY] —H‘}[%XH[XY | W'

= 2n—I[X:Y]—nI}%XH[XY\W’].

ni/3

lge
nl/3

[since 1g(1+ ) < dlge]

o

H[X] + H[Y] ~ I[X : Y] ~ max HXY | W]

“lgn

) — 90! lgn

where the random variable W' is such that I[X : Y | W] = 0. We already know that I[X : Y] =
0 (n*%). So, part (b) will follow if we show

HI}‘Z/-L/XH[XY | W' =2n—2.

15
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Let W’ be such that I[X : Y | W] = 0. Consider any w in the support of W’. Let X,, be the
set of x € {0,1}" such that Pr[X = 2 | W = w] > 0. Similarly, define Y,,. We must have that
| Xw| + Y| < 27, since otherwise there exist an x such that Pr[X =2 AY = z] > 0 where Z is the
n-bit string obtained by complementing each bit of z. This implies that | X, x Y,,| < 22"/4. Thus,

HI}‘%XH[XY | W' <2n—2.

Now, if we let W’ be the random variable W used in Definition[6.1 we have H[XY | W] = 2(n—1).
Hence,
HI}‘%XH[XY | W' > 2n — 2.

This justifies and completes the proof of part (b). O

To prove part (c), we will use a theorem of Harper |[Har|, which states that Hamming balls in
the hypercube have the smallest boundary. The following version, due to Frankl and Fiiredi (see
Bollobés [Boll, Theorem 3, page 127]), will be the most convenient for us. First, we need some
notation.

Notation. For z,y € {0,1}", let d(z,y) be the Hamming distance between z and y, that is, the
number of positions where x and y differ. For non-empty subsets A, B C {0,1}", let

d(A,B) 2 min{d(a,b) : a € A and b € B}.

We say that a subset S C {0,1}" is a Hamming ball centered at x € {0,1}" if for all y,3 € {0,1}",
if y € Sand d(z,y’) < d(z,y), then v/ € S. Let

Ball(z,d) = {y € {0,1}" : d(z,y) < d}.

Theorem 6.3 ([Bol, Theorem 3, page 127]). Let A and B be non-empty subsets of {0,1}".
Then, we can find Hamming balls Ay and By centered at 0™ and 1™ respectively, such that | Ag| = |A|,
|Bo| = |B|, and d(Ao, By) > d(A, B).

Corollary 6.4. If A and B are non-empty sets of strings such that d(A,B) > d > 2, then
d—2)?
min{|Al, B[} < exp <_(4>> o,

Proof. By Theorem [6.3] we may assume that .4 and B are balls centered at 0" and 1. Suppose
|A| < |B|, and let r be a non-negative integer such that

Ball(0",r) C A C Ball(0",r + 1).

Then, 2r +d < n, that is, r + 1 < (n — d 4+ 2)/2. It then follows using the Chernoff bound (see,
e.g., Alon and Spencer[AS, Theorem A.1.1, page 263]) that

o\2
A < [Ball(0", 7+ 1)] < exp (—(d 2n2) ) .
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Proof of part (c). 1t is easy to see that T'(X : Y) < [lgn]| + 1: on receiving = € {0,1}", Alice sends
Bob an index ¢ uniformly distributed in [n] and the bit z[i]; on receiving (i,b), Bob generates a
random string y € {0, 1} such that y[i] = b, with each of the 2"~! possibilities being equally likely.

It remains to show that T'(X : Y) = Q(lgn). It follows from the definition of T'(X : Y) that
T(X :Y) > miny H[W'], where the minimum is over all random variables W’ such that X and YV’
are conditionally independent given W’. Thus, it is enough to show that any such W'’ has entropy
Q(lgn). Let W’ be one such random variable. We show below that for all w

)

That is, we show that the min-entropy of W' is Q(lgn); it follows that the entropy of W’ is Q(lgn)
Fix w such that o 2 Pr[W’ = w]| > 0. Let

Xw = {I c{0,1}":Pr[X =2 | W =w] > 2*(”+1)};

Yw = {yE{O,l}nPI‘[X:y|W’:w]>2—(n+1)}

Then, for all x € X, and y € Y,,, we have

agr(z, y)

a2 20 < Pr((X,Y) = (2,9) AW = w] < Pr[(X,Y) = (2,9)] = 5

that is, agr(x,y) > an/8. Furthermore, since for all z, Pr[X = z | W = w] < 27"/« and
> zefoaye PrX = 2 | W = w] = 1, we have |X,[ > a2"L. Similarly |Y,| > a2""!. We thus
obtain two sets X,,, Y, C {0,1}", each with at least 2" ! elements, such that every x € X,, and
y € Y, satisfies agr(x,y) > an/8. Our goal is to show that this implies that « is small.

Let Y, be the set of strings whose complements belong to Y. Since agr(z,y) > an/8 for
all x € X, and y € Y, the Hamming distance between X, and Y, is more than an/8. By
Corollary we conclude that

A2
a2t <exp <_(an 16) ) 2"

128
which implies that o < 15 lnT", for all large enough n. O
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A Bounding the Negative terms

Claim A.1. Let P and Q be two distributions on the set X. For any set X' C X, we have

Z P(zx)lg Plx) > —lg—e.

TeEX’ Q(ZL‘) - €
Proof. We require the following facts.
e log-sum inequality: For non-negative integers ai,...,a, and by, ..., by,

a; § :ai
Zallg b, ~ (Za’) lg > b
e The function zlgx > —(Ige)/e for all z > 0

From the above, we have the following sequence of inequalities.

P(z) P(z) Q(x)
P(z)1 = P(z)1 + Q(z)1
x;( ® Q) ;{ Q) x;( Q)
dozex P(@) + 3000 Q)

> P(z) + Q(@) 1 S ¢

<m§’ ;p;f ¢ < ZxGX Q(x) >
= (Z P(x)+ Q(m)) lg (Z P(x)+ > Q(:@)

reX! xg X’ rEX! g X!
_lge
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