
Object Detection Grammars

Pedro F. Felzenszwalb and David McAllester

February 11, 2010

1 Introduction

We formulate a general grammar model motivated by the problem of object detection in computer

vision. We focus on four aspects of modeling objects for the purpose of object detection.

First, we are interested in modeling objects as having parts which are themselves (recursively)

objects. For example a person can be represented as being composed of a face, a trunk, arms, and

legs where a face is composed of eyes, a nose and a mouth.

Second, we are interested modeling object (and part) categories as being composed of subcat-

egories or subtypes. For example we might distinguish sitting people from standing people and

smiling faces from frowning faces.

Third, we are interested in modeling the relative positions of the parts that make up an object.

For example, in a person, the position of the hand is related to the position of the lower arm which

is related to the position of the upper arm which is related to the position of the torso.

Fourth, we are interested in modeling the appearance of objects so that we can find them in

images. For example, a pattern of edges in a particular location of an image might give evidence

for, or against, the presence of a part at that location.

These four aspects of models — parts, subtypes, positions, and appearance — can be represented

in a single grammar formalism that we call an object detection grammar.

2 The Formal Model

We formally define object detection grammars in three stages roughly corresponding to parts and

subtypes (stage one), positions (stage two), and appearance (stage three). After introducing the

1

general model we define restrictions that simplify inference and learning.

2.1 Modeling Parts and Subtypes

We first focus on representing parts and subtypes. Each object (part) is represented by a nonter-

minal symbol in a grammar formalism. A description of an object in terms of parts and subtypes

is represented by grammar productions.

We define models using the notion of a bag grammar. A bag grammar is similar to a context

free grammar except that it generates bags (multisets) of terminals instead of strings. Intuitively

this reflects the fact that there is no sequential order among the parts that make up an object.

We define a (scored) bag grammar to consist of a set of nonterminal symbols N , a set of terminal

symbols T and a set of scored productions R of the form

X
α→ {Y1, . . . , Yn},

with X ∈ N , Yi ∈ N ∪ T , α ∈ R. The right hand side of each production is a bag (multiset) of

elements of N ∪ T . Here α is the score of the production.

A bag grammar defines a nondeterministic process for replacing nonterminals by bags of ter-

minals and nonterminals. Each production from X represents a possible choice when replacing

X, where the score of the production represents its “desirability”. This process can be continued

until only terminal symbols remain. Hence a bag grammar defines a nondeterministic process for

deriving a bag of terminals from a nonterminal.

As in the case of a context free grammar we can define derivation trees. However, while with a

context free grammar the children of each node in a derivation tree are ordered from left to right,

in the case of a bag grammar the children are unordered. The leafs of a derivation tree represent

the bag of terminals generated by the derivation. The score of a derivation using a bag grammar

is the sum of the scores of the productions used in the derivation (counting multiplicities).

More formally we define the derives relation to be the least relation such that for each

terminal symbol A ∈ T

A
0
 {A}

and for each production X
α→ {Y1, . . . , Yn} ∈ R

if Yi
αi Bi then X

β

⋃
i

Bi with β = α+
n∑
i=1

αi.

2

If X α
 {A1, . . . , Ak} we say X derives {A1, . . . , Ak} with score α. Here X is an arbitrary

symbol and {A1, . . . , Ak} is a bag of terminals.

In an object detection model the nonterminals of a bag grammar represent objects and the

terminals represent appearance models as described in Section 2.3. A decomposition of an object

X into parts Y1, . . . , Yn is represented by a production X
α→ {Y1, . . . , Yn}. A decomposition of an

object X into subtypes X1, . . . , Xm is represented by productions X αi→ {Xi} for 1 ≤ i ≤ m. Here

αi will reflect to the prevalence of the i-th subtype.

A grammar will be called cyclic (or recursive) if a nonterminal X can generate itself. Otherwise

the grammar is called acyclic.

For acyclic grammars a maximum scoring derivation from each nonterminal can be computed by

dynamic programming. Section 2.3 describes a grammar for which the maximum scoring derivation

problem is analogous to the problem of “matching” a deformable part-based model to an image.

Section 3 describes the dynamic programming algorithm for the non-recursive case in more detail.

We can handle cyclic grammars if we work with non-negative weights rather than scores and seek

a minimum weight derivation. In that case a generalization of Dijkstra’s shortest paths algorithm

can be used [9, 5]. Alternatively, an A* algorithm [5] can be used to maximize score if one can give

a monotone heuristic function. Here however, we focus on the acyclic grammars in which simple

dynamic programming can be used.

Note that the maximum scoring derivation problem does not specify a fixed bag of terminals

to be derived. Each terminal symbol may be used an arbitrary number of times. Another related

problem involves specifying a bag of terminals and ask for the maximum scoring derivation of exactly

that bag. This bag parsing problem is analogous to string parsing with context-free grammars. One

can give an exponential time dynamic programming algorithm based on computing a maximum

scoring derivation of each sub-bag of the input bag from each nonterminal. This is similar to the

CKY algorithm for parsing strings, but bags differ from strings in that there are exponentially

many sub-bags of a bag. It can be shown that bag parsing is NP-hard even for acyclic grammars

(there is a simple reduction from 3D matching). Bag parsing is equivalent to string parsing under

arbitrary permutations of the input. This problem was considered for machine translation in the

past, and shown to be NP-hard in [1].

3

2.2 Modeling Placement

We now consider a set Ω of positions for the symbols in a bag grammar. For example, in object

detection we often construct an image pyramid (I1, . . . , IL), where I1 is the input image and I`+1

is a lower resolution version of I`. In this case we can take the elements of Ω to be triples (`, x, y)

where ` specifies a level in the pyramid and x and y are coordinates within I`. In this case ` specifies

the scale or size for a symbol while x and y specify a location. We could also take the elements

of Ω to be four-tuples (`, x, y, θ) where θ defines an orientation for a symbol. In general Ω is an

arbitrary set defining instantiation parameters for the symbols of a grammar.

A placed symbol, written as Y (ω), is a pair of a symbol Y ∈ N ∪ T and a position ω ∈ Ω.

A placed production is a production of the form

X(ω0) α→ {Y1(ω1), . . . , Yn(ωn)}.

A placed production schema is a parameterized placed production of the following form.

∀z ∈ D : X(ω0(z))
α(z)→ {Y1(ω1(z)), . . . , Yn(ωn(z))} (1)

This schema represents a (possibly infinite) set of placed productions. HereD is a set parameterizing

the placed productions defined by the schema. Each value z ∈ D defines a placed production, ωi(z)

are functions specifying positions in Ω as a function of z, and α(z) is a function specifying the score

of the placed production defined by z.

For example we might write a schema for faces as follows

∀(ω0, ω1, ω2, ω3) ∈ Ω4 : FACE(ω0)
α(ω0,ω1,ω2,ω3)→ {LEFT.EYE(ω1),RIGHT.EYE(ω2),MOUTH(ω3)}.

Here α(ω0, ω1, ω2, ω3) is a function assigning a score for each placement of the parts that make up

a face at a particular position. This score might be high if the eyes and mouth are where they

should be in a typical face, and low otherwise.

A set of placed production schemas defines a bag grammar whose terminals and nonterminals

are placed symbols. The definition of the relation given in Section 2.1 then applies to define

expansions of placed symbols into bags of the following form where each Ai is a terminal symbol

X(ω0) α
 {A1(ω1), . . . , Ak(ωk)}.

The right hand side of this terminal expansion will be called a placed terminal bag.

4

2.3 Modeling Appearance

Let I be an input space (such as the space of images). We now assume that each terminal symbol

A has an associated appearance evaluation function fA : Ω×I → R. Now fA(ω, I) specifies a score

for placing A in position ω within I.

In practice we can use filters to define appearance evaluation functions. For example, suppose

we have an image pyramid (I1, . . . , IL). Each image I` can be divided into k × k cells and a d-

dimensional feature vector (such as a HOG descriptor [2]) can be computed in each cell. The result

is an array H` whose entries are d-dimensional feature vectors. This leads to a feature map pyramid

(H1, . . . ,HL). Now suppose the elements of Ω are triples (`, x, y) specifying positions in the feature

map pyramid. We can associate each terminal symbol A with a template FA, defined by a w × h

array of d-dimensional weight vectors. Now we can define the appearance score of A(ω) to be the

response of FA at position ω in the feature map pyramid

fA((`, x, y), I) =
w∑
i=1

h∑
j=1

FA[i, j] ·H`[x+ i, y + j].

In general we take an object detection grammar over an input space I to consist of a set of

nonterminal symbols N , a set of terminal symbols T , a set of positions Ω, a set of placed production

schemas S, and an appearance evaluation function fA : Ω× I → R for each terminal A ∈ T .

For a grammar model G over the input space I we extend the appearance evaluation functions

for the terminals to all symbols. This leads to an evaluation function fG : (N ∪ T) × Ω × I → R.

Now fG(Y, ω, I) specifies a score for placing symbol Y in position ω within I. This score is the

maximum over all expansions of Y (ω) into a placed terminal bag, of the score of the expansion plus

the score of placing the terminals in their respective positions

fG(Y, ω, I) = max
Y (ω)

α
 {A1(ω1),...,Ak(ωk)}

α+
k∑
i=1

fAi(ωi, I).

Under these definitions we can think of the terminals of a grammar as the basic building blocks

that can be found in an image. The nonterminals define abstract objects whose appearance are

defined in terms of expansions into terminals.

5

2.4 Object Detection

Suppose we want to detect instances of an object Y . Given an image I we can search for values ω

where fG(Y, ω, I) is above some threshold. This is an abstract formulation of the sliding window

approach. A placement ω is analogous to a placement of a window. We can return high scoring

placements ω as the “detections” within I. Of course in practice one should do non-maximum

suppression to avoid multiple detections of the same object.

For example, suppose G is a grammar for faces with a nonterminal FACE that expands to termi-

nals corresponding to eyes and mouth. Then fG(FACE, ω, I) will define a score for placing a face in

position ω that takes into account the placement of the parts in some ideal location with respect to

the location of the face. If FACE(ω) expands to subtypes SMILING(ω) and FROWNING(ω) (where

the score for the expansion is zero) then fG(FACE, ω, I) will be the larger of fG(SMILING, ω, I)

and fG(FROWNING, ω, I).

2.5 Isolated Deformation Grammars

We now consider a restriction on object detection grammars which limits there expressive power

but which simplifies computing scores fG(Y, ω, x) and optimal derivations.

Let ∆ be a set of displacements for positions in Ω and ⊕ be an operation ⊕ : Ω × ∆ → Ω.

For example, if the positions in Ω are triples (`, x, y) we might have ∆ be tuples (dx, dy) and

(`, x, y)⊕ (dx, dy) = (`, x+ dx, y + dy). We use δ to specify an element of ∆.

An isolated deformation grammar is defined to be one where every placed production schema

has one of the following two forms

∀ω : X(ω) α→ {Y1(a1(ω)), . . . , Yn(an(ω))},

∀ω, δ : X(ω)
α(δ)→ {Y (ω ⊕ δ)}.

We will call production schemas of the first form structural rules and production schemas of the

second form deformation rules. Structural rules can express both decompositions of an object into

parts and of an object type into subtypes. The functions ai : Ω → Ω in a structural rule specify

“anchor” positions for the symbols Yi in terms of a position for X. The function α : ∆ → R in

a deformation rule specifies a score for every possible displacement of Y relative to X. Note that

to simplify notation we omit the domain D = Ω of the parameter ω in a structural rule and the

6

domain D = Ω×∆ of the parameter (ω, δ) in a deformation rule.

An isolated deformation grammar defines a “factored” model such that the position of a symbol

in a derivation tree is only related to the position of its parent.

For example, we can define an isolated deformation grammar for faces with

N = {FACE,EYE,EYE′,MOUTH,MOUTH′},

T = {FACE.FILTER,EYE.FILTER, SMILE.FILTER,FROWN.FILTER}.

We have a structural rule for representing a face in terms of a global template and parts

∀ω : FACE(ω) 0→ {FACE.FILTER(ω),EYE′(ω ⊕ δl),EYE′(ω ⊕ δr),MOUTH′(ω ⊕ δm)}.

Here δl, δr, δm are constants that specify the ideal displacement between each part and the face.

Note that EYE′ appears twice in the right hand side under different ideal displacements, to account

for the two eyes in a face. We can move the parts that make up a face from their ideal locations

using deformation rules

∀ω, δ : EYE′(ω)
||δ||2→ {EYE(ω ⊕ δ)},

∀ω, δ : MOUTH′(ω)
||δ||2→ {MOUTH(ω ⊕ δ)}.

Finally we associate templates with the part nonterminals using structural rules

∀ω : EYE(ω) 0→ {EYE.FILTER(ω)},

∀ω : MOUTH(ω) s→ {SMILE.FILTER(ω)},

∀ω : MOUTH(ω)
f→ {FROWN.FILTER(ω)}.

The last two rules specify two different templates that can be used for the mouth at different scores

that reflect the prevalence of smiling and frowning faces.

2.6 Labeled Derivation Trees

Let G be an object detection grammar. We define a labeled derivation tree to be a rooted tree

such that: (1) each leaf v has an associated placed terminal A(ω); (2) each internal node v has an

associated placed nonterminal X(ω), a placed production schema, and a value z for the schema

leading to a placed production with X(ω) in the left hand side and the placed symbols associated

7

with the children of v in the right hand side. If Z is a labeled derivation tree and Y (ω) is associated

with the root of the tree we say Z is rooted at Y (ω).

The evaluation function fG can also be defined in terms of labeled derivation trees.

Let Z be a labeled derivation tree and I be an image. We define s(Z, I) to be the score of a

labeled derivation tree within an image. If Z is rooted at a placed terminal A(ω) we define

s(Z, I) = fA(ω, I). (2)

Otherwise, if v is the root of the tree and Z1, . . . , Zn are the subtrees below v we define

s(Z, I) = α(z) +
n∑
i=1

s(Zi, I). (3)

Here α is the score function of the production schema associated with v and z is the parameter for

the schema associated with v.

Let ZY (ω) be the set of labeled derivation trees rooted at Y (ω). Now we have

fG(Y, ω, I) = max
Z∈ZY (ω)

s(Z, I). (4)

We also define a maximum score labeled derivation tree rooted at Y (ω) as

Z∗G(Y, ω, I) = argmax
Z∈ZY (ω)

s(Z, I). (5)

3 Inference

For inference we are interested in computing maximum scoring derivations from given nonterminals

placed at different positions within an image. This problem is defined more concretely as computing

fG(Y, ω, I) and Z∗G(Y, ω, I) as defined by (4) and (5). Here we consider only the case of acyclic (non-

recursive) isolated deformation grammars in which these quantities can be computed by efficient

dynamic programming. We consider computing fG, the computation of Z∗G is analogous.

The dynamic programming algorithm computes fG(Y, ω, I) for every symbol Y and position ω.

We will store fG(Y, ω, I) in an array F [Y, ω].

Since the grammar is acyclic we can order the nonterminals symbols such that for every pro-

duction schema with X in the left hand side, the nonterminals in the right hand side come after X

in the order. Let (X1, . . . , X|N |) be such an order. Note that this is exactly a topological ordering

8

of a graph where the nodes correspond to nonterminal symbols, and there is a directed edge from

X to Y if there is a rule with X in the left hand side and Y in the right hand side.

For a terminal symbol F [A,ω] = fA(ω, I). The algorithm starts by computing these values for

every terminal. The runtime of this step depends on the complexity of the appearance models, but

it is typically O(|T ||Ω|).

For the nonterminals we compute F [Xi, ω] in order of decreasing i. Let R1, . . . , Rk be the set

of rules with Xi in the left hand side. We compute k arrays Rj [ω] for 1 ≤ j ≤ k corresponding

to the score of a maximum derivation rooted at Xi(ω) using Rj to expand Xi(ω). Then we have

F [Xi, ω] = maxj Rj [ω].

If Rj is a structure rule ∀ω : X(ω) α→ {Y1(a1(ω)), . . . , Yn(an(ω))} then

Rj [ω] = α+ F [Y1, a1(ω)] + · · ·+ F [Yn, an(ω)].

The values in this array can be computed in O(|Ω|) time if n is bounded by a constant.

If Rj is a deformation rule ∀ω, δ : X(ω)
α(δ)→ {Y (ω ⊕ δ)} then

Rj [ω] = max
δ

(α(δ) + F [Y, ω ⊕ δ]).

The values in this array can be computed in O(|Ω||∆|) time by brute force search.

The dynamic programming method will compute all of F in O(k1|Ω||∆| + k2|Ω|) time after

we evaluate the appearance models at each position. Here k1 is the total number of deformation

rules in the grammar and k2 is the total number of structure rules. The method can also be

used to compute optimal labeled derivation trees rooted at a placed symbol. We note that in some

important cases the dependency on |∆| can be removed by using fast generalized distance transform

algorithms [3]. In those cases the total runtime is O(k|Ω|) where k is the number of production

schemas in the grammar.

4 LSVM Learning

Now we consider the problem of learning parameters of an object detection grammar. We first

describe the notion of a linear grammar and then describe how to apply LSVM training [6] to learn

these models from weakly labeled data.

9

4.1 Linear Object Detection Grammars

We say that an object detection grammar is linear if there exists a parameter vector θ ∈ Rd such

that the score function associated with each production schema r has the form

αr(z) = θ · φr(z),

and the appearance model associated with each terminal A has the form

fA(ω, I) = θ · φA(ω, I).

Here φr(z) and φA(ω, I) are functions associated with the schema r and terminal A respectively.

These functions return feature vectors in Rd.

In practice the vector θ might be divided into blocks, with one block per schema r and one block

per terminal symbol A. In this case the feature vectors φr(z) and φA(ω, I) will be sparse, φr(z) has

zeros outside the block for r and φA(ω, I) has zeros outside the block for A. For example, suppose

we have an isolated deformation grammar where the positions in Ω are triples (`, x, y) specifying a

position within a feature map pyramid and the displacements in ∆ are tuples (dx, dy) specifying

a shift within a level of the pyramid. In a deformation rule we have z = (ω, δ) and we can define

φr(z) to be (dx2, dy2, dx, dy) in the block of parameters for r, and zeros everywhere else. Then

θ · φr(z) is a quadratic function of the displacement specified by z, with coefficients defined by a

block of entries in θ. For the appearance models suppose (H1, . . . ,HL) is a feature map pyramid

computed from I. We can define φA((`, x, y), I) to be a subarray of H` with the top-left corner at

(x, y) in the block for A, and zeros everywhere else. Then θ · φA(ω, I) is the response of a linear

filter defined by a block of entries in θ at position (`, x, y) of the feature map pyramid.

Now suppose we have a linear grammar parameterized by θ. Given a labeled derivation tree Z

and an input I we can define a cumulative feature vector Φ(Z, I) as follows

Φ(Z, I) =
∑

v∈int(Z)

φr(v)(z(v)) +
∑

v∈leaf(Z)

φA(v)(ω(v), I). (6)

The first sum is over internal nodes of the derivation tree and the second sum is over leaf nodes.

Recall that internal nodes of Z are labeled by a production schema r(v) and value z(v) for the

schema, while leafs are labeled by placed terminals A(v)(ω(v)).

With this definition we have

s(Z, I) = θ · Φ(Z, I).

10

That is, the score of Z in I is a linear function of θ. In particular, if we had “positive examples”

(Z, I) for which we want s(Z, I) to be high (above some threshold), and “negative examples” (Z, I)

for which we want s(Z, I) to be low (below the threshold) we could train θ using a linear SVM

formulation. Each example (Z, I) would lead to a feature vector Φ(Z, I) for SVM training.

In practice we would like to learn the parameters of a model from weakly labeled examples. In

this case examples may specify the locations of objects but not their full derivation.

Note that for a linear grammar we can rewrite (4) as

fG(Y, ω, I) = max
Z∈ZY (ω)

θ · Φ(Z, I). (7)

Because a maximum of linear functions is convex, we have that fG(Y, ω, I) is a convex function of

the parameter vector θ.

4.2 LSVM Training

LSVMs (Latent Support Vector Machines) [6] are a generalization of SVMs to incorporate latent

information. Like an SVM, a latent SVM is trained as a classifier. Formally we assume training

data of the form (x1, y1), . . . , (xn, yn) where xi is an input from some abstract input space and

yi ∈ {−1,+1}. Let L(x) denote a set of possible latent values for x. For z ∈ L(X) let Φ(x, z) be a

feature vector associated with the pair (x, z). The latent SVM framework trains binary classifiers

that threshold a score of the form

fθ(x) = max
z∈L(x)

θ · Φ(x, z). (8)

Suppose we have training data (x1, y1), . . . , (xn, yn). In analogy to standard SVM training,

LSVM training is defined by the following optimization problem

θ∗ = argmin
θ

n∑
i=1

max(0, 1− yifθ(xi)) + λ||θ||2. (9)

The hinge loss pushes fθ(x) to be above +1 for a positive example, and below −1 for a negative

one. This optimization problem is not convex but we can use the methods in [6] to find a good

model. An alternative involves the Concave-Convex produre as used in [10].

As discussed in Section 2.4 we can reduce object detection to classification using an abstract

formulation of the sliding window approach. To detect instances of an object Y in an image I we

11

look for placements ω such that fG(Y, ω, I) is above some threshold. Now we reduce the problem

of learning the parameters θ of a linear grammar from weakly labeled data to LSVM training.

Let x = (Y, ω, I). For visual object detection we have that I is an image, Y is an object such

as “person”, and ω is a specification of the position of the object (it may include scale and other

pose information). For a linear grammar equation (7) defines a score function fθ(x) = fG(Y, ω, I)

of the form in (8). Now a latent value z ∈ L(x) is a derivation rooted at Y (ω) and Φ(x, z) is the

cumulative feature vector (6) associated with the derivation.

A training example of the form ((Y, ω, I),+1) states that there is an instance of Y at position

ω in the image I. Note that the example is weakly labeled because it does not specify a derivation.

A training example of the form ((Y, ω, I),−1) states that there is not an instance of Y at position

ω in the image I. When training an object detector negative instances can often be represented

implicitly by a set of pairs of the form ((Y, I),−1). Each such pair indicates that there is no instance

of Y in the image I and is treated as a compact representation of the set of all negative training

instances of the form ((Y, ω, I),−1). In practice “data mining” is used to convert negative training

instances of the form ((Y, I1),−1), . . . , ((Y, IN),−1) into a set of “hard negatives” of the form

((Y, ωi, Ij),−1) [6].

5 Neural Grammars

For a linear acyclic grammar, the function fG(Y, ω, I) can be defined using the following recursive

equations (these can be used to compute fG(Y, ω, I) by dynamic programming)

fG(X,ω, I) = max
X(ω)

φ→Y1(ω1),...,Yn(ωn)

θ · φ+
n∑
i=1

fG(Yi, ωi, I) (10)

fG(A,ω, I) = θ · φA(ω, I) (11)

In (10) the max is taken over productions from X(ω) rather than full derivations. Recall that each

production from X(ω) corresponds to an instance of a production schema r defined by a parameter

z. Above we have φ = φr(z).

We now consider a method of computing scores in an acyclic grammar involving a nonlinear

sigmoidal function as in neural networks. To construct a neural grammar we define fG(Y, ω, I) with

12

the following equations where σ is a sigmoid function

fG(X,ω, I) = max
X(ω)

φ,a→ Y1(ω1),...,Yn(ωn)

σ

(
θ · φ+ a0 +

n∑
i=1

aifG(Yi, ωi, I)

)
(12)

fG(A,ω, I) = σ (aA + θ · φA(ω, I)) (13)

In (12) we have that a = (a0, . . . , an) are a bias term and multiplicative weights associated with

the production schema from which the production is drawn. In (13) we have that aA is a bias

term associated with the nonterminal A. We take σ to be a zero-centered sigmoid function σ(x) =

2/(1 + e−x)− 1. Note that σ(x) ∈ (−1, 1) with σ(0) = 0. This will be important for learning.

Equations (12) and (13) define a kind of neural network whose nodes are the placed symbols

and productions of a grammar. This network alternates (nonlinear) summation with maximization.

The network defined by (12) and (13) can be trained with a form of back-propagation. The

network value is defined by the parameter vector θ and a parameter vector α where α assigns bias

terms and multiplicative weights to each production schema and terminal symbol. The objective

of training is to set the parameter vectors θ and α. As described in section 4.2, we assume that

the training data is given as classification data of the form (x1, y1), . . ., (xn, yn) with yi ∈ {−1, 1}

and where each xi is a triple (Yi, ωi, Ii). We will write fθ,α(xi) for fG(Yi, ωi, Ii) to emphasize the

dependence on the parameter vectors θ and α. Although we have no empirical experience with

Neural grammars, the following optimization seems like a natural generalization of LSVM training

where γ ∈ (0, 1) is a margin requirement. We cannot use margin 1 because fθ,α(x) ∈ (−1, 1) and

hence margin requirement of 1 can never be satisfied.

θ∗, α∗ = argmin
θ,α

n∑
i=1

max(0, γ − yi fθ,α(xi)) + λ1||θ||2 + λ2||α||2

This objective function can be optimized by gradient descent leading to a form of back-

propagation on (12) and (13).

6 Discussion

Object detection grammars are closely related to pictorial structure models [7, 4]. Tree-structured

pictorial structure models are a special case of isolated deformation grammars. In a pictorial

13

structure model the structure of the object is fixed, whereas in an object detection grammar we can

model objects with variable structure, both by using subtypes and multiple possible decompositions

of a symbol into sets of parts. Object detection grammars also allow for the same part to be re-used

within an object model, such as having a single eye model appearing twice in a face. The pictorial

structure matching problem involves finding the “best” match of a model to an image. For a given

(tree-structured) pictorial structure model we can define an object detection grammar by picking

an arbitrary root part. If Y is the nonterminal corresponding to that part we have that fG(Y, ω, I)

is the score of the best configuration of the parts constrained to placing the root at position ω.

Other grammar formalisms have been described in the literature (e.g. [8, 12, 11]). The work in

[8] gives a generative model for images based on a hierarchy of reusable parts and compositional

grouping rules. The model described here is closely related but the matching problem we consider,

computing fG(Y, ω, I), does not lead to a globally coherent interpretation of an image. In particular

an optimal derivation tree will generally explain only a part of an image, and some terminal symbols

may overlap leading to potential overcounting of evidence. We have concentrated on the problem

of computing optimal derivations in this way because, as discussed in Section 2.1, bag parsing is

NP-hard even for “Markov models”. The problem we solve is an alternative that allows for efficient

computation, but does not lead to a complete interpretation of an image by itself.

With respect to learning we have only discussed the problem of learning parameters for a

grammar model with fixed structure. Being able to learn the structure of a grammar from weakly

labeled data is a challenging problem that remains to be solved.

References

[1] C. Brew. Letting the cat out of the bag: generation for shake-and-bake MT. In International

Conference on Computational Linguistics, 1992.

[2] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE

Conference on Computer Vision and Pattern Recognition, 2005.

[3] P. Felzenszwalb and D. Huttenlocher. Distance transforms of sampled functions. Technical

Report 2004-1963, Cornell University, 2004.

14

[4] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. International

Journal of Computer Vision, 61(1), 2005.

[5] P. Felzenszwalb and D. McAllester. The generalized A* architecture. Journal of Artificial

Intelligence Research, 29:153–190, 2007.

[6] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan. Object detection with dis-

criminatively trained part based models. IEEE Transactions on Pattern Analysis and Machine

Intelligence.

[7] M.A. Fischler and R.A. Elschlager. The representation and matching of pictorial structures.

IEEE Transactions on Computer, 22(1), 1973.

[8] Y. Jin and S. Geman. Context and hierarchy in a probabilistic image model. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2006.

[9] D. Knuth. A generalization of Dijkstra’s algorithm. Information Processing Letters, 6(1):1–5,

February 1977.

[10] C.N.J. Yu and T. Joachims. Learning structural SVMs with latent variables. In International

Conference on Machine Learning, 2009.

[11] L.L. Zhu, Y. Chen, and A. Yuille. Unsupervised learning of probabilistic grammar-markov

models for object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence,

31(1):114–128, 2009.

[12] S.C. Zhu and D. Mumford. A stochastic grammar of images. Foundations and Trends in

Computer Graphics and Vision, 2(4):259–362, 2007.

15

