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Abstract

We demonstrate unsupervised learning of a 62 parameter slanted plane stereo vi-
sion model involving shape from texture cues. Our approach to unsupervised learning
is based on maximizing conditional likelihood. The shift from joint likelihood to condi-
tional likelihood in unsupervised learning is analogous to the shift from Markov random
fields (MRFs) to conditional random fields (CRFs). The performance achieved with un-
supervised learning is close to that achieved with supervised learning for this model.

1 Introduction
We demonstrate unsupervised learning of a 62 parameter stereo vision model involving shape
from texture cues. Texture is one example of a monocular depth cue — evidence for depth
based on a single image. Our work can therefore be interpreted as training monocular depth
cues from unlabeled stereo pair training data. However, the stereo pair data is not viewed
as a simple surrogate for depth information — the stereo algorithm itself is viewed as the
object being trained and the training of monocular depth cues happens as a byproduct of
stereo training.

Our training method is a form of unsupervised learning. In unsupervised learning one
usually formulates a parameterized probability model and seeks parameter values maximiz-
ing the likelihood of the unlabeled training data. For stereo vision it seems appropriate to
formulate a conditional probability model rather than a joint model. In particular, the model
should define, say, the probability of the right image given the left. This conditional model
need not model any probability distribution over images — it only models the conditional
distribution of the right image given the left.

The move from maximizing the (joint) likelihood of the given data to maximizing a
conditional likelihood is related to the move from Markov random fields (MRFs) to condi-
tional random fields (CRFs). MRFs model joint probabilities while CRFs model conditional
probabilities. MRFs have been widely used for decades as statistical models in a variety of
application areas [11, 15, 19]. An MRF defines a probability distribution on the joint assign-
ments to (configurations of) a set of random variables. Conditional random fields (CRFs)
[18] are similar to MRFs except that in a CRF the variables are divided into two groups —
exogenous and dependent. A CRF defines a conditional probability of the dependent vari-
ables given the exogenous variables and (importantly) does not model the distribution of the

c© 2009. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 TRINH, MCALLESTER: UNSUPERVISED LEARNING FOR STEREO

exogenous variables. Although the difference between an MRF and a CRF is mathematically
simple, the shift from joint modeling to conditional modeling has significant consequences
which has lead to a rapid replacement of MRFs by CRFs in practice. Perhaps most signifi-
cantly, since a conditional model does not attempt to model the distribution of the exogenous
variables, there is no danger of corrupting the model by modeling the exogenous variables
poorly. In the case of stereo vision one might expect that it is easier to model the probability
distribution of the right image given the left image than to model a probability distribution
over images.

The most closely related earlier work seems to be that of Zhang and Seitz [24]. They give
a method for adapting five parameters of a stereo vision model including the weights for the
match and smoothness energies as well as robustness parameters. The five parameters are
tuned to each individual input stereo pair, although the method could be used to tune a single
parameter setting over a corpus of stereo pairs. The main difference between their work
and ours is that we train highly parameterized monocular depth cues. Another difference is
that we formulate a general CRF-like model for unsupervised learning based on maximizing
conditional likelihood and avoid the need for the independence assumptions used by Zhang
and Seitz by using contrastive divergence — a general method for optimizing loopy CRFs
[7, 12].

There is also related work by Saxena et al. on learning highly parameterized monocular
depth cues [3, 4]. The main difference between this work and ours is that we use unsuper-
vised learning while they use laser range finder data to train their system. One might argue
that stereo pairs constitute supervised training of monocular depth cues. A standard stereo
depth algorithm could be used to infer a depth map for each pair which could then be used
in a supervised learning mode to train monocular depth cues. However, we demonstrate that
training monocular depth cues from stereo pair data improves stereo depth estimation. Hence
the method can be legitimately viewed as unsupervised learning of a stereo depth. Also the
general formulation of unsupervised learning by maximizing conditional likelihood, like the
shift from MRFs to CRFs, may have significance beyond computer vision.

Other related work includes that of Scharstein and Pal [22] and Kong and Tao [17]. In
these cases somewhat more highly parameterized stereo models are trained using methods
developed for general CRFs. However, the training uses ground truth depth data rather than
unlabeled stereo pairs.

Our stereo vision model is a slanted plane model involving shape from texture cues. The
slanted plane model is similar to that described in [5] but where we use a fixed overseg-
mentation for the left image as in [16]. The stereo algorithm infers a slanted plane for each
segment. This is done by minimizing an energy functional with 62 parameters - 10 corre-
spondence parameters, 2 smoothness parameters, and 50 texture parameters. We learn MRF
parameters using contrastive divergence [7, 12], a general MRF learning algorithm capable
of training large models. Our stereo model involves three terms — a correspondence energy
measuring the degree to which the left and right images agree under the induced disparity
map, a smoothness energy measuring the smoothness of the induced depth map, and an tex-
ture energy measuring the degree to which the surface orientation at each point agrees with
a certain (monocular) texture based surface orientation cue. For surface orientation cue we
use histograms of oriented gradients (HOG) [8]. We derive a formal relationship between a
variant of HOG features and surface orientation. Although our observation that there should
be a statistical relationship between HOG features and surface orientation is a simple result
in the area of shape from texture [1, 6, 20, 21, 23], HOG features have only recently gained
popularity and to our knowledge the possibility of using HOG as a surface orientation cue
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has not been previously noted.

2 The Slanted Plane Stereo Model
We now take x to be a segmented left image, y to be a right image, and take z to be an
assignment of a disparity plane to each segment of x. More specifically, for each segment i
of x we have that z specifies three plane parameters Ai Bi, and Ci. Given an assignment z of
plane parameters to segments we define the disparity d(p) for any pixel p as follows where
i(p) is the segment containing p and xp and yp are the image coordinates of p.

d(p) = Ai(p)xp +Bi(p)yp +Ci(p) (1)

So by equation (1) we have that z assigns a disparity to each pixel.
The model is defined by three energies: a smoothness energy, a match energy, and a tex-

ture energy. The energy Zz(x,z,βz), which determines P(z|x,βz), consists of the smoothness
energy and the texture energy. The energy Ey(x,y,z,βy), which determines P(y|x,z,βy), con-
sists solely of the match energy. To define the smoothness energy we write (p,q) ∈ Bi, j if p
is a pixel in segment i, q is a pixel in segment j, and p and q are adjacent pixels (p is directly
above, below, left or right of q). The smoothness energy is defined as follows where τS and
λS are parameters of the energy.

ES = ∑
i, j

min

τS, ∑
(p,q)∈Bi, j

λS|d(p)−d(q)|

 (2)

Intuitively the minimization with τS corresponds to interpreting the entire boundary between
i and j as either an occlusion boundary or as a joining of two planes on the same object.

Next we consider the match energy. We write p+d(p) for the pixel in y that corresponds
to the pixel p in image x under the disparity d(p). For color images we construct a nine
dimensional feature vector Φx(p) and Φy(p) for the pixel p in the images x and y respectively.
The vector Φx(p) consists of three (bias gain corrected) color values plus a six dimensional
color gradient vector and similarly for Φ

y
p. We write Φx

k(p) for the kth component of the
vector Φx(p). The match energy is defined as follows where λk are nine scalar parameters
of the match energy.

EM = ∑
p

∑
k

λk(Φx
k(p)−Φ

y
k(p+d(p)) )2 (3)

Finally we consider the texture energy. At each pixel p we also compute a HOG vector
H(p) which is a 24 dimensional feature vector consisting of three 8 dimensional normalized
edge orientation histograms — an 8 dimensional orientation histogram is computed at three
different scales. The texture energy is defined as follows where i(p) is the segment contain-
ing pixel p and where the scalars τT , λA, λB, and the vectors βA and βB are parameters of the
energy. The form of this energy is justified in section 2.1.

ET = ∑
p

min

τT ,
λA

(
d(p)(βA ·H(p) )−Ai(p)

)2

+ λB

(
d(p)(βB ·H(p) )−Bi(p)

)2

 (4)
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Figure 1: HOG features for image regions. The amount of edge as a function of angle, a
HOG feature, is averaged over different vertical and horizontal regions on various images.
The different surface orientations of these regions affect the HOG features. We can see the
cylindrical structure of tree trunks and the fact that the ground plane becomes more tilted as
the distance increases.

2.1 HOG as Surface Orientation Cues

The basic intuition behind HOG as an orientation cue is that as a surface is tilted away
from the camera the edges in the direction of the tilt become foreshortened while the edges
orthogonal to the tilt are not. This changes the edge orientation distribution and therefore the
edge orientation distribution can be used as a cue for surface orientation. This effect is shown
in figure 1 where the average HOG feature is shown for various regions of tree trunk, forest
floor, grass lawn, and patio tile. The cylindrical shape of the tree trunk is clearly indicated
by the warping of the HOG feature as a function of position on the trunk.

We consider a surface patch imaged by a perspective camera. A perspective camera
induces the following map from three dimensional coordinates to image plane coordinates.

x′ = ( f x)/z y′ = ( f y)/z (5)

We assume a coordinate system on the surface patch such that each point on the surface patch
has coordinates xs, ys. The image plane and surface coordinates can be selected so that we
have the following map from surface coordinates to three dimensional coordinates where Ψ
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is the angle between surface normal and the image plane normal.

x = xs y = ys cosΨ z = z0 + ys sinΨ (6)

To justify the form of the orientation energy (4) we first note that in the same coordinate
system as (6) the equation for the surface plane can be written as follows.

z = z0 + y tanΨ (7)

If we let b be the distance between the foci of the two cameras we have that the disparity d
equals b f /z. Multiplying (7) by b f /(zz0) gives the following where B is the y coefficient in
the disparity plane (as in (1).

d = d0 +By′ (8)

B = −d0 tanΨ

f
(9)

For the pixel p at the center of the image we have d(p) = d0. We handle pixels outside
of the center of the image by considering panning the camera to bring the desired point to
the center and approximating panning the camera by translating the image. This gives the
following general relation between the disparity plane parameter and the angle Ψ between
the ray form the camera and the surface normal.

B = −d(p) tanΨ

f
(10)

In the orientation energy (4) we interpret βB ·H(p) as a predictor of −(tanΨ)/ f and we
multiply by d(p) to get a predictor of B.

3 Hard Conditional EM
We consider a general conditional probability model Pβ (y|x) over arbitrary variables x and y
and defined in terms of a parameter vector β and an arbitrary latent variable z.

P(y|x,β ) = ∑
z

P(y,z|x,β ) (11)

In our slanted plane model x is a segmented left image, y is a right image, and z as an
assignment of a plane to each segment of x. But in this section we consider the general case
defined by (11). Given training data (x1,y1), . . .(xN ,yN) conditional EM is an algorithm for
locally optimizing the parameter vector β so as to maximize the probability of the y values
given the x values in the training data.

β
∗ = argmax

β

N

∑
i=1

lnP(yi|xi,β ) (12)

Conditional EM is a straightforward modification of EM and is defined by the following two
updates where β is initialized with domain specific heuristics.

Pi(z) := P(z|xi,yi,β ) (13)

β := argmax
β

N

∑
i=1

Ez∼Pi [lnP(yi,zi, |xi,β )] (14)
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Update (13) is called the E step and update (14) is called the M step. Hard EM, also known
as Viterbi training, works with the single most likely (hard) value of z rather than the (soft)
distribution Pi defined by (13). Hard conditional EM locally optimizes the following version
of (12).

β
∗ = argmax

β

N

∑
i=1

max
z

lnP(yi,z|xi,β ) (15)

Hard conditional EM is defined to be the process of iterating the updates (16) and (17) below
which can be interpreted as hard versions of (13) and (14).

zi := argmax
z

P(yi,z|xi,β ) (16)

β := argmax
β

N

∑
i=1

lnP(yi,zi, |xi,β ) (17)

We will call (16) the hard E step and (17) the hard M step. Updates (16) and (17) are both
coordinate ascent steps for the objective defined by (15). However, we refer to (16) and (17)
as hard conditional EM rather than simply “coordinate ascent” because of the clear analogy
between (15), (16), (17) and (12), (13), (14).

In the case of the slanted plane stereo model, the hard E step (16) is implemented using
a stereo inference algorithm which computes zi by minimizing an energy functional. In this
case the parameter vector β is a pair β = (βz, βy) where βz parameterizes P(z|x) and βy pa-
rameterizes P(y|x,z). The inference algorithm is described in section 4. Our implementation
of the hard M step relies on a factorization of the probability model into two conditional
probability models each of which is defined by an energy functional. Unlike CRFs, we do
not require the energy functional to be linear in the model parameters.

P(y,z|x,βy,βz) = P(z|x,βz)P(y|x,z,βy) (18)

P(z|x,βz) =
exp(−Ez(x,z,βz) )

Zz(x,βz)
(19)

Zz(x,βz) = ∑
z

exp(−Ez(x,z,βz) )

P(y|x,z,βy) =
exp(−Ey(x,y,z,βz) )

Zy(x,z,βy)
(20)

Zy(x,z,βy) = ∑
y

exp(−Ey(x,y,z,βy) )

Given this factorization of the model, the hard M step (17) can be written as the following
pair of updates.

βz := argmax
βz

∑
i

lnP(zi|xi,βz) (21)

βy := argmax
βy

∑
i

lnP(yi|xi,zi,βy) (22)

Let L abbreviate the quantity being maximized in the right hand side of (21) and let Ei(z)
abbreviate Ez(xi,zi,β ). We can express the gradient of L as follows.

∇βz
L =

N

∑
i=1

(
Ez∼Pz(z|xi,β )

[
∇βz

Ei(z)
]
−∇βz

Ei(zi)
)

(23)
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A similar equation holds for (22). We can estimate ∇βz L by sampling z from P(z|xi,βz) using
an MCMC sampling process. We can then optimize (21), and similarly (22), by gradient
descent.

For the experiments reported here we use contrastive divergence [7, 12] to sample z rather
than a long running MCMC process. In contrastive divergence we initialize z to be zi and
then perform only a few MCMC updates to get a sample of z. Contrastive divergence can be
motivated by the observation that if zi is assumed to be drawn at random form P(z|xi,β ) then
the expected contrastive divergence update is zero. So as β better fits the pairs (xi,zi) one
expects the contrastive divergence gradient estimate to tend to zero. Furthermore, because
only a few updates are used in the MCMC process, contrastive divergence runs faster and
with lower variance than a longer running MCMC process.

4 Inference
Given a pair of images (x,y), and a given segmentation of x, and a given setting of the model
parameters βz and βy, the inference problem is to find an assignment z of plane parameters to
segments so as to minimize the total energy E(x,z,βz)+E(x,y,z,βy). In our experiments we
compute a segmentation using the Felzenszwalb-Huttenlocher segmentation algorithm [10].
The energy defines a Markov random field. More specifically, the texture energy and the
match energy defines a potential on each segment independently and the smoothness energy
defines a potential on pairs of adjacent segments. The energy can be written as follows
where i and j range over segments, N(i) is the set of segments bordering i, and zi is the three
dimensional vector of plane parameters (Ai,Bi,Ci) for segment i.

E(z) = ∑
i

(ET (zi)+EM(zi))+ ∑
i, j∈N(i)

ES(zi,z j) (24)

We first initialize the assignment z using methods loosely inspired by [16]. To initialize z
we first run Felzenszwalb and Huttenlocher’s efficient loopy BP algorithm using a classical
stereo energy functional to compute a disparity value for each pixel [9]. We then do a least
squares regression to fit a plane to the disparities in each segment. This gives an initial
assignment z. Given an initial assignment z we then perform a max product variant of particle
belief propagation [13]. More specifically, we iterate the following two steps.

1. Let Ci be a set of candidate values for zi derived by repeatedly adding random noise to
the current value of zi.

2. Run discrete max-product BP with the finite value set Ci for each node i.

3. Set zi to be the best value for i found in 2) and repeat.

The iteration can be stopped after a fixed number of iterations or when the energy is no
longer reduced.

5 Experimental Results
We implement two training methods in our experiments — supervised and unsupervised.
For each of the supervised and unsupervised training methods we train both a version with
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Left image Iteration 1 Iteration 3 Iteration 5
Figure 2: Improvement with training on the Middlebury dataset.

texture cues for surface orientation and a version without such cues. In supervised training
we set zi (for each training image) by fitting a plane in each segment to the ground truth
disparities for that segment. We then train the model using a contrastive divergence imple-
mentation of the hard M step (17) which we describe in more detail below. In supervised
training we use only a single setting of z and run one iteration of (17). In unsupervised train-
ing we use the same separation into training and test pairs but do not use ground truth on the
training pairs. Instead we iterate (16) and (17) six times starting with initial values for the
parameters.

We use the inference algorithm described in section 4 to implement the hard E step
(16). This uses a form of max-product particle belief propagation. Given an assignment z
of a plane to each segment, we propose 15 additional candidate planes for each segment by
adding Gaussian noise to the plane specified by z. The plane parameters A and B have units
of pixels of disparity per pixel in the image, and hence are dimensionless. Typical values
of |A| and |B| are from .1 to 1. In the proposal distribution we use Gaussian noise with a
standard deviation of .007 for each of A and B and use a deviation of .1 pixels for C. We
perform six rounds of proposing and selecting.

We implement the hard M step (17) by first breaking it down into (21) for training
P(z|x,βz) and (22) for training P(y|x,z,βy). The form of the match energy (a simple quadratic
energy) allows a closed form solution for (22). We implement (21) by gradient descent us-
ing a contrastive divergence approximation of the gradient in (23). We perform 8 gradient
descent parameter updates with a constant learning rate. To estimate the expectation in (23)
in each parameter update we generate 10 alternative plane assignments using single MCMC
stochastic step starting at z and accepting or rejecting Gaussian noise added once to each
plane. The MCMC process proposes a new plane for each segment by adding Gaussian
noise and then accepting or rejecting that proposal using the standard Metropolis rejection
rule.

Table 1 shows the performance of our system on the Middleburry stereo evaluation (ver-
sion 2). The numbers shown are for unsupervised training with texture features. In this case
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Avg. Tsukuba Venus Teddy Cones Avg.

Rank nonocc all disc nonocc all disc nonocc all disc nonocc all disc bad

31.4 3.12 5.22 44 13.9 1.03 1.17 28 11.5 7.08 7.30 3 16.1 6.90 10.7 26 16.0 8.33%

Table 1: Performance on the Middleburry stereo evaluation. The numbers shown are for
unsupervised training with texture features.

all four images where used as unsupervised training data (ground truth disparities were not
used in training). Figure 2 shows the inferred depth maps for the Middleburry images at vari-
ous points in the parameter training. The figure shows a clear improvement as the parameters
are trained.

RMS Average
Disparity Error Error
(pixels) | log10 Z− log10 Ẑ|

Saxena et al. [3] .074
Unsuper., Notexture 1.158 .073
Unsuper., Texture 1.081 .069
Super., Notexture 1.071 .069
Super., Texture 1.001 .063

Table 2: RMS disparity error (in pixels) and average error (average base 10 logarithm of the
multiplicative error) on the Stanford stereo pairs for four versions of our systems plus the
best reported result from [3] on this data. Each system was either trained using the ground
truth depth map (supervised) or trained purely from unlabeled stereo pairs (unsupervised)
and either used texture cues (Texture) for surface orientation or did not (Notexture).

We have also run experiments on a set of rectified stereo pairs taken from the Stanford
color stereo dataset 1 which has been used to train monocular depth estimation [2, 3, 4]. The
images cover different types of outdoor scenes (buildings, grass, forests, trees, bushes, etc.)
and some indoor scenes. They were epipolar rectified using a rectification kit from Fusiello
et al. [14]. We removed from the dataset all pairs for which the energy value achieved by
loopy BP was above a specified threshold. The majority of the eliminated images were cases
where the rectification had failed. This left 200 out of an original 250 stereo pairs. Each
stereo pair in this dataset is associated with ground truth depth information from a laser
range finder. We randomly divide the 200 properly rectified stereo pairs into 180 training
pairs and 20 test pairs. Results on this data set for four versions of our system are shown in
table 2. Note that the texture information helps improve the performance in both supervised
and unsupervised cases.

6 Conclusion
In many applications we would like to be able to build systems that learn from data col-
lected from mechanical devices such as microphones and cameras. Stereo vision provides
perhaps the simplest setting in which to study unsupervised learning. We have formulated an

1http://ai.stanford.edu/ asaxena/learningdepth/data
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approach to unsupervised learning based on maximizing conditional likelihood and demon-
strated its use for unsupervised learning of stereo depth with monocular depth cues. Ulti-
mately we are interested in learning highly parameterized sophisticated models including,
perhaps, models of surface types, shape from shading, albedo smoothness priors, lighting
smoothness priors, and even object pose models. We believe that unsupervised learning
based on maximizing conditional likelihood can be scaled to much more sophisticated mod-
els than those demonstrated in this paper.
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