
lti

Cube Summing,
Approximate Inference with

Non-Local Features,
and Dynamic Programming

without Semirings

Kevin Gimpel and Noah A. Smith

lti

Overview

� We introduce cube summing, which extends dynamic
programming algorithms for summing with non-local features

� Inspired by cube pruning (Chiang, 2007; Huang & Chiang, 2007)

� We relate cube summing to semiring-weighted logic
programming

� Without non-local features, cube summing is a novel semiring

� Non-local features break some of the semiring properties

� We propose an implementation based on arithmetic circuits

lti

Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion

lti

Fundamental Problems

� Two fundamental problems we often need to solve

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model

lti

Fundamental Problems

� Two fundamental problems we often need to solve

forward and backward algorithms

Viterbi algorithm

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model

yx
example: HMM

is a tag sequenceis a sentence,

lti

Fundamental Problems

� Two fundamental problems we often need to solve

inside algorithm

probabilistic CKY

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model

yx
example: PCFG

is a sentence, is a parse tree

lti

Fundamental Problems

� Two fundamental problems we often need to solve
unsupervised:

self-training,
Viterbi EM

EM,
hidden-variable

models

p(y | x) ∝
M∏

m=1

λhm(x,y)m

ŷ(x) = argmax
y∈Y

M∏

m=1

λm
hm(x,y)

s(x) =
∑

y∈Y

M∏

m=1

λm
hm(x,y)

� Summing

� Decoding

� Consider an exponential probabilistic model

supervised:

perceptron,
MIRA,
MERT

log-linear models

lti

Dynamic Programming

� Consider the probabilistic CKY algorithm

CX,i−1,i = λX→wi

CX,i,k = max
Y,Z∈N ;j∈{i+1,...,k−1}

λX→Y Z × CY,i,j × CZ,j,k

goal = CS,0,n

lti

proof

axiom

theorem

Weighted Logic Programs

derivation

rule probability

chart item

ExampleProbabilistic CKY

CX,i,j

λX→Y Z

of the list

PP

NP

lti

� In semiring-weighted logic programming, theorem and
axiom values come from a semiring

proof

axiom

theorem

Weighted Logic Programs

derivation

rule probability

chart item

ExampleProbabilistic CKY

CX,i,j

λX→Y Z

of the list

PP

NP

lti

Features

� Recall our model:

� The are feature functions and the are
nonnegative weights

p(y | x) ∝
M∏

m=1

λhm(x,y)m

hm(x, y) λm

lti

Features

� Recall our model:

� The are feature functions and the are
nonnegative weights

� Local features depend only on theorems used in an
equation (or any of the axioms), not on the proofs of
those theorems

p(y | x) ∝
M∏

m=1

λhm(x,y)m

CX,i,k = max
Y,Z∈N ;j∈{i+1,...,k−1}

λX→Y Z × CY,i,j × CZ,j,k

hm(x, y) λm

lti

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

lti

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

lti

Features

� Recall our model:

� The are feature functions and the are
nonnegative weights

� Local features depend only on theorems used in an
equation (or any of the axioms), not on the proofs of
those theorems

� Non-local features depend on theorem proofs

p(y | x) ∝
M∏

m=1

λhm(x,y)m

CX,i,k = max
Y,Z∈N ;j∈{i+1,...,k−1}

λX→Y Z × CY,i,j × CZ,j,k

hm(x, y) λm

lti

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

“NGramTree” feature
(Charniak & Johnson, 2005)

lti

There near the top of the list is quarterback Troy Aikman

S

RB IN

NP

NP

NP
VP

PP NP

PP

NP NP

DT NN VBZDT NN NN NNP NNPIN

NP

“NGramTree” feature
(Charniak & Johnson, 2005)

Non-local features break dynamic programming!

lti

Other Algorithms for Approximate Inference

� Beam search (Lowerre, 1979)
� Reranking (Collins, 2000)
� Algorithms for graphical models

� Variational methods (MacKay, 1997; Beal, 2003; Kurihara & Sato, 2006)
� Belief propagation (Sutton & McCallum, 2004; Smith & Eisner, 2008)
� MCMC (Finkel et al., 2005; Johnson et al., 2007)
� Particle filtering (Levy et al., 2009)

� Integer linear programming (Roth & Yih, 2004)
� Stacked learning (Cohen & Carvalho, 2005; Martins et al., 2008)
� Cube pruning (Chiang, 2007; Huang & Chiang, 2007)

lti

Other Algorithms for Approximate Inference

� Beam search (Lowerre, 1979)
� Reranking (Collins, 2000)
� Algorithms for graphical models

� Variational methods (MacKay, 1997; Beal, 2003; Kurihara & Sato, 2006)
� Belief propagation (Sutton & McCallum, 2004; Smith & Eisner, 2008)
� MCMC (Finkel et al., 2005; Johnson et al., 2007)
� Particle filtering (Levy et al., 2009)

� Integer linear programming (Roth & Yih, 2004)
� Stacked learning (Cohen & Carvalho, 2005; Martins et al., 2008)
� Cube pruning (Chiang, 2007; Huang & Chiang, 2007)

� Why add one more?
� Cube pruning extends existing, widely-understood dynamic

programming algorithms for decoding
� We want this for summing too

lti

Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion

lti

Cube Pruning
(Chiang, 2007; Huang & Chiang, 2007)

� Modification to dynamic programming algorithms for
decoding to use non-local features approximately

� Keeps a k-best list of proofs for each theorem

� Applies non-local feature functions on these proofs when
proving new theorems

lti

There near the top of the list is quarterback Troy Aikman

S

VP

NP

NP

VBZ

0 1 7

NN NNP NNP

NP

PP

NP

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

lti

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

CNP,0,1 =

CPP,1,7 =

There

RB

NP

There

NNP

NP

There

EX

NP

0.2 0.1 0.05

0.4 0.3 0.02

near the top of the list

IN

NP

PP

PP

NP

DT NN DT NNIN

NP

near the top of the list

IN

NP

PP

PP

NP

DT JJ DT NNIN

NP

near the top of the list

RB

NP

PP

PP

NP

DT NN DT NNIN

NP

lti

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.08 0.04 0.02

0.03 0.0150.06

0.1

0.4

0.3

0.002 0.0010.0040.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

lti

λNP→NP PP = 0.5

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.08 × 0.5 0.04 × 0.5 0.02 × 0.5

0.03 × 0.5 0.015 × 0.50.06 × 0.5

0.1

0.4

0.3

0.002 × 0.5 0.001 × 0.50.004 × 0.50.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

lti

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

0.2

0.04 0.02 0.01

0.015 0.00750.03

0.1

0.4

0.3

0.001 0.00050.0020.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

lti

0.2

0.04 × 0.2 0.02 × 0.2 0.01

0.015 0.00750.03

0.1

0.4

0.3

0.001 0.00050.0020.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

There near the top of the list

EX IN

NP

NP

NP

PP

PP

NP

DT NN DT NNIN

NP

λThere EX NP NP PP IN near = 0.2

lti

0.2

0.04 × 0.2 0.02 × 0.2 0.01 × 0.1

0.015 × 0.6 0.0075 × 0.40.03 × 0.6

0.1

0.4

0.3

0.001 × 0.1 0.0005 × 0.20.002 × 0.10.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

λ
There EX NP NP PP IN near

= 0.2

λ
There RB NP NP PP IN near

= 0.6

λThere NNP NP NP PP IN near = 0.1

λThere EX NP NP PP RB near = 0.1

λThere RB NP NP PP RB near = 0.4

λThere NNP NP NP PP RB near = 0.2

lti

0.2

0.008 0.004 0.001

0.009 0.0030.018

0.1

0.4

0.3

0.0001 0.00010.00020.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.05

lti

0.2

0.008 0.004 0.001

0.009 0.0030.018

0.4

0.3

0.0001 0.00010.00020.02

CNP,0,1

CPP,1,7

There

RB

NP

There

NNP

NP

There

EX

NP

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

0.050.1

lti

0.2

0.008 0.004 0.001

0.009 0.0030.018

0.4

0.3

0.0001 0.00010.00020.02

CNP,0,1

CPP,1,7

CNP,0,7

There

RB

NP

There

NNP

NP

There

EX

NP

There near the top ...

RB IN

NP

NP

NP

PP

DT NN

NP

...

There near the top ...

EX IN

NP

NP

NP

PP

DT NN

NP

...

There near the top ...

RB IN

NP

NP

NP

PP

DT JJ

NP

...

0.050.1

0.018 0.0080.009

lti

Clarification
� Cube pruning does not actually expand all k2 proofs as

this example showed

� It uses an approximation that only looks at O(k) proofs

� But since we are summing, we want to look at as many
proofs as possible

� We use the algorithm that we just showed as the basis
for cube summing (we call it cube decoding – details in
paper)

lti

Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion

lti

CNP,0,1 =

CPP,1,7 =

There

RB

NP

There

NNP

NP

“residual”

There

EX

NP

0.2 0.1 0.05

0.4 0.3 0.02

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

lti

CNP,0,1 =

CPP,1,7 =

There

RB

NP

There

NNP

NP

“residual”

There

EX

NP

0.2 0.1 0.05

0.4 0.3 0.02 0.05

0.03

near the top ...

...

IN

NP

PP

DT JJ

NP

near the top ...

...

IN

NP

PP

DT NN

NP

RB

near the top ...

...

NN

NP

PP

DT

NP

lti

0.2

0.008 0.004 0.001

0.009 0.0030.018

0.4

0.3

0.0001 0.00010.00020.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.0287CNP,0,7 0.018 0.0080.009

� Computation of local and non-local features is same as before
� Only difference is computing the residual for the result

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.01 0.00250.005

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.01 × 0.5 0.0025 × 0.50.005 × 0.5

0.0287CNP,0,7 0.018 0.0080.009

0.0084

λNP→NP PP = 0.5

CNP,0,7 = CNP,0,1 × CPP,1,7 × λNP→NP PP

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.005 0.001250.0025

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.012 × 0.5

0.009 × 0.5

0.0006 × 0.5

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.0108

0.05

CNP,0,1

CPP,1,7
0.05 0.030.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.0108

0.05

CNP,0,1

CPP,1,7
0.05 0.03

0.0015 × 0.5

0.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.0108

0.05

CNP,0,1

CPP,1,7
0.05 0.03

0.00075

0.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084

lti

0.2

0.008

0.0090.018

0.4

0.3

0.02

0.0108

0.05

CNP,0,1

CPP,1,7
0.05 0.03

0.00075

0.1

0.00875

0.0287CNP,0,7 0.018 0.0080.009

0.0084

=0.0287 0.0084 0.0108 0.000750.00875

lti

Summary

� Maintain residual sum of all proofs not in k-best list

� Redefine operations to update the residual as necessary

� Result is approximate k-best proof list for goal and
approximate sum of all other proofs of goal

� When k = ∞, result is exact

lti

Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion

lti

Semirings

� A semiring is a tuple such that:
� is associative and commutative
� is associative and distributes over
�

10,,,, ⊗⊕A
AAA →×⊕ :

AAA →×⊗ :

000 =⊗=⊗ aa
,aa =⊗1
,, aaAa =⊕∈∀ 0

⊕

Inside
Viterbi

ASemiring ⊕ 10⊗
ba + ab

ab),max(ba
0
0 1

1

lti

Non-local features break some of the semiring
properties!

(see paper for details)

lti

k-best proof
Goodman, 1999

k-best+residual

Semirings
“Generalized” Semirings

Viterbi proof
Goodman, 1999

cube decoding

cube summing

all proof
Goodman, 1999

Viterbi
Viterbi, 1967

ignore
proof

inside
Baum et al., 1970

lti

Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion

lti

Implementation
� Several implementation tools exist for dynamic

programming
� Dyna (Eisner et al., 2005) and Goodman (1999) assume

semirings
� Hypergraphs (Klein & Manning, 2001; Huang, 2008) do not

require semirings but are aimed at decoding

� These could be extended for cube summing, but we
instead use a lower-level formalism: arithmetic circuits

lti

Arithmetic Circuits
� Explicitly represent computations to be performed using

a directed graph
� Operators and operands are nodes in the graph
� A value is associated with each node
� Operators point to their operands

� Allow automatic differentiation in the reverse mode
(Griewank & Corliss, 1991) for efficient gradient
computation

lti

Example

0.5

...

...

+

+
+

CNP,0,1

CPP,1,7

CNP,0,7

λNP→NP PP

lti

Outline

� Background
� Cube Pruning
� Cube Summing
� Semirings
� Implementation
� Conclusion

lti

Conclusion and Ongoing Work
� We have described cube summing, a technique for

approximate summing using dynamic programming with
non-local features

� With only local features, cube summing is a semiring that
generalizes those in common use

� Some semiring properties are broken by non-local
features but an implementation based on arithmetic
circuits can be used

� We are currently using cube summing to train a log-
linear syntactic translation model with hidden variables

lti

Thanks!

Cube Summing,
Approximate Inference with

Non-Local Features,
and Dynamic Programming

without Semirings

Kevin Gimpel and Noah A. Smith

