# Cube Summing, <br> Approximate Inference with <br> Non-Local Features, <br> and Dynamic Programming without Semirings 

Kevin Gimpel and Noah A. Smith

## Overview

- We introduce cube summing, which extends dynamic programming algorithms for summing with non-local features
$\square$ Inspired by cube pruning (Chiang, 2007; Huang \& Chiang, 2007)
- We relate cube summing to semiring-weighted logic programming
$\square$ Without non-local features, cube summing is a novel semiring
$\square$ Non-local features break some of the semiring properties
$\square$ We propose an implementation based on arithmetic circuits


## Outline

- Background
- Cube Pruning
- Cube Summing
- Semirings
- Implementation
- Conclusion


## Fundamental Problems

- Consider an exponential probabilistic model

$$
p(y \mid x) \propto \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}
$$

■ Two fundamental problems we often need to solve

$$
\begin{aligned}
& \square \text { Decoding } \\
& \hat{y}(x)=\underset{y \in y}{\operatorname{argmax}} \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}
\end{aligned}
$$

$\square$ Summing

$$
s(x)=\sum_{y \in y} \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}
$$

## Fundamental Problems

■ Consider an exponential probabilistic model

$$
p(y \mid x) \propto \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}
$$

example: HMM
$x$ is a sentence, $y$ is a tag sequence

■ Two fundamental problems we often need to solve

$$
\hat{y}(x)=\underset{y \in y}{\operatorname{argmax}} \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)} \quad \text { Viterbi algorithm }
$$

$\square$ Summing

$$
s(x)=\sum_{y \in \mathcal{y}} \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)} \quad \text { forward and backward algorithms }
$$

## Fundamental Problems

- Consider an exponential probabilistic model

$$
p(y \mid x) \propto \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}
$$

■ Two fundamental problems we often need to solve

$$
\begin{aligned}
& \square \text { Decoding } \\
& \hat{y}(x)=\underset{y \in \mathcal{y}}{\operatorname{argmax}} \prod_{m=1}^{M} \lambda_{m}{ }^{h_{m}(x, y)} \quad \text { probabilistic CKY }
\end{aligned}
$$

$\square$ Summing

$$
s(x)=\sum_{y \in \mathcal{y}} \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y) \quad \quad \text { inside algorithm }}
$$

## Fundamental Problems

■ Consider an exponential probabilistic model

$$
p(y \mid x) \propto \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}
$$

■ Two fundamental problems we often need to solve
$\square$ Decoding
$\hat{y}(x)=\underset{y \in \mathcal{y}}{\operatorname{argmax}} \prod_{m=1}^{M} \lambda_{m}{ }^{h_{m}(x, y)}$
$\square$ Summing

$$
s(x)=\sum_{y \in \mathcal{y}} \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}
$$

unsupervised:
self-training, Viterbi EM

EM,
log-linear models hidden-variable models

## Dynamic Programming

- Consider the probabilistic CKY algorithm

$$
\begin{aligned}
C_{X, i-1, i} & =\lambda_{X \rightarrow w_{i}} \\
C_{X, i, k} & =\max _{Y, Z \in \mathcal{N} ; j \in\{i+1, \ldots, k-1\}} \lambda_{X \rightarrow Y Z} \times C_{Y, i, j} \times C_{Z, j, k} \\
\text { goal } & =C_{S, 0, n}
\end{aligned}
$$

| Weighted Logic Programs | Probabilistic CKY | Example |
| :---: | :---: | :---: |
| theorem | chart item | $C_{X, i, j}$ |
| axiom | rule probability | $\lambda_{X \rightarrow Y Z}$ |
| proof | derivation | $\overbrace{\text { of the lisi }}^{\mathrm{PP}}$ |


| Weighted Logic Programs | Probabilistic CKY | Example |
| :---: | :---: | :---: |
| theorem | chart item | $C_{X, i, j}$ |
| axiom | rule probability | $\lambda_{X \rightarrow Y Z}$ |
| proof | derivation | $\overbrace{\text { of the lisi }}^{\text {PP }}$ |

- In semiring-weighted logic programming, theorem and axiom values come from a semiring


## Features

- Recall our model: $p(y \mid x) \propto \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}$
- The $h_{m}(x, y)$ are feature functions and the $\lambda_{m}$ are nonnegative weights


## Features

- Recall our model: $p(y \mid x) \propto \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}$
- The $h_{m}(x, y)$ are feature functions and the $\lambda_{m}$ are nonnegative weights
- Local features depend only on theorems used in an equation (or any of the axioms), not on the proofs of those theorems

$$
C_{X, i, k}=\max _{Y, Z \in \mathcal{N} ; j \in\{i+1, \ldots, k-1\}} \lambda_{X \rightarrow Y Z} \times C_{Y, i, j} \times C_{Z, j, k}
$$



There near the top of the list is quarterback Troy Aikman


There near the top of the list is quarterback Troy Aikman

## Features

- Recall our model: $p(y \mid x) \propto \prod_{m=1}^{M} \lambda_{m}^{h_{m}(x, y)}$
- The $h_{m}(x, y)$ are feature functions and the $\lambda_{m}$ are nonnegative weights
■ Local features depend only on theorems used in an equation (or any of the axioms), not on the proofs of those theorems

$$
C_{X, i, k}=\max _{Y, Z \in \mathcal{N} ; j \in\{i+1, \ldots, k-1\}} \lambda_{X \rightarrow Y Z} \times C_{Y, i, j} \times C_{Z, j, k}
$$

- Non-local features depend on theorem proofs
"NGramTree" feature
(Charniak \& Johnson, 2005)


There near the top of the list is quarterback Troy Aikman
"NGramTree" feature
(Charniak \& Johnson, 2005)


Non-local features break dynamic programming!


Therenear the top of the list is quarterback Troy Aikman

## Other Algorithms for Approximate Inference

- Beam search (Lowerre, 1979)
- Reranking (Collins, 2000)
- Algorithms for graphical models
$\square$ Variational methods (MacKay, 1997; Beal, 2003; Kurihara \& Sato, 2006)
- Belief propagation (Sutton \& McCallum, 2004; Smith \& Eisner, 2008)
$\square$ MCMC (Finkel et al., 2005; Johnson et al., 2007)
$\square$ Particle filtering (Levy et al., 2009)
- Integer linear programming (Roth \& Yih, 2004)
- Stacked learning (Cohen \& Carvalho, 2005; Martins et al., 2008)

■ Cube pruning (Chiang, 2007; Huang \& Chiang, 2007)

## Other Algorithms for Approximate Inference

- Beam search (Lowerre, 1979)
- Reranking (Collins, 2000)
- Algorithms for graphical models
$\square$ Variational methods (MacKay, 1997; Beal, 2003; Kurihara \& Sato, 2006)
- Belief propagation (Sutton \& McCallum, 2004; Smith \& Eisner, 2008)
$\square$ MCMC (Finkel et al., 2005; Johnson et al., 2007)
$\square$ Particle filtering (Levy et al., 2009)
- Integer linear programming (Roth \& Yih, 2004)
- Stacked learning (Cohen \& Carvalho, 2005; Martins et al., 2008)
- Cube pruning (Chiang, 2007; Huang \& Chiang, 2007)
- Why add one more?
$\square$ Cube pruning extends existing, widely-understood dynamic programming algorithms for decoding
$\square$ We want this for summing too


## Outline

- Background
- Cube Pruning
- Cube Summing
- Semirings
- Implementation
- Conclusion


# Cube Pruning <br> (Chiang, 2007; Huang \& Chiang, 2007) 

- Modification to dynamic programming algorithms for decoding to use non-local features approximately
- Keeps a $k$-best list of proofs for each theorem
- Applies non-local feature functions on these proofs when proving new theorems

$$
C_{N P, 0,7}=C_{N P, 0,1} \times C_{P P, 1,7} \times \lambda_{N P \rightarrow N P P P}
$$


${ }_{0}$ There near the top of the list is quarterback Troy Aikman

$$
C_{N P, 0,7}=C_{N P, 0,1} \times C_{P P, 1,7} \times \lambda_{N P \rightarrow N P P P}
$$



$$
C_{N P, 0,7}=C_{N P, 0,1} \times C_{P P, 1,7} \times \lambda_{N P \rightarrow N P P P}
$$



$$
C_{N P, 0,7}=C_{N P, 0,1} \times C_{P P, 1,7} \times \lambda_{N P \rightarrow N P P P}
$$

$$
\lambda_{N P \rightarrow N P P P}=0.5
$$

| $C_{N P, 0,1} C_{P P, 1,}$ |  | 0.2 | 0.1 | 0.05 |
| :---: | :---: | :---: | :---: | :---: |
|  | 0.4 | $0.08 \times 0.5$ | $0.04 \times 0.5$ | $0.02 \times 0.5$ |
| RB | 0.3 | $0.06 \times 0.5$ | $0.03 \times 0.5$ | $0.015 \times 0.5$ |
| $\begin{aligned} & \text { NP } \\ & \text { INP } \end{aligned}$ | 0.02 | $0.004 \times 0.5$ | $0.002 \times 0.5$ | $0.001 \times 0.5$ |

$$
C_{N P, 0,7}=C_{N P, 0,1} \times C_{P P, 1,7} \times \lambda_{N P \rightarrow N P P P}
$$



$\lambda_{\text {There EXNP NP PP IN near }}=0.2$


Carnegie Mellon
$\lambda_{\text {There EX NP NP PP IN near }}=0.2$
$\lambda_{\text {There RB NP NP PP IN near }}=0.6$
$\lambda_{\text {There NNP NP NP PP IN near }}=0.1$
$\lambda_{\text {There EX NP NP PP RB near }}=0.1$
$\lambda_{\text {There RB NP NP PP RB near }}=0.4$
$\lambda_{\text {There NNP NP NP PP RB near }}=0.2$


Carnegie Mellon




$\mathcal{C}_{N P, 0,1}$ $\square$

| 0.4 | 0.008 | 0.004 | 0.001 |
| :---: | :---: | :---: | :---: |
| 0.3 | 0.018 | 0.009 | 0.003 |
| 0.02 | 0.0002 | 0.0001 | 0.0001 |

There


## Clarification

- Cube pruning does not actually expand all $k^{2}$ proofs as this example showed
- It uses an approximation that only looks at $O(k)$ proofs
- But since we are summing, we want to look at as many proofs as possible
- We use the algorithm that we just showed as the basis for cube summing (we call it cube decoding - details in paper)


## Outline

- Background
- Cube Pruning
- Cube Summing
- Semirings
- Implementation
- Conclusion


Carnegie Mellon


- Computation of local and non-local features is same as before
- Only difference is computing the residual for the result

| $C_{N P, 0,1} \quad{ }^{C_{P P, 1,7}}$ | 0.2 | 0.1 | 0.05 | 0.03 |
| :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.008 | 0.004 | 0.001 |  |
| 0.3 | 0.018 | 0.009 | 0.003 |  |
| 0.02 | 0.0002 | 0.0001 | 0.0001 |  |
| 0.05 |  |  |  |  |


| $C_{N P, 0,7}$ | 0.018 | 0.009 | 0.008 | 0.0287 |
| :--- | :--- | :--- | :--- | :--- |




$$
\begin{aligned}
& C_{N P, 0,7}=C_{N P, 0,1} \times C_{P P, 1,7} \times \lambda_{N P \rightarrow N P P P} \\
& \lambda_{N P \rightarrow N P P P}=0.5
\end{aligned}
$$

| $C_{P P, 1,7}$ |
| :---: |
| $C_{N P, 0,1}$ |
| 0.4 |
| 0.0 .2 |
| 0.008 |
| 0.3 |
| 0.3 |
| 0.018 |
| 0.009 |
| 0.02 |


| $C_{\text {NP., }, 7}$ | 0.018 | 0.009 | 0.008 | 0.0287 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |


| $C_{N P, 0,1}{ }^{C_{P P, 1,7}}$ | 0.2 | 0.1 | 0.05 | 0.03 |
| :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.008 |  | 0.0084 |  |
| 0.3 | 0.018 | 0.009 |  |  |
| 0.02 |  |  |  |  |
| 0.05 | 0.005 | 0.0025 | 0.00125 |  |


$C_{N P, 0,7}$| 0.018 | 0.009 | 0.008 | 0.0287 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |



| $C_{N P, 0,1}{ }^{C_{P P, 1,7}}$ | 0.2 | 0.1 | 0.05 | 0.03 |
| :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.008 |  | 0.0084 | $0.012 \times 0.5$ |
| 0.3 | 0.018 | 0.009 |  | $0.009 \times 0.5$ |
| 0.02 |  |  |  | $0.0006 \times 0.5$ |
| 0.05 |  | 0.0087 |  |  |


$C_{N P, 0,7}$| 0.018 | 0.009 | 0.008 | 0.0287 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |


| $C_{N P, 0,1} C_{P P, 1,7}$ | 0.2 | 0.1 | 0.05 | 0.03 |
| :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.008 |  | 0.0084 | 0.0108 |
| 0.3 | 0.018 | 0.009 |  |  |
| 0.02 |  |  |  |  |
| 0.05 |  | 0.0087 |  |  |


| $C_{N P, 0,7}$ | 0.018 | 0.009 | 0.008 | 0.0287 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |


| $C_{N P, 0,1}{ }^{C_{P P, 1,7}}$ | 0.2 | 0.1 | 0.05 | 0.03 |
| :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.008 |  | 0.0084 | 0.0108 |
| 0.3 | 0.018 | 0.009 |  |  |
| 0.02 |  |  |  |  |
| 0.05 |  | 0.00875 |  | $0.0015 \times 0.5$ |


| $C_{N P, 0,7}$ | 0.018 | 0.009 | 0.008 | 0.0287 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |


| $C_{N P, 0,1}{ }^{C_{P P, 1,7}}$ | 0.2 | 0.1 | 0.05 | 0.03 |
| :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.008 |  | 0.0084 | 0.0108 |
| 0.3 | 0.018 | 0.009 |  |  |
| 0.02 |  |  |  |  |
| 0.05 | 0.00875 |  |  | 0.00075 |
| $C_{N P, 0,7}$ | 0.018 | 0.009 | 0.008 | 0.0287 |

$0.0287=0.0084+0.00875+0.0108+0.00075$

| $C_{N P, 0,1} \quad C_{P P, 1,7}$ | 0.2 | 0.1 | 0.05 | 0.03 |
| :---: | :---: | :---: | :---: | :---: |
| 0.4 | 0.008 |  | 0.0084 | 0.0108 |
| 0.3 | 0.018 | 0.009 |  |  |
| 0.02 |  |  |  |  |
| 0.05 |  | 0.00875 |  | 0.00075 |


| $C_{N P, 0,7}$ | 0.018 | 0.009 | 0.008 | 0.0287 |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |

## Summary

■ Maintain residual sum of all proofs not in $k$-best list

- Redefine operations to update the residual as necessary
- Result is approximate $k$-best proof list for goal and approximate sum of all other proofs of goal
- When $k=\infty$, result is exact


## Outline

- Background
- Cube Pruning
- Cube Summing
- Semirings
- Implementation
- Conclusion


## Semirings

| Semiring | $A$ | $\oplus$ | $\otimes$ | $\mathbf{0}$ | $\mathbf{1}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Inside | $\mathbb{R}_{\geq 0}$ | $a+b$ | $a b$ | 0 | 1 |
| Viterbi | $\mathbb{R}_{\geq 0}$ | $\max (a, b)$ | $a b$ | 0 | 1 |

- A semiring is a tuple $\langle A, \oplus, \otimes, \mathbf{0}, \mathbf{1}\rangle$ such that:
$\square \oplus: A \times A \rightarrow A$ is associative and commutative
$\square \otimes: A \times A \rightarrow A$ is associative and distributes over $\oplus$
$\square \forall a \in A, a \oplus \mathbf{0}=a$,

$$
\begin{aligned}
& a \otimes \mathbf{1}=a \\
& a \otimes \mathbf{0}=\mathbf{0} \otimes a=\mathbf{0}
\end{aligned}
$$

# Non-local features break some of the semiring properties! <br> (see paper for details) 



## Outline

- Background
- Cube Pruning
- Cube Summing
- Semirings
- Implementation
- Conclusion


## Implementation

- Several implementation tools exist for dynamic programming
$\square$ Dyna (Eisner et al., 2005) and Goodman (1999) assume semirings
$\square$ Hypergraphs (Klein \& Manning, 2001; Huang, 2008) do not require semirings but are aimed at decoding
- These could be extended for cube summing, but we instead use a lower-level formalism: arithmetic circuits


## Arithmetic Circuits

- Explicitly represent computations to be performed using a directed graph
$\square$ Operators and operands are nodes in the graph
$\square$ A value is associated with each node
$\square$ Operators point to their operands
- Allow automatic differentiation in the reverse mode (Griewank \& Corliss, 1991) for efficient gradient computation


## Example



## Outline

- Background
- Cube Pruning
- Cube Summing
- Semirings
- Implementation
- Conclusion


## Conclusion and Ongoing Work

- We have described cube summing, a technique for approximate summing using dynamic programming with non-local features
- With only local features, cube summing is a semiring that generalizes those in common use
- Some semiring properties are broken by non-local features but an implementation based on arithmetic circuits can be used
- We are currently using cube summing to train a loglinear syntactic translation model with hidden variables


## Thanks!

# Cube Summing, Approximate Inference with Non-Local Features, and Dynamic Programming without Semirings 

Kevin Gimpel and Noah A. Smith
$A A_{R}$ Carnegie Mellon

